aboutsummaryrefslogtreecommitdiffstats
path: root/sound/oss
diff options
context:
space:
mode:
authorThomas Bogendoerfer <tsbogend@alpha.franken.de>2008-08-19 05:54:14 -0400
committerJaroslav Kysela <perex@perex.cz>2008-08-25 03:57:08 -0400
commit2470e93c5515606a5cf44dd046f1a69e91ae23db (patch)
tree893d8c21bb429c7a023c0e53ee8e43dae59534fe /sound/oss
parenta62741cf77f41338033553d7cc3fd3145a64ae53 (diff)
sound: oss: remove driver for SGI HAL2 audio device
With the restructering of the indy button handling the old OSS HAL2 driver got broken. Since there is a new ALSA driver for HAL2, the experimental OSS driver is obsolete and will be removed by this patch. Signed-off-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Ralf Baechle <ralf@linux-mips.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@perex.cz>
Diffstat (limited to 'sound/oss')
-rw-r--r--sound/oss/Kconfig7
-rw-r--r--sound/oss/Makefile1
-rw-r--r--sound/oss/hal2.c1558
-rw-r--r--sound/oss/hal2.h248
4 files changed, 0 insertions, 1814 deletions
diff --git a/sound/oss/Kconfig b/sound/oss/Kconfig
index d4fafb6eec6c..cbee9dca12b0 100644
--- a/sound/oss/Kconfig
+++ b/sound/oss/Kconfig
@@ -24,13 +24,6 @@ config SOUND_VWSND
24 <file:Documentation/sound/oss/vwsnd> for more info on this driver's 24 <file:Documentation/sound/oss/vwsnd> for more info on this driver's
25 capabilities. 25 capabilities.
26 26
27config SOUND_HAL2
28 tristate "SGI HAL2 sound (EXPERIMENTAL)"
29 depends on SGI_IP22 && EXPERIMENTAL
30 help
31 Say Y or M if you have an SGI Indy or Indigo2 system and want to be able to
32 use its on-board A2 audio system.
33
34config SOUND_AU1550_AC97 27config SOUND_AU1550_AC97
35 tristate "Au1550/Au1200 AC97 Sound" 28 tristate "Au1550/Au1200 AC97 Sound"
36 depends on SOC_AU1550 || SOC_AU1200 29 depends on SOC_AU1550 || SOC_AU1200
diff --git a/sound/oss/Makefile b/sound/oss/Makefile
index c611514f7ff1..e0ae4d4d6a5c 100644
--- a/sound/oss/Makefile
+++ b/sound/oss/Makefile
@@ -10,7 +10,6 @@ obj-$(CONFIG_SOUND_OSS) += sound.o
10# Please leave it as is, cause the link order is significant ! 10# Please leave it as is, cause the link order is significant !
11 11
12obj-$(CONFIG_SOUND_SH_DAC_AUDIO) += sh_dac_audio.o 12obj-$(CONFIG_SOUND_SH_DAC_AUDIO) += sh_dac_audio.o
13obj-$(CONFIG_SOUND_HAL2) += hal2.o
14obj-$(CONFIG_SOUND_AEDSP16) += aedsp16.o 13obj-$(CONFIG_SOUND_AEDSP16) += aedsp16.o
15obj-$(CONFIG_SOUND_PSS) += pss.o ad1848.o mpu401.o 14obj-$(CONFIG_SOUND_PSS) += pss.o ad1848.o mpu401.o
16obj-$(CONFIG_SOUND_TRIX) += trix.o ad1848.o sb_lib.o uart401.o 15obj-$(CONFIG_SOUND_TRIX) += trix.o ad1848.o sb_lib.o uart401.o
diff --git a/sound/oss/hal2.c b/sound/oss/hal2.c
deleted file mode 100644
index a94b9df489dc..000000000000
--- a/sound/oss/hal2.c
+++ /dev/null
@@ -1,1558 +0,0 @@
1/*
2 * Driver for A2 audio system used in SGI machines
3 * Copyright (c) 2001, 2002, 2003 Ladislav Michl <ladis@linux-mips.org>
4 *
5 * Based on Ulf Carlsson's code.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 *
20 * Supported devices:
21 * /dev/dsp standard dsp device, (mostly) OSS compatible
22 * /dev/mixer standard mixer device, (mostly) OSS compatible
23 *
24 */
25#include <linux/kernel.h>
26#include <linux/module.h>
27#include <linux/sched.h>
28#include <linux/init.h>
29#include <linux/slab.h>
30#include <linux/poll.h>
31#include <linux/interrupt.h>
32#include <linux/dma-mapping.h>
33#include <linux/sound.h>
34#include <linux/soundcard.h>
35#include <linux/mutex.h>
36
37
38#include <asm/io.h>
39#include <asm/sgi/hpc3.h>
40#include <asm/sgi/ip22.h>
41
42#include "hal2.h"
43
44#if 0
45#define DEBUG(args...) printk(args)
46#else
47#define DEBUG(args...)
48#endif
49
50#if 0
51#define DEBUG_MIX(args...) printk(args)
52#else
53#define DEBUG_MIX(args...)
54#endif
55
56/*
57 * Before touching these look how it works. It is a bit unusual I know,
58 * but it helps to keep things simple. This driver is considered complete
59 * and I won't add any new features although hardware has many cool
60 * capabilities.
61 * (Historical note: HAL2 driver was first written by Ulf Carlsson - ALSA
62 * 0.3 running with 2.2.x kernel. Then ALSA changed completely and it
63 * seemed easier to me to write OSS driver from scratch - this one. Now
64 * when ALSA is official part of 2.6 kernel it's time to write ALSA driver
65 * using (hopefully) final version of ALSA interface)
66 */
67#define H2_BLOCK_SIZE 1024
68#define H2_ADC_BUFSIZE 8192
69#define H2_DAC_BUFSIZE 16834
70
71struct hal2_pbus {
72 struct hpc3_pbus_dmacregs *pbus;
73 int pbusnr;
74 unsigned int ctrl; /* Current state of pbus->pbdma_ctrl */
75};
76
77struct hal2_desc {
78 struct hpc_dma_desc desc;
79 u32 cnt; /* don't touch, it is also padding */
80};
81
82struct hal2_codec {
83 unsigned char *buffer;
84 struct hal2_desc *desc;
85 int desc_count;
86 int tail, head; /* tail index, head index */
87 struct hal2_pbus pbus;
88 unsigned int format; /* Audio data format */
89 int voices; /* mono/stereo */
90 unsigned int sample_rate;
91 unsigned int master; /* Master frequency */
92 unsigned short mod; /* MOD value */
93 unsigned short inc; /* INC value */
94
95 wait_queue_head_t dma_wait;
96 spinlock_t lock;
97 struct mutex sem;
98
99 int usecount; /* recording and playback are
100 * independent */
101};
102
103#define H2_MIX_OUTPUT_ATT 0
104#define H2_MIX_INPUT_GAIN 1
105#define H2_MIXERS 2
106struct hal2_mixer {
107 int modcnt;
108 unsigned int master;
109 unsigned int volume[H2_MIXERS];
110};
111
112struct hal2_card {
113 int dev_dsp; /* audio device */
114 int dev_mixer; /* mixer device */
115 int dev_midi; /* midi device */
116
117 struct hal2_ctl_regs *ctl_regs; /* HAL2 ctl registers */
118 struct hal2_aes_regs *aes_regs; /* HAL2 aes registers */
119 struct hal2_vol_regs *vol_regs; /* HAL2 vol registers */
120 struct hal2_syn_regs *syn_regs; /* HAL2 syn registers */
121
122 struct hal2_codec dac;
123 struct hal2_codec adc;
124 struct hal2_mixer mixer;
125};
126
127#define H2_INDIRECT_WAIT(regs) while (regs->isr & H2_ISR_TSTATUS);
128
129#define H2_READ_ADDR(addr) (addr | (1<<7))
130#define H2_WRITE_ADDR(addr) (addr)
131
132static char *hal2str = "HAL2";
133
134/*
135 * I doubt anyone has a machine with two HAL2 cards. It's possible to
136 * have two HPC's, so it is probably possible to have two HAL2 cards.
