aboutsummaryrefslogtreecommitdiffstats
path: root/sound/pci/hda
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /sound/pci/hda
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'sound/pci/hda')
-rw-r--r--sound/pci/hda/Makefile7
-rw-r--r--sound/pci/hda/hda_codec.c1856
-rw-r--r--sound/pci/hda/hda_codec.h604
-rw-r--r--sound/pci/hda/hda_generic.c906
-rw-r--r--sound/pci/hda/hda_intel.c1449
-rw-r--r--sound/pci/hda/hda_local.h161
-rw-r--r--sound/pci/hda/hda_patch.h17
-rw-r--r--sound/pci/hda/hda_proc.c298
-rw-r--r--sound/pci/hda/patch_analog.c445
-rw-r--r--sound/pci/hda/patch_cmedia.c621
-rw-r--r--sound/pci/hda/patch_realtek.c1503
11 files changed, 7867 insertions, 0 deletions
diff --git a/sound/pci/hda/Makefile b/sound/pci/hda/Makefile
new file mode 100644
index 000000000000..570a59d33b41
--- /dev/null
+++ b/sound/pci/hda/Makefile
@@ -0,0 +1,7 @@
1snd-hda-intel-objs := hda_intel.o
2snd-hda-codec-objs := hda_codec.o hda_generic.o patch_realtek.o patch_cmedia.o patch_analog.o
3ifdef CONFIG_PROC_FS
4snd-hda-codec-objs += hda_proc.o
5endif
6
7obj-$(CONFIG_SND_HDA_INTEL) += snd-hda-intel.o snd-hda-codec.o
diff --git a/sound/pci/hda/hda_codec.c b/sound/pci/hda/hda_codec.c
new file mode 100644
index 000000000000..9ed117ac0c09
--- /dev/null
+++ b/sound/pci/hda/hda_codec.c
@@ -0,0 +1,1856 @@
1/*
2 * Universal Interface for Intel High Definition Audio Codec
3 *
4 * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
5 *
6 *
7 * This driver is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This driver is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22#include <sound/driver.h>
23#include <linux/init.h>
24#include <linux/delay.h>
25#include <linux/slab.h>
26#include <linux/pci.h>
27#include <linux/moduleparam.h>
28#include <sound/core.h>
29#include "hda_codec.h"
30#include <sound/asoundef.h>
31#include <sound/initval.h>
32#include "hda_local.h"
33
34
35MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
36MODULE_DESCRIPTION("Universal interface for High Definition Audio Codec");
37MODULE_LICENSE("GPL");
38
39
40/*
41 * vendor / preset table
42 */
43
44struct hda_vendor_id {
45 unsigned int id;
46 const char *name;
47};
48
49/* codec vendor labels */
50static struct hda_vendor_id hda_vendor_ids[] = {
51 { 0x10ec, "Realtek" },
52 { 0x13f6, "C-Media" },
53 { 0x434d, "C-Media" },
54 {} /* terminator */
55};
56
57/* codec presets */
58#include "hda_patch.h"
59
60
61/**
62 * snd_hda_codec_read - send a command and get the response
63 * @codec: the HDA codec
64 * @nid: NID to send the command
65 * @direct: direct flag
66 * @verb: the verb to send
67 * @parm: the parameter for the verb
68 *
69 * Send a single command and read the corresponding response.
70 *
71 * Returns the obtained response value, or -1 for an error.
72 */
73unsigned int snd_hda_codec_read(struct hda_codec *codec, hda_nid_t nid, int direct,
74 unsigned int verb, unsigned int parm)
75{
76 unsigned int res;
77 down(&codec->bus->cmd_mutex);
78 if (! codec->bus->ops.command(codec, nid, direct, verb, parm))
79 res = codec->bus->ops.get_response(codec);
80 else
81 res = (unsigned int)-1;
82 up(&codec->bus->cmd_mutex);
83 return res;
84}
85
86/**
87 * snd_hda_codec_write - send a single command without waiting for response
88 * @codec: the HDA codec
89 * @nid: NID to send the command
90 * @direct: direct flag
91 * @verb: the verb to send
92 * @parm: the parameter for the verb
93 *
94 * Send a single command without waiting for response.
95 *
96 * Returns 0 if successful, or a negative error code.
97 */
98int snd_hda_codec_write(struct hda_codec *codec, hda_nid_t nid, int direct,
99 unsigned int verb, unsigned int parm)
100{
101 int err;
102 down(&codec->bus->cmd_mutex);
103 err = codec->bus->ops.command(codec, nid, direct, verb, parm);
104 up(&codec->bus->cmd_mutex);
105 return err;
106}
107
108/**
109 * snd_hda_sequence_write - sequence writes
110 * @codec: the HDA codec
111 * @seq: VERB array to send
112 *
113 * Send the commands sequentially from the given array.
114 * The array must be terminated with NID=0.
115 */
116void snd_hda_sequence_write(struct hda_codec *codec, const struct hda_verb *seq)
117{
118 for (; seq->nid; seq++)
119 snd_hda_codec_write(codec, seq->nid, 0, seq->verb, seq->param);
120}
121
122/**
123 * snd_hda_get_sub_nodes - get the range of sub nodes
124 * @codec: the HDA codec
125 * @nid: NID to parse
126 * @start_id: the pointer to store the start NID
127 *
128 * Parse the NID and store the start NID of its sub-nodes.
129 * Returns the number of sub-nodes.
130 */
131int snd_hda_get_sub_nodes(struct hda_codec *codec, hda_nid_t nid, hda_nid_t *start_id)
132{
133 unsigned int parm;
134
135 parm = snd_hda_param_read(codec, nid, AC_PAR_NODE_COUNT);
136 *start_id = (parm >> 16) & 0x7fff;
137 return (int)(parm & 0x7fff);
138}
139
140/**
141 * snd_hda_get_connections - get connection list
142 * @codec: the HDA codec
143 * @nid: NID to parse
144 * @conn_list: connection list array
145 * @max_conns: max. number of connections to store
146 *
147 * Parses the connection list of the given widget and stores the list
148 * of NIDs.
149 *
150 * Returns the number of connections, or a negative error code.
151 */
152int snd_hda_get_connections(struct hda_codec *codec, hda_nid_t nid,
153 hda_nid_t *conn_list, int max_conns)
154{
155 unsigned int parm;
156 int i, j, conn_len, num_tupples, conns;
157 unsigned int shift, num_elems, mask;
158
159 snd_assert(conn_list && max_conns > 0, return -EINVAL);
160
161 parm = snd_hda_param_read(codec, nid, AC_PAR_CONNLIST_LEN);
162 if (parm & AC_CLIST_LONG) {
163 /* long form */
164 shift = 16;
165 num_elems = 2;
166 } else {
167 /* short form */
168 shift = 8;
169 num_elems = 4;
170 }
171 conn_len = parm & AC_CLIST_LENGTH;
172 num_tupples = num_elems / 2;
173 mask = (1 << (shift-1)) - 1;
174
175 if (! conn_len)
176 return 0; /* no connection */
177
178 if (conn_len == 1) {
179 /* single connection */
180 parm = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONNECT_LIST, 0);
181 conn_list[0] = parm & mask;
182 return 1;
183 }
184
185 /* multi connection */
186 conns = 0;
187 for (i = 0; i < conn_len; i += num_elems) {
188 parm = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONNECT_LIST, i);
189 for (j = 0; j < num_tupples; j++) {
190 int range_val;
191 hda_nid_t val1, val2, n;
192 range_val = parm & (1 << (shift-1)); /* ranges */
193 val1 = parm & mask;
194 parm >>= shift;
195 val2 = parm & mask;
196 parm >>= shift;
197 if (range_val) {
198 /* ranges between val1 and val2 */
199 if (val1 > val2) {
200 snd_printk(KERN_WARNING "hda_codec: invalid dep_range_val %x:%x\n", val1, val2);
201 continue;
202 }
203 for (n = val1; n <= val2; n++) {
204 if (conns >= max_conns)
205 return -EINVAL;
206 conn_list[conns++] = n;
207 }
208 } else {
209 if (! val1)
210 break;
211 if (conns >= max_conns)
212 return -EINVAL;
213 conn_list[conns++] = val1;
214 if (! val2)
215 break;
216 if (conns >= max_conns)
217 return -EINVAL;
218 conn_list[conns++] = val2;
219 }
220 }
221 }
222 return conns;
223}
224
225
226/**
227 * snd_hda_queue_unsol_event - add an unsolicited event to queue
228 * @bus: the BUS
229 * @res: unsolicited event (lower 32bit of RIRB entry)
230 * @res_ex: codec addr and flags (upper 32bit or RIRB entry)
231 *
232 * Adds the given event to the queue. The events are processed in
233 * the workqueue asynchronously. Call this function in the interrupt
234 * hanlder when RIRB receives an unsolicited event.
235 *
236 * Returns 0 if successful, or a negative error code.
237 */
238int snd_hda_queue_unsol_event(struct hda_bus *bus, u32 res, u32 res_ex)
239{
240 struct hda_bus_unsolicited *unsol;
241 unsigned int wp;
242
243 if ((unsol = bus->unsol) == NULL)
244 return 0;
245
246 wp = (unsol->wp + 1) % HDA_UNSOL_QUEUE_SIZE;
247 unsol->wp = wp;
248
249 wp <<= 1;
250 unsol->queue[wp] = res;
251 unsol->queue[wp + 1] = res_ex;
252
253 queue_work(unsol->workq, &unsol->work);
254
255 return 0;
256}
257
258/*
259 * process queueud unsolicited events
260 */
261static void process_unsol_events(void *data)
262{
263 struct hda_bus *bus = data;
264 struct hda_bus_unsolicited *unsol = bus->unsol;
265 struct hda_codec *codec;
266 unsigned int rp, caddr, res;
267
268 while (unsol->rp != unsol->wp) {
269 rp = (unsol->rp + 1) % HDA_UNSOL_QUEUE_SIZE;
270 unsol->rp = rp;
271 rp <<= 1;
272 res = unsol->queue[rp];
273 caddr = unsol->queue[rp + 1];
274 if (! (caddr & (1 << 4))) /* no unsolicited event? */
275 continue;
276 codec = bus->caddr_tbl[caddr & 0x0f];
277 if (codec && codec->patch_ops.unsol_event)
278 codec->patch_ops.unsol_event(codec, res);
279 }
280}
281
282/*
283 * initialize unsolicited queue
284 */
285static int init_unsol_queue(struct hda_bus *bus)
286{
287 struct hda_bus_unsolicited *unsol;
288
289 unsol = kcalloc(1, sizeof(*unsol), GFP_KERNEL);
290 if (! unsol) {
291 snd_printk(KERN_ERR "hda_codec: can't allocate unsolicited queue\n");
292 return -ENOMEM;
293 }
294 unsol->workq = create_workqueue("hda_codec");
295 if (! unsol->workq) {
296 snd_printk(KERN_ERR "hda_codec: can't create workqueue\n");
297 kfree(unsol);
298 return -ENOMEM;
299 }
300 INIT_WORK(&unsol->work, process_unsol_events, bus);
301 bus->unsol = unsol;
302 return 0;
303}
304
305/*
306 * destructor
307 */
308static void snd_hda_codec_free(struct hda_codec *codec);
309
310static int snd_hda_bus_free(struct hda_bus *bus)
311{
312 struct list_head *p, *n;
313
314 if (! bus)
315 return 0;
316 if (bus->unsol) {
317 destroy_workqueue(bus->unsol->workq);
318 kfree(bus->unsol);
319 }
320 list_for_each_safe(p, n, &bus->codec_list) {
321 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
322 snd_hda_codec_free(codec);
323 }
324 if (bus->ops.private_free)
325 bus->ops.private_free(bus);
326 kfree(bus);
327 return 0;
328}
329
330static int snd_hda_bus_dev_free(snd_device_t *device)
331{
332 struct hda_bus *bus = device->device_data;
333 return snd_hda_bus_free(bus);
334}
335
336/**
337 * snd_hda_bus_new - create a HDA bus
338 * @card: the card entry
339 * @temp: the template for hda_bus information
340 * @busp: the pointer to store the created bus instance
341 *
342 * Returns 0 if successful, or a negative error code.
343 */
344int snd_hda_bus_new(snd_card_t *card, const struct hda_bus_template *temp,
345 struct hda_bus **busp)
346{
347 struct hda_bus *bus;
348 int err;
349 static snd_device_ops_t dev_ops = {
350 .dev_free = snd_hda_bus_dev_free,
351 };
352
353 snd_assert(temp, return -EINVAL);
354 snd_assert(temp->ops.command && temp->ops.get_response, return -EINVAL);
355
356 if (busp)
357 *busp = NULL;
358
359 bus = kcalloc(1, sizeof(*bus), GFP_KERNEL);
360 if (bus == NULL) {
361 snd_printk(KERN_ERR "can't allocate struct hda_bus\n");
362 return -ENOMEM;
363 }
364
365 bus->card = card;
366 bus->private_data = temp->private_data;
367 bus->pci = temp->pci;
368 bus->modelname = temp->modelname;
369 bus->ops = temp->ops;
370
371 init_MUTEX(&bus->cmd_mutex);
372 INIT_LIST_HEAD(&bus->codec_list);
373
374 init_unsol_queue(bus);
375
376 if ((err = snd_device_new(card, SNDRV_DEV_BUS, bus, &dev_ops)) < 0) {
377 snd_hda_bus_free(bus);
378 return err;
379 }
380 if (busp)
381 *busp = bus;
382 return 0;
383}
384
385
386/*
387 * find a matching codec preset
388 */
389static const struct hda_codec_preset *find_codec_preset(struct hda_codec *codec)
390{
391 const struct hda_codec_preset **tbl, *preset;
392
393 for (tbl = hda_preset_tables; *tbl; tbl++) {
394 for (preset = *tbl; preset->id; preset++) {
395 u32 mask = preset->mask;
396 if (! mask)
397 mask = ~0;
398 if (preset->id == (codec->vendor_id & mask))
399 return preset;
400 }
401 }
402 return NULL;
403}
404
405/*
406 * snd_hda_get_codec_name - store the codec name
407 */
408void snd_hda_get_codec_name(struct hda_codec *codec,
409 char *name, int namelen)
410{
411 const struct hda_vendor_id *c;
412 const char *vendor = NULL;
413 u16 vendor_id = codec->vendor_id >> 16;
414 char tmp[16];
415
416 for (c = hda_vendor_ids; c->id; c++) {
417 if (c->id == vendor_id) {
418 vendor = c->name;
419 break;
420 }
421 }
422 if (! vendor) {
423 sprintf(tmp, "Generic %04x", vendor_id);
424 vendor = tmp;
425 }
426 if (codec->preset && codec->preset->name)
427 snprintf(name, namelen, "%s %s", vendor, codec->preset->name);
428 else
429 snprintf(name, namelen, "%s ID %x", vendor, codec->vendor_id & 0xffff);
430}
431
432/*
433 * look for an AFG node
434 *
435 * return 0 if not found
436 */
437static int look_for_afg_node(struct hda_codec *codec)
438{
439 int i, total_nodes;
440 hda_nid_t nid;
441
442 total_nodes = snd_hda_get_sub_nodes(codec, AC_NODE_ROOT, &nid);
443 for (i = 0; i < total_nodes; i++, nid++) {
444 if ((snd_hda_param_read(codec, nid, AC_PAR_FUNCTION_TYPE) & 0xff) ==
445 AC_GRP_AUDIO_FUNCTION)
446 return nid;
447 }
448 return 0;
449}
450
451/*
452 * codec destructor
453 */
454static void snd_hda_codec_free(struct hda_codec *codec)
455{
456 if (! codec)
457 return;
458 list_del(&codec->list);
459 codec->bus->caddr_tbl[codec->addr] = NULL;
460 if (codec->patch_ops.free)
461 codec->patch_ops.free(codec);
462 kfree(codec);
463}
464
465static void init_amp_hash(struct hda_codec *codec);
466
467/**
468 * snd_hda_codec_new - create a HDA codec
469 * @bus: the bus to assign
470 * @codec_addr: the codec address
471 * @codecp: the pointer to store the generated codec
472 *
473 * Returns 0 if successful, or a negative error code.
474 */
475int snd_hda_codec_new(struct hda_bus *bus, unsigned int codec_addr,
476 struct hda_codec **codecp)
477{
478 struct hda_codec *codec;
479 char component[13];
480 int err;
481
482 snd_assert(bus, return -EINVAL);
483 snd_assert(codec_addr <= HDA_MAX_CODEC_ADDRESS, return -EINVAL);
484
485 if (bus->caddr_tbl[codec_addr]) {
486 snd_printk(KERN_ERR "hda_codec: address 0x%x is already occupied\n", codec_addr);
487 return -EBUSY;
488 }
489
490 codec = kcalloc(1, sizeof(*codec), GFP_KERNEL);
491 if (codec == NULL) {
492 snd_printk(KERN_ERR "can't allocate struct hda_codec\n");
493 return -ENOMEM;
494 }
495
496 codec->bus = bus;
497 codec->addr = codec_addr;
498 init_MUTEX(&codec->spdif_mutex);
499 init_amp_hash(codec);
500
501 list_add_tail(&codec->list, &bus->codec_list);
502 bus->caddr_tbl[codec_addr] = codec;
503
504 codec->vendor_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_VENDOR_ID);
505 codec->subsystem_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_SUBSYSTEM_ID);
506 codec->revision_id = snd_hda_param_read(codec, AC_NODE_ROOT, AC_PAR_REV_ID);
507
508 /* FIXME: support for multiple AFGs? */
509 codec->afg = look_for_afg_node(codec);
510 if (! codec->afg) {
511 snd_printk(KERN_ERR "hda_codec: no AFG node found\n");
512 snd_hda_codec_free(codec);
513 return -ENODEV;
514 }
515
516 codec->preset = find_codec_preset(codec);
517 if (! *bus->card->mixername)
518 snd_hda_get_codec_name(codec, bus->card->mixername,
519 sizeof(bus->card->mixername));
520
521 if (codec->preset && codec->preset->patch)
522 err = codec->preset->patch(codec);
523 else
524 err = snd_hda_parse_generic_codec(codec);
525 if (err < 0) {
526 snd_hda_codec_free(codec);
527 return err;
528 }
529
530 snd_hda_codec_proc_new(codec);
531
532 sprintf(component, "HDA:%08x", codec->vendor_id);
533 snd_component_add(codec->bus->card, component);
534
535 if (codecp)
536 *codecp = codec;
537 return 0;
538}
539
540/**
541 * snd_hda_codec_setup_stream - set up the codec for streaming
542 * @codec: the CODEC to set up
543 * @nid: the NID to set up
544 * @stream_tag: stream tag to pass, it's between 0x1 and 0xf.
545 * @channel_id: channel id to pass, zero based.
546 * @format: stream format.
547 */
548void snd_hda_codec_setup_stream(struct hda_codec *codec, hda_nid_t nid, u32 stream_tag,
549 int channel_id, int format)
550{
551 snd_printdd("hda_codec_setup_stream: NID=0x%x, stream=0x%x, channel=%d, format=0x%x\n",
552 nid, stream_tag, channel_id, format);
553 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CHANNEL_STREAMID,
554 (stream_tag << 4) | channel_id);
555 msleep(1);
556 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_STREAM_FORMAT, format);
557}
558
559
560/*
561 * amp access functions
562 */
563
564#define HDA_HASH_KEY(nid,dir,idx) (u32)((nid) + (idx) * 32 + (dir) * 64)
565#define INFO_AMP_CAPS (1<<0)
566#define INFO_AMP_VOL (1<<1)
567
568/* initialize the hash table */
569static void init_amp_hash(struct hda_codec *codec)
570{
571 memset(codec->amp_hash, 0xff, sizeof(codec->amp_hash));
572 codec->num_amp_entries = 0;
573}
574
575/* query the hash. allocate an entry if not found. */
576static struct hda_amp_info *get_alloc_amp_hash(struct hda_codec *codec, u32 key)
577{
578 u16 idx = key % (u16)ARRAY_SIZE(codec->amp_hash);
579 u16 cur = codec->amp_hash[idx];
580 struct hda_amp_info *info;
581
582 while (cur != 0xffff) {
583 info = &codec->amp_info[cur];
584 if (info->key == key)
585 return info;
586 cur = info->next;
587 }
588
589 /* add a new hash entry */
590 if (codec->num_amp_entries >= ARRAY_SIZE(codec->amp_info)) {
591 snd_printk(KERN_ERR "hda_codec: Tooooo many amps!\n");
592 return NULL;
593 }
594 cur = codec->num_amp_entries++;
595 info = &codec->amp_info[cur];
596 info->key = key;
597 info->status = 0; /* not initialized yet */
598 info->next = codec->amp_hash[idx];
599 codec->amp_hash[idx] = cur;
600
601 return info;
602}
603
604/*
605 * query AMP capabilities for the given widget and direction
606 */
607static u32 query_amp_caps(struct hda_codec *codec, hda_nid_t nid, int direction)
608{
609 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, 0));
610
611 if (! info)
612 return 0;
613 if (! (info->status & INFO_AMP_CAPS)) {
614 if (!(snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP) & AC_WCAP_AMP_OVRD))
615 nid = codec->afg;
616 info->amp_caps = snd_hda_param_read(codec, nid, direction == HDA_OUTPUT ?
617 AC_PAR_AMP_OUT_CAP : AC_PAR_AMP_IN_CAP);
618 info->status |= INFO_AMP_CAPS;
619 }
620 return info->amp_caps;
621}
622
623/*
624 * read the current volume to info
625 * if the cache exists, read from the cache.
626 */
627static void get_vol_mute(struct hda_codec *codec, struct hda_amp_info *info,
628 hda_nid_t nid, int ch, int direction, int index)
629{
630 u32 val, parm;
631
632 if (info->status & (INFO_AMP_VOL << ch))
633 return;
634
635 parm = ch ? AC_AMP_GET_RIGHT : AC_AMP_GET_LEFT;
636 parm |= direction == HDA_OUTPUT ? AC_AMP_GET_OUTPUT : AC_AMP_GET_INPUT;
637 parm |= index;
638 val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_AMP_GAIN_MUTE, parm);
639 info->vol[ch] = val & 0xff;
640 info->status |= INFO_AMP_VOL << ch;
641}
642
643/*
644 * write the current volume in info to the h/w
645 */
646static void put_vol_mute(struct hda_codec *codec,
647 hda_nid_t nid, int ch, int direction, int index, int val)
648{
649 u32 parm;
650
651 parm = ch ? AC_AMP_SET_RIGHT : AC_AMP_SET_LEFT;
652 parm |= direction == HDA_OUTPUT ? AC_AMP_SET_OUTPUT : AC_AMP_SET_INPUT;
653 parm |= index << AC_AMP_SET_INDEX_SHIFT;
654 parm |= val;
655 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE, parm);
656}
657
658/*
659 * read/write AMP value. The volume is between 0 to 0x7f, 0x80 = mute bit.
660 */
661int snd_hda_codec_amp_read(struct hda_codec *codec, hda_nid_t nid, int ch, int direction, int index)
662{
663 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, index));
664 if (! info)
665 return 0;
666 get_vol_mute(codec, info, nid, ch, direction, index);
667 return info->vol[ch];
668}
669
670int snd_hda_codec_amp_write(struct hda_codec *codec, hda_nid_t nid, int ch, int direction, int idx, int val)
671{
672 struct hda_amp_info *info = get_alloc_amp_hash(codec, HDA_HASH_KEY(nid, direction, idx));
673 if (! info)
674 return 0;
675 get_vol_mute(codec, info, nid, ch, direction, idx);
676 if (info->vol[ch] == val && ! codec->in_resume)
677 return 0;
678 put_vol_mute(codec, nid, ch, direction, idx, val);
679 info->vol[ch] = val;
680 return 1;
681}
682
683
684/*
685 * AMP control callbacks
686 */
687/* retrieve parameters from private_value */
688#define get_amp_nid(kc) ((kc)->private_value & 0xffff)
689#define get_amp_channels(kc) (((kc)->private_value >> 16) & 0x3)
690#define get_amp_direction(kc) (((kc)->private_value >> 18) & 0x1)
691#define get_amp_index(kc) (((kc)->private_value >> 19) & 0xf)
692
693/* volume */
694int snd_hda_mixer_amp_volume_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
695{
696 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
697 u16 nid = get_amp_nid(kcontrol);
698 u8 chs = get_amp_channels(kcontrol);
699 int dir = get_amp_direction(kcontrol);
700 u32 caps;
701
702 caps = query_amp_caps(codec, nid, dir);
703 caps = (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT; /* num steps */
704 if (! caps) {
705 printk(KERN_WARNING "hda_codec: num_steps = 0 for NID=0x%x\n", nid);
706 return -EINVAL;
707 }
708 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
709 uinfo->count = chs == 3 ? 2 : 1;
710 uinfo->value.integer.min = 0;
711 uinfo->value.integer.max = caps;
712 return 0;
713}
714
715int snd_hda_mixer_amp_volume_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
716{
717 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
718 hda_nid_t nid = get_amp_nid(kcontrol);
719 int chs = get_amp_channels(kcontrol);
720 int dir = get_amp_direction(kcontrol);
721 int idx = get_amp_index(kcontrol);
722 long *valp = ucontrol->value.integer.value;
723
724 if (chs & 1)
725 *valp++ = snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x7f;
726 if (chs & 2)
727 *valp = snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x7f;
728 return 0;
729}
730
731int snd_hda_mixer_amp_volume_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
732{
733 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
734 hda_nid_t nid = get_amp_nid(kcontrol);
735 int chs = get_amp_channels(kcontrol);
736 int dir = get_amp_direction(kcontrol);
737 int idx = get_amp_index(kcontrol);
738 int val;
739 long *valp = ucontrol->value.integer.value;
740 int change = 0;
741
742 if (chs & 1) {
743 val = *valp & 0x7f;
744 val |= snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x80;
745 change = snd_hda_codec_amp_write(codec, nid, 0, dir, idx, val);
746 valp++;
747 }
748 if (chs & 2) {
749 val = *valp & 0x7f;
750 val |= snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x80;
751 change |= snd_hda_codec_amp_write(codec, nid, 1, dir, idx, val);
752 }
753 return change;
754}
755
756/* switch */
757int snd_hda_mixer_amp_switch_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
758{
759 int chs = get_amp_channels(kcontrol);
760
761 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
762 uinfo->count = chs == 3 ? 2 : 1;
763 uinfo->value.integer.min = 0;
764 uinfo->value.integer.max = 1;
765 return 0;
766}
767
768int snd_hda_mixer_amp_switch_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
769{
770 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
771 hda_nid_t nid = get_amp_nid(kcontrol);
772 int chs = get_amp_channels(kcontrol);
773 int dir = get_amp_direction(kcontrol);
774 int idx = get_amp_index(kcontrol);
775 long *valp = ucontrol->value.integer.value;
776
777 if (chs & 1)
778 *valp++ = (snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x80) ? 0 : 1;
779 if (chs & 2)
780 *valp = (snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x80) ? 0 : 1;
781 return 0;
782}
783
784int snd_hda_mixer_amp_switch_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
785{
786 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
787 hda_nid_t nid = get_amp_nid(kcontrol);
788 int chs = get_amp_channels(kcontrol);
789 int dir = get_amp_direction(kcontrol);
790 int idx = get_amp_index(kcontrol);
791 int val;
792 long *valp = ucontrol->value.integer.value;
793 int change = 0;
794
795 if (chs & 1) {
796 val = snd_hda_codec_amp_read(codec, nid, 0, dir, idx) & 0x7f;
797 val |= *valp ? 0 : 0x80;
798 change = snd_hda_codec_amp_write(codec, nid, 0, dir, idx, val);
799 valp++;
800 }
801 if (chs & 2) {
802 val = snd_hda_codec_amp_read(codec, nid, 1, dir, idx) & 0x7f;
803 val |= *valp ? 0 : 0x80;
804 change = snd_hda_codec_amp_write(codec, nid, 1, dir, idx, val);
805 }
806 return change;
807}
808
809/*
810 * SPDIF out controls
811 */
812
813static int snd_hda_spdif_mask_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
814{
815 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
816 uinfo->count = 1;
817 return 0;
818}
819
820static int snd_hda_spdif_cmask_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
821{
822 ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
823 IEC958_AES0_NONAUDIO |
824 IEC958_AES0_CON_EMPHASIS_5015 |
825 IEC958_AES0_CON_NOT_COPYRIGHT;
826 ucontrol->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY |
827 IEC958_AES1_CON_ORIGINAL;
828 return 0;
829}
830
831static int snd_hda_spdif_pmask_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
832{
833 ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
834 IEC958_AES0_NONAUDIO |
835 IEC958_AES0_PRO_EMPHASIS_5015;
836 return 0;
837}
838
839static int snd_hda_spdif_default_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
840{
841 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
842
843 ucontrol->value.iec958.status[0] = codec->spdif_status & 0xff;
844 ucontrol->value.iec958.status[1] = (codec->spdif_status >> 8) & 0xff;
845 ucontrol->value.iec958.status[2] = (codec->spdif_status >> 16) & 0xff;
846 ucontrol->value.iec958.status[3] = (codec->spdif_status >> 24) & 0xff;
847
848 return 0;
849}
850
851/* convert from SPDIF status bits to HDA SPDIF bits
852 * bit 0 (DigEn) is always set zero (to be filled later)
853 */
854static unsigned short convert_from_spdif_status(unsigned int sbits)
855{
856 unsigned short val = 0;
857
858 if (sbits & IEC958_AES0_PROFESSIONAL)
859 val |= 1 << 6;
860 if (sbits & IEC958_AES0_NONAUDIO)
861 val |= 1 << 5;
862 if (sbits & IEC958_AES0_PROFESSIONAL) {
863 if ((sbits & IEC958_AES0_PRO_EMPHASIS) == IEC958_AES0_PRO_EMPHASIS_5015)
864 val |= 1 << 3;
865 } else {
866 if ((sbits & IEC958_AES0_CON_EMPHASIS) == IEC958_AES0_CON_EMPHASIS_5015)
867 val |= 1 << 3;
868 if (! (sbits & IEC958_AES0_CON_NOT_COPYRIGHT))
869 val |= 1 << 4;
870 if (sbits & (IEC958_AES1_CON_ORIGINAL << 8))
871 val |= 1 << 7;
872 val |= sbits & (IEC958_AES1_CON_CATEGORY << 8);
873 }
874 return val;
875}
876
877/* convert to SPDIF status bits from HDA SPDIF bits
878 */
879static unsigned int convert_to_spdif_status(unsigned short val)
880{
881 unsigned int sbits = 0;
882
883 if (val & (1 << 5))
884 sbits |= IEC958_AES0_NONAUDIO;
885 if (val & (1 << 6))
886 sbits |= IEC958_AES0_PROFESSIONAL;
887 if (sbits & IEC958_AES0_PROFESSIONAL) {
888 if (sbits & (1 << 3))
889 sbits |= IEC958_AES0_PRO_EMPHASIS_5015;
890 } else {
891 if (val & (1 << 3))
892 sbits |= IEC958_AES0_CON_EMPHASIS_5015;
893 if (! (val & (1 << 4)))
894 sbits |= IEC958_AES0_CON_NOT_COPYRIGHT;
895 if (val & (1 << 7))
896 sbits |= (IEC958_AES1_CON_ORIGINAL << 8);
897 sbits |= val & (0x7f << 8);
898 }
899 return sbits;
900}
901
902static int snd_hda_spdif_default_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
903{
904 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
905 hda_nid_t nid = kcontrol->private_value;
906 unsigned short val;
907 int change;
908
909 down(&codec->spdif_mutex);
910 codec->spdif_status = ucontrol->value.iec958.status[0] |
911 ((unsigned int)ucontrol->value.iec958.status[1] << 8) |
912 ((unsigned int)ucontrol->value.iec958.status[2] << 16) |
913 ((unsigned int)ucontrol->value.iec958.status[3] << 24);
914 val = convert_from_spdif_status(codec->spdif_status);
915 val |= codec->spdif_ctls & 1;
916 change = codec->spdif_ctls != val;
917 codec->spdif_ctls = val;
918
919 if (change || codec->in_resume) {
920 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff);
921 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_2, val >> 8);
922 }
923
924 up(&codec->spdif_mutex);
925 return change;
926}
927
928static int snd_hda_spdif_out_switch_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
929{
930 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
931 uinfo->count = 1;
932 uinfo->value.integer.min = 0;
933 uinfo->value.integer.max = 1;
934 return 0;
935}
936
937static int snd_hda_spdif_out_switch_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
938{
939 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
940
941 ucontrol->value.integer.value[0] = codec->spdif_ctls & 1;
942 return 0;
943}
944
945static int snd_hda_spdif_out_switch_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
946{
947 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
948 hda_nid_t nid = kcontrol->private_value;
949 unsigned short val;
950 int change;
951
952 down(&codec->spdif_mutex);
953 val = codec->spdif_ctls & ~1;
954 if (ucontrol->value.integer.value[0])
955 val |= 1;
956 change = codec->spdif_ctls != val;
957 if (change || codec->in_resume) {
958 codec->spdif_ctls = val;
959 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val & 0xff);
960 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE,
961 AC_AMP_SET_RIGHT | AC_AMP_SET_LEFT |
962 AC_AMP_SET_OUTPUT | ((val & 1) ? 0 : 0x80));
963 }
964 up(&codec->spdif_mutex);
965 return change;
966}
967
968static snd_kcontrol_new_t dig_mixes[] = {
969 {
970 .access = SNDRV_CTL_ELEM_ACCESS_READ,
971 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
972 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
973 .info = snd_hda_spdif_mask_info,
974 .get = snd_hda_spdif_cmask_get,
975 },
976 {
977 .access = SNDRV_CTL_ELEM_ACCESS_READ,
978 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
979 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK),
980 .info = snd_hda_spdif_mask_info,
981 .get = snd_hda_spdif_pmask_get,
982 },
983 {
984 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
985 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
986 .info = snd_hda_spdif_mask_info,
987 .get = snd_hda_spdif_default_get,
988 .put = snd_hda_spdif_default_put,
989 },
990 {
991 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
992 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH),
993 .info = snd_hda_spdif_out_switch_info,
994 .get = snd_hda_spdif_out_switch_get,
995 .put = snd_hda_spdif_out_switch_put,
996 },
997 { } /* end */
998};
999
1000/**
1001 * snd_hda_create_spdif_out_ctls - create Output SPDIF-related controls
1002 * @codec: the HDA codec
1003 * @nid: audio out widget NID
1004 *
1005 * Creates controls related with the SPDIF output.
1006 * Called from each patch supporting the SPDIF out.
1007 *
1008 * Returns 0 if successful, or a negative error code.
1009 */
1010int snd_hda_create_spdif_out_ctls(struct hda_codec *codec, hda_nid_t nid)
1011{
1012 int err;
1013 snd_kcontrol_t *kctl;
1014 snd_kcontrol_new_t *dig_mix;
1015
1016 for (dig_mix = dig_mixes; dig_mix->name; dig_mix++) {
1017 kctl = snd_ctl_new1(dig_mix, codec);
1018 kctl->private_value = nid;
1019 if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1020 return err;
1021 }
1022 codec->spdif_ctls = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1023 codec->spdif_status = convert_to_spdif_status(codec->spdif_ctls);
1024 return 0;
1025}
1026
1027/*
1028 * SPDIF input
1029 */
1030
1031#define snd_hda_spdif_in_switch_info snd_hda_spdif_out_switch_info
1032
1033static int snd_hda_spdif_in_switch_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
1034{
1035 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1036
1037 ucontrol->value.integer.value[0] = codec->spdif_in_enable;
1038 return 0;
1039}
1040
1041static int snd_hda_spdif_in_switch_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
1042{
1043 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1044 hda_nid_t nid = kcontrol->private_value;
1045 unsigned int val = !!ucontrol->value.integer.value[0];
1046 int change;
1047
1048 down(&codec->spdif_mutex);
1049 change = codec->spdif_in_enable != val;
1050 if (change || codec->in_resume) {
1051 codec->spdif_in_enable = val;
1052 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_DIGI_CONVERT_1, val);
1053 }
1054 up(&codec->spdif_mutex);
1055 return change;
1056}
1057
1058static int snd_hda_spdif_in_status_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
1059{
1060 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1061 hda_nid_t nid = kcontrol->private_value;
1062 unsigned short val;
1063 unsigned int sbits;
1064
1065 val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0);
1066 sbits = convert_to_spdif_status(val);
1067 ucontrol->value.iec958.status[0] = sbits;
1068 ucontrol->value.iec958.status[1] = sbits >> 8;
1069 ucontrol->value.iec958.status[2] = sbits >> 16;
1070 ucontrol->value.iec958.status[3] = sbits >> 24;
1071 return 0;
1072}
1073
1074static snd_kcontrol_new_t dig_in_ctls[] = {
1075 {
1076 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1077 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH),
1078 .info = snd_hda_spdif_in_switch_info,
1079 .get = snd_hda_spdif_in_switch_get,
1080 .put = snd_hda_spdif_in_switch_put,
1081 },
1082 {
1083 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1084 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1085 .name = SNDRV_CTL_NAME_IEC958("",CAPTURE,DEFAULT),
1086 .info = snd_hda_spdif_mask_info,
1087 .get = snd_hda_spdif_in_status_get,
1088 },
1089 { } /* end */
1090};
1091
1092/**
1093 * snd_hda_create_spdif_in_ctls - create Input SPDIF-related controls
1094 * @codec: the HDA codec
1095 * @nid: audio in widget NID
1096 *
1097 * Creates controls related with the SPDIF input.
1098 * Called from each patch supporting the SPDIF in.
1099 *
1100 * Returns 0 if successful, or a negative error code.
1101 */
1102int snd_hda_create_spdif_in_ctls(struct hda_codec *codec, hda_nid_t nid)
1103{
1104 int err;
1105 snd_kcontrol_t *kctl;
1106 snd_kcontrol_new_t *dig_mix;
1107
1108 for (dig_mix = dig_in_ctls; dig_mix->name; dig_mix++) {
1109 kctl = snd_ctl_new1(dig_mix, codec);
1110 kctl->private_value = nid;
1111 if ((err = snd_ctl_add(codec->bus->card, kctl)) < 0)
1112 return err;
1113 }
1114 codec->spdif_in_enable = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_DIGI_CONVERT, 0) & 1;
1115 return 0;
1116}
1117
1118
1119/**
1120 * snd_hda_build_controls - build mixer controls
1121 * @bus: the BUS
1122 *
1123 * Creates mixer controls for each codec included in the bus.
