diff options
author | H. Peter Anvin <hpa@linux.intel.com> | 2014-02-25 15:05:34 -0500 |
---|---|---|
committer | H. Peter Anvin <hpa@linux.intel.com> | 2014-02-27 11:07:39 -0500 |
commit | c5f9ee3d665a7660b296aa1e91949ae3376f0d07 (patch) | |
tree | 1312ff6f48732ff251f40a63f8147453d6d4cf8f /sound/oss | |
parent | 7cf6c94591bbf3dbe3bf9573a6551328ad76d885 (diff) |
x86, platforms: Remove SGI Visual Workstation
The SGI Visual Workstation seems to be dead; remove support so we
don't have to continue maintaining it.
Cc: Andrey Panin <pazke@donpac.ru>
Cc: Michael Reed <mdr@sgi.com>
Link: http://lkml.kernel.org/r/530CFD6C.7040705@zytor.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Diffstat (limited to 'sound/oss')
-rw-r--r-- | sound/oss/Kconfig | 9 | ||||
-rw-r--r-- | sound/oss/Makefile | 1 | ||||
-rw-r--r-- | sound/oss/vwsnd.c | 3506 |
3 files changed, 0 insertions, 3516 deletions
diff --git a/sound/oss/Kconfig b/sound/oss/Kconfig index 1a9640254433..48568fdf847f 100644 --- a/sound/oss/Kconfig +++ b/sound/oss/Kconfig | |||
@@ -13,15 +13,6 @@ config SOUND_BCM_CS4297A | |||
13 | note that CONFIG_KGDB should not be enabled at the same | 13 | note that CONFIG_KGDB should not be enabled at the same |
14 | time, since it also attempts to use this UART port. | 14 | time, since it also attempts to use this UART port. |
15 | 15 | ||
16 | config SOUND_VWSND | ||
17 | tristate "SGI Visual Workstation Sound" | ||
18 | depends on X86_VISWS | ||
19 | help | ||
20 | Say Y or M if you have an SGI Visual Workstation and you want to be | ||
21 | able to use its on-board audio. Read | ||
22 | <file:Documentation/sound/oss/vwsnd> for more info on this driver's | ||
23 | capabilities. | ||
24 | |||
25 | config SOUND_MSNDCLAS | 16 | config SOUND_MSNDCLAS |
26 | tristate "Support for Turtle Beach MultiSound Classic, Tahiti, Monterey" | 17 | tristate "Support for Turtle Beach MultiSound Classic, Tahiti, Monterey" |
27 | depends on (m || !STANDALONE) && ISA | 18 | depends on (m || !STANDALONE) && ISA |
diff --git a/sound/oss/Makefile b/sound/oss/Makefile index 77f21b68bf0f..9bdbbde2173e 100644 --- a/sound/oss/Makefile +++ b/sound/oss/Makefile | |||
@@ -24,7 +24,6 @@ obj-$(CONFIG_SOUND_VIDC) += vidc_mod.o | |||
24 | obj-$(CONFIG_SOUND_WAVEARTIST) += waveartist.o | 24 | obj-$(CONFIG_SOUND_WAVEARTIST) += waveartist.o |
25 | obj-$(CONFIG_SOUND_MSNDCLAS) += msnd.o msnd_classic.o | 25 | obj-$(CONFIG_SOUND_MSNDCLAS) += msnd.o msnd_classic.o |
26 | obj-$(CONFIG_SOUND_MSNDPIN) += msnd.o msnd_pinnacle.o | 26 | obj-$(CONFIG_SOUND_MSNDPIN) += msnd.o msnd_pinnacle.o |
27 | obj-$(CONFIG_SOUND_VWSND) += vwsnd.o | ||
28 | obj-$(CONFIG_SOUND_BCM_CS4297A) += swarm_cs4297a.o | 27 | obj-$(CONFIG_SOUND_BCM_CS4297A) += swarm_cs4297a.o |
29 | 28 | ||
30 | obj-$(CONFIG_DMASOUND) += dmasound/ | 29 | obj-$(CONFIG_DMASOUND) += dmasound/ |
diff --git a/sound/oss/vwsnd.c b/sound/oss/vwsnd.c deleted file mode 100644 index a077e9c69a5e..000000000000 --- a/sound/oss/vwsnd.c +++ /dev/null | |||
@@ -1,3506 +0,0 @@ | |||
1 | /* | ||
2 | * Sound driver for Silicon Graphics 320 and 540 Visual Workstations' | ||
3 | * onboard audio. See notes in Documentation/sound/oss/vwsnd . | ||
4 | * | ||
5 | * Copyright 1999 Silicon Graphics, Inc. All rights reserved. | ||
6 | * | ||
7 | * This program is free software; you can redistribute it and/or modify | ||
8 | * it under the terms of the GNU General Public License as published by | ||
9 | * the Free Software Foundation; either version 2 of the License, or | ||
10 | * (at your option) any later version. | ||
11 | * | ||
12 | * This program is distributed in the hope that it will be useful, | ||
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
15 | * GNU General Public License for more details. | ||
16 | * | ||
17 | * You should have received a copy of the GNU General Public License | ||
18 | * along with this program; if not, write to the Free Software | ||
19 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | ||
20 | */ | ||
21 | |||
22 | #undef VWSND_DEBUG /* define for debugging */ | ||
23 | |||
24 | /* | ||
25 | * XXX to do - | ||
26 | * | ||
27 | * External sync. | ||
28 | * Rename swbuf, hwbuf, u&i, hwptr&swptr to something rational. | ||
29 | * Bug - if select() called before read(), pcm_setup() not called. | ||
30 | * Bug - output doesn't stop soon enough if process killed. | ||
31 | */ | ||
32 | |||
33 | /* | ||
34 | * Things to test - | ||
35 | * | ||
36 | * Will readv/writev work? Write a test. | ||
37 | * | ||
38 | * insmod/rmmod 100 million times. | ||
39 | * | ||
40 | * Run I/O until int ptrs wrap around (roughly 6.2 hours @ DAT | ||
41 | * rate). | ||
42 | * | ||
43 | * Concurrent threads banging on mixer simultaneously, both UP | ||
44 | * and SMP kernels. Especially, watch for thread A changing | ||
45 | * OUTSRC while thread B changes gain -- both write to the same | ||
46 | * ad1843 register. | ||
47 | * | ||
48 | * What happens if a client opens /dev/audio then forks? | ||
49 | * Do two procs have /dev/audio open? Test. | ||
50 | * | ||
51 | * Pump audio through the CD, MIC and line inputs and verify that | ||
52 | * they mix/mute into the output. | ||
53 | * | ||
54 | * Apps: | ||
55 | * amp | ||
56 | * mpg123 | ||
57 | * x11amp | ||
58 | * mxv | ||
59 | * kmedia | ||
60 | * esound | ||
61 | * need more input apps | ||
62 | * | ||
63 | * Run tests while bombarding with signals. setitimer(2) will do it... */ | ||
64 | |||
65 | /* | ||
66 | * This driver is organized in nine sections. | ||
67 | * The nine sections are: | ||
68 | * | ||
69 | * debug stuff | ||
70 | * low level lithium access | ||
71 | * high level lithium access | ||
72 | * AD1843 access | ||
73 | * PCM I/O | ||
74 | * audio driver | ||
75 | * mixer driver | ||
76 | * probe/attach/unload | ||
77 | * initialization and loadable kernel module interface | ||
78 | * | ||
79 | * That is roughly the order of increasing abstraction, so forward | ||
80 | * dependencies are minimal. | ||
81 | */ | ||
82 | |||
83 | /* | ||
84 | * Locking Notes | ||
85 | * | ||
86 | * INC_USE_COUNT and DEC_USE_COUNT keep track of the number of | ||
87 | * open descriptors to this driver. They store it in vwsnd_use_count. | ||
88 | * The global device list, vwsnd_dev_list, is immutable when the IN_USE | ||
89 | * is true. | ||
90 | * | ||
91 | * devc->open_lock is a semaphore that is used to enforce the | ||
92 | * single reader/single writer rule for /dev/audio. The rule is | ||
93 | * that each device may have at most one reader and one writer. | ||
94 | * Open will block until the previous client has closed the | ||
95 | * device, unless O_NONBLOCK is specified. | ||
96 | * | ||
97 | * The semaphore devc->io_mutex serializes PCM I/O syscalls. This | ||
98 | * is unnecessary in Linux 2.2, because the kernel lock | ||
99 | * serializes read, write, and ioctl globally, but it's there, | ||
100 | * ready for the brave, new post-kernel-lock world. | ||
101 | * | ||
102 | * Locking between interrupt and baselevel is handled by the | ||
103 | * "lock" spinlock in vwsnd_port (one lock each for read and | ||
104 | * write). Each half holds the lock just long enough to see what | ||
105 | * area it owns and update its pointers. See pcm_output() and | ||
106 | * pcm_input() for most of the gory stuff. | ||
107 | * | ||
108 | * devc->mix_mutex serializes all mixer ioctls. This is also | ||
109 | * redundant because of the kernel lock. | ||
110 | * | ||
111 | * The lowest level lock is lith->lithium_lock. It is a | ||
112 | * spinlock which is held during the two-register tango of | ||
113 | * reading/writing an AD1843 register. See | ||
114 | * li_{read,write}_ad1843_reg(). | ||
115 | */ | ||
116 | |||
117 | /* | ||
118 | * Sample Format Notes | ||
119 | * | ||
120 | * Lithium's DMA engine has two formats: 16-bit 2's complement | ||
121 | * and 8-bit unsigned . 16-bit transfers the data unmodified, 2 | ||
122 | * bytes per sample. 8-bit unsigned transfers 1 byte per sample | ||
123 | * and XORs each byte with 0x80. Lithium can input or output | ||
124 | * either mono or stereo in either format. | ||
125 | * | ||
126 | * The AD1843 has four formats: 16-bit 2's complement, 8-bit | ||
127 | * unsigned, 8-bit mu-Law and 8-bit A-Law. | ||
128 | * | ||
129 | * This driver supports five formats: AFMT_S8, AFMT_U8, | ||
130 | * AFMT_MU_LAW, AFMT_A_LAW, and AFMT_S16_LE. | ||
131 | * | ||
132 | * For AFMT_U8 output, we keep the AD1843 in 16-bit mode, and | ||
133 | * rely on Lithium's XOR to translate between U8 and S8. | ||
134 | * | ||
135 | * For AFMT_S8, AFMT_MU_LAW and AFMT_A_LAW output, we have to XOR | ||
136 | * the 0x80 bit in software to compensate for Lithium's XOR. | ||
137 | * This happens in pcm_copy_{in,out}(). | ||
138 | * | ||
139 | * Changes: | ||
140 | * 11-10-2000 Bartlomiej Zolnierkiewicz <bkz@linux-ide.org> | ||
141 | * Added some __init/__exit | ||
142 | */ | ||
143 | |||
144 | #include <linux/module.h> | ||
145 | #include <linux/init.h> | ||
146 | |||
147 | #include <linux/spinlock.h> | ||
148 | #include <linux/wait.h> | ||
149 | #include <linux/interrupt.h> | ||
150 | #include <linux/mutex.h> | ||
151 | #include <linux/slab.h> | ||
152 | #include <linux/delay.h> | ||
153 | |||
154 | #include <asm/visws/cobalt.h> | ||
155 | |||
156 | #include "sound_config.h" | ||
157 | |||
158 | static DEFINE_MUTEX(vwsnd_mutex); | ||
159 | |||
160 | /*****************************************************************************/ | ||
161 | /* debug stuff */ | ||
162 | |||
163 | #ifdef VWSND_DEBUG | ||
164 | |||
165 | static int shut_up = 1; | ||
166 | |||
167 | /* | ||
168 | * dbgassert - called when an assertion fails. | ||
169 | */ | ||
170 | |||
171 | static void dbgassert(const char *fcn, int line, const char *expr) | ||
172 | { | ||
173 | if (in_interrupt()) | ||
174 | panic("ASSERTION FAILED IN INTERRUPT, %s:%s:%d %s\n", | ||
175 | __FILE__, fcn, line, expr); | ||
176 | else { | ||
177 | int x; | ||
178 | printk(KERN_ERR "ASSERTION FAILED, %s:%s:%d %s\n", | ||
179 | __FILE__, fcn, line, expr); | ||
180 | x = * (volatile int *) 0; /* force proc to exit */ | ||
181 | } | ||
182 | } | ||
183 | |||
184 | /* | ||
185 | * Bunch of useful debug macros: | ||
186 | * | ||
187 | * ASSERT - print unless e nonzero (panic if in interrupt) | ||
188 | * DBGDO - include arbitrary code if debugging | ||
189 | * DBGX - debug print raw (w/o function name) | ||
190 | * DBGP - debug print w/ function name | ||
191 | * DBGE - debug print function entry | ||
192 | * DBGC - debug print function call | ||
193 | * DBGR - debug print function return | ||
194 | * DBGXV - debug print raw when verbose | ||
195 | * DBGPV - debug print when verbose | ||
196 | * DBGEV - debug print function entry when verbose | ||
197 | * DBGRV - debug print function return when verbose | ||
198 | */ | ||
199 | |||
200 | #define ASSERT(e) ((e) ? (void) 0 : dbgassert(__func__, __LINE__, #e)) | ||
201 | #define DBGDO(x) x | ||
202 | #define DBGX(fmt, args...) (in_interrupt() ? 0 : printk(KERN_ERR fmt, ##args)) | ||
203 | #define DBGP(fmt, args...) (DBGX("%s: " fmt, __func__ , ##args)) | ||
204 | #define DBGE(fmt, args...) (DBGX("%s" fmt, __func__ , ##args)) | ||
205 | #define DBGC(rtn) (DBGP("calling %s\n", rtn)) | ||
206 | #define DBGR() (DBGP("returning\n")) | ||
207 | #define DBGXV(fmt, args...) (shut_up ? 0 : DBGX(fmt, ##args)) | ||
208 | #define DBGPV(fmt, args...) (shut_up ? 0 : DBGP(fmt, ##args)) | ||
209 | #define DBGEV(fmt, args...) (shut_up ? 0 : DBGE(fmt, ##args)) | ||
210 | #define DBGCV(rtn) (shut_up ? 0 : DBGC(rtn)) | ||
211 | #define DBGRV() (shut_up ? 0 : DBGR()) | ||
212 | |||
213 | #else /* !VWSND_DEBUG */ | ||
214 | |||
215 | #define ASSERT(e) ((void) 0) | ||
216 | #define DBGDO(x) /* don't */ | ||
217 | #define DBGX(fmt, args...) ((void) 0) | ||
218 | #define DBGP(fmt, args...) ((void) 0) | ||
219 | #define DBGE(fmt, args...) ((void) 0) | ||
220 | #define DBGC(rtn) ((void) 0) | ||
221 | #define DBGR() ((void) 0) | ||
222 | #define DBGPV(fmt, args...) ((void) 0) | ||
223 | #define DBGXV(fmt, args...) ((void) 0) | ||
224 | #define DBGEV(fmt, args...) ((void) 0) | ||
225 | #define DBGCV(rtn) ((void) 0) | ||
226 | #define DBGRV() ((void) 0) | ||
227 | |||
228 | #endif /* !VWSND_DEBUG */ | ||
229 | |||
230 | /*****************************************************************************/ | ||
231 | /* low level lithium access */ | ||
232 | |||
233 | /* | ||
234 | * We need to talk to Lithium registers on three pages. Here are | ||
235 | * the pages' offsets from the base address (0xFF001000). | ||
236 | */ | ||
237 | |||
238 | enum { | ||
239 | LI_PAGE0_OFFSET = 0x01000 - 0x1000, /* FF001000 */ | ||
240 | LI_PAGE1_OFFSET = 0x0F000 - 0x1000, /* FF00F000 */ | ||
241 | LI_PAGE2_OFFSET = 0x10000 - 0x1000, /* FF010000 */ | ||
242 | }; | ||
243 | |||
244 | /* low-level lithium data */ | ||
245 | |||
246 | typedef struct lithium { | ||
247 | void * page0; /* virtual addresses */ | ||
248 | void * page1; | ||
249 | void * page2; | ||
250 | spinlock_t lock; /* protects codec and UST/MSC access */ | ||
251 | } lithium_t; | ||
252 | |||
253 | /* | ||
254 | * li_destroy destroys the lithium_t structure and vm mappings. | ||
255 | */ | ||
256 | |||
257 | static void li_destroy(lithium_t *lith) | ||
258 | { | ||
259 | if (lith->page0) { | ||
260 | iounmap(lith->page0); | ||
261 | lith->page0 = NULL; | ||
262 | } | ||
263 | if (lith->page1) { | ||
264 | iounmap(lith->page1); | ||
265 | lith->page1 = NULL; | ||
266 | } | ||
267 | if (lith->page2) { | ||
268 | iounmap(lith->page2); | ||
269 | lith->page2 = NULL; | ||
270 | } | ||
271 | } | ||
272 | |||
273 | /* | ||
274 | * li_create initializes the lithium_t structure and sets up vm mappings | ||
275 | * to access the registers. | ||
276 | * Returns 0 on success, -errno on failure. | ||
277 | */ | ||
278 | |||
279 | static int __init li_create(lithium_t *lith, unsigned long baseaddr) | ||
280 | { | ||
281 | spin_lock_init(&lith->lock); | ||
282 | lith->page0 = ioremap_nocache(baseaddr + LI_PAGE0_OFFSET, PAGE_SIZE); | ||
283 | lith->page1 = ioremap_nocache(baseaddr + LI_PAGE1_OFFSET, PAGE_SIZE); | ||
284 | lith->page2 = ioremap_nocache(baseaddr + LI_PAGE2_OFFSET, PAGE_SIZE); | ||
285 | if (!lith->page0 || !lith->page1 || !lith->page2) { | ||
286 | li_destroy(lith); | ||
287 | return -ENOMEM; | ||
288 | } | ||
289 | return 0; | ||
290 | } | ||
291 | |||
292 | /* | ||
293 | * basic register accessors - read/write long/byte | ||
294 | */ | ||
295 | |||
296 | static __inline__ unsigned long li_readl(lithium_t *lith, int off) | ||
297 | { | ||
298 | return * (volatile unsigned long *) (lith->page0 + off); | ||
299 | } | ||
300 | |||
301 | static __inline__ unsigned char li_readb(lithium_t *lith, int off) | ||
302 | { | ||
303 | return * (volatile unsigned char *) (lith->page0 + off); | ||
304 | } | ||
305 | |||
306 | static __inline__ void li_writel(lithium_t *lith, int off, unsigned long val) | ||
307 | { | ||
308 | * (volatile unsigned long *) (lith->page0 + off) = val; | ||
309 | } | ||
310 | |||
311 | static __inline__ void li_writeb(lithium_t *lith, int off, unsigned char val) | ||
312 | { | ||
313 | * (volatile unsigned char *) (lith->page0 + off) = val; | ||
314 | } | ||
315 | |||
316 | /*****************************************************************************/ | ||
317 | /* High Level Lithium Access */ | ||
318 | |||
319 | /* | ||
320 | * Lithium DMA Notes | ||
321 | * | ||
322 | * Lithium has two dedicated DMA channels for audio. They are known | ||
323 | * as comm1 and comm2 (communication areas 1 and 2). Comm1 is for | ||
324 | * input, and comm2 is for output. Each is controlled by three | ||
325 | * registers: BASE (base address), CFG (config) and CCTL | ||
326 | * (config/control). | ||
327 | * | ||
328 | * Each DMA channel points to a physically contiguous ring buffer in | ||
329 | * main memory of up to 8 Kbytes. (This driver always uses 8 Kb.) | ||
330 | * There are three pointers into the ring buffer: read, write, and | ||
331 | * trigger. The pointers are 8 bits each. Each pointer points to | ||
332 | * 32-byte "chunks" of data. The DMA engine moves 32 bytes at a time, | ||
333 | * so there is no finer-granularity control. | ||
334 | * | ||
335 | * In comm1, the hardware updates the write ptr, and software updates | ||
336 | * the read ptr. In comm2, it's the opposite: hardware updates the | ||
337 | * read ptr, and software updates the write ptr. I designate the | ||
338 | * hardware-updated ptr as the hwptr, and the software-updated ptr as | ||
339 | * the swptr. | ||
340 | * | ||
341 | * The trigger ptr and trigger mask are used to trigger interrupts. | ||
342 | * From the Lithium spec, section 5.6.8, revision of 12/15/1998: | ||
343 | * | ||
344 | * Trigger Mask Value | ||
345 | * | ||
346 | * A three bit wide field that represents a power of two mask | ||
347 | * that is used whenever the trigger pointer is compared to its | ||