137 * Try to deal with it, but note that it is not tested.
138 */
139#define MAXCARDS 2
140static struct hal2_card* hal2_card[MAXCARDS];
141
142static const struct {
143 unsigned char idx:4, avail:1;
144} mixtable[SOUND_MIXER_NRDEVICES] = {
145 [SOUND_MIXER_PCM] = { H2_MIX_OUTPUT_ATT, 1 }, /* voice */
146 [SOUND_MIXER_MIC] = { H2_MIX_INPUT_GAIN, 1 }, /* mic */
147};
148
149#define H2_SUPPORTED_FORMATS (AFMT_S16_LE | AFMT_S16_BE)
150
151static inline void hal2_isr_write(struct hal2_card *hal2, u16 val)
152{
153 hal2->ctl_regs->isr = val;
154}
155
156static inline u16 hal2_isr_look(struct hal2_card *hal2)
157{
158 return hal2->ctl_regs->isr;
159}
160
161static inline u16 hal2_rev_look(struct hal2_card *hal2)
162{
163 return hal2->ctl_regs->rev;
164}
165
166#ifdef HAL2_DUMP_REGS
167static u16 hal2_i_look16(struct hal2_card *hal2, u16 addr)
168{
169 struct hal2_ctl_regs *regs = hal2->ctl_regs;
170
171 regs->iar = H2_READ_ADDR(addr);
172 H2_INDIRECT_WAIT(regs);
173 return regs->idr0;
174}
175#endif
176
177static u32 hal2_i_look32(struct hal2_card *hal2, u16 addr)
178{
179 u32 ret;
180 struct hal2_ctl_regs *regs = hal2->ctl_regs;
181
182 regs->iar = H2_READ_ADDR(addr);
183 H2_INDIRECT_WAIT(regs);
184 ret = regs->idr0 & 0xffff;
185 regs->iar = H2_READ_ADDR(addr | 0x1);
186 H2_INDIRECT_WAIT(regs);
187 ret |= (regs->idr0 & 0xffff) << 16;
188 return ret;
189}
190
191static void hal2_i_write16(struct hal2_card *hal2, u16 addr, u16 val)
192{
193 struct hal2_ctl_regs *regs = hal2->ctl_regs;
194
195 regs->idr0 = val;
196 regs->idr1 = 0;
197 regs->idr2 = 0;
198 regs->idr3 = 0;
199 regs->iar = H2_WRITE_ADDR(addr);
200 H2_INDIRECT_WAIT(regs);
201}
202
203static void hal2_i_write32(struct hal2_card *hal2, u16 addr, u32 val)
204{
205 struct hal2_ctl_regs *regs = hal2->ctl_regs;
206
207 regs->idr0 = val & 0xffff;
208 regs->idr1 = val >> 16;
209 regs->idr2 = 0;
210 regs->idr3 = 0;
211 regs->iar = H2_WRITE_ADDR(addr);
212 H2_INDIRECT_WAIT(regs);
213}
214
215static void hal2_i_setbit16(struct hal2_card *hal2, u16 addr, u16 bit)
216{
217 struct hal2_ctl_regs *regs = hal2->ctl_regs;
218
219 regs->iar = H2_READ_ADDR(addr);
220 H2_INDIRECT_WAIT(regs);
221 regs->idr0 = (regs->idr0 & 0xffff) | bit;
222 regs->idr1 = 0;
223 regs->idr2 = 0;
224 regs->idr3 = 0;
225 regs->iar = H2_WRITE_ADDR(addr);
226 H2_INDIRECT_WAIT(regs);
227}
228
229static void hal2_i_setbit32(struct hal2_card *hal2, u16 addr, u32 bit)
230{
231 u32 tmp;
232 struct hal2_ctl_regs *regs = hal2->ctl_regs;
233
234 regs->iar = H2_READ_ADDR(addr);
235 H2_INDIRECT_WAIT(regs);
236 tmp = (regs->idr0 & 0xffff) | (regs->idr1 << 16) | bit;
237 regs->idr0 = tmp & 0xffff;
238 regs->idr1 = tmp >> 16;
239 regs->idr2 = 0;
240 regs->idr3 = 0;
241 regs->iar = H2_WRITE_ADDR(addr);
242 H2_INDIRECT_WAIT(regs);
243}
244
245static void hal2_i_clearbit16(struct hal2_card *hal2, u16 addr, u16 bit)
246{
247 struct hal2_ctl_regs *regs = hal2->ctl_regs;
248
249 regs->iar = H2_READ_ADDR(addr);
250 H2_INDIRECT_WAIT(regs);
251 regs->idr0 = (regs->idr0 & 0xffff) & ~bit;
252 regs->idr1 = 0;
253 regs->idr2 = 0;
254 regs->idr3 = 0;
255 regs->iar = H2_WRITE_ADDR(addr);
256 H2_INDIRECT_WAIT(regs);
257}
258
259#if 0
260static void hal2_i_clearbit32(struct hal2_card *hal2, u16 addr, u32 bit)
261{
262 u32 tmp;
263 hal2_ctl_regs_t *regs = hal2->ctl_regs;
264
265 regs->iar = H2_READ_ADDR(addr);
266 H2_INDIRECT_WAIT(regs);
267 tmp = ((regs->idr0 & 0xffff) | (regs->idr1 << 16)) & ~bit;
268 regs->idr0 = tmp & 0xffff;
269 regs->idr1 = tmp >> 16;
270 regs->idr2 = 0;
271 regs->idr3 = 0;
272 regs->iar = H2_WRITE_ADDR(addr);
273 H2_INDIRECT_WAIT(regs);
274}
275#endif
276
277#ifdef HAL2_DUMP_REGS
278static void hal2_dump_regs(struct hal2_card *hal2)
279{
280 DEBUG("isr: %08hx ", hal2_isr_look(hal2));
281 DEBUG("rev: %08hx\n", hal2_rev_look(hal2));
282 DEBUG("relay: %04hx\n", hal2_i_look16(hal2, H2I_RELAY_C));
283 DEBUG("port en: %04hx ", hal2_i_look16(hal2, H2I_DMA_PORT_EN));
284 DEBUG("dma end: %04hx ", hal2_i_look16(hal2, H2I_DMA_END));
285 DEBUG("dma drv: %04hx\n", hal2_i_look16(hal2, H2I_DMA_DRV));
286 DEBUG("syn ctl: %04hx ", hal2_i_look16(hal2, H2I_SYNTH_C));
287 DEBUG("aesrx ctl: %04hx ", hal2_i_look16(hal2, H2I_AESRX_C));
288 DEBUG("aestx ctl: %04hx ", hal2_i_look16(hal2, H2I_AESTX_C));
289 DEBUG("dac ctl1: %04hx ", hal2_i_look16(hal2, H2I_ADC_C1));
290 DEBUG("dac ctl2: %08x ", hal2_i_look32(hal2, H2I_ADC_C2));
291 DEBUG("adc ctl1: %04hx ", hal2_i_look16(hal2, H2I_DAC_C1));
292 DEBUG("adc ctl2: %08x ", hal2_i_look32(hal2, H2I_DAC_C2));
293 DEBUG("syn map: %04hx\n", hal2_i_look16(hal2, H2I_SYNTH_MAP_C));