1124 *
1125 * Returns 0 if successful, otherwise a negative error code.
1126 */
1127int snd_hda_build_controls(struct hda_bus *bus)
1128{
1129 struct list_head *p;
1130
1131 /* build controls */
1132 list_for_each(p, &bus->codec_list) {
1133 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1134 int err;
1135 if (! codec->patch_ops.build_controls)
1136 continue;
1137 err = codec->patch_ops.build_controls(codec);
1138 if (err < 0)
1139 return err;
1140 }
1141
1142 /* initialize */
1143 list_for_each(p, &bus->codec_list) {
1144 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1145 int err;
1146 if (! codec->patch_ops.init)
1147 continue;
1148 err = codec->patch_ops.init(codec);
1149 if (err < 0)
1150 return err;
1151 }
1152 return 0;
1153}
1154
1155
1156/*
1157 * stream formats
1158 */
1159static unsigned int rate_bits[][3] = {
1160 /* rate in Hz, ALSA rate bitmask, HDA format value */
1161 { 8000, SNDRV_PCM_RATE_8000, 0x0500 }, /* 1/6 x 48 */
1162 { 11025, SNDRV_PCM_RATE_11025, 0x4300 }, /* 1/4 x 44 */
1163 { 16000, SNDRV_PCM_RATE_16000, 0x0200 }, /* 1/3 x 48 */
1164 { 22050, SNDRV_PCM_RATE_22050, 0x4100 }, /* 1/2 x 44 */
1165 { 32000, SNDRV_PCM_RATE_32000, 0x0a00 }, /* 2/3 x 48 */
1166 { 44100, SNDRV_PCM_RATE_44100, 0x4000 }, /* 44 */
1167 { 48000, SNDRV_PCM_RATE_48000, 0x0000 }, /* 48 */
1168 { 88200, SNDRV_PCM_RATE_88200, 0x4800 }, /* 2 x 44 */
1169 { 96000, SNDRV_PCM_RATE_96000, 0x0800 }, /* 2 x 48 */
1170 { 176400, SNDRV_PCM_RATE_176400, 0x5800 },/* 4 x 44 */
1171 { 192000, SNDRV_PCM_RATE_192000, 0x1800 }, /* 4 x 48 */
1172 { 0 }
1173};
1174
1175/**
1176 * snd_hda_calc_stream_format - calculate format bitset
1177 * @rate: the sample rate
1178 * @channels: the number of channels
1179 * @format: the PCM format (SNDRV_PCM_FORMAT_XXX)
1180 * @maxbps: the max. bps
1181 *
1182 * Calculate the format bitset from the given rate, channels and th PCM format.
1183 *
1184 * Return zero if invalid.
1185 */
1186unsigned int snd_hda_calc_stream_format(unsigned int rate,
1187 unsigned int channels,
1188 unsigned int format,
1189 unsigned int maxbps)
1190{
1191 int i;
1192 unsigned int val = 0;
1193
1194 for (i = 0; rate_bits[i][0]; i++)
1195 if (rate_bits[i][0] == rate) {
1196 val = rate_bits[i][2];
1197 break;
1198 }
1199 if (! rate_bits[i][0]) {
1200 snd_printdd("invalid rate %d\n", rate);
1201 return 0;
1202 }
1203
1204 if (channels == 0 || channels > 8) {
1205 snd_printdd("invalid channels %d\n", channels);
1206 return 0;
1207 }
1208 val |= channels - 1;
1209
1210 switch (snd_pcm_format_width(format)) {
1211 case 8: val |= 0x00; break;
1212 case 16: val |= 0x10; break;
1213 case 20:
1214 case 24:
1215 case 32:
1216 if (maxbps >= 32)
1217 val |= 0x40;
1218 else if (maxbps >= 24)
1219 val |= 0x30;
1220 else
1221 val |= 0x20;
1222 break;
1223 default:
1224 snd_printdd("invalid format width %d\n", snd_pcm_format_width(format));
1225 return 0;
1226 }
1227
1228 return val;
1229}
1230
1231/**
1232 * snd_hda_query_supported_pcm - query the supported PCM rates and formats
1233 * @codec: the HDA codec
1234 * @nid: NID to query
1235 * @ratesp: the pointer to store the detected rate bitflags
1236 * @formatsp: the pointer to store the detected formats
1237 * @bpsp: the pointer to store the detected format widths
1238 *
1239 * Queries the supported PCM rates and formats. The NULL @ratesp, @formatsp
1240 * or @bsps argument is ignored.
1241 *
1242 * Returns 0 if successful, otherwise a negative error code.
1243 */
1244int snd_hda_query_supported_pcm(struct hda_codec *codec, hda_nid_t nid,
1245 u32 *ratesp, u64 *formatsp, unsigned int *bpsp)
1246{
1247 int i;
1248 unsigned int val, streams;
1249
1250 val = 0;
1251 if (nid != codec->afg &&
1252 snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP) & AC_WCAP_FORMAT_OVRD) {
1253 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1254 if (val == -1)
1255 return -EIO;
1256 }
1257 if (! val)
1258 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1259
1260 if (ratesp) {
1261 u32 rates = 0;
1262 for (i = 0; rate_bits[i][0]; i++) {
1263 if (val & (1 << i))
1264 rates |= rate_bits[i][1];
1265 }
1266 *ratesp = rates;
1267 }
1268
1269 if (formatsp || bpsp) {
1270 u64 formats = 0;
1271 unsigned int bps;
1272 unsigned int wcaps;
1273
1274 wcaps = snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP);
1275 streams = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1276 if (streams == -1)
1277 return -EIO;
1278 if (! streams) {
1279 streams = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1280 if (streams == -1)
1281 return -EIO;
1282 }
1283
1284 bps = 0;
1285 if (streams & AC_SUPFMT_PCM) {
1286 if (val & AC_SUPPCM_BITS_8) {
1287 formats |= SNDRV_PCM_FMTBIT_U8;
1288 bps = 8;
1289 }
1290 if (val & AC_SUPPCM_BITS_16) {
1291 formats |= SNDRV_PCM_FMTBIT_S16_LE;
1292 bps = 16;
1293 }
1294 if (wcaps & AC_WCAP_DIGITAL) {
1295 if (val & AC_SUPPCM_BITS_32)
1296 formats |= SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE;
1297 if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24))
1298 formats |= SNDRV_PCM_FMTBIT_S32_LE;
1299 if (val & AC_SUPPCM_BITS_24)
1300 bps = 24;
1301 else if (val & AC_SUPPCM_BITS_20)
1302 bps = 20;
1303 } else if (val & (AC_SUPPCM_BITS_20|AC_SUPPCM_BITS_24|AC_SUPPCM_BITS_32)) {
1304 formats |= SNDRV_PCM_FMTBIT_S32_LE;
1305 if (val & AC_SUPPCM_BITS_32)
1306 bps = 32;
1307 else if (val & AC_SUPPCM_BITS_20)
1308 bps = 20;
1309 else if (val & AC_SUPPCM_BITS_24)
1310 bps = 24;
1311 }
1312 }
1313 else if (streams == AC_SUPFMT_FLOAT32) { /* should be exclusive */
1314 formats |= SNDRV_PCM_FMTBIT_FLOAT_LE;
1315 bps = 32;
1316 } else if (streams == AC_SUPFMT_AC3) { /* should be exclusive */
1317 /* temporary hack: we have still no proper support
1318 * for the direct AC3 stream...
1319 */
1320 formats |= SNDRV_PCM_FMTBIT_U8;
1321 bps = 8;
1322 }
1323 if (formatsp)
1324 *formatsp = formats;
1325 if (bpsp)
1326 *bpsp = bps;
1327 }
1328
1329 return 0;
1330}
1331
1332/**
1333 * snd_hda_is_supported_format - check whether the given node supports the format val
1334 *
1335 * Returns 1 if supported, 0 if not.
1336 */
1337int snd_hda_is_supported_format(struct hda_codec *codec, hda_nid_t nid,
1338 unsigned int format)
1339{
1340 int i;
1341 unsigned int val = 0, rate, stream;
1342
1343 if (nid != codec->afg &&
1344 snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP) & AC_WCAP_FORMAT_OVRD) {
1345 val = snd_hda_param_read(codec, nid, AC_PAR_PCM);
1346 if (val == -1)
1347 return 0;
1348 }
1349 if (! val) {
1350 val = snd_hda_param_read(codec, codec->afg, AC_PAR_PCM);
1351 if (val == -1)
1352 return 0;
1353 }
1354
1355 rate = format & 0xff00;
1356 for (i = 0; rate_bits[i][0]; i++)
1357 if (rate_bits[i][2] == rate) {
1358 if (val & (1 << i))
1359 break;
1360 return 0;
1361 }
1362 if (! rate_bits[i][0])
1363 return 0;
1364
1365 stream = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
1366 if (stream == -1)
1367 return 0;
1368 if (! stream && nid != codec->afg)
1369 stream = snd_hda_param_read(codec, codec->afg, AC_PAR_STREAM);
1370 if (! stream || stream == -1)
1371 return 0;
1372
1373 if (stream & AC_SUPFMT_PCM) {
1374 switch (format & 0xf0) {
1375 case 0x00:
1376 if (! (val & AC_SUPPCM_BITS_8))
1377 return 0;
1378 break;
1379 case 0x10:
1380 if (! (val & AC_SUPPCM_BITS_16))
1381 return 0;
1382 break;
1383 case 0x20:
1384 if (! (val & AC_SUPPCM_BITS_20))
1385 return 0;
1386 break;
1387 case 0x30:
1388 if (! (val & AC_SUPPCM_BITS_24))
1389 return 0;
1390 break;
1391 case 0x40:
1392 if (! (val & AC_SUPPCM_BITS_32))
1393 return 0;
1394 break;
1395 default:
1396 return 0;
1397 }
1398 } else {
1399 /* FIXME: check for float32 and AC3? */
1400 }
1401
1402 return 1;
1403}
1404
1405/*
1406 * PCM stuff
1407 */
1408static int hda_pcm_default_open_close(struct hda_pcm_stream *hinfo,
1409 struct hda_codec *codec,
1410 snd_pcm_substream_t *substream)
1411{
1412 return 0;
1413}
1414
1415static int hda_pcm_default_prepare(struct hda_pcm_stream *hinfo,
1416 struct hda_codec *codec,
1417 unsigned int stream_tag,
1418 unsigned int format,
1419 snd_pcm_substream_t *substream)
1420{
1421 snd_hda_codec_setup_stream(codec, hinfo->nid, stream_tag, 0, format);
1422 return 0;
1423}
1424
1425static int hda_pcm_default_cleanup(struct hda_pcm_stream *hinfo,
1426 struct hda_codec *codec,
1427 snd_pcm_substream_t *substream)
1428{
1429 snd_hda_codec_setup_stream(codec, hinfo->nid, 0, 0, 0);
1430 return 0;
1431}
1432
1433static int set_pcm_default_values(struct hda_codec *codec, struct hda_pcm_stream *info)
1434{
1435 if (info->nid) {
1436 /* query support PCM information from the given NID */
1437 if (! info->rates || ! info->formats)
1438 snd_hda_query_supported_pcm(codec, info->nid,
1439 info->rates ? NULL : &info->rates,
1440 info->formats ? NULL : &info->formats,
1441 info->maxbps ? NULL : &info->maxbps);
1442 }
1443 if (info->ops.open == NULL)
1444 info->ops.open = hda_pcm_default_open_close;
1445 if (info->ops.close == NULL)
1446 info->ops.close = hda_pcm_default_open_close;
1447 if (info->ops.prepare == NULL) {
1448 snd_assert(info->nid, return -EINVAL);
1449 info->ops.prepare = hda_pcm_default_prepare;
1450 }
1451 if (info->ops.prepare == NULL) {
1452 snd_assert(info->nid, return -EINVAL);
1453 info->ops.prepare = hda_pcm_default_prepare;
1454 }
1455 if (info->ops.cleanup == NULL) {
1456 snd_assert(info->nid, return -EINVAL);
1457 info->ops.cleanup = hda_pcm_default_cleanup;
1458 }
1459 return 0;
1460}
1461
1462/**
1463 * snd_hda_build_pcms - build PCM information
1464 * @bus: the BUS
1465 *
1466 * Create PCM information for each codec included in the bus.
1467 *
1468 * The build_pcms codec patch is requested to set up codec->num_pcms and
1469 * codec->pcm_info properly. The array is referred by the top-level driver
1470 * to create its PCM instances.
1471 * The allocated codec->pcm_info should be released in codec->patch_ops.free
1472 * callback.
1473 *
1474 * At least, substreams, channels_min and channels_max must be filled for
1475 * each stream. substreams = 0 indicates that the stream doesn't exist.
1476 * When rates and/or formats are zero, the supported values are queried
1477 * from the given nid. The nid is used also by the default ops.prepare
1478 * and ops.cleanup callbacks.
1479 *
1480 * The driver needs to call ops.open in its open callback. Similarly,
1481 * ops.close is supposed to be called in the close callback.
1482 * ops.prepare should be called in the prepare or hw_params callback
1483 * with the proper parameters for set up.
1484 * ops.cleanup should be called in hw_free for clean up of streams.
1485 *
1486 * This function returns 0 if successfull, or a negative error code.
1487 */
1488int snd_hda_build_pcms(struct hda_bus *bus)
1489{
1490 struct list_head *p;
1491
1492 list_for_each(p, &bus->codec_list) {
1493 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1494 unsigned int pcm, s;
1495 int err;
1496 if (! codec->patch_ops.build_pcms)
1497 continue;
1498 err = codec->patch_ops.build_pcms(codec);
1499 if (err < 0)
1500 return err;
1501 for (pcm = 0; pcm < codec->num_pcms; pcm++) {
1502 for (s = 0; s < 2; s++) {
1503 struct hda_pcm_stream *info;
1504 info = &codec->pcm_info[pcm].stream[s];
1505 if (! info->substreams)
1506 continue;
1507 err = set_pcm_default_values(codec, info);
1508 if (err < 0)
1509 return err;
1510 }
1511 }
1512 }
1513 return 0;
1514}
1515
1516
1517/**
1518 * snd_hda_check_board_config - compare the current codec with the config table
1519 * @codec: the HDA codec
1520 * @tbl: configuration table, terminated by null entries
1521 *
1522 * Compares the modelname or PCI subsystem id of the current codec with the
1523 * given configuration table. If a matching entry is found, returns its
1524 * config value (supposed to be 0 or positive).
1525 *
1526 * If no entries are matching, the function returns a negative value.
1527 */
1528int snd_hda_check_board_config(struct hda_codec *codec, struct hda_board_config *tbl)
1529{
1530 struct hda_board_config *c;
1531
1532 if (codec->bus->modelname) {
1533 for (c = tbl; c->modelname || c->pci_vendor; c++) {
1534 if (c->modelname &&
1535 ! strcmp(codec->bus->modelname, c->modelname)) {
1536 snd_printd(KERN_INFO "hda_codec: model '%s' is selected\n", c->modelname);
1537 return c->config;
1538 }
1539 }
1540 }
1541
1542 if (codec->bus->pci) {
1543 u16 subsystem_vendor, subsystem_device;
1544 pci_read_config_word(codec->bus->pci, PCI_SUBSYSTEM_VENDOR_ID, &subsystem_vendor);
1545 pci_read_config_word(codec->bus->pci, PCI_SUBSYSTEM_ID, &subsystem_device);
1546 for (c = tbl; c->modelname || c->pci_vendor; c++) {
1547 if (c->pci_vendor == subsystem_vendor &&
1548 c->pci_device == subsystem_device)
1549 return c->config;
1550 }
1551 }
1552 return -1;
1553}
1554
1555/**
1556 * snd_hda_add_new_ctls - create controls from the array
1557 * @codec: the HDA codec
1558 * @knew: the array of snd_kcontrol_new_t
1559 *
1560 * This helper function creates and add new controls in the given array.
1561 * The array must be terminated with an empty entry as terminator.
1562 *
1563 * Returns 0 if successful, or a negative error code.
1564 */
1565int snd_hda_add_new_ctls(struct hda_codec *codec, snd_kcontrol_new_t *knew)
1566{
1567 int err;
1568
1569 for (; knew->name; knew++) {
1570 err = snd_ctl_add(codec->bus->card, snd_ctl_new1(knew, codec));
1571 if (err < 0)
1572 return err;
1573 }
1574 return 0;
1575}
1576
1577
1578/*
1579 * input MUX helper
1580 */
1581int snd_hda_input_mux_info(const struct hda_input_mux *imux, snd_ctl_elem_info_t *uinfo)
1582{
1583 unsigned int index;
1584
1585 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1586 uinfo->count = 1;
1587 uinfo->value.enumerated.items = imux->num_items;
1588 index = uinfo->value.enumerated.item;
1589 if (index >= imux->num_items)
1590 index = imux->num_items - 1;
1591 strcpy(uinfo->value.enumerated.name, imux->items[index].label);
1592 return 0;
1593}
1594
1595int snd_hda_input_mux_put(struct hda_codec *codec, const struct hda_input_mux *imux,
1596 snd_ctl_elem_value_t *ucontrol, hda_nid_t nid,
1597 unsigned int *cur_val)
1598{
1599 unsigned int idx;
1600
1601 idx = ucontrol->value.enumerated.item[0];
1602 if (idx >= imux->num_items)
1603 idx = imux->num_items - 1;
1604 if (*cur_val == idx && ! codec->in_resume)
1605 return 0;
1606 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_CONNECT_SEL,
1607 imux->items[idx].index);
1608 *cur_val = idx;
1609 return 1;
1610}
1611
1612
1613/*
1614 * Multi-channel / digital-out PCM helper functions
1615 */
1616
1617/*
1618 * open the digital out in the exclusive mode
1619 */
1620int snd_hda_multi_out_dig_open(struct hda_codec *codec, struct hda_multi_out *mout)
1621{
1622 down(&codec->spdif_mutex);
1623 if (mout->dig_out_used) {
1624 up(&codec->spdif_mutex);
1625 return -EBUSY; /* already being used */
1626 }
1627 mout->dig_out_used = HDA_DIG_EXCLUSIVE;
1628 up(&codec->spdif_mutex);
1629 return 0;
1630}
1631
1632/*
1633 * release the digital out
1634 */
1635int snd_hda_multi_out_dig_close(struct hda_codec *codec, struct hda_multi_out *mout)
1636{
1637 down(&codec->spdif_mutex);
1638 mout->dig_out_used = 0;
1639 up(&codec->spdif_mutex);
1640 return 0;
1641}
1642
1643/*
1644 * set up more restrictions for analog out
1645 */
1646int snd_hda_multi_out_analog_open(struct hda_codec *codec, struct hda_multi_out *mout,
1647 snd_pcm_substream_t *substream)
1648{
1649 substream->runtime->hw.channels_max = mout->max_channels;
1650 return snd_pcm_hw_constraint_step(substream->runtime, 0,
1651 SNDRV_PCM_HW_PARAM_CHANNELS, 2);
1652}
1653
1654/*
1655 * set up the i/o for analog out
1656 * when the digital out is available, copy the front out to digital out, too.
1657 */
1658int snd_hda_multi_out_analog_prepare(struct hda_codec *codec, struct hda_multi_out *mout,
1659 unsigned int stream_tag,
1660 unsigned int format,
1661 snd_pcm_substream_t *substream)
1662{
1663 hda_nid_t *nids = mout->dac_nids;
1664 int chs = substream->runtime->channels;
1665 int i;
1666
1667 down(&codec->spdif_mutex);
1668 if (mout->dig_out_nid && mout->dig_out_used != HDA_DIG_EXCLUSIVE) {
1669 if (chs == 2 &&
1670 snd_hda_is_supported_format(codec, mout->dig_out_nid, format) &&
1671 ! (codec->spdif_status & IEC958_AES0_NONAUDIO)) {
1672 mout->dig_out_used = HDA_DIG_ANALOG_DUP;
1673 /* setup digital receiver */
1674 snd_hda_codec_setup_stream(codec, mout->dig_out_nid,
1675 stream_tag, 0, format);
1676 } else {
1677 mout->dig_out_used = 0;
1678 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
1679 }
1680 }
1681 up(&codec->spdif_mutex);
1682
1683 /* front */
1684 snd_hda_codec_setup_stream(codec, nids[HDA_FRONT], stream_tag, 0, format);
1685 if (mout->hp_nid)
1686 /* headphone out will just decode front left/right (stereo) */
1687 snd_hda_codec_setup_stream(codec, mout->hp_nid, stream_tag, 0, format);
1688 /* surrounds */
1689 for (i = 1; i < mout->num_dacs; i++) {
1690 if (i == HDA_REAR && chs == 2) /* copy front to rear */
1691 snd_hda_codec_setup_stream(codec, nids[i], stream_tag, 0, format);
1692 else if (chs >= (i + 1) * 2) /* independent out */
1693 snd_hda_codec_setup_stream(codec, nids[i], stream_tag, i * 2,
1694 format);
1695 }
1696 return 0;
1697}
1698
1699/*
1700 * clean up the setting for analog out
1701 */
1702int snd_hda_multi_out_analog_cleanup(struct hda_codec *codec, struct hda_multi_out *mout)
1703{
1704 hda_nid_t *nids = mout->dac_nids;
1705 int i;
1706
1707 for (i = 0; i < mout->num_dacs; i++)
1708 snd_hda_codec_setup_stream(codec, nids[i], 0, 0, 0);
1709 if (mout->hp_nid)
1710 snd_hda_codec_setup_stream(codec, mout->hp_nid, 0, 0, 0);
1711 down(&codec->spdif_mutex);
1712 if (mout->dig_out_nid && mout->dig_out_used == HDA_DIG_ANALOG_DUP) {
1713 snd_hda_codec_setup_stream(codec, mout->dig_out_nid, 0, 0, 0);
1714 mout->dig_out_used = 0;
1715 }
1716 up(&codec->spdif_mutex);
1717 return 0;
1718}
1719
1720#ifdef CONFIG_PM
1721/*
1722 * power management
1723 */
1724
1725/**
1726 * snd_hda_suspend - suspend the codecs
1727 * @bus: the HDA bus
1728 * @state: suspsend state
1729 *
1730 * Returns 0 if successful.
1731 */
1732int snd_hda_suspend(struct hda_bus *bus, pm_message_t state)
1733{
1734 struct list_head *p;
1735
1736 /* FIXME: should handle power widget capabilities */
1737 list_for_each(p, &bus->codec_list) {
1738 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1739 if (codec->patch_ops.suspend)
1740 codec->patch_ops.suspend(codec, state);
1741 }
1742 return 0;
1743}
1744
1745/**
1746 * snd_hda_resume - resume the codecs
1747 * @bus: the HDA bus
1748 * @state: resume state
1749 *
1750 * Returns 0 if successful.
1751 */
1752int snd_hda_resume(struct hda_bus *bus)
1753{
1754 struct list_head *p;
1755
1756 list_for_each(p, &bus->codec_list) {
1757 struct hda_codec *codec = list_entry(p, struct hda_codec, list);
1758 if (codec->patch_ops.resume)
1759 codec->patch_ops.resume(codec);
1760 }
1761 return 0;
1762}
1763
1764/**
1765 * snd_hda_resume_ctls - resume controls in the new control list
1766 * @codec: the HDA codec
1767 * @knew: the array of snd_kcontrol_new_t
1768 *
1769 * This function resumes the mixer controls in the snd_kcontrol_new_t array,
1770 * originally for snd_hda_add_new_ctls().
1771 * The array must be terminated with an empty entry as terminator.
1772 */
1773int snd_hda_resume_ctls(struct hda_codec *codec, snd_kcontrol_new_t *knew)
1774{
1775 snd_ctl_elem_value_t *val;
1776
1777 val = kmalloc(sizeof(*val), GFP_KERNEL);
1778 if (! val)
1779 return -ENOMEM;
1780 codec->in_resume = 1;
1781 for (; knew->name; knew++) {
1782 int i, count;
1783 count = knew->count ? knew->count : 1;
1784 for (i = 0; i < count; i++) {
1785 memset(val, 0, sizeof(*val));
1786 val->id.iface = knew->iface;
1787 val->id.device = knew->device;
1788 val->id.subdevice = knew->subdevice;
1789 strcpy(val->id.name, knew->name);
1790 val->id.index = knew->index ? knew->index : i;
1791 /* Assume that get callback reads only from cache,
1792 * not accessing to the real hardware
1793 */
1794 if (snd_ctl_elem_read(codec->bus->card, val) < 0)
1795 continue;
1796 snd_ctl_elem_write(codec->bus->card, NULL, val);
1797 }
1798 }
1799 codec->in_resume = 0;
1800 kfree(val);
1801 return 0;
1802}
1803
1804/**
1805 * snd_hda_resume_spdif_out - resume the digital out
1806 * @codec: the HDA codec
1807 */
1808int snd_hda_resume_spdif_out(struct hda_codec *codec)
1809{
1810 return snd_hda_resume_ctls(codec, dig_mixes);
1811}
1812
1813/**
1814 * snd_hda_resume_spdif_in - resume the digital in
1815 * @codec: the HDA codec
1816 */
1817int snd_hda_resume_spdif_in(struct hda_codec *codec)
1818{
1819 return snd_hda_resume_ctls(codec, dig_in_ctls);
1820}
1821#endif
1822
1823/*
1824 * symbols exported for controller modules
1825 */
1826EXPORT_SYMBOL(snd_hda_codec_read);
1827EXPORT_SYMBOL(snd_hda_codec_write);
1828EXPORT_SYMBOL(snd_hda_sequence_write);
1829EXPORT_SYMBOL(snd_hda_get_sub_nodes);
1830EXPORT_SYMBOL(snd_hda_queue_unsol_event);
1831EXPORT_SYMBOL(snd_hda_bus_new);
1832EXPORT_SYMBOL(snd_hda_codec_new);
1833EXPORT_SYMBOL(snd_hda_codec_setup_stream);
1834EXPORT_SYMBOL(snd_hda_calc_stream_format);
1835EXPORT_SYMBOL(snd_hda_build_pcms);
1836EXPORT_SYMBOL(snd_hda_build_controls);
1837#ifdef CONFIG_PM
1838EXPORT_SYMBOL(snd_hda_suspend);
1839EXPORT_SYMBOL(snd_hda_resume);
1840#endif
1841
1842/*
1843 * INIT part
1844 */
1845
1846static int __init alsa_hda_init(void)
1847{
1848 return 0;
1849}
1850
1851static void __exit alsa_hda_exit(void)
1852{
1853}
1854
1855module_init(alsa_hda_init)
1856module_exit(alsa_hda_exit)
diff --git a/sound/pci/hda/hda_codec.h b/sound/pci/hda/hda_codec.h
new file mode 100644
index 000000000000..c9e9dc9c7c98
--- /dev/null
+++ b/sound/pci/hda/hda_codec.h
@@ -0,0 +1,604 @@
1/*
2 * Universal Interface for Intel High Definition Audio Codec
3 *
4 * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
10 *
11 * This program is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program; if not, write to the Free Software Foundation, Inc., 59
18 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21#ifndef __SOUND_HDA_CODEC_H
22#define __SOUND_HDA_CODEC_H
23
24#include <sound/info.h>
25#include <sound/control.h>
26#include <sound/pcm.h>
27
28/*
29 * nodes
30 */
31#define AC_NODE_ROOT 0x00
32
33/*
34 * function group types
35 */
36enum {
37 AC_GRP_AUDIO_FUNCTION = 0x01,
38 AC_GRP_MODEM_FUNCTION = 0x02,
39};
40
41/*
42 * widget types
43 */
44enum {
45 AC_WID_AUD_OUT, /* Audio Out */
46 AC_WID_AUD_IN, /* Audio In */
47 AC_WID_AUD_MIX, /* Audio Mixer */
48 AC_WID_AUD_SEL, /* Audio Selector */
49 AC_WID_PIN, /* Pin Complex */
50 AC_WID_POWER, /* Power */
51 AC_WID_VOL_KNB, /* Volume Knob */
52 AC_WID_BEEP, /* Beep Generator */
53 AC_WID_VENDOR = 0x0f /* Vendor specific */
54};
55
56/*
57 * GET verbs
58 */
59#define AC_VERB_GET_STREAM_FORMAT 0x0a00
60#define AC_VERB_GET_AMP_GAIN_MUTE 0x0b00
61#define AC_VERB_GET_PROC_COEF 0x0c00
62#define AC_VERB_GET_COEF_INDEX 0x0d00
63#define AC_VERB_PARAMETERS 0x0f00
64#define AC_VERB_GET_CONNECT_SEL 0x0f01
65#define AC_VERB_GET_CONNECT_LIST 0x0f02
66#define AC_VERB_GET_PROC_STATE 0x0f03
67#define AC_VERB_GET_SDI_SELECT 0x0f04
68#define AC_VERB_GET_POWER_STATE 0x0f05
69#define AC_VERB_GET_CONV 0x0f06
70#define AC_VERB_GET_PIN_WIDGET_CONTROL 0x0f07
71#define AC_VERB_GET_UNSOLICITED_RESPONSE 0x0f08
72#define AC_VERB_GET_PIN_SENSE 0x0f09
73#define AC_VERB_GET_BEEP_CONTROL 0x0f0a
74#define AC_VERB_GET_EAPD_BTLENABLE 0x0f0c
75#define AC_VERB_GET_DIGI_CONVERT 0x0f0d
76#define AC_VERB_GET_VOLUME_KNOB_CONTROL 0x0f0f
77/* f10-f1a: GPIO */
78#define AC_VERB_GET_CONFIG_DEFAULT 0x0f1c
79
80/*
81 * SET verbs
82 */
83#define AC_VERB_SET_STREAM_FORMAT 0x200
84#define AC_VERB_SET_AMP_GAIN_MUTE 0x300
85#define AC_VERB_SET_PROC_COEF 0x400
86#define AC_VERB_SET_COEF_INDEX 0x500
87#define AC_VERB_SET_CONNECT_SEL 0x701
88#define AC_VERB_SET_PROC_STATE 0x703
89#define AC_VERB_SET_SDI_SELECT 0x704
90#define AC_VERB_SET_POWER_STATE 0x705
91#define AC_VERB_SET_CHANNEL_STREAMID 0x706
92#define AC_VERB_SET_PIN_WIDGET_CONTROL 0x707
93#define AC_VERB_SET_UNSOLICITED_ENABLE 0x708
94#define AC_VERB_SET_PIN_SENSE 0x709
95#define AC_VERB_SET_BEEP_CONTROL 0x70a
96#define AC_VERB_SET_EAPD_BTLENALBE 0x70c
97#define AC_VERB_SET_DIGI_CONVERT_1 0x70d
98#define AC_VERB_SET_DIGI_CONVERT_2 0x70e
99#define AC_VERB_SET_VOLUME_KNOB_CONTROL 0x70f
100#define AC_VERB_SET_CONFIG_DEFAULT_BYTES_0 0x71c
101#define AC_VERB_SET_CONFIG_DEFAULT_BYTES_1 0x71d
102#define AC_VERB_SET_CONFIG_DEFAULT_BYTES_2 0x71e
103#define AC_VERB_SET_CONFIG_DEFAULT_BYTES_3 0x71f
104#define AC_VERB_SET_CODEC_RESET 0x7ff
105
106/*
107 * Parameter IDs
108 */
109#define AC_PAR_VENDOR_ID 0x00
110#define AC_PAR_SUBSYSTEM_ID 0x01
111#define AC_PAR_REV_ID 0x02
112#define AC_PAR_NODE_COUNT 0x04
113#define AC_PAR_FUNCTION_TYPE 0x05
114#define AC_PAR_AUDIO_FG_CAP 0x08
115#define AC_PAR_AUDIO_WIDGET_CAP 0x09
116#define AC_PAR_PCM 0x0a
117#define AC_PAR_STREAM 0x0b
118#define AC_PAR_PIN_CAP 0x0c
119#define AC_PAR_AMP_IN_CAP 0x0d
120#define AC_PAR_CONNLIST_LEN 0x0e
121#define AC_PAR_POWER_STATE 0x0f
122#define AC_PAR_PROC_CAP 0x10
123#define AC_PAR_GPIO_CAP 0x11
124#define AC_PAR_AMP_OUT_CAP 0x12
125
126/*
127 * AC_VERB_PARAMETERS results (32bit)
128 */
129
130/* Function Group Type */
131#define AC_FGT_TYPE (0xff<<0)
132#define AC_FGT_TYPE_SHIFT 0
133#define AC_FGT_UNSOL_CAP (1<<8)
134
135/* Audio Function Group Capabilities */
136#define AC_AFG_OUT_DELAY (0xf<<0)
137#define AC_AFG_IN_DELAY (0xf<<8)
138#define AC_AFG_BEEP_GEN (1<<16)
139
140/* Audio Widget Capabilities */
141#define AC_WCAP_STEREO (1<<0) /* stereo I/O */
142#define AC_WCAP_IN_AMP (1<<1) /* AMP-in present */
143#define AC_WCAP_OUT_AMP (1<<2) /* AMP-out present */
144#define AC_WCAP_AMP_OVRD (1<<3) /* AMP-parameter override */
145#define AC_WCAP_FORMAT_OVRD (1<<4) /* format override */
146#define AC_WCAP_STRIPE (1<<5) /* stripe */
147#define AC_WCAP_PROC_WID (1<<6) /* Proc Widget */
148#define AC_WCAP_UNSOL_CAP (1<<7) /* Unsol capable */
149#define AC_WCAP_CONN_LIST (1<<8) /* connection list */
150#define AC_WCAP_DIGITAL (1<<9) /* digital I/O */
151#define AC_WCAP_POWER (1<<10) /* power control */
152#define AC_WCAP_LR_SWAP (1<<11) /* L/R swap */
153#define AC_WCAP_DELAY (0xf<<16)
154#define AC_WCAP_DELAY_SHIFT 16
155#define AC_WCAP_TYPE (0xf<<20)
156#define AC_WCAP_TYPE_SHIFT 20
157
158/* supported PCM rates and bits */
159#define AC_SUPPCM_RATES (0xfff << 0)
160#define AC_SUPPCM_BITS_8 (1<<16)
161#define AC_SUPPCM_BITS_16 (1<<17)
162#define AC_SUPPCM_BITS_20 (1<<18)
163#define AC_SUPPCM_BITS_24 (1<<19)
164#define AC_SUPPCM_BITS_32 (1<<20)
165
166/* supported PCM stream format */
167#define AC_SUPFMT_PCM (1<<0)
168#define AC_SUPFMT_FLOAT32 (1<<1)
169#define AC_SUPFMT_AC3 (1<<2)
170
171/* Pin widget capabilies */
172#define AC_PINCAP_IMP_SENSE (1<<0) /* impedance sense capable */
173#define AC_PINCAP_TRIG_REQ (1<<1) /* trigger required */
174#define AC_PINCAP_PRES_DETECT (1<<2) /* presence detect capable */
175#define AC_PINCAP_HP_DRV (1<<3) /* headphone drive capable */
176#define AC_PINCAP_OUT (1<<4) /* output capable */
177#define AC_PINCAP_IN (1<<5) /* input capable */
178#define AC_PINCAP_BALANCE (1<<6) /* balanced I/O capable */
179#define AC_PINCAP_VREF (7<<8)
180#define AC_PINCAP_VREF_SHIFT 8
181#define AC_PINCAP_EAPD (1<<16) /* EAPD capable */
182/* Vref status (used in pin cap and pin ctl) */
183#define AC_PIN_VREF_HIZ (1<<0) /* Hi-Z */
184#define AC_PIN_VREF_50 (1<<1) /* 50% */
185#define AC_PIN_VREF_GRD (1<<2) /* ground */
186#define AC_PIN_VREF_80 (1<<4) /* 80% */
187#define AC_PIN_VREF_100 (1<<5) /* 100% */
188
189
190/* Amplifier capabilities */
191#define AC_AMPCAP_OFFSET (0x7f<<0) /* 0dB offset */
192#define AC_AMPCAP_OFFSET_SHIFT 0
193#define AC_AMPCAP_NUM_STEPS (0x7f<<8) /* number of steps */
194#define AC_AMPCAP_NUM_STEPS_SHIFT 8
195#define AC_AMPCAP_STEP_SIZE (0x7f<<16) /* step size 0-32dB in 0.25dB */
196#define AC_AMPCAP_STEP_SIZE_SHIFT 16
197#define AC_AMPCAP_MUTE (1<<31) /* mute capable */
198#define AC_AMPCAP_MUTE_SHIFT 31
199
200/* Connection list */
201#define AC_CLIST_LENGTH (0x7f<<0)
202#define AC_CLIST_LONG (1<<7)
203
204/* Supported power status */
205#define AC_PWRST_D0SUP (1<<0)
206#define AC_PWRST_D1SUP (1<<1)
207#define AC_PWRST_D2SUP (1<<2)
208#define AC_PWRST_D3SUP (1<<3)
209
210/* Processing capabilies */
211#define AC_PCAP_BENIGN (1<<0)
212#define AC_PCAP_NUM_COEF (0xff<<8)
213
214/* Volume knobs capabilities */
215#define AC_KNBCAP_NUM_STEPS (0x7f<<0)
216#define AC_KNBCAP_DELTA (1<<8)
217
218/*
219 * Control Parameters
220 */
221
222/* Amp gain/mute */
223#define AC_AMP_MUTE (1<<8)
224#define AC_AMP_GAIN (0x7f)
225#define AC_AMP_GET_INDEX (0xf<<0)
226
227#define AC_AMP_GET_LEFT (1<<13)
228#define AC_AMP_GET_RIGHT (0<<13)
229#define AC_AMP_GET_OUTPUT (1<<15)
230#define AC_AMP_GET_INPUT (0<<15)
231
232#define AC_AMP_SET_INDEX (0xf<<8)
233#define AC_AMP_SET_INDEX_SHIFT 8
234#define AC_AMP_SET_RIGHT (1<<12)
235#define AC_AMP_SET_LEFT (1<<13)
236#define AC_AMP_SET_INPUT (1<<14)
237#define AC_AMP_SET_OUTPUT (1<<15)
238
239/* DIGITAL1 bits */
240#define AC_DIG1_ENABLE (1<<0)
241#define AC_DIG1_V (1<<1)
242#define AC_DIG1_VCFG (1<<2)
243#define AC_DIG1_EMPHASIS (1<<3)
244#define AC_DIG1_COPYRIGHT (1<<4)
245#define AC_DIG1_NONAUDIO (1<<5)
246#define AC_DIG1_PROFESSIONAL (1<<6)
247#define AC_DIG1_LEVEL (1<<7)
248
249/* Pin widget control - 8bit */
250#define AC_PINCTL_VREFEN (0x7<<0)
251#define AC_PINCTL_IN_EN (1<<5)
252#define AC_PINCTL_OUT_EN (1<<6)
253#define AC_PINCTL_HP_EN (1<<7)
254
255/* configuration default - 32bit */
256#define AC_DEFCFG_SEQUENCE (0xf<<0)
257#define AC_DEFCFG_DEF_ASSOC (0xf<<4)
258#define AC_DEFCFG_MISC (0xf<<8)
259#define AC_DEFCFG_COLOR (0xf<<12)
260#define AC_DEFCFG_COLOR_SHIFT 12
261#define AC_DEFCFG_CONN_TYPE (0xf<<16)
262#define AC_DEFCFG_CONN_TYPE_SHIFT 16
263#define AC_DEFCFG_DEVICE (0xf<<20)
264#define AC_DEFCFG_DEVICE_SHIFT 20
265#define AC_DEFCFG_LOCATION (0x3f<<24)
266#define AC_DEFCFG_LOCATION_SHIFT 24
267#define AC_DEFCFG_PORT_CONN (0x3<<30)
268#define AC_DEFCFG_PORT_CONN_SHIFT 30
269
270/* device device types (0x0-0xf) */
271enum {
272 AC_JACK_LINE_OUT,
273 AC_JACK_SPEAKER,
274 AC_JACK_HP_OUT,
275 AC_JACK_CD,
276 AC_JACK_SPDIF_OUT,
277 AC_JACK_DIG_OTHER_OUT,
278 AC_JACK_MODEM_LINE_SIDE,
279 AC_JACK_MODEM_HAND_SIDE,
280 AC_JACK_LINE_IN,
281 AC_JACK_AUX,
282 AC_JACK_MIC_IN,
283 AC_JACK_TELEPHONY,
284 AC_JACK_SPDIF_IN,
285 AC_JACK_DIG_OTHER_IN,
286 AC_JACK_OTHER = 0xf,
287};
288
289/* jack connection types (0x0-0xf) */
290enum {
291 AC_JACK_CONN_UNKNOWN,
292 AC_JACK_CONN_1_8,
293 AC_JACK_CONN_1_4,
294 AC_JACK_CONN_ATAPI,
295 AC_JACK_CONN_RCA,
296 AC_JACK_CONN_OPTICAL,
297 AC_JACK_CONN_OTHER_DIGITAL,
298 AC_JACK_CONN_OTHER_ANALOG,
299 AC_JACK_CONN_DIN,
300 AC_JACK_CONN_XLR,
301 AC_JACK_CONN_RJ11,
302 AC_JACK_CONN_COMB,
303 AC_JACK_CONN_OTHER = 0xf,
304};
305
306/* jack colors (0x0-0xf) */
307enum {
308 AC_JACK_COLOR_UNKNOWN,
309 AC_JACK_COLOR_BLACK,
310 AC_JACK_COLOR_GREY,
311 AC_JACK_COLOR_BLUE,
312 AC_JACK_COLOR_GREEN,
313 AC_JACK_COLOR_RED,
314 AC_JACK_COLOR_ORANGE,
315 AC_JACK_COLOR_YELLOW,
316 AC_JACK_COLOR_PURPLE,
317 AC_JACK_COLOR_PINK,
318 AC_JACK_COLOR_WHITE = 0xe,
319 AC_JACK_COLOR_OTHER,
320};
321
322/* Jack location (0x0-0x3f) */
323/* common case */
324enum {
325 AC_JACK_LOC_NONE,
326 AC_JACK_LOC_REAR,
327 AC_JACK_LOC_FRONT,
328 AC_JACK_LOC_LEFT,
329 AC_JACK_LOC_RIGHT,
330 AC_JACK_LOC_TOP,
331 AC_JACK_LOC_BOTTOM,
332};
333/* bits 4-5 */
334enum {
335 AC_JACK_LOC_EXTERNAL = 0x00,
336 AC_JACK_LOC_INTERNAL = 0x10,
337 AC_JACK_LOC_SEPARATE = 0x20,
338 AC_JACK_LOC_OTHER = 0x30,
339};
340enum {
341 /* external on primary chasis */
342 AC_JACK_LOC_REAR_PANEL = 0x07,
343 AC_JACK_LOC_DRIVE_BAY,
344 /* internal */
345 AC_JACK_LOC_RISER = 0x17,
346 AC_JACK_LOC_HDMI,
347 AC_JACK_LOC_ATAPI,
348 /* others */
349 AC_JACK_LOC_MOBILE_IN = 0x37,
350 AC_JACK_LOC_MOBILE_OUT,
351};
352
353/* Port connectivity (0-3) */
354enum {
355 AC_JACK_PORT_COMPLEX,
356 AC_JACK_PORT_NONE,
357 AC_JACK_PORT_FIXED,
358 AC_JACK_PORT_BOTH,
359};
360
361/* max. connections to a widget */
362#define HDA_MAX_CONNECTIONS 16
363
364/* max. codec address */
365#define HDA_MAX_CODEC_ADDRESS 0x0f
366
367/*
368 * Structures
369 */
370
371struct hda_bus;
372struct hda_codec;
373struct hda_pcm;
374struct hda_pcm_stream;
375struct hda_bus_unsolicited;
376
377/* NID type */
378typedef u16 hda_nid_t;
379
380/* bus operators */
381struct hda_bus_ops {
382 /* send a single command */
383 int (*command)(struct hda_codec *codec, hda_nid_t nid, int direct,
384 unsigned int verb, unsigned int parm);
385 /* get a response from the last command */
386 unsigned int (*get_response)(struct hda_codec *codec);
387 /* free the private data */
388 void (*private_free)(struct hda_bus *);
389};
390
391/* template to pass to the bus constructor */
392struct hda_bus_template {
393 void *private_data;
394 struct pci_dev *pci;
395 const char *modelname;
396 struct hda_bus_ops ops;
397};
398
399/*
400 * codec bus
401 *
402 * each controller needs to creata a hda_bus to assign the accessor.