348 | * respective read or write pointer. A value of zero here | ||
349 | * implies a mask of 0xFF and a value of seven implies a mask | ||
350 | * 0x01. This value can be used to sub-divide the ring buffer | ||
351 | * into pie sections so that interrupts monitor the progress of | ||
352 | * hardware from section to section. | ||
353 | * | ||
354 | * My interpretation of that is, whenever the hw ptr is updated, it is | ||
355 | * compared with the trigger ptr, and the result is masked by the | ||
356 | * trigger mask. (Actually, by the complement of the trigger mask.) | ||
357 | * If the result is zero, an interrupt is triggered. I.e., interrupt | ||
358 | * if ((hwptr & ~mask) == (trptr & ~mask)). The mask is formed from | ||
359 | * the trigger register value as mask = (1 << (8 - tmreg)) - 1. | ||
360 | * | ||
361 | * In yet different words, setting tmreg to 0 causes an interrupt after | ||
362 | * every 256 DMA chunks (8192 bytes) or once per traversal of the | ||
363 | * ring buffer. Setting it to 7 caues an interrupt every 2 DMA chunks | ||
364 | * (64 bytes) or 128 times per traversal of the ring buffer. | ||
365 | */ | ||
366 | |||
367 | /* Lithium register offsets and bit definitions */ | ||
368 | |||
369 | #define LI_HOST_CONTROLLER 0x000 | ||
370 | # define LI_HC_RESET 0x00008000 | ||
371 | # define LI_HC_LINK_ENABLE 0x00004000 | ||
372 | # define LI_HC_LINK_FAILURE 0x00000004 | ||
373 | # define LI_HC_LINK_CODEC 0x00000002 | ||
374 | # define LI_HC_LINK_READY 0x00000001 | ||
375 | |||
376 | #define LI_INTR_STATUS 0x010 | ||
377 | #define LI_INTR_MASK 0x014 | ||
378 | # define LI_INTR_LINK_ERR 0x00008000 | ||
379 | # define LI_INTR_COMM2_TRIG 0x00000008 | ||
380 | # define LI_INTR_COMM2_UNDERFLOW 0x00000004 | ||
381 | # define LI_INTR_COMM1_TRIG 0x00000002 | ||
382 | # define LI_INTR_COMM1_OVERFLOW 0x00000001 | ||
383 | |||
384 | #define LI_CODEC_COMMAND 0x018 | ||
385 | # define LI_CC_BUSY 0x00008000 | ||
386 | # define LI_CC_DIR 0x00000080 | ||
387 | # define LI_CC_DIR_RD LI_CC_DIR | ||
388 | # define LI_CC_DIR_WR (!LI_CC_DIR) | ||
389 | # define LI_CC_ADDR_MASK 0x0000007F | ||
390 | |||
391 | #define LI_CODEC_DATA 0x01C | ||
392 | |||
393 | #define LI_COMM1_BASE 0x100 | ||
394 | #define LI_COMM1_CTL 0x104 | ||
395 | # define LI_CCTL_RESET 0x80000000 | ||
396 | # define LI_CCTL_SIZE 0x70000000 | ||
397 | # define LI_CCTL_DMA_ENABLE 0x08000000 | ||
398 | # define LI_CCTL_TMASK 0x07000000 /* trigger mask */ | ||
399 | # define LI_CCTL_TPTR 0x00FF0000 /* trigger pointer */ | ||
400 | # define LI_CCTL_RPTR 0x0000FF00 | ||
401 | # define LI_CCTL_WPTR 0x000000FF | ||
402 | #define LI_COMM1_CFG 0x108 | ||
403 | # define LI_CCFG_LOCK 0x00008000 | ||
404 | # define LI_CCFG_SLOT 0x00000070 | ||
405 | # define LI_CCFG_DIRECTION 0x00000008 | ||
406 | # define LI_CCFG_DIR_IN (!LI_CCFG_DIRECTION) | ||
407 | # define LI_CCFG_DIR_OUT LI_CCFG_DIRECTION | ||
408 | # define LI_CCFG_MODE 0x00000004 | ||
409 | # define LI_CCFG_MODE_MONO (!LI_CCFG_MODE) | ||
410 | # define LI_CCFG_MODE_STEREO LI_CCFG_MODE | ||
411 | # define LI_CCFG_FORMAT 0x00000003 | ||
412 | # define LI_CCFG_FMT_8BIT 0x00000000 | ||
413 | # define LI_CCFG_FMT_16BIT 0x00000001 | ||
414 | #define LI_COMM2_BASE 0x10C | ||
415 | #define LI_COMM2_CTL 0x110 | ||
416 | /* bit definitions are the same as LI_COMM1_CTL */ | ||
417 | #define LI_COMM2_CFG 0x114 | ||
418 | /* bit definitions are the same as LI_COMM1_CFG */ | ||
419 | |||
420 | #define LI_UST_LOW 0x200 /* 64-bit Unadjusted System Time is */ | ||
421 | #define LI_UST_HIGH 0x204 /* microseconds since boot */ | ||
422 | |||
423 | #define LI_AUDIO1_UST 0x300 /* UST-MSC pairs */ | ||
424 | #define LI_AUDIO1_MSC 0x304 /* MSC (Media Stream Counter) */ | ||
425 | #define LI_AUDIO2_UST 0x308 /* counts samples actually */ | ||
426 | #define LI_AUDIO2_MSC 0x30C /* processed as of time UST */ | ||
427 | |||
428 | /* | ||
429 | * Lithium's DMA engine operates on chunks of 32 bytes. We call that | ||
430 | * a DMACHUNK. | ||
431 | */ | ||
432 | |||
433 | #define DMACHUNK_SHIFT 5 | ||
434 | #define DMACHUNK_SIZE (1 << DMACHUNK_SHIFT) | ||
435 | #define BYTES_TO_CHUNKS(bytes) ((bytes) >> DMACHUNK_SHIFT) | ||
436 | #define CHUNKS_TO_BYTES(chunks) ((chunks) << DMACHUNK_SHIFT) | ||
437 | |||
438 | /* | ||
439 | * Two convenient macros to shift bitfields into/out of position. | ||
440 | * | ||
441 | * Observe that (mask & -mask) is (1 << low_set_bit_of(mask)). | ||
442 | * As long as mask is constant, we trust the compiler will change the | ||
443 | * multiply and divide into shifts. | ||
444 | */ | ||
445 | |||
446 | #define SHIFT_FIELD(val, mask) (((val) * ((mask) & -(mask))) & (mask)) | ||
447 | #define UNSHIFT_FIELD(val, mask) (((val) & (mask)) / ((mask) & -(mask))) | ||
448 | |||
449 | /* | ||
450 | * dma_chan_desc is invariant information about a Lithium | ||
451 | * DMA channel. There are two instances, li_comm1 and li_comm2. | ||
452 | * | ||
453 | * Note that the CCTL register fields are write ptr and read ptr, but what | ||
454 | * we care about are which pointer is updated by software and which by | ||
455 | * hardware. | ||
456 | */ | ||
457 | |||
458 | typedef struct dma_chan_desc { | ||
459 | int basereg; | ||
460 | int cfgreg; | ||
461 | int ctlreg; | ||
462 | int hwptrreg; | ||
463 | int swptrreg; | ||
464 | int ustreg; | ||
465 | int mscreg; | ||
466 | unsigned long swptrmask; | ||
467 | int ad1843_slot; | ||
468 | int direction; /* LI_CCTL_DIR_IN/OUT */ | ||
469 | } dma_chan_desc_t; | ||
470 | |||
471 | static const dma_chan_desc_t li_comm1 = { | ||
472 | LI_COMM1_BASE, /* base register offset */ | ||
473 | LI_COMM1_CFG, /* config register offset */ | ||
474 | LI_COMM1_CTL, /* control register offset */ | ||
475 | LI_COMM1_CTL + 0, /* hw ptr reg offset (write ptr) */ | ||
476 | LI_COMM1_CTL + 1, /* sw ptr reg offset (read ptr) */ | ||
477 | LI_AUDIO1_UST, /* ust reg offset */ | ||
478 | LI_AUDIO1_MSC, /* msc reg offset */ | ||
479 | LI_CCTL_RPTR, /* sw ptr bitmask in ctlval */ | ||
480 | 2, /* ad1843 serial slot */ | ||
481 | LI_CCFG_DIR_IN /* direction */ | ||
482 | }; | ||
483 | |||
484 | static const dma_chan_desc_t li_comm2 = { | ||
485 | LI_COMM2_BASE, /* base register offset */ | ||
486 | LI_COMM2_CFG, /* config register offset */ | ||
487 | LI_COMM2_CTL, /* control register offset */ | ||
488 | LI_COMM2_CTL + 1, /* hw ptr reg offset (read ptr) */ | ||
489 | LI_COMM2_CTL + 0, /* sw ptr reg offset (writr ptr) */ | ||
490 | LI_AUDIO2_UST, /* ust reg offset */ | ||
491 | LI_AUDIO2_MSC, /* msc reg offset */ | ||
492 | LI_CCTL_WPTR, /* sw ptr bitmask in ctlval */ | ||
493 | 2, /* ad1843 serial slot */ | ||
494 | LI_CCFG_DIR_OUT /* direction */ | ||
495 | }; | ||
496 | |||
497 | /* | ||
498 | * dma_chan is variable information about a Lithium DMA channel. | ||
499 | * | ||
500 | * The desc field points to invariant information. | ||
501 | * The lith field points to a lithium_t which is passed | ||
502 | * to li_read* and li_write* to access the registers. | ||
503 | * The *val fields shadow the lithium registers' contents. | ||
504 | */ | ||
505 | |||
506 | typedef struct dma_chan { | ||
507 | const dma_chan_desc_t *desc; | ||
508 | lithium_t *lith; | ||
509 | unsigned long baseval; | ||
510 | unsigned long cfgval; | ||
511 | unsigned long ctlval; | ||
512 | } dma_chan_t; | ||
513 | |||
514 | /* | ||
515 | * ustmsc is a UST/MSC pair (Unadjusted System Time/Media Stream Counter). | ||
516 | * UST is time in microseconds since the system booted, and MSC is a | ||
517 | * counter that increments with every audio sample. | ||
518 | */ | ||
519 | |||
520 | typedef struct ustmsc { | ||
521 | unsigned long long ust; | ||
522 | unsigned long msc; | ||
523 | } ustmsc_t; | ||
524 | |||
525 | /* | ||
526 | * li_ad1843_wait waits until lithium says the AD1843 register | ||
527 | * exchange is not busy. Returns 0 on success, -EBUSY on timeout. | ||
528 | * | ||
529 | * Locking: must be called with lithium_lock held. | ||
530 | */ | ||
531 | |||
532 | static int li_ad1843_wait(lithium_t *lith) | ||
533 | { | ||
534 | unsigned long later = jiffies + 2; | ||
535 | while (li_readl(lith, LI_CODEC_COMMAND) & LI_CC_BUSY) | ||
536 | if (time_after_eq(jiffies, later)) | ||
537 | return -EBUSY; | ||
538 | return 0; | ||
539 | } | ||
540 | |||
541 | /* | ||
542 | * li_read_ad1843_reg returns the current contents of a 16 bit AD1843 register. | ||
543 | * | ||
544 | * Returns unsigned register value on success, -errno on failure. | ||
545 | */ | ||
546 | |||
547 | static int li_read_ad1843_reg(lithium_t *lith, int reg) | ||
548 | { | ||
549 | int val; | ||
550 | |||
551 | ASSERT(!in_interrupt()); | ||
552 | spin_lock(&lith->lock); | ||
553 | { | ||
554 | val = li_ad1843_wait(lith); | ||
555 | if (val == 0) { | ||
556 | li_writel(lith, LI_CODEC_COMMAND, LI_CC_DIR_RD | reg); | ||
557 | val = li_ad1843_wait(lith); | ||
558 | } | ||
559 | if (val == 0) | ||
560 | val = li_readl(lith, LI_CODEC_DATA); | ||
561 | } | ||
562 | spin_unlock(&lith->lock); | ||
563 | |||
564 | DBGXV("li_read_ad1843_reg(lith=0x%p, reg=%d) returns 0x%04x\n", | ||
565 | lith, reg, val); | ||
566 | |||
567 | return val; | ||
568 | } | ||
569 | |||
570 | /* | ||
571 | * li_write_ad1843_reg writes the specified value to a 16 bit AD1843 register. | ||
572 | */ | ||
573 | |||
574 | static void li_write_ad1843_reg(lithium_t *lith, int reg, int newval) | ||
575 | { | ||
576 | spin_lock(&lith->lock); | ||
577 | { | ||
578 | if (li_ad1843_wait(lith) == 0) { | ||
579 | li_writel(lith, LI_CODEC_DATA, newval); | ||
580 | li_writel(lith, LI_CODEC_COMMAND, LI_CC_DIR_WR | reg); | ||
581 | } | ||
582 | } | ||
583 | spin_unlock(&lith->lock); | ||
584 | } | ||
585 | |||
586 | /* | ||
587 | * li_setup_dma calculates all the register settings for DMA in a particular | ||
588 | * mode. It takes too many arguments. | ||
589 | */ | ||
590 | |||
591 | static void li_setup_dma(dma_chan_t *chan, | ||
592 | const dma_chan_desc_t *desc, | ||
593 | lithium_t *lith, | ||
594 | unsigned long buffer_paddr, | ||
595 | int bufshift, | ||
596 | int fragshift, | ||
597 | int channels, | ||
598 | int sampsize) | ||
599 | { | ||
600 | unsigned long mode, format; | ||
601 | unsigned long size, tmask; | ||
602 | |||
603 | DBGEV("(chan=0x%p, desc=0x%p, lith=0x%p, buffer_paddr=0x%lx, " | ||
604 | "bufshift=%d, fragshift=%d, channels=%d, sampsize=%d)\n", | ||
605 | chan, desc, lith, buffer_paddr, | ||
606 | bufshift, fragshift, channels, sampsize); | ||
607 | |||
608 | /* Reset the channel first. */ | ||
609 | |||
610 | li_writel(lith, desc->ctlreg, LI_CCTL_RESET); | ||
611 | |||
612 | ASSERT(channels == 1 || channels == 2); | ||
613 | if (channels == 2) | ||
614 | mode = LI_CCFG_MODE_STEREO; | ||
615 | else | ||
616 | mode = LI_CCFG_MODE_MONO; | ||
617 | ASSERT(sampsize == 1 || sampsize == 2); | ||
618 | if (sampsize == 2) | ||
619 | format = LI_CCFG_FMT_16BIT; | ||
620 | else | ||
621 | format = LI_CCFG_FMT_8BIT; | ||
622 | chan->desc = desc; | ||
623 | chan->lith = lith; | ||
624 | |||
625 | /* | ||
626 | * Lithium DMA address register takes a 40-bit physical | ||
627 | * address, right-shifted by 8 so it fits in 32 bits. Bit 37 | ||
628 | * must be set -- it enables cache coherence. | ||
629 | */ | ||
630 | |||
631 | ASSERT(!(buffer_paddr & 0xFF)); | ||
632 | chan->baseval = (buffer_paddr >> 8) | 1 << (37 - 8); | ||
633 | |||
634 | chan->cfgval = ((chan->cfgval & ~LI_CCFG_LOCK) | | ||
635 | SHIFT_FIELD(desc->ad1843_slot, LI_CCFG_SLOT) | | ||
636 | desc->direction | | ||
637 | mode | | ||
638 | format); | ||
639 | |||
640 | size = bufshift - 6; | ||
641 | tmask = 13 - fragshift; /* See Lithium DMA Notes above. */ | ||
642 | ASSERT(size >= 2 && size <= 7); | ||
643 | ASSERT(tmask >= 1 && tmask <= 7); | ||
644 | chan->ctlval = ((chan->ctlval & ~LI_CCTL_RESET) | | ||
645 | SHIFT_FIELD(size, LI_CCTL_SIZE) | | ||
646 | (chan->ctlval & ~LI_CCTL_DMA_ENABLE) | | ||
647 | SHIFT_FIELD(tmask, LI_CCTL_TMASK) | | ||
648 | SHIFT_FIELD(0, LI_CCTL_TPTR)); | ||
649 | |||
650 | DBGPV("basereg 0x%x = 0x%lx\n", desc->basereg, chan->baseval); | ||
651 | DBGPV("cfgreg 0x%x = 0x%lx\n", desc->cfgreg, chan->cfgval); | ||
652 | DBGPV("ctlreg 0x%x = 0x%lx\n", desc->ctlreg, chan->ctlval); | ||
653 | |||
654 | li_writel(lith, desc->basereg, chan->baseval); | ||
655 | li_writel(lith, desc->cfgreg, chan->cfgval); | ||
656 | li_writel(lith, desc->ctlreg, chan->ctlval); | ||
657 | |||
658 | DBGRV(); | ||
659 | } | ||
660 | |||
661 | static void li_shutdown_dma(dma_chan_t *chan) | ||
662 | { | ||
663 | lithium_t *lith = chan->lith; | ||
664 | void * lith1 = lith->page1; | ||
665 | |||
666 | DBGEV("(chan=0x%p)\n", chan); | ||
667 | |||
668 | chan->ctlval &= ~LI_CCTL_DMA_ENABLE; | ||
669 | DBGPV("ctlreg 0x%x = 0x%lx\n", chan->desc->ctlreg, chan->ctlval); | ||
670 | li_writel(lith, chan->desc->ctlreg, chan->ctlval); | ||
671 | |||
672 | /* | ||
673 | * Offset 0x500 on Lithium page 1 is an undocumented, | ||
674 | * unsupported register that holds the zero sample value. | ||
675 | * Lithium is supposed to output zero samples when DMA is | ||
676 | * inactive, and repeat the last sample when DMA underflows. | ||
677 | * But it has a bug, where, after underflow occurs, the zero | ||
678 | * sample is not reset. | ||
679 | * | ||
680 | * I expect this to break in a future rev of Lithium. | ||
681 | */ | ||
682 | |||
683 | if (lith1 && chan->desc->direction == LI_CCFG_DIR_OUT) | ||
684 | * (volatile unsigned long *) (lith1 + 0x500) = 0; | ||
685 | } | ||
686 | |||
687 | /* | ||
688 | * li_activate_dma always starts dma at the beginning of the buffer. | ||
689 | * | ||
690 | * N.B., these may be called from interrupt. | ||
691 | */ | ||
692 | |||
693 | static __inline__ void li_activate_dma(dma_chan_t *chan) | ||
694 | { | ||
695 | chan->ctlval |= LI_CCTL_DMA_ENABLE; | ||
696 | DBGPV("ctlval = 0x%lx\n", chan->ctlval); | ||
697 | li_writel(chan->lith, chan->desc->ctlreg, chan->ctlval); | ||
698 | } | ||
699 | |||
700 | static void li_deactivate_dma(dma_chan_t *chan) | ||
701 | { | ||
702 | lithium_t *lith = chan->lith; | ||
703 | void * lith2 = lith->page2; | ||
704 | |||
705 | chan->ctlval &= ~(LI_CCTL_DMA_ENABLE | LI_CCTL_RPTR | LI_CCTL_WPTR); | ||
706 | DBGPV("ctlval = 0x%lx\n", chan->ctlval); | ||
707 | DBGPV("ctlreg 0x%x = 0x%lx\n", chan->desc->ctlreg, chan->ctlval); | ||
708 | li_writel(lith, chan->desc->ctlreg, chan->ctlval); | ||
709 | |||
710 | /* | ||
711 | * Offsets 0x98 and 0x9C on Lithium page 2 are undocumented, | ||
712 | * unsupported registers that are internal copies of the DMA | ||
713 | * read and write pointers. Because of a Lithium bug, these | ||
714 | * registers aren't zeroed correctly when DMA is shut off. So | ||
715 | * we whack them directly. | ||
716 | * | ||
717 | * I expect this to break in a future rev of Lithium. | ||
718 | */ | ||
719 | |||
720 | if (lith2 && chan->desc->direction == LI_CCFG_DIR_OUT) { | ||
721 | * (volatile unsigned long *) (lith2 + 0x98) = 0; | ||
722 | * (volatile unsigned long *) (lith2 + 0x9C) = 0; | ||
723 | } | ||
724 | } | ||
725 | |||
726 | /* | ||
727 | * read/write the ring buffer pointers. These routines' arguments and results | ||
728 | * are byte offsets from the beginning of the ring buffer. | ||
729 | */ | ||
730 | |||
731 | static __inline__ int li_read_swptr(dma_chan_t *chan) | ||
732 | { | ||
733 | const unsigned long mask = chan->desc->swptrmask; | ||
734 | |||
735 | return CHUNKS_TO_BYTES(UNSHIFT_FIELD(chan->ctlval, mask)); | ||
736 | } | ||
737 | |||
738 | static __inline__ int li_read_hwptr(dma_chan_t *chan) | ||
739 | { | ||
740 | return CHUNKS_TO_BYTES(li_readb(chan->lith, chan->desc->hwptrreg)); | ||
741 | } | ||
742 | |||
743 | static __inline__ void li_write_swptr(dma_chan_t *chan, int val) | ||
744 | { | ||
745 | const unsigned long mask = chan->desc->swptrmask; | ||
746 | |||
747 | ASSERT(!(val & ~CHUNKS_TO_BYTES(0xFF))); | ||
748 | val = BYTES_TO_CHUNKS(val); | ||
749 | chan->ctlval = (chan->ctlval & ~mask) | SHIFT_FIELD(val, mask); | ||
750 | li_writeb(chan->lith, chan->desc->swptrreg, val); | ||
751 | } | ||
752 | |||
753 | /* li_read_USTMSC() returns a UST/MSC pair for the given channel. */ | ||
754 | |||
755 | static void li_read_USTMSC(dma_chan_t *chan, ustmsc_t *ustmsc) | ||
756 | { | ||
757 | lithium_t *lith = chan->lith; | ||
758 | const dma_chan_desc_t *desc = chan->desc; | ||
759 | unsigned long now_low, now_high0, now_high1, chan_ust; | ||
760 | |||
761 | spin_lock(&lith->lock); | ||
762 | { | ||
763 | /* | ||
764 | * retry until we do all five reads without the | ||
765 | * high word changing. (High word increments | ||
766 | * every 2^32 microseconds, i.e., not often) | ||
767 | */ | ||
768 | do { | ||
769 | now_high0 = li_readl(lith, LI_UST_HIGH); | ||
770 | now_low = li_readl(lith, LI_UST_LOW); | ||
771 | |||
772 | /* | ||
773 | * Lithium guarantees these two reads will be | ||