294 DEBUG("bres1 ctl1: %04hx ", hal2_i_look16(hal2, H2I_BRES1_C1));
295 DEBUG("bres1 ctl2: %04x ", hal2_i_look32(hal2, H2I_BRES1_C2));
296 DEBUG("bres2 ctl1: %04hx ", hal2_i_look16(hal2, H2I_BRES2_C1));
297 DEBUG("bres2 ctl2: %04x ", hal2_i_look32(hal2, H2I_BRES2_C2));
298 DEBUG("bres3 ctl1: %04hx ", hal2_i_look16(hal2, H2I_BRES3_C1));
299 DEBUG("bres3 ctl2: %04x\n", hal2_i_look32(hal2, H2I_BRES3_C2));
300}
301#endif
302
303static struct hal2_card* hal2_dsp_find_card(int minor)
304{
305 int i;
306
307 for (i = 0; i < MAXCARDS; i++)
308 if (hal2_card[i] != NULL && hal2_card[i]->dev_dsp == minor)
309 return hal2_card[i];
310 return NULL;
311}
312
313static struct hal2_card* hal2_mixer_find_card(int minor)
314{
315 int i;
316
317 for (i = 0; i < MAXCARDS; i++)
318 if (hal2_card[i] != NULL && hal2_card[i]->dev_mixer == minor)
319 return hal2_card[i];
320 return NULL;
321}
322
323static void hal2_inc_head(struct hal2_codec *codec)
324{
325 codec->head++;
326 if (codec->head == codec->desc_count)
327 codec->head = 0;
328}
329
330static void hal2_inc_tail(struct hal2_codec *codec)
331{
332 codec->tail++;
333 if (codec->tail == codec->desc_count)
334 codec->tail = 0;
335}
336
337static void hal2_dac_interrupt(struct hal2_codec *dac)
338{
339 int running;
340
341 spin_lock(&dac->lock);
342 /* if tail buffer contains zero samples DMA stream was already
343 * stopped */
344 running = dac->desc[dac->tail].cnt;
345 dac->desc[dac->tail].cnt = 0;
346 dac->desc[dac->tail].desc.cntinfo = HPCDMA_XIE | HPCDMA_EOX;
347 /* we just proccessed empty buffer, don't update tail pointer */
348 if (running)
349 hal2_inc_tail(dac);
350 spin_unlock(&dac->lock);
351
352 wake_up(&dac->dma_wait);
353}
354
355static void hal2_adc_interrupt(struct hal2_codec *adc)
356{
357 int running;
358
359 spin_lock(&adc->lock);
360 /* if head buffer contains nonzero samples DMA stream was already
361 * stopped */
362 running = !adc->desc[adc->head].cnt;
363 adc->desc[adc->head].cnt = H2_BLOCK_SIZE;
364 adc->desc[adc->head].desc.cntinfo = HPCDMA_XIE | HPCDMA_EOR;
365 /* we just proccessed empty buffer, don't update head pointer */
366 if (running)
367 hal2_inc_head(adc);
368 spin_unlock(&adc->lock);
369
370 wake_up(&adc->dma_wait);
371}
372
373static irqreturn_t hal2_interrupt(int irq, void *dev_id)
374{
375 struct hal2_card *hal2 = dev_id;
376 irqreturn_t ret = IRQ_NONE;
377
378 /* decide what caused this interrupt */
379 if (hal2->dac.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
380 hal2_dac_interrupt(&hal2->dac);
381 ret = IRQ_HANDLED;
382 }
383 if (hal2->adc.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
384 hal2_adc_interrupt(&hal2->adc);
385 ret = IRQ_HANDLED;
386 }
387 return ret;
388}
389
390static int hal2_compute_rate(struct hal2_codec *codec, unsigned int rate)
391{
392 unsigned short mod;
393
394 DEBUG("rate: %d\n", rate);
395
396 if (rate < 4000) rate = 4000;
397 else if (rate > 48000) rate = 48000;
398
399 if (44100 % rate < 48000 % rate) {
400 mod = 4 * 44100 / rate;
401 codec->master = 44100;
402 } else {
403 mod = 4 * 48000 / rate;
404 codec->master = 48000;
405 }
406
407 codec->inc = 4;
408 codec->mod = mod;
409 rate = 4 * codec->master / mod;
410
411 DEBUG("real_rate: %d\n", rate);
412
413 return rate;
414}
415
416static void hal2_set_dac_rate(struct hal2_card *hal2)
417{
418 unsigned int master = hal2->dac.master;
419 int inc = hal2->dac.inc;
420 int mod = hal2->dac.mod;
421
422 DEBUG("master: %d inc: %d mod: %d\n", master, inc, mod);
423
424 hal2_i_write16(hal2, H2I_BRES1_C1, (master == 44100) ? 1 : 0);
425 hal2_i_write32(hal2, H2I_BRES1_C2, ((0xffff & (inc - mod - 1)) << 16) | inc);
426}
427
428static void hal2_set_adc_rate(struct hal2_card *hal2)
429{
430 unsigned int master = hal2->adc.master;
431 int inc = hal2->adc.inc;
432 int mod = hal2->adc.mod;
433
434 DEBUG("master: %d inc: %d mod: %d\n", master, inc, mod);
435
436 hal2_i_write16(hal2, H2I_BRES2_C1, (master == 44100) ? 1 : 0);
437 hal2_i_write32(hal2, H2I_BRES2_C2, ((0xffff & (inc - mod - 1)) << 16) | inc);
438}
439
440static void hal2_setup_dac(struct hal2_card *hal2)
441{
442 unsigned int fifobeg, fifoend, highwater, sample_size;
443 struct hal2_pbus *pbus = &hal2->dac.pbus;
444
445 DEBUG("hal2_setup_dac\n");
446
447 /* Now we set up some PBUS information. The PBUS needs information about
448 * what portion of the fifo it will use. If it's receiving or
449 * transmitting, and finally whether the stream is little endian or big
450 * endian. The information is written later, on the start call.