403 * A hda_bus contains several codecs in the list codec_list.
404 */
405struct hda_bus {
406 snd_card_t *card;
407
408 /* copied from template */
409 void *private_data;
410 struct pci_dev *pci;
411 const char *modelname;
412 struct hda_bus_ops ops;
413
414 /* codec linked list */
415 struct list_head codec_list;
416 struct hda_codec *caddr_tbl[HDA_MAX_CODEC_ADDRESS]; /* caddr -> codec */
417
418 struct semaphore cmd_mutex;
419
420 /* unsolicited event queue */
421 struct hda_bus_unsolicited *unsol;
422
423 snd_info_entry_t *proc;
424};
425
426/*
427 * codec preset
428 *
429 * Known codecs have the patch to build and set up the controls/PCMs
430 * better than the generic parser.
431 */
432struct hda_codec_preset {
433 unsigned int id;
434 unsigned int mask;
435 unsigned int subs;
436 unsigned int subs_mask;
437 unsigned int rev;
438 const char *name;
439 int (*patch)(struct hda_codec *codec);
440};
441
442/* ops set by the preset patch */
443struct hda_codec_ops {
444 int (*build_controls)(struct hda_codec *codec);
445 int (*build_pcms)(struct hda_codec *codec);
446 int (*init)(struct hda_codec *codec);
447 void (*free)(struct hda_codec *codec);
448 void (*unsol_event)(struct hda_codec *codec, unsigned int res);
449#ifdef CONFIG_PM
450 int (*suspend)(struct hda_codec *codec, pm_message_t state);
451 int (*resume)(struct hda_codec *codec);
452#endif
453};
454
455/* record for amp information cache */
456struct hda_amp_info {
457 u32 key; /* hash key */
458 u32 amp_caps; /* amp capabilities */
459 u16 vol[2]; /* current volume & mute*/
460 u16 status; /* update flag */
461 u16 next; /* next link */
462};
463
464/* PCM callbacks */
465struct hda_pcm_ops {
466 int (*open)(struct hda_pcm_stream *info, struct hda_codec *codec,
467 snd_pcm_substream_t *substream);
468 int (*close)(struct hda_pcm_stream *info, struct hda_codec *codec,
469 snd_pcm_substream_t *substream);
470 int (*prepare)(struct hda_pcm_stream *info, struct hda_codec *codec,
471 unsigned int stream_tag, unsigned int format,
472 snd_pcm_substream_t *substream);
473 int (*cleanup)(struct hda_pcm_stream *info, struct hda_codec *codec,
474 snd_pcm_substream_t *substream);
475};
476
477/* PCM information for each substream */
478struct hda_pcm_stream {
479 unsigned int substreams; /* number of substreams, 0 = not exist */
480 unsigned int channels_min; /* min. number of channels */
481 unsigned int channels_max; /* max. number of channels */
482 hda_nid_t nid; /* default NID to query rates/formats/bps, or set up */
483 u32 rates; /* supported rates */
484 u64 formats; /* supported formats (SNDRV_PCM_FMTBIT_) */
485 unsigned int maxbps; /* supported max. bit per sample */
486 struct hda_pcm_ops ops;
487};
488
489/* for PCM creation */
490struct hda_pcm {
491 char *name;
492 struct hda_pcm_stream stream[2];
493};
494
495/* codec information */
496struct hda_codec {
497 struct hda_bus *bus;
498 unsigned int addr; /* codec addr*/
499 struct list_head list; /* list point */
500
501 hda_nid_t afg; /* AFG node id */
502
503 /* ids */
504 u32 vendor_id;
505 u32 subsystem_id;
506 u32 revision_id;
507
508 /* detected preset */
509 const struct hda_codec_preset *preset;
510
511 /* set by patch */
512 struct hda_codec_ops patch_ops;
513
514 /* resume phase - all controls should update even if
515 * the values are not changed
516 */
517 unsigned int in_resume;
518
519 /* PCM to create, set by patch_ops.build_pcms callback */
520 unsigned int num_pcms;
521 struct hda_pcm *pcm_info;
522
523 /* codec specific info */
524 void *spec;
525
526 /* hash for amp access */
527 u16 amp_hash[32];
528 int num_amp_entries;
529 struct hda_amp_info amp_info[128]; /* big enough? */
530
531 struct semaphore spdif_mutex;
532 unsigned int spdif_status; /* IEC958 status bits */
533 unsigned short spdif_ctls; /* SPDIF control bits */
534 unsigned int spdif_in_enable; /* SPDIF input enable? */
535};
536
537/* direction */
538enum {
539 HDA_INPUT, HDA_OUTPUT
540};
541
542
543/*
544 * constructors
545 */
546int snd_hda_bus_new(snd_card_t *card, const struct hda_bus_template *temp,
547 struct hda_bus **busp);
548int snd_hda_codec_new(struct hda_bus *bus, unsigned int codec_addr,
549 struct hda_codec **codecp);
550
551/*
552 * low level functions
553 */
554unsigned int snd_hda_codec_read(struct hda_codec *codec, hda_nid_t nid, int direct,
555 unsigned int verb, unsigned int parm);
556int snd_hda_codec_write(struct hda_codec *codec, hda_nid_t nid, int direct,
557 unsigned int verb, unsigned int parm);
558#define snd_hda_param_read(codec, nid, param) snd_hda_codec_read(codec, nid, 0, AC_VERB_PARAMETERS, param)
559int snd_hda_get_sub_nodes(struct hda_codec *codec, hda_nid_t nid, hda_nid_t *start_id);
560int snd_hda_get_connections(struct hda_codec *codec, hda_nid_t nid, hda_nid_t *conn_list, int max_conns);
561
562struct hda_verb {
563 hda_nid_t nid;
564 u32 verb;
565 u32 param;
566};
567
568void snd_hda_sequence_write(struct hda_codec *codec, const struct hda_verb *seq);
569
570/* unsolicited event */
571int snd_hda_queue_unsol_event(struct hda_bus *bus, u32 res, u32 res_ex);
572
573/*
574 * Mixer
575 */
576int snd_hda_build_controls(struct hda_bus *bus);
577
578/*
579 * PCM
580 */
581int snd_hda_build_pcms(struct hda_bus *bus);
582void snd_hda_codec_setup_stream(struct hda_codec *codec, hda_nid_t nid, u32 stream_tag,
583 int channel_id, int format);
584unsigned int snd_hda_calc_stream_format(unsigned int rate, unsigned int channels,
585 unsigned int format, unsigned int maxbps);
586int snd_hda_query_supported_pcm(struct hda_codec *codec, hda_nid_t nid,
587 u32 *ratesp, u64 *formatsp, unsigned int *bpsp);
588int snd_hda_is_supported_format(struct hda_codec *codec, hda_nid_t nid,
589 unsigned int format);
590
591/*
592 * Misc
593 */
594void snd_hda_get_codec_name(struct hda_codec *codec, char *name, int namelen);
595
596/*
597 * power management
598 */
599#ifdef CONFIG_PM
600int snd_hda_suspend(struct hda_bus *bus, pm_message_t state);
601int snd_hda_resume(struct hda_bus *bus);
602#endif
603
604#endif /* __SOUND_HDA_CODEC_H */
diff --git a/sound/pci/hda/hda_generic.c b/sound/pci/hda/hda_generic.c
new file mode 100644
index 000000000000..69f7b6c4cf83
--- /dev/null
+++ b/sound/pci/hda/hda_generic.c
@@ -0,0 +1,906 @@
1/*
2 * Universal Interface for Intel High Definition Audio Codec
3 *
4 * Generic widget tree parser
5 *
6 * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
7 *
8 * This driver is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This driver is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 */
22
23#include <sound/driver.h>
24#include <linux/init.h>
25#include <linux/slab.h>
26#include <linux/pci.h>
27#include <sound/core.h>
28#include "hda_codec.h"
29#include "hda_local.h"
30
31/* widget node for parsing */
32struct hda_gnode {
33 hda_nid_t nid; /* NID of this widget */
34 unsigned short nconns; /* number of input connections */
35 hda_nid_t conn_list[HDA_MAX_CONNECTIONS]; /* input connections */
36 unsigned int wid_caps; /* widget capabilities */
37 unsigned char type; /* widget type */
38 unsigned char pin_ctl; /* pin controls */
39 unsigned char checked; /* the flag indicates that the node is already parsed */
40 unsigned int pin_caps; /* pin widget capabilities */
41 unsigned int def_cfg; /* default configuration */
42 unsigned int amp_out_caps; /* AMP out capabilities */
43 unsigned int amp_in_caps; /* AMP in capabilities */
44 struct list_head list;
45};
46
47/* pathc-specific record */
48struct hda_gspec {
49 struct hda_gnode *dac_node; /* DAC node */
50 struct hda_gnode *out_pin_node; /* Output pin (Line-Out) node */
51 struct hda_gnode *pcm_vol_node; /* Node for PCM volume */
52 unsigned int pcm_vol_index; /* connection of PCM volume */
53
54 struct hda_gnode *adc_node; /* ADC node */
55 struct hda_gnode *cap_vol_node; /* Node for capture volume */
56 unsigned int cur_cap_src; /* current capture source */
57 struct hda_input_mux input_mux;
58 char cap_labels[HDA_MAX_NUM_INPUTS][16];
59
60 unsigned int def_amp_in_caps;
61 unsigned int def_amp_out_caps;
62
63 struct hda_pcm pcm_rec; /* PCM information */
64
65 struct list_head nid_list; /* list of widgets */
66};
67
68/*
69 * retrieve the default device type from the default config value
70 */
71#define get_defcfg_type(node) (((node)->def_cfg & AC_DEFCFG_DEVICE) >> AC_DEFCFG_DEVICE_SHIFT)
72#define get_defcfg_location(node) (((node)->def_cfg & AC_DEFCFG_LOCATION) >> AC_DEFCFG_LOCATION_SHIFT)
73
74/*
75 * destructor
76 */
77static void snd_hda_generic_free(struct hda_codec *codec)
78{
79 struct hda_gspec *spec = codec->spec;
80 struct list_head *p, *n;
81
82 if (! spec)
83 return;
84 /* free all widgets */
85 list_for_each_safe(p, n, &spec->nid_list) {
86 struct hda_gnode *node = list_entry(p, struct hda_gnode, list);
87 kfree(node);
88 }
89 kfree(spec);
90}
91
92
93/*
94 * add a new widget node and read its attributes
95 */
96static int add_new_node(struct hda_codec *codec, struct hda_gspec *spec, hda_nid_t nid)
97{
98 struct hda_gnode *node;
99 int nconns;
100
101 node = kcalloc(1, sizeof(*node), GFP_KERNEL);
102 if (node == NULL)
103 return -ENOMEM;
104 node->nid = nid;
105 nconns = snd_hda_get_connections(codec, nid, node->conn_list, HDA_MAX_CONNECTIONS);
106 if (nconns < 0) {
107 kfree(node);
108 return nconns;
109 }
110 node->nconns = nconns;
111 node->wid_caps = snd_hda_param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP);
112 node->type = (node->wid_caps & AC_WCAP_TYPE) >> AC_WCAP_TYPE_SHIFT;
113
114 if (node->type == AC_WID_PIN) {
115 node->pin_caps = snd_hda_param_read(codec, node->nid, AC_PAR_PIN_CAP);
116 node->pin_ctl = snd_hda_codec_read(codec, node->nid, 0, AC_VERB_GET_PIN_WIDGET_CONTROL, 0);
117 node->def_cfg = snd_hda_codec_read(codec, node->nid, 0, AC_VERB_GET_CONFIG_DEFAULT, 0);
118 }
119
120 if (node->wid_caps & AC_WCAP_OUT_AMP) {
121 if (node->wid_caps & AC_WCAP_AMP_OVRD)
122 node->amp_out_caps = snd_hda_param_read(codec, node->nid, AC_PAR_AMP_OUT_CAP);
123 if (! node->amp_out_caps)
124 node->amp_out_caps = spec->def_amp_out_caps;
125 }
126 if (node->wid_caps & AC_WCAP_IN_AMP) {
127 if (node->wid_caps & AC_WCAP_AMP_OVRD)
128 node->amp_in_caps = snd_hda_param_read(codec, node->nid, AC_PAR_AMP_IN_CAP);
129 if (! node->amp_in_caps)
130 node->amp_in_caps = spec->def_amp_in_caps;
131 }
132 list_add_tail(&node->list, &spec->nid_list);
133 return 0;
134}
135
136/*
137 * build the AFG subtree
138 */
139static int build_afg_tree(struct hda_codec *codec)
140{
141 struct hda_gspec *spec = codec->spec;
142 int i, nodes, err;
143 hda_nid_t nid;
144
145 snd_assert(spec, return -EINVAL);
146
147 spec->def_amp_out_caps = snd_hda_param_read(codec, codec->afg, AC_PAR_AMP_OUT_CAP);
148 spec->def_amp_in_caps = snd_hda_param_read(codec, codec->afg, AC_PAR_AMP_IN_CAP);
149
150 nodes = snd_hda_get_sub_nodes(codec, codec->afg, &nid);
151 if (! nid || nodes < 0) {
152 printk(KERN_ERR "Invalid AFG subtree\n");
153 return -EINVAL;
154 }
155
156 /* parse all nodes belonging to the AFG */
157 for (i = 0; i < nodes; i++, nid++) {
158 if ((err = add_new_node(codec, spec, nid)) < 0)
159 return err;
160 }
161
162 return 0;
163}
164
165
166/*
167 * look for the node record for the given NID
168 */
169/* FIXME: should avoid the braindead linear search */
170static struct hda_gnode *hda_get_node(struct hda_gspec *spec, hda_nid_t nid)
171{
172 struct list_head *p;
173 struct hda_gnode *node;
174
175 list_for_each(p, &spec->nid_list) {
176 node = list_entry(p, struct hda_gnode, list);
177 if (node->nid == nid)
178 return node;
179 }
180 return NULL;
181}
182
183/*
184 * unmute (and set max vol) the output amplifier
185 */
186static int unmute_output(struct hda_codec *codec, struct hda_gnode *node)
187{
188 unsigned int val, ofs;
189 snd_printdd("UNMUTE OUT: NID=0x%x\n", node->nid);
190 val = (node->amp_out_caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT;
191 ofs = (node->amp_out_caps & AC_AMPCAP_OFFSET) >> AC_AMPCAP_OFFSET_SHIFT;
192 if (val >= ofs)
193 val -= ofs;
194 val |= AC_AMP_SET_LEFT | AC_AMP_SET_RIGHT;
195 val |= AC_AMP_SET_OUTPUT;
196 return snd_hda_codec_write(codec, node->nid, 0, AC_VERB_SET_AMP_GAIN_MUTE, val);
197}
198
199/*
200 * unmute (and set max vol) the input amplifier
201 */
202static int unmute_input(struct hda_codec *codec, struct hda_gnode *node, unsigned int index)
203{
204 unsigned int val, ofs;
205 snd_printdd("UNMUTE IN: NID=0x%x IDX=0x%x\n", node->nid, index);
206 val = (node->amp_in_caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT;
207 ofs = (node->amp_in_caps & AC_AMPCAP_OFFSET) >> AC_AMPCAP_OFFSET_SHIFT;
208 if (val >= ofs)
209 val -= ofs;
210 val |= AC_AMP_SET_LEFT | AC_AMP_SET_RIGHT;
211 val |= AC_AMP_SET_INPUT;
212 // awk added - fixed to allow unmuting of indexed amps
213 val |= index << AC_AMP_SET_INDEX_SHIFT;
214 return snd_hda_codec_write(codec, node->nid, 0, AC_VERB_SET_AMP_GAIN_MUTE, val);
215}
216
217/*
218 * select the input connection of the given node.
219 */
220static int select_input_connection(struct hda_codec *codec, struct hda_gnode *node,
221 unsigned int index)
222{
223 snd_printdd("CONNECT: NID=0x%x IDX=0x%x\n", node->nid, index);
224 return snd_hda_codec_write(codec, node->nid, 0, AC_VERB_SET_CONNECT_SEL, index);
225}
226
227/*
228 * clear checked flag of each node in the node list
229 */
230static void clear_check_flags(struct hda_gspec *spec)
231{
232 struct list_head *p;
233 struct hda_gnode *node;
234
235 list_for_each(p, &spec->nid_list) {
236 node = list_entry(p, struct hda_gnode, list);
237 node->checked = 0;
238 }
239}
240
241/*
242 * parse the output path recursively until reach to an audio output widget
243 *
244 * returns 0 if not found, 1 if found, or a negative error code.
245 */
246static int parse_output_path(struct hda_codec *codec, struct hda_gspec *spec,
247 struct hda_gnode *node)
248{
249 int i, err;
250 struct hda_gnode *child;
251
252 if (node->checked)
253 return 0;
254
255 node->checked = 1;
256 if (node->type == AC_WID_AUD_OUT) {
257 if (node->wid_caps & AC_WCAP_DIGITAL) {
258 snd_printdd("Skip Digital OUT node %x\n", node->nid);
259 return 0;
260 }
261 snd_printdd("AUD_OUT found %x\n", node->nid);
262 if (spec->dac_node) {
263 /* already DAC node is assigned, just unmute & connect */
264 return node == spec->dac_node;
265 }
266 spec->dac_node = node;
267 if (node->wid_caps & AC_WCAP_OUT_AMP) {
268 spec->pcm_vol_node = node;
269 spec->pcm_vol_index = 0;
270 }
271 return 1; /* found */
272 }
273
274 for (i = 0; i < node->nconns; i++) {
275 child = hda_get_node(spec, node->conn_list[i]);
276 if (! child)
277 continue;
278 err = parse_output_path(codec, spec, child);
279 if (err < 0)
280 return err;
281 else if (err > 0) {
282 /* found one,
283 * select the path, unmute both input and output
284 */
285 if (node->nconns > 1)
286 select_input_connection(codec, node, i);
287 unmute_input(codec, node, i);
288 unmute_output(codec, node);
289 if (! spec->pcm_vol_node) {
290 if (node->wid_caps & AC_WCAP_IN_AMP) {
291 spec->pcm_vol_node = node;
292 spec->pcm_vol_index = i;
293 } else if (node->wid_caps & AC_WCAP_OUT_AMP) {
294 spec->pcm_vol_node = node;
295 spec->pcm_vol_index = 0;
296 }
297 }
298 return 1;
299 }
300 }
301 return 0;
302}
303
304/*
305 * Look for the output PIN widget with the given jack type
306 * and parse the output path to that PIN.
307 *
308 * Returns the PIN node when the path to DAC is established.
309 */
310static struct hda_gnode *parse_output_jack(struct hda_codec *codec,
311 struct hda_gspec *spec,
312 int jack_type)
313{
314 struct list_head *p;
315 struct hda_gnode *node;
316 int err;
317
318 list_for_each(p, &spec->nid_list) {
319 node = list_entry(p, struct hda_gnode, list);
320 if (node->type != AC_WID_PIN)
321 continue;
322 /* output capable? */
323 if (! (node->pin_caps & AC_PINCAP_OUT))
324 continue;
325 if (jack_type >= 0) {
326 if (jack_type != get_defcfg_type(node))
327 continue;
328 if (node->wid_caps & AC_WCAP_DIGITAL)
329 continue; /* skip SPDIF */
330 } else {
331 /* output as default? */
332 if (! (node->pin_ctl & AC_PINCTL_OUT_EN))
333 continue;
334 }
335 clear_check_flags(spec);
336 err = parse_output_path(codec, spec, node);
337 if (err < 0)
338 return NULL;
339 else if (err > 0) {
340 /* unmute the PIN output */
341 unmute_output(codec, node);
342 /* set PIN-Out enable */
343 snd_hda_codec_write(codec, node->nid, 0,
344 AC_VERB_SET_PIN_WIDGET_CONTROL,
345 AC_PINCTL_OUT_EN | AC_PINCTL_HP_EN);
346 return node;
347 }
348 }
349 return NULL;
350}
351
352
353/*
354 * parse outputs
355 */
356static int parse_output(struct hda_codec *codec)
357{
358 struct hda_gspec *spec = codec->spec;
359 struct hda_gnode *node;
360
361 /*
362 * Look for the output PIN widget
363 */
364 /* first, look for the line-out pin */
365 node = parse_output_jack(codec, spec, AC_JACK_LINE_OUT);
366 if (node) /* found, remember the PIN node */
367 spec->out_pin_node = node;
368 /* look for the HP-out pin */
369 node = parse_output_jack(codec, spec, AC_JACK_HP_OUT);
370 if (node) {
371 if (! spec->out_pin_node)
372 spec->out_pin_node = node;
373 }
374
375 if (! spec->out_pin_node) {
376 /* no line-out or HP pins found,
377 * then choose for the first output pin
378 */
379 spec->out_pin_node = parse_output_jack(codec, spec, -1);
380 if (! spec->out_pin_node)
381 snd_printd("hda_generic: no proper output path found\n");
382 }
383
384 return 0;
385}
386
387/*
388 * input MUX
389 */
390
391/* control callbacks */
392static int capture_source_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
393{
394 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
395 struct hda_gspec *spec = codec->spec;
396 return snd_hda_input_mux_info(&spec->input_mux, uinfo);
397}
398
399static int capture_source_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
400{
401 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
402 struct hda_gspec *spec = codec->spec;
403
404 ucontrol->value.enumerated.item[0] = spec->cur_cap_src;
405 return 0;
406}
407
408static int capture_source_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
409{
410 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
411 struct hda_gspec *spec = codec->spec;
412 return snd_hda_input_mux_put(codec, &spec->input_mux, ucontrol,
413 spec->adc_node->nid, &spec->cur_cap_src);
414}
415
416/*
417 * return the string name of the given input PIN widget
418 */
419static const char *get_input_type(struct hda_gnode *node, unsigned int *pinctl)
420{
421 unsigned int location = get_defcfg_location(node);
422 switch (get_defcfg_type(node)) {
423 case AC_JACK_LINE_IN:
424 if ((location & 0x0f) == AC_JACK_LOC_FRONT)
425 return "Front Line";
426 return "Line";
427 case AC_JACK_CD:
428 if (pinctl)
429 *pinctl |= AC_PIN_VREF_GRD;
430 return "CD";
431 case AC_JACK_AUX:
432 if ((location & 0x0f) == AC_JACK_LOC_FRONT)
433 return "Front Aux";
434 return "Aux";
435 case AC_JACK_MIC_IN:
436 if ((location & 0x0f) == AC_JACK_LOC_FRONT)
437 return "Front Mic";
438 return "Mic";
439 case AC_JACK_SPDIF_IN:
440 return "SPDIF";
441 case AC_JACK_DIG_OTHER_IN:
442 return "Digital";
443 }
444 return NULL;
445}
446
447/*
448 * parse the nodes recursively until reach to the input PIN
449 *
450 * returns 0 if not found, 1 if found, or a negative error code.
451 */
452static int parse_adc_sub_nodes(struct hda_codec *codec, struct hda_gspec *spec,
453 struct hda_gnode *node)
454{
455 int i, err;
456 unsigned int pinctl;
457 char *label;
458 const char *type;
459
460 if (node->checked)
461 return 0;
462
463 node->checked = 1;
464 if (node->type != AC_WID_PIN) {
465 for (i = 0; i < node->nconns; i++) {
466 struct hda_gnode *child;
467 child = hda_get_node(spec, node->conn_list[i]);
468 if (! child)
469 continue;
470 err = parse_adc_sub_nodes(codec, spec, child);
471 if (err < 0)
472 return err;
473 if (err > 0) {
474 /* found one,
475 * select the path, unmute both input and output
476 */
477 if (node->nconns > 1)
478 select_input_connection(codec, node, i);
479 unmute_input(codec, node, i);
480 unmute_output(codec, node);
481 return err;
482 }
483 }
484 return 0;
485 }
486
487 /* input capable? */
488 if (! (node->pin_caps & AC_PINCAP_IN))
489 return 0;
490
491 if (node->wid_caps & AC_WCAP_DIGITAL)
492 return 0; /* skip SPDIF */
493
494 if (spec->input_mux.num_items >= HDA_MAX_NUM_INPUTS) {
495 snd_printk(KERN_ERR "hda_generic: Too many items for capture\n");
496 return -EINVAL;
497 }
498
499 pinctl = AC_PINCTL_IN_EN;
500 /* create a proper capture source label */
501 type = get_input_type(node, &pinctl);
502 if (! type) {
503 /* input as default? */
504 if (! (node->pin_ctl & AC_PINCTL_IN_EN))
505 return 0;
506 type = "Input";
507 }
508 label = spec->cap_labels[spec->input_mux.num_items];
509 strcpy(label, type);
510 spec->input_mux.items[spec->input_mux.num_items].label = label;
511
512 /* unmute the PIN external input */
513 unmute_input(codec, node, 0); /* index = 0? */
514 /* set PIN-In enable */
515 snd_hda_codec_write(codec, node->nid, 0, AC_VERB_SET_PIN_WIDGET_CONTROL, pinctl);
516
517 return 1; /* found */
518}
519
520/*
521 * parse input
522 */
523static int parse_input_path(struct hda_codec *codec, struct hda_gnode *adc_node)
524{
525 struct hda_gspec *spec = codec->spec;
526 struct hda_gnode *node;
527 int i, err;
528
529 snd_printdd("AUD_IN = %x\n", adc_node->nid);
530 clear_check_flags(spec);
531
532 // awk added - fixed no recording due to muted widget
533 unmute_input(codec, adc_node, 0);
534
535 /*
536 * check each connection of the ADC
537 * if it reaches to a proper input PIN, add the path as the
538 * input path.
539 */
540 for (i = 0; i < adc_node->nconns; i++) {
541 node = hda_get_node(spec, adc_node->conn_list[i]);
542 if (! node)
543 continue;
544 err = parse_adc_sub_nodes(codec, spec, node);
545 if (err < 0)
546 return err;
547 else if (err > 0) {
548 struct hda_input_mux_item *csrc = &spec->input_mux.items[spec->input_mux.num_items];
549 char *buf = spec->cap_labels[spec->input_mux.num_items];
550 int ocap;
551 for (ocap = 0; ocap < spec->input_mux.num_items; ocap++) {
552 if (! strcmp(buf, spec->cap_labels[ocap])) {
553 /* same label already exists,
554 * put the index number to be unique
555 */
556 sprintf(buf, "%s %d", spec->cap_labels[ocap],
557 spec->input_mux.num_items);
558 }
559 }
560 csrc->index = i;
561 spec->input_mux.num_items++;
562 }
563 }
564
565 if (! spec->input_mux.num_items)
566 return 0; /* no input path found... */
567
568 snd_printdd("[Capture Source] NID=0x%x, #SRC=%d\n", adc_node->nid, spec->input_mux.num_items);
569 for (i = 0; i < spec->input_mux.num_items; i++)
570 snd_printdd(" [%s] IDX=0x%x\n", spec->input_mux.items[i].label,
571 spec->input_mux.items[i].index);
572
573 spec->adc_node = adc_node;
574 return 1;
575}
576
577/*
578 * parse input
579 */
580static int parse_input(struct hda_codec *codec)
581{
582 struct hda_gspec *spec = codec->spec;
583 struct list_head *p;
584 struct hda_gnode *node;
585 int err;
586
587 /*
588 * At first we look for an audio input widget.
589 * If it reaches to certain input PINs, we take it as the
590 * input path.
591 */
592 list_for_each(p, &spec->nid_list) {
593 node = list_entry(p, struct hda_gnode, list);
594 if (node->wid_caps & AC_WCAP_DIGITAL)
595 continue; /* skip SPDIF */
596 if (node->type == AC_WID_AUD_IN) {
597 err = parse_input_path(codec, node);
598 if (err < 0)
599 return err;
600 else if (err > 0)
601 return 0;
602 }
603 }
604 snd_printd("hda_generic: no proper input path found\n");
605 return 0;
606}
607
608/*
609 * create mixer controls if possible
610 */
611#define DIR_OUT 0x1
612#define DIR_IN 0x2
613
614static int create_mixer(struct hda_codec *codec, struct hda_gnode *node,
615 unsigned int index, const char *type, const char *dir_sfx)
616{
617 char name[32];
618 int err;
619 int created = 0;
620 snd_kcontrol_new_t knew;
621
622 if (type)
623 sprintf(name, "%s %s Switch", type, dir_sfx);
624 else
625 sprintf(name, "%s Switch", dir_sfx);
626 if ((node->wid_caps & AC_WCAP_IN_AMP) &&
627 (node->amp_in_caps & AC_AMPCAP_MUTE)) {
628 knew = (snd_kcontrol_new_t)HDA_CODEC_MUTE(name, node->nid, index, HDA_INPUT);
629 snd_printdd("[%s] NID=0x%x, DIR=IN, IDX=0x%x\n", name, node->nid, index);
630 if ((err = snd_ctl_add(codec->bus->card, snd_ctl_new1(&knew, codec))) < 0)
631 return err;
632 created = 1;
633 } else if ((node->wid_caps & AC_WCAP_OUT_AMP) &&
634 (node->amp_out_caps & AC_AMPCAP_MUTE)) {
635 knew = (snd_kcontrol_new_t)HDA_CODEC_MUTE(name, node->nid, 0, HDA_OUTPUT);
636 snd_printdd("[%s] NID=0x%x, DIR=OUT\n", name, node->nid);
637 if ((err = snd_ctl_add(codec->bus->card, snd_ctl_new1(&knew, codec))) < 0)
638 return err;
639 created = 1;
640 }
641
642 if (type)
643 sprintf(name, "%s %s Volume", type, dir_sfx);
644 else
645 sprintf(name, "%s Volume", dir_sfx);
646 if ((node->wid_caps & AC_WCAP_IN_AMP) &&
647 (node->amp_in_caps & AC_AMPCAP_NUM_STEPS)) {
648 knew = (snd_kcontrol_new_t)HDA_CODEC_VOLUME(name, node->nid, index, HDA_INPUT);
649 snd_printdd("[%s] NID=0x%x, DIR=IN, IDX=0x%x\n", name, node->nid, index);
650 if ((err = snd_ctl_add(codec->bus->card, snd_ctl_new1(&knew, codec))) < 0)
651 return err;
652 created = 1;
653 } else if ((node->wid_caps & AC_WCAP_OUT_AMP) &&
654 (node->amp_out_caps & AC_AMPCAP_NUM_STEPS)) {
655 knew = (snd_kcontrol_new_t)HDA_CODEC_VOLUME(name, node->nid, 0, HDA_OUTPUT);
656 snd_printdd("[%s] NID=0x%x, DIR=OUT\n", name, node->nid);
657 if ((err = snd_ctl_add(codec->bus->card, snd_ctl_new1(&knew, codec))) < 0)
658 return err;
659 created = 1;
660 }
661
662 return created;
663}
664
665/*
666 * check whether the controls with the given name and direction suffix already exist
667 */
668static int check_existing_control(struct hda_codec *codec, const char *type, const char *dir)
669{
670 snd_ctl_elem_id_t id;
671 memset(&id, 0, sizeof(id));
672 sprintf(id.name, "%s %s Volume", type, dir);
673 id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
674 if (snd_ctl_find_id(codec->bus->card, &id))
675 return 1;
676 sprintf(id.name, "%s %s Switch", type, dir);
677 id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
678 if (snd_ctl_find_id(codec->bus->card, &id))
679 return 1;
680 return 0;
681}
682
683/*
684 * build output mixer controls
685 */
686static int build_output_controls(struct hda_codec *codec)
687{
688 struct hda_gspec *spec = codec->spec;
689 int err;
690
691 err = create_mixer(codec, spec->pcm_vol_node, spec->pcm_vol_index,
692 "PCM", "Playback");
693 if (err < 0)
694 return err;
695 return 0;
696}
697
698/* create capture volume/switch */
699static int build_input_controls(struct hda_codec *codec)
700{
701 struct hda_gspec *spec = codec->spec;
702 struct hda_gnode *adc_node = spec->adc_node;
703 int err;
704
705 if (! adc_node)
706 return 0; /* not found */
707
708 /* create capture volume and switch controls if the ADC has an amp */
709 err = create_mixer(codec, adc_node, 0, NULL, "Capture");
710
711 /* create input MUX if multiple sources are available */
712 if (spec->input_mux.num_items > 1) {
713 static snd_kcontrol_new_t cap_sel = {
714 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
715 .name = "Capture Source",
716 .info = capture_source_info,
717 .get = capture_source_get,
718 .put = capture_source_put,
719 };
720 if ((err = snd_ctl_add(codec->bus->card, snd_ctl_new1(&cap_sel, codec))) < 0)
721 return err;
722 spec->cur_cap_src = 0;
723 select_input_connection(codec, adc_node, spec->input_mux.items[0].index);
724 }
725 return 0;
726}
727
728
729/*
730 * parse the nodes recursively until reach to the output PIN.