774 | * atomic -- ust will not increment after msc | ||
775 | * is read. | ||
776 | */ | ||
777 | |||
778 | ustmsc->msc = li_readl(lith, desc->mscreg); | ||
779 | chan_ust = li_readl(lith, desc->ustreg); | ||
780 | |||
781 | now_high1 = li_readl(lith, LI_UST_HIGH); | ||
782 | } while (now_high0 != now_high1); | ||
783 | } | ||
784 | spin_unlock(&lith->lock); | ||
785 | ustmsc->ust = ((unsigned long long) now_high0 << 32 | chan_ust); | ||
786 | } | ||
787 | |||
788 | static void li_enable_interrupts(lithium_t *lith, unsigned int mask) | ||
789 | { | ||
790 | DBGEV("(lith=0x%p, mask=0x%x)\n", lith, mask); | ||
791 | |||
792 | /* clear any already-pending interrupts. */ | ||
793 | |||
794 | li_writel(lith, LI_INTR_STATUS, mask); | ||
795 | |||
796 | /* enable the interrupts. */ | ||
797 | |||
798 | mask |= li_readl(lith, LI_INTR_MASK); | ||
799 | li_writel(lith, LI_INTR_MASK, mask); | ||
800 | } | ||
801 | |||
802 | static void li_disable_interrupts(lithium_t *lith, unsigned int mask) | ||
803 | { | ||
804 | unsigned int keepmask; | ||
805 | |||
806 | DBGEV("(lith=0x%p, mask=0x%x)\n", lith, mask); | ||
807 | |||
808 | /* disable the interrupts */ | ||
809 | |||
810 | keepmask = li_readl(lith, LI_INTR_MASK) & ~mask; | ||
811 | li_writel(lith, LI_INTR_MASK, keepmask); | ||
812 | |||
813 | /* clear any pending interrupts. */ | ||
814 | |||
815 | li_writel(lith, LI_INTR_STATUS, mask); | ||
816 | } | ||
817 | |||
818 | /* Get the interrupt status and clear all pending interrupts. */ | ||
819 | |||
820 | static unsigned int li_get_clear_intr_status(lithium_t *lith) | ||
821 | { | ||
822 | unsigned int status; | ||
823 | |||
824 | status = li_readl(lith, LI_INTR_STATUS); | ||
825 | li_writel(lith, LI_INTR_STATUS, ~0); | ||
826 | return status & li_readl(lith, LI_INTR_MASK); | ||
827 | } | ||
828 | |||
829 | static int li_init(lithium_t *lith) | ||
830 | { | ||
831 | /* 1. System power supplies stabilize. */ | ||
832 | |||
833 | /* 2. Assert the ~RESET signal. */ | ||
834 | |||
835 | li_writel(lith, LI_HOST_CONTROLLER, LI_HC_RESET); | ||
836 | udelay(1); | ||
837 | |||
838 | /* 3. Deassert the ~RESET signal and enter a wait period to allow | ||
839 | the AD1843 internal clocks and the external crystal oscillator | ||
840 | to stabilize. */ | ||
841 | |||
842 | li_writel(lith, LI_HOST_CONTROLLER, LI_HC_LINK_ENABLE); | ||
843 | udelay(1); | ||
844 | |||
845 | return 0; | ||
846 | } | ||
847 | |||
848 | /*****************************************************************************/ | ||
849 | /* AD1843 access */ | ||
850 | |||
851 | /* | ||
852 | * AD1843 bitfield definitions. All are named as in the AD1843 data | ||
853 | * sheet, with ad1843_ prepended and individual bit numbers removed. | ||
854 | * | ||
855 | * E.g., bits LSS0 through LSS2 become ad1843_LSS. | ||
856 | * | ||
857 | * Only the bitfields we need are defined. | ||
858 | */ | ||
859 | |||
860 | typedef struct ad1843_bitfield { | ||
861 | char reg; | ||
862 | char lo_bit; | ||
863 | char nbits; | ||
864 | } ad1843_bitfield_t; | ||
865 | |||
866 | static const ad1843_bitfield_t | ||
867 | ad1843_PDNO = { 0, 14, 1 }, /* Converter Power-Down Flag */ | ||
868 | ad1843_INIT = { 0, 15, 1 }, /* Clock Initialization Flag */ | ||
869 | ad1843_RIG = { 2, 0, 4 }, /* Right ADC Input Gain */ | ||
870 | ad1843_RMGE = { 2, 4, 1 }, /* Right ADC Mic Gain Enable */ | ||
871 | ad1843_RSS = { 2, 5, 3 }, /* Right ADC Source Select */ | ||
872 | ad1843_LIG = { 2, 8, 4 }, /* Left ADC Input Gain */ | ||
873 | ad1843_LMGE = { 2, 12, 1 }, /* Left ADC Mic Gain Enable */ | ||
874 | ad1843_LSS = { 2, 13, 3 }, /* Left ADC Source Select */ | ||
875 | ad1843_RX1M = { 4, 0, 5 }, /* Right Aux 1 Mix Gain/Atten */ | ||
876 | ad1843_RX1MM = { 4, 7, 1 }, /* Right Aux 1 Mix Mute */ | ||
877 | ad1843_LX1M = { 4, 8, 5 }, /* Left Aux 1 Mix Gain/Atten */ | ||
878 | ad1843_LX1MM = { 4, 15, 1 }, /* Left Aux 1 Mix Mute */ | ||
879 | ad1843_RX2M = { 5, 0, 5 }, /* Right Aux 2 Mix Gain/Atten */ | ||
880 | ad1843_RX2MM = { 5, 7, 1 }, /* Right Aux 2 Mix Mute */ | ||
881 | ad1843_LX2M = { 5, 8, 5 }, /* Left Aux 2 Mix Gain/Atten */ | ||
882 | ad1843_LX2MM = { 5, 15, 1 }, /* Left Aux 2 Mix Mute */ | ||
883 | ad1843_RMCM = { 7, 0, 5 }, /* Right Mic Mix Gain/Atten */ | ||
884 | ad1843_RMCMM = { 7, 7, 1 }, /* Right Mic Mix Mute */ | ||
885 | ad1843_LMCM = { 7, 8, 5 }, /* Left Mic Mix Gain/Atten */ | ||
886 | ad1843_LMCMM = { 7, 15, 1 }, /* Left Mic Mix Mute */ | ||
887 | ad1843_HPOS = { 8, 4, 1 }, /* Headphone Output Voltage Swing */ | ||
888 | ad1843_HPOM = { 8, 5, 1 }, /* Headphone Output Mute */ | ||
889 | ad1843_RDA1G = { 9, 0, 6 }, /* Right DAC1 Analog/Digital Gain */ | ||
890 | ad1843_RDA1GM = { 9, 7, 1 }, /* Right DAC1 Analog Mute */ | ||
891 | ad1843_LDA1G = { 9, 8, 6 }, /* Left DAC1 Analog/Digital Gain */ | ||
892 | ad1843_LDA1GM = { 9, 15, 1 }, /* Left DAC1 Analog Mute */ | ||
893 | ad1843_RDA1AM = { 11, 7, 1 }, /* Right DAC1 Digital Mute */ | ||
894 | ad1843_LDA1AM = { 11, 15, 1 }, /* Left DAC1 Digital Mute */ | ||
895 | ad1843_ADLC = { 15, 0, 2 }, /* ADC Left Sample Rate Source */ | ||
896 | ad1843_ADRC = { 15, 2, 2 }, /* ADC Right Sample Rate Source */ | ||
897 | ad1843_DA1C = { 15, 8, 2 }, /* DAC1 Sample Rate Source */ | ||
898 | ad1843_C1C = { 17, 0, 16 }, /* Clock 1 Sample Rate Select */ | ||
899 | ad1843_C2C = { 20, 0, 16 }, /* Clock 1 Sample Rate Select */ | ||
900 | ad1843_DAADL = { 25, 4, 2 }, /* Digital ADC Left Source Select */ | ||
901 | ad1843_DAADR = { 25, 6, 2 }, /* Digital ADC Right Source Select */ | ||
902 | ad1843_DRSFLT = { 25, 15, 1 }, /* Digital Reampler Filter Mode */ | ||
903 | ad1843_ADLF = { 26, 0, 2 }, /* ADC Left Channel Data Format */ | ||
904 | ad1843_ADRF = { 26, 2, 2 }, /* ADC Right Channel Data Format */ | ||
905 | ad1843_ADTLK = { 26, 4, 1 }, /* ADC Transmit Lock Mode Select */ | ||
906 | ad1843_SCF = { 26, 7, 1 }, /* SCLK Frequency Select */ | ||
907 | ad1843_DA1F = { 26, 8, 2 }, /* DAC1 Data Format Select */ | ||
908 | ad1843_DA1SM = { 26, 14, 1 }, /* DAC1 Stereo/Mono Mode Select */ | ||
909 | ad1843_ADLEN = { 27, 0, 1 }, /* ADC Left Channel Enable */ | ||
910 | ad1843_ADREN = { 27, 1, 1 }, /* ADC Right Channel Enable */ | ||
911 | ad1843_AAMEN = { 27, 4, 1 }, /* Analog to Analog Mix Enable */ | ||
912 | ad1843_ANAEN = { 27, 7, 1 }, /* Analog Channel Enable */ | ||
913 | ad1843_DA1EN = { 27, 8, 1 }, /* DAC1 Enable */ | ||
914 | ad1843_DA2EN = { 27, 9, 1 }, /* DAC2 Enable */ | ||
915 | ad1843_C1EN = { 28, 11, 1 }, /* Clock Generator 1 Enable */ | ||
916 | ad1843_C2EN = { 28, 12, 1 }, /* Clock Generator 2 Enable */ | ||
917 | ad1843_PDNI = { 28, 15, 1 }; /* Converter Power Down */ | ||
918 | |||
919 | /* | ||
920 | * The various registers of the AD1843 use three different formats for | ||
921 | * specifying gain. The ad1843_gain structure parameterizes the | ||
922 | * formats. | ||
923 | */ | ||
924 | |||
925 | typedef struct ad1843_gain { | ||
926 | |||
927 | int negative; /* nonzero if gain is negative. */ | ||
928 | const ad1843_bitfield_t *lfield; | ||
929 | const ad1843_bitfield_t *rfield; | ||
930 | |||
931 | } ad1843_gain_t; | ||
932 | |||
933 | static const ad1843_gain_t ad1843_gain_RECLEV | ||
934 | = { 0, &ad1843_LIG, &ad1843_RIG }; | ||
935 | static const ad1843_gain_t ad1843_gain_LINE | ||
936 | = { 1, &ad1843_LX1M, &ad1843_RX1M }; | ||
937 | static const ad1843_gain_t ad1843_gain_CD | ||
938 | = { 1, &ad1843_LX2M, &ad1843_RX2M }; | ||
939 | static const ad1843_gain_t ad1843_gain_MIC | ||
940 | = { 1, &ad1843_LMCM, &ad1843_RMCM }; | ||
941 | static const ad1843_gain_t ad1843_gain_PCM | ||
942 | = { 1, &ad1843_LDA1G, &ad1843_RDA1G }; | ||
943 | |||
944 | /* read the current value of an AD1843 bitfield. */ | ||
945 | |||
946 | static int ad1843_read_bits(lithium_t *lith, const ad1843_bitfield_t *field) | ||
947 | { | ||
948 | int w = li_read_ad1843_reg(lith, field->reg); | ||
949 | int val = w >> field->lo_bit & ((1 << field->nbits) - 1); | ||
950 | |||
951 | DBGXV("ad1843_read_bits(lith=0x%p, field->{%d %d %d}) returns 0x%x\n", | ||
952 | lith, field->reg, field->lo_bit, field->nbits, val); | ||
953 | |||
954 | return val; | ||
955 | } | ||
956 | |||
957 | /* | ||
958 | * write a new value to an AD1843 bitfield and return the old value. | ||
959 | */ | ||
960 | |||
961 | static int ad1843_write_bits(lithium_t *lith, | ||
962 | const ad1843_bitfield_t *field, | ||
963 | int newval) | ||
964 | { | ||
965 | int w = li_read_ad1843_reg(lith, field->reg); | ||
966 | int mask = ((1 << field->nbits) - 1) << field->lo_bit; | ||
967 | int oldval = (w & mask) >> field->lo_bit; | ||
968 | int newbits = (newval << field->lo_bit) & mask; | ||
969 | w = (w & ~mask) | newbits; | ||
970 | (void) li_write_ad1843_reg(lith, field->reg, w); | ||
971 | |||
972 | DBGXV("ad1843_write_bits(lith=0x%p, field->{%d %d %d}, val=0x%x) " | ||
973 | "returns 0x%x\n", | ||
974 | lith, field->reg, field->lo_bit, field->nbits, newval, | ||
975 | oldval); | ||
976 | |||
977 | return oldval; | ||
978 | } | ||
979 | |||
980 | /* | ||
981 | * ad1843_read_multi reads multiple bitfields from the same AD1843 | ||
982 | * register. It uses a single read cycle to do it. (Reading the | ||
983 | * ad1843 requires 256 bit times at 12.288 MHz, or nearly 20 | ||
984 | * microseconds.) | ||
985 | * | ||
986 | * Called ike this. | ||
987 | * | ||
988 | * ad1843_read_multi(lith, nfields, | ||
989 | * &ad1843_FIELD1, &val1, | ||
990 | * &ad1843_FIELD2, &val2, ...); | ||
991 | */ | ||
992 | |||
993 | static void ad1843_read_multi(lithium_t *lith, int argcount, ...) | ||
994 | { | ||
995 | va_list ap; | ||
996 | const ad1843_bitfield_t *fp; | ||
997 | int w = 0, mask, *value, reg = -1; | ||
998 | |||
999 | va_start(ap, argcount); | ||
1000 | while (--argcount >= 0) { | ||
1001 | fp = va_arg(ap, const ad1843_bitfield_t *); | ||
1002 | value = va_arg(ap, int *); | ||
1003 | if (reg == -1) { | ||
1004 | reg = fp->reg; | ||
1005 | w = li_read_ad1843_reg(lith, reg); | ||
1006 | } | ||
1007 | ASSERT(reg == fp->reg); | ||
1008 | mask = (1 << fp->nbits) - 1; | ||
1009 | *value = w >> fp->lo_bit & mask; | ||
1010 | } | ||
1011 | va_end(ap); | ||
1012 | } | ||
1013 | |||
1014 | /* | ||
1015 | * ad1843_write_multi stores multiple bitfields into the same AD1843 | ||
1016 | * register. It uses one read and one write cycle to do it. | ||
1017 | * | ||
1018 | * Called like this. | ||
1019 | * | ||
1020 | * ad1843_write_multi(lith, nfields, | ||
1021 | * &ad1843_FIELD1, val1, | ||
1022 | * &ad1843_FIELF2, val2, ...); | ||
1023 | */ | ||
1024 | |||
1025 | static void ad1843_write_multi(lithium_t *lith, int argcount, ...) | ||
1026 | { | ||
1027 | va_list ap; | ||
1028 | int reg; | ||
1029 | const ad1843_bitfield_t *fp; | ||
1030 | int value; | ||
1031 | int w, m, mask, bits; | ||
1032 | |||
1033 | mask = 0; | ||
1034 | bits = 0; | ||
1035 | reg = -1; | ||
1036 | |||
1037 | va_start(ap, argcount); | ||
1038 | while (--argcount >= 0) { | ||
1039 | fp = va_arg(ap, const ad1843_bitfield_t *); | ||
1040 | value = va_arg(ap, int); | ||
1041 | if (reg == -1) | ||
1042 | reg = fp->reg; | ||
1043 | ASSERT(fp->reg == reg); | ||
1044 | m = ((1 << fp->nbits) - 1) << fp->lo_bit; | ||
1045 | mask |= m; | ||
1046 | bits |= (value << fp->lo_bit) & m; | ||
1047 | } | ||
1048 | va_end(ap); | ||
1049 | ASSERT(!(bits & ~mask)); | ||
1050 | if (~mask & 0xFFFF) | ||
1051 | w = li_read_ad1843_reg(lith, reg); | ||
1052 | else | ||
1053 | w = 0; | ||
1054 | w = (w & ~mask) | bits; | ||
1055 | (void) li_write_ad1843_reg(lith, reg, w); | ||
1056 | } | ||
1057 | |||
1058 | /* | ||
1059 | * ad1843_get_gain reads the specified register and extracts the gain value | ||
1060 | * using the supplied gain type. It returns the gain in OSS format. | ||
1061 | */ | ||
1062 | |||
1063 | static int ad1843_get_gain(lithium_t *lith, const ad1843_gain_t *gp) | ||
1064 | { | ||
1065 | int lg, rg; | ||
1066 | unsigned short mask = (1 << gp->lfield->nbits) - 1; | ||
1067 | |||
1068 | ad1843_read_multi(lith, 2, gp->lfield, &lg, gp->rfield, &rg); | ||
1069 | if (gp->negative) { | ||
1070 | lg = mask - lg; | ||
1071 | rg = mask - rg; | ||
1072 | } | ||
1073 | lg = (lg * 100 + (mask >> 1)) / mask; | ||
1074 | rg = (rg * 100 + (mask >> 1)) / mask; | ||
1075 | return lg << 0 | rg << 8; | ||
1076 | } | ||
1077 | |||
1078 | /* | ||
1079 | * Set an audio channel's gain. Converts from OSS format to AD1843's | ||
1080 | * format. | ||
1081 | * | ||
1082 | * Returns the new gain, which may be lower than the old gain. | ||
1083 | */ | ||
1084 | |||
1085 | static int ad1843_set_gain(lithium_t *lith, | ||
1086 | const ad1843_gain_t *gp, | ||
1087 | int newval) | ||
1088 | { | ||
1089 | unsigned short mask = (1 << gp->lfield->nbits) - 1; | ||
1090 | |||
1091 | int lg = newval >> 0 & 0xFF; | ||
1092 | int rg = newval >> 8; | ||
1093 | if (lg < 0 || lg > 100 || rg < 0 || rg > 100) | ||
1094 | return -EINVAL; | ||
1095 | lg = (lg * mask + (mask >> 1)) / 100; | ||
1096 | rg = (rg * mask + (mask >> 1)) / 100; | ||
1097 | if (gp->negative) { | ||
1098 | lg = mask - lg; | ||
1099 | rg = mask - rg; | ||
1100 | } | ||
1101 | ad1843_write_multi(lith, 2, gp->lfield, lg, gp->rfield, rg); | ||
1102 | return ad1843_get_gain(lith, gp); | ||
1103 | } | ||
1104 | |||
1105 | /* Returns the current recording source, in OSS format. */ | ||
1106 | |||
1107 | static int ad1843_get_recsrc(lithium_t *lith) | ||
1108 | { | ||
1109 | int ls = ad1843_read_bits(lith, &ad1843_LSS); | ||
1110 | |||
1111 | switch (ls) { | ||
1112 | case 1: | ||
1113 | return SOUND_MASK_MIC; | ||
1114 | case 2: | ||
1115 | return SOUND_MASK_LINE; | ||
1116 | case 3: | ||
1117 | return SOUND_MASK_CD; | ||
1118 | case 6: | ||
1119 | return SOUND_MASK_PCM; | ||
1120 | default: | ||
1121 | ASSERT(0); | ||
1122 | return -1; | ||
1123 | } | ||
1124 | } | ||
1125 | |||
1126 | /* | ||
1127 | * Enable/disable digital resample mode in the AD1843. | ||
1128 | * | ||
1129 | * The AD1843 requires that ADL, ADR, DA1 and DA2 be powered down | ||
1130 | * while switching modes. So we save DA1's state (DA2's state is not | ||
1131 | * interesting), power them down, switch into/out of resample mode, | ||
1132 | * power them up, and restore state. | ||
1133 | * | ||
1134 | * This will cause audible glitches if D/A or A/D is going on, so the | ||
1135 | * driver disallows that (in mixer_write_ioctl()). | ||
1136 | * | ||
1137 | * The open question is, is this worth doing? I'm leaving it in, | ||
1138 | * because it's written, but... | ||
1139 | */ | ||
1140 | |||
1141 | static void ad1843_set_resample_mode(lithium_t *lith, int onoff) | ||
1142 | { | ||
1143 | /* Save DA1 mute and gain (addr 9 is DA1 analog gain/attenuation) */ | ||
1144 | int save_da1 = li_read_ad1843_reg(lith, 9); | ||
1145 | |||
1146 | /* Power down A/D and D/A. */ | ||
1147 | ad1843_write_multi(lith, 4, | ||
1148 | &ad1843_DA1EN, 0, | ||
1149 | &ad1843_DA2EN, 0, | ||
1150 | &ad1843_ADLEN, 0, | ||
1151 | &ad1843_ADREN, 0); | ||
1152 | |||
1153 | /* Switch mode */ | ||
1154 | ASSERT(onoff == 0 || onoff == 1); | ||
1155 | ad1843_write_bits(lith, &ad1843_DRSFLT, onoff); | ||
1156 | |||
1157 | /* Power up A/D and D/A. */ | ||
1158 | ad1843_write_multi(lith, 3, | ||
1159 | &ad1843_DA1EN, 1, | ||
1160 | &ad1843_ADLEN, 1, | ||
1161 | &ad1843_ADREN, 1); | ||
1162 | |||
1163 | /* Restore DA1 mute and gain. */ | ||
1164 | li_write_ad1843_reg(lith, 9, save_da1); | ||
1165 | } | ||
1166 | |||
1167 | /* | ||
1168 | * Set recording source. Arg newsrc specifies an OSS channel mask. | ||
1169 | * | ||
1170 | * The complication is that when we switch into/out of loopback mode | ||
1171 | * (i.e., src = SOUND_MASK_PCM), we change the AD1843 into/out of | ||
1172 | * digital resampling mode. | ||
1173 | * | ||
1174 | * Returns newsrc on success, -errno on failure. | ||
1175 | */ | ||
1176 | |||
1177 | static int ad1843_set_recsrc(lithium_t *lith, int newsrc) | ||
1178 | { | ||
1179 | int bits; | ||
1180 | int oldbits; | ||
1181 | |||
1182 | switch (newsrc) { | ||
1183 | case SOUND_MASK_PCM: | ||
1184 | bits = 6; | ||
1185 | break; | ||
1186 | |||
1187 | case SOUND_MASK_MIC: | ||
1188 | bits = 1; | ||
1189 | break; | ||
1190 | |||
1191 | case SOUND_MASK_LINE: | ||
1192 | bits = 2; | ||
1193 | break; | ||
1194 | |||
1195 | case SOUND_MASK_CD: | ||
1196 | bits = 3; | ||
1197 | break; | ||
1198 | |||
1199 | default: | ||
1200 | return -EINVAL; | ||
1201 | } | ||
1202 | oldbits = ad1843_read_bits(lith, &ad1843_LSS); | ||
1203 | if (newsrc == SOUND_MASK_PCM && oldbits != 6) { | ||
1204 | DBGP("enabling digital resample mode\n"); | ||
1205 | ad1843_set_resample_mode(lith, 1); | ||
1206 | ad1843_write_multi(lith, 2, | ||
1207 | &ad1843_DAADL, 2, | ||
1208 | &ad1843_DAADR, 2); | ||
1209 | } else if (newsrc != SOUND_MASK_PCM && oldbits == 6) { | ||
1210 | DBGP("disabling digital resample mode\n"); | ||
1211 | ad1843_set_resample_mode(lith, 0); | ||