451 */
452 sample_size = 2 * hal2->dac.voices;
453 /* Fifo should be set to hold exactly four samples. Highwater mark
454 * should be set to two samples. */
455 highwater = (sample_size * 2) >> 1; /* halfwords */
456 fifobeg = 0; /* playback is first */
457 fifoend = (sample_size * 4) >> 3; /* doublewords */
458 pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_LD |
459 (highwater << 8) | (fifobeg << 16) | (fifoend << 24) |
460 (hal2->dac.format & AFMT_S16_LE ? HPC3_PDMACTRL_SEL : 0);
461 /* We disable everything before we do anything at all */
462 pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
463 hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
464 /* Setup the HAL2 for playback */
465 hal2_set_dac_rate(hal2);
466 /* Set endianess */
467 if (hal2->dac.format & AFMT_S16_LE)
468 hal2_i_setbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX);
469 else
470 hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX);
471 /* Set DMA bus */
472 hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
473 /* We are using 1st Bresenham clock generator for playback */
474 hal2_i_write16(hal2, H2I_DAC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
475 | (1 << H2I_C1_CLKID_SHIFT)
476 | (hal2->dac.voices << H2I_C1_DATAT_SHIFT));
477}
478
479static void hal2_setup_adc(struct hal2_card *hal2)
480{
481 unsigned int fifobeg, fifoend, highwater, sample_size;
482 struct hal2_pbus *pbus = &hal2->adc.pbus;
483
484 DEBUG("hal2_setup_adc\n");
485
486 sample_size = 2 * hal2->adc.voices;
487 highwater = (sample_size * 2) >> 1; /* halfwords */
488 fifobeg = (4 * 4) >> 3; /* record is second */
489 fifoend = (4 * 4 + sample_size * 4) >> 3; /* doublewords */
490 pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_RCV | HPC3_PDMACTRL_LD |
491 (highwater << 8) | (fifobeg << 16) | (fifoend << 24) |
492 (hal2->adc.format & AFMT_S16_LE ? HPC3_PDMACTRL_SEL : 0);
493 pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
494 hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
495 /* Setup the HAL2 for record */
496 hal2_set_adc_rate(hal2);
497 /* Set endianess */
498 if (hal2->adc.format & AFMT_S16_LE)
499 hal2_i_setbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR);
500 else
501 hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR);
502 /* Set DMA bus */
503 hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
504 /* We are using 2nd Bresenham clock generator for record */
505 hal2_i_write16(hal2, H2I_ADC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
506 | (2 << H2I_C1_CLKID_SHIFT)
507 | (hal2->adc.voices << H2I_C1_DATAT_SHIFT));
508}
509
510static dma_addr_t hal2_desc_addr(struct hal2_codec *codec, int i)
511{
512 if (--i < 0)
513 i = codec->desc_count - 1;
514 return codec->desc[i].desc.pnext;
515}
516
517static void hal2_start_dac(struct hal2_card *hal2)
518{
519 struct hal2_codec *dac = &hal2->dac;
520 struct hal2_pbus *pbus = &dac->pbus;
521
522 pbus->pbus->pbdma_dptr = hal2_desc_addr(dac, dac->tail);
523 pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
524 /* enable DAC */
525 hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
526}
527
528static void hal2_start_adc(struct hal2_card *hal2)
529{
530 struct hal2_codec *adc = &hal2->adc;
531 struct hal2_pbus *pbus = &adc->pbus;
532
533 pbus->pbus->pbdma_dptr = hal2_desc_addr(adc, adc->head);
534 pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
535 /* enable ADC */
536 hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
537}
538
539static inline void hal2_stop_dac(struct hal2_card *hal2)
540{
541 hal2->dac.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
542 /* The HAL2 itself may remain enabled safely */
543}
544
545static inline void hal2_stop_adc(struct hal2_card *hal2)
546{
547 hal2->adc.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
548}
549
550static int hal2_alloc_dmabuf(struct hal2_codec *codec, int size,
551 int count, int cntinfo, int dir)
552{
553 struct hal2_desc *desc, *dma_addr;
554 int i;
555
556 DEBUG("allocating %dk DMA buffer.\n", size / 1024);
557
558 codec->buffer = (unsigned char *)__get_free_pages(GFP_KERNEL | GFP_DMA,
559 get_order(size));
560 if (!codec->buffer)
561 return -ENOMEM;
562 desc = dma_alloc_coherent(NULL, count * sizeof(struct hal2_desc),
563 (dma_addr_t *)&dma_addr, GFP_KERNEL);
564 if (!desc) {
565 free_pages((unsigned long)codec->buffer, get_order(size));
566 return -ENOMEM;
567 }
568 codec->desc = desc;
569 for (i = 0; i < count; i++) {
570 desc->desc.pbuf = dma_map_single(NULL,
571 (void *)(codec->buffer + i * H2_BLOCK_SIZE),
572 H2_BLOCK_SIZE, dir);
573 desc->desc.cntinfo = cntinfo;
574 desc->desc.pnext = (i == count - 1) ?
575 (u32)dma_addr : (u32)(dma_addr + i + 1);
576 desc->cnt = 0;
577 desc++;
578 }
579 codec->desc_count = count;
580 codec->head = codec->tail = 0;
581 return 0;
582}
583
584static int hal2_alloc_dac_dmabuf(struct hal2_codec *codec)
585{
586 return hal2_alloc_dmabuf(codec, H2_DAC_BUFSIZE,
587 H2_DAC_BUFSIZE / H2_BLOCK_SIZE,
588 HPCDMA_XIE | HPCDMA_EOX,
589 DMA_TO_DEVICE);
590}
591
592static int hal2_alloc_adc_dmabuf(struct hal2_codec *codec)
593{
594 return hal2_alloc_dmabuf(codec, H2_ADC_BUFSIZE,
595 H2_ADC_BUFSIZE / H2_BLOCK_SIZE,
596 HPCDMA_XIE | H2_BLOCK_SIZE,
597 DMA_TO_DEVICE);
598}
599
600static void hal2_free_dmabuf(struct hal2_codec *codec, int size, int dir)
601{
602 dma_addr_t dma_addr;
603 int i;
604
605 dma_addr = codec->desc[codec->desc_count - 1].desc.pnext;
606 for (i = 0; i < codec->desc_count; i++)
607 dma_unmap_single(NULL, codec->desc[i].desc.pbuf,
608 H2_BLOCK_SIZE, dir);
609 dma_free_coherent(NULL, codec->desc_count * sizeof(struct hal2_desc),
610 (void *)codec->desc, dma_addr);
611 free_pages((unsigned long)codec->buffer, get_order(size));
612}
613
614static void hal2_free_dac_dmabuf(struct hal2_codec *codec)
615{
616 return hal2_free_dmabuf(codec, H2_DAC_BUFSIZE, DMA_TO_DEVICE);
617}
618
619static void hal2_free_adc_dmabuf(struct hal2_codec *codec)
620{
621 return hal2_free_dmabuf(codec, H2_ADC_BUFSIZE, DMA_FROM_DEVICE);
622}
623
624/*
625 * Add 'count' bytes to 'buffer' from DMA ring buffers. Return number of
626 * bytes added or -EFAULT if copy_from_user failed.
627 */
628static int hal2_get_buffer(struct hal2_card *hal2, char *buffer, int count)
629{
630 unsigned long flags;
631 int size, ret = 0;
632 unsigned char *buf;
633 struct hal2_desc *tail;
634 struct hal2_codec *adc = &hal2->adc;
635
636 DEBUG("getting %d bytes ", count);
637
638 spin_lock_irqsave(&adc->lock, flags);
639 tail = &adc->desc[adc->tail];
640 /* enable DMA stream if there are no data */
641 if (!tail->cnt && !(adc->pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_ISACT))
642 hal2_start_adc(hal2);
643 while (tail->cnt > 0 && count > 0) {
644 size = min((int)tail->cnt, count);
645 buf = &adc->buffer[(adc->tail + 1) * H2_BLOCK_SIZE - tail->cnt];
646 spin_unlock_irqrestore(&adc->lock, flags);
647 dma_sync_single(NULL, tail->desc.pbuf, size, DMA_FROM_DEVICE);
648 if (copy_to_user(buffer, buf, size)) {
649 ret = -EFAULT;
650 goto out;
651 }
652 spin_lock_irqsave(&adc->lock, flags);
653 tail->cnt -= size;
654 /* buffer is empty, update tail pointer */
655 if (tail->cnt == 0) {
656 tail->desc.cntinfo = HPCDMA_XIE | H2_BLOCK_SIZE;
657 hal2_inc_tail(adc);
658 tail = &adc->desc[adc->tail];
659 /* enable DMA stream again if needed */
660 if (!(adc->pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_ISACT))
661 hal2_start_adc(hal2);
662 }
663 buffer += size;
664 ret += size;
665 count -= size;
666
667 DEBUG("(%d) ", size);
668 }
669 spin_unlock_irqrestore(&adc->lock, flags);
670out:
671 DEBUG("\n");
672
673 return ret;
674}
675
676/*
677 * Add 'count' bytes from 'buffer' to DMA ring buffers. Return number of
678 * bytes added or -EFAULT if copy_from_user failed.