731 *
732 * returns 0 - if not found,
733 * 1 - if found, but no mixer is created
734 * 2 - if found and mixer was already created, (just skip)
735 * a negative error code
736 */
737static int parse_loopback_path(struct hda_codec *codec, struct hda_gspec *spec,
738 struct hda_gnode *node, struct hda_gnode *dest_node,
739 const char *type)
740{
741 int i, err;
742
743 if (node->checked)
744 return 0;
745
746 node->checked = 1;
747 if (node == dest_node) {
748 /* loopback connection found */
749 return 1;
750 }
751
752 for (i = 0; i < node->nconns; i++) {
753 struct hda_gnode *child = hda_get_node(spec, node->conn_list[i]);
754 if (! child)
755 continue;
756 err = parse_loopback_path(codec, spec, child, dest_node, type);
757 if (err < 0)
758 return err;
759 else if (err >= 1) {
760 if (err == 1) {
761 err = create_mixer(codec, node, i, type, "Playback");
762 if (err < 0)
763 return err;
764 if (err > 0)
765 return 2; /* ok, created */
766 /* not created, maybe in the lower path */
767 err = 1;
768 }
769 /* connect and unmute */
770 if (node->nconns > 1)
771 select_input_connection(codec, node, i);
772 unmute_input(codec, node, i);
773 unmute_output(codec, node);
774 return err;
775 }
776 }
777 return 0;
778}
779
780/*
781 * parse the tree and build the loopback controls
782 */
783static int build_loopback_controls(struct hda_codec *codec)
784{
785 struct hda_gspec *spec = codec->spec;
786 struct list_head *p;
787 struct hda_gnode *node;
788 int err;
789 const char *type;
790
791 if (! spec->out_pin_node)
792 return 0;
793
794 list_for_each(p, &spec->nid_list) {
795 node = list_entry(p, struct hda_gnode, list);
796 if (node->type != AC_WID_PIN)
797 continue;
798 /* input capable? */
799 if (! (node->pin_caps & AC_PINCAP_IN))
800 return 0;
801 type = get_input_type(node, NULL);
802 if (type) {
803 if (check_existing_control(codec, type, "Playback"))
804 continue;
805 clear_check_flags(spec);
806 err = parse_loopback_path(codec, spec, spec->out_pin_node,
807 node, type);
808 if (err < 0)
809 return err;
810 if (! err)
811 continue;
812 }
813 }
814 return 0;
815}
816
817/*
818 * build mixer controls
819 */
820static int build_generic_controls(struct hda_codec *codec)
821{
822 int err;
823
824 if ((err = build_input_controls(codec)) < 0 ||
825 (err = build_output_controls(codec)) < 0 ||
826 (err = build_loopback_controls(codec)) < 0)
827 return err;
828
829 return 0;
830}
831
832/*
833 * PCM
834 */
835static struct hda_pcm_stream generic_pcm_playback = {
836 .substreams = 1,
837 .channels_min = 2,
838 .channels_max = 2,
839};
840
841static int build_generic_pcms(struct hda_codec *codec)
842{
843 struct hda_gspec *spec = codec->spec;
844 struct hda_pcm *info = &spec->pcm_rec;
845
846 if (! spec->dac_node && ! spec->adc_node) {
847 snd_printd("hda_generic: no PCM found\n");
848 return 0;
849 }
850
851 codec->num_pcms = 1;
852 codec->pcm_info = info;
853
854 info->name = "HDA Generic";
855 if (spec->dac_node) {
856 info->stream[0] = generic_pcm_playback;
857 info->stream[0].nid = spec->dac_node->nid;
858 }
859 if (spec->adc_node) {
860 info->stream[1] = generic_pcm_playback;
861 info->stream[1].nid = spec->adc_node->nid;
862 }
863
864 return 0;
865}
866
867
868/*
869 */
870static struct hda_codec_ops generic_patch_ops = {
871 .build_controls = build_generic_controls,
872 .build_pcms = build_generic_pcms,
873 .free = snd_hda_generic_free,
874};
875
876/*
877 * the generic parser
878 */
879int snd_hda_parse_generic_codec(struct hda_codec *codec)
880{
881 struct hda_gspec *spec;
882 int err;
883
884 spec = kcalloc(1, sizeof(*spec), GFP_KERNEL);
885 if (spec == NULL) {
886 printk(KERN_ERR "hda_generic: can't allocate spec\n");
887 return -ENOMEM;
888 }
889 codec->spec = spec;
890 INIT_LIST_HEAD(&spec->nid_list);
891
892 if ((err = build_afg_tree(codec)) < 0)
893 goto error;
894
895 if ((err = parse_input(codec)) < 0 ||
896 (err = parse_output(codec)) < 0)
897 goto error;
898
899 codec->patch_ops = generic_patch_ops;
900
901 return 0;
902
903 error:
904 snd_hda_generic_free(codec);
905 return err;
906}
diff --git a/sound/pci/hda/hda_intel.c b/sound/pci/hda/hda_intel.c
new file mode 100644
index 000000000000..d89647a3d449
--- /dev/null
+++ b/sound/pci/hda/hda_intel.c
@@ -0,0 +1,1449 @@
1/*
2 *
3 * hda_intel.c - Implementation of primary alsa driver code base for Intel HD Audio.
4 *
5 * Copyright(c) 2004 Intel Corporation. All rights reserved.
6 *
7 * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
8 * PeiSen Hou <pshou@realtek.com.tw>
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the Free
12 * Software Foundation; either version 2 of the License, or (at your option)
13 * any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 * more details.
19 *
20 * You should have received a copy of the GNU General Public License along with
21 * this program; if not, write to the Free Software Foundation, Inc., 59
22 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 *
24 * CONTACTS:
25 *
26 * Matt Jared matt.jared@intel.com
27 * Andy Kopp andy.kopp@intel.com
28 * Dan Kogan dan.d.kogan@intel.com
29 *
30 * CHANGES:
31 *
32 * 2004.12.01 Major rewrite by tiwai, merged the work of pshou
33 *
34 */
35
36#include <sound/driver.h>
37#include <asm/io.h>
38#include <linux/delay.h>
39#include <linux/interrupt.h>
40#include <linux/module.h>
41#include <linux/moduleparam.h>
42#include <linux/init.h>
43#include <linux/slab.h>
44#include <linux/pci.h>
45#include <sound/core.h>
46#include <sound/initval.h>
47#include "hda_codec.h"
48
49
50static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
51static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
52static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
53static char *model[SNDRV_CARDS];
54
55module_param_array(index, int, NULL, 0444);
56MODULE_PARM_DESC(index, "Index value for Intel HD audio interface.");
57module_param_array(id, charp, NULL, 0444);
58MODULE_PARM_DESC(id, "ID string for Intel HD audio interface.");
59module_param_array(enable, bool, NULL, 0444);
60MODULE_PARM_DESC(enable, "Enable Intel HD audio interface.");
61module_param_array(model, charp, NULL, 0444);
62MODULE_PARM_DESC(model, "Use the given board model.");
63
64MODULE_LICENSE("GPL");
65MODULE_SUPPORTED_DEVICE("{{Intel, ICH6},"
66 "{Intel, ICH6M},"
67 "{Intel, ICH7}}");
68MODULE_DESCRIPTION("Intel HDA driver");
69
70#define SFX "hda-intel: "
71
72/*
73 * registers
74 */
75#define ICH6_REG_GCAP 0x00
76#define ICH6_REG_VMIN 0x02
77#define ICH6_REG_VMAJ 0x03
78#define ICH6_REG_OUTPAY 0x04
79#define ICH6_REG_INPAY 0x06
80#define ICH6_REG_GCTL 0x08
81#define ICH6_REG_WAKEEN 0x0c
82#define ICH6_REG_STATESTS 0x0e
83#define ICH6_REG_GSTS 0x10
84#define ICH6_REG_INTCTL 0x20
85#define ICH6_REG_INTSTS 0x24
86#define ICH6_REG_WALCLK 0x30
87#define ICH6_REG_SYNC 0x34
88#define ICH6_REG_CORBLBASE 0x40
89#define ICH6_REG_CORBUBASE 0x44
90#define ICH6_REG_CORBWP 0x48
91#define ICH6_REG_CORBRP 0x4A
92#define ICH6_REG_CORBCTL 0x4c
93#define ICH6_REG_CORBSTS 0x4d
94#define ICH6_REG_CORBSIZE 0x4e
95
96#define ICH6_REG_RIRBLBASE 0x50
97#define ICH6_REG_RIRBUBASE 0x54
98#define ICH6_REG_RIRBWP 0x58
99#define ICH6_REG_RINTCNT 0x5a
100#define ICH6_REG_RIRBCTL 0x5c
101#define ICH6_REG_RIRBSTS 0x5d
102#define ICH6_REG_RIRBSIZE 0x5e
103
104#define ICH6_REG_IC 0x60
105#define ICH6_REG_IR 0x64
106#define ICH6_REG_IRS 0x68
107#define ICH6_IRS_VALID (1<<1)
108#define ICH6_IRS_BUSY (1<<0)
109
110#define ICH6_REG_DPLBASE 0x70
111#define ICH6_REG_DPUBASE 0x74
112#define ICH6_DPLBASE_ENABLE 0x1 /* Enable position buffer */
113
114/* SD offset: SDI0=0x80, SDI1=0xa0, ... SDO3=0x160 */
115enum { SDI0, SDI1, SDI2, SDI3, SDO0, SDO1, SDO2, SDO3 };
116
117/* stream register offsets from stream base */
118#define ICH6_REG_SD_CTL 0x00
119#define ICH6_REG_SD_STS 0x03
120#define ICH6_REG_SD_LPIB 0x04
121#define ICH6_REG_SD_CBL 0x08
122#define ICH6_REG_SD_LVI 0x0c
123#define ICH6_REG_SD_FIFOW 0x0e
124#define ICH6_REG_SD_FIFOSIZE 0x10
125#define ICH6_REG_SD_FORMAT 0x12
126#define ICH6_REG_SD_BDLPL 0x18
127#define ICH6_REG_SD_BDLPU 0x1c
128
129/* PCI space */
130#define ICH6_PCIREG_TCSEL 0x44
131
132/*
133 * other constants
134 */
135
136/* max number of SDs */
137#define MAX_ICH6_DEV 8
138/* max number of fragments - we may use more if allocating more pages for BDL */
139#define AZX_MAX_FRAG (PAGE_SIZE / (MAX_ICH6_DEV * 16))
140/* max buffer size - no h/w limit, you can increase as you like */
141#define AZX_MAX_BUF_SIZE (1024*1024*1024)
142/* max number of PCM devics per card */
143#define AZX_MAX_PCMS 8
144
145/* RIRB int mask: overrun[2], response[0] */
146#define RIRB_INT_RESPONSE 0x01
147#define RIRB_INT_OVERRUN 0x04
148#define RIRB_INT_MASK 0x05
149
150/* STATESTS int mask: SD2,SD1,SD0 */
151#define STATESTS_INT_MASK 0x07
152#define AZX_MAX_CODECS 3
153
154/* SD_CTL bits */
155#define SD_CTL_STREAM_RESET 0x01 /* stream reset bit */
156#define SD_CTL_DMA_START 0x02 /* stream DMA start bit */
157#define SD_CTL_STREAM_TAG_MASK (0xf << 20)
158#define SD_CTL_STREAM_TAG_SHIFT 20
159
160/* SD_CTL and SD_STS */
161#define SD_INT_DESC_ERR 0x10 /* descriptor error interrupt */
162#define SD_INT_FIFO_ERR 0x08 /* FIFO error interrupt */
163#define SD_INT_COMPLETE 0x04 /* completion interrupt */
164#define SD_INT_MASK (SD_INT_DESC_ERR|SD_INT_FIFO_ERR|SD_INT_COMPLETE)
165
166/* SD_STS */
167#define SD_STS_FIFO_READY 0x20 /* FIFO ready */
168
169/* INTCTL and INTSTS */
170#define ICH6_INT_ALL_STREAM 0xff /* all stream interrupts */
171#define ICH6_INT_CTRL_EN 0x40000000 /* controller interrupt enable bit */
172#define ICH6_INT_GLOBAL_EN 0x80000000 /* global interrupt enable bit */
173
174/* GCTL reset bit */
175#define ICH6_GCTL_RESET (1<<0)
176
177/* CORB/RIRB control, read/write pointer */
178#define ICH6_RBCTL_DMA_EN 0x02 /* enable DMA */
179#define ICH6_RBCTL_IRQ_EN 0x01 /* enable IRQ */
180#define ICH6_RBRWP_CLR 0x8000 /* read/write pointer clear */
181/* below are so far hardcoded - should read registers in future */
182#define ICH6_MAX_CORB_ENTRIES 256
183#define ICH6_MAX_RIRB_ENTRIES 256
184
185
186/*
187 * Use CORB/RIRB for communication from/to codecs.
188 * This is the way recommended by Intel (see below).
189 */
190#define USE_CORB_RIRB
191
192/*
193 * Define this if use the position buffer instead of reading SD_LPIB
194 * It's not used as default since SD_LPIB seems to give more accurate position
195 */
196/* #define USE_POSBUF */
197
198/*
199 */
200
201typedef struct snd_azx azx_t;
202typedef struct snd_azx_rb azx_rb_t;
203typedef struct snd_azx_dev azx_dev_t;
204
205struct snd_azx_dev {
206 u32 *bdl; /* virtual address of the BDL */
207 dma_addr_t bdl_addr; /* physical address of the BDL */
208 volatile u32 *posbuf; /* position buffer pointer */
209
210 unsigned int bufsize; /* size of the play buffer in bytes */
211 unsigned int fragsize; /* size of each period in bytes */
212 unsigned int frags; /* number for period in the play buffer */
213 unsigned int fifo_size; /* FIFO size */
214
215 void __iomem *sd_addr; /* stream descriptor pointer */
216
217 u32 sd_int_sta_mask; /* stream int status mask */
218
219 /* pcm support */
220 snd_pcm_substream_t *substream; /* assigned substream, set in PCM open */
221 unsigned int format_val; /* format value to be set in the controller and the codec */
222 unsigned char stream_tag; /* assigned stream */
223 unsigned char index; /* stream index */
224
225 unsigned int opened: 1;
226 unsigned int running: 1;
227};
228
229/* CORB/RIRB */
230struct snd_azx_rb {
231 u32 *buf; /* CORB/RIRB buffer
232 * Each CORB entry is 4byte, RIRB is 8byte
233 */
234 dma_addr_t addr; /* physical address of CORB/RIRB buffer */
235 /* for RIRB */
236 unsigned short rp, wp; /* read/write pointers */
237 int cmds; /* number of pending requests */
238 u32 res; /* last read value */
239};
240
241struct snd_azx {
242 snd_card_t *card;
243 struct pci_dev *pci;
244
245 /* pci resources */
246 unsigned long addr;
247 void __iomem *remap_addr;
248 int irq;
249
250 /* locks */
251 spinlock_t reg_lock;
252 struct semaphore open_mutex;
253
254 /* streams */
255 azx_dev_t azx_dev[MAX_ICH6_DEV];
256
257 /* PCM */
258 unsigned int pcm_devs;
259 snd_pcm_t *pcm[AZX_MAX_PCMS];
260
261 /* HD codec */
262 unsigned short codec_mask;
263 struct hda_bus *bus;
264
265 /* CORB/RIRB */
266 azx_rb_t corb;
267 azx_rb_t rirb;
268
269 /* BDL, CORB/RIRB and position buffers */
270 struct snd_dma_buffer bdl;
271 struct snd_dma_buffer rb;
272 struct snd_dma_buffer posbuf;
273};
274
275/*
276 * macros for easy use
277 */
278#define azx_writel(chip,reg,value) \
279 writel(value, (chip)->remap_addr + ICH6_REG_##reg)
280#define azx_readl(chip,reg) \
281 readl((chip)->remap_addr + ICH6_REG_##reg)
282#define azx_writew(chip,reg,value) \
283 writew(value, (chip)->remap_addr + ICH6_REG_##reg)
284#define azx_readw(chip,reg) \
285 readw((chip)->remap_addr + ICH6_REG_##reg)
286#define azx_writeb(chip,reg,value) \
287 writeb(value, (chip)->remap_addr + ICH6_REG_##reg)
288#define azx_readb(chip,reg) \
289 readb((chip)->remap_addr + ICH6_REG_##reg)
290
291#define azx_sd_writel(dev,reg,value) \
292 writel(value, (dev)->sd_addr + ICH6_REG_##reg)
293#define azx_sd_readl(dev,reg) \
294 readl((dev)->sd_addr + ICH6_REG_##reg)
295#define azx_sd_writew(dev,reg,value) \
296 writew(value, (dev)->sd_addr + ICH6_REG_##reg)
297#define azx_sd_readw(dev,reg) \
298 readw((dev)->sd_addr + ICH6_REG_##reg)
299#define azx_sd_writeb(dev,reg,value) \
300 writeb(value, (dev)->sd_addr + ICH6_REG_##reg)
301#define azx_sd_readb(dev,reg) \
302 readb((dev)->sd_addr + ICH6_REG_##reg)
303
304/* for pcm support */
305#define get_azx_dev(substream) (azx_dev_t*)(substream->runtime->private_data)
306
307/* Get the upper 32bit of the given dma_addr_t
308 * Compiler should optimize and eliminate the code if dma_addr_t is 32bit
309 */
310#define upper_32bit(addr) (sizeof(addr) > 4 ? (u32)((addr) >> 32) : (u32)0)
311
312
313/*
314 * Interface for HD codec
315 */
316
317#ifdef USE_CORB_RIRB
318/*
319 * CORB / RIRB interface
320 */
321static int azx_alloc_cmd_io(azx_t *chip)
322{
323 int err;
324
325 /* single page (at least 4096 bytes) must suffice for both ringbuffes */
326 err = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
327 PAGE_SIZE, &chip->rb);
328 if (err < 0) {
329 snd_printk(KERN_ERR SFX "cannot allocate CORB/RIRB\n");
330 return err;
331 }
332 return 0;
333}
334
335static void azx_init_cmd_io(azx_t *chip)
336{
337 /* CORB set up */
338 chip->corb.addr = chip->rb.addr;
339 chip->corb.buf = (u32 *)chip->rb.area;
340 azx_writel(chip, CORBLBASE, (u32)chip->corb.addr);
341 azx_writel(chip, CORBUBASE, upper_32bit(chip->corb.addr));
342
343 /* set the corb write pointer to 0 */
344 azx_writew(chip, CORBWP, 0);
345 /* reset the corb hw read pointer */
346 azx_writew(chip, CORBRP, ICH6_RBRWP_CLR);
347 /* enable corb dma */
348 azx_writeb(chip, CORBCTL, ICH6_RBCTL_DMA_EN);
349
350 /* RIRB set up */
351 chip->rirb.addr = chip->rb.addr + 2048;
352 chip->rirb.buf = (u32 *)(chip->rb.area + 2048);
353 azx_writel(chip, RIRBLBASE, (u32)chip->rirb.addr);
354 azx_writel(chip, RIRBUBASE, upper_32bit(chip->rirb.addr));
355
356 /* reset the rirb hw write pointer */
357 azx_writew(chip, RIRBWP, ICH6_RBRWP_CLR);
358 /* set N=1, get RIRB response interrupt for new entry */
359 azx_writew(chip, RINTCNT, 1);
360 /* enable rirb dma and response irq */
361#ifdef USE_CORB_RIRB
362 azx_writeb(chip, RIRBCTL, ICH6_RBCTL_DMA_EN | ICH6_RBCTL_IRQ_EN);
363#else
364 azx_writeb(chip, RIRBCTL, ICH6_RBCTL_DMA_EN);
365#endif
366 chip->rirb.rp = chip->rirb.cmds = 0;
367}
368
369static void azx_free_cmd_io(azx_t *chip)
370{
371 /* disable ringbuffer DMAs */
372 azx_writeb(chip, RIRBCTL, 0);
373 azx_writeb(chip, CORBCTL, 0);
374}
375
376/* send a command */
377static int azx_send_cmd(struct hda_codec *codec, hda_nid_t nid, int direct,
378 unsigned int verb, unsigned int para)
379{
380 azx_t *chip = codec->bus->private_data;
381 unsigned int wp;
382 u32 val;
383
384 val = (u32)(codec->addr & 0x0f) << 28;
385 val |= (u32)direct << 27;
386 val |= (u32)nid << 20;
387 val |= verb << 8;
388 val |= para;
389
390 /* add command to corb */
391 wp = azx_readb(chip, CORBWP);
392 wp++;
393 wp %= ICH6_MAX_CORB_ENTRIES;
394
395 spin_lock_irq(&chip->reg_lock);
396 chip->rirb.cmds++;
397 chip->corb.buf[wp] = cpu_to_le32(val);
398 azx_writel(chip, CORBWP, wp);
399 spin_unlock_irq(&chip->reg_lock);
400
401 return 0;
402}
403
404#define ICH6_RIRB_EX_UNSOL_EV (1<<4)
405
406/* retrieve RIRB entry - called from interrupt handler */
407static void azx_update_rirb(azx_t *chip)
408{
409 unsigned int rp, wp;
410 u32 res, res_ex;
411
412 wp = azx_readb(chip, RIRBWP);
413 if (wp == chip->rirb.wp)
414 return;
415 chip->rirb.wp = wp;
416
417 while (chip->rirb.rp != wp) {
418 chip->rirb.rp++;
419 chip->rirb.rp %= ICH6_MAX_RIRB_ENTRIES;
420
421 rp = chip->rirb.rp << 1; /* an RIRB entry is 8-bytes */
422 res_ex = le32_to_cpu(chip->rirb.buf[rp + 1]);
423 res = le32_to_cpu(chip->rirb.buf[rp]);
424 if (res_ex & ICH6_RIRB_EX_UNSOL_EV)
425 snd_hda_queue_unsol_event(chip->bus, res, res_ex);
426 else if (chip->rirb.cmds) {
427 chip->rirb.cmds--;
428 chip->rirb.res = res;
429 }
430 }
431}
432
433/* receive a response */
434static unsigned int azx_get_response(struct hda_codec *codec)
435{
436 azx_t *chip = codec->bus->private_data;
437 int timeout = 50;
438
439 while (chip->rirb.cmds) {
440 if (! --timeout) {
441 snd_printk(KERN_ERR "azx_get_response timeout\n");
442 chip->rirb.rp = azx_readb(chip, RIRBWP);
443 chip->rirb.cmds = 0;
444 return -1;
445 }
446 msleep(1);
447 }
448 return chip->rirb.res; /* the last value */
449}
450
451#else
452/*
453 * Use the single immediate command instead of CORB/RIRB for simplicity
454 *
455 * Note: according to Intel, this is not preferred use. The command was
456 * intended for the BIOS only, and may get confused with unsolicited
457 * responses. So, we shouldn't use it for normal operation from the
458 * driver.
459 * I left the codes, however, for debugging/testing purposes.
460 */
461
462#define azx_alloc_cmd_io(chip) 0
463#define azx_init_cmd_io(chip)
464#define azx_free_cmd_io(chip)
465
466/* send a command */
467static int azx_send_cmd(struct hda_codec *codec, hda_nid_t nid, int direct,
468 unsigned int verb, unsigned int para)
469{
470 azx_t *chip = codec->bus->private_data;
471 u32 val;
472 int timeout = 50;
473
474 val = (u32)(codec->addr & 0x0f) << 28;
475 val |= (u32)direct << 27;
476 val |= (u32)nid << 20;
477 val |= verb << 8;
478 val |= para;
479
480 while (timeout--) {
481 /* check ICB busy bit */
482 if (! (azx_readw(chip, IRS) & ICH6_IRS_BUSY)) {
483 /* Clear IRV valid bit */
484 azx_writew(chip, IRS, azx_readw(chip, IRS) | ICH6_IRS_VALID);
485 azx_writel(chip, IC, val);
486 azx_writew(chip, IRS, azx_readw(chip, IRS) | ICH6_IRS_BUSY);
487 return 0;
488 }
489 udelay(1);
490 }
491 snd_printd(SFX "send_cmd timeout: IRS=0x%x, val=0x%x\n", azx_readw(chip, IRS), val);
492 return -EIO;
493}
494
495/* receive a response */
496static unsigned int azx_get_response(struct hda_codec *codec)
497{
498 azx_t *chip = codec->bus->private_data;
499 int timeout = 50;
500
501 while (timeout--) {
502 /* check IRV busy bit */
503 if (azx_readw(chip, IRS) & ICH6_IRS_VALID)
504 return azx_readl(chip, IR);
505 udelay(1);
506 }
507 snd_printd(SFX "get_response timeout: IRS=0x%x\n", azx_readw(chip, IRS));
508 return (unsigned int)-1;
509}
510
511#define azx_update_rirb(chip)
512
513#endif /* USE_CORB_RIRB */
514
515/* reset codec link */
516static int azx_reset(azx_t *chip)
517{
518 int count;
519
520 /* reset controller */
521 azx_writel(chip, GCTL, azx_readl(chip, GCTL) & ~ICH6_GCTL_RESET);
522
523 count = 50;
524 while (azx_readb(chip, GCTL) && --count)
525 msleep(1);
526
527 /* delay for >= 100us for codec PLL to settle per spec
528 * Rev 0.9 section 5.5.1
529 */
530 msleep(1);
531
532 /* Bring controller out of reset */
533 azx_writeb(chip, GCTL, azx_readb(chip, GCTL) | ICH6_GCTL_RESET);
534
535 count = 50;
536 while (! azx_readb(chip, GCTL) && --count)
537 msleep(1);
538
539 /* Brent Chartrand said to wait >= 540us for codecs to intialize */
540 msleep(1);
541
542 /* check to see if controller is ready */
543 if (! azx_readb(chip, GCTL)) {
544 snd_printd("azx_reset: controller not ready!\n");
545 return -EBUSY;
546 }
547
548 /* detect codecs */
549 if (! chip->codec_mask) {
550 chip->codec_mask = azx_readw(chip, STATESTS);
551 snd_printdd("codec_mask = 0x%x\n", chip->codec_mask);
552 }
553
554 return 0;
555}
556
557
558/*
559 * Lowlevel interface
560 */
561
562/* enable interrupts */
563static void azx_int_enable(azx_t *chip)
564{
565 /* enable controller CIE and GIE */
566 azx_writel(chip, INTCTL, azx_readl(chip, INTCTL) |
567 ICH6_INT_CTRL_EN | ICH6_INT_GLOBAL_EN);
568}
569
570/* disable interrupts */
571static void azx_int_disable(azx_t *chip)
572{
573 int i;
574
575 /* disable interrupts in stream descriptor */
576 for (i = 0; i < MAX_ICH6_DEV; i++) {
577 azx_dev_t *azx_dev = &chip->azx_dev[i];
578 azx_sd_writeb(azx_dev, SD_CTL,
579 azx_sd_readb(azx_dev, SD_CTL) & ~SD_INT_MASK);
580 }
581
582 /* disable SIE for all streams */
583 azx_writeb(chip, INTCTL, 0);
584
585 /* disable controller CIE and GIE */
586 azx_writel(chip, INTCTL, azx_readl(chip, INTCTL) &
587 ~(ICH6_INT_CTRL_EN | ICH6_INT_GLOBAL_EN));
588}
589
590/* clear interrupts */
591static void azx_int_clear(azx_t *chip)
592{
593 int i;
594
595 /* clear stream status */
596 for (i = 0; i < MAX_ICH6_DEV; i++) {
597 azx_dev_t *azx_dev = &chip->azx_dev[i];
598 azx_sd_writeb(azx_dev, SD_STS, SD_INT_MASK);
599 }
600
601 /* clear STATESTS */
602 azx_writeb(chip, STATESTS, STATESTS_INT_MASK);
603
604 /* clear rirb status */
605 azx_writeb(chip, RIRBSTS, RIRB_INT_MASK);
606
607 /* clear int status */
608 azx_writel(chip, INTSTS, ICH6_INT_CTRL_EN | ICH6_INT_ALL_STREAM);
609}
610
611/* start a stream */
612static void azx_stream_start(azx_t *chip, azx_dev_t *azx_dev)
613{
614 /* enable SIE */
615 azx_writeb(chip, INTCTL,
616 azx_readb(chip, INTCTL) | (1 << azx_dev->index));
617 /* set DMA start and interrupt mask */
618 azx_sd_writeb(azx_dev, SD_CTL, azx_sd_readb(azx_dev, SD_CTL) |
619 SD_CTL_DMA_START | SD_INT_MASK);
620}
621
622/* stop a stream */
623static void azx_stream_stop(azx_t *chip, azx_dev_t *azx_dev)
624{
625 /* stop DMA */
626 azx_sd_writeb(azx_dev, SD_CTL, azx_sd_readb(azx_dev, SD_CTL) &
627 ~(SD_CTL_DMA_START | SD_INT_MASK));
628 azx_sd_writeb(azx_dev, SD_STS, SD_INT_MASK); /* to be sure */
629 /* disable SIE */
630 azx_writeb(chip, INTCTL,
631 azx_readb(chip, INTCTL) & ~(1 << azx_dev->index));
632}
633
634
635/*
636 * initialize the chip
637 */
638static void azx_init_chip(azx_t *chip)
639{
640 unsigned char tcsel_reg;
641
642 /* Clear bits 0-2 of PCI register TCSEL (at offset 0x44)
643 * TCSEL == Traffic Class Select Register, which sets PCI express QOS
644 * Ensuring these bits are 0 clears playback static on some HD Audio codecs
645 */
646 pci_read_config_byte (chip->pci, ICH6_PCIREG_TCSEL, &tcsel_reg);
647 pci_write_config_byte(chip->pci, ICH6_PCIREG_TCSEL, tcsel_reg & 0xf8);
648
649 /* reset controller */
650 azx_reset(chip);
651
652 /* initialize interrupts */
653 azx_int_clear(chip);
654 azx_int_enable(chip);
655
656 /* initialize the codec command I/O */
657 azx_init_cmd_io(chip);
658
659#ifdef USE_POSBUF
660 /* program the position buffer */
661 azx_writel(chip, DPLBASE, (u32)chip->posbuf.addr);
662 azx_writel(chip, DPUBASE, upper_32bit(chip->posbuf.addr));
663#endif
664}
665
666
667/*
668 * interrupt handler
669 */
670static irqreturn_t azx_interrupt(int irq, void* dev_id, struct pt_regs *regs)
671{
672 azx_t *chip = dev_id;
673 azx_dev_t *azx_dev;
674 u32 status;
675 int i;
676
677 spin_lock(&chip->reg_lock);
678
679 status = azx_readl(chip, INTSTS);
680 if (status == 0) {
681 spin_unlock(&chip->reg_lock);
682 return IRQ_NONE;
683 }
684
685 for (i = 0; i < MAX_ICH6_DEV; i++) {
686 azx_dev = &chip->azx_dev[i];
687 if (status & azx_dev->sd_int_sta_mask) {
688 azx_sd_writeb(azx_dev, SD_STS, SD_INT_MASK);
689 if (azx_dev->substream && azx_dev->running) {
690 spin_unlock(&chip->reg_lock);
691 snd_pcm_period_elapsed(azx_dev->substream);
692 spin_lock(&chip->reg_lock);
693 }
694 }
695 }
696
697 /* clear rirb int */
698 status = azx_readb(chip, RIRBSTS);
699 if (status & RIRB_INT_MASK) {
700 if (status & RIRB_INT_RESPONSE)
701 azx_update_rirb(chip);
702 azx_writeb(chip, RIRBSTS, RIRB_INT_MASK);
703 }
704
705#if 0
706 /* clear state status int */
707 if (azx_readb(chip, STATESTS) & 0x04)
708 azx_writeb(chip, STATESTS, 0x04);
709#endif
710 spin_unlock(&chip->reg_lock);
711
712 return IRQ_HANDLED;
713}
714
715
716/*
717 * set up BDL entries
718 */
719static void azx_setup_periods(azx_dev_t *azx_dev)
720{
721 u32 *bdl = azx_dev->bdl;
722 dma_addr_t dma_addr = azx_dev->substream->runtime->dma_addr;
723 int idx;
724
725 /* reset BDL address */
726 azx_sd_writel(azx_dev, SD_BDLPL, 0);
727 azx_sd_writel(azx_dev, SD_BDLPU, 0);
728
729 /* program the initial BDL entries */
730 for (idx = 0; idx < azx_dev->frags; idx++) {
731 unsigned int off = idx << 2; /* 4 dword step */
732 dma_addr_t addr = dma_addr + idx * azx_dev->fragsize;
733 /* program the address field of the BDL entry */
734 bdl[off] = cpu_to_le32((u32)addr);
735 bdl[off+1] = cpu_to_le32(upper_32bit(addr));
736
737 /* program the size field of the BDL entry */
738 bdl[off+2] = cpu_to_le32(azx_dev->fragsize);
739
740 /* program the IOC to enable interrupt when buffer completes */
741 bdl[off+3] = cpu_to_le32(0x01);
742 }
743}
744
745/*
746 * set up the SD for streaming
747 */
748static int azx_setup_controller(azx_t *chip, azx_dev_t *azx_dev)
749{
750 unsigned char val;
751 int timeout;
752
753 /* make sure the run bit is zero for SD */
754 azx_sd_writeb(azx_dev, SD_CTL, azx_sd_readb(azx_dev, SD_CTL) & ~SD_CTL_DMA_START);
755 /* reset stream */
756 azx_sd_writeb(azx_dev, SD_CTL, azx_sd_readb(azx_dev, SD_CTL) | SD_CTL_STREAM_RESET);
757 udelay(3);
758 timeout = 300;
759 while (!((val = azx_sd_readb(azx_dev, SD_CTL)) & SD_CTL_STREAM_RESET) &&
760 --timeout)
761 ;
762 val &= ~SD_CTL_STREAM_RESET;
763 azx_sd_writeb(azx_dev, SD_CTL, val);
764 udelay(3);
765
766 timeout = 300;
767 /* waiting for hardware to report that the stream is out of reset */
768 while (((val = azx_sd_readb(azx_dev, SD_CTL)) & SD_CTL_STREAM_RESET) &&
769 --timeout)
770 ;
771
772 /* program the stream_tag */
773 azx_sd_writel(azx_dev, SD_CTL,
774 (azx_sd_readl(azx_dev, SD_CTL) & ~SD_CTL_STREAM_TAG_MASK) |
775 (azx_dev->stream_tag << SD_CTL_STREAM_TAG_SHIFT));
776
777 /* program the length of samples in cyclic buffer */
778 azx_sd_writel(azx_dev, SD_CBL, azx_dev->bufsize);
779
780 /* program the stream format */
781 /* this value needs to be the same as the one programmed */
782 azx_sd_writew(azx_dev, SD_FORMAT, azx_dev->format_val);
783
784 /* program the stream LVI (last valid index) of the BDL */
785 azx_sd_writew(azx_dev, SD_LVI, azx_dev->frags - 1);
786
787 /* program the BDL address */
788 /* lower BDL address */
789 azx_sd_writel(azx_dev, SD_BDLPL, (u32)azx_dev->bdl_addr);
790 /* upper BDL address */