1212 | ad1843_write_multi(lith, 2, | ||
1213 | &ad1843_DAADL, 0, | ||
1214 | &ad1843_DAADR, 0); | ||
1215 | } | ||
1216 | ad1843_write_multi(lith, 2, &ad1843_LSS, bits, &ad1843_RSS, bits); | ||
1217 | return newsrc; | ||
1218 | } | ||
1219 | |||
1220 | /* | ||
1221 | * Return current output sources, in OSS format. | ||
1222 | */ | ||
1223 | |||
1224 | static int ad1843_get_outsrc(lithium_t *lith) | ||
1225 | { | ||
1226 | int pcm, line, mic, cd; | ||
1227 | |||
1228 | pcm = ad1843_read_bits(lith, &ad1843_LDA1GM) ? 0 : SOUND_MASK_PCM; | ||
1229 | line = ad1843_read_bits(lith, &ad1843_LX1MM) ? 0 : SOUND_MASK_LINE; | ||
1230 | cd = ad1843_read_bits(lith, &ad1843_LX2MM) ? 0 : SOUND_MASK_CD; | ||
1231 | mic = ad1843_read_bits(lith, &ad1843_LMCMM) ? 0 : SOUND_MASK_MIC; | ||
1232 | |||
1233 | return pcm | line | cd | mic; | ||
1234 | } | ||
1235 | |||
1236 | /* | ||
1237 | * Set output sources. Arg is a mask of active sources in OSS format. | ||
1238 | * | ||
1239 | * Returns source mask on success, -errno on failure. | ||
1240 | */ | ||
1241 | |||
1242 | static int ad1843_set_outsrc(lithium_t *lith, int mask) | ||
1243 | { | ||
1244 | int pcm, line, mic, cd; | ||
1245 | |||
1246 | if (mask & ~(SOUND_MASK_PCM | SOUND_MASK_LINE | | ||
1247 | SOUND_MASK_CD | SOUND_MASK_MIC)) | ||
1248 | return -EINVAL; | ||
1249 | pcm = (mask & SOUND_MASK_PCM) ? 0 : 1; | ||
1250 | line = (mask & SOUND_MASK_LINE) ? 0 : 1; | ||
1251 | mic = (mask & SOUND_MASK_MIC) ? 0 : 1; | ||
1252 | cd = (mask & SOUND_MASK_CD) ? 0 : 1; | ||
1253 | |||
1254 | ad1843_write_multi(lith, 2, &ad1843_LDA1GM, pcm, &ad1843_RDA1GM, pcm); | ||
1255 | ad1843_write_multi(lith, 2, &ad1843_LX1MM, line, &ad1843_RX1MM, line); | ||
1256 | ad1843_write_multi(lith, 2, &ad1843_LX2MM, cd, &ad1843_RX2MM, cd); | ||
1257 | ad1843_write_multi(lith, 2, &ad1843_LMCMM, mic, &ad1843_RMCMM, mic); | ||
1258 | |||
1259 | return mask; | ||
1260 | } | ||
1261 | |||
1262 | /* Setup ad1843 for D/A conversion. */ | ||
1263 | |||
1264 | static void ad1843_setup_dac(lithium_t *lith, | ||
1265 | int framerate, | ||
1266 | int fmt, | ||
1267 | int channels) | ||
1268 | { | ||
1269 | int ad_fmt = 0, ad_mode = 0; | ||
1270 | |||
1271 | DBGEV("(lith=0x%p, framerate=%d, fmt=%d, channels=%d)\n", | ||
1272 | lith, framerate, fmt, channels); | ||
1273 | |||
1274 | switch (fmt) { | ||
1275 | case AFMT_S8: ad_fmt = 1; break; | ||
1276 | case AFMT_U8: ad_fmt = 1; break; | ||
1277 | case AFMT_S16_LE: ad_fmt = 1; break; | ||
1278 | case AFMT_MU_LAW: ad_fmt = 2; break; | ||
1279 | case AFMT_A_LAW: ad_fmt = 3; break; | ||
1280 | default: ASSERT(0); | ||
1281 | } | ||
1282 | |||
1283 | switch (channels) { | ||
1284 | case 2: ad_mode = 0; break; | ||
1285 | case 1: ad_mode = 1; break; | ||
1286 | default: ASSERT(0); | ||
1287 | } | ||
1288 | |||
1289 | DBGPV("ad_mode = %d, ad_fmt = %d\n", ad_mode, ad_fmt); | ||
1290 | ASSERT(framerate >= 4000 && framerate <= 49000); | ||
1291 | ad1843_write_bits(lith, &ad1843_C1C, framerate); | ||
1292 | ad1843_write_multi(lith, 2, | ||
1293 | &ad1843_DA1SM, ad_mode, &ad1843_DA1F, ad_fmt); | ||
1294 | } | ||
1295 | |||
1296 | static void ad1843_shutdown_dac(lithium_t *lith) | ||
1297 | { | ||
1298 | ad1843_write_bits(lith, &ad1843_DA1F, 1); | ||
1299 | } | ||
1300 | |||
1301 | static void ad1843_setup_adc(lithium_t *lith, int framerate, int fmt, int channels) | ||
1302 | { | ||
1303 | int da_fmt = 0; | ||
1304 | |||
1305 | DBGEV("(lith=0x%p, framerate=%d, fmt=%d, channels=%d)\n", | ||
1306 | lith, framerate, fmt, channels); | ||
1307 | |||
1308 | switch (fmt) { | ||
1309 | case AFMT_S8: da_fmt = 1; break; | ||
1310 | case AFMT_U8: da_fmt = 1; break; | ||
1311 | case AFMT_S16_LE: da_fmt = 1; break; | ||
1312 | case AFMT_MU_LAW: da_fmt = 2; break; | ||
1313 | case AFMT_A_LAW: da_fmt = 3; break; | ||
1314 | default: ASSERT(0); | ||
1315 | } | ||
1316 | |||
1317 | DBGPV("da_fmt = %d\n", da_fmt); | ||
1318 | ASSERT(framerate >= 4000 && framerate <= 49000); | ||
1319 | ad1843_write_bits(lith, &ad1843_C2C, framerate); | ||
1320 | ad1843_write_multi(lith, 2, | ||
1321 | &ad1843_ADLF, da_fmt, &ad1843_ADRF, da_fmt); | ||
1322 | } | ||
1323 | |||
1324 | static void ad1843_shutdown_adc(lithium_t *lith) | ||
1325 | { | ||
1326 | /* nothing to do */ | ||
1327 | } | ||
1328 | |||
1329 | /* | ||
1330 | * Fully initialize the ad1843. As described in the AD1843 data | ||
1331 | * sheet, section "START-UP SEQUENCE". The numbered comments are | ||
1332 | * subsection headings from the data sheet. See the data sheet, pages | ||
1333 | * 52-54, for more info. | ||
1334 | * | ||
1335 | * return 0 on success, -errno on failure. */ | ||
1336 | |||
1337 | static int __init ad1843_init(lithium_t *lith) | ||
1338 | { | ||
1339 | unsigned long later; | ||
1340 | int err; | ||
1341 | |||
1342 | err = li_init(lith); | ||
1343 | if (err) | ||
1344 | return err; | ||
1345 | |||
1346 | if (ad1843_read_bits(lith, &ad1843_INIT) != 0) { | ||
1347 | printk(KERN_ERR "vwsnd sound: AD1843 won't initialize\n"); | ||
1348 | return -EIO; | ||
1349 | } | ||
1350 | |||
1351 | ad1843_write_bits(lith, &ad1843_SCF, 1); | ||
1352 | |||
1353 | /* 4. Put the conversion resources into standby. */ | ||
1354 | |||
1355 | ad1843_write_bits(lith, &ad1843_PDNI, 0); | ||
1356 | later = jiffies + HZ / 2; /* roughly half a second */ | ||
1357 | DBGDO(shut_up++); | ||
1358 | while (ad1843_read_bits(lith, &ad1843_PDNO)) { | ||
1359 | if (time_after(jiffies, later)) { | ||
1360 | printk(KERN_ERR | ||
1361 | "vwsnd audio: AD1843 won't power up\n"); | ||
1362 | return -EIO; | ||
1363 | } | ||
1364 | schedule(); | ||
1365 | } | ||
1366 | DBGDO(shut_up--); | ||
1367 | |||
1368 | /* 5. Power up the clock generators and enable clock output pins. */ | ||
1369 | |||
1370 | ad1843_write_multi(lith, 2, &ad1843_C1EN, 1, &ad1843_C2EN, 1); | ||
1371 | |||
1372 | /* 6. Configure conversion resources while they are in standby. */ | ||
1373 | |||
1374 | /* DAC1 uses clock 1 as source, ADC uses clock 2. Always. */ | ||
1375 | |||
1376 | ad1843_write_multi(lith, 3, | ||
1377 | &ad1843_DA1C, 1, | ||
1378 | &ad1843_ADLC, 2, | ||
1379 | &ad1843_ADRC, 2); | ||
1380 | |||
1381 | /* 7. Enable conversion resources. */ | ||
1382 | |||
1383 | ad1843_write_bits(lith, &ad1843_ADTLK, 1); | ||
1384 | ad1843_write_multi(lith, 5, | ||
1385 | &ad1843_ANAEN, 1, | ||
1386 | &ad1843_AAMEN, 1, | ||
1387 | &ad1843_DA1EN, 1, | ||
1388 | &ad1843_ADLEN, 1, | ||
1389 | &ad1843_ADREN, 1); | ||
1390 | |||
1391 | /* 8. Configure conversion resources while they are enabled. */ | ||
1392 | |||
1393 | ad1843_write_bits(lith, &ad1843_DA1C, 1); | ||
1394 | |||
1395 | /* Unmute all channels. */ | ||
1396 | |||
1397 | ad1843_set_outsrc(lith, | ||
1398 | (SOUND_MASK_PCM | SOUND_MASK_LINE | | ||
1399 | SOUND_MASK_MIC | SOUND_MASK_CD)); | ||
1400 | ad1843_write_multi(lith, 2, &ad1843_LDA1AM, 0, &ad1843_RDA1AM, 0); | ||
1401 | |||
1402 | /* Set default recording source to Line In and set | ||
1403 | * mic gain to +20 dB. | ||
1404 | */ | ||
1405 | |||
1406 | ad1843_set_recsrc(lith, SOUND_MASK_LINE); | ||
1407 | ad1843_write_multi(lith, 2, &ad1843_LMGE, 1, &ad1843_RMGE, 1); | ||
1408 | |||
1409 | /* Set Speaker Out level to +/- 4V and unmute it. */ | ||
1410 | |||
1411 | ad1843_write_multi(lith, 2, &ad1843_HPOS, 1, &ad1843_HPOM, 0); | ||
1412 | |||
1413 | return 0; | ||
1414 | } | ||
1415 | |||
1416 | /*****************************************************************************/ | ||
1417 | /* PCM I/O */ | ||
1418 | |||
1419 | #define READ_INTR_MASK (LI_INTR_COMM1_TRIG | LI_INTR_COMM1_OVERFLOW) | ||
1420 | #define WRITE_INTR_MASK (LI_INTR_COMM2_TRIG | LI_INTR_COMM2_UNDERFLOW) | ||
1421 | |||
1422 | typedef enum vwsnd_port_swstate { /* software state */ | ||
1423 | SW_OFF, | ||
1424 | SW_INITIAL, | ||
1425 | SW_RUN, | ||
1426 | SW_DRAIN, | ||
1427 | } vwsnd_port_swstate_t; | ||
1428 | |||
1429 | typedef enum vwsnd_port_hwstate { /* hardware state */ | ||
1430 | HW_STOPPED, | ||
1431 | HW_RUNNING, | ||
1432 | } vwsnd_port_hwstate_t; | ||
1433 | |||
1434 | /* | ||
1435 | * These flags are read by ISR, but only written at baseline. | ||
1436 | */ | ||
1437 | |||
1438 | typedef enum vwsnd_port_flags { | ||
1439 | DISABLED = 1 << 0, | ||
1440 | ERFLOWN = 1 << 1, /* overflown or underflown */ | ||
1441 | HW_BUSY = 1 << 2, | ||
1442 | } vwsnd_port_flags_t; | ||
1443 | |||
1444 | /* | ||
1445 | * vwsnd_port is the per-port data structure. Each device has two | ||
1446 | * ports, one for input and one for output. | ||
1447 | * | ||
1448 | * Locking: | ||
1449 | * | ||
1450 | * port->lock protects: hwstate, flags, swb_[iu]_avail. | ||
1451 | * | ||
1452 | * devc->io_mutex protects: swstate, sw_*, swb_[iu]_idx. | ||
1453 | * | ||
1454 | * everything else is only written by open/release or | ||
1455 | * pcm_{setup,shutdown}(), which are serialized by a | ||
1456 | * combination of devc->open_mutex and devc->io_mutex. | ||
1457 | */ | ||
1458 | |||
1459 | typedef struct vwsnd_port { | ||
1460 | |||
1461 | spinlock_t lock; | ||
1462 | wait_queue_head_t queue; | ||
1463 | vwsnd_port_swstate_t swstate; | ||
1464 | vwsnd_port_hwstate_t hwstate; | ||
1465 | vwsnd_port_flags_t flags; | ||
1466 | |||
1467 | int sw_channels; | ||
1468 | int sw_samplefmt; | ||
1469 | int sw_framerate; | ||
1470 | int sample_size; | ||
1471 | int frame_size; | ||
1472 | unsigned int zero_word; /* zero for the sample format */ | ||
1473 | |||
1474 | int sw_fragshift; | ||
1475 | int sw_fragcount; | ||
1476 | int sw_subdivshift; | ||
1477 | |||
1478 | unsigned int hw_fragshift; | ||
1479 | unsigned int hw_fragsize; | ||
1480 | unsigned int hw_fragcount; | ||
1481 | |||
1482 | int hwbuf_size; | ||
1483 | unsigned long hwbuf_paddr; | ||
1484 | unsigned long hwbuf_vaddr; | ||
1485 | void * hwbuf; /* hwbuf == hwbuf_vaddr */ | ||
1486 | int hwbuf_max; /* max bytes to preload */ | ||
1487 | |||
1488 | void * swbuf; | ||
1489 | unsigned int swbuf_size; /* size in bytes */ | ||
1490 | unsigned int swb_u_idx; /* index of next user byte */ | ||
1491 | unsigned int swb_i_idx; /* index of next intr byte */ | ||
1492 | unsigned int swb_u_avail; /* # bytes avail to user */ | ||
1493 | unsigned int swb_i_avail; /* # bytes avail to intr */ | ||
1494 | |||
1495 | dma_chan_t chan; | ||
1496 | |||
1497 | /* Accounting */ | ||
1498 | |||
1499 | int byte_count; | ||
1500 | int frag_count; | ||
1501 | int MSC_offset; | ||
1502 | |||
1503 | } vwsnd_port_t; | ||
1504 | |||
1505 | /* vwsnd_dev is the per-device data structure. */ | ||
1506 | |||
1507 | typedef struct vwsnd_dev { | ||
1508 | struct vwsnd_dev *next_dev; | ||
1509 | int audio_minor; /* minor number of audio device */ | ||
1510 | int mixer_minor; /* minor number of mixer device */ | ||
1511 | |||
1512 | struct mutex open_mutex; | ||
1513 | struct mutex io_mutex; | ||
1514 | struct mutex mix_mutex; | ||
1515 | fmode_t open_mode; | ||
1516 | wait_queue_head_t open_wait; | ||
1517 | |||
1518 | lithium_t lith; | ||
1519 | |||
1520 | vwsnd_port_t rport; | ||
1521 | vwsnd_port_t wport; | ||
1522 | } vwsnd_dev_t; | ||
1523 | |||
1524 | static vwsnd_dev_t *vwsnd_dev_list; /* linked list of all devices */ | ||
1525 | |||
1526 | static atomic_t vwsnd_use_count = ATOMIC_INIT(0); | ||
1527 | |||
1528 | # define INC_USE_COUNT (atomic_inc(&vwsnd_use_count)) | ||
1529 | # define DEC_USE_COUNT (atomic_dec(&vwsnd_use_count)) | ||
1530 | # define IN_USE (atomic_read(&vwsnd_use_count) != 0) | ||
1531 | |||
1532 | /* | ||
1533 | * Lithium can only DMA multiples of 32 bytes. Its DMA buffer may | ||
1534 | * be up to 8 Kb. This driver always uses 8 Kb. | ||
1535 | * | ||
1536 | * Memory bug workaround -- I'm not sure what's going on here, but | ||
1537 | * somehow pcm_copy_out() was triggering segv's going on to the next | ||
1538 | * page of the hw buffer. So, I make the hw buffer one size bigger | ||
1539 | * than we actually use. That way, the following page is allocated | ||
1540 | * and mapped, and no error. I suspect that something is broken | ||
1541 | * in Cobalt, but haven't really investigated. HBO is the actual | ||
1542 | * size of the buffer, and HWBUF_ORDER is what we allocate. | ||
1543 | */ | ||
1544 | |||
1545 | #define HWBUF_SHIFT 13 | ||
1546 | #define HWBUF_SIZE (1 << HWBUF_SHIFT) | ||
1547 | # define HBO (HWBUF_SHIFT > PAGE_SHIFT ? HWBUF_SHIFT - PAGE_SHIFT : 0) | ||
1548 | # define HWBUF_ORDER (HBO + 1) /* next size bigger */ | ||
1549 | #define MIN_SPEED 4000 | ||
1550 | #define MAX_SPEED 49000 | ||
1551 | |||
1552 | #define MIN_FRAGSHIFT (DMACHUNK_SHIFT + 1) | ||
1553 | #define MAX_FRAGSHIFT (PAGE_SHIFT) | ||
1554 | #define MIN_FRAGSIZE (1 << MIN_FRAGSHIFT) | ||
1555 | #define MAX_FRAGSIZE (1 << MAX_FRAGSHIFT) | ||
1556 | #define MIN_FRAGCOUNT(fragsize) 3 | ||
1557 | #define MAX_FRAGCOUNT(fragsize) (32 * PAGE_SIZE / (fragsize)) | ||
1558 | #define DEFAULT_FRAGSHIFT 12 | ||
1559 | #define DEFAULT_FRAGCOUNT 16 | ||
1560 | #define DEFAULT_SUBDIVSHIFT 0 | ||
1561 | |||
1562 | /* | ||
1563 | * The software buffer (swbuf) is a ring buffer shared between user | ||
1564 | * level and interrupt level. Each level owns some of the bytes in | ||
1565 | * the buffer, and may give bytes away by calling swb_inc_{u,i}(). | ||
1566 | * User level calls _u for user, and interrupt level calls _i for | ||
1567 | * interrupt. | ||
1568 | * | ||
1569 | * port->swb_{u,i}_avail is the number of bytes available to that level. | ||
1570 | * | ||
1571 | * port->swb_{u,i}_idx is the index of the first available byte in the | ||
1572 | * buffer. | ||
1573 | * | ||
1574 | * Each level calls swb_inc_{u,i}() to atomically increment its index, | ||
1575 | * recalculate the number of bytes available for both sides, and | ||
1576 | * return the number of bytes available. Since each side can only | ||
1577 | * give away bytes, the other side can only increase the number of | ||
1578 | * bytes available to this side. Each side updates its own index | ||
1579 | * variable, swb_{u,i}_idx, so no lock is needed to read it. | ||
1580 | * | ||
1581 | * To query the number of bytes available, call swb_inc_{u,i} with an | ||
1582 | * increment of zero. | ||
1583 | */ | ||
1584 | |||
1585 | static __inline__ unsigned int __swb_inc_u(vwsnd_port_t *port, int inc) | ||
1586 | { | ||
1587 | if (inc) { | ||
1588 | port->swb_u_idx += inc; | ||
1589 | port->swb_u_idx %= port->swbuf_size; | ||
1590 | port->swb_u_avail -= inc; | ||
1591 | port->swb_i_avail += inc; | ||
1592 | } | ||
1593 | return port->swb_u_avail; | ||
1594 | } | ||
1595 | |||
1596 | static __inline__ unsigned int swb_inc_u(vwsnd_port_t *port, int inc) | ||
1597 | { | ||
1598 | unsigned long flags; | ||
1599 | unsigned int ret; | ||
1600 | |||
1601 | spin_lock_irqsave(&port->lock, flags); | ||
1602 | { | ||
1603 | ret = __swb_inc_u(port, inc); | ||
1604 | } | ||
1605 | spin_unlock_irqrestore(&port->lock, flags); | ||
1606 | return ret; | ||
1607 | } | ||
1608 | |||
1609 | static __inline__ unsigned int __swb_inc_i(vwsnd_port_t *port, int inc) | ||
1610 | { | ||
1611 | if (inc) { | ||
1612 | port->swb_i_idx += inc; | ||
1613 | port->swb_i_idx %= port->swbuf_size; | ||
1614 | port->swb_i_avail -= inc; | ||
1615 | port->swb_u_avail += inc; | ||
1616 | } | ||
1617 | return port->swb_i_avail; | ||
1618 | } | ||
1619 | |||
1620 | static __inline__ unsigned int swb_inc_i(vwsnd_port_t *port, int inc) | ||
1621 | { | ||
1622 | unsigned long flags; | ||
1623 | unsigned int ret; | ||
1624 | |||
1625 | spin_lock_irqsave(&port->lock, flags); | ||
1626 | { | ||
1627 | ret = __swb_inc_i(port, inc); | ||
1628 | } | ||
1629 | spin_unlock_irqrestore(&port->lock, flags); | ||
1630 | return ret; | ||
1631 | } | ||
1632 | |||
1633 | /* | ||
1634 | * pcm_setup - this routine initializes all port state after | ||
1635 | * mode-setting ioctls have been done, but before the first I/O is | ||
1636 | * done. | ||
1637 | * | ||
1638 | * Locking: called with devc->io_mutex held. | ||
1639 | * | ||
1640 | * Returns 0 on success, -errno on failure. | ||
1641 | */ | ||
1642 | |||
1643 | static int pcm_setup(vwsnd_dev_t *devc, | ||
1644 | vwsnd_port_t *rport, | ||
1645 | vwsnd_port_t *wport) | ||
1646 | { | ||
1647 | vwsnd_port_t *aport = rport ? rport : wport; | ||
1648 | int sample_size; | ||
1649 | unsigned int zero_word; | ||
1650 | |||
1651 | DBGEV("(devc=0x%p, rport=0x%p, wport=0x%p)\n", devc, rport, wport); | ||
1652 | |||
1653 | ASSERT(aport != NULL); | ||
1654 | if (aport->swbuf != NULL) | ||
1655 | return 0; | ||
1656 | switch (aport->sw_samplefmt) { | ||
1657 | case AFMT_MU_LAW: | ||
1658 | sample_size = 1; | ||
1659 | zero_word = 0xFFFFFFFF ^ 0x80808080; | ||
1660 | break; | ||
1661 | |||
1662 | case AFMT_A_LAW: | ||
1663 | sample_size = 1; | ||
1664 | zero_word = 0xD5D5D5D5 ^ 0x80808080; | ||
1665 | break; | ||
1666 | |||
1667 | case AFMT_U8: | ||
1668 | sample_size = 1; | ||
1669 | zero_word = 0x80808080; | ||
1670 | break; | ||
1671 | |||
1672 | case AFMT_S8: | ||