679 */
680static int hal2_add_buffer(struct hal2_card *hal2, char *buffer, int count)
681{
682 unsigned long flags;
683 unsigned char *buf;
684 int size, ret = 0;
685 struct hal2_desc *head;
686 struct hal2_codec *dac = &hal2->dac;
687
688 DEBUG("adding %d bytes ", count);
689
690 spin_lock_irqsave(&dac->lock, flags);
691 head = &dac->desc[dac->head];
692 while (head->cnt == 0 && count > 0) {
693 size = min((int)H2_BLOCK_SIZE, count);
694 buf = &dac->buffer[dac->head * H2_BLOCK_SIZE];
695 spin_unlock_irqrestore(&dac->lock, flags);
696 if (copy_from_user(buf, buffer, size)) {
697 ret = -EFAULT;
698 goto out;
699 }
700 dma_sync_single(NULL, head->desc.pbuf, size, DMA_TO_DEVICE);
701 spin_lock_irqsave(&dac->lock, flags);
702 head->desc.cntinfo = size | HPCDMA_XIE;
703 head->cnt = size;
704 buffer += size;
705 ret += size;
706 count -= size;
707 hal2_inc_head(dac);
708 head = &dac->desc[dac->head];
709
710 DEBUG("(%d) ", size);
711 }
712 if (!(dac->pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_ISACT) && ret > 0)
713 hal2_start_dac(hal2);
714 spin_unlock_irqrestore(&dac->lock, flags);
715out:
716 DEBUG("\n");
717
718 return ret;
719}
720
721#define hal2_reset_dac_pointer(hal2) hal2_reset_pointer(hal2, 1)
722#define hal2_reset_adc_pointer(hal2) hal2_reset_pointer(hal2, 0)
723static void hal2_reset_pointer(struct hal2_card *hal2, int is_dac)
724{
725 int i;
726 struct hal2_codec *codec = (is_dac) ? &hal2->dac : &hal2->adc;
727
728 DEBUG("hal2_reset_pointer\n");
729
730 for (i = 0; i < codec->desc_count; i++) {
731 codec->desc[i].cnt = 0;
732 codec->desc[i].desc.cntinfo = HPCDMA_XIE | (is_dac) ?
733 HPCDMA_EOX : H2_BLOCK_SIZE;
734 }
735 codec->head = codec->tail = 0;
736}
737
738static int hal2_sync_dac(struct hal2_card *hal2)
739{
740 DECLARE_WAITQUEUE(wait, current);
741 struct hal2_codec *dac = &hal2->dac;
742 int ret = 0;
743 unsigned long flags;
744 signed long timeout = 1000 * H2_BLOCK_SIZE * 2 * dac->voices *
745 HZ / dac->sample_rate / 900;
746
747 while (dac->pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_ISACT) {
748 add_wait_queue(&dac->dma_wait, &wait);
749 set_current_state(TASK_INTERRUPTIBLE);
750 schedule_timeout(timeout);
751 spin_lock_irqsave(&dac->lock, flags);
752 if (dac->desc[dac->tail].cnt)
753 ret = -ETIME;
754 spin_unlock_irqrestore(&dac->lock, flags);
755 if (signal_pending(current))
756 ret = -ERESTARTSYS;
757 if (ret) {
758 hal2_stop_dac(hal2);
759 hal2_reset_dac_pointer(hal2);
760 }
761 remove_wait_queue(&dac->dma_wait, &wait);
762 }
763
764 return ret;
765}
766
767static int hal2_write_mixer(struct hal2_card *hal2, int index, int vol)
768{
769 unsigned int l, r, tmp;
770
771 DEBUG_MIX("mixer %d write\n", index);
772
773 if (index >= SOUND_MIXER_NRDEVICES || !mixtable[index].avail)
774 return -EINVAL;
775
776 r = (vol >> 8) & 0xff;
777 if (r > 100)
778 r = 100;
779 l = vol & 0xff;
780 if (l > 100)
781 l = 100;
782
783 hal2->mixer.volume[mixtable[index].idx] = l | (r << 8);
784
785 switch (mixtable[index].idx) {
786 case H2_MIX_OUTPUT_ATT:
787
788 DEBUG_MIX("output attenuator %d,%d\n", l, r);
789
790 if (r | l) {
791 tmp = hal2_i_look32(hal2, H2I_DAC_C2);
792 tmp &= ~(H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
793
794 /* Attenuator has five bits */
795 l = 31 * (100 - l) / 99;
796 r = 31 * (100 - r) / 99;
797
798 DEBUG_MIX("left: %d, right %d\n", l, r);
799
800 tmp |= (l << H2I_C2_L_ATT_SHIFT) & H2I_C2_L_ATT_M;
801 tmp |= (r << H2I_C2_R_ATT_SHIFT) & H2I_C2_R_ATT_M;
802 hal2_i_write32(hal2, H2I_DAC_C2, tmp);
803 } else
804 hal2_i_setbit32(hal2, H2I_DAC_C2, H2I_C2_MUTE);
805 break;
806 case H2_MIX_INPUT_GAIN:
807
808 DEBUG_MIX("input gain %d,%d\n", l, r);
809
810 tmp = hal2_i_look32(hal2, H2I_ADC_C2);
811 tmp &= ~(H2I_C2_L_GAIN_M | H2I_C2_R_GAIN_M);
812
813 /* Gain control has four bits */
814 l = 16 * l / 100;
815 r = 16 * r / 100;
816
817 DEBUG_MIX("left: %d, right %d\n", l, r);
818
819 tmp |= (l << H2I_C2_L_GAIN_SHIFT) & H2I_C2_L_GAIN_M;
820 tmp |= (r << H2I_C2_R_GAIN_SHIFT) & H2I_C2_R_GAIN_M;
821 hal2_i_write32(hal2, H2I_ADC_C2, tmp);
822
823 break;
824 }
825
826 return 0;
827}
828
829static void hal2_init_mixer(struct hal2_card *hal2)
830{
831 int i;
832
833 for (i = 0; i < SOUND_MIXER_NRDEVICES; i++)
834 if (mixtable[i].avail)
835 hal2->mixer.volume[mixtable[i].idx] = 100 | (100 << 8);
836
837 /* disable attenuator */
838 hal2_i_write32(hal2, H2I_DAC_C2, 0);
839 /* set max input gain */
840 hal2_i_write32(hal2, H2I_ADC_C2, H2I_C2_MUTE |
841 (H2I_C2_L_GAIN_M << H2I_C2_L_GAIN_SHIFT) |
842 (H2I_C2_R_GAIN_M << H2I_C2_R_GAIN_SHIFT));
843 /* set max volume */
844 hal2->mixer.master = 0xff;
845 hal2->vol_regs->left = 0xff;
846 hal2->vol_regs->right = 0xff;
847}
848
849/*
850 * XXX: later i'll implement mixer for main volume which will be disabled
851 * by default. enabling it users will be allowed to have master volume level
852 * control on panel in their favourite X desktop
853 */
854static void hal2_volume_control(int direction)
855{
856 unsigned int master = hal2_card[0]->mixer.master;
857 struct hal2_vol_regs *vol = hal2_card[0]->vol_regs;
858
859 /* volume up */
860 if (direction > 0 && master < 0xff)
861 master++;
862 /* volume down */
863 else if (direction < 0 && master > 0)
864 master--;
865 /* TODO: mute/unmute */
866 vol->left = master;
867 vol->right = master;
868 hal2_card[0]->mixer.master = master;
869}
870
871static int hal2_mixer_ioctl(struct hal2_card *hal2, unsigned int cmd,
872 unsigned long arg)
873{