791 azx_sd_writel(azx_dev, SD_BDLPU, upper_32bit(azx_dev->bdl_addr));
792
793#ifdef USE_POSBUF
794 /* enable the position buffer */
795 if (! (azx_readl(chip, DPLBASE) & ICH6_DPLBASE_ENABLE))
796 azx_writel(chip, DPLBASE, (u32)chip->posbuf.addr | ICH6_DPLBASE_ENABLE);
797#endif
798 /* set the interrupt enable bits in the descriptor control register */
799 azx_sd_writel(azx_dev, SD_CTL, azx_sd_readl(azx_dev, SD_CTL) | SD_INT_MASK);
800
801 return 0;
802}
803
804
805/*
806 * Codec initialization
807 */
808
809static int __devinit azx_codec_create(azx_t *chip, const char *model)
810{
811 struct hda_bus_template bus_temp;
812 int c, codecs, err;
813
814 memset(&bus_temp, 0, sizeof(bus_temp));
815 bus_temp.private_data = chip;
816 bus_temp.modelname = model;
817 bus_temp.pci = chip->pci;
818 bus_temp.ops.command = azx_send_cmd;
819 bus_temp.ops.get_response = azx_get_response;
820
821 if ((err = snd_hda_bus_new(chip->card, &bus_temp, &chip->bus)) < 0)
822 return err;
823
824 codecs = 0;
825 for (c = 0; c < AZX_MAX_CODECS; c++) {
826 if (chip->codec_mask & (1 << c)) {
827 err = snd_hda_codec_new(chip->bus, c, NULL);
828 if (err < 0)
829 continue;
830 codecs++;
831 }
832 }
833 if (! codecs) {
834 snd_printk(KERN_ERR SFX "no codecs initialized\n");
835 return -ENXIO;
836 }
837
838 return 0;
839}
840
841
842/*
843 * PCM support
844 */
845
846/* assign a stream for the PCM */
847static inline azx_dev_t *azx_assign_device(azx_t *chip, int stream)
848{
849 int dev, i;
850 dev = stream == SNDRV_PCM_STREAM_PLAYBACK ? 4 : 0;
851 for (i = 0; i < 4; i++, dev++)
852 if (! chip->azx_dev[dev].opened) {
853 chip->azx_dev[dev].opened = 1;
854 return &chip->azx_dev[dev];
855 }
856 return NULL;
857}
858
859/* release the assigned stream */
860static inline void azx_release_device(azx_dev_t *azx_dev)
861{
862 azx_dev->opened = 0;
863}
864
865static snd_pcm_hardware_t azx_pcm_hw = {
866 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
867 SNDRV_PCM_INFO_BLOCK_TRANSFER |
868 SNDRV_PCM_INFO_MMAP_VALID |
869 SNDRV_PCM_INFO_PAUSE |
870 SNDRV_PCM_INFO_RESUME),
871 .formats = SNDRV_PCM_FMTBIT_S16_LE,
872 .rates = SNDRV_PCM_RATE_48000,
873 .rate_min = 48000,
874 .rate_max = 48000,
875 .channels_min = 2,
876 .channels_max = 2,
877 .buffer_bytes_max = AZX_MAX_BUF_SIZE,
878 .period_bytes_min = 128,
879 .period_bytes_max = AZX_MAX_BUF_SIZE / 2,
880 .periods_min = 2,
881 .periods_max = AZX_MAX_FRAG,
882 .fifo_size = 0,
883};
884
885struct azx_pcm {
886 azx_t *chip;
887 struct hda_codec *codec;
888 struct hda_pcm_stream *hinfo[2];
889};
890
891static int azx_pcm_open(snd_pcm_substream_t *substream)
892{
893 struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
894 struct hda_pcm_stream *hinfo = apcm->hinfo[substream->stream];
895 azx_t *chip = apcm->chip;
896 azx_dev_t *azx_dev;
897 snd_pcm_runtime_t *runtime = substream->runtime;
898 unsigned long flags;
899 int err;
900
901 down(&chip->open_mutex);
902 azx_dev = azx_assign_device(chip, substream->stream);
903 if (azx_dev == NULL) {
904 up(&chip->open_mutex);
905 return -EBUSY;
906 }
907 runtime->hw = azx_pcm_hw;
908 runtime->hw.channels_min = hinfo->channels_min;
909 runtime->hw.channels_max = hinfo->channels_max;
910 runtime->hw.formats = hinfo->formats;
911 runtime->hw.rates = hinfo->rates;
912 snd_pcm_limit_hw_rates(runtime);
913 snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
914 if ((err = hinfo->ops.open(hinfo, apcm->codec, substream)) < 0) {
915 azx_release_device(azx_dev);
916 up(&chip->open_mutex);
917 return err;
918 }
919 spin_lock_irqsave(&chip->reg_lock, flags);
920 azx_dev->substream = substream;
921 azx_dev->running = 0;
922 spin_unlock_irqrestore(&chip->reg_lock, flags);
923
924 runtime->private_data = azx_dev;
925 up(&chip->open_mutex);
926 return 0;
927}
928
929static int azx_pcm_close(snd_pcm_substream_t *substream)
930{
931 struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
932 struct hda_pcm_stream *hinfo = apcm->hinfo[substream->stream];
933 azx_t *chip = apcm->chip;
934 azx_dev_t *azx_dev = get_azx_dev(substream);
935 unsigned long flags;
936
937 down(&chip->open_mutex);
938 spin_lock_irqsave(&chip->reg_lock, flags);
939 azx_dev->substream = NULL;
940 azx_dev->running = 0;
941 spin_unlock_irqrestore(&chip->reg_lock, flags);
942 azx_release_device(azx_dev);
943 hinfo->ops.close(hinfo, apcm->codec, substream);
944 up(&chip->open_mutex);
945 return 0;
946}
947
948static int azx_pcm_hw_params(snd_pcm_substream_t *substream, snd_pcm_hw_params_t *hw_params)
949{
950 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
951}
952
953static int azx_pcm_hw_free(snd_pcm_substream_t *substream)
954{
955 struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
956 azx_dev_t *azx_dev = get_azx_dev(substream);
957 struct hda_pcm_stream *hinfo = apcm->hinfo[substream->stream];
958
959 /* reset BDL address */
960 azx_sd_writel(azx_dev, SD_BDLPL, 0);
961 azx_sd_writel(azx_dev, SD_BDLPU, 0);
962 azx_sd_writel(azx_dev, SD_CTL, 0);
963
964 hinfo->ops.cleanup(hinfo, apcm->codec, substream);
965
966 return snd_pcm_lib_free_pages(substream);
967}
968
969static int azx_pcm_prepare(snd_pcm_substream_t *substream)
970{
971 struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
972 azx_t *chip = apcm->chip;
973 azx_dev_t *azx_dev = get_azx_dev(substream);
974 struct hda_pcm_stream *hinfo = apcm->hinfo[substream->stream];
975 snd_pcm_runtime_t *runtime = substream->runtime;
976
977 azx_dev->bufsize = snd_pcm_lib_buffer_bytes(substream);
978 azx_dev->fragsize = snd_pcm_lib_period_bytes(substream);
979 azx_dev->frags = azx_dev->bufsize / azx_dev->fragsize;
980 azx_dev->format_val = snd_hda_calc_stream_format(runtime->rate,
981 runtime->channels,
982 runtime->format,
983 hinfo->maxbps);
984 if (! azx_dev->format_val) {
985 snd_printk(KERN_ERR SFX "invalid format_val, rate=%d, ch=%d, format=%d\n",
986 runtime->rate, runtime->channels, runtime->format);
987 return -EINVAL;
988 }
989
990 snd_printdd("azx_pcm_prepare: bufsize=0x%x, fragsize=0x%x, format=0x%x\n",
991 azx_dev->bufsize, azx_dev->fragsize, azx_dev->format_val);
992 azx_setup_periods(azx_dev);
993 azx_setup_controller(chip, azx_dev);
994 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
995 azx_dev->fifo_size = azx_sd_readw(azx_dev, SD_FIFOSIZE) + 1;
996 else
997 azx_dev->fifo_size = 0;
998
999 return hinfo->ops.prepare(hinfo, apcm->codec, azx_dev->stream_tag,
1000 azx_dev->format_val, substream);
1001}
1002
1003static int azx_pcm_trigger(snd_pcm_substream_t *substream, int cmd)
1004{
1005 struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
1006 azx_dev_t *azx_dev = get_azx_dev(substream);
1007 azx_t *chip = apcm->chip;
1008 int err = 0;
1009
1010 spin_lock(&chip->reg_lock);
1011 switch (cmd) {
1012 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1013 case SNDRV_PCM_TRIGGER_RESUME:
1014 case SNDRV_PCM_TRIGGER_START:
1015 azx_stream_start(chip, azx_dev);
1016 azx_dev->running = 1;
1017 break;
1018 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1019 case SNDRV_PCM_TRIGGER_STOP:
1020 azx_stream_stop(chip, azx_dev);
1021 azx_dev->running = 0;
1022 break;
1023 default:
1024 err = -EINVAL;
1025 }
1026 spin_unlock(&chip->reg_lock);
1027 if (cmd == SNDRV_PCM_TRIGGER_PAUSE_PUSH ||
1028 cmd == SNDRV_PCM_TRIGGER_STOP) {
1029 int timeout = 5000;
1030 while (azx_sd_readb(azx_dev, SD_CTL) & SD_CTL_DMA_START && --timeout)
1031 ;
1032 }
1033 return err;
1034}
1035
1036static snd_pcm_uframes_t azx_pcm_pointer(snd_pcm_substream_t *substream)
1037{
1038 azx_dev_t *azx_dev = get_azx_dev(substream);
1039 unsigned int pos;
1040
1041#ifdef USE_POSBUF
1042 /* use the position buffer */
1043 pos = *azx_dev->posbuf;
1044#else
1045 /* read LPIB */
1046 pos = azx_sd_readl(azx_dev, SD_LPIB) + azx_dev->fifo_size;
1047#endif
1048 if (pos >= azx_dev->bufsize)
1049 pos = 0;
1050 return bytes_to_frames(substream->runtime, pos);
1051}
1052
1053static snd_pcm_ops_t azx_pcm_ops = {
1054 .open = azx_pcm_open,
1055 .close = azx_pcm_close,
1056 .ioctl = snd_pcm_lib_ioctl,
1057 .hw_params = azx_pcm_hw_params,
1058 .hw_free = azx_pcm_hw_free,
1059 .prepare = azx_pcm_prepare,
1060 .trigger = azx_pcm_trigger,
1061 .pointer = azx_pcm_pointer,
1062};
1063
1064static void azx_pcm_free(snd_pcm_t *pcm)
1065{
1066 kfree(pcm->private_data);
1067}
1068
1069static int __devinit create_codec_pcm(azx_t *chip, struct hda_codec *codec,
1070 struct hda_pcm *cpcm, int pcm_dev)
1071{
1072 int err;
1073 snd_pcm_t *pcm;
1074 struct azx_pcm *apcm;
1075
1076 snd_assert(cpcm->stream[0].substreams || cpcm->stream[1].substreams, return -EINVAL);
1077 snd_assert(cpcm->name, return -EINVAL);
1078
1079 err = snd_pcm_new(chip->card, cpcm->name, pcm_dev,
1080 cpcm->stream[0].substreams, cpcm->stream[1].substreams,
1081 &pcm);
1082 if (err < 0)
1083 return err;
1084 strcpy(pcm->name, cpcm->name);
1085 apcm = kmalloc(sizeof(*apcm), GFP_KERNEL);
1086 if (apcm == NULL)
1087 return -ENOMEM;
1088 apcm->chip = chip;
1089 apcm->codec = codec;
1090 apcm->hinfo[0] = &cpcm->stream[0];
1091 apcm->hinfo[1] = &cpcm->stream[1];
1092 pcm->private_data = apcm;
1093 pcm->private_free = azx_pcm_free;
1094 if (cpcm->stream[0].substreams)
1095 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &azx_pcm_ops);
1096 if (cpcm->stream[1].substreams)
1097 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &azx_pcm_ops);
1098 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1099 snd_dma_pci_data(chip->pci),
1100 1024 * 64, 1024 * 128);
1101 chip->pcm[pcm_dev] = pcm;
1102
1103 return 0;
1104}
1105
1106static int __devinit azx_pcm_create(azx_t *chip)
1107{
1108 struct list_head *p;
1109 struct hda_codec *codec;
1110 int c, err;
1111 int pcm_dev;
1112
1113 if ((err = snd_hda_build_pcms(chip->bus)) < 0)
1114 return err;
1115
1116 pcm_dev = 0;
1117 list_for_each(p, &chip->bus->codec_list) {
1118 codec = list_entry(p, struct hda_codec, list);
1119 for (c = 0; c < codec->num_pcms; c++) {
1120 if (pcm_dev >= AZX_MAX_PCMS) {
1121 snd_printk(KERN_ERR SFX "Too many PCMs\n");
1122 return -EINVAL;
1123 }
1124 err = create_codec_pcm(chip, codec, &codec->pcm_info[c], pcm_dev);
1125 if (err < 0)
1126 return err;
1127 pcm_dev++;
1128 }
1129 }
1130 return 0;
1131}
1132
1133/*
1134 * mixer creation - all stuff is implemented in hda module
1135 */
1136static int __devinit azx_mixer_create(azx_t *chip)
1137{
1138 return snd_hda_build_controls(chip->bus);
1139}
1140
1141
1142/*
1143 * initialize SD streams
1144 */
1145static int __devinit azx_init_stream(azx_t *chip)
1146{
1147 int i;
1148
1149 /* initialize each stream (aka device)
1150 * assign the starting bdl address to each stream (device) and initialize
1151 */
1152 for (i = 0; i < MAX_ICH6_DEV; i++) {
1153 unsigned int off = sizeof(u32) * (i * AZX_MAX_FRAG * 4);
1154 azx_dev_t *azx_dev = &chip->azx_dev[i];
1155 azx_dev->bdl = (u32 *)(chip->bdl.area + off);
1156 azx_dev->bdl_addr = chip->bdl.addr + off;
1157#ifdef USE_POSBUF
1158 azx_dev->posbuf = (volatile u32 *)(chip->posbuf.area + i * 8);
1159#endif
1160 /* offset: SDI0=0x80, SDI1=0xa0, ... SDO3=0x160 */
1161 azx_dev->sd_addr = chip->remap_addr + (0x20 * i + 0x80);
1162 /* int mask: SDI0=0x01, SDI1=0x02, ... SDO3=0x80 */
1163 azx_dev->sd_int_sta_mask = 1 << i;
1164 /* stream tag: must be non-zero and unique */
1165 azx_dev->index = i;
1166 azx_dev->stream_tag = i + 1;
1167 }
1168
1169 return 0;
1170}
1171
1172
1173#ifdef CONFIG_PM
1174/*
1175 * power management
1176 */
1177static int azx_suspend(snd_card_t *card, pm_message_t state)
1178{
1179 azx_t *chip = card->pm_private_data;
1180 int i;
1181
1182 for (i = 0; i < chip->pcm_devs; i++)
1183 if (chip->pcm[i])
1184 snd_pcm_suspend_all(chip->pcm[i]);
1185 snd_hda_suspend(chip->bus, state);
1186 azx_free_cmd_io(chip);
1187 pci_disable_device(chip->pci);
1188 return 0;
1189}
1190
1191static int azx_resume(snd_card_t *card)
1192{
1193 azx_t *chip = card->pm_private_data;
1194
1195 pci_enable_device(chip->pci);
1196 pci_set_master(chip->pci);
1197 azx_init_chip(chip);
1198 snd_hda_resume(chip->bus);
1199 return 0;
1200}
1201#endif /* CONFIG_PM */
1202
1203
1204/*
1205 * destructor
1206 */
1207static int azx_free(azx_t *chip)
1208{
1209 if (chip->remap_addr) {
1210 int i;
1211
1212 for (i = 0; i < MAX_ICH6_DEV; i++)
1213 azx_stream_stop(chip, &chip->azx_dev[i]);
1214
1215 /* disable interrupts */
1216 azx_int_disable(chip);
1217 azx_int_clear(chip);
1218
1219 /* disable CORB/RIRB */
1220 azx_free_cmd_io(chip);
1221
1222 /* disable position buffer */
1223 azx_writel(chip, DPLBASE, 0);
1224 azx_writel(chip, DPUBASE, 0);
1225
1226 /* wait a little for interrupts to finish */
1227 msleep(1);
1228
1229 iounmap(chip->remap_addr);
1230 }
1231
1232 if (chip->irq >= 0)
1233 free_irq(chip->irq, (void*)chip);
1234
1235 if (chip->bdl.area)
1236 snd_dma_free_pages(&chip->bdl);
1237 if (chip->rb.area)
1238 snd_dma_free_pages(&chip->rb);
1239#ifdef USE_POSBUF
1240 if (chip->posbuf.area)
1241 snd_dma_free_pages(&chip->posbuf);
1242#endif
1243 pci_release_regions(chip->pci);
1244 pci_disable_device(chip->pci);
1245 kfree(chip);
1246
1247 return 0;
1248}
1249
1250static int azx_dev_free(snd_device_t *device)
1251{
1252 return azx_free(device->device_data);
1253}
1254
1255/*
1256 * constructor
1257 */
1258static int __devinit azx_create(snd_card_t *card, struct pci_dev *pci, azx_t **rchip)
1259{
1260 azx_t *chip;
1261 int err = 0;
1262 static snd_device_ops_t ops = {
1263 .dev_free = azx_dev_free,
1264 };
1265
1266 *rchip = NULL;
1267
1268 if ((err = pci_enable_device(pci)) < 0)
1269 return err;
1270
1271 chip = kcalloc(1, sizeof(*chip), GFP_KERNEL);
1272
1273 if (NULL == chip) {
1274 snd_printk(KERN_ERR SFX "cannot allocate chip\n");
1275 pci_disable_device(pci);
1276 return -ENOMEM;
1277 }
1278
1279 spin_lock_init(&chip->reg_lock);
1280 init_MUTEX(&chip->open_mutex);
1281 chip->card = card;
1282 chip->pci = pci;
1283 chip->irq = -1;
1284
1285 if ((err = pci_request_regions(pci, "ICH HD audio")) < 0) {
1286 kfree(chip);
1287 pci_disable_device(pci);
1288 return err;
1289 }
1290
1291 chip->addr = pci_resource_start(pci,0);
1292 chip->remap_addr = ioremap_nocache(chip->addr, pci_resource_len(pci,0));
1293 if (chip->remap_addr == NULL) {
1294 snd_printk(KERN_ERR SFX "ioremap error\n");
1295 err = -ENXIO;
1296 goto errout;
1297 }
1298
1299 if (request_irq(pci->irq, azx_interrupt, SA_INTERRUPT|SA_SHIRQ,
1300 "HDA Intel", (void*)chip)) {
1301 snd_printk(KERN_ERR SFX "unable to grab IRQ %d\n", pci->irq);
1302 err = -EBUSY;
1303 goto errout;
1304 }
1305 chip->irq = pci->irq;
1306
1307 pci_set_master(pci);
1308 synchronize_irq(chip->irq);
1309
1310 /* allocate memory for the BDL for each stream */
1311 if ((err = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
1312 PAGE_SIZE, &chip->bdl)) < 0) {
1313 snd_printk(KERN_ERR SFX "cannot allocate BDL\n");
1314 goto errout;
1315 }
1316#ifdef USE_POSBUF
1317 /* allocate memory for the position buffer */
1318 if ((err = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
1319 MAX_ICH6_DEV * 8, &chip->posbuf)) < 0) {
1320 snd_printk(KERN_ERR SFX "cannot allocate posbuf\n");
1321 goto errout;
1322 }
1323#endif
1324 /* allocate CORB/RIRB */
1325 if ((err = azx_alloc_cmd_io(chip)) < 0)
1326 goto errout;
1327
1328 /* initialize streams */
1329 azx_init_stream(chip);
1330
1331 /* initialize chip */
1332 azx_init_chip(chip);
1333
1334 /* codec detection */
1335 if (! chip->codec_mask) {
1336 snd_printk(KERN_ERR SFX "no codecs found!\n");
1337 err = -ENODEV;
1338 goto errout;
1339 }
1340
1341 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) <0) {
1342 snd_printk(KERN_ERR SFX "Error creating device [card]!\n");
1343 goto errout;
1344 }
1345
1346 *rchip = chip;
1347 return 0;
1348
1349 errout:
1350 azx_free(chip);
1351 return err;
1352}
1353
1354static int __devinit azx_probe(struct pci_dev *pci, const struct pci_device_id *pci_id)
1355{
1356 static int dev;
1357 snd_card_t *card;
1358 azx_t *chip;
1359 int err = 0;
1360
1361 if (dev >= SNDRV_CARDS)
1362 return -ENODEV;
1363 if (! enable[dev]) {
1364 dev++;
1365 return -ENOENT;
1366 }
1367
1368 card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
1369 if (NULL == card) {
1370 snd_printk(KERN_ERR SFX "Error creating card!\n");
1371 return -ENOMEM;
1372 }
1373
1374 if ((err = azx_create(card, pci, &chip)) < 0) {
1375 snd_card_free(card);
1376 return err;
1377 }
1378
1379 strcpy(card->driver, "HDA-Intel");
1380 strcpy(card->shortname, "HDA Intel");
1381 sprintf(card->longname, "%s at 0x%lx irq %i", card->shortname, chip->addr, chip->irq);
1382
1383 /* create codec instances */
1384 if ((err = azx_codec_create(chip, model[dev])) < 0) {
1385 snd_card_free(card);
1386 return err;
1387 }
1388
1389 /* create PCM streams */
1390 if ((err = azx_pcm_create(chip)) < 0) {
1391 snd_card_free(card);
1392 return err;
1393 }
1394
1395 /* create mixer controls */
1396 if ((err = azx_mixer_create(chip)) < 0) {
1397 snd_card_free(card);
1398 return err;
1399 }
1400
1401 snd_card_set_pm_callback(card, azx_suspend, azx_resume, chip);
1402 snd_card_set_dev(card, &pci->dev);
1403
1404 if ((err = snd_card_register(card)) < 0) {
1405 snd_card_free(card);
1406 return err;
1407 }
1408
1409 pci_set_drvdata(pci, card);
1410 dev++;
1411
1412 return err;
1413}
1414
1415static void __devexit azx_remove(struct pci_dev *pci)
1416{
1417 snd_card_free(pci_get_drvdata(pci));
1418 pci_set_drvdata(pci, NULL);
1419}
1420
1421/* PCI IDs */
1422static struct pci_device_id azx_ids[] = {
1423 { 0x8086, 0x2668, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, /* ICH6 */
1424 { 0x8086, 0x27d8, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, /* ICH7 */
1425 { 0, }
1426};
1427MODULE_DEVICE_TABLE(pci, azx_ids);
1428
1429/* pci_driver definition */
1430static struct pci_driver driver = {
1431 .name = "HDA Intel",
1432 .id_table = azx_ids,
1433 .probe = azx_probe,
1434 .remove = __devexit_p(azx_remove),
1435 SND_PCI_PM_CALLBACKS
1436};
1437
1438static int __init alsa_card_azx_init(void)
1439{
1440 return pci_module_init(&driver);
1441}
1442
1443static void __exit alsa_card_azx_exit(void)
1444{
1445 pci_unregister_driver(&driver);
1446}
1447
1448module_init(alsa_card_azx_init)
1449module_exit(alsa_card_azx_exit)
diff --git a/sound/pci/hda/hda_local.h b/sound/pci/hda/hda_local.h
new file mode 100644
index 000000000000..7c7b849875a0
--- /dev/null
+++ b/sound/pci/hda/hda_local.h
@@ -0,0 +1,161 @@
1/*
2 * Universal Interface for Intel High Definition Audio Codec
3 *
4 * Local helper functions
5 *
6 * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 */
22
23#ifndef __SOUND_HDA_LOCAL_H
24#define __SOUND_HDA_LOCAL_H
25
26/*
27 * for mixer controls
28 */
29#define HDA_COMPOSE_AMP_VAL(nid,chs,idx,dir) ((nid) | ((chs)<<16) | ((dir)<<18) | ((idx)<<19))
30#define HDA_CODEC_VOLUME_MONO_IDX(xname, xcidx, nid, channel, xindex, direction) \
31 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xcidx, \
32 .info = snd_hda_mixer_amp_volume_info, \
33 .get = snd_hda_mixer_amp_volume_get, \
34 .put = snd_hda_mixer_amp_volume_put, \
35 .private_value = HDA_COMPOSE_AMP_VAL(nid, channel, xindex, direction) }
36#define HDA_CODEC_VOLUME_IDX(xname, xcidx, nid, xindex, direction) \
37 HDA_CODEC_VOLUME_MONO_IDX(xname, xcidx, nid, 3, xindex, direction)
38#define HDA_CODEC_VOLUME_MONO(xname, nid, channel, xindex, direction) \
39 HDA_CODEC_VOLUME_MONO_IDX(xname, 0, nid, channel, xindex, direction)
40#define HDA_CODEC_VOLUME(xname, nid, xindex, direction) \
41 HDA_CODEC_VOLUME_MONO(xname, nid, 3, xindex, direction)
42#define HDA_CODEC_MUTE_MONO_IDX(xname, xcidx, nid, channel, xindex, direction) \
43 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xcidx, \
44 .info = snd_hda_mixer_amp_switch_info, \
45 .get = snd_hda_mixer_amp_switch_get, \
46 .put = snd_hda_mixer_amp_switch_put, \
47 .private_value = HDA_COMPOSE_AMP_VAL(nid, channel, xindex, direction) }
48#define HDA_CODEC_MUTE_IDX(xname, xcidx, nid, xindex, direction) \
49 HDA_CODEC_MUTE_MONO_IDX(xname, xcidx, nid, 3, xindex, direction)
50#define HDA_CODEC_MUTE_MONO(xname, nid, channel, xindex, direction) \
51 HDA_CODEC_MUTE_MONO_IDX(xname, 0, nid, channel, xindex, direction)
52#define HDA_CODEC_MUTE(xname, nid, xindex, direction) \
53 HDA_CODEC_MUTE_MONO(xname, nid, 3, xindex, direction)
54
55int snd_hda_mixer_amp_volume_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo);
56int snd_hda_mixer_amp_volume_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol);
57int snd_hda_mixer_amp_volume_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol);
58int snd_hda_mixer_amp_switch_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo);
59int snd_hda_mixer_amp_switch_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol);
60int snd_hda_mixer_amp_switch_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol);
61
62int snd_hda_create_spdif_out_ctls(struct hda_codec *codec, hda_nid_t nid);
63int snd_hda_create_spdif_in_ctls(struct hda_codec *codec, hda_nid_t nid);
64
65/*
66 * input MUX helper
67 */
68#define HDA_MAX_NUM_INPUTS 8
69struct hda_input_mux_item {
70 const char *label;
71 unsigned int index;
72};
73struct hda_input_mux {
74 unsigned int num_items;
75 struct hda_input_mux_item items[HDA_MAX_NUM_INPUTS];
76};
77
78int snd_hda_input_mux_info(const struct hda_input_mux *imux, snd_ctl_elem_info_t *uinfo);
79int snd_hda_input_mux_put(struct hda_codec *codec, const struct hda_input_mux *imux,
80 snd_ctl_elem_value_t *ucontrol, hda_nid_t nid,
81 unsigned int *cur_val);
82
83/*
84 * Multi-channel / digital-out PCM helper
85 */
86
87enum { HDA_FRONT, HDA_REAR, HDA_CLFE, HDA_SIDE }; /* index for dac_nidx */
88enum { HDA_DIG_NONE, HDA_DIG_EXCLUSIVE, HDA_DIG_ANALOG_DUP }; /* dig_out_used */
89
90struct hda_multi_out {
91 int num_dacs; /* # of DACs, must be more than 1 */
92 hda_nid_t *dac_nids; /* DAC list */
93 hda_nid_t hp_nid; /* optional DAC for HP, 0 when not exists */
94 hda_nid_t dig_out_nid; /* digital out audio widget */
95 int max_channels; /* currently supported analog channels */
96 int dig_out_used; /* current usage of digital out (HDA_DIG_XXX) */
97};
98
99int snd_hda_multi_out_dig_open(struct hda_codec *codec, struct hda_multi_out *mout);
100int snd_hda_multi_out_dig_close(struct hda_codec *codec, struct hda_multi_out *mout);
101int snd_hda_multi_out_analog_open(struct hda_codec *codec, struct hda_multi_out *mout,
102 snd_pcm_substream_t *substream);
103int snd_hda_multi_out_analog_prepare(struct hda_codec *codec, struct hda_multi_out *mout,
104 unsigned int stream_tag,
105 unsigned int format,
106 snd_pcm_substream_t *substream);
107int snd_hda_multi_out_analog_cleanup(struct hda_codec *codec, struct hda_multi_out *mout);
108
109/*
110 * generic codec parser
111 */
112int snd_hda_parse_generic_codec(struct hda_codec *codec);
113
114/*
115 * generic proc interface
116 */
117#ifdef CONFIG_PROC_FS
118int snd_hda_codec_proc_new(struct hda_codec *codec);
119#else
120static inline int snd_hda_codec_proc_new(struct hda_codec *codec) { return 0; }
121#endif
122
123/*
124 * Misc
125 */
126struct hda_board_config {
127 const char *modelname;
128 int config;
129 unsigned short pci_vendor;
130 unsigned short pci_device;
131};
132
133int snd_hda_check_board_config(struct hda_codec *codec, struct hda_board_config *tbl);
134int snd_hda_add_new_ctls(struct hda_codec *codec, snd_kcontrol_new_t *knew);
135
136/*
137 * power management
138 */
139#ifdef CONFIG_PM
140int snd_hda_resume_ctls(struct hda_codec *codec, snd_kcontrol_new_t *knew);
141int snd_hda_resume_spdif_out(struct hda_codec *codec);
142int snd_hda_resume_spdif_in(struct hda_codec *codec);
143#endif
144
145/*
146 * unsolicited event handler
147 */
148
149#define HDA_UNSOL_QUEUE_SIZE 64
150
151struct hda_bus_unsolicited {
152 /* ring buffer */
153 u32 queue[HDA_UNSOL_QUEUE_SIZE * 2];
154 unsigned int rp, wp;
155
156 /* workqueue */
157 struct workqueue_struct *workq;
158 struct work_struct work;
159};
160
161#endif /* __SOUND_HDA_LOCAL_H */
diff --git a/sound/pci/hda/hda_patch.h b/sound/pci/hda/hda_patch.h
new file mode 100644
index 000000000000..cf6abce42bc9
--- /dev/null
+++ b/sound/pci/hda/hda_patch.h
@@ -0,0 +1,17 @@
1/*
2 * HDA Patches - included by hda_codec.c
3 */
4
5/* Realtek codecs */
6extern struct hda_codec_preset snd_hda_preset_realtek[];
7/* C-Media codecs */
8extern struct hda_codec_preset snd_hda_preset_cmedia[];
9/* Analog Devices codecs */
10extern struct hda_codec_preset snd_hda_preset_analog[];
11
12static const struct hda_codec_preset *hda_preset_tables[] = {
13 snd_hda_preset_realtek,
14 snd_hda_preset_cmedia,
15 snd_hda_preset_analog,
16 NULL
17};
diff --git a/sound/pci/hda/hda_proc.c b/sound/pci/hda/hda_proc.c
new file mode 100644
index 000000000000..4d5db7faad8d
--- /dev/null
+++ b/sound/pci/hda/hda_proc.c
@@ -0,0 +1,298 @@
1/*
2 * Universal Interface for Intel High Definition Audio Codec
3 *
4 * Generic proc interface
5 *
6 * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
7 *
8 *
9 * This driver is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This driver is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 */
23
24#include <sound/driver.h>
25#include <linux/init.h>
26#include <linux/pci.h>
27#include <sound/core.h>
28#include "hda_codec.h"
29
30static const char *get_wid_type_name(unsigned int wid_value)
31{
32 static char *names[16] = {
33 [AC_WID_AUD_OUT] = "Audio Output",
34 [AC_WID_AUD_IN] = "Audio Input",
35 [AC_WID_AUD_MIX] = "Audio Mixer",
36 [AC_WID_AUD_SEL] = "Audio Selector",
37 [AC_WID_PIN] = "Pin Complex",
38 [AC_WID_POWER] = "Power Widget",
39 [AC_WID_VOL_KNB] = "Volume Knob Widget",
40 [AC_WID_BEEP] = "Beep Generator Widget",
41 [AC_WID_VENDOR] = "Vendor Defined Widget",
42 };
43 wid_value &= 0xf;
44 if (names[wid_value])
45 return names[wid_value];
46 else
47 return "UNKOWN Widget";
48}
49
50static void print_amp_caps(snd_info_buffer_t *buffer,
51 struct hda_codec *codec, hda_nid_t nid, int dir)
52{
53 unsigned int caps;
54 if (dir == HDA_OUTPUT)
55 caps = snd_hda_param_read(codec, nid, AC_PAR_AMP_OUT_CAP);
56 else
57 caps = snd_hda_param_read(codec, nid, AC_PAR_AMP_IN_CAP);
58 if (caps == -1 || caps == 0) {
59 snd_iprintf(buffer, "N/A\n");
60 return;
61 }
62 snd_iprintf(buffer, "ofs=0x%02x, nsteps=0x%02x, stepsize=0x%02x, mute=%x\n",
63 caps & AC_AMPCAP_OFFSET,
64 (caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT,
65 (caps & AC_AMPCAP_STEP_SIZE) >> AC_AMPCAP_STEP_SIZE_SHIFT,
66 (caps & AC_AMPCAP_MUTE) >> AC_AMPCAP_MUTE_SHIFT);
67}
68
69static void print_amp_vals(snd_info_buffer_t *buffer,
70 struct hda_codec *codec, hda_nid_t nid,
71 int dir, int stereo)
72{
73 unsigned int val;
74 if (stereo) {
75 val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_AMP_GAIN_MUTE,
76 AC_AMP_GET_LEFT |
77 (dir == HDA_OUTPUT ? AC_AMP_GET_OUTPUT :
78 AC_AMP_GET_INPUT));
79 snd_iprintf(buffer, "0x%02x ", val);
80 }
81 val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_AMP_GAIN_MUTE,
82 AC_AMP_GET_RIGHT |
83 (dir == HDA_OUTPUT ? AC_AMP_GET_OUTPUT :
84 AC_AMP_GET_INPUT));
85 snd_iprintf(buffer, "0x%02x\n", val);
86}
87
88static void print_pcm_caps(snd_info_buffer_t *buffer,
89 struct hda_codec *codec, hda_nid_t nid)
90{