1673 | sample_size = 1; | ||
1674 | zero_word = 0x00000000; | ||
1675 | break; | ||
1676 | |||
1677 | case AFMT_S16_LE: | ||
1678 | sample_size = 2; | ||
1679 | zero_word = 0x00000000; | ||
1680 | break; | ||
1681 | |||
1682 | default: | ||
1683 | sample_size = 0; /* prevent compiler warning */ | ||
1684 | zero_word = 0; | ||
1685 | ASSERT(0); | ||
1686 | } | ||
1687 | aport->sample_size = sample_size; | ||
1688 | aport->zero_word = zero_word; | ||
1689 | aport->frame_size = aport->sw_channels * aport->sample_size; | ||
1690 | aport->hw_fragshift = aport->sw_fragshift - aport->sw_subdivshift; | ||
1691 | aport->hw_fragsize = 1 << aport->hw_fragshift; | ||
1692 | aport->hw_fragcount = aport->sw_fragcount << aport->sw_subdivshift; | ||
1693 | ASSERT(aport->hw_fragsize >= MIN_FRAGSIZE); | ||
1694 | ASSERT(aport->hw_fragsize <= MAX_FRAGSIZE); | ||
1695 | ASSERT(aport->hw_fragcount >= MIN_FRAGCOUNT(aport->hw_fragsize)); | ||
1696 | ASSERT(aport->hw_fragcount <= MAX_FRAGCOUNT(aport->hw_fragsize)); | ||
1697 | if (rport) { | ||
1698 | int hwfrags, swfrags; | ||
1699 | rport->hwbuf_max = aport->hwbuf_size - DMACHUNK_SIZE; | ||
1700 | hwfrags = rport->hwbuf_max >> aport->hw_fragshift; | ||
1701 | swfrags = aport->hw_fragcount - hwfrags; | ||
1702 | if (swfrags < 2) | ||
1703 | swfrags = 2; | ||
1704 | rport->swbuf_size = swfrags * aport->hw_fragsize; | ||
1705 | DBGPV("hwfrags = %d, swfrags = %d\n", hwfrags, swfrags); | ||
1706 | DBGPV("read hwbuf_max = %d, swbuf_size = %d\n", | ||
1707 | rport->hwbuf_max, rport->swbuf_size); | ||
1708 | } | ||
1709 | if (wport) { | ||
1710 | int hwfrags, swfrags; | ||
1711 | int total_bytes = aport->hw_fragcount * aport->hw_fragsize; | ||
1712 | wport->hwbuf_max = aport->hwbuf_size - DMACHUNK_SIZE; | ||
1713 | if (wport->hwbuf_max > total_bytes) | ||
1714 | wport->hwbuf_max = total_bytes; | ||
1715 | hwfrags = wport->hwbuf_max >> aport->hw_fragshift; | ||
1716 | DBGPV("hwfrags = %d\n", hwfrags); | ||
1717 | swfrags = aport->hw_fragcount - hwfrags; | ||
1718 | if (swfrags < 2) | ||
1719 | swfrags = 2; | ||
1720 | wport->swbuf_size = swfrags * aport->hw_fragsize; | ||
1721 | DBGPV("hwfrags = %d, swfrags = %d\n", hwfrags, swfrags); | ||
1722 | DBGPV("write hwbuf_max = %d, swbuf_size = %d\n", | ||
1723 | wport->hwbuf_max, wport->swbuf_size); | ||
1724 | } | ||
1725 | |||
1726 | aport->swb_u_idx = 0; | ||
1727 | aport->swb_i_idx = 0; | ||
1728 | aport->byte_count = 0; | ||
1729 | |||
1730 | /* | ||
1731 | * Is this a Cobalt bug? We need to make this buffer extend | ||
1732 | * one page further than we actually use -- somehow memcpy | ||
1733 | * causes an exceptoin otherwise. I suspect there's a bug in | ||
1734 | * Cobalt (or somewhere) where it's generating a fault on a | ||
1735 | * speculative load or something. Obviously, I haven't taken | ||
1736 | * the time to track it down. | ||
1737 | */ | ||
1738 | |||
1739 | aport->swbuf = vmalloc(aport->swbuf_size + PAGE_SIZE); | ||
1740 | if (!aport->swbuf) | ||
1741 | return -ENOMEM; | ||
1742 | if (rport && wport) { | ||
1743 | ASSERT(aport == rport); | ||
1744 | ASSERT(wport->swbuf == NULL); | ||
1745 | /* One extra page - see comment above. */ | ||
1746 | wport->swbuf = vmalloc(aport->swbuf_size + PAGE_SIZE); | ||
1747 | if (!wport->swbuf) { | ||
1748 | vfree(aport->swbuf); | ||
1749 | aport->swbuf = NULL; | ||
1750 | return -ENOMEM; | ||
1751 | } | ||
1752 | wport->sample_size = rport->sample_size; | ||
1753 | wport->zero_word = rport->zero_word; | ||
1754 | wport->frame_size = rport->frame_size; | ||
1755 | wport->hw_fragshift = rport->hw_fragshift; | ||
1756 | wport->hw_fragsize = rport->hw_fragsize; | ||
1757 | wport->hw_fragcount = rport->hw_fragcount; | ||
1758 | wport->swbuf_size = rport->swbuf_size; | ||
1759 | wport->hwbuf_max = rport->hwbuf_max; | ||
1760 | wport->swb_u_idx = rport->swb_u_idx; | ||
1761 | wport->swb_i_idx = rport->swb_i_idx; | ||
1762 | wport->byte_count = rport->byte_count; | ||
1763 | } | ||
1764 | if (rport) { | ||
1765 | rport->swb_u_avail = 0; | ||
1766 | rport->swb_i_avail = rport->swbuf_size; | ||
1767 | rport->swstate = SW_RUN; | ||
1768 | li_setup_dma(&rport->chan, | ||
1769 | &li_comm1, | ||
1770 | &devc->lith, | ||
1771 | rport->hwbuf_paddr, | ||
1772 | HWBUF_SHIFT, | ||
1773 | rport->hw_fragshift, | ||
1774 | rport->sw_channels, | ||
1775 | rport->sample_size); | ||
1776 | ad1843_setup_adc(&devc->lith, | ||
1777 | rport->sw_framerate, | ||
1778 | rport->sw_samplefmt, | ||
1779 | rport->sw_channels); | ||
1780 | li_enable_interrupts(&devc->lith, READ_INTR_MASK); | ||
1781 | if (!(rport->flags & DISABLED)) { | ||
1782 | ustmsc_t ustmsc; | ||
1783 | rport->hwstate = HW_RUNNING; | ||
1784 | li_activate_dma(&rport->chan); | ||
1785 | li_read_USTMSC(&rport->chan, &ustmsc); | ||
1786 | rport->MSC_offset = ustmsc.msc; | ||
1787 | } | ||
1788 | } | ||
1789 | if (wport) { | ||
1790 | if (wport->hwbuf_max > wport->swbuf_size) | ||
1791 | wport->hwbuf_max = wport->swbuf_size; | ||
1792 | wport->flags &= ~ERFLOWN; | ||
1793 | wport->swb_u_avail = wport->swbuf_size; | ||
1794 | wport->swb_i_avail = 0; | ||
1795 | wport->swstate = SW_RUN; | ||
1796 | li_setup_dma(&wport->chan, | ||
1797 | &li_comm2, | ||
1798 | &devc->lith, | ||
1799 | wport->hwbuf_paddr, | ||
1800 | HWBUF_SHIFT, | ||
1801 | wport->hw_fragshift, | ||
1802 | wport->sw_channels, | ||
1803 | wport->sample_size); | ||
1804 | ad1843_setup_dac(&devc->lith, | ||
1805 | wport->sw_framerate, | ||
1806 | wport->sw_samplefmt, | ||
1807 | wport->sw_channels); | ||
1808 | li_enable_interrupts(&devc->lith, WRITE_INTR_MASK); | ||
1809 | } | ||
1810 | DBGRV(); | ||
1811 | return 0; | ||
1812 | } | ||
1813 | |||
1814 | /* | ||
1815 | * pcm_shutdown_port - shut down one port (direction) for PCM I/O. | ||
1816 | * Only called from pcm_shutdown. | ||
1817 | */ | ||
1818 | |||
1819 | static void pcm_shutdown_port(vwsnd_dev_t *devc, | ||
1820 | vwsnd_port_t *aport, | ||
1821 | unsigned int mask) | ||
1822 | { | ||
1823 | unsigned long flags; | ||
1824 | vwsnd_port_hwstate_t hwstate; | ||
1825 | DECLARE_WAITQUEUE(wait, current); | ||
1826 | |||
1827 | aport->swstate = SW_INITIAL; | ||
1828 | add_wait_queue(&aport->queue, &wait); | ||
1829 | while (1) { | ||
1830 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
1831 | spin_lock_irqsave(&aport->lock, flags); | ||
1832 | { | ||
1833 | hwstate = aport->hwstate; | ||
1834 | } | ||
1835 | spin_unlock_irqrestore(&aport->lock, flags); | ||
1836 | if (hwstate == HW_STOPPED) | ||
1837 | break; | ||
1838 | schedule(); | ||
1839 | } | ||
1840 | current->state = TASK_RUNNING; | ||
1841 | remove_wait_queue(&aport->queue, &wait); | ||
1842 | li_disable_interrupts(&devc->lith, mask); | ||
1843 | if (aport == &devc->rport) | ||
1844 | ad1843_shutdown_adc(&devc->lith); | ||
1845 | else /* aport == &devc->wport) */ | ||
1846 | ad1843_shutdown_dac(&devc->lith); | ||
1847 | li_shutdown_dma(&aport->chan); | ||
1848 | vfree(aport->swbuf); | ||
1849 | aport->swbuf = NULL; | ||
1850 | aport->byte_count = 0; | ||
1851 | } | ||
1852 | |||
1853 | /* | ||
1854 | * pcm_shutdown undoes what pcm_setup did. | ||
1855 | * Also sets the ports' swstate to newstate. | ||
1856 | */ | ||
1857 | |||
1858 | static void pcm_shutdown(vwsnd_dev_t *devc, | ||
1859 | vwsnd_port_t *rport, | ||
1860 | vwsnd_port_t *wport) | ||
1861 | { | ||
1862 | DBGEV("(devc=0x%p, rport=0x%p, wport=0x%p)\n", devc, rport, wport); | ||
1863 | |||
1864 | if (rport && rport->swbuf) { | ||
1865 | DBGPV("shutting down rport\n"); | ||
1866 | pcm_shutdown_port(devc, rport, READ_INTR_MASK); | ||
1867 | } | ||
1868 | if (wport && wport->swbuf) { | ||
1869 | DBGPV("shutting down wport\n"); | ||
1870 | pcm_shutdown_port(devc, wport, WRITE_INTR_MASK); | ||
1871 | } | ||
1872 | DBGRV(); | ||
1873 | } | ||
1874 | |||
1875 | static void pcm_copy_in(vwsnd_port_t *rport, int swidx, int hwidx, int nb) | ||
1876 | { | ||
1877 | char *src = rport->hwbuf + hwidx; | ||
1878 | char *dst = rport->swbuf + swidx; | ||
1879 | int fmt = rport->sw_samplefmt; | ||
1880 | |||
1881 | DBGPV("swidx = %d, hwidx = %d\n", swidx, hwidx); | ||
1882 | ASSERT(rport->hwbuf != NULL); | ||
1883 | ASSERT(rport->swbuf != NULL); | ||
1884 | ASSERT(nb > 0 && (nb % 32) == 0); | ||
1885 | ASSERT(swidx % 32 == 0 && hwidx % 32 == 0); | ||
1886 | ASSERT(swidx >= 0 && swidx + nb <= rport->swbuf_size); | ||
1887 | ASSERT(hwidx >= 0 && hwidx + nb <= rport->hwbuf_size); | ||
1888 | |||
1889 | if (fmt == AFMT_MU_LAW || fmt == AFMT_A_LAW || fmt == AFMT_S8) { | ||
1890 | |||
1891 | /* See Sample Format Notes above. */ | ||
1892 | |||
1893 | char *end = src + nb; | ||
1894 | while (src < end) | ||
1895 | *dst++ = *src++ ^ 0x80; | ||
1896 | } else | ||
1897 | memcpy(dst, src, nb); | ||
1898 | } | ||
1899 | |||
1900 | static void pcm_copy_out(vwsnd_port_t *wport, int swidx, int hwidx, int nb) | ||
1901 | { | ||
1902 | char *src = wport->swbuf + swidx; | ||
1903 | char *dst = wport->hwbuf + hwidx; | ||
1904 | int fmt = wport->sw_samplefmt; | ||
1905 | |||
1906 | ASSERT(nb > 0 && (nb % 32) == 0); | ||
1907 | ASSERT(wport->hwbuf != NULL); | ||
1908 | ASSERT(wport->swbuf != NULL); | ||
1909 | ASSERT(swidx % 32 == 0 && hwidx % 32 == 0); | ||
1910 | ASSERT(swidx >= 0 && swidx + nb <= wport->swbuf_size); | ||
1911 | ASSERT(hwidx >= 0 && hwidx + nb <= wport->hwbuf_size); | ||
1912 | if (fmt == AFMT_MU_LAW || fmt == AFMT_A_LAW || fmt == AFMT_S8) { | ||
1913 | |||
1914 | /* See Sample Format Notes above. */ | ||
1915 | |||
1916 | char *end = src + nb; | ||
1917 | while (src < end) | ||
1918 | *dst++ = *src++ ^ 0x80; | ||
1919 | } else | ||
1920 | memcpy(dst, src, nb); | ||
1921 | } | ||
1922 | |||
1923 | /* | ||
1924 | * pcm_output() is called both from baselevel and from interrupt level. | ||
1925 | * This is where audio frames are copied into the hardware-accessible | ||
1926 | * ring buffer. | ||
1927 | * | ||
1928 | * Locking note: The part of this routine that figures out what to do | ||
1929 | * holds wport->lock. The longer part releases wport->lock, but sets | ||
1930 | * wport->flags & HW_BUSY. Afterward, it reacquires wport->lock, and | ||
1931 | * checks for more work to do. | ||
1932 | * | ||
1933 | * If another thread calls pcm_output() while HW_BUSY is set, it | ||
1934 | * returns immediately, knowing that the thread that set HW_BUSY will | ||
1935 | * look for more work to do before returning. | ||
1936 | * | ||
1937 | * This has the advantage that port->lock is held for several short | ||
1938 | * periods instead of one long period. Also, when pcm_output is | ||
1939 | * called from base level, it reenables interrupts. | ||
1940 | */ | ||
1941 | |||
1942 | static void pcm_output(vwsnd_dev_t *devc, int erflown, int nb) | ||
1943 | { | ||
1944 | vwsnd_port_t *wport = &devc->wport; | ||
1945 | const int hwmax = wport->hwbuf_max; | ||
1946 | const int hwsize = wport->hwbuf_size; | ||
1947 | const int swsize = wport->swbuf_size; | ||
1948 | const int fragsize = wport->hw_fragsize; | ||
1949 | unsigned long iflags; | ||
1950 | |||
1951 | DBGEV("(devc=0x%p, erflown=%d, nb=%d)\n", devc, erflown, nb); | ||
1952 | spin_lock_irqsave(&wport->lock, iflags); | ||
1953 | if (erflown) | ||
1954 | wport->flags |= ERFLOWN; | ||
1955 | (void) __swb_inc_u(wport, nb); | ||
1956 | if (wport->flags & HW_BUSY) { | ||
1957 | spin_unlock_irqrestore(&wport->lock, iflags); | ||
1958 | DBGPV("returning: HW BUSY\n"); | ||
1959 | return; | ||
1960 | } | ||
1961 | if (wport->flags & DISABLED) { | ||
1962 | spin_unlock_irqrestore(&wport->lock, iflags); | ||
1963 | DBGPV("returning: DISABLED\n"); | ||
1964 | return; | ||
1965 | } | ||
1966 | wport->flags |= HW_BUSY; | ||
1967 | while (1) { | ||
1968 | int swptr, hwptr, hw_avail, sw_avail, swidx; | ||
1969 | vwsnd_port_hwstate_t hwstate = wport->hwstate; | ||
1970 | vwsnd_port_swstate_t swstate = wport->swstate; | ||
1971 | int hw_unavail; | ||
1972 | ustmsc_t ustmsc; | ||
1973 | |||
1974 | hwptr = li_read_hwptr(&wport->chan); | ||
1975 | swptr = li_read_swptr(&wport->chan); | ||
1976 | hw_unavail = (swptr - hwptr + hwsize) % hwsize; | ||
1977 | hw_avail = (hwmax - hw_unavail) & -fragsize; | ||
1978 | sw_avail = wport->swb_i_avail & -fragsize; | ||
1979 | if (sw_avail && swstate == SW_RUN) { | ||
1980 | if (wport->flags & ERFLOWN) { | ||
1981 | wport->flags &= ~ERFLOWN; | ||
1982 | } | ||
1983 | } else if (swstate == SW_INITIAL || | ||
1984 | swstate == SW_OFF || | ||
1985 | (swstate == SW_DRAIN && | ||
1986 | !sw_avail && | ||
1987 | (wport->flags & ERFLOWN))) { | ||
1988 | DBGP("stopping. hwstate = %d\n", hwstate); | ||
1989 | if (hwstate != HW_STOPPED) { | ||
1990 | li_deactivate_dma(&wport->chan); | ||
1991 | wport->hwstate = HW_STOPPED; | ||
1992 | } | ||
1993 | wake_up(&wport->queue); | ||
1994 | break; | ||
1995 | } | ||
1996 | if (!sw_avail || !hw_avail) | ||
1997 | break; | ||
1998 | spin_unlock_irqrestore(&wport->lock, iflags); | ||
1999 | |||
2000 | /* | ||
2001 | * We gave up the port lock, but we have the HW_BUSY flag. | ||
2002 | * Proceed without accessing any nonlocal state. | ||
2003 | * Do not exit the loop -- must check for more work. | ||
2004 | */ | ||
2005 | |||
2006 | swidx = wport->swb_i_idx; | ||
2007 | nb = hw_avail; | ||
2008 | if (nb > sw_avail) | ||
2009 | nb = sw_avail; | ||
2010 | if (nb > hwsize - swptr) | ||
2011 | nb = hwsize - swptr; /* don't overflow hwbuf */ | ||
2012 | if (nb > swsize - swidx) | ||
2013 | nb = swsize - swidx; /* don't overflow swbuf */ | ||
2014 | ASSERT(nb > 0); | ||
2015 | if (nb % fragsize) { | ||
2016 | DBGP("nb = %d, fragsize = %d\n", nb, fragsize); | ||
2017 | DBGP("hw_avail = %d\n", hw_avail); | ||
2018 | DBGP("sw_avail = %d\n", sw_avail); | ||
2019 | DBGP("hwsize = %d, swptr = %d\n", hwsize, swptr); | ||
2020 | DBGP("swsize = %d, swidx = %d\n", swsize, swidx); | ||
2021 | } | ||
2022 | ASSERT(!(nb % fragsize)); | ||
2023 | DBGPV("copying swb[%d..%d] to hwb[%d..%d]\n", | ||
2024 | swidx, swidx + nb, swptr, swptr + nb); | ||
2025 | pcm_copy_out(wport, swidx, swptr, nb); | ||
2026 | li_write_swptr(&wport->chan, (swptr + nb) % hwsize); | ||
2027 | spin_lock_irqsave(&wport->lock, iflags); | ||
2028 | if (hwstate == HW_STOPPED) { | ||
2029 | DBGPV("starting\n"); | ||
2030 | li_activate_dma(&wport->chan); | ||
2031 | wport->hwstate = HW_RUNNING; | ||
2032 | li_read_USTMSC(&wport->chan, &ustmsc); | ||
2033 | ASSERT(wport->byte_count % wport->frame_size == 0); | ||
2034 | wport->MSC_offset = ustmsc.msc - wport->byte_count / wport->frame_size; | ||
2035 | } | ||
2036 | __swb_inc_i(wport, nb); | ||
2037 | wport->byte_count += nb; | ||
2038 | wport->frag_count += nb / fragsize; | ||
2039 | ASSERT(nb % fragsize == 0); | ||
2040 | wake_up(&wport->queue); | ||
2041 | } | ||
2042 | wport->flags &= ~HW_BUSY; | ||
2043 | spin_unlock_irqrestore(&wport->lock, iflags); | ||
2044 | DBGRV(); | ||
2045 | } | ||
2046 | |||
2047 | /* | ||
2048 | * pcm_input() is called both from baselevel and from interrupt level. | ||
2049 | * This is where audio frames are copied out of the hardware-accessible | ||
2050 | * ring buffer. | ||
2051 | * | ||
2052 | * Locking note: The part of this routine that figures out what to do | ||
2053 | * holds rport->lock. The longer part releases rport->lock, but sets | ||
2054 | * rport->flags & HW_BUSY. Afterward, it reacquires rport->lock, and | ||
2055 | * checks for more work to do. | ||
2056 | * | ||
2057 | * If another thread calls pcm_input() while HW_BUSY is set, it | ||
2058 | * returns immediately, knowing that the thread that set HW_BUSY will | ||
2059 | * look for more work to do before returning. | ||
2060 | * | ||
2061 | * This has the advantage that port->lock is held for several short | ||
2062 | * periods instead of one long period. Also, when pcm_input is | ||
2063 | * called from base level, it reenables interrupts. | ||
2064 | */ | ||
2065 | |||
2066 | static void pcm_input(vwsnd_dev_t *devc, int erflown, int nb) | ||
2067 | { | ||
2068 | vwsnd_port_t *rport = &devc->rport; | ||
2069 | const int hwmax = rport->hwbuf_max; | ||
2070 | const int hwsize = rport->hwbuf_size; | ||
2071 | const int swsize = rport->swbuf_size; | ||
2072 | const int fragsize = rport->hw_fragsize; | ||
2073 | unsigned long iflags; | ||
2074 | |||
2075 | DBGEV("(devc=0x%p, erflown=%d, nb=%d)\n", devc, erflown, nb); | ||
2076 | |||
2077 | spin_lock_irqsave(&rport->lock, iflags); | ||
2078 | if (erflown) | ||
2079 | rport->flags |= ERFLOWN; | ||
2080 | (void) __swb_inc_u(rport, nb); | ||
2081 | if (rport->flags & HW_BUSY || !rport->swbuf) { | ||
2082 | spin_unlock_irqrestore(&rport->lock, iflags); | ||
2083 | DBGPV("returning: HW BUSY or !swbuf\n"); | ||
2084 | return; | ||
2085 | } | ||
2086 | if (rport->flags & DISABLED) { | ||
2087 | spin_unlock_irqrestore(&rport->lock, iflags); | ||
2088 | DBGPV("returning: DISABLED\n"); | ||
2089 | return; | ||
2090 | } | ||
2091 | rport->flags |= HW_BUSY; | ||