874 int val;
875
876 if (cmd == SOUND_MIXER_INFO) {
877 mixer_info info;
878
879 memset(&info, 0, sizeof(info));
880 strlcpy(info.id, hal2str, sizeof(info.id));
881 strlcpy(info.name, hal2str, sizeof(info.name));
882 info.modify_counter = hal2->mixer.modcnt;
883 if (copy_to_user((void *)arg, &info, sizeof(info)))
884 return -EFAULT;
885 return 0;
886 }
887 if (cmd == SOUND_OLD_MIXER_INFO) {
888 _old_mixer_info info;
889
890 memset(&info, 0, sizeof(info));
891 strlcpy(info.id, hal2str, sizeof(info.id));
892 strlcpy(info.name, hal2str, sizeof(info.name));
893 if (copy_to_user((void *)arg, &info, sizeof(info)))
894 return -EFAULT;
895 return 0;
896 }
897 if (cmd == OSS_GETVERSION)
898 return put_user(SOUND_VERSION, (int *)arg);
899
900 if (_IOC_TYPE(cmd) != 'M' || _IOC_SIZE(cmd) != sizeof(int))
901 return -EINVAL;
902
903 if (_IOC_DIR(cmd) == _IOC_READ) {
904 switch (_IOC_NR(cmd)) {
905 /* Give the current record source */
906 case SOUND_MIXER_RECSRC:
907 val = 0; /* FIXME */
908 break;
909 /* Give the supported mixers, all of them support stereo */
910 case SOUND_MIXER_DEVMASK:
911 case SOUND_MIXER_STEREODEVS: {
912 int i;
913
914 for (val = i = 0; i < SOUND_MIXER_NRDEVICES; i++)
915 if (mixtable[i].avail)
916 val |= 1 << i;
917 break;
918 }
919 /* Arg contains a bit for each supported recording source */
920 case SOUND_MIXER_RECMASK:
921 val = 0;
922 break;
923 case SOUND_MIXER_CAPS:
924 val = 0;
925 break;
926 /* Read a specific mixer */
927 default: {
928 int i = _IOC_NR(cmd);
929
930 if (i >= SOUND_MIXER_NRDEVICES || !mixtable[i].avail)
931 return -EINVAL;
932 val = hal2->mixer.volume[mixtable[i].idx];
933 break;
934 }
935 }
936 return put_user(val, (int *)arg);
937 }
938
939 if (_IOC_DIR(cmd) != (_IOC_WRITE|_IOC_READ))
940 return -EINVAL;
941
942 hal2->mixer.modcnt++;
943
944 if (get_user(val, (int *)arg))
945 return -EFAULT;
946
947 switch (_IOC_NR(cmd)) {
948 /* Arg contains a bit for each recording source */
949 case SOUND_MIXER_RECSRC:
950 return 0; /* FIXME */
951 default:
952 return hal2_write_mixer(hal2, _IOC_NR(cmd), val);
953 }
954
955 return 0;
956}
957
958static int hal2_open_mixdev(struct inode *inode, struct file *file)
959{
960 struct hal2_card *hal2 = hal2_mixer_find_card(iminor(inode));
961
962 if (hal2) {
963 file->private_data = hal2;
964 return nonseekable_open(inode, file);
965 }
966 return -ENODEV;
967}
968
969static int hal2_release_mixdev(struct inode *inode, struct file *file)
970{
971 return 0;
972}
973
974static int hal2_ioctl_mixdev(struct inode *inode, struct file *file,
975 unsigned int cmd, unsigned long arg)
976{
977 return hal2_mixer_ioctl((struct hal2_card *)file->private_data, cmd, arg);
978}
979
980static int hal2_ioctl(struct inode *inode, struct file *file,
981 unsigned int cmd, unsigned long arg)
982{
983 int val;
984 struct hal2_card *hal2 = (struct hal2_card *) file->private_data;
985
986 switch (cmd) {
987 case OSS_GETVERSION:
988 return put_user(SOUND_VERSION, (int *)arg);
989
990 case SNDCTL_DSP_SYNC:
991 if (file->f_mode & FMODE_WRITE)
992 return hal2_sync_dac(hal2);
993 return 0;
994
995 case SNDCTL_DSP_SETDUPLEX:
996 return 0;
997
998 case SNDCTL_DSP_GETCAPS:
999 return put_user(DSP_CAP_DUPLEX | DSP_CAP_MULTI, (int *)arg);
1000
1001 case SNDCTL_DSP_RESET:
1002 if (file->f_mode & FMODE_READ) {
1003 hal2_stop_adc(hal2);
1004 hal2_reset_adc_pointer(hal2);
1005 }
1006 if (file->f_mode & FMODE_WRITE) {
1007 hal2_stop_dac(hal2);
1008 hal2_reset_dac_pointer(hal2);
1009 }
1010 return 0;
1011
1012 case SNDCTL_DSP_SPEED:
1013 if (get_user(val, (int *)arg))
1014 return -EFAULT;
1015 if (file->f_mode & FMODE_READ) {
1016 hal2_stop_adc(hal2);
1017 val = hal2_compute_rate(&hal2->adc, val);
1018 hal2->adc.sample_rate = val;
1019 hal2_set_adc_rate(hal2);
1020 }
1021 if (file->f_mode & FMODE_WRITE) {
1022 hal2_stop_dac(hal2);
1023 val = hal2_compute_rate(&hal2->dac, val);
1024 hal2->dac.sample_rate = val;
1025 hal2_set_dac_rate(hal2);
1026 }
1027 return put_user(val, (int *)arg);
1028
1029 case SNDCTL_DSP_STEREO:
1030 if (get_user(val, (int *)arg))
1031 return -EFAULT;
1032 if (file->f_mode & FMODE_READ) {
1033 hal2_stop_adc(hal2);
1034 hal2->adc.voices = (val) ? 2 : 1;
1035 hal2_setup_adc(hal2);
1036 }
1037 if (file->f_mode & FMODE_WRITE) {
1038 hal2_stop_dac(hal2);
1039 hal2->dac.voices = (val) ? 2 : 1;
1040 hal2_setup_dac(hal2);
1041 }
1042 return 0;
1043
1044 case SNDCTL_DSP_CHANNELS:
1045 if (get_user(val, (int *)arg))
1046 return -EFAULT;
1047 if (val != 0) {
1048 if (file->f_mode & FMODE_READ) {
1049 hal2_stop_adc(hal2);
1050 hal2->adc.voices = (val == 1) ? 1 : 2;
1051 hal2_setup_adc(hal2);
1052 }
1053 if (file->f_mode & FMODE_WRITE) {
1054 hal2_stop_dac(hal2);
1055 hal2->dac.voices = (val == 1) ? 1 : 2;
1056 hal2_setup_dac(hal2);
1057 }
1058 }
1059 val = -EINVAL;
1060 if (file->f_mode & FMODE_READ)
1061 val = hal2->adc.voices;
1062 if (file->f_mode & FMODE_WRITE)
1063 val = hal2->dac.voices;
1064 return put_user(val, (int *)arg);
1065
1066 case SNDCTL_DSP_GETFMTS: /* Returns a mask */
1067 return put_user(H2_SUPPORTED_FORMATS, (int *)arg);
1068
1069 case SNDCTL_DSP_SETFMT: /* Selects ONE fmt*/
1070 if (get_user(val, (int *)arg))
1071 return -EFAULT;
1072 if (val != AFMT_QUERY) {
1073 if (!(val & H2_SUPPORTED_FORMATS))
1074 return -EINVAL;
1075 if (file->f_mode & FMODE_READ) {
1076 hal2_stop_adc(hal2);
1077 hal2->adc.format = val;
1078 hal2_setup_adc(hal2);
1079 }
1080 if (file->f_mode & FMODE_WRITE) {
1081 hal2_stop_dac(hal2);