91 unsigned int pcm = snd_hda_param_read(codec, nid, AC_PAR_PCM);
92 unsigned int stream = snd_hda_param_read(codec, nid, AC_PAR_STREAM);
93 if (pcm == -1 || stream == -1) {
94 snd_iprintf(buffer, "N/A\n");
95 return;
96 }
97 snd_iprintf(buffer, "rates 0x%03x, bits 0x%02x, types 0x%x\n",
98 pcm & AC_SUPPCM_RATES, (pcm >> 16) & 0xff, stream & 0xf);
99}
100
101static const char *get_jack_location(u32 cfg)
102{
103 static char *bases[7] = {
104 "N/A", "Rear", "Front", "Left", "Right", "Top", "Bottom",
105 };
106 static unsigned char specials_idx[] = {
107 0x07, 0x08,
108 0x17, 0x18, 0x19,
109 0x37, 0x38
110 };
111 static char *specials[] = {
112 "Rear Panel", "Drive Bar",
113 "Riser", "HDMI", "ATAPI",
114 "Mobile-In", "Mobile-Out"
115 };
116 int i;
117 cfg = (cfg & AC_DEFCFG_LOCATION) >> AC_DEFCFG_LOCATION_SHIFT;
118 if ((cfg & 0x0f) < 7)
119 return bases[cfg & 0x0f];
120 for (i = 0; i < ARRAY_SIZE(specials_idx); i++) {
121 if (cfg == specials_idx[i])
122 return specials[i];
123 }
124 return "UNKNOWN";
125}
126
127static const char *get_jack_connection(u32 cfg)
128{
129 static char *names[16] = {
130 "Unknown", "1/8", "1/4", "ATAPI",
131 "RCA", "Optical","Digital", "Analog",
132 "DIN", "XLR", "RJ11", "Comb",
133 NULL, NULL, NULL, "Other"
134 };
135 cfg = (cfg & AC_DEFCFG_CONN_TYPE) >> AC_DEFCFG_CONN_TYPE_SHIFT;
136 if (names[cfg])
137 return names[cfg];
138 else
139 return "UNKNOWN";
140}
141
142static const char *get_jack_color(u32 cfg)
143{
144 static char *names[16] = {
145 "Unknown", "Black", "Grey", "Blue",
146 "Green", "Red", "Orange", "Yellow",
147 "Purple", "Pink", NULL, NULL,
148 NULL, NULL, "White", "Other",
149 };
150 cfg = (cfg & AC_DEFCFG_COLOR) >> AC_DEFCFG_COLOR_SHIFT;
151 if (names[cfg])
152 return names[cfg];
153 else
154 return "UNKNOWN";
155}
156
157static void print_pin_caps(snd_info_buffer_t *buffer,
158 struct hda_codec *codec, hda_nid_t nid)
159{
160 static char *jack_types[16] = {
161 "Line Out", "Speaker", "HP Out", "CD",
162 "SPDIF Out", "Digital Out", "Modem Line", "Modem Hand",
163 "Line In", "Aux", "Mic", "Telephony",
164 "SPDIF In", "Digitial In", "Reserved", "Other"
165 };
166 static char *jack_locations[4] = { "Ext", "Int", "Sep", "Oth" };
167 unsigned int caps;
168
169 caps = snd_hda_param_read(codec, nid, AC_PAR_PIN_CAP);
170 snd_iprintf(buffer, " Pincap 0x08%x:", caps);
171 if (caps & AC_PINCAP_IN)
172 snd_iprintf(buffer, " IN");
173 if (caps & AC_PINCAP_OUT)
174 snd_iprintf(buffer, " OUT");
175 if (caps & AC_PINCAP_HP_DRV)
176 snd_iprintf(buffer, " HP");
177 snd_iprintf(buffer, "\n");
178 caps = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONFIG_DEFAULT, 0);
179 snd_iprintf(buffer, " Pin Default 0x%08x: %s at %s %s\n", caps,
180 jack_types[(caps & AC_DEFCFG_DEVICE) >> AC_DEFCFG_DEVICE_SHIFT],
181 jack_locations[(caps >> (AC_DEFCFG_LOCATION_SHIFT + 4)) & 3],
182 get_jack_location(caps));
183 snd_iprintf(buffer, " Conn = %s, Color = %s\n",
184 get_jack_connection(caps),
185 get_jack_color(caps));
186}
187
188
189static void print_codec_info(snd_info_entry_t *entry, snd_info_buffer_t *buffer)
190{
191 struct hda_codec *codec = entry->private_data;
192 char buf[32];
193 hda_nid_t nid;
194 int i, nodes;
195
196 snd_hda_get_codec_name(codec, buf, sizeof(buf));
197 snd_iprintf(buffer, "Codec: %s\n", buf);
198 snd_iprintf(buffer, "Address: %d\n", codec->addr);
199 snd_iprintf(buffer, "Vendor Id: 0x%x\n", codec->vendor_id);
200 snd_iprintf(buffer, "Subsystem Id: 0x%x\n", codec->subsystem_id);
201 snd_iprintf(buffer, "Revision Id: 0x%x\n", codec->revision_id);
202 snd_iprintf(buffer, "Default PCM: ");
203 print_pcm_caps(buffer, codec, codec->afg);
204 snd_iprintf(buffer, "Default Amp-In caps: ");
205 print_amp_caps(buffer, codec, codec->afg, HDA_INPUT);
206 snd_iprintf(buffer, "Default Amp-Out caps: ");
207 print_amp_caps(buffer, codec, codec->afg, HDA_OUTPUT);
208
209 nodes = snd_hda_get_sub_nodes(codec, codec->afg, &nid);
210 if (! nid || nodes < 0) {
211 snd_iprintf(buffer, "Invalid AFG subtree\n");
212 return;
213 }
214 for (i = 0; i < nodes; i++, nid++) {
215 unsigned int wid_caps = snd_hda_param_read(codec, nid,
216 AC_PAR_AUDIO_WIDGET_CAP);
217 unsigned int wid_type = (wid_caps & AC_WCAP_TYPE) >> AC_WCAP_TYPE_SHIFT;
218 snd_iprintf(buffer, "Node 0x%02x [%s] wcaps 0x%x:", nid,
219 get_wid_type_name(wid_type), wid_caps);
220 if (wid_caps & AC_WCAP_STEREO)
221 snd_iprintf(buffer, " Stereo");
222 else
223 snd_iprintf(buffer, " Mono");
224 if (wid_caps & AC_WCAP_DIGITAL)
225 snd_iprintf(buffer, " Digital");
226 if (wid_caps & AC_WCAP_IN_AMP)
227 snd_iprintf(buffer, " Amp-In");
228 if (wid_caps & AC_WCAP_OUT_AMP)
229 snd_iprintf(buffer, " Amp-Out");
230 snd_iprintf(buffer, "\n");
231
232 if (wid_caps & AC_WCAP_IN_AMP) {
233 snd_iprintf(buffer, " Amp-In caps: ");
234 print_amp_caps(buffer, codec, nid, HDA_INPUT);
235 snd_iprintf(buffer, " Amp-In vals: ");
236 print_amp_vals(buffer, codec, nid, HDA_INPUT,
237 wid_caps & AC_WCAP_STEREO);
238 }
239 if (wid_caps & AC_WCAP_OUT_AMP) {
240 snd_iprintf(buffer, " Amp-Out caps: ");
241 print_amp_caps(buffer, codec, nid, HDA_OUTPUT);
242 snd_iprintf(buffer, " Amp-Out vals: ");
243 print_amp_vals(buffer, codec, nid, HDA_OUTPUT,
244 wid_caps & AC_WCAP_STEREO);
245 }
246
247 if (wid_type == AC_WID_PIN) {
248 unsigned int pinctls;
249 print_pin_caps(buffer, codec, nid);
250 pinctls = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_PIN_WIDGET_CONTROL, 0);
251 snd_iprintf(buffer, " Pin-ctls: 0x%02x:", pinctls);
252 if (pinctls & AC_PINCTL_IN_EN)
253 snd_iprintf(buffer, " IN");
254 if (pinctls & AC_PINCTL_OUT_EN)
255 snd_iprintf(buffer, " OUT");
256 if (pinctls & AC_PINCTL_HP_EN)
257 snd_iprintf(buffer, " HP");
258 snd_iprintf(buffer, "\n");
259 }
260
261 if ((wid_type == AC_WID_AUD_OUT || wid_type == AC_WID_AUD_IN) &&
262 (wid_caps & AC_WCAP_FORMAT_OVRD)) {
263 snd_iprintf(buffer, " PCM: ");
264 print_pcm_caps(buffer, codec, nid);
265 }
266
267 if (wid_caps & AC_WCAP_CONN_LIST) {
268 hda_nid_t conn[HDA_MAX_CONNECTIONS];
269 int c, conn_len;
270 conn_len = snd_hda_get_connections(codec, nid, conn,
271 HDA_MAX_CONNECTIONS);
272 snd_iprintf(buffer, " Connection: %d\n", conn_len);
273 snd_iprintf(buffer, " ");
274 for (c = 0; c < conn_len; c++)
275 snd_iprintf(buffer, " 0x%02x", conn[c]);
276 snd_iprintf(buffer, "\n");
277 }
278 }
279}
280
281/*
282 * create a proc read
283 */
284int snd_hda_codec_proc_new(struct hda_codec *codec)
285{
286 char name[32];
287 snd_info_entry_t *entry;
288 int err;
289
290 snprintf(name, sizeof(name), "codec#%d", codec->addr);
291 err = snd_card_proc_new(codec->bus->card, name, &entry);
292 if (err < 0)
293 return err;
294
295 snd_info_set_text_ops(entry, codec, 32 * 1024, print_codec_info);
296 return 0;
297}
298
diff --git a/sound/pci/hda/patch_analog.c b/sound/pci/hda/patch_analog.c
new file mode 100644
index 000000000000..75d23849f71a
--- /dev/null
+++ b/sound/pci/hda/patch_analog.c
@@ -0,0 +1,445 @@
1/*
2 * HD audio interface patch for AD1986A
3 *
4 * Copyright (c) 2005 Takashi Iwai <tiwai@suse.de>
5 *
6 * This driver is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This driver is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21#include <sound/driver.h>
22#include <linux/init.h>
23#include <linux/delay.h>
24#include <linux/slab.h>
25#include <linux/pci.h>
26#include <sound/core.h>
27#include "hda_codec.h"
28#include "hda_local.h"
29
30struct ad1986a_spec {
31 struct semaphore amp_mutex; /* PCM volume/mute control mutex */
32 struct hda_multi_out multiout; /* playback */
33 unsigned int cur_mux; /* capture source */
34 struct hda_pcm pcm_rec[2]; /* PCM information */
35};
36
37#define AD1986A_SPDIF_OUT 0x02
38#define AD1986A_FRONT_DAC 0x03
39#define AD1986A_SURR_DAC 0x04
40#define AD1986A_CLFE_DAC 0x05
41#define AD1986A_ADC 0x06
42
43static hda_nid_t ad1986a_dac_nids[3] = {
44 AD1986A_FRONT_DAC, AD1986A_SURR_DAC, AD1986A_CLFE_DAC
45};
46
47static struct hda_input_mux ad1986a_capture_source = {
48 .num_items = 7,
49 .items = {
50 { "Mic", 0x0 },
51 { "CD", 0x1 },
52 { "Aux", 0x3 },
53 { "Line", 0x4 },
54 { "Mix", 0x5 },
55 { "Mono", 0x6 },
56 { "Phone", 0x7 },
57 },
58};
59
60/*
61 * PCM control
62 *
63 * bind volumes/mutes of 3 DACs as a single PCM control for simplicity
64 */
65
66#define ad1986a_pcm_amp_vol_info snd_hda_mixer_amp_volume_info
67
68static int ad1986a_pcm_amp_vol_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
69{
70 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
71 struct ad1986a_spec *ad = codec->spec;
72
73 down(&ad->amp_mutex);
74 snd_hda_mixer_amp_volume_get(kcontrol, ucontrol);
75 up(&ad->amp_mutex);
76 return 0;
77}
78
79static int ad1986a_pcm_amp_vol_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
80{
81 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
82 struct ad1986a_spec *ad = codec->spec;
83 int i, change = 0;
84
85 down(&ad->amp_mutex);
86 for (i = 0; i < ARRAY_SIZE(ad1986a_dac_nids); i++) {
87 kcontrol->private_value = HDA_COMPOSE_AMP_VAL(ad1986a_dac_nids[i], 3, 0, HDA_OUTPUT);
88 change |= snd_hda_mixer_amp_volume_put(kcontrol, ucontrol);
89 }
90 kcontrol->private_value = HDA_COMPOSE_AMP_VAL(AD1986A_FRONT_DAC, 3, 0, HDA_OUTPUT);
91 up(&ad->amp_mutex);
92 return change;
93}
94
95#define ad1986a_pcm_amp_sw_info snd_hda_mixer_amp_volume_info
96
97static int ad1986a_pcm_amp_sw_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
98{
99 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
100 struct ad1986a_spec *ad = codec->spec;
101
102 down(&ad->amp_mutex);
103 snd_hda_mixer_amp_switch_get(kcontrol, ucontrol);
104 up(&ad->amp_mutex);
105 return 0;
106}
107
108static int ad1986a_pcm_amp_sw_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
109{
110 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
111 struct ad1986a_spec *ad = codec->spec;
112 int i, change = 0;
113
114 down(&ad->amp_mutex);
115 for (i = 0; i < ARRAY_SIZE(ad1986a_dac_nids); i++) {
116 kcontrol->private_value = HDA_COMPOSE_AMP_VAL(ad1986a_dac_nids[i], 3, 0, HDA_OUTPUT);
117 change |= snd_hda_mixer_amp_switch_put(kcontrol, ucontrol);
118 }
119 kcontrol->private_value = HDA_COMPOSE_AMP_VAL(AD1986A_FRONT_DAC, 3, 0, HDA_OUTPUT);
120 up(&ad->amp_mutex);
121 return change;
122}
123
124/*
125 * input MUX handling
126 */
127static int ad1986a_mux_enum_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
128{
129 return snd_hda_input_mux_info(&ad1986a_capture_source, uinfo);
130}
131
132static int ad1986a_mux_enum_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
133{
134 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
135 struct ad1986a_spec *spec = codec->spec;
136
137 ucontrol->value.enumerated.item[0] = spec->cur_mux;
138 return 0;
139}
140
141static int ad1986a_mux_enum_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
142{
143 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
144 struct ad1986a_spec *spec = codec->spec;
145
146 return snd_hda_input_mux_put(codec, &ad1986a_capture_source, ucontrol,
147 AD1986A_ADC, &spec->cur_mux);
148}
149
150/*
151 * mixers
152 */
153static snd_kcontrol_new_t ad1986a_mixers[] = {
154 {
155 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
156 .name = "PCM Playback Volume",
157 .info = ad1986a_pcm_amp_vol_info,
158 .get = ad1986a_pcm_amp_vol_get,
159 .put = ad1986a_pcm_amp_vol_put,
160 .private_value = HDA_COMPOSE_AMP_VAL(AD1986A_FRONT_DAC, 3, 0, HDA_OUTPUT)
161 },
162 {
163 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
164 .name = "PCM Playback Switch",
165 .info = ad1986a_pcm_amp_sw_info,
166 .get = ad1986a_pcm_amp_sw_get,
167 .put = ad1986a_pcm_amp_sw_put,
168 .private_value = HDA_COMPOSE_AMP_VAL(AD1986A_FRONT_DAC, 3, 0, HDA_OUTPUT)
169 },
170 HDA_CODEC_VOLUME("Front Playback Volume", 0x1b, 0x0, HDA_OUTPUT),
171 HDA_CODEC_MUTE("Front Playback Switch", 0x1b, 0x0, HDA_OUTPUT),
172 HDA_CODEC_VOLUME("Surround Playback Volume", 0x1c, 0x0, HDA_OUTPUT),
173 HDA_CODEC_MUTE("Surround Playback Switch", 0x1c, 0x0, HDA_OUTPUT),
174 HDA_CODEC_VOLUME_MONO("Center Playback Volume", 0x1d, 1, 0x0, HDA_OUTPUT),
175 HDA_CODEC_VOLUME_MONO("LFE Playback Volume", 0x1d, 2, 0x0, HDA_OUTPUT),
176 HDA_CODEC_MUTE_MONO("Center Playback Switch", 0x1d, 1, 0x0, HDA_OUTPUT),
177 HDA_CODEC_MUTE_MONO("LFE Playback Switch", 0x1d, 2, 0x0, HDA_OUTPUT),
178 HDA_CODEC_VOLUME("Headphone Playback Volume", 0x1a, 0x0, HDA_OUTPUT),
179 HDA_CODEC_MUTE("Headphone Playback Switch", 0x1a, 0x0, HDA_OUTPUT),
180 HDA_CODEC_VOLUME("CD Playback Volume", 0x15, 0x0, HDA_OUTPUT),
181 HDA_CODEC_MUTE("CD Playback Switch", 0x15, 0x0, HDA_OUTPUT),
182 HDA_CODEC_VOLUME("Line Playback Volume", 0x17, 0x0, HDA_OUTPUT),
183 HDA_CODEC_MUTE("Line Playback Switch", 0x17, 0x0, HDA_OUTPUT),
184 HDA_CODEC_VOLUME("Aux Playback Volume", 0x16, 0x0, HDA_OUTPUT),
185 HDA_CODEC_MUTE("Aux Playback Switch", 0x16, 0x0, HDA_OUTPUT),
186 HDA_CODEC_VOLUME("Mic Playback Volume", 0x13, 0x0, HDA_OUTPUT),
187 HDA_CODEC_MUTE("Mic Playback Switch", 0x13, 0x0, HDA_OUTPUT),
188 HDA_CODEC_VOLUME("PC Speaker Playback Volume", 0x18, 0x0, HDA_OUTPUT),
189 HDA_CODEC_MUTE("PC Speaker Playback Switch", 0x18, 0x0, HDA_OUTPUT),
190 HDA_CODEC_VOLUME("Mono Playback Volume", 0x1e, 0x0, HDA_OUTPUT),
191 HDA_CODEC_MUTE("Mono Playback Switch", 0x1e, 0x0, HDA_OUTPUT),
192 HDA_CODEC_VOLUME("Capture Volume", 0x12, 0x0, HDA_OUTPUT),
193 HDA_CODEC_MUTE("Capture Switch", 0x12, 0x0, HDA_OUTPUT),
194 {
195 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
196 .name = "Capture Source",
197 .info = ad1986a_mux_enum_info,
198 .get = ad1986a_mux_enum_get,
199 .put = ad1986a_mux_enum_put,
200 },
201 HDA_CODEC_MUTE("Stereo Downmix Switch", 0x09, 0x0, HDA_OUTPUT),
202 { } /* end */
203};
204
205/*
206 * initialization verbs
207 */
208static struct hda_verb ad1986a_init_verbs[] = {
209 /* Front, Surround, CLFE DAC; mute as default */
210 {0x03, AC_VERB_SET_AMP_GAIN_MUTE, 0xb080},
211 {0x04, AC_VERB_SET_AMP_GAIN_MUTE, 0xb080},
212 {0x05, AC_VERB_SET_AMP_GAIN_MUTE, 0xb080},
213 /* Downmix - off */
214 {0x09, AC_VERB_SET_AMP_GAIN_MUTE, 0xb080},
215 /* HP, Line-Out, Surround, CLFE selectors */
216 {0x0a, AC_VERB_SET_CONNECT_SEL, 0x0},
217 {0x0b, AC_VERB_SET_CONNECT_SEL, 0x0},
218 {0x0c, AC_VERB_SET_CONNECT_SEL, 0x0},
219 {0x0d, AC_VERB_SET_CONNECT_SEL, 0x0},
220 /* Mono selector */
221 {0x0e, AC_VERB_SET_CONNECT_SEL, 0x0},
222 /* Mic selector: Mic 1/2 pin */
223 {0x0f, AC_VERB_SET_CONNECT_SEL, 0x0},
224 /* Line-in selector: Line-in */
225 {0x10, AC_VERB_SET_CONNECT_SEL, 0x0},
226 /* Mic 1/2 swap */
227 {0x11, AC_VERB_SET_CONNECT_SEL, 0x0},
228 /* Record selector: mic */
229 {0x12, AC_VERB_SET_CONNECT_SEL, 0x0},
230 /* Mic, Phone, CD, Aux, Line-In amp; mute as default */
231 {0x13, AC_VERB_SET_AMP_GAIN_MUTE, 0xb080},
232 {0x14, AC_VERB_SET_AMP_GAIN_MUTE, 0xb080},
233 {0x15, AC_VERB_SET_AMP_GAIN_MUTE, 0xb080},
234 {0x16, AC_VERB_SET_AMP_GAIN_MUTE, 0xb080},
235 {0x17, AC_VERB_SET_AMP_GAIN_MUTE, 0xb080},
236 /* PC beep */
237 {0x18, AC_VERB_SET_CONNECT_SEL, 0x0},
238 /* HP, Line-Out, Surround, CLFE, Mono pins; mute as default */
239 {0x1a, AC_VERB_SET_AMP_GAIN_MUTE, 0xb080},
240 {0x1b, AC_VERB_SET_AMP_GAIN_MUTE, 0xb080},
241 {0x1c, AC_VERB_SET_AMP_GAIN_MUTE, 0xb080},
242 {0x1d, AC_VERB_SET_AMP_GAIN_MUTE, 0xb080},
243 {0x1e, AC_VERB_SET_AMP_GAIN_MUTE, 0xb080},
244 { } /* end */
245};
246
247
248static int ad1986a_init(struct hda_codec *codec)
249{
250 snd_hda_sequence_write(codec, ad1986a_init_verbs);
251 return 0;
252}
253
254static int ad1986a_build_controls(struct hda_codec *codec)
255{
256 int err;
257
258 err = snd_hda_add_new_ctls(codec, ad1986a_mixers);
259 if (err < 0)
260 return err;
261 err = snd_hda_create_spdif_out_ctls(codec, AD1986A_SPDIF_OUT);
262 if (err < 0)
263 return err;
264 return 0;
265}
266
267/*
268 * Analog playback callbacks
269 */
270static int ad1986a_playback_pcm_open(struct hda_pcm_stream *hinfo,
271 struct hda_codec *codec,
272 snd_pcm_substream_t *substream)
273{
274 struct ad1986a_spec *spec = codec->spec;
275 return snd_hda_multi_out_analog_open(codec, &spec->multiout, substream);
276}
277
278static int ad1986a_playback_pcm_prepare(struct hda_pcm_stream *hinfo,
279 struct hda_codec *codec,
280 unsigned int stream_tag,
281 unsigned int format,
282 snd_pcm_substream_t *substream)
283{
284 struct ad1986a_spec *spec = codec->spec;
285 return snd_hda_multi_out_analog_prepare(codec, &spec->multiout, stream_tag,
286 format, substream);
287}
288
289static int ad1986a_playback_pcm_cleanup(struct hda_pcm_stream *hinfo,
290 struct hda_codec *codec,
291 snd_pcm_substream_t *substream)
292{
293 struct ad1986a_spec *spec = codec->spec;
294 return snd_hda_multi_out_analog_cleanup(codec, &spec->multiout);
295}
296
297/*
298 * Digital out
299 */
300static int ad1986a_dig_playback_pcm_open(struct hda_pcm_stream *hinfo,
301 struct hda_codec *codec,
302 snd_pcm_substream_t *substream)
303{
304 struct ad1986a_spec *spec = codec->spec;
305 return snd_hda_multi_out_dig_open(codec, &spec->multiout);
306}
307
308static int ad1986a_dig_playback_pcm_close(struct hda_pcm_stream *hinfo,
309 struct hda_codec *codec,
310 snd_pcm_substream_t *substream)
311{
312 struct ad1986a_spec *spec = codec->spec;
313 return snd_hda_multi_out_dig_close(codec, &spec->multiout);
314}
315
316/*
317 * Analog capture
318 */
319static int ad1986a_capture_pcm_prepare(struct hda_pcm_stream *hinfo,
320 struct hda_codec *codec,
321 unsigned int stream_tag,
322 unsigned int format,
323 snd_pcm_substream_t *substream)
324{
325 snd_hda_codec_setup_stream(codec, AD1986A_ADC, stream_tag, 0, format);
326 return 0;
327}
328
329static int ad1986a_capture_pcm_cleanup(struct hda_pcm_stream *hinfo,
330 struct hda_codec *codec,
331 snd_pcm_substream_t *substream)
332{
333 snd_hda_codec_setup_stream(codec, AD1986A_ADC, 0, 0, 0);
334 return 0;
335}
336
337
338/*
339 */
340static struct hda_pcm_stream ad1986a_pcm_analog_playback = {
341 .substreams = 1,
342 .channels_min = 2,
343 .channels_max = 6,
344 .nid = AD1986A_FRONT_DAC, /* NID to query formats and rates */
345 .ops = {
346 .open = ad1986a_playback_pcm_open,
347 .prepare = ad1986a_playback_pcm_prepare,
348 .cleanup = ad1986a_playback_pcm_cleanup
349 },
350};
351
352static struct hda_pcm_stream ad1986a_pcm_analog_capture = {
353 .substreams = 2,
354 .channels_min = 2,
355 .channels_max = 2,
356 .nid = AD1986A_ADC, /* NID to query formats and rates */
357 .ops = {
358 .prepare = ad1986a_capture_pcm_prepare,
359 .cleanup = ad1986a_capture_pcm_cleanup
360 },
361};
362
363static struct hda_pcm_stream ad1986a_pcm_digital_playback = {
364 .substreams = 1,
365 .channels_min = 2,
366 .channels_max = 2,
367 .nid = AD1986A_SPDIF_OUT,
368 .ops = {
369 .open = ad1986a_dig_playback_pcm_open,
370 .close = ad1986a_dig_playback_pcm_close
371 },
372};
373
374static int ad1986a_build_pcms(struct hda_codec *codec)
375{
376 struct ad1986a_spec *spec = codec->spec;
377 struct hda_pcm *info = spec->pcm_rec;
378
379 codec->num_pcms = 2;
380 codec->pcm_info = info;
381
382 info->name = "AD1986A Analog";
383 info->stream[SNDRV_PCM_STREAM_PLAYBACK] = ad1986a_pcm_analog_playback;
384 info->stream[SNDRV_PCM_STREAM_CAPTURE] = ad1986a_pcm_analog_capture;
385 info++;
386
387 info->name = "AD1986A Digital";
388 info->stream[SNDRV_PCM_STREAM_PLAYBACK] = ad1986a_pcm_digital_playback;
389
390 return 0;
391}
392
393static void ad1986a_free(struct hda_codec *codec)
394{
395 kfree(codec->spec);
396}
397
398#ifdef CONFIG_PM
399static int ad1986a_resume(struct hda_codec *codec)
400{
401 ad1986a_init(codec);
402 snd_hda_resume_ctls(codec, ad1986a_mixers);
403 snd_hda_resume_spdif_out(codec);
404 return 0;
405}
406#endif
407
408static struct hda_codec_ops ad1986a_patch_ops = {
409 .build_controls = ad1986a_build_controls,
410 .build_pcms = ad1986a_build_pcms,
411 .init = ad1986a_init,
412 .free = ad1986a_free,
413#ifdef CONFIG_PM
414 .resume = ad1986a_resume,
415#endif
416};
417
418static int patch_ad1986a(struct hda_codec *codec)
419{
420 struct ad1986a_spec *spec;
421
422 spec = kcalloc(1, sizeof(*spec), GFP_KERNEL);
423 if (spec == NULL)
424 return -ENOMEM;
425
426 init_MUTEX(&spec->amp_mutex);
427 codec->spec = spec;
428
429 spec->multiout.max_channels = 6;
430 spec->multiout.num_dacs = ARRAY_SIZE(ad1986a_dac_nids);
431 spec->multiout.dac_nids = ad1986a_dac_nids;
432 spec->multiout.dig_out_nid = AD1986A_SPDIF_OUT;
433
434 codec->patch_ops = ad1986a_patch_ops;
435
436 return 0;
437}
438
439/*
440 * patch entries
441 */
442struct hda_codec_preset snd_hda_preset_analog[] = {
443 { .id = 0x11d41986, .name = "AD1986A", .patch = patch_ad1986a },
444 {} /* terminator */
445};
diff --git a/sound/pci/hda/patch_cmedia.c b/sound/pci/hda/patch_cmedia.c
new file mode 100644
index 000000000000..b7cc8e4bffb7
--- /dev/null
+++ b/sound/pci/hda/patch_cmedia.c
@@ -0,0 +1,621 @@
1/*
2 * Universal Interface for Intel High Definition Audio Codec
3 *
4 * HD audio interface patch for C-Media CMI9880
5 *
6 * Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
7 *
8 *
9 * This driver is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This driver is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 */
23
24#include <sound/driver.h>
25#include <linux/init.h>
26#include <linux/delay.h>
27#include <linux/slab.h>
28#include <linux/pci.h>
29#include <sound/core.h>
30#include "hda_codec.h"
31#include "hda_local.h"
32
33
34/* board config type */
35enum {
36 CMI_MINIMAL, /* back 3-jack */
37 CMI_MIN_FP, /* back 3-jack + front-panel 2-jack */
38 CMI_FULL, /* back 6-jack + front-panel 2-jack */
39 CMI_FULL_DIG, /* back 6-jack + front-panel 2-jack + digital I/O */
40 CMI_ALLOUT, /* back 5-jack + front-panel 2-jack + digital out */
41};
42
43struct cmi_spec {
44 int board_config;
45 unsigned int surr_switch: 1; /* switchable line,mic */
46 unsigned int no_line_in: 1; /* no line-in (5-jack) */
47 unsigned int front_panel: 1; /* has front-panel 2-jack */
48
49 /* playback */
50 struct hda_multi_out multiout;
51
52 /* capture */
53 hda_nid_t *adc_nids;
54 hda_nid_t dig_in_nid;
55
56 /* capture source */
57 const struct hda_input_mux *input_mux;
58 unsigned int cur_mux[2];
59
60 /* channel mode */
61 unsigned int num_ch_modes;
62 unsigned int cur_ch_mode;
63 const struct cmi_channel_mode *channel_modes;
64
65 struct hda_pcm pcm_rec[2]; /* PCM information */
66};
67
68/*
69 * input MUX
70 */
71static int cmi_mux_enum_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
72{
73 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
74 struct cmi_spec *spec = codec->spec;
75 return snd_hda_input_mux_info(spec->input_mux, uinfo);
76}
77
78static int cmi_mux_enum_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
79{
80 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
81 struct cmi_spec *spec = codec->spec;
82 unsigned int adc_idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
83
84 ucontrol->value.enumerated.item[0] = spec->cur_mux[adc_idx];
85 return 0;
86}
87
88static int cmi_mux_enum_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
89{
90 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
91 struct cmi_spec *spec = codec->spec;
92 unsigned int adc_idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
93
94 return snd_hda_input_mux_put(codec, spec->input_mux, ucontrol,
95 spec->adc_nids[adc_idx], &spec->cur_mux[adc_idx]);
96}
97
98/*
99 * shared line-in, mic for surrounds
100 */
101
102/* 3-stack / 2 channel */
103static struct hda_verb cmi9880_ch2_init[] = {
104 /* set line-in PIN for input */
105 { 0x0c, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x20 },
106 /* set mic PIN for input, also enable vref */
107 { 0x0d, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x24 },
108 /* route front PCM (DAC1) to HP */
109 { 0x0f, AC_VERB_SET_CONNECT_SEL, 0x00 },
110 {}
111};
112
113/* 3-stack / 6 channel */
114static struct hda_verb cmi9880_ch6_init[] = {
115 /* set line-in PIN for output */
116 { 0x0c, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x40 },
117 /* set mic PIN for output */
118 { 0x0d, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x40 },
119 /* route front PCM (DAC1) to HP */
120 { 0x0f, AC_VERB_SET_CONNECT_SEL, 0x00 },
121 {}
122};
123
124/* 3-stack+front / 8 channel */
125static struct hda_verb cmi9880_ch8_init[] = {
126 /* set line-in PIN for output */
127 { 0x0c, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x40 },
128 /* set mic PIN for output */
129 { 0x0d, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x40 },
130 /* route rear-surround PCM (DAC4) to HP */
131 { 0x0f, AC_VERB_SET_CONNECT_SEL, 0x03 },
132 {}
133};
134
135struct cmi_channel_mode {
136 unsigned int channels;
137 const struct hda_verb *sequence;
138};
139
140static struct cmi_channel_mode cmi9880_channel_modes[3] = {
141 { 2, cmi9880_ch2_init },
142 { 6, cmi9880_ch6_init },
143 { 8, cmi9880_ch8_init },
144};
145
146static int cmi_ch_mode_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
147{
148 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
149 struct cmi_spec *spec = codec->spec;
150
151 snd_assert(spec->channel_modes, return -EINVAL);
152 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
153 uinfo->count = 1;
154 uinfo->value.enumerated.items = spec->num_ch_modes;
155 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
156 uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1;
157 sprintf(uinfo->value.enumerated.name, "%dch",
158 spec->channel_modes[uinfo->value.enumerated.item].channels);
159 return 0;
160}
161
162static int cmi_ch_mode_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
163{
164 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
165 struct cmi_spec *spec = codec->spec;
166
167 ucontrol->value.enumerated.item[0] = spec->cur_ch_mode;
168 return 0;
169}
170
171static int cmi_ch_mode_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
172{
173 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
174 struct cmi_spec *spec = codec->spec;
175
176 snd_assert(spec->channel_modes, return -EINVAL);
177 if (ucontrol->value.enumerated.item[0] >= spec->num_ch_modes)
178 ucontrol->value.enumerated.item[0] = spec->num_ch_modes;
179 if (ucontrol->value.enumerated.item[0] == spec->cur_ch_mode &&
180 ! codec->in_resume)
181 return 0;
182
183 spec->cur_ch_mode = ucontrol->value.enumerated.item[0];
184 snd_hda_sequence_write(codec, spec->channel_modes[spec->cur_ch_mode].sequence);
185 spec->multiout.max_channels = spec->channel_modes[spec->cur_ch_mode].channels;
186 return 1;
187}
188
189/*
190 */
191static snd_kcontrol_new_t cmi9880_basic_mixer[] = {
192 /* CMI9880 has no playback volumes! */
193 HDA_CODEC_MUTE("PCM Playback Switch", 0x03, 0x0, HDA_OUTPUT), /* front */
194 HDA_CODEC_MUTE("Surround Playback Switch", 0x04, 0x0, HDA_OUTPUT),
195 HDA_CODEC_MUTE_MONO("Center Playback Switch", 0x05, 1, 0x0, HDA_OUTPUT),
196 HDA_CODEC_MUTE_MONO("LFE Playback Switch", 0x05, 2, 0x0, HDA_OUTPUT),
197 HDA_CODEC_MUTE("Side Playback Switch", 0x06, 0x0, HDA_OUTPUT),
198 {
199 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
200 /* The multiple "Capture Source" controls confuse alsamixer
201 * So call somewhat different..
202 * FIXME: the controls appear in the "playback" view!