2092 | while (1) { | ||
2093 | int swptr, hwptr, hw_avail, sw_avail, swidx; | ||
2094 | vwsnd_port_hwstate_t hwstate = rport->hwstate; | ||
2095 | vwsnd_port_swstate_t swstate = rport->swstate; | ||
2096 | |||
2097 | hwptr = li_read_hwptr(&rport->chan); | ||
2098 | swptr = li_read_swptr(&rport->chan); | ||
2099 | hw_avail = (hwptr - swptr + hwsize) % hwsize & -fragsize; | ||
2100 | if (hw_avail > hwmax) | ||
2101 | hw_avail = hwmax; | ||
2102 | sw_avail = rport->swb_i_avail & -fragsize; | ||
2103 | if (swstate != SW_RUN) { | ||
2104 | DBGP("stopping. hwstate = %d\n", hwstate); | ||
2105 | if (hwstate != HW_STOPPED) { | ||
2106 | li_deactivate_dma(&rport->chan); | ||
2107 | rport->hwstate = HW_STOPPED; | ||
2108 | } | ||
2109 | wake_up(&rport->queue); | ||
2110 | break; | ||
2111 | } | ||
2112 | if (!sw_avail || !hw_avail) | ||
2113 | break; | ||
2114 | spin_unlock_irqrestore(&rport->lock, iflags); | ||
2115 | |||
2116 | /* | ||
2117 | * We gave up the port lock, but we have the HW_BUSY flag. | ||
2118 | * Proceed without accessing any nonlocal state. | ||
2119 | * Do not exit the loop -- must check for more work. | ||
2120 | */ | ||
2121 | |||
2122 | swidx = rport->swb_i_idx; | ||
2123 | nb = hw_avail; | ||
2124 | if (nb > sw_avail) | ||
2125 | nb = sw_avail; | ||
2126 | if (nb > hwsize - swptr) | ||
2127 | nb = hwsize - swptr; /* don't overflow hwbuf */ | ||
2128 | if (nb > swsize - swidx) | ||
2129 | nb = swsize - swidx; /* don't overflow swbuf */ | ||
2130 | ASSERT(nb > 0); | ||
2131 | if (nb % fragsize) { | ||
2132 | DBGP("nb = %d, fragsize = %d\n", nb, fragsize); | ||
2133 | DBGP("hw_avail = %d\n", hw_avail); | ||
2134 | DBGP("sw_avail = %d\n", sw_avail); | ||
2135 | DBGP("hwsize = %d, swptr = %d\n", hwsize, swptr); | ||
2136 | DBGP("swsize = %d, swidx = %d\n", swsize, swidx); | ||
2137 | } | ||
2138 | ASSERT(!(nb % fragsize)); | ||
2139 | DBGPV("copying hwb[%d..%d] to swb[%d..%d]\n", | ||
2140 | swptr, swptr + nb, swidx, swidx + nb); | ||
2141 | pcm_copy_in(rport, swidx, swptr, nb); | ||
2142 | li_write_swptr(&rport->chan, (swptr + nb) % hwsize); | ||
2143 | spin_lock_irqsave(&rport->lock, iflags); | ||
2144 | __swb_inc_i(rport, nb); | ||
2145 | rport->byte_count += nb; | ||
2146 | rport->frag_count += nb / fragsize; | ||
2147 | ASSERT(nb % fragsize == 0); | ||
2148 | wake_up(&rport->queue); | ||
2149 | } | ||
2150 | rport->flags &= ~HW_BUSY; | ||
2151 | spin_unlock_irqrestore(&rport->lock, iflags); | ||
2152 | DBGRV(); | ||
2153 | } | ||
2154 | |||
2155 | /* | ||
2156 | * pcm_flush_frag() writes zero samples to fill the current fragment, | ||
2157 | * then flushes it to the hardware. | ||
2158 | * | ||
2159 | * It is only meaningful to flush output, not input. | ||
2160 | */ | ||
2161 | |||
2162 | static void pcm_flush_frag(vwsnd_dev_t *devc) | ||
2163 | { | ||
2164 | vwsnd_port_t *wport = &devc->wport; | ||
2165 | |||
2166 | DBGPV("swstate = %d\n", wport->swstate); | ||
2167 | if (wport->swstate == SW_RUN) { | ||
2168 | int idx = wport->swb_u_idx; | ||
2169 | int end = (idx + wport->hw_fragsize - 1) | ||
2170 | >> wport->hw_fragshift | ||
2171 | << wport->hw_fragshift; | ||
2172 | int nb = end - idx; | ||
2173 | DBGPV("clearing %d bytes\n", nb); | ||
2174 | if (nb) | ||
2175 | memset(wport->swbuf + idx, | ||
2176 | (char) wport->zero_word, | ||
2177 | nb); | ||
2178 | wport->swstate = SW_DRAIN; | ||
2179 | pcm_output(devc, 0, nb); | ||
2180 | } | ||
2181 | DBGRV(); | ||
2182 | } | ||
2183 | |||
2184 | /* | ||
2185 | * Wait for output to drain. This sleeps uninterruptibly because | ||
2186 | * there is nothing intelligent we can do if interrupted. This | ||
2187 | * means the process will be delayed in responding to the signal. | ||
2188 | */ | ||
2189 | |||
2190 | static void pcm_write_sync(vwsnd_dev_t *devc) | ||
2191 | { | ||
2192 | vwsnd_port_t *wport = &devc->wport; | ||
2193 | DECLARE_WAITQUEUE(wait, current); | ||
2194 | unsigned long flags; | ||
2195 | vwsnd_port_hwstate_t hwstate; | ||
2196 | |||
2197 | DBGEV("(devc=0x%p)\n", devc); | ||
2198 | add_wait_queue(&wport->queue, &wait); | ||
2199 | while (1) { | ||
2200 | set_current_state(TASK_UNINTERRUPTIBLE); | ||
2201 | spin_lock_irqsave(&wport->lock, flags); | ||
2202 | { | ||
2203 | hwstate = wport->hwstate; | ||
2204 | } | ||
2205 | spin_unlock_irqrestore(&wport->lock, flags); | ||
2206 | if (hwstate == HW_STOPPED) | ||
2207 | break; | ||
2208 | schedule(); | ||
2209 | } | ||
2210 | current->state = TASK_RUNNING; | ||
2211 | remove_wait_queue(&wport->queue, &wait); | ||
2212 | DBGPV("swstate = %d, hwstate = %d\n", wport->swstate, wport->hwstate); | ||
2213 | DBGRV(); | ||
2214 | } | ||
2215 | |||
2216 | /*****************************************************************************/ | ||
2217 | /* audio driver */ | ||
2218 | |||
2219 | /* | ||
2220 | * seek on an audio device always fails. | ||
2221 | */ | ||
2222 | |||
2223 | static void vwsnd_audio_read_intr(vwsnd_dev_t *devc, unsigned int status) | ||
2224 | { | ||
2225 | int overflown = status & LI_INTR_COMM1_OVERFLOW; | ||
2226 | |||
2227 | if (status & READ_INTR_MASK) | ||
2228 | pcm_input(devc, overflown, 0); | ||
2229 | } | ||
2230 | |||
2231 | static void vwsnd_audio_write_intr(vwsnd_dev_t *devc, unsigned int status) | ||
2232 | { | ||
2233 | int underflown = status & LI_INTR_COMM2_UNDERFLOW; | ||
2234 | |||
2235 | if (status & WRITE_INTR_MASK) | ||
2236 | pcm_output(devc, underflown, 0); | ||
2237 | } | ||
2238 | |||
2239 | static irqreturn_t vwsnd_audio_intr(int irq, void *dev_id) | ||
2240 | { | ||
2241 | vwsnd_dev_t *devc = dev_id; | ||
2242 | unsigned int status; | ||
2243 | |||
2244 | DBGEV("(irq=%d, dev_id=0x%p)\n", irq, dev_id); | ||
2245 | |||
2246 | status = li_get_clear_intr_status(&devc->lith); | ||
2247 | vwsnd_audio_read_intr(devc, status); | ||
2248 | vwsnd_audio_write_intr(devc, status); | ||
2249 | return IRQ_HANDLED; | ||
2250 | } | ||
2251 | |||
2252 | static ssize_t vwsnd_audio_do_read(struct file *file, | ||
2253 | char *buffer, | ||
2254 | size_t count, | ||
2255 | loff_t *ppos) | ||
2256 | { | ||
2257 | vwsnd_dev_t *devc = file->private_data; | ||
2258 | vwsnd_port_t *rport = ((file->f_mode & FMODE_READ) ? | ||
2259 | &devc->rport : NULL); | ||
2260 | int ret, nb; | ||
2261 | |||
2262 | DBGEV("(file=0x%p, buffer=0x%p, count=%d, ppos=0x%p)\n", | ||
2263 | file, buffer, count, ppos); | ||
2264 | |||
2265 | if (!rport) | ||
2266 | return -EINVAL; | ||
2267 | |||
2268 | if (rport->swbuf == NULL) { | ||
2269 | vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ? | ||
2270 | &devc->wport : NULL; | ||
2271 | ret = pcm_setup(devc, rport, wport); | ||
2272 | if (ret < 0) | ||
2273 | return ret; | ||
2274 | } | ||
2275 | |||
2276 | if (!access_ok(VERIFY_READ, buffer, count)) | ||
2277 | return -EFAULT; | ||
2278 | ret = 0; | ||
2279 | while (count) { | ||
2280 | DECLARE_WAITQUEUE(wait, current); | ||
2281 | add_wait_queue(&rport->queue, &wait); | ||
2282 | while ((nb = swb_inc_u(rport, 0)) == 0) { | ||
2283 | DBGPV("blocking\n"); | ||
2284 | set_current_state(TASK_INTERRUPTIBLE); | ||
2285 | if (rport->flags & DISABLED || | ||
2286 | file->f_flags & O_NONBLOCK) { | ||
2287 | current->state = TASK_RUNNING; | ||
2288 | remove_wait_queue(&rport->queue, &wait); | ||
2289 | return ret ? ret : -EAGAIN; | ||
2290 | } | ||
2291 | schedule(); | ||
2292 | if (signal_pending(current)) { | ||
2293 | current->state = TASK_RUNNING; | ||
2294 | remove_wait_queue(&rport->queue, &wait); | ||
2295 | return ret ? ret : -ERESTARTSYS; | ||
2296 | } | ||
2297 | } | ||
2298 | current->state = TASK_RUNNING; | ||
2299 | remove_wait_queue(&rport->queue, &wait); | ||
2300 | pcm_input(devc, 0, 0); | ||
2301 | /* nb bytes are available in userbuf. */ | ||
2302 | if (nb > count) | ||
2303 | nb = count; | ||
2304 | DBGPV("nb = %d\n", nb); | ||
2305 | if (copy_to_user(buffer, rport->swbuf + rport->swb_u_idx, nb)) | ||
2306 | return -EFAULT; | ||
2307 | (void) swb_inc_u(rport, nb); | ||
2308 | buffer += nb; | ||
2309 | count -= nb; | ||
2310 | ret += nb; | ||
2311 | } | ||
2312 | DBGPV("returning %d\n", ret); | ||
2313 | return ret; | ||
2314 | } | ||
2315 | |||
2316 | static ssize_t vwsnd_audio_read(struct file *file, | ||
2317 | char *buffer, | ||
2318 | size_t count, | ||
2319 | loff_t *ppos) | ||
2320 | { | ||
2321 | vwsnd_dev_t *devc = file->private_data; | ||
2322 | ssize_t ret; | ||
2323 | |||
2324 | mutex_lock(&devc->io_mutex); | ||
2325 | ret = vwsnd_audio_do_read(file, buffer, count, ppos); | ||
2326 | mutex_unlock(&devc->io_mutex); | ||
2327 | return ret; | ||
2328 | } | ||
2329 | |||
2330 | static ssize_t vwsnd_audio_do_write(struct file *file, | ||
2331 | const char *buffer, | ||
2332 | size_t count, | ||
2333 | loff_t *ppos) | ||
2334 | { | ||
2335 | vwsnd_dev_t *devc = file->private_data; | ||
2336 | vwsnd_port_t *wport = ((file->f_mode & FMODE_WRITE) ? | ||
2337 | &devc->wport : NULL); | ||
2338 | int ret, nb; | ||
2339 | |||
2340 | DBGEV("(file=0x%p, buffer=0x%p, count=%d, ppos=0x%p)\n", | ||
2341 | file, buffer, count, ppos); | ||
2342 | |||
2343 | if (!wport) | ||
2344 | return -EINVAL; | ||
2345 | |||
2346 | if (wport->swbuf == NULL) { | ||
2347 | vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ? | ||
2348 | &devc->rport : NULL; | ||
2349 | ret = pcm_setup(devc, rport, wport); | ||
2350 | if (ret < 0) | ||
2351 | return ret; | ||
2352 | } | ||
2353 | if (!access_ok(VERIFY_WRITE, buffer, count)) | ||
2354 | return -EFAULT; | ||
2355 | ret = 0; | ||
2356 | while (count) { | ||
2357 | DECLARE_WAITQUEUE(wait, current); | ||
2358 | add_wait_queue(&wport->queue, &wait); | ||
2359 | while ((nb = swb_inc_u(wport, 0)) == 0) { | ||
2360 | set_current_state(TASK_INTERRUPTIBLE); | ||
2361 | if (wport->flags & DISABLED || | ||
2362 | file->f_flags & O_NONBLOCK) { | ||
2363 | current->state = TASK_RUNNING; | ||
2364 | remove_wait_queue(&wport->queue, &wait); | ||
2365 | return ret ? ret : -EAGAIN; | ||
2366 | } | ||
2367 | schedule(); | ||
2368 | if (signal_pending(current)) { | ||
2369 | current->state = TASK_RUNNING; | ||
2370 | remove_wait_queue(&wport->queue, &wait); | ||
2371 | return ret ? ret : -ERESTARTSYS; | ||
2372 | } | ||
2373 | } | ||
2374 | current->state = TASK_RUNNING; | ||
2375 | remove_wait_queue(&wport->queue, &wait); | ||
2376 | /* nb bytes are available in userbuf. */ | ||
2377 | if (nb > count) | ||
2378 | nb = count; | ||
2379 | DBGPV("nb = %d\n", nb); | ||
2380 | if (copy_from_user(wport->swbuf + wport->swb_u_idx, buffer, nb)) | ||
2381 | return -EFAULT; | ||
2382 | pcm_output(devc, 0, nb); | ||
2383 | buffer += nb; | ||
2384 | count -= nb; | ||
2385 | ret += nb; | ||
2386 | } | ||
2387 | DBGPV("returning %d\n", ret); | ||
2388 | return ret; | ||
2389 | } | ||
2390 | |||
2391 | static ssize_t vwsnd_audio_write(struct file *file, | ||
2392 | const char *buffer, | ||
2393 | size_t count, | ||
2394 | loff_t *ppos) | ||
2395 | { | ||
2396 | vwsnd_dev_t *devc = file->private_data; | ||
2397 | ssize_t ret; | ||
2398 | |||
2399 | mutex_lock(&devc->io_mutex); | ||
2400 | ret = vwsnd_audio_do_write(file, buffer, count, ppos); | ||
2401 | mutex_unlock(&devc->io_mutex); | ||
2402 | return ret; | ||
2403 | } | ||
2404 | |||
2405 | /* No kernel lock - fine */ | ||
2406 | static unsigned int vwsnd_audio_poll(struct file *file, | ||
2407 | struct poll_table_struct *wait) | ||
2408 | { | ||
2409 | vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data; | ||
2410 | vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ? | ||
2411 | &devc->rport : NULL; | ||
2412 | vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ? | ||
2413 | &devc->wport : NULL; | ||
2414 | unsigned int mask = 0; | ||
2415 | |||
2416 | DBGEV("(file=0x%p, wait=0x%p)\n", file, wait); | ||
2417 | |||
2418 | ASSERT(rport || wport); | ||
2419 | if (rport) { | ||
2420 | poll_wait(file, &rport->queue, wait); | ||
2421 | if (swb_inc_u(rport, 0)) | ||
2422 | mask |= (POLLIN | POLLRDNORM); | ||
2423 | } | ||
2424 | if (wport) { | ||
2425 | poll_wait(file, &wport->queue, wait); | ||
2426 | if (wport->swbuf == NULL || swb_inc_u(wport, 0)) | ||
2427 | mask |= (POLLOUT | POLLWRNORM); | ||
2428 | } | ||
2429 | |||
2430 | DBGPV("returning 0x%x\n", mask); | ||
2431 | return mask; | ||
2432 | } | ||
2433 | |||
2434 | static int vwsnd_audio_do_ioctl(struct file *file, | ||
2435 | unsigned int cmd, | ||
2436 | unsigned long arg) | ||
2437 | { | ||
2438 | vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data; | ||
2439 | vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ? | ||
2440 | &devc->rport : NULL; | ||
2441 | vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ? | ||
2442 | &devc->wport : NULL; | ||
2443 | vwsnd_port_t *aport = rport ? rport : wport; | ||
2444 | struct audio_buf_info buf_info; | ||
2445 | struct count_info info; | ||
2446 | unsigned long flags; | ||
2447 | int ival; | ||
2448 | |||
2449 | |||
2450 | DBGEV("(file=0x%p, cmd=0x%x, arg=0x%lx)\n", | ||
2451 | file, cmd, arg); | ||
2452 | switch (cmd) { | ||
2453 | case OSS_GETVERSION: /* _SIOR ('M', 118, int) */ | ||
2454 | DBGX("OSS_GETVERSION\n"); | ||
2455 | ival = SOUND_VERSION; | ||
2456 | return put_user(ival, (int *) arg); | ||
2457 | |||
2458 | case SNDCTL_DSP_GETCAPS: /* _SIOR ('P',15, int) */ | ||
2459 | DBGX("SNDCTL_DSP_GETCAPS\n"); | ||
2460 | ival = DSP_CAP_DUPLEX | DSP_CAP_REALTIME | DSP_CAP_TRIGGER; | ||
2461 | return put_user(ival, (int *) arg); | ||
2462 | |||
2463 | case SNDCTL_DSP_GETFMTS: /* _SIOR ('P',11, int) */ | ||
2464 | DBGX("SNDCTL_DSP_GETFMTS\n"); | ||
2465 | ival = (AFMT_S16_LE | AFMT_MU_LAW | AFMT_A_LAW | | ||
2466 | AFMT_U8 | AFMT_S8); | ||
2467 | return put_user(ival, (int *) arg); | ||
2468 | break; | ||
2469 | |||
2470 | case SOUND_PCM_READ_RATE: /* _SIOR ('P', 2, int) */ | ||
2471 | DBGX("SOUND_PCM_READ_RATE\n"); | ||
2472 | ival = aport->sw_framerate; | ||
2473 | return put_user(ival, (int *) arg); | ||
2474 | |||
2475 | case SOUND_PCM_READ_CHANNELS: /* _SIOR ('P', 6, int) */ | ||
2476 | DBGX("SOUND_PCM_READ_CHANNELS\n"); | ||
2477 | ival = aport->sw_channels; | ||
2478 | return put_user(ival, (int *) arg); | ||
2479 | |||
2480 | case SNDCTL_DSP_SPEED: /* _SIOWR('P', 2, int) */ | ||
2481 | if (get_user(ival, (int *) arg)) | ||
2482 | return -EFAULT; | ||
2483 | DBGX("SNDCTL_DSP_SPEED %d\n", ival); | ||
2484 | if (ival) { | ||
2485 | if (aport->swstate != SW_INITIAL) { | ||
2486 | DBGX("SNDCTL_DSP_SPEED failed: swstate = %d\n", | ||
2487 | aport->swstate); | ||
2488 | return -EINVAL; | ||
2489 | } | ||
2490 | if (ival < MIN_SPEED) | ||
2491 | ival = MIN_SPEED; | ||
2492 | if (ival > MAX_SPEED) | ||
2493 | ival = MAX_SPEED; | ||
2494 | if (rport) | ||
2495 | rport->sw_framerate = ival; | ||
2496 | if (wport) | ||
2497 | wport->sw_framerate = ival; | ||
2498 | } else | ||
2499 | ival = aport->sw_framerate; | ||
2500 | return put_user(ival, (int *) arg); | ||
2501 | |||
2502 | case SNDCTL_DSP_STEREO: /* _SIOWR('P', 3, int) */ | ||
2503 | if (get_user(ival, (int *) arg)) | ||
2504 | return -EFAULT; | ||
2505 | DBGX("SNDCTL_DSP_STEREO %d\n", ival); | ||
2506 | if (ival != 0 && ival != 1) | ||
2507 | return -EINVAL; | ||
2508 | if (aport->swstate != SW_INITIAL) | ||
2509 | return -EINVAL; | ||
2510 | if (rport) | ||
2511 | rport->sw_channels = ival + 1; | ||
2512 | if (wport) | ||
2513 | wport->sw_channels = ival + 1; | ||
2514 | return put_user(ival, (int *) arg); | ||
2515 | |||
2516 | case SNDCTL_DSP_CHANNELS: /* _SIOWR('P', 6, int) */ | ||
2517 | if (get_user(ival, (int *) arg)) | ||
2518 | return -EFAULT; | ||
2519 | DBGX("SNDCTL_DSP_CHANNELS %d\n", ival); | ||
2520 | if (ival != 1 && ival != 2) | ||
2521 | return -EINVAL; | ||
2522 | if (aport->swstate != SW_INITIAL) | ||
2523 | return -EINVAL; | ||
2524 | if (rport) | ||
2525 | rport->sw_channels = ival; | ||
2526 | if (wport) | ||
2527 | wport->sw_channels = ival; | ||
2528 | return put_user(ival, (int *) arg); | ||
2529 | |||
2530 | case SNDCTL_DSP_GETBLKSIZE: /* _SIOWR('P', 4, int) */ | ||
2531 | ival = pcm_setup(devc, rport, wport); | ||
2532 | if (ival < 0) { | ||
2533 | DBGX("SNDCTL_DSP_GETBLKSIZE failed, errno %d\n", ival); | ||
2534 | return ival; | ||
2535 | } | ||
2536 | ival = 1 << aport->sw_fragshift; | ||
2537 | DBGX("SNDCTL_DSP_GETBLKSIZE returning %d\n", ival); | ||
2538 | return put_user(ival, (int *) arg); | ||
2539 | |||
2540 | case SNDCTL_DSP_SETFRAGMENT: /* _SIOWR('P',10, int) */ | ||
2541 | if (get_user(ival, (int *) arg)) | ||
2542 | return -EFAULT; | ||
2543 | DBGX("SNDCTL_DSP_SETFRAGMENT %d:%d\n", | ||
2544 | ival >> 16, ival & 0xFFFF); | ||
2545 | if (aport->swstate != SW_INITIAL) | ||
2546 | return -EINVAL; | ||
2547 | { | ||
2548 | int sw_fragshift = ival & 0xFFFF; | ||
2549 | int sw_subdivshift = aport->sw_subdivshift; | ||
2550 | int hw_fragshift = sw_fragshift - sw_subdivshift; | ||
2551 | int sw_fragcount = (ival >> 16) & 0xFFFF; | ||
2552 | int hw_fragsize; | ||