1082 hal2->dac.format = val;
1083 hal2_setup_dac(hal2);
1084 }
1085 } else {
1086 val = -EINVAL;
1087 if (file->f_mode & FMODE_READ)
1088 val = hal2->adc.format;
1089 if (file->f_mode & FMODE_WRITE)
1090 val = hal2->dac.format;
1091 }
1092 return put_user(val, (int *)arg);
1093
1094 case SNDCTL_DSP_POST:
1095 return 0;
1096
1097 case SNDCTL_DSP_GETOSPACE: {
1098 audio_buf_info info;
1099 int i;
1100 unsigned long flags;
1101 struct hal2_codec *dac = &hal2->dac;
1102
1103 if (!(file->f_mode & FMODE_WRITE))
1104 return -EINVAL;
1105 info.fragments = 0;
1106 spin_lock_irqsave(&dac->lock, flags);
1107 for (i = 0; i < dac->desc_count; i++)
1108 if (dac->desc[i].cnt == 0)
1109 info.fragments++;
1110 spin_unlock_irqrestore(&dac->lock, flags);
1111 info.fragstotal = dac->desc_count;
1112 info.fragsize = H2_BLOCK_SIZE;
1113 info.bytes = info.fragsize * info.fragments;
1114
1115 return copy_to_user((void *)arg, &info, sizeof(info)) ? -EFAULT : 0;
1116 }
1117
1118 case SNDCTL_DSP_GETISPACE: {
1119 audio_buf_info info;
1120 int i;
1121 unsigned long flags;
1122 struct hal2_codec *adc = &hal2->adc;
1123
1124 if (!(file->f_mode & FMODE_READ))
1125 return -EINVAL;
1126 info.fragments = 0;
1127 info.bytes = 0;
1128 spin_lock_irqsave(&adc->lock, flags);
1129 for (i = 0; i < adc->desc_count; i++)
1130 if (adc->desc[i].cnt > 0) {
1131 info.fragments++;
1132 info.bytes += adc->desc[i].cnt;
1133 }
1134 spin_unlock_irqrestore(&adc->lock, flags);
1135 info.fragstotal = adc->desc_count;
1136 info.fragsize = H2_BLOCK_SIZE;
1137
1138 return copy_to_user((void *)arg, &info, sizeof(info)) ? -EFAULT : 0;
1139 }
1140
1141 case SNDCTL_DSP_NONBLOCK:
1142 file->f_flags |= O_NONBLOCK;
1143 return 0;
1144
1145 case SNDCTL_DSP_GETBLKSIZE:
1146 return put_user(H2_BLOCK_SIZE, (int *)arg);
1147
1148 case SNDCTL_DSP_SETFRAGMENT:
1149 return 0;
1150
1151 case SOUND_PCM_READ_RATE:
1152 val = -EINVAL;
1153 if (file->f_mode & FMODE_READ)
1154 val = hal2->adc.sample_rate;
1155 if (file->f_mode & FMODE_WRITE)
1156 val = hal2->dac.sample_rate;
1157 return put_user(val, (int *)arg);
1158
1159 case SOUND_PCM_READ_CHANNELS:
1160 val = -EINVAL;
1161 if (file->f_mode & FMODE_READ)
1162 val = hal2->adc.voices;
1163 if (file->f_mode & FMODE_WRITE)
1164 val = hal2->dac.voices;
1165 return put_user(val, (int *)arg);
1166
1167 case SOUND_PCM_READ_BITS:
1168 return put_user(16, (int *)arg);
1169 }
1170
1171 return hal2_mixer_ioctl(hal2, cmd, arg);
1172}
1173
1174static ssize_t hal2_read(struct file *file, char *buffer,
1175 size_t count, loff_t *ppos)
1176{
1177 ssize_t err;
1178 struct hal2_card *hal2 = (struct hal2_card *) file->private_data;
1179 struct hal2_codec *adc = &hal2->adc;
1180
1181 if (!count)
1182 return 0;
1183 if (mutex_lock_interruptible(&adc->sem))
1184 return -EINTR;
1185 if (file->f_flags & O_NONBLOCK) {
1186 err = hal2_get_buffer(hal2, buffer, count);
1187 err = err == 0 ? -EAGAIN : err;
1188 } else {
1189 do {
1190 /* ~10% longer */
1191 signed long timeout = 1000 * H2_BLOCK_SIZE *
1192 2 * adc->voices * HZ / adc->sample_rate / 900;
1193 unsigned long flags;
1194 DECLARE_WAITQUEUE(wait, current);
1195 ssize_t cnt = 0;
1196
1197 err = hal2_get_buffer(hal2, buffer, count);
1198 if (err > 0) {
1199 count -= err;
1200 cnt += err;
1201 buffer += err;
1202 err = cnt;
1203 }
1204 if (count > 0 && err >= 0) {
1205 add_wait_queue(&adc->dma_wait, &wait);
1206 set_current_state(TASK_INTERRUPTIBLE);
1207 schedule_timeout(timeout);
1208 spin_lock_irqsave(&adc->lock, flags);
1209 if (!adc->desc[adc->tail].cnt)
1210 err = -EAGAIN;
1211 spin_unlock_irqrestore(&adc->lock, flags);
1212 if (signal_pending(current))
1213 err = -ERESTARTSYS;
1214 remove_wait_queue(&adc->dma_wait, &wait);
1215 if (err < 0) {
1216 hal2_stop_adc(hal2);
1217 hal2_reset_adc_pointer(hal2);
1218 }
1219 }
1220 } while (count > 0 && err >= 0);
1221 }
1222 mutex_unlock(&adc->sem);
1223
1224 return err;
1225}
1226
1227static ssize_t hal2_write(struct file *file, const char *buffer,
1228 size_t count, loff_t *ppos)
1229{
1230 ssize_t err;
1231 char *buf = (char*) buffer;
1232 struct hal2_card *hal2 = (struct hal2_card *) file->private_data;
1233 struct hal2_codec *dac = &hal2->dac;
1234
1235 if (!count)
1236 return 0;
1237 if (mutex_lock_interruptible(&dac->sem))
1238 return -EINTR;
1239 if (file->f_flags & O_NONBLOCK) {
1240 err = hal2_add_buffer(hal2, buf, count);
1241 err = err == 0 ? -EAGAIN : err;
1242 } else {
1243 do {
1244 /* ~10% longer */
1245 signed long timeout = 1000 * H2_BLOCK_SIZE *
1246 2 * dac->voices * HZ / dac->sample_rate / 900;
1247 unsigned long flags;
1248 DECLARE_WAITQUEUE(wait, current);
1249 ssize_t cnt = 0;
1250
1251 err = hal2_add_buffer(hal2, buf, count);
1252 if (err > 0) {
1253 count -= err;
1254 cnt += err;
1255 buf += err;
1256 err = cnt;
1257 }
1258 if (count > 0 && err >= 0) {
1259 add_wait_queue(&dac->dma_wait, &wait);
1260 set_current_state(TASK_INTERRUPTIBLE);
1261 schedule_timeout(timeout);
1262 spin_lock_irqsave(&dac->lock, flags);
1263 if (dac->desc[dac->head].cnt)
1264 err = -EAGAIN;
1265 spin_unlock_irqrestore(&dac->lock, flags);
1266 if (signal_pending(current))
1267 err = -ERESTARTSYS;
1268 remove_wait_queue(&dac->dma_wait, &wait);
1269 if (err < 0) {
1270 hal2_stop_dac(hal2);
1271 hal2_reset_dac_pointer(hal2);
1272 }
1273 }
1274 } while (count > 0 && err >= 0);
1275 }
1276 mutex_unlock(&dac->sem);
1277
1278 return err;
1279}
1280
1281static unsigned int hal2_poll(struct file *file, struct poll_table_struct *wait)
1282{