203 */
204 /* .name = "Capture Source", */
205 .name = "Input Source",
206 .count = 2,
207 .info = cmi_mux_enum_info,
208 .get = cmi_mux_enum_get,
209 .put = cmi_mux_enum_put,
210 },
211 HDA_CODEC_VOLUME("Capture Volume", 0x08, 0, HDA_INPUT),
212 HDA_CODEC_VOLUME_IDX("Capture Volume", 1, 0x09, 0, HDA_INPUT),
213 HDA_CODEC_MUTE("Capture Switch", 0x08, 0, HDA_INPUT),
214 HDA_CODEC_MUTE_IDX("Capture Switch", 1, 0x09, 0, HDA_INPUT),
215 HDA_CODEC_VOLUME("PC Speaker Playback Volume", 0x23, 0, HDA_OUTPUT),
216 HDA_CODEC_MUTE("PC Speaker Playback Switch", 0x23, 0, HDA_OUTPUT),
217 { } /* end */
218};
219
220/*
221 * shared I/O pins
222 */
223static snd_kcontrol_new_t cmi9880_ch_mode_mixer[] = {
224 {
225 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
226 .name = "Channel Mode",
227 .info = cmi_ch_mode_info,
228 .get = cmi_ch_mode_get,
229 .put = cmi_ch_mode_put,
230 },
231 { } /* end */
232};
233
234/* AUD-in selections:
235 * 0x0b 0x0c 0x0d 0x0e 0x0f 0x10 0x11 0x1f 0x20
236 */
237static struct hda_input_mux cmi9880_basic_mux = {
238 .num_items = 4,
239 .items = {
240 { "Front Mic", 0x5 },
241 { "Rear Mic", 0x2 },
242 { "Line", 0x1 },
243 { "CD", 0x7 },
244 }
245};
246
247static struct hda_input_mux cmi9880_no_line_mux = {
248 .num_items = 3,
249 .items = {
250 { "Front Mic", 0x5 },
251 { "Rear Mic", 0x2 },
252 { "CD", 0x7 },
253 }
254};
255
256/* front, rear, clfe, rear_surr */
257static hda_nid_t cmi9880_dac_nids[4] = {
258 0x03, 0x04, 0x05, 0x06
259};
260/* ADC0, ADC1 */
261static hda_nid_t cmi9880_adc_nids[2] = {
262 0x08, 0x09
263};
264
265#define CMI_DIG_OUT_NID 0x07
266#define CMI_DIG_IN_NID 0x0a
267
268/*
269 */
270static struct hda_verb cmi9880_basic_init[] = {
271 /* port-D for line out (rear panel) */
272 { 0x0b, AC_VERB_SET_PIN_WIDGET_CONTROL, 0xc0 },
273 /* port-E for HP out (front panel) */
274 { 0x0f, AC_VERB_SET_PIN_WIDGET_CONTROL, 0xc0 },
275 /* route front PCM to HP */
276 { 0x0f, AC_VERB_SET_CONNECT_SEL, 0x00 },
277 /* port-A for surround (rear panel) */
278 { 0x0e, AC_VERB_SET_PIN_WIDGET_CONTROL, 0xc0 },
279 /* port-G for CLFE (rear panel) */
280 { 0x1f, AC_VERB_SET_PIN_WIDGET_CONTROL, 0xc0 },
281 /* port-H for side (rear panel) */
282 { 0x20, AC_VERB_SET_PIN_WIDGET_CONTROL, 0xc0 },
283 /* port-C for line-in (rear panel) */
284 { 0x0c, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x20 },
285 /* port-B for mic-in (rear panel) with vref */
286 { 0x0d, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x24 },
287 /* port-F for mic-in (front panel) with vref */
288 { 0x10, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x24 },
289 /* CD-in */
290 { 0x11, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x20 },
291 /* route front mic to ADC1/2 */
292 { 0x08, AC_VERB_SET_CONNECT_SEL, 0x05 },
293 { 0x09, AC_VERB_SET_CONNECT_SEL, 0x05 },
294 {} /* terminator */
295};
296
297static struct hda_verb cmi9880_allout_init[] = {
298 /* port-D for line out (rear panel) */
299 { 0x0b, AC_VERB_SET_PIN_WIDGET_CONTROL, 0xc0 },
300 /* port-E for HP out (front panel) */
301 { 0x0f, AC_VERB_SET_PIN_WIDGET_CONTROL, 0xc0 },
302 /* route front PCM to HP */
303 { 0x0f, AC_VERB_SET_CONNECT_SEL, 0x00 },
304 /* port-A for side (rear panel) */
305 { 0x0e, AC_VERB_SET_PIN_WIDGET_CONTROL, 0xc0 },
306 /* port-G for CLFE (rear panel) */
307 { 0x1f, AC_VERB_SET_PIN_WIDGET_CONTROL, 0xc0 },
308 /* port-C for surround (rear panel) */
309 { 0x0c, AC_VERB_SET_PIN_WIDGET_CONTROL, 0xc0 },
310 /* port-B for mic-in (rear panel) with vref */
311 { 0x0d, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x24 },
312 /* port-F for mic-in (front panel) with vref */
313 { 0x10, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x24 },
314 /* CD-in */
315 { 0x11, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x20 },
316 /* route front mic to ADC1/2 */
317 { 0x08, AC_VERB_SET_CONNECT_SEL, 0x05 },
318 { 0x09, AC_VERB_SET_CONNECT_SEL, 0x05 },
319 {} /* terminator */
320};
321
322/*
323 */
324static int cmi9880_build_controls(struct hda_codec *codec)
325{
326 struct cmi_spec *spec = codec->spec;
327 int err;
328
329 err = snd_hda_add_new_ctls(codec, cmi9880_basic_mixer);
330 if (err < 0)
331 return err;
332 if (spec->surr_switch) {
333 err = snd_hda_add_new_ctls(codec, cmi9880_ch_mode_mixer);
334 if (err < 0)
335 return err;
336 }
337 if (spec->multiout.dig_out_nid) {
338 err = snd_hda_create_spdif_out_ctls(codec, spec->multiout.dig_out_nid);
339 if (err < 0)
340 return err;
341 }
342 if (spec->dig_in_nid) {
343 err = snd_hda_create_spdif_in_ctls(codec, spec->dig_in_nid);
344 if (err < 0)
345 return err;
346 }
347 return 0;
348}
349
350static int cmi9880_init(struct hda_codec *codec)
351{
352 struct cmi_spec *spec = codec->spec;
353 if (spec->board_config == CMI_ALLOUT)
354 snd_hda_sequence_write(codec, cmi9880_allout_init);
355 else
356 snd_hda_sequence_write(codec, cmi9880_basic_init);
357 return 0;
358}
359
360#ifdef CONFIG_PM
361/*
362 * resume
363 */
364static int cmi9880_resume(struct hda_codec *codec)
365{
366 struct cmi_spec *spec = codec->spec;
367
368 cmi9880_init(codec);
369 snd_hda_resume_ctls(codec, cmi9880_basic_mixer);
370 if (spec->surr_switch)
371 snd_hda_resume_ctls(codec, cmi9880_ch_mode_mixer);
372 if (spec->multiout.dig_out_nid)
373 snd_hda_resume_spdif_out(codec);
374 if (spec->dig_in_nid)
375 snd_hda_resume_spdif_in(codec);
376
377 return 0;
378}
379#endif
380
381/*
382 * Analog playback callbacks
383 */
384static int cmi9880_playback_pcm_open(struct hda_pcm_stream *hinfo,
385 struct hda_codec *codec,
386 snd_pcm_substream_t *substream)
387{
388 struct cmi_spec *spec = codec->spec;
389 return snd_hda_multi_out_analog_open(codec, &spec->multiout, substream);
390}
391
392static int cmi9880_playback_pcm_prepare(struct hda_pcm_stream *hinfo,
393 struct hda_codec *codec,
394 unsigned int stream_tag,
395 unsigned int format,
396 snd_pcm_substream_t *substream)
397{
398 struct cmi_spec *spec = codec->spec;
399 return snd_hda_multi_out_analog_prepare(codec, &spec->multiout, stream_tag,
400 format, substream);
401}
402
403static int cmi9880_playback_pcm_cleanup(struct hda_pcm_stream *hinfo,
404 struct hda_codec *codec,
405 snd_pcm_substream_t *substream)
406{
407 struct cmi_spec *spec = codec->spec;
408 return snd_hda_multi_out_analog_cleanup(codec, &spec->multiout);
409}
410
411/*
412 * Digital out
413 */
414static int cmi9880_dig_playback_pcm_open(struct hda_pcm_stream *hinfo,
415 struct hda_codec *codec,
416 snd_pcm_substream_t *substream)
417{
418 struct cmi_spec *spec = codec->spec;
419 return snd_hda_multi_out_dig_open(codec, &spec->multiout);
420}
421
422static int cmi9880_dig_playback_pcm_close(struct hda_pcm_stream *hinfo,
423 struct hda_codec *codec,
424 snd_pcm_substream_t *substream)
425{
426 struct cmi_spec *spec = codec->spec;
427 return snd_hda_multi_out_dig_close(codec, &spec->multiout);
428}
429
430/*
431 * Analog capture
432 */
433static int cmi9880_capture_pcm_prepare(struct hda_pcm_stream *hinfo,
434 struct hda_codec *codec,
435 unsigned int stream_tag,
436 unsigned int format,
437 snd_pcm_substream_t *substream)
438{
439 struct cmi_spec *spec = codec->spec;
440
441 snd_hda_codec_setup_stream(codec, spec->adc_nids[substream->number],
442 stream_tag, 0, format);
443 return 0;
444}
445
446static int cmi9880_capture_pcm_cleanup(struct hda_pcm_stream *hinfo,
447 struct hda_codec *codec,
448 snd_pcm_substream_t *substream)
449{
450 struct cmi_spec *spec = codec->spec;
451
452 snd_hda_codec_setup_stream(codec, spec->adc_nids[substream->number], 0, 0, 0);
453 return 0;
454}
455
456
457/*
458 */
459static struct hda_pcm_stream cmi9880_pcm_analog_playback = {
460 .substreams = 1,
461 .channels_min = 2,
462 .channels_max = 8,
463 .nid = 0x03, /* NID to query formats and rates */
464 .ops = {
465 .open = cmi9880_playback_pcm_open,
466 .prepare = cmi9880_playback_pcm_prepare,
467 .cleanup = cmi9880_playback_pcm_cleanup
468 },
469};
470
471static struct hda_pcm_stream cmi9880_pcm_analog_capture = {
472 .substreams = 2,
473 .channels_min = 2,
474 .channels_max = 2,
475 .nid = 0x08, /* NID to query formats and rates */
476 .ops = {
477 .prepare = cmi9880_capture_pcm_prepare,
478 .cleanup = cmi9880_capture_pcm_cleanup
479 },
480};
481
482static struct hda_pcm_stream cmi9880_pcm_digital_playback = {
483 .substreams = 1,
484 .channels_min = 2,
485 .channels_max = 2,
486 /* NID is set in cmi9880_build_pcms */
487 .ops = {
488 .open = cmi9880_dig_playback_pcm_open,
489 .close = cmi9880_dig_playback_pcm_close
490 },
491};
492
493static struct hda_pcm_stream cmi9880_pcm_digital_capture = {
494 .substreams = 1,
495 .channels_min = 2,
496 .channels_max = 2,
497 /* NID is set in cmi9880_build_pcms */
498};
499
500static int cmi9880_build_pcms(struct hda_codec *codec)
501{
502 struct cmi_spec *spec = codec->spec;
503 struct hda_pcm *info = spec->pcm_rec;
504
505 codec->num_pcms = 1;
506 codec->pcm_info = info;
507
508 info->name = "CMI9880";
509 info->stream[SNDRV_PCM_STREAM_PLAYBACK] = cmi9880_pcm_analog_playback;
510 info->stream[SNDRV_PCM_STREAM_CAPTURE] = cmi9880_pcm_analog_capture;
511
512 if (spec->multiout.dig_out_nid || spec->dig_in_nid) {
513 codec->num_pcms++;
514 info++;
515 info->name = "CMI9880 Digital";
516 if (spec->multiout.dig_out_nid) {
517 info->stream[SNDRV_PCM_STREAM_PLAYBACK] = cmi9880_pcm_digital_playback;
518 info->stream[SNDRV_PCM_STREAM_PLAYBACK].nid = spec->multiout.dig_out_nid;
519 }
520 if (spec->dig_in_nid) {
521 info->stream[SNDRV_PCM_STREAM_CAPTURE] = cmi9880_pcm_digital_capture;
522 info->stream[SNDRV_PCM_STREAM_CAPTURE].nid = spec->dig_in_nid;
523 }
524 }
525
526 return 0;
527}
528
529static void cmi9880_free(struct hda_codec *codec)
530{
531 kfree(codec->spec);
532}
533
534/*
535 */
536
537static struct hda_board_config cmi9880_cfg_tbl[] = {
538 { .modelname = "minimal", .config = CMI_MINIMAL },
539 { .modelname = "min_fp", .config = CMI_MIN_FP },
540 { .modelname = "full", .config = CMI_FULL },
541 { .modelname = "full_dig", .config = CMI_FULL_DIG },
542 { .modelname = "allout", .config = CMI_ALLOUT },
543 {} /* terminator */
544};
545
546static struct hda_codec_ops cmi9880_patch_ops = {
547 .build_controls = cmi9880_build_controls,
548 .build_pcms = cmi9880_build_pcms,
549 .init = cmi9880_init,
550 .free = cmi9880_free,
551#ifdef CONFIG_PM
552 .resume = cmi9880_resume,
553#endif
554};
555
556static int patch_cmi9880(struct hda_codec *codec)
557{
558 struct cmi_spec *spec;
559
560 spec = kcalloc(1, sizeof(*spec), GFP_KERNEL);
561 if (spec == NULL)
562 return -ENOMEM;
563
564 codec->spec = spec;
565 spec->board_config = snd_hda_check_board_config(codec, cmi9880_cfg_tbl);
566 if (spec->board_config < 0) {
567 snd_printd(KERN_INFO "hda_codec: Unknown model for CMI9880\n");
568 spec->board_config = CMI_FULL_DIG; /* try everything */
569 }
570
571 switch (spec->board_config) {
572 case CMI_MINIMAL:
573 case CMI_MIN_FP:
574 spec->surr_switch = 1;
575 if (spec->board_config == CMI_MINIMAL)
576 spec->num_ch_modes = 2;
577 else {
578 spec->front_panel = 1;
579 spec->num_ch_modes = 3;
580 }
581 spec->channel_modes = cmi9880_channel_modes;
582 spec->multiout.max_channels = cmi9880_channel_modes[0].channels;
583 spec->input_mux = &cmi9880_basic_mux;
584 break;
585 case CMI_FULL:
586 case CMI_FULL_DIG:
587 spec->front_panel = 1;
588 spec->multiout.max_channels = 8;
589 spec->input_mux = &cmi9880_basic_mux;
590 if (spec->board_config == CMI_FULL_DIG) {
591 spec->multiout.dig_out_nid = CMI_DIG_OUT_NID;
592 spec->dig_in_nid = CMI_DIG_IN_NID;
593 }
594 break;
595 case CMI_ALLOUT:
596 spec->front_panel = 1;
597 spec->multiout.max_channels = 8;
598 spec->no_line_in = 1;
599 spec->input_mux = &cmi9880_no_line_mux;
600 spec->multiout.dig_out_nid = CMI_DIG_OUT_NID;
601 break;
602 }
603
604 spec->multiout.num_dacs = 4;
605 spec->multiout.dac_nids = cmi9880_dac_nids;
606
607 spec->adc_nids = cmi9880_adc_nids;
608
609 codec->patch_ops = cmi9880_patch_ops;
610
611 return 0;
612}
613
614/*
615 * patch entries
616 */
617struct hda_codec_preset snd_hda_preset_cmedia[] = {
618 { .id = 0x13f69880, .name = "CMI9880", .patch = patch_cmi9880 },
619 { .id = 0x434d4980, .name = "CMI9880", .patch = patch_cmi9880 },
620 {} /* terminator */
621};
diff --git a/sound/pci/hda/patch_realtek.c b/sound/pci/hda/patch_realtek.c
new file mode 100644
index 000000000000..17c5062423ae
--- /dev/null
+++ b/sound/pci/hda/patch_realtek.c
@@ -0,0 +1,1503 @@
1/*
2 * Universal Interface for Intel High Definition Audio Codec
3 *
4 * HD audio interface patch for ALC 260/880/882 codecs
5 *
6 * Copyright (c) 2004 PeiSen Hou <pshou@realtek.com.tw>
7 * Takashi Iwai <tiwai@suse.de>
8 *
9 * This driver is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This driver is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 */
23
24#include <sound/driver.h>
25#include <linux/init.h>
26#include <linux/delay.h>
27#include <linux/slab.h>
28#include <linux/pci.h>
29#include <sound/core.h>
30#include "hda_codec.h"
31#include "hda_local.h"
32
33
34/* ALC880 board config type */
35enum {
36 ALC880_MINIMAL,
37 ALC880_3ST,
38 ALC880_3ST_DIG,
39 ALC880_5ST,
40 ALC880_5ST_DIG,
41 ALC880_W810,
42};
43
44struct alc_spec {
45 /* codec parameterization */
46 unsigned int front_panel: 1;
47
48 snd_kcontrol_new_t* mixers[2];
49 unsigned int num_mixers;
50
51 struct hda_verb *init_verbs;
52
53 char* stream_name_analog;
54 struct hda_pcm_stream *stream_analog_playback;
55 struct hda_pcm_stream *stream_analog_capture;
56
57 char* stream_name_digital;
58 struct hda_pcm_stream *stream_digital_playback;
59 struct hda_pcm_stream *stream_digital_capture;
60
61 /* playback */
62 struct hda_multi_out multiout;
63
64 /* capture */
65 unsigned int num_adc_nids;
66 hda_nid_t *adc_nids;
67 hda_nid_t dig_in_nid;
68
69 /* capture source */
70 const struct hda_input_mux *input_mux;
71 unsigned int cur_mux[3];
72
73 /* channel model */
74 const struct alc_channel_mode *channel_mode;
75 int num_channel_mode;
76
77 /* PCM information */
78 struct hda_pcm pcm_rec[2];
79};
80
81/* DAC/ADC assignment */
82
83static hda_nid_t alc880_dac_nids[4] = {
84 /* front, rear, clfe, rear_surr */
85 0x02, 0x05, 0x04, 0x03
86};
87
88static hda_nid_t alc880_w810_dac_nids[3] = {
89 /* front, rear/surround, clfe */
90 0x02, 0x03, 0x04
91};
92
93static hda_nid_t alc880_adc_nids[3] = {
94 /* ADC0-2 */
95 0x07, 0x08, 0x09,
96};
97
98#define ALC880_DIGOUT_NID 0x06
99#define ALC880_DIGIN_NID 0x0a
100
101static hda_nid_t alc260_dac_nids[1] = {
102 /* front */
103 0x02,
104};
105
106static hda_nid_t alc260_adc_nids[2] = {
107 /* ADC0-1 */
108 0x04, 0x05,
109};
110
111#define ALC260_DIGOUT_NID 0x03
112#define ALC260_DIGIN_NID 0x06
113
114static struct hda_input_mux alc880_capture_source = {
115 .num_items = 4,
116 .items = {
117 { "Mic", 0x0 },
118 { "Front Mic", 0x3 },
119 { "Line", 0x2 },
120 { "CD", 0x4 },
121 },
122};
123
124static struct hda_input_mux alc260_capture_source = {
125 .num_items = 4,
126 .items = {
127 { "Mic", 0x0 },
128 { "Front Mic", 0x1 },
129 { "Line", 0x2 },
130 { "CD", 0x4 },
131 },
132};
133
134/*
135 * input MUX handling
136 */
137static int alc_mux_enum_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
138{
139 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
140 struct alc_spec *spec = codec->spec;
141 return snd_hda_input_mux_info(spec->input_mux, uinfo);
142}
143
144static int alc_mux_enum_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
145{
146 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
147 struct alc_spec *spec = codec->spec;
148 unsigned int adc_idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
149
150 ucontrol->value.enumerated.item[0] = spec->cur_mux[adc_idx];
151 return 0;
152}
153
154static int alc_mux_enum_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
155{
156 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
157 struct alc_spec *spec = codec->spec;
158 unsigned int adc_idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
159 return snd_hda_input_mux_put(codec, spec->input_mux, ucontrol,
160 spec->adc_nids[adc_idx], &spec->cur_mux[adc_idx]);
161}
162
163/*
164 * channel mode setting
165 */
166struct alc_channel_mode {
167 int channels;
168 const struct hda_verb *sequence;
169};
170
171
172/*
173 * channel source setting (2/6 channel selection for 3-stack)
174 */
175
176/*
177 * set the path ways for 2 channel output
178 * need to set the codec line out and mic 1 pin widgets to inputs
179 */
180static struct hda_verb alc880_threestack_ch2_init[] = {
181 /* set pin widget 1Ah (line in) for input */
182 { 0x1a, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x20 },
183 /* set pin widget 18h (mic1) for input, for mic also enable the vref */
184 { 0x18, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x24 },
185 /* mute the output for Line In PW */
186 { 0x1a, AC_VERB_SET_AMP_GAIN_MUTE, 0xb080 },
187 /* mute for Mic1 PW */
188 { 0x18, AC_VERB_SET_AMP_GAIN_MUTE, 0xb080 },
189 { } /* end */
190};
191
192/*
193 * 6ch mode
194 * need to set the codec line out and mic 1 pin widgets to outputs
195 */
196static struct hda_verb alc880_threestack_ch6_init[] = {
197 /* set pin widget 1Ah (line in) for output */
198 { 0x1a, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x40 },
199 /* set pin widget 18h (mic1) for output */
200 { 0x18, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x40 },
201 /* unmute the output for Line In PW */
202 { 0x1a, AC_VERB_SET_AMP_GAIN_MUTE, 0xb000 },
203 /* unmute for Mic1 PW */
204 { 0x18, AC_VERB_SET_AMP_GAIN_MUTE, 0xb000 },
205 /* for rear channel output using Line In 1
206 * set select widget connection (nid = 0x12) - to summer node
207 * for rear NID = 0x0f...offset 3 in connection list
208 */
209 { 0x12, AC_VERB_SET_CONNECT_SEL, 0x3 },
210 /* for Mic1 - retask for center/lfe */
211 /* set select widget connection (nid = 0x10) - to summer node for
212 * front CLFE NID = 0x0e...offset 2 in connection list
213 */
214 { 0x10, AC_VERB_SET_CONNECT_SEL, 0x2 },
215 { } /* end */
216};
217
218static struct alc_channel_mode alc880_threestack_modes[2] = {
219 { 2, alc880_threestack_ch2_init },
220 { 6, alc880_threestack_ch6_init },
221};
222
223
224/*
225 * channel source setting (6/8 channel selection for 5-stack)
226 */
227
228/* set the path ways for 6 channel output
229 * need to set the codec line out and mic 1 pin widgets to inputs
230 */
231static struct hda_verb alc880_fivestack_ch6_init[] = {
232 /* set pin widget 1Ah (line in) for input */
233 { 0x1a, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x20 },
234 /* mute the output for Line In PW */
235 { 0x1a, AC_VERB_SET_AMP_GAIN_MUTE, 0xb080 },
236 { } /* end */
237};
238
239/* need to set the codec line out and mic 1 pin widgets to outputs */
240static struct hda_verb alc880_fivestack_ch8_init[] = {
241 /* set pin widget 1Ah (line in) for output */
242 { 0x1a, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x40 },
243 /* unmute the output for Line In PW */
244 { 0x1a, AC_VERB_SET_AMP_GAIN_MUTE, 0xb000 },
245 /* output for surround channel output using Line In 1 */
246 /* set select widget connection (nid = 0x12) - to summer node
247 * for surr_rear NID = 0x0d...offset 1 in connection list
248 */
249 { 0x12, AC_VERB_SET_CONNECT_SEL, 0x1 },
250 { } /* end */
251};
252
253static struct alc_channel_mode alc880_fivestack_modes[2] = {
254 { 6, alc880_fivestack_ch6_init },
255 { 8, alc880_fivestack_ch8_init },
256};
257
258/*
259 * channel source setting for W810 system
260 *
261 * W810 has rear IO for:
262 * Front (DAC 02)
263 * Surround (DAC 03)
264 * Center/LFE (DAC 04)
265 * Digital out (06)
266 *
267 * The system also has a pair of internal speakers, and a headphone jack.
268 * These are both connected to Line2 on the codec, hence to DAC 02.
269 *
270 * There is a variable resistor to control the speaker or headphone
271 * volume. This is a hardware-only device without a software API.
272 *
273 * Plugging headphones in will disable the internal speakers. This is
274 * implemented in hardware, not via the driver using jack sense. In
275 * a similar fashion, plugging into the rear socket marked "front" will
276 * disable both the speakers and headphones.
277 *
278 * For input, there's a microphone jack, and an "audio in" jack.
279 * These may not do anything useful with this driver yet, because I
280 * haven't setup any initialization verbs for these yet...
281 */
282
283static struct alc_channel_mode alc880_w810_modes[1] = {
284 { 6, NULL }
285};
286
287/*
288 */
289static int alc880_ch_mode_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
290{
291 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
292 struct alc_spec *spec = codec->spec;
293
294 snd_assert(spec->channel_mode, return -ENXIO);
295 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
296 uinfo->count = 1;
297 uinfo->value.enumerated.items = 2;
298 if (uinfo->value.enumerated.item >= 2)
299 uinfo->value.enumerated.item = 1;
300 sprintf(uinfo->value.enumerated.name, "%dch",
301 spec->channel_mode[uinfo->value.enumerated.item].channels);
302 return 0;
303}
304
305static int alc880_ch_mode_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
306{
307 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
308 struct alc_spec *spec = codec->spec;
309
310 snd_assert(spec->channel_mode, return -ENXIO);
311 ucontrol->value.enumerated.item[0] =
312 (spec->multiout.max_channels == spec->channel_mode[0].channels) ? 0 : 1;
313 return 0;
314}
315
316static int alc880_ch_mode_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
317{
318 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
319 struct alc_spec *spec = codec->spec;
320 int mode;
321
322 snd_assert(spec->channel_mode, return -ENXIO);
323 mode = ucontrol->value.enumerated.item[0] ? 1 : 0;
324 if (spec->multiout.max_channels == spec->channel_mode[mode].channels &&
325 ! codec->in_resume)
326 return 0;
327
328 /* change the current channel setting */
329 spec->multiout.max_channels = spec->channel_mode[mode].channels;
330 if (spec->channel_mode[mode].sequence)
331 snd_hda_sequence_write(codec, spec->channel_mode[mode].sequence);
332
333 return 1;
334}
335
336
337/*
338 */
339
340/* 3-stack mode
341 * Pin assignment: Front=0x14, Line-In/Rear=0x1a, Mic/CLFE=0x18, F-Mic=0x1b
342 * HP=0x19
343 */
344static snd_kcontrol_new_t alc880_base_mixer[] = {
345 HDA_CODEC_VOLUME("Front Playback Volume", 0x0c, 0x0, HDA_OUTPUT),
346 HDA_CODEC_MUTE("Front Playback Switch", 0x14, 0x0, HDA_OUTPUT),
347 HDA_CODEC_VOLUME("Surround Playback Volume", 0x0f, 0x0, HDA_OUTPUT),
348 HDA_CODEC_MUTE("Surround Playback Switch", 0x1a, 0x0, HDA_OUTPUT),
349 HDA_CODEC_VOLUME_MONO("Center Playback Volume", 0x0e, 1, 0x0, HDA_OUTPUT),
350 HDA_CODEC_VOLUME_MONO("LFE Playback Volume", 0x0e, 2, 0x0, HDA_OUTPUT),
351 HDA_CODEC_MUTE_MONO("Center Playback Switch", 0x18, 1, 0x0, HDA_OUTPUT),
352 HDA_CODEC_MUTE_MONO("LFE Playback Switch", 0x18, 2, 0x0, HDA_OUTPUT),
353 HDA_CODEC_VOLUME("CD Playback Volume", 0x0b, 0x04, HDA_INPUT),
354 HDA_CODEC_MUTE("CD Playback Switch", 0x0b, 0x04, HDA_INPUT),
355 HDA_CODEC_VOLUME("Line Playback Volume", 0x0b, 0x02, HDA_INPUT),
356 HDA_CODEC_MUTE("Line Playback Switch", 0x0b, 0x02, HDA_INPUT),
357 HDA_CODEC_VOLUME("Mic Playback Volume", 0x0b, 0x0, HDA_INPUT),
358 HDA_CODEC_MUTE("Mic Playback Switch", 0x0b, 0x0, HDA_INPUT),
359 HDA_CODEC_VOLUME("Front Mic Playback Volume", 0x0b, 0x3, HDA_INPUT),
360 HDA_CODEC_MUTE("Front Mic Playback Switch", 0x0b, 0x3, HDA_INPUT),
361 HDA_CODEC_VOLUME("PC Speaker Playback Volume", 0x0b, 0x05, HDA_INPUT),
362 HDA_CODEC_MUTE("PC Speaker Playback Switch", 0x0b, 0x05, HDA_INPUT),
363 HDA_CODEC_VOLUME("Headphone Playback Volume", 0x0d, 0x0, HDA_OUTPUT),
364 HDA_CODEC_MUTE("Headphone Playback Switch", 0x19, 0x0, HDA_OUTPUT),
365 HDA_CODEC_VOLUME("Capture Volume", 0x07, 0x0, HDA_INPUT),
366 HDA_CODEC_MUTE("Capture Switch", 0x07, 0x0, HDA_INPUT),
367 HDA_CODEC_VOLUME_IDX("Capture Volume", 1, 0x08, 0x0, HDA_INPUT),
368 HDA_CODEC_MUTE_IDX("Capture Switch", 1, 0x08, 0x0, HDA_INPUT),
369 {
370 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
371 /* The multiple "Capture Source" controls confuse alsamixer
372 * So call somewhat different..
373 * FIXME: the controls appear in the "playback" view!
374 */
375 /* .name = "Capture Source", */
376 .name = "Input Source",
377 .count = 2,
378 .info = alc_mux_enum_info,
379 .get = alc_mux_enum_get,
380 .put = alc_mux_enum_put,
381 },
382 {
383 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
384 .name = "Channel Mode",
385 .info = alc880_ch_mode_info,
386 .get = alc880_ch_mode_get,
387 .put = alc880_ch_mode_put,
388 },
389 { } /* end */
390};
391
392/* 5-stack mode
393 * Pin assignment: Front=0x14, Rear=0x17, CLFE=0x16
394 * Line-In/Side=0x1a, Mic=0x18, F-Mic=0x1b, HP=0x19
395 */
396static snd_kcontrol_new_t alc880_five_stack_mixer[] = {
397 HDA_CODEC_VOLUME("Front Playback Volume", 0x0c, 0x0, HDA_OUTPUT),
398 HDA_CODEC_MUTE("Front Playback Switch", 0x14, 0x0, HDA_OUTPUT),
399 HDA_CODEC_VOLUME("Surround Playback Volume", 0x0f, 0x0, HDA_OUTPUT),
400 HDA_CODEC_MUTE("Surround Playback Switch", 0x17, 0x0, HDA_OUTPUT),
401 HDA_CODEC_VOLUME_MONO("Center Playback Volume", 0x0e, 1, 0x0, HDA_OUTPUT),
402 HDA_CODEC_VOLUME_MONO("LFE Playback Volume", 0x0e, 2, 0x0, HDA_OUTPUT),
403 HDA_CODEC_MUTE_MONO("Center Playback Switch", 0x16, 1, 0x0, HDA_OUTPUT),
404 HDA_CODEC_MUTE_MONO("LFE Playback Switch", 0x16, 2, 0x0, HDA_OUTPUT),
405 HDA_CODEC_VOLUME("Side Playback Volume", 0x0d, 0x0, HDA_OUTPUT),
406 HDA_CODEC_MUTE("Side Playback Switch", 0x1a, 0x0, HDA_OUTPUT),
407 HDA_CODEC_VOLUME("CD Playback Volume", 0x0b, 0x04, HDA_INPUT),
408 HDA_CODEC_MUTE("CD Playback Switch", 0x0b, 0x04, HDA_INPUT),
409 HDA_CODEC_VOLUME("Line Playback Volume", 0x0b, 0x02, HDA_INPUT),
410 HDA_CODEC_MUTE("Line Playback Switch", 0x0b, 0x02, HDA_INPUT),
411 HDA_CODEC_VOLUME("Mic Playback Volume", 0x0b, 0x0, HDA_INPUT),
412 HDA_CODEC_MUTE("Mic Playback Switch", 0x0b, 0x0, HDA_INPUT),
413 HDA_CODEC_VOLUME("Front Mic Playback Volume", 0x0b, 0x3, HDA_INPUT),
414 HDA_CODEC_MUTE("Front Mic Playback Switch", 0x0b, 0x3, HDA_INPUT),
415 HDA_CODEC_VOLUME("PC Speaker Playback Volume", 0x0b, 0x05, HDA_INPUT),
416 HDA_CODEC_MUTE("PC Speaker Playback Switch", 0x0b, 0x05, HDA_INPUT),
417 HDA_CODEC_VOLUME("Headphone Playback Volume", 0x0d, 0x0, HDA_OUTPUT),
418 HDA_CODEC_MUTE("Headphone Playback Switch", 0x19, 0x0, HDA_OUTPUT),
419 HDA_CODEC_VOLUME("Capture Volume", 0x07, 0x0, HDA_INPUT),
420 HDA_CODEC_MUTE("Capture Switch", 0x07, 0x0, HDA_INPUT),
421 HDA_CODEC_VOLUME_IDX("Capture Volume", 1, 0x08, 0x0, HDA_INPUT),
422 HDA_CODEC_MUTE_IDX("Capture Switch", 1, 0x08, 0x0, HDA_INPUT),
423 {
424 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
425 /* The multiple "Capture Source" controls confuse alsamixer
426 * So call somewhat different..
427 * FIXME: the controls appear in the "playback" view!
428 */
429 /* .name = "Capture Source", */
430 .name = "Input Source",
431 .count = 2,
432 .info = alc_mux_enum_info,
433 .get = alc_mux_enum_get,
434 .put = alc_mux_enum_put,
435 },
436 {
437 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
438 .name = "Channel Mode",
439 .info = alc880_ch_mode_info,
440 .get = alc880_ch_mode_get,
441 .put = alc880_ch_mode_put,
442 },
443 { } /* end */
444};
445
446static snd_kcontrol_new_t alc880_w810_base_mixer[] = {
447 HDA_CODEC_VOLUME("Front Playback Volume", 0x0c, 0x0, HDA_OUTPUT),
448 HDA_CODEC_MUTE("Front Playback Switch", 0x14, 0x0, HDA_OUTPUT),
449 HDA_CODEC_VOLUME("Surround Playback Volume", 0x0d, 0x0, HDA_OUTPUT),
450 HDA_CODEC_MUTE("Surround Playback Switch", 0x15, 0x0, HDA_OUTPUT),
451 HDA_CODEC_VOLUME_MONO("Center Playback Volume", 0x0e, 1, 0x0, HDA_OUTPUT),
452 HDA_CODEC_VOLUME_MONO("LFE Playback Volume", 0x0e, 2, 0x0, HDA_OUTPUT),
453 HDA_CODEC_MUTE_MONO("Center Playback Switch", 0x16, 1, 0x0, HDA_OUTPUT),
454 HDA_CODEC_MUTE_MONO("LFE Playback Switch", 0x16, 2, 0x0, HDA_OUTPUT),
455 HDA_CODEC_MUTE("Headphone Playback Switch", 0x1b, 0x0, HDA_OUTPUT),
456 HDA_CODEC_VOLUME("Capture Volume", 0x07, 0x0, HDA_INPUT),
457 HDA_CODEC_MUTE("Capture Switch", 0x07, 0x0, HDA_INPUT),
458 HDA_CODEC_VOLUME_IDX("Capture Volume", 1, 0x08, 0x0, HDA_INPUT),
459 HDA_CODEC_MUTE_IDX("Capture Switch", 1, 0x08, 0x0, HDA_INPUT),
460 HDA_CODEC_VOLUME_IDX("Capture Volume", 2, 0x09, 0x0, HDA_INPUT),
461 HDA_CODEC_MUTE_IDX("Capture Switch", 2, 0x09, 0x0, HDA_INPUT),
462 {
463 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
464 /* The multiple "Capture Source" controls confuse alsamixer
465 * So call somewhat different..
466 * FIXME: the controls appear in the "playback" view!
467 */
468 /* .name = "Capture Source", */
469 .name = "Input Source",
470 .count = 3,
471 .info = alc_mux_enum_info,
472 .get = alc_mux_enum_get,
473 .put = alc_mux_enum_put,
474 },
475 { } /* end */
476};
477
478/*
479 */
480static int alc_build_controls(struct hda_codec *codec)
481{
482 struct alc_spec *spec = codec->spec;
483 int err;
484 int i;
485
486 for (i = 0; i < spec->num_mixers; i++) {
487 err = snd_hda_add_new_ctls(codec, spec->mixers[i]);
488 if (err < 0)
489 return err;
490 }
491
492 if (spec->multiout.dig_out_nid) {
493 err = snd_hda_create_spdif_out_ctls(codec, spec->multiout.dig_out_nid);
494 if (err < 0)
495 return err;
496 }
497 if (spec->dig_in_nid) {
498 err = snd_hda_create_spdif_in_ctls(codec, spec->dig_in_nid);
499 if (err < 0)
500 return err;
501 }
502 return 0;
503}
504
505/*
506 * initialize the codec volumes, etc
507 */
508
509static struct hda_verb alc880_init_verbs_three_stack[] = {
510 /* Line In pin widget for input */
511 {0x1a, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x20},
512 /* CD pin widget for input */
513 {0x1c, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x20},
514 /* Mic1 (rear panel) pin widget for input and vref at 80% */
515 {0x18, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x24},
516 /* Mic2 (front panel) pin widget for input and vref at 80% */
517 {0x1b, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x24},
518 /* unmute amp left and right */
519 {0x07, AC_VERB_SET_AMP_GAIN_MUTE, 0x7000},
520 /* set connection select to line in (default select for this ADC) */
521 {0x07, AC_VERB_SET_CONNECT_SEL, 0x02},
522 /* unmute front mixer amp left (volume = 0) */
523 {0x0c, AC_VERB_SET_AMP_GAIN_MUTE, 0xb000},
524 /* mute pin widget amp left and right (no gain on this amp) */
525 {0x14, AC_VERB_SET_AMP_GAIN_MUTE, 0x0000},
526 /* unmute rear mixer amp left and right (volume = 0) */
527 {0x0f, AC_VERB_SET_AMP_GAIN_MUTE, 0xb000},
528 /* mute pin widget amp left and right (no gain on this amp) */
529 {0x1a, AC_VERB_SET_AMP_GAIN_MUTE, 0x0000},
530 /* unmute rear mixer amp left and right (volume = 0) */
531 {0x0e, AC_VERB_SET_AMP_GAIN_MUTE, 0xb000},
532 /* mute pin widget amp left and right (no gain on this amp) */
533 {0x18, AC_VERB_SET_AMP_GAIN_MUTE, 0x0000},
534
535 /* using rear surround as the path for headphone output */
536 /* unmute rear surround mixer amp left and right (volume = 0) */
537 {0x0d, AC_VERB_SET_AMP_GAIN_MUTE, 0xb000},
538 /* PASD 3 stack boards use the Mic 2 as the headphone output */
539 /* need to program the selector associated with the Mic 2 pin widget to
540 * surround path (index 0x01) for headphone output */
541 {0x11, AC_VERB_SET_CONNECT_SEL, 0x01},
542 /* mute pin widget amp left and right (no gain on this amp) */
543 {0x19, AC_VERB_SET_AMP_GAIN_MUTE, 0x0000},
544 /* need to retask the Mic 2 pin widget to output */
545 {0x19, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x40},
546
547 /* Unmute input amps (CD, Line In, Mic 1 & Mic 2) for mixer widget(nid=0x0B)
548 * to support the input path of analog loopback
549 * Note: PASD motherboards uses the Line In 2 as the input for front panel
550 * mic (mic 2)
551 */
552 /* Amp Indexes: CD = 0x04, Line In 1 = 0x02, Mic 1 = 0x00 & Line In 2 = 0x03 */
553 /* unmute CD */
554 {0x0b, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x04 << 8))},
555 /* unmute Line In */
556 {0x0b, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x02 << 8))},
557 /* unmute Mic 1 */
558 {0x0b, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x00 << 8))},
559 /* unmute Line In 2 (for PASD boards Mic 2) */
560 {0x0b, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x03 << 8))},
561
562 /* Unmute input amps for the line out paths to support the output path of
563 * analog loopback
564 * the mixers on the output path has 2 inputs, one from the DAC and one
565 * from the mixer
566 */
567 /* Amp Indexes: DAC = 0x01 & mixer = 0x00 */
568 /* Unmute Front out path */
569 {0x0c, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x00 << 8))},
570 {0x0c, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x01 << 8))},
571 /* Unmute Surround (used as HP) out path */
572 {0x0d, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x00 << 8))},
573 {0x0d, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x01 << 8))},
574 /* Unmute C/LFE out path */
575 {0x0e, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x00 << 8))},
576 {0x0e, AC_VERB_SET_AMP_GAIN_MUTE, (0x7080 | (0x01 << 8))}, /* mute */
577 /* Unmute rear Surround out path */
578 {0x0f, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x00 << 8))},
579 {0x0f, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x01 << 8))},
580
581 { }
582};
583
584static struct hda_verb alc880_init_verbs_five_stack[] = {
585 /* Line In pin widget for input */
586 {0x1a, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x20},
587 /* CD pin widget for input */
588 {0x1c, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x20},
589 /* Mic1 (rear panel) pin widget for input and vref at 80% */
590 {0x18, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x24},
591 /* Mic2 (front panel) pin widget for input and vref at 80% */
592 {0x1b, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x24},
593 /* unmute amp left and right */
594 {0x07, AC_VERB_SET_AMP_GAIN_MUTE, 0x7000},
595 /* set connection select to line in (default select for this ADC) */
596 {0x07, AC_VERB_SET_CONNECT_SEL, 0x02},
597 /* unmute front mixer amp left and right (volume = 0) */
598 {0x0c, AC_VERB_SET_AMP_GAIN_MUTE, 0xb000},
599 /* mute pin widget amp left and right (no gain on this amp) */
600 {0x14, AC_VERB_SET_AMP_GAIN_MUTE, 0x0000},
601 /* five rear and clfe */
602 /* unmute rear mixer amp left and right (volume = 0) */
603 {0x0f, AC_VERB_SET_AMP_GAIN_MUTE, 0xb000},
604 /* mute pin widget amp left and right (no gain on this amp) */
605 {0x17, AC_VERB_SET_AMP_GAIN_MUTE, 0x0000},
606 /* unmute clfe mixer amp left and right (volume = 0) */
607 {0x0e, AC_VERB_SET_AMP_GAIN_MUTE, 0xb000},
608 /* mute pin widget amp left and right (no gain on this amp) */
609 {0x16, AC_VERB_SET_AMP_GAIN_MUTE, 0x0000},
610
611 /* using rear surround as the path for headphone output */