2553 | if (hw_fragshift < MIN_FRAGSHIFT) | ||
2554 | hw_fragshift = MIN_FRAGSHIFT; | ||
2555 | if (hw_fragshift > MAX_FRAGSHIFT) | ||
2556 | hw_fragshift = MAX_FRAGSHIFT; | ||
2557 | sw_fragshift = hw_fragshift + aport->sw_subdivshift; | ||
2558 | hw_fragsize = 1 << hw_fragshift; | ||
2559 | if (sw_fragcount < MIN_FRAGCOUNT(hw_fragsize)) | ||
2560 | sw_fragcount = MIN_FRAGCOUNT(hw_fragsize); | ||
2561 | if (sw_fragcount > MAX_FRAGCOUNT(hw_fragsize)) | ||
2562 | sw_fragcount = MAX_FRAGCOUNT(hw_fragsize); | ||
2563 | DBGPV("sw_fragshift = %d\n", sw_fragshift); | ||
2564 | DBGPV("rport = 0x%p, wport = 0x%p\n", rport, wport); | ||
2565 | if (rport) { | ||
2566 | rport->sw_fragshift = sw_fragshift; | ||
2567 | rport->sw_fragcount = sw_fragcount; | ||
2568 | } | ||
2569 | if (wport) { | ||
2570 | wport->sw_fragshift = sw_fragshift; | ||
2571 | wport->sw_fragcount = sw_fragcount; | ||
2572 | } | ||
2573 | ival = sw_fragcount << 16 | sw_fragshift; | ||
2574 | } | ||
2575 | DBGX("SNDCTL_DSP_SETFRAGMENT returns %d:%d\n", | ||
2576 | ival >> 16, ival & 0xFFFF); | ||
2577 | return put_user(ival, (int *) arg); | ||
2578 | |||
2579 | case SNDCTL_DSP_SUBDIVIDE: /* _SIOWR('P', 9, int) */ | ||
2580 | if (get_user(ival, (int *) arg)) | ||
2581 | return -EFAULT; | ||
2582 | DBGX("SNDCTL_DSP_SUBDIVIDE %d\n", ival); | ||
2583 | if (aport->swstate != SW_INITIAL) | ||
2584 | return -EINVAL; | ||
2585 | { | ||
2586 | int subdivshift; | ||
2587 | int hw_fragshift, hw_fragsize, hw_fragcount; | ||
2588 | switch (ival) { | ||
2589 | case 1: subdivshift = 0; break; | ||
2590 | case 2: subdivshift = 1; break; | ||
2591 | case 4: subdivshift = 2; break; | ||
2592 | default: return -EINVAL; | ||
2593 | } | ||
2594 | hw_fragshift = aport->sw_fragshift - subdivshift; | ||
2595 | if (hw_fragshift < MIN_FRAGSHIFT || | ||
2596 | hw_fragshift > MAX_FRAGSHIFT) | ||
2597 | return -EINVAL; | ||
2598 | hw_fragsize = 1 << hw_fragshift; | ||
2599 | hw_fragcount = aport->sw_fragcount >> subdivshift; | ||
2600 | if (hw_fragcount < MIN_FRAGCOUNT(hw_fragsize) || | ||
2601 | hw_fragcount > MAX_FRAGCOUNT(hw_fragsize)) | ||
2602 | return -EINVAL; | ||
2603 | if (rport) | ||
2604 | rport->sw_subdivshift = subdivshift; | ||
2605 | if (wport) | ||
2606 | wport->sw_subdivshift = subdivshift; | ||
2607 | } | ||
2608 | return 0; | ||
2609 | |||
2610 | case SNDCTL_DSP_SETFMT: /* _SIOWR('P',5, int) */ | ||
2611 | if (get_user(ival, (int *) arg)) | ||
2612 | return -EFAULT; | ||
2613 | DBGX("SNDCTL_DSP_SETFMT %d\n", ival); | ||
2614 | if (ival != AFMT_QUERY) { | ||
2615 | if (aport->swstate != SW_INITIAL) { | ||
2616 | DBGP("SETFMT failed, swstate = %d\n", | ||
2617 | aport->swstate); | ||
2618 | return -EINVAL; | ||
2619 | } | ||
2620 | switch (ival) { | ||
2621 | case AFMT_MU_LAW: | ||
2622 | case AFMT_A_LAW: | ||
2623 | case AFMT_U8: | ||
2624 | case AFMT_S8: | ||
2625 | case AFMT_S16_LE: | ||
2626 | if (rport) | ||
2627 | rport->sw_samplefmt = ival; | ||
2628 | if (wport) | ||
2629 | wport->sw_samplefmt = ival; | ||
2630 | break; | ||
2631 | default: | ||
2632 | return -EINVAL; | ||
2633 | } | ||
2634 | } | ||
2635 | ival = aport->sw_samplefmt; | ||
2636 | return put_user(ival, (int *) arg); | ||
2637 | |||
2638 | case SNDCTL_DSP_GETOSPACE: /* _SIOR ('P',12, audio_buf_info) */ | ||
2639 | DBGXV("SNDCTL_DSP_GETOSPACE\n"); | ||
2640 | if (!wport) | ||
2641 | return -EINVAL; | ||
2642 | ival = pcm_setup(devc, rport, wport); | ||
2643 | if (ival < 0) | ||
2644 | return ival; | ||
2645 | ival = swb_inc_u(wport, 0); | ||
2646 | buf_info.fragments = ival >> wport->sw_fragshift; | ||
2647 | buf_info.fragstotal = wport->sw_fragcount; | ||
2648 | buf_info.fragsize = 1 << wport->sw_fragshift; | ||
2649 | buf_info.bytes = ival; | ||
2650 | DBGXV("SNDCTL_DSP_GETOSPACE returns { %d %d %d %d }\n", | ||
2651 | buf_info.fragments, buf_info.fragstotal, | ||
2652 | buf_info.fragsize, buf_info.bytes); | ||
2653 | if (copy_to_user((void *) arg, &buf_info, sizeof buf_info)) | ||
2654 | return -EFAULT; | ||
2655 | return 0; | ||
2656 | |||
2657 | case SNDCTL_DSP_GETISPACE: /* _SIOR ('P',13, audio_buf_info) */ | ||
2658 | DBGX("SNDCTL_DSP_GETISPACE\n"); | ||
2659 | if (!rport) | ||
2660 | return -EINVAL; | ||
2661 | ival = pcm_setup(devc, rport, wport); | ||
2662 | if (ival < 0) | ||
2663 | return ival; | ||
2664 | ival = swb_inc_u(rport, 0); | ||
2665 | buf_info.fragments = ival >> rport->sw_fragshift; | ||
2666 | buf_info.fragstotal = rport->sw_fragcount; | ||
2667 | buf_info.fragsize = 1 << rport->sw_fragshift; | ||
2668 | buf_info.bytes = ival; | ||
2669 | DBGX("SNDCTL_DSP_GETISPACE returns { %d %d %d %d }\n", | ||
2670 | buf_info.fragments, buf_info.fragstotal, | ||
2671 | buf_info.fragsize, buf_info.bytes); | ||
2672 | if (copy_to_user((void *) arg, &buf_info, sizeof buf_info)) | ||
2673 | return -EFAULT; | ||
2674 | return 0; | ||
2675 | |||
2676 | case SNDCTL_DSP_NONBLOCK: /* _SIO ('P',14) */ | ||
2677 | DBGX("SNDCTL_DSP_NONBLOCK\n"); | ||
2678 | spin_lock(&file->f_lock); | ||
2679 | file->f_flags |= O_NONBLOCK; | ||
2680 | spin_unlock(&file->f_lock); | ||
2681 | return 0; | ||
2682 | |||
2683 | case SNDCTL_DSP_RESET: /* _SIO ('P', 0) */ | ||
2684 | DBGX("SNDCTL_DSP_RESET\n"); | ||
2685 | /* | ||
2686 | * Nothing special needs to be done for input. Input | ||
2687 | * samples sit in swbuf, but it will be reinitialized | ||
2688 | * to empty when pcm_setup() is called. | ||
2689 | */ | ||
2690 | if (wport && wport->swbuf) { | ||
2691 | wport->swstate = SW_INITIAL; | ||
2692 | pcm_output(devc, 0, 0); | ||
2693 | pcm_write_sync(devc); | ||
2694 | } | ||
2695 | pcm_shutdown(devc, rport, wport); | ||
2696 | return 0; | ||
2697 | |||
2698 | case SNDCTL_DSP_SYNC: /* _SIO ('P', 1) */ | ||
2699 | DBGX("SNDCTL_DSP_SYNC\n"); | ||
2700 | if (wport) { | ||
2701 | pcm_flush_frag(devc); | ||
2702 | pcm_write_sync(devc); | ||
2703 | } | ||
2704 | pcm_shutdown(devc, rport, wport); | ||
2705 | return 0; | ||
2706 | |||
2707 | case SNDCTL_DSP_POST: /* _SIO ('P', 8) */ | ||
2708 | DBGX("SNDCTL_DSP_POST\n"); | ||
2709 | if (!wport) | ||
2710 | return -EINVAL; | ||
2711 | pcm_flush_frag(devc); | ||
2712 | return 0; | ||
2713 | |||
2714 | case SNDCTL_DSP_GETIPTR: /* _SIOR ('P', 17, count_info) */ | ||
2715 | DBGX("SNDCTL_DSP_GETIPTR\n"); | ||
2716 | if (!rport) | ||
2717 | return -EINVAL; | ||
2718 | spin_lock_irqsave(&rport->lock, flags); | ||
2719 | { | ||
2720 | ustmsc_t ustmsc; | ||
2721 | if (rport->hwstate == HW_RUNNING) { | ||
2722 | ASSERT(rport->swstate == SW_RUN); | ||
2723 | li_read_USTMSC(&rport->chan, &ustmsc); | ||
2724 | info.bytes = ustmsc.msc - rport->MSC_offset; | ||
2725 | info.bytes *= rport->frame_size; | ||
2726 | } else { | ||
2727 | info.bytes = rport->byte_count; | ||
2728 | } | ||
2729 | info.blocks = rport->frag_count; | ||
2730 | info.ptr = 0; /* not implemented */ | ||
2731 | rport->frag_count = 0; | ||
2732 | } | ||
2733 | spin_unlock_irqrestore(&rport->lock, flags); | ||
2734 | if (copy_to_user((void *) arg, &info, sizeof info)) | ||
2735 | return -EFAULT; | ||
2736 | return 0; | ||
2737 | |||
2738 | case SNDCTL_DSP_GETOPTR: /* _SIOR ('P',18, count_info) */ | ||
2739 | DBGX("SNDCTL_DSP_GETOPTR\n"); | ||
2740 | if (!wport) | ||
2741 | return -EINVAL; | ||
2742 | spin_lock_irqsave(&wport->lock, flags); | ||
2743 | { | ||
2744 | ustmsc_t ustmsc; | ||
2745 | if (wport->hwstate == HW_RUNNING) { | ||
2746 | ASSERT(wport->swstate == SW_RUN); | ||
2747 | li_read_USTMSC(&wport->chan, &ustmsc); | ||
2748 | info.bytes = ustmsc.msc - wport->MSC_offset; | ||
2749 | info.bytes *= wport->frame_size; | ||
2750 | } else { | ||
2751 | info.bytes = wport->byte_count; | ||
2752 | } | ||
2753 | info.blocks = wport->frag_count; | ||
2754 | info.ptr = 0; /* not implemented */ | ||
2755 | wport->frag_count = 0; | ||
2756 | } | ||
2757 | spin_unlock_irqrestore(&wport->lock, flags); | ||
2758 | if (copy_to_user((void *) arg, &info, sizeof info)) | ||
2759 | return -EFAULT; | ||
2760 | return 0; | ||
2761 | |||
2762 | case SNDCTL_DSP_GETODELAY: /* _SIOR ('P', 23, int) */ | ||
2763 | DBGX("SNDCTL_DSP_GETODELAY\n"); | ||
2764 | if (!wport) | ||
2765 | return -EINVAL; | ||
2766 | spin_lock_irqsave(&wport->lock, flags); | ||
2767 | { | ||
2768 | int fsize = wport->frame_size; | ||
2769 | ival = wport->swb_i_avail / fsize; | ||
2770 | if (wport->hwstate == HW_RUNNING) { | ||
2771 | int swptr, hwptr, hwframes, hwbytes, hwsize; | ||
2772 | int totalhwbytes; | ||
2773 | ustmsc_t ustmsc; | ||
2774 | |||
2775 | hwsize = wport->hwbuf_size; | ||
2776 | swptr = li_read_swptr(&wport->chan); | ||
2777 | li_read_USTMSC(&wport->chan, &ustmsc); | ||
2778 | hwframes = ustmsc.msc - wport->MSC_offset; | ||
2779 | totalhwbytes = hwframes * fsize; | ||
2780 | hwptr = totalhwbytes % hwsize; | ||
2781 | hwbytes = (swptr - hwptr + hwsize) % hwsize; | ||
2782 | ival += hwbytes / fsize; | ||
2783 | } | ||
2784 | } | ||
2785 | spin_unlock_irqrestore(&wport->lock, flags); | ||
2786 | return put_user(ival, (int *) arg); | ||
2787 | |||
2788 | case SNDCTL_DSP_PROFILE: /* _SIOW ('P', 23, int) */ | ||
2789 | DBGX("SNDCTL_DSP_PROFILE\n"); | ||
2790 | |||
2791 | /* | ||
2792 | * Thomas Sailer explains SNDCTL_DSP_PROFILE | ||
2793 | * (private email, March 24, 1999): | ||
2794 | * | ||
2795 | * This gives the sound driver a hint on what it | ||
2796 | * should do with partial fragments | ||
2797 | * (i.e. fragments partially filled with write). | ||
2798 | * This can direct the driver to zero them or | ||
2799 | * leave them alone. But don't ask me what this | ||
2800 | * is good for, my driver just zeroes the last | ||
2801 | * fragment before the receiver stops, no idea | ||
2802 | * what good for any other behaviour could | ||
2803 | * be. Implementing it as NOP seems safe. | ||
2804 | */ | ||
2805 | |||
2806 | break; | ||
2807 | |||
2808 | case SNDCTL_DSP_GETTRIGGER: /* _SIOR ('P',16, int) */ | ||
2809 | DBGX("SNDCTL_DSP_GETTRIGGER\n"); | ||
2810 | ival = 0; | ||
2811 | if (rport) { | ||
2812 | spin_lock_irqsave(&rport->lock, flags); | ||
2813 | { | ||
2814 | if (!(rport->flags & DISABLED)) | ||
2815 | ival |= PCM_ENABLE_INPUT; | ||
2816 | } | ||
2817 | spin_unlock_irqrestore(&rport->lock, flags); | ||
2818 | } | ||
2819 | if (wport) { | ||
2820 | spin_lock_irqsave(&wport->lock, flags); | ||
2821 | { | ||
2822 | if (!(wport->flags & DISABLED)) | ||
2823 | ival |= PCM_ENABLE_OUTPUT; | ||
2824 | } | ||
2825 | spin_unlock_irqrestore(&wport->lock, flags); | ||
2826 | } | ||
2827 | return put_user(ival, (int *) arg); | ||
2828 | |||
2829 | case SNDCTL_DSP_SETTRIGGER: /* _SIOW ('P',16, int) */ | ||
2830 | if (get_user(ival, (int *) arg)) | ||
2831 | return -EFAULT; | ||
2832 | DBGX("SNDCTL_DSP_SETTRIGGER %d\n", ival); | ||
2833 | |||
2834 | /* | ||
2835 | * If user is disabling I/O and port is not in initial | ||
2836 | * state, fail with EINVAL. | ||
2837 | */ | ||
2838 | |||
2839 | if (((rport && !(ival & PCM_ENABLE_INPUT)) || | ||
2840 | (wport && !(ival & PCM_ENABLE_OUTPUT))) && | ||
2841 | aport->swstate != SW_INITIAL) | ||
2842 | return -EINVAL; | ||
2843 | |||
2844 | if (rport) { | ||
2845 | vwsnd_port_hwstate_t hwstate; | ||
2846 | spin_lock_irqsave(&rport->lock, flags); | ||
2847 | { | ||
2848 | hwstate = rport->hwstate; | ||
2849 | if (ival & PCM_ENABLE_INPUT) | ||
2850 | rport->flags &= ~DISABLED; | ||
2851 | else | ||
2852 | rport->flags |= DISABLED; | ||
2853 | } | ||
2854 | spin_unlock_irqrestore(&rport->lock, flags); | ||
2855 | if (hwstate != HW_RUNNING && ival & PCM_ENABLE_INPUT) { | ||
2856 | |||
2857 | if (rport->swstate == SW_INITIAL) | ||
2858 | pcm_setup(devc, rport, wport); | ||
2859 | else | ||
2860 | li_activate_dma(&rport->chan); | ||
2861 | } | ||
2862 | } | ||
2863 | if (wport) { | ||
2864 | vwsnd_port_flags_t pflags; | ||
2865 | spin_lock_irqsave(&wport->lock, flags); | ||
2866 | { | ||
2867 | pflags = wport->flags; | ||
2868 | if (ival & PCM_ENABLE_OUTPUT) | ||
2869 | wport->flags &= ~DISABLED; | ||
2870 | else | ||
2871 | wport->flags |= DISABLED; | ||
2872 | } | ||
2873 | spin_unlock_irqrestore(&wport->lock, flags); | ||
2874 | if (pflags & DISABLED && ival & PCM_ENABLE_OUTPUT) { | ||
2875 | if (wport->swstate == SW_RUN) | ||
2876 | pcm_output(devc, 0, 0); | ||
2877 | } | ||
2878 | } | ||
2879 | return 0; | ||
2880 | |||
2881 | default: | ||
2882 | DBGP("unknown ioctl 0x%x\n", cmd); | ||
2883 | return -EINVAL; | ||
2884 | } | ||
2885 | DBGP("unimplemented ioctl 0x%x\n", cmd); | ||
2886 | return -EINVAL; | ||
2887 | } | ||
2888 | |||
2889 | static long vwsnd_audio_ioctl(struct file *file, | ||
2890 | unsigned int cmd, | ||
2891 | unsigned long arg) | ||
2892 | { | ||
2893 | vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data; | ||
2894 | int ret; | ||
2895 | |||
2896 | mutex_lock(&vwsnd_mutex); | ||
2897 | mutex_lock(&devc->io_mutex); | ||
2898 | ret = vwsnd_audio_do_ioctl(file, cmd, arg); | ||
2899 | mutex_unlock(&devc->io_mutex); | ||
2900 | mutex_unlock(&vwsnd_mutex); | ||
2901 | |||
2902 | return ret; | ||
2903 | } | ||
2904 | |||
2905 | /* No mmap. */ | ||
2906 | |||
2907 | static int vwsnd_audio_mmap(struct file *file, struct vm_area_struct *vma) | ||
2908 | { | ||
2909 | DBGE("(file=0x%p, vma=0x%p)\n", file, vma); | ||
2910 | return -ENODEV; | ||
2911 | } | ||
2912 | |||
2913 | /* | ||
2914 | * Open the audio device for read and/or write. | ||
2915 | * | ||
2916 | * Returns 0 on success, -errno on failure. | ||
2917 | */ | ||
2918 | |||
2919 | static int vwsnd_audio_open(struct inode *inode, struct file *file) | ||
2920 | { | ||
2921 | vwsnd_dev_t *devc; | ||
2922 | int minor = iminor(inode); | ||
2923 | int sw_samplefmt; | ||
2924 | DEFINE_WAIT(wait); | ||
2925 | |||
2926 | DBGE("(inode=0x%p, file=0x%p)\n", inode, file); | ||
2927 | |||
2928 | mutex_lock(&vwsnd_mutex); | ||
2929 | INC_USE_COUNT; | ||
2930 | for (devc = vwsnd_dev_list; devc; devc = devc->next_dev) | ||
2931 | if ((devc->audio_minor & ~0x0F) == (minor & ~0x0F)) | ||
2932 | break; | ||
2933 | |||
2934 | if (devc == NULL) { | ||
2935 | DEC_USE_COUNT; | ||
2936 | mutex_unlock(&vwsnd_mutex); | ||
2937 | return -ENODEV; | ||
2938 | } | ||
2939 | |||
2940 | mutex_lock(&devc->open_mutex); | ||
2941 | while (1) { | ||
2942 | prepare_to_wait(&devc->open_wait, &wait, TASK_INTERRUPTIBLE); | ||
2943 | if (!(devc->open_mode & file->f_mode)) | ||
2944 | break; | ||
2945 | |||
2946 | mutex_unlock(&devc->open_mutex); | ||
2947 | mutex_unlock(&vwsnd_mutex); | ||
2948 | if (file->f_flags & O_NONBLOCK) { | ||
2949 | DEC_USE_COUNT; | ||
2950 | return -EBUSY; | ||
2951 | } | ||
2952 | schedule(); | ||
2953 | if (signal_pending(current)) { | ||
2954 | DEC_USE_COUNT; | ||
2955 | return -ERESTARTSYS; | ||
2956 | } | ||
2957 | mutex_lock(&vwsnd_mutex); | ||
2958 | mutex_lock(&devc->open_mutex); | ||
2959 | } | ||
2960 | finish_wait(&devc->open_wait, &wait); | ||
2961 | devc->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE); | ||
2962 | mutex_unlock(&devc->open_mutex); | ||
2963 | |||
2964 | /* get default sample format from minor number. */ | ||
2965 | |||
2966 | sw_samplefmt = 0; | ||
2967 | if ((minor & 0xF) == SND_DEV_DSP) | ||
2968 | sw_samplefmt = AFMT_U8; | ||
2969 | else if ((minor & 0xF) == SND_DEV_AUDIO) | ||
2970 | sw_samplefmt = AFMT_MU_LAW; | ||
2971 | else if ((minor & 0xF) == SND_DEV_DSP16) | ||
2972 | sw_samplefmt = AFMT_S16_LE; | ||
2973 | else | ||
2974 | ASSERT(0); | ||
2975 | |||
2976 | /* Initialize vwsnd_ports. */ | ||
2977 | |||
2978 | mutex_lock(&devc->io_mutex); | ||
2979 | { | ||
2980 | if (file->f_mode & FMODE_READ) { | ||
2981 | devc->rport.swstate = SW_INITIAL; | ||
2982 | devc->rport.flags = 0; | ||
2983 | devc->rport.sw_channels = 1; | ||
2984 | devc->rport.sw_samplefmt = sw_samplefmt; | ||
2985 | devc->rport.sw_framerate = 8000; | ||
2986 | devc->rport.sw_fragshift = DEFAULT_FRAGSHIFT; | ||
2987 | devc->rport.sw_fragcount = DEFAULT_FRAGCOUNT; | ||
2988 | devc->rport.sw_subdivshift = DEFAULT_SUBDIVSHIFT; | ||
2989 | devc->rport.byte_count = 0; | ||
2990 | devc->rport.frag_count = 0; | ||
2991 | } | ||
2992 | if (file->f_mode & FMODE_WRITE) { | ||
2993 | devc->wport.swstate = SW_INITIAL; | ||
2994 | devc->wport.flags = 0; | ||
2995 | devc->wport.sw_channels = 1; | ||
2996 | devc->wport.sw_samplefmt = sw_samplefmt; | ||
2997 | devc->wport.sw_framerate = 8000; | ||
2998 | devc->wport.sw_fragshift = DEFAULT_FRAGSHIFT; | ||
2999 | devc->wport.sw_fragcount = DEFAULT_FRAGCOUNT; | ||
3000 | devc->wport.sw_subdivshift = DEFAULT_SUBDIVSHIFT; | ||
3001 | devc->wport.byte_count = 0; | ||
3002 | devc->wport.frag_count = 0; | ||
3003 | } | ||
3004 | } | ||
3005 | mutex_unlock(&devc->io_mutex); | ||
3006 | |||
3007 | file->private_data = devc; | ||
3008 | DBGRV(); | ||
3009 | mutex_unlock(&vwsnd_mutex); | ||
3010 | return 0; | ||
3011 | } | ||
3012 | |||
3013 | /* | ||
3014 | * Release (close) the audio device. | ||
3015 | */ | ||
3016 | |||
3017 | static int vwsnd_audio_release(struct inode *inode, struct file *file) | ||
3018 | { | ||
3019 | vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data; | ||
3020 | vwsnd_port_t *wport = NULL, *rport = NULL; | ||
3021 | int err = 0; | ||
3022 | |||
3023 | mutex_lock(&vwsnd_mutex); | ||
3024 | mutex_lock(&devc->io_mutex); | ||
3025 | { | ||
3026 | DBGEV("(inode=0x%p, file=0x%p)\n", inode, file); | ||
3027 | |||
3028 | if (file->f_mode & FMODE_READ) | ||
3029 | rport = &devc->rport; | ||
3030 | if (file->f_mode & FMODE_WRITE) { | ||
3031 | wport = &devc->wport; | ||
3032 | pcm_flush_frag(devc); | ||
3033 | pcm_write_sync(devc); | ||
3034 | } | ||
3035 | pcm_shutdown(devc, rport, wport); | ||
3036 | if (rport) | ||
3037 | rport->swstate = SW_OFF; | ||
3038 | if (wport) | ||
3039 | wport->swstate = SW_OFF; | ||
3040 | } | ||
3041 | mutex_unlock(&devc->io_mutex); | ||
3042 | |||
3043 | mutex_lock(&devc->open_mutex); | ||
3044 | { | ||
3045 | devc->open_mode &= ~file->f_mode; | ||
3046 | } | ||
3047 | mutex_unlock(&devc->open_mutex); | ||
3048 | wake_up(&devc->open_wait); | ||
3049 | DEC_USE_COUNT; | ||
3050 | DBGR(); | ||
3051 | mutex_unlock(&vwsnd_mutex); | ||
3052 | return err; | ||
3053 | } | ||
3054 | |||
3055 | static const struct file_operations vwsnd_audio_fops = { | ||
3056 | .owner = THIS_MODULE, | ||
3057 | .llseek = no_llseek, | ||
3058 | .read = vwsnd_audio_read, | ||
3059 | .write = vwsnd_audio_write, | ||
3060 | .poll = vwsnd_audio_poll, | ||
3061 | .unlocked_ioctl = vwsnd_audio_ioctl, | ||
3062 | .mmap = vwsnd_audio_mmap, | ||
3063 | .open = vwsnd_audio_open, | ||
3064 | .release = vwsnd_audio_release, | ||
3065 | }; | ||
3066 | |||
3067 | /*****************************************************************************/ | ||
3068 | /* mixer driver */ | ||
3069 | |||
3070 | /* open the mixer device. */ | ||
3071 | |||
3072 | static int vwsnd_mixer_open(struct inode *inode, struct file *file) | ||
3073 | { | ||
3074 | vwsnd_dev_t *devc; | ||
3075 | |||
3076 | DBGEV("(inode=0x%p, file=0x%p)\n", inode, file); | ||
3077 | |||
3078 | INC_USE_COUNT; | ||
3079 | mutex_lock(&vwsnd_mutex); | ||
3080 | for (devc = vwsnd_dev_list; devc; devc = devc->next_dev) | ||
3081 | if (devc->mixer_minor == iminor(inode)) | ||
3082 | break; | ||
3083 | |||
3084 | if (devc == NULL) { | ||
3085 | DEC_USE_COUNT; | ||
3086 | mutex_unlock(&vwsnd_mutex); | ||
3087 | return -ENODEV; | ||
3088 | } | ||
3089 | file->private_data = devc; | ||
3090 | mutex_unlock(&vwsnd_mutex); | ||
3091 | return 0; | ||
3092 | } | ||
3093 | |||
3094 | /* release (close) the mixer device. */ | ||
3095 | |||
3096 | static int vwsnd_mixer_release(struct inode *inode, struct file *file) | ||
3097 | { | ||
3098 | DBGEV("(inode=0x%p, file=0x%p)\n", inode, file); | ||
3099 | DEC_USE_COUNT; | ||
3100 | return 0; | ||
3101 | } | ||
3102 | |||
3103 | /* mixer_read_ioctl handles all read ioctls on the mixer device. */ | ||
3104 | |||
3105 | static int mixer_read_ioctl(vwsnd_dev_t *devc, unsigned int nr, void __user *arg) | ||
3106 | { | ||
3107 | int val = -1; | ||
3108 | |||
3109 | DBGEV("(devc=0x%p, nr=0x%x, arg=0x%p)\n", devc, nr, arg); | ||
3110 | |||
3111 | switch (nr) { | ||
3112 | case SOUND_MIXER_CAPS: | ||
3113 | val = SOUND_CAP_EXCL_INPUT; | ||
3114 | break; | ||
3115 | |||
3116 | case SOUND_MIXER_DEVMASK: | ||
3117 | val = (SOUND_MASK_PCM | SOUND_MASK_LINE | | ||
3118 | SOUND_MASK_MIC | SOUND_MASK_CD | SOUND_MASK_RECLEV); | ||
3119 | break; | ||
3120 | |||
3121 | case SOUND_MIXER_STEREODEVS: | ||
3122 | val = (SOUND_MASK_PCM | SOUND_MASK_LINE | | ||
3123 | SOUND_MASK_MIC | SOUND_MASK_CD | SOUND_MASK_RECLEV); | ||
3124 | break; | ||
3125 | |||
3126 | case SOUND_MIXER_OUTMASK: | ||
3127 | val = (SOUND_MASK_PCM | SOUND_MASK_LINE | | ||
3128 | SOUND_MASK_MIC | SOUND_MASK_CD); | ||
3129 | break; | ||
3130 | |||
3131 | case SOUND_MIXER_RECMASK: | ||
3132 | val = (SOUND_MASK_PCM | SOUND_MASK_LINE | | ||
3133 | SOUND_MASK_MIC | SOUND_MASK_CD); | ||
3134 | break; | ||
3135 | |||
3136 | case SOUND_MIXER_PCM: | ||
3137 | val = ad1843_get_gain(&devc->lith, &ad1843_gain_PCM); | ||
3138 | break; | ||
3139 | |||
3140 | case SOUND_MIXER_LINE: | ||
3141 | val = ad1843_get_gain(&devc->lith, &ad1843_gain_LINE); | ||
3142 | break; | ||
3143 | |||
3144 | case SOUND_MIXER_MIC: | ||
3145 | val = ad1843_get_gain(&devc->lith, &ad1843_gain_MIC); | ||
3146 | break; | ||
3147 | |||
3148 | case SOUND_MIXER_CD: | ||
3149 | val = ad1843_get_gain(&devc->lith, &ad1843_gain_CD); | ||
3150 | break; | ||
3151 | |||
3152 | case SOUND_MIXER_RECLEV: | ||
3153 | val = ad1843_get_gain(&devc->lith, &ad1843_gain_RECLEV); | ||
3154 | break; | ||
3155 | |||
3156 | case SOUND_MIXER_RECSRC: | ||
3157 | val = ad1843_get_recsrc(&devc->lith); | ||
3158 | break; | ||
3159 | |||
3160 | case SOUND_MIXER_OUTSRC: | ||
3161 | val = ad1843_get_outsrc(&devc->lith); | ||
3162 | break; | ||
3163 | |||
3164 | default: | ||
3165 | return -EINVAL; | ||
3166 | } | ||
3167 | return put_user(val, (int __user *) arg); | ||
3168 | } | ||
3169 | |||
3170 | /* mixer_write_ioctl handles all write ioctls on the mixer device. */ | ||
3171 | |||
3172 | static int mixer_write_ioctl(vwsnd_dev_t *devc, unsigned int nr, void __user *arg) | ||
3173 | { | ||
3174 | int val; | ||
3175 | int err; | ||
3176 | |||
3177 | DBGEV("(devc=0x%p, nr=0x%x, arg=0x%p)\n", devc, nr, arg); | ||
3178 | |||
3179 | err = get_user(val, (int __user *) arg); | ||
3180 | if (err) | ||
3181 | return -EFAULT; | ||
3182 | switch (nr) { | ||
3183 | case SOUND_MIXER_PCM: | ||
3184 | val = ad1843_set_gain(&devc->lith, &ad1843_gain_PCM, val); | ||
3185 | break; | ||
3186 | |||
3187 | case SOUND_MIXER_LINE: | ||
3188 | val = ad1843_set_gain(&devc->lith, &ad1843_gain_LINE, val); | ||
3189 | break; | ||
3190 | |||
3191 | case SOUND_MIXER_MIC: | ||
3192 | val = ad1843_set_gain(&devc->lith, &ad1843_gain_MIC, val); | ||
3193 | break; | ||
3194 | |||
3195 | case SOUND_MIXER_CD: | ||
3196 | val = ad1843_set_gain(&devc->lith, &ad1843_gain_CD, val); | ||
3197 | break; | ||
3198 | |||
3199 | case SOUND_MIXER_RECLEV: | ||
3200 | val = ad1843_set_gain(&devc->lith, &ad1843_gain_RECLEV, val); | ||
3201 | break; | ||
3202 | |||
3203 | case SOUND_MIXER_RECSRC: | ||
3204 | if (devc->rport.swbuf || devc->wport.swbuf) | ||
3205 | return -EBUSY; /* can't change recsrc while running */ | ||
3206 | val = ad1843_set_recsrc(&devc->lith, val); | ||
3207 | break; | ||
3208 | |||
3209 | case SOUND_MIXER_OUTSRC: | ||
3210 | val = ad1843_set_outsrc(&devc->lith, val); | ||
3211 | break; | ||
3212 | |||
3213 | default: | ||
3214 | return -EINVAL; | ||
3215 | } | ||
3216 | if (val < 0) | ||
3217 | return val; | ||
3218 | return put_user(val, (int __user *) arg); | ||
3219 | } | ||
3220 | |||
3221 | /* This is the ioctl entry to the mixer driver. */ | ||
3222 | |||
3223 | static long vwsnd_mixer_ioctl(struct file *file, | ||
3224 | unsigned int cmd, | ||
3225 | unsigned long arg) | ||
3226 | { | ||
3227 | vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data; | ||
3228 | const unsigned int nrmask = _IOC_NRMASK << _IOC_NRSHIFT; | ||
3229 | const unsigned int nr = (cmd & nrmask) >> _IOC_NRSHIFT; | ||
3230 | int retval; | ||
3231 | |||
3232 | DBGEV("(devc=0x%p, cmd=0x%x, arg=0x%lx)\n", devc, cmd, arg); | ||
3233 | |||
3234 | mutex_lock(&vwsnd_mutex); | ||
3235 | mutex_lock(&devc->mix_mutex); | ||
3236 | { | ||
3237 | if ((cmd & ~nrmask) == MIXER_READ(0)) | ||
3238 | retval = mixer_read_ioctl(devc, nr, (void __user *) arg); | ||
3239 | else if ((cmd & ~nrmask) == MIXER_WRITE(0)) | ||
3240 | retval = mixer_write_ioctl(devc, nr, (void __user *) arg); | ||
3241 | else | ||
3242 | retval = -EINVAL; | ||
3243 | } | ||
3244 | mutex_unlock(&devc->mix_mutex); | ||
3245 | mutex_unlock(&vwsnd_mutex); | ||
3246 | return retval; | ||
3247 | } | ||
3248 | |||
3249 | static const struct file_operations vwsnd_mixer_fops = { | ||
3250 | .owner = THIS_MODULE, | ||
3251 | .llseek = no_llseek, | ||
3252 | .unlocked_ioctl = vwsnd_mixer_ioctl, | ||
3253 | .open = vwsnd_mixer_open, | ||
3254 | .release = vwsnd_mixer_release, | ||
3255 | }; | ||
3256 | |||
3257 | /*****************************************************************************/ | ||
3258 | /* probe/attach/unload */ | ||
3259 | |||
3260 | /* driver probe routine. Return nonzero if hardware is found. */ | ||
3261 | |||
3262 | static int __init probe_vwsnd(struct address_info *hw_config) | ||
3263 | { | ||
3264 | lithium_t lith; | ||
3265 | int w; | ||
3266 | unsigned long later; | ||
3267 | |||
3268 | DBGEV("(hw_config=0x%p)\n", hw_config); | ||
3269 | |||
3270 | /* XXX verify lithium present (to prevent crash on non-vw) */ | ||
3271 | |||
3272 | if (li_create(&lith, hw_config->io_base) != 0) { | ||
3273 | printk(KERN_WARNING "probe_vwsnd: can't map lithium\n"); | ||
3274 | return 0; | ||
3275 | } | ||
3276 | later = jiffies + 2; | ||
3277 | li_writel(&lith, LI_HOST_CONTROLLER, LI_HC_LINK_ENABLE); | ||
3278 | do { | ||
3279 | w = li_readl(&lith, LI_HOST_CONTROLLER); | ||
3280 | } while (w == LI_HC_LINK_ENABLE && time_before(jiffies, later)); | ||
3281 | |||
3282 | li_destroy(&lith); | ||
3283 | |||
3284 | DBGPV("HC = 0x%04x\n", w); | ||
3285 | |||
3286 | if ((w == LI_HC_LINK_ENABLE) || (w & LI_HC_LINK_CODEC)) { | ||
3287 | |||
3288 | /* This may indicate a beta machine with no audio, | ||
3289 | * or a future machine with different audio. | ||
3290 | * On beta-release 320 w/ no audio, HC == 0x4000 */ | ||
3291 | |||
3292 | printk(KERN_WARNING "probe_vwsnd: audio codec not found\n"); | ||
3293 | return 0; | ||
3294 | } | ||
3295 | |||
3296 | if (w & LI_HC_LINK_FAILURE) { | ||
3297 | printk(KERN_WARNING "probe_vwsnd: can't init audio codec\n"); | ||
3298 | return 0; | ||
3299 | } | ||
3300 | |||
3301 | printk(KERN_INFO "vwsnd: lithium audio at mmio %#x irq %d\n", | ||
3302 | hw_config->io_base, hw_config->irq); | ||
3303 | |||
3304 | return 1; | ||
3305 | } | ||
3306 | |||
3307 | /* | ||
3308 | * driver attach routine. Initialize driver data structures and | ||
3309 | * initialize hardware. A new vwsnd_dev_t is allocated and put | ||
3310 | * onto the global list, vwsnd_dev_list. | ||
3311 | * | ||
3312 | * Return +minor_dev on success, -errno on failure. | ||
3313 | */ | ||
3314 | |||
3315 | static int __init attach_vwsnd(struct address_info *hw_config) | ||
3316 | { | ||
3317 | vwsnd_dev_t *devc = NULL; | ||
3318 | int err = -ENOMEM; | ||
3319 | |||
3320 | DBGEV("(hw_config=0x%p)\n", hw_config); | ||
3321 | |||
3322 | devc = kmalloc(sizeof (vwsnd_dev_t), GFP_KERNEL); | ||
3323 | if (devc == NULL) | ||
3324 | goto fail0; | ||
3325 | |||
3326 | err = li_create(&devc->lith, hw_config->io_base); | ||
3327 | if (err) | ||
3328 | goto fail1; | ||
3329 | |||
3330 | init_waitqueue_head(&devc->open_wait); | ||
3331 | |||
3332 | devc->rport.hwbuf_size = HWBUF_SIZE; | ||
3333 | devc->rport.hwbuf_vaddr = __get_free_pages(GFP_KERNEL, HWBUF_ORDER); | ||
3334 | if (!devc->rport.hwbuf_vaddr) | ||
3335 | goto fail2; | ||
3336 | devc->rport.hwbuf = (void *) devc->rport.hwbuf_vaddr; | ||
3337 | devc->rport.hwbuf_paddr = virt_to_phys(devc->rport.hwbuf); | ||
3338 | |||
3339 | /* | ||
3340 | * Quote from the NT driver: | ||
3341 | * | ||
3342 | * // WARNING!!! HACK to setup output dma!!! | ||
3343 | * // This is required because even on output there is some data | ||
3344 | * // trickling into the input DMA channel. This is a bug in the | ||
3345 | * // Lithium microcode. | ||
3346 | * // --sde | ||
3347 | * | ||
3348 | * We set the input side's DMA base address here. It will remain | ||
3349 | * valid until the driver is unloaded. | ||
3350 | */ | ||
3351 | |||
3352 | li_writel(&devc->lith, LI_COMM1_BASE, | ||
3353 | devc->rport.hwbuf_paddr >> 8 | 1 << (37 - 8)); | ||
3354 | |||
3355 | devc->wport.hwbuf_size = HWBUF_SIZE; | ||
3356 | devc->wport.hwbuf_vaddr = __get_free_pages(GFP_KERNEL, HWBUF_ORDER); | ||
3357 | if (!devc->wport.hwbuf_vaddr) | ||
3358 | goto fail3; | ||
3359 | devc->wport.hwbuf = (void *) devc->wport.hwbuf_vaddr; | ||
3360 | devc->wport.hwbuf_paddr = virt_to_phys(devc->wport.hwbuf); | ||
3361 | DBGP("wport hwbuf = 0x%p\n", devc->wport.hwbuf); | ||
3362 | |||
3363 | DBGDO(shut_up++); | ||
3364 | err = ad1843_init(&devc->lith); | ||
3365 | DBGDO(shut_up--); | ||
3366 | if (err) | ||
3367 | goto fail4; | ||
3368 | |||
3369 | /* install interrupt handler */ | ||
3370 | |||
3371 | err = request_irq(hw_config->irq, vwsnd_audio_intr, 0, "vwsnd", devc); | ||
3372 | if (err) | ||
3373 | goto fail5; | ||
3374 | |||
3375 | /* register this device's drivers. */ | ||
3376 | |||
3377 | devc->audio_minor = register_sound_dsp(&vwsnd_audio_fops, -1); | ||
3378 | if ((err = devc->audio_minor) < 0) { | ||
3379 | DBGDO(printk(KERN_WARNING | ||
3380 | "attach_vwsnd: register_sound_dsp error %d\n", | ||
3381 | err)); | ||
3382 | goto fail6; | ||
3383 | } | ||
3384 | devc->mixer_minor = register_sound_mixer(&vwsnd_mixer_fops, | ||
3385 | devc->audio_minor >> 4); | ||
3386 | if ((err = devc->mixer_minor) < 0) { | ||
3387 | DBGDO(printk(KERN_WARNING | ||
3388 | "attach_vwsnd: register_sound_mixer error %d\n", | ||
3389 | err)); | ||
3390 | goto fail7; | ||
3391 | } | ||
3392 | |||
3393 | /* Squirrel away device indices for unload routine. */ | ||
3394 | |||
3395 | hw_config->slots[0] = devc->audio_minor; | ||
3396 | |||
3397 | /* Initialize as much of *devc as possible */ | ||
3398 | |||
3399 | mutex_init(&devc->open_mutex); | ||
3400 | mutex_init(&devc->io_mutex); | ||
3401 | mutex_init(&devc->mix_mutex); | ||
3402 | devc->open_mode = 0; | ||
3403 | spin_lock_init(&devc->rport.lock); | ||
3404 | init_waitqueue_head(&devc->rport.queue); | ||
3405 | devc->rport.swstate = SW_OFF; | ||
3406 | devc->rport.hwstate = HW_STOPPED; | ||
3407 | devc->rport.flags = 0; | ||
3408 | devc->rport.swbuf = NULL; | ||
3409 | spin_lock_init(&devc->wport.lock); | ||
3410 | init_waitqueue_head(&devc->wport.queue); | ||
3411 | devc->wport.swstate = SW_OFF; | ||
3412 | devc->wport.hwstate = HW_STOPPED; | ||
3413 | devc->wport.flags = 0; | ||
3414 | devc->wport.swbuf = NULL; | ||
3415 | |||
3416 | /* Success. Link us onto the local device list. */ | ||
3417 | |||
3418 | devc->next_dev = vwsnd_dev_list; | ||
3419 | vwsnd_dev_list = devc; | ||
3420 | return devc->audio_minor; | ||
3421 | |||
3422 | /* So many ways to fail. Undo what we did. */ | ||
3423 | |||
3424 | fail7: | ||
3425 | unregister_sound_dsp(devc->audio_minor); | ||
3426 | fail6: | ||
3427 | free_irq(hw_config->irq, devc); | ||
3428 | fail5: | ||
3429 | fail4: | ||
3430 | free_pages(devc->wport.hwbuf_vaddr, HWBUF_ORDER); | ||
3431 | fail3: | ||
3432 | free_pages(devc->rport.hwbuf_vaddr, HWBUF_ORDER); | ||
3433 | fail2: | ||
3434 | li_destroy(&devc->lith); | ||
3435 | fail1: | ||
3436 | kfree(devc); | ||
3437 | fail0: | ||
3438 | return err; | ||
3439 | } | ||
3440 | |||
3441 | static int __exit unload_vwsnd(struct address_info *hw_config) | ||
3442 | { | ||
3443 | vwsnd_dev_t *devc, **devcp; | ||
3444 | |||
3445 | DBGE("()\n"); | ||
3446 | |||
3447 | devcp = &vwsnd_dev_list; | ||
3448 | while ((devc = *devcp)) { | ||
3449 | if (devc->audio_minor == hw_config->slots[0]) { | ||
3450 | *devcp = devc->next_dev; | ||
3451 | break; | ||
3452 | } | ||
3453 | devcp = &devc->next_dev; | ||
3454 | } | ||
3455 | |||
3456 | if (!devc) | ||
3457 | return -ENODEV; | ||
3458 | |||
3459 | unregister_sound_mixer(devc->mixer_minor); | ||
3460 | unregister_sound_dsp(devc->audio_minor); | ||
3461 | free_irq(hw_config->irq, devc); | ||
3462 | free_pages(devc->wport.hwbuf_vaddr, HWBUF_ORDER); | ||
3463 | free_pages(devc->rport.hwbuf_vaddr, HWBUF_ORDER); | ||
3464 | li_destroy(&devc->lith); | ||
3465 | kfree(devc); | ||
3466 | |||
3467 | return 0; | ||
3468 | } | ||
3469 | |||
3470 | /*****************************************************************************/ | ||
3471 | /* initialization and loadable kernel module interface */ | ||
3472 | |||
3473 | static struct address_info the_hw_config = { | ||
3474 | 0xFF001000, /* lithium phys addr */ | ||
3475 | CO_IRQ(CO_APIC_LI_AUDIO) /* irq */ | ||
3476 | }; | ||
3477 | |||
3478 | MODULE_DESCRIPTION("SGI Visual Workstation sound module"); | ||
3479 | MODULE_AUTHOR("Bob Miller <kbob@sgi.com>"); | ||
3480 | MODULE_LICENSE("GPL"); | ||
3481 | |||
3482 | static int __init init_vwsnd(void) | ||
3483 | { | ||
3484 | int err; | ||
3485 | |||
3486 | DBGXV("\n"); | ||
3487 | DBGXV("sound::vwsnd::init_module()\n"); | ||
3488 | |||
3489 | if (!probe_vwsnd(&the_hw_config)) | ||
3490 | return -ENODEV; | ||
3491 | |||
3492 | err = attach_vwsnd(&the_hw_config); | ||
3493 | if (err < 0) | ||
3494 | return err; | ||
3495 | return 0; | ||
3496 | } | ||
3497 | |||
3498 | static void __exit cleanup_vwsnd(void) | ||
3499 | { | ||
3500 | DBGX("sound::vwsnd::cleanup_module()\n"); | ||
3501 | |||
3502 | unload_vwsnd(&the_hw_config); | ||
3503 | } | ||
3504 | |||
3505 | module_init(init_vwsnd); | ||
3506 | module_exit(cleanup_vwsnd); | ||