1283 unsigned long flags;
1284 unsigned int mask = 0;
1285 struct hal2_card *hal2 = (struct hal2_card *) file->private_data;
1286
1287 if (file->f_mode & FMODE_READ) {
1288 struct hal2_codec *adc = &hal2->adc;
1289
1290 poll_wait(file, &adc->dma_wait, wait);
1291 spin_lock_irqsave(&adc->lock, flags);
1292 if (adc->desc[adc->tail].cnt > 0)
1293 mask |= POLLIN;
1294 spin_unlock_irqrestore(&adc->lock, flags);
1295 }
1296
1297 if (file->f_mode & FMODE_WRITE) {
1298 struct hal2_codec *dac = &hal2->dac;
1299
1300 poll_wait(file, &dac->dma_wait, wait);
1301 spin_lock_irqsave(&dac->lock, flags);
1302 if (dac->desc[dac->head].cnt == 0)
1303 mask |= POLLOUT;
1304 spin_unlock_irqrestore(&dac->lock, flags);
1305 }
1306
1307 return mask;
1308}
1309
1310static int hal2_open(struct inode *inode, struct file *file)
1311{
1312 int err;
1313 struct hal2_card *hal2 = hal2_dsp_find_card(iminor(inode));
1314
1315 if (!hal2)
1316 return -ENODEV;
1317 file->private_data = hal2;
1318 if (file->f_mode & FMODE_READ) {
1319 struct hal2_codec *adc = &hal2->adc;
1320
1321 if (adc->usecount)
1322 return -EBUSY;
1323 /* OSS spec wanted us to use 8 bit, 8 kHz mono by default,
1324 * but HAL2 can't do 8bit audio */
1325 adc->format = AFMT_S16_BE;
1326 adc->voices = 1;
1327 adc->sample_rate = hal2_compute_rate(adc, 8000);
1328 hal2_set_adc_rate(hal2);
1329 err = hal2_alloc_adc_dmabuf(adc);
1330 if (err)
1331 return err;
1332 hal2_setup_adc(hal2);
1333 adc->usecount++;
1334 }
1335 if (file->f_mode & FMODE_WRITE) {
1336 struct hal2_codec *dac = &hal2->dac;
1337
1338 if (dac->usecount)
1339 return -EBUSY;
1340 dac->format = AFMT_S16_BE;
1341 dac->voices = 1;
1342 dac->sample_rate = hal2_compute_rate(dac, 8000);
1343 hal2_set_dac_rate(hal2);
1344 err = hal2_alloc_dac_dmabuf(dac);
1345 if (err)
1346 return err;
1347 hal2_setup_dac(hal2);
1348 dac->usecount++;
1349 }
1350
1351 return nonseekable_open(inode, file);
1352}
1353
1354static int hal2_release(struct inode *inode, struct file *file)
1355{
1356 struct hal2_card *hal2 = (struct hal2_card *) file->private_data;
1357
1358 if (file->f_mode & FMODE_READ) {
1359 struct hal2_codec *adc = &hal2->adc;
1360
1361 mutex_lock(&adc->sem);
1362 hal2_stop_adc(hal2);
1363 hal2_free_adc_dmabuf(adc);
1364 adc->usecount--;
1365 mutex_unlock(&adc->sem);
1366 }
1367 if (file->f_mode & FMODE_WRITE) {
1368 struct hal2_codec *dac = &hal2->dac;
1369
1370 mutex_lock(&dac->sem);
1371 hal2_sync_dac(hal2);
1372 hal2_free_dac_dmabuf(dac);
1373 dac->usecount--;
1374 mutex_unlock(&dac->sem);
1375 }
1376
1377 return 0;
1378}
1379
1380static const struct file_operations hal2_audio_fops = {
1381 .owner = THIS_MODULE,
1382 .llseek = no_llseek,
1383 .read = hal2_read,
1384 .write = hal2_write,
1385 .poll = hal2_poll,
1386 .ioctl = hal2_ioctl,
1387 .open = hal2_open,
1388 .release = hal2_release,
1389};
1390
1391static const struct file_operations hal2_mixer_fops = {
1392 .owner = THIS_MODULE,
1393 .llseek = no_llseek,
1394 .ioctl = hal2_ioctl_mixdev,
1395 .open = hal2_open_mixdev,
1396 .release = hal2_release_mixdev,
1397};
1398
1399static void hal2_init_codec(struct hal2_codec *codec, struct hpc3_regs *hpc3,
1400 int index)
1401{
1402 codec->pbus.pbusnr = index;
1403 codec->pbus.pbus = &hpc3->pbdma[index];
1404 init_waitqueue_head(&codec->dma_wait);
1405 mutex_init(&codec->sem);
1406 spin_lock_init(&codec->lock);
1407}
1408
1409static int hal2_detect(struct hal2_card *hal2)
1410{
1411 unsigned short board, major, minor;
1412 unsigned short rev;
1413
1414 /* reset HAL2 */
1415 hal2_isr_write(hal2, 0);
1416 /* release reset */
1417 hal2_isr_write(hal2, H2_ISR_GLOBAL_RESET_N | H2_ISR_CODEC_RESET_N);
1418
1419 hal2_i_write16(hal2, H2I_RELAY_C, H2I_RELAY_C_STATE);
1420 if ((rev = hal2_rev_look(hal2)) & H2_REV_AUDIO_PRESENT)
1421 return -ENODEV;
1422
1423 board = (rev & H2_REV_BOARD_M) >> 12;
1424 major = (rev & H2_REV_MAJOR_CHIP_M) >> 4;
1425 minor = (rev & H2_REV_MINOR_CHIP_M);
1426
1427 printk(KERN_INFO "SGI HAL2 revision %i.%i.%i\n",
1428 board, major, minor);
1429
1430 return 0;
1431}
1432
1433static int hal2_init_card(struct hal2_card **phal2, struct hpc3_regs *hpc3)
1434{
1435 int ret = 0;
1436 struct hal2_card *hal2;
1437
1438 hal2 = kzalloc(sizeof(struct hal2_card), GFP_KERNEL);
1439 if (!hal2)
1440 return -ENOMEM;
1441
1442 hal2->ctl_regs = (struct hal2_ctl_regs *)hpc3->pbus_extregs[0];
1443 hal2->aes_regs = (struct hal2_aes_regs *)hpc3->pbus_extregs[1];
1444 hal2->vol_regs = (struct hal2_vol_regs *)hpc3->pbus_extregs[2];
1445 hal2->syn_regs = (struct hal2_syn_regs *)hpc3->pbus_extregs[3];
1446
1447 if (hal2_detect(hal2) < 0) {
1448 ret = -ENODEV;
1449 goto free_card;
1450 }
1451
1452 hal2_init_codec(&hal2->dac, hpc3, 0);
1453 hal2_init_codec(&hal2->adc, hpc3, 1);
1454
1455 /*
1456 * All DMA channel interfaces in HAL2 are designed to operate with
1457 * PBUS programmed for 2 cycles in D3, 2 cycles in D4 and 2 cycles
1458 * in D5. HAL2 is a 16-bit device which can accept both big and little
1459 * endian format. It assumes that even address bytes are on high
1460 * portion of PBUS (15:8) and assumes that HPC3 is programmed to
1461 * accept a live (unsynchronized) version of P_DREQ_N from HAL2.
1462 */
1463#define HAL2_PBUS_DMACFG ((0 << HPC3_DMACFG_D3R_SHIFT) | \
1464 (2 << HPC3_DMACFG_D4R_SHIFT) | \
1465 (2 << HPC3_DMACFG_D5R_SHIFT) | \
1466 (0 << HPC3_DMACFG_D3W_SHIFT) | \
1467 (2 << HPC3_DMACFG_D4W_SHIFT) | \
1468 (2 << HPC3_DMACFG_D5W_SHIFT) | \
1469 HPC3_DMACFG_DS16 | \
1470 HPC