612 /* unmute rear surround mixer amp left and right (volume = 0) */
613 {0x0d, AC_VERB_SET_AMP_GAIN_MUTE, 0xb000},
614 /* PASD 3 stack boards use the Mic 2 as the headphone output */
615 /* need to program the selector associated with the Mic 2 pin widget to
616 * surround path (index 0x01) for headphone output
617 */
618 {0x11, AC_VERB_SET_CONNECT_SEL, 0x01},
619 /* mute pin widget amp left and right (no gain on this amp) */
620 {0x19, AC_VERB_SET_AMP_GAIN_MUTE, 0x0000},
621 /* need to retask the Mic 2 pin widget to output */
622 {0x19, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x40},
623
624 /* Unmute input amps (CD, Line In, Mic 1 & Mic 2) for mixer
625 * widget(nid=0x0B) to support the input path of analog loopback
626 */
627 /* Note: PASD motherboards uses the Line In 2 as the input for front panel mic (mic 2) */
628 /* Amp Indexes: CD = 0x04, Line In 1 = 0x02, Mic 1 = 0x00 & Line In 2 = 0x03*/
629 /* unmute CD */
630 {0x0b, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x04 << 8))},
631 /* unmute Line In */
632 {0x0b, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x02 << 8))},
633 /* unmute Mic 1 */
634 {0x0b, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x00 << 8))},
635 /* unmute Line In 2 (for PASD boards Mic 2) */
636 {0x0b, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x03 << 8))},
637
638 /* Unmute input amps for the line out paths to support the output path of
639 * analog loopback
640 * the mixers on the output path has 2 inputs, one from the DAC and
641 * one from the mixer
642 */
643 /* Amp Indexes: DAC = 0x01 & mixer = 0x00 */
644 /* Unmute Front out path */
645 {0x0c, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x00 << 8))},
646 {0x0c, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x01 << 8))},
647 /* Unmute Surround (used as HP) out path */
648 {0x0d, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x00 << 8))},
649 {0x0d, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x01 << 8))},
650 /* Unmute C/LFE out path */
651 {0x0e, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x00 << 8))},
652 {0x0e, AC_VERB_SET_AMP_GAIN_MUTE, (0x7080 | (0x01 << 8))}, /* mute */
653 /* Unmute rear Surround out path */
654 {0x0f, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x00 << 8))},
655 {0x0f, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x01 << 8))},
656
657 { }
658};
659
660static struct hda_verb alc880_w810_init_verbs[] = {
661 /* front channel selector/amp: input 0: DAC: unmuted, (no volume selection) */
662 {0x0c, AC_VERB_SET_AMP_GAIN_MUTE, 0x7000},
663
664 /* front channel selector/amp: input 1: capture mix: muted, (no volume selection) */
665 {0x0c, AC_VERB_SET_AMP_GAIN_MUTE, 0x7180},
666
667 /* front channel selector/amp: output 0: unmuted, max volume */
668 {0x0c, AC_VERB_SET_AMP_GAIN_MUTE, 0xb000},
669
670 /* front out pin: muted, (no volume selection) */
671 {0x14, AC_VERB_SET_AMP_GAIN_MUTE, 0xb080},
672
673 /* front out pin: NOT headphone enable, out enable, vref disabled */
674 {0x14, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x40},
675
676
677 /* surround channel selector/amp: input 0: DAC: unmuted, (no volume selection) */
678 {0x0d, AC_VERB_SET_AMP_GAIN_MUTE, 0x7000},
679
680 /* surround channel selector/amp: input 1: capture mix: muted, (no volume selection) */
681 {0x0d, AC_VERB_SET_AMP_GAIN_MUTE, 0x7180},
682
683 /* surround channel selector/amp: output 0: unmuted, max volume */
684 {0x0d, AC_VERB_SET_AMP_GAIN_MUTE, 0xb000},
685
686 /* surround out pin: muted, (no volume selection) */
687 {0x15, AC_VERB_SET_AMP_GAIN_MUTE, 0xb080},
688
689 /* surround out pin: NOT headphone enable, out enable, vref disabled */
690 {0x15, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x40},
691
692
693 /* c/lfe channel selector/amp: input 0: DAC: unmuted, (no volume selection) */
694 {0x0e, AC_VERB_SET_AMP_GAIN_MUTE, 0x7000},
695
696 /* c/lfe channel selector/amp: input 1: capture mix: muted, (no volume selection) */
697 {0x0e, AC_VERB_SET_AMP_GAIN_MUTE, 0x7180},
698
699 /* c/lfe channel selector/amp: output 0: unmuted, max volume */
700 {0x0e, AC_VERB_SET_AMP_GAIN_MUTE, 0xb000},
701
702 /* c/lfe out pin: muted, (no volume selection) */
703 {0x16, AC_VERB_SET_AMP_GAIN_MUTE, 0xb080},
704
705 /* c/lfe out pin: NOT headphone enable, out enable, vref disabled */
706 {0x16, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x40},
707
708
709 /* hphone/speaker input selector: front DAC */
710 {0x13, AC_VERB_SET_CONNECT_SEL, 0x0},
711
712 /* hphone/speaker out pin: muted, (no volume selection) */
713 {0x1b, AC_VERB_SET_AMP_GAIN_MUTE, 0xb080},
714
715 /* hphone/speaker out pin: NOT headphone enable, out enable, vref disabled */
716 {0x1b, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x40},
717
718
719 { }
720};
721
722static int alc_init(struct hda_codec *codec)
723{
724 struct alc_spec *spec = codec->spec;
725 snd_hda_sequence_write(codec, spec->init_verbs);
726 return 0;
727}
728
729#ifdef CONFIG_PM
730/*
731 * resume
732 */
733static int alc_resume(struct hda_codec *codec)
734{
735 struct alc_spec *spec = codec->spec;
736 int i;
737
738 alc_init(codec);
739 for (i = 0; i < spec->num_mixers; i++) {
740 snd_hda_resume_ctls(codec, spec->mixers[i]);
741 }
742 if (spec->multiout.dig_out_nid)
743 snd_hda_resume_spdif_out(codec);
744 if (spec->dig_in_nid)
745 snd_hda_resume_spdif_in(codec);
746
747 return 0;
748}
749#endif
750
751/*
752 * Analog playback callbacks
753 */
754static int alc880_playback_pcm_open(struct hda_pcm_stream *hinfo,
755 struct hda_codec *codec,
756 snd_pcm_substream_t *substream)
757{
758 struct alc_spec *spec = codec->spec;
759 return snd_hda_multi_out_analog_open(codec, &spec->multiout, substream);
760}
761
762static int alc880_playback_pcm_prepare(struct hda_pcm_stream *hinfo,
763 struct hda_codec *codec,
764 unsigned int stream_tag,
765 unsigned int format,
766 snd_pcm_substream_t *substream)
767{
768 struct alc_spec *spec = codec->spec;
769 return snd_hda_multi_out_analog_prepare(codec, &spec->multiout, stream_tag,
770 format, substream);
771}
772
773static int alc880_playback_pcm_cleanup(struct hda_pcm_stream *hinfo,
774 struct hda_codec *codec,
775 snd_pcm_substream_t *substream)
776{
777 struct alc_spec *spec = codec->spec;
778 return snd_hda_multi_out_analog_cleanup(codec, &spec->multiout);
779}
780
781/*
782 * Digital out
783 */
784static int alc880_dig_playback_pcm_open(struct hda_pcm_stream *hinfo,
785 struct hda_codec *codec,
786 snd_pcm_substream_t *substream)
787{
788 struct alc_spec *spec = codec->spec;
789 return snd_hda_multi_out_dig_open(codec, &spec->multiout);
790}
791
792static int alc880_dig_playback_pcm_close(struct hda_pcm_stream *hinfo,
793 struct hda_codec *codec,
794 snd_pcm_substream_t *substream)
795{
796 struct alc_spec *spec = codec->spec;
797 return snd_hda_multi_out_dig_close(codec, &spec->multiout);
798}
799
800/*
801 * Analog capture
802 */
803static int alc880_capture_pcm_prepare(struct hda_pcm_stream *hinfo,
804 struct hda_codec *codec,
805 unsigned int stream_tag,
806 unsigned int format,
807 snd_pcm_substream_t *substream)
808{
809 struct alc_spec *spec = codec->spec;
810
811 snd_hda_codec_setup_stream(codec, spec->adc_nids[substream->number],
812 stream_tag, 0, format);
813 return 0;
814}
815
816static int alc880_capture_pcm_cleanup(struct hda_pcm_stream *hinfo,
817 struct hda_codec *codec,
818 snd_pcm_substream_t *substream)
819{
820 struct alc_spec *spec = codec->spec;
821
822 snd_hda_codec_setup_stream(codec, spec->adc_nids[substream->number], 0, 0, 0);
823 return 0;
824}
825
826
827/*
828 */
829static struct hda_pcm_stream alc880_pcm_analog_playback = {
830 .substreams = 1,
831 .channels_min = 2,
832 .channels_max = 8,
833 .nid = 0x02, /* NID to query formats and rates */
834 .ops = {
835 .open = alc880_playback_pcm_open,
836 .prepare = alc880_playback_pcm_prepare,
837 .cleanup = alc880_playback_pcm_cleanup
838 },
839};
840
841static struct hda_pcm_stream alc880_pcm_analog_capture = {
842 .substreams = 2,
843 .channels_min = 2,
844 .channels_max = 2,
845 .nid = 0x07, /* NID to query formats and rates */
846 .ops = {
847 .prepare = alc880_capture_pcm_prepare,
848 .cleanup = alc880_capture_pcm_cleanup
849 },
850};
851
852static struct hda_pcm_stream alc880_pcm_digital_playback = {
853 .substreams = 1,
854 .channels_min = 2,
855 .channels_max = 2,
856 /* NID is set in alc_build_pcms */
857 .ops = {
858 .open = alc880_dig_playback_pcm_open,
859 .close = alc880_dig_playback_pcm_close
860 },
861};
862
863static struct hda_pcm_stream alc880_pcm_digital_capture = {
864 .substreams = 1,
865 .channels_min = 2,
866 .channels_max = 2,
867 /* NID is set in alc_build_pcms */
868};
869
870static int alc_build_pcms(struct hda_codec *codec)
871{
872 struct alc_spec *spec = codec->spec;
873 struct hda_pcm *info = spec->pcm_rec;
874 int i;
875
876 codec->num_pcms = 1;
877 codec->pcm_info = info;
878
879 info->name = spec->stream_name_analog;
880 info->stream[SNDRV_PCM_STREAM_PLAYBACK] = *(spec->stream_analog_playback);
881 info->stream[SNDRV_PCM_STREAM_CAPTURE] = *(spec->stream_analog_capture);
882
883 info->stream[SNDRV_PCM_STREAM_PLAYBACK].channels_max = 0;
884 for (i = 0; i < spec->num_channel_mode; i++) {
885 if (spec->channel_mode[i].channels > info->stream[SNDRV_PCM_STREAM_PLAYBACK].channels_max) {
886 info->stream[SNDRV_PCM_STREAM_PLAYBACK].channels_max = spec->channel_mode[i].channels;
887 }
888 }
889
890 if (spec->multiout.dig_out_nid || spec->dig_in_nid) {
891 codec->num_pcms++;
892 info++;
893 info->name = spec->stream_name_digital;
894 if (spec->multiout.dig_out_nid) {
895 info->stream[SNDRV_PCM_STREAM_PLAYBACK] = *(spec->stream_digital_playback);
896 info->stream[SNDRV_PCM_STREAM_PLAYBACK].nid = spec->multiout.dig_out_nid;
897 }
898 if (spec->dig_in_nid) {
899 info->stream[SNDRV_PCM_STREAM_CAPTURE] = *(spec->stream_digital_capture);
900 info->stream[SNDRV_PCM_STREAM_CAPTURE].nid = spec->dig_in_nid;
901 }
902 }
903
904 return 0;
905}
906
907static void alc_free(struct hda_codec *codec)
908{
909 kfree(codec->spec);
910}
911
912/*
913 */
914static struct hda_codec_ops alc_patch_ops = {
915 .build_controls = alc_build_controls,
916 .build_pcms = alc_build_pcms,
917 .init = alc_init,
918 .free = alc_free,
919#ifdef CONFIG_PM
920 .resume = alc_resume,
921#endif
922};
923
924/*
925 */
926
927static struct hda_board_config alc880_cfg_tbl[] = {
928 /* Back 3 jack, front 2 jack */
929 { .modelname = "3stack", .config = ALC880_3ST },
930 { .pci_vendor = 0x8086, .pci_device = 0xe200, .config = ALC880_3ST },
931 { .pci_vendor = 0x8086, .pci_device = 0xe201, .config = ALC880_3ST },
932 { .pci_vendor = 0x8086, .pci_device = 0xe202, .config = ALC880_3ST },
933 { .pci_vendor = 0x8086, .pci_device = 0xe203, .config = ALC880_3ST },
934 { .pci_vendor = 0x8086, .pci_device = 0xe204, .config = ALC880_3ST },
935 { .pci_vendor = 0x8086, .pci_device = 0xe205, .config = ALC880_3ST },
936 { .pci_vendor = 0x8086, .pci_device = 0xe206, .config = ALC880_3ST },
937 { .pci_vendor = 0x8086, .pci_device = 0xe207, .config = ALC880_3ST },
938 { .pci_vendor = 0x8086, .pci_device = 0xe208, .config = ALC880_3ST },
939 { .pci_vendor = 0x8086, .pci_device = 0xe209, .config = ALC880_3ST },
940 { .pci_vendor = 0x8086, .pci_device = 0xe20a, .config = ALC880_3ST },
941 { .pci_vendor = 0x8086, .pci_device = 0xe20b, .config = ALC880_3ST },
942 { .pci_vendor = 0x8086, .pci_device = 0xe20c, .config = ALC880_3ST },
943 { .pci_vendor = 0x8086, .pci_device = 0xe20d, .config = ALC880_3ST },
944 { .pci_vendor = 0x8086, .pci_device = 0xe20e, .config = ALC880_3ST },
945 { .pci_vendor = 0x8086, .pci_device = 0xe20f, .config = ALC880_3ST },
946 { .pci_vendor = 0x8086, .pci_device = 0xe210, .config = ALC880_3ST },
947 { .pci_vendor = 0x8086, .pci_device = 0xe211, .config = ALC880_3ST },
948 { .pci_vendor = 0x8086, .pci_device = 0xe214, .config = ALC880_3ST },
949 { .pci_vendor = 0x8086, .pci_device = 0xe302, .config = ALC880_3ST },
950 { .pci_vendor = 0x8086, .pci_device = 0xe303, .config = ALC880_3ST },
951 { .pci_vendor = 0x8086, .pci_device = 0xe304, .config = ALC880_3ST },
952 { .pci_vendor = 0x8086, .pci_device = 0xe306, .config = ALC880_3ST },
953 { .pci_vendor = 0x8086, .pci_device = 0xe307, .config = ALC880_3ST },
954 { .pci_vendor = 0x8086, .pci_device = 0xe404, .config = ALC880_3ST },
955 { .pci_vendor = 0x8086, .pci_device = 0xa101, .config = ALC880_3ST },
956 { .pci_vendor = 0x107b, .pci_device = 0x3031, .config = ALC880_3ST },
957 { .pci_vendor = 0x107b, .pci_device = 0x4036, .config = ALC880_3ST },
958 { .pci_vendor = 0x107b, .pci_device = 0x4037, .config = ALC880_3ST },
959 { .pci_vendor = 0x107b, .pci_device = 0x4038, .config = ALC880_3ST },
960 { .pci_vendor = 0x107b, .pci_device = 0x4040, .config = ALC880_3ST },
961 { .pci_vendor = 0x107b, .pci_device = 0x4041, .config = ALC880_3ST },
962
963 /* Back 3 jack, front 2 jack (Internal add Aux-In) */
964 { .pci_vendor = 0x1025, .pci_device = 0xe310, .config = ALC880_3ST },
965
966 /* Back 3 jack plus 1 SPDIF out jack, front 2 jack */
967 { .modelname = "3stack-digout", .config = ALC880_3ST_DIG },
968 { .pci_vendor = 0x8086, .pci_device = 0xe308, .config = ALC880_3ST_DIG },
969
970 /* Back 3 jack plus 1 SPDIF out jack, front 2 jack (Internal add Aux-In)*/
971 { .pci_vendor = 0x8086, .pci_device = 0xe305, .config = ALC880_3ST_DIG },
972 { .pci_vendor = 0x8086, .pci_device = 0xd402, .config = ALC880_3ST_DIG },
973 { .pci_vendor = 0x1025, .pci_device = 0xe309, .config = ALC880_3ST_DIG },
974
975 /* Back 5 jack, front 2 jack */
976 { .modelname = "5stack", .config = ALC880_5ST },
977 { .pci_vendor = 0x107b, .pci_device = 0x3033, .config = ALC880_5ST },
978 { .pci_vendor = 0x107b, .pci_device = 0x4039, .config = ALC880_5ST },
979 { .pci_vendor = 0x107b, .pci_device = 0x3032, .config = ALC880_5ST },
980 { .pci_vendor = 0x103c, .pci_device = 0x2a09, .config = ALC880_5ST },
981
982 /* Back 5 jack plus 1 SPDIF out jack, front 2 jack */
983 { .modelname = "5stack-digout", .config = ALC880_5ST_DIG },
984 { .pci_vendor = 0x8086, .pci_device = 0xe224, .config = ALC880_5ST_DIG },
985 { .pci_vendor = 0x8086, .pci_device = 0xe400, .config = ALC880_5ST_DIG },
986 { .pci_vendor = 0x8086, .pci_device = 0xe401, .config = ALC880_5ST_DIG },
987 { .pci_vendor = 0x8086, .pci_device = 0xe402, .config = ALC880_5ST_DIG },
988 { .pci_vendor = 0x8086, .pci_device = 0xd400, .config = ALC880_5ST_DIG },
989 { .pci_vendor = 0x8086, .pci_device = 0xd401, .config = ALC880_5ST_DIG },
990 { .pci_vendor = 0x8086, .pci_device = 0xa100, .config = ALC880_5ST_DIG },
991 { .pci_vendor = 0x1565, .pci_device = 0x8202, .config = ALC880_5ST_DIG },
992
993 { .modelname = "w810", .config = ALC880_W810 },
994 { .pci_vendor = 0x161f, .pci_device = 0x203d, .config = ALC880_W810 },
995
996 {}
997};
998
999static int patch_alc880(struct hda_codec *codec)
1000{
1001 struct alc_spec *spec;
1002 int board_config;
1003
1004 spec = kcalloc(1, sizeof(*spec), GFP_KERNEL);
1005 if (spec == NULL)
1006 return -ENOMEM;
1007
1008 codec->spec = spec;
1009
1010 board_config = snd_hda_check_board_config(codec, alc880_cfg_tbl);
1011 if (board_config < 0) {
1012 snd_printd(KERN_INFO "hda_codec: Unknown model for ALC880\n");
1013 board_config = ALC880_MINIMAL;
1014 }
1015
1016 switch (board_config) {
1017 case ALC880_W810:
1018 spec->mixers[spec->num_mixers] = alc880_w810_base_mixer;
1019 spec->num_mixers++;
1020 break;
1021 case ALC880_5ST:
1022 case ALC880_5ST_DIG:
1023 spec->mixers[spec->num_mixers] = alc880_five_stack_mixer;
1024 spec->num_mixers++;
1025 break;
1026 default:
1027 spec->mixers[spec->num_mixers] = alc880_base_mixer;
1028 spec->num_mixers++;
1029 break;
1030 }
1031
1032 switch (board_config) {
1033 case ALC880_3ST_DIG:
1034 case ALC880_5ST_DIG:
1035 case ALC880_W810:
1036 spec->multiout.dig_out_nid = ALC880_DIGOUT_NID;
1037 break;
1038 default:
1039 break;
1040 }
1041
1042 switch (board_config) {
1043 case ALC880_3ST:
1044 case ALC880_3ST_DIG:
1045 case ALC880_5ST:
1046 case ALC880_5ST_DIG:
1047 case ALC880_W810:
1048 spec->front_panel = 1;
1049 break;
1050 default:
1051 break;
1052 }
1053
1054 switch (board_config) {
1055 case ALC880_5ST:
1056 case ALC880_5ST_DIG:
1057 spec->init_verbs = alc880_init_verbs_five_stack;
1058 spec->channel_mode = alc880_fivestack_modes;
1059 spec->num_channel_mode = ARRAY_SIZE(alc880_fivestack_modes);
1060 break;
1061 case ALC880_W810:
1062 spec->init_verbs = alc880_w810_init_verbs;
1063 spec->channel_mode = alc880_w810_modes;
1064 spec->num_channel_mode = ARRAY_SIZE(alc880_w810_modes);
1065 break;
1066 default:
1067 spec->init_verbs = alc880_init_verbs_three_stack;
1068 spec->channel_mode = alc880_threestack_modes;
1069 spec->num_channel_mode = ARRAY_SIZE(alc880_threestack_modes);
1070 break;
1071 }
1072
1073 spec->stream_name_analog = "ALC880 Analog";
1074 spec->stream_analog_playback = &alc880_pcm_analog_playback;
1075 spec->stream_analog_capture = &alc880_pcm_analog_capture;
1076
1077 spec->stream_name_digital = "ALC880 Digital";
1078 spec->stream_digital_playback = &alc880_pcm_digital_playback;
1079 spec->stream_digital_capture = &alc880_pcm_digital_capture;
1080
1081 spec->multiout.max_channels = spec->channel_mode[0].channels;
1082
1083 switch (board_config) {
1084 case ALC880_W810:
1085 spec->multiout.num_dacs = ARRAY_SIZE(alc880_w810_dac_nids);
1086 spec->multiout.dac_nids = alc880_w810_dac_nids;
1087 // No dedicated headphone socket - it's shared with built-in speakers.
1088 break;
1089 default:
1090 spec->multiout.num_dacs = ARRAY_SIZE(alc880_dac_nids);
1091 spec->multiout.dac_nids = alc880_dac_nids;
1092 spec->multiout.hp_nid = 0x03; /* rear-surround NID */
1093 break;
1094 }
1095
1096 spec->input_mux = &alc880_capture_source;
1097 spec->num_adc_nids = ARRAY_SIZE(alc880_adc_nids);
1098 spec->adc_nids = alc880_adc_nids;
1099
1100 codec->patch_ops = alc_patch_ops;
1101
1102 return 0;
1103}
1104
1105/*
1106 * ALC260 support
1107 */
1108
1109/*
1110 * This is just place-holder, so there's something for alc_build_pcms to look
1111 * at when it calculates the maximum number of channels. ALC260 has no mixer
1112 * element which allows changing the channel mode, so the verb list is
1113 * never used.
1114 */
1115static struct alc_channel_mode alc260_modes[1] = {
1116 { 2, NULL },
1117};
1118
1119snd_kcontrol_new_t alc260_base_mixer[] = {
1120 HDA_CODEC_VOLUME("Front Playback Volume", 0x08, 0x0, HDA_OUTPUT),
1121 /* use LINE2 for the output */
1122 /* HDA_CODEC_MUTE("Front Playback Switch", 0x0f, 0x0, HDA_OUTPUT), */
1123 HDA_CODEC_MUTE("Front Playback Switch", 0x15, 0x0, HDA_OUTPUT),
1124 HDA_CODEC_VOLUME("CD Playback Volume", 0x07, 0x04, HDA_INPUT),
1125 HDA_CODEC_MUTE("CD Playback Switch", 0x07, 0x04, HDA_INPUT),
1126 HDA_CODEC_VOLUME("Line Playback Volume", 0x07, 0x02, HDA_INPUT),
1127 HDA_CODEC_MUTE("Line Playback Switch", 0x07, 0x02, HDA_INPUT),
1128 HDA_CODEC_VOLUME("Mic Playback Volume", 0x07, 0x0, HDA_INPUT),
1129 HDA_CODEC_MUTE("Mic Playback Switch", 0x07, 0x0, HDA_INPUT),
1130 HDA_CODEC_VOLUME("Front Mic Playback Volume", 0x07, 0x01, HDA_INPUT),
1131 HDA_CODEC_MUTE("Front Mic Playback Switch", 0x07, 0x01, HDA_INPUT),
1132 HDA_CODEC_VOLUME("PC Speaker Playback Volume", 0x07, 0x05, HDA_INPUT),
1133 HDA_CODEC_MUTE("PC Speaker Playback Switch", 0x07, 0x05, HDA_INPUT),
1134 HDA_CODEC_VOLUME("Headphone Playback Volume", 0x09, 0x0, HDA_OUTPUT),
1135 HDA_CODEC_MUTE("Headphone Playback Switch", 0x10, 0x0, HDA_OUTPUT),
1136 HDA_CODEC_VOLUME_MONO("Mono Playback Volume", 0x0a, 1, 0x0, HDA_OUTPUT),
1137 HDA_CODEC_MUTE_MONO("Mono Playback Switch", 0x11, 1, 0x0, HDA_OUTPUT),
1138 HDA_CODEC_VOLUME("Capture Volume", 0x04, 0x0, HDA_INPUT),
1139 HDA_CODEC_MUTE("Capture Switch", 0x04, 0x0, HDA_INPUT),
1140 {
1141 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1142 .name = "Capture Source",
1143 .info = alc_mux_enum_info,
1144 .get = alc_mux_enum_get,
1145 .put = alc_mux_enum_put,
1146 },
1147 { } /* end */
1148};
1149
1150static struct hda_verb alc260_init_verbs[] = {
1151 /* Line In pin widget for input */
1152 {0x14, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x20},
1153 /* CD pin widget for input */
1154 {0x16, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x20},
1155 /* Mic1 (rear panel) pin widget for input and vref at 80% */
1156 {0x12, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x24},
1157 /* Mic2 (front panel) pin widget for input and vref at 80% */
1158 {0x13, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x24},
1159 /* LINE-2 is used for line-out in rear */
1160 {0x15, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x40},
1161 /* select line-out */
1162 {0x15, AC_VERB_SET_CONNECT_SEL, 0x00},
1163 /* LINE-OUT pin */
1164 {0x0f, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x40},
1165 /* enable HP */
1166 {0x10, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x40},
1167 /* enable Mono */
1168 {0x11, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x40},
1169 /* unmute amp left and right */
1170 {0x04, AC_VERB_SET_AMP_GAIN_MUTE, 0x7000},
1171 /* set connection select to line in (default select for this ADC) */
1172 {0x04, AC_VERB_SET_CONNECT_SEL, 0x02},
1173 /* unmute Line-Out mixer amp left and right (volume = 0) */
1174 {0x08, AC_VERB_SET_AMP_GAIN_MUTE, 0xb000},
1175 /* mute pin widget amp left and right (no gain on this amp) */
1176 {0x0f, AC_VERB_SET_AMP_GAIN_MUTE, 0xb000},
1177 /* unmute HP mixer amp left and right (volume = 0) */
1178 {0x09, AC_VERB_SET_AMP_GAIN_MUTE, 0xb000},
1179 /* mute pin widget amp left and right (no gain on this amp) */
1180 {0x10, AC_VERB_SET_AMP_GAIN_MUTE, 0xb080},
1181 /* unmute Mono mixer amp left and right (volume = 0) */
1182 {0x0a, AC_VERB_SET_AMP_GAIN_MUTE, 0xb000},
1183 /* mute pin widget amp left and right (no gain on this amp) */
1184 {0x11, AC_VERB_SET_AMP_GAIN_MUTE, 0xb080},
1185 /* mute LINE-2 out */
1186 {0x15, AC_VERB_SET_AMP_GAIN_MUTE, 0xb080},
1187 /* Amp Indexes: CD = 0x04, Line In 1 = 0x02, Mic 1 = 0x00 & Line In 2 = 0x03 */
1188 /* unmute CD */
1189 {0x07, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x04 << 8))},
1190 /* unmute Line In */
1191 {0x07, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x02 << 8))},
1192 /* unmute Mic */
1193 {0x07, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x00 << 8))},
1194 /* Amp Indexes: DAC = 0x01 & mixer = 0x00 */
1195 /* Unmute Front out path */
1196 {0x08, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x00 << 8))},
1197 {0x08, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x01 << 8))},
1198 /* Unmute Headphone out path */
1199 {0x09, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x00 << 8))},
1200 {0x09, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x01 << 8))},
1201 /* Unmute Mono out path */
1202 {0x0a, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x00 << 8))},
1203 {0x0a, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x01 << 8))},
1204 { }
1205};
1206
1207static struct hda_pcm_stream alc260_pcm_analog_playback = {
1208 .substreams = 1,
1209 .channels_min = 2,
1210 .channels_max = 2,
1211 .nid = 0x2,
1212};
1213
1214static struct hda_pcm_stream alc260_pcm_analog_capture = {
1215 .substreams = 1,
1216 .channels_min = 2,
1217 .channels_max = 2,
1218 .nid = 0x4,
1219};
1220
1221static int patch_alc260(struct hda_codec *codec)
1222{
1223 struct alc_spec *spec;
1224
1225 spec = kcalloc(1, sizeof(*spec), GFP_KERNEL);
1226 if (spec == NULL)
1227 return -ENOMEM;
1228
1229 codec->spec = spec;
1230
1231 spec->mixers[spec->num_mixers] = alc260_base_mixer;
1232 spec->num_mixers++;
1233
1234 spec->init_verbs = alc260_init_verbs;
1235 spec->channel_mode = alc260_modes;
1236 spec->num_channel_mode = ARRAY_SIZE(alc260_modes);
1237
1238 spec->stream_name_analog = "ALC260 Analog";
1239 spec->stream_analog_playback = &alc260_pcm_analog_playback;
1240 spec->stream_analog_capture = &alc260_pcm_analog_capture;
1241
1242 spec->multiout.max_channels = spec->channel_mode[0].channels;
1243 spec->multiout.num_dacs = ARRAY_SIZE(alc260_dac_nids);
1244 spec->multiout.dac_nids = alc260_dac_nids;
1245
1246 spec->input_mux = &alc260_capture_source;
1247 spec->num_adc_nids = ARRAY_SIZE(alc260_adc_nids);
1248 spec->adc_nids = alc260_adc_nids;
1249
1250 codec->patch_ops = alc_patch_ops;
1251
1252 return 0;
1253}
1254
1255/*
1256 * ALC882 support
1257 *
1258 * ALC882 is almost identical with ALC880 but has cleaner and more flexible
1259 * configuration. Each pin widget can choose any input DACs and a mixer.
1260 * Each ADC is connected from a mixer of all inputs. This makes possible
1261 * 6-channel independent captures.
1262 *
1263 * In addition, an independent DAC for the multi-playback (not used in this
1264 * driver yet).
1265 */
1266
1267static struct alc_channel_mode alc882_ch_modes[1] = {
1268 { 8, NULL }
1269};
1270
1271static hda_nid_t alc882_dac_nids[4] = {
1272 /* front, rear, clfe, rear_surr */
1273 0x02, 0x03, 0x04, 0x05
1274};
1275
1276static hda_nid_t alc882_adc_nids[3] = {
1277 /* ADC0-2 */
1278 0x07, 0x08, 0x09,
1279};
1280
1281/* input MUX */
1282/* FIXME: should be a matrix-type input source selection */
1283
1284static struct hda_input_mux alc882_capture_source = {
1285 .num_items = 4,
1286 .items = {
1287 { "Mic", 0x0 },
1288 { "Front Mic", 0x1 },
1289 { "Line", 0x2 },
1290 { "CD", 0x4 },
1291 },
1292};
1293
1294#define alc882_mux_enum_info alc_mux_enum_info
1295#define alc882_mux_enum_get alc_mux_enum_get
1296
1297static int alc882_mux_enum_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
1298{
1299 struct hda_codec *codec = snd_kcontrol_chip(kcontrol);
1300 struct alc_spec *spec = codec->spec;
1301 const struct hda_input_mux *imux = spec->input_mux;
1302 unsigned int adc_idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
1303 static hda_nid_t capture_mixers[3] = { 0x24, 0x23, 0x22 };
1304 hda_nid_t nid = capture_mixers[adc_idx];
1305 unsigned int *cur_val = &spec->cur_mux[adc_idx];
1306 unsigned int i, idx;
1307
1308 idx = ucontrol->value.enumerated.item[0];
1309 if (idx >= imux->num_items)
1310 idx = imux->num_items - 1;
1311 if (*cur_val == idx && ! codec->in_resume)
1312 return 0;
1313 for (i = 0; i < imux->num_items; i++) {
1314 unsigned int v = (i == idx) ? 0x7000 : 0x7080;
1315 snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_AMP_GAIN_MUTE,
1316 v | (imux->items[i].index << 8));
1317 }
1318 *cur_val = idx;
1319 return 1;
1320}
1321
1322/* Pin assignment: Front=0x14, Rear=0x15, CLFE=0x16, Side=0x17
1323 * Mic=0x18, Front Mic=0x19, Line-In=0x1a, HP=0x1b
1324 */
1325static snd_kcontrol_new_t alc882_base_mixer[] = {
1326 HDA_CODEC_VOLUME("Front Playback Volume", 0x0c, 0x0, HDA_OUTPUT),
1327 HDA_CODEC_MUTE("Front Playback Switch", 0x14, 0x0, HDA_OUTPUT),
1328 HDA_CODEC_VOLUME("Surround Playback Volume", 0x0d, 0x0, HDA_OUTPUT),
1329 HDA_CODEC_MUTE("Surround Playback Switch", 0x15, 0x0, HDA_OUTPUT),
1330 HDA_CODEC_VOLUME_MONO("Center Playback Volume", 0x0e, 1, 0x0, HDA_OUTPUT),
1331 HDA_CODEC_VOLUME_MONO("LFE Playback Volume", 0x0e, 2, 0x0, HDA_OUTPUT),
1332 HDA_CODEC_MUTE_MONO("Center Playback Switch", 0x16, 1, 0x0, HDA_OUTPUT),
1333 HDA_CODEC_MUTE_MONO("LFE Playback Switch", 0x16, 2, 0x0, HDA_OUTPUT),
1334 HDA_CODEC_VOLUME("Side Playback Volume", 0x0f, 0x0, HDA_OUTPUT),
1335 HDA_CODEC_MUTE("Side Playback Switch", 0x17, 0x0, HDA_OUTPUT),
1336 HDA_CODEC_MUTE("Headphone Playback Switch", 0x1b, 0x0, HDA_OUTPUT),
1337 HDA_CODEC_VOLUME("CD Playback Volume", 0x0b, 0x04, HDA_INPUT),
1338 HDA_CODEC_MUTE("CD Playback Switch", 0x0b, 0x04, HDA_INPUT),
1339 HDA_CODEC_VOLUME("Line Playback Volume", 0x0b, 0x02, HDA_INPUT),
1340 HDA_CODEC_MUTE("Line Playback Switch", 0x0b, 0x02, HDA_INPUT),
1341 HDA_CODEC_VOLUME("Mic Playback Volume", 0x0b, 0x0, HDA_INPUT),
1342 HDA_CODEC_MUTE("Mic Playback Switch", 0x0b, 0x0, HDA_INPUT),
1343 HDA_CODEC_VOLUME("Front Mic Playback Volume", 0x0b, 0x1, HDA_INPUT),
1344 HDA_CODEC_MUTE("Front Mic Playback Switch", 0x0b, 0x1, HDA_INPUT),
1345 HDA_CODEC_VOLUME("PC Speaker Playback Volume", 0x0b, 0x05, HDA_INPUT),
1346 HDA_CODEC_MUTE("PC Speaker Playback Switch", 0x0b, 0x05, HDA_INPUT),
1347 HDA_CODEC_VOLUME("Capture Volume", 0x07, 0x0, HDA_INPUT),
1348 HDA_CODEC_MUTE("Capture Switch", 0x07, 0x0, HDA_INPUT),
1349 HDA_CODEC_VOLUME_IDX("Capture Volume", 1, 0x08, 0x0, HDA_INPUT),
1350 HDA_CODEC_MUTE_IDX("Capture Switch", 1, 0x08, 0x0, HDA_INPUT),
1351 HDA_CODEC_VOLUME_IDX("Capture Volume", 2, 0x09, 0x0, HDA_INPUT),
1352 HDA_CODEC_MUTE_IDX("Capture Switch", 2, 0x09, 0x0, HDA_INPUT),
1353 {
1354 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1355 /* .name = "Capture Source", */
1356 .name = "Input Source",
1357 .count = 3,
1358 .info = alc882_mux_enum_info,
1359 .get = alc882_mux_enum_get,
1360 .put = alc882_mux_enum_put,
1361 },
1362 { } /* end */
1363};
1364
1365static struct hda_verb alc882_init_verbs[] = {
1366 /* Front mixer: unmute input/output amp left and right (volume = 0) */
1367 {0x0c, AC_VERB_SET_AMP_GAIN_MUTE, 0xb000},
1368 {0x0c, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x00 << 8))},
1369 /* Rear mixer */
1370 {0x0d, AC_VERB_SET_AMP_GAIN_MUTE, 0xb000},
1371 {0x0d, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x00 << 8))},
1372 /* CLFE mixer */
1373 {0x0e, AC_VERB_SET_AMP_GAIN_MUTE, 0xb000},
1374 {0x0e, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x00 << 8))},
1375 /* Side mixer */
1376 {0x0f, AC_VERB_SET_AMP_GAIN_MUTE, 0xb000},
1377 {0x0f, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x00 << 8))},
1378
1379 /* Front Pin: to output mode */
1380 {0x14, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x40},
1381 /* Front Pin: mute amp left and right (no volume) */
1382 {0x14, AC_VERB_SET_AMP_GAIN_MUTE, 0x0000},
1383 /* select Front mixer (0x0c, index 0) */
1384 {0x14, AC_VERB_SET_CONNECT_SEL, 0x00},
1385 /* Rear Pin */
1386 {0x15, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x40},
1387 /* Rear Pin: mute amp left and right (no volume) */
1388 {0x15, AC_VERB_SET_AMP_GAIN_MUTE, 0x0000},
1389 /* select Rear mixer (0x0d, index 1) */
1390 {0x15, AC_VERB_SET_CONNECT_SEL, 0x01},
1391 /* CLFE Pin */
1392 {0x16, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x40},
1393 /* CLFE Pin: mute amp left and right (no volume) */
1394 {0x16, AC_VERB_SET_AMP_GAIN_MUTE, 0x0000},
1395 /* select CLFE mixer (0x0e, index 2) */
1396 {0x16, AC_VERB_SET_CONNECT_SEL, 0x02},
1397 /* Side Pin */
1398 {0x17, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x40},
1399 /* Side Pin: mute amp left and right (no volume) */
1400 {0x17, AC_VERB_SET_AMP_GAIN_MUTE, 0x0000},
1401 /* select Side mixer (0x0f, index 3) */
1402 {0x17, AC_VERB_SET_CONNECT_SEL, 0x03},
1403 /* Headphone Pin */
1404 {0x1b, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x40},
1405 /* Headphone Pin: mute amp left and right (no volume) */
1406 {0x1b, AC_VERB_SET_AMP_GAIN_MUTE, 0x0000},
1407 /* select Front mixer (0x0c, index 0) */
1408 {0x1b, AC_VERB_SET_CONNECT_SEL, 0x00},
1409 /* Mic (rear) pin widget for input and vref at 80% */
1410 {0x18, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x24},
1411 /* Front Mic pin widget for input and vref at 80% */
1412 {0x19, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x24},
1413 /* Line In pin widget for input */
1414 {0x1a, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x20},
1415 /* CD pin widget for input */
1416 {0x1c, AC_VERB_SET_PIN_WIDGET_CONTROL, 0x20},
1417
1418 /* FIXME: use matrix-type input source selection */
1419 /* Mixer elements: 0x18, 19, 1a, 1b, 1c, 1d, 14, 15, 16, 17, 0b */
1420 /* Input mixer1: unmute Mic, F-Mic, Line, CD inputs */
1421 {0x24, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x00 << 8))},
1422 {0x24, AC_VERB_SET_AMP_GAIN_MUTE, (0x7080 | (0x03 << 8))},
1423 {0x24, AC_VERB_SET_AMP_GAIN_MUTE, (0x7080 | (0x02 << 8))},
1424 {0x24, AC_VERB_SET_AMP_GAIN_MUTE, (0x7080 | (0x04 << 8))},
1425 /* Input mixer2 */
1426 {0x23, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x00 << 8))},
1427 {0x23, AC_VERB_SET_AMP_GAIN_MUTE, (0x7080 | (0x03 << 8))},
1428 {0x23, AC_VERB_SET_AMP_GAIN_MUTE, (0x7080 | (0x02 << 8))},
1429 {0x23, AC_VERB_SET_AMP_GAIN_MUTE, (0x7080 | (0x04 << 8))},
1430 /* Input mixer3 */
1431 {0x22, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x00 << 8))},
1432 {0x22, AC_VERB_SET_AMP_GAIN_MUTE, (0x7080 | (0x03 << 8))},
1433 {0x22, AC_VERB_SET_AMP_GAIN_MUTE, (0x7080 | (0x02 << 8))},
1434 {0x22, AC_VERB_SET_AMP_GAIN_MUTE, (0x7080 | (0x04 << 8))},
1435 /* ADC1: unmute amp left and right */
1436 {0x07, AC_VERB_SET_AMP_GAIN_MUTE, 0x7000},
1437 /* ADC2: unmute amp left and right */
1438 {0x08, AC_VERB_SET_AMP_GAIN_MUTE, 0x7000},
1439 /* ADC3: unmute amp left and right */
1440 {0x08, AC_VERB_SET_AMP_GAIN_MUTE, 0x7000},
1441
1442 /* Unmute front loopback */
1443 {0x0c, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x01 << 8))},
1444 /* Unmute rear loopback */
1445 {0x0d, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x01 << 8))},
1446 /* Mute CLFE loopback */
1447 {0x0e, AC_VERB_SET_AMP_GAIN_MUTE, (0x7080 | (0x01 << 8))},
1448 /* Unmute side loopback */
1449 {0x0f, AC_VERB_SET_AMP_GAIN_MUTE, (0x7000 | (0x01 << 8))},
1450
1451 { }
1452};
1453
1454static int patch_alc882(struct hda_codec *codec)
1455{
1456 struct alc_spec *spec;
1457
1458 spec = kcalloc(1, sizeof(*spec), GFP_KERNEL);
1459 if (spec == NULL)
1460 return -ENOMEM;
1461
1462 codec->spec = spec;
1463
1464 spec->mixers[spec->num_mixers] = alc882_base_mixer;
1465 spec->num_mixers++;
1466
1467 spec->multiout.dig_out_nid = ALC880_DIGOUT_NID;
1468 spec->dig_in_nid = ALC880_DIGIN_NID;
1469 spec->front_panel = 1;
1470 spec->init_verbs = alc882_init_verbs;
1471 spec->channel_mode = alc882_ch_modes;
1472 spec->num_channel_mode = ARRAY_SIZE(alc882_ch_modes);
1473
1474 spec->stream_name_analog = "ALC882 Analog";
1475 spec->stream_analog_playback = &alc880_pcm_analog_playback;
1476 spec->stream_analog_capture = &alc880_pcm_analog_capture;
1477
1478 spec->stream_name_digital = "ALC882 Digital";
1479 spec->stream_digital_playback = &alc880_pcm_digital_playback;
1480 spec->stream_digital_capture = &alc880_pcm_digital_capture;
1481
1482 spec->multiout.max_channels = spec->channel_mode[0].channels;
1483 spec->multiout.num_dacs = ARRAY_SIZE(alc882_dac_nids);
1484 spec->multiout.dac_nids = alc882_dac_nids;
1485
1486 spec->input_mux = &alc882_capture_source;
1487 spec->num_adc_nids = ARRAY_SIZE(alc882_adc_nids);
1488 spec->adc_nids = alc882_adc_nids;
1489
1490 codec->patch_ops = alc_patch_ops;
1491
1492 return 0;
1493}
1494
1495/*
1496 * patch entries
1497 */
1498struct hda_codec_preset snd_hda_preset_realtek[] = {
1499 { .id = 0x10ec0260, .name = "ALC260", .patch = patch_alc260 },
1500 { .id = 0x10ec0880, .name = "ALC880", .patch = patch_alc880 },
1501 { .id = 0x10ec0882, .name = "ALC882", .patch = patch_alc882 },
1502 {} /* terminator */
1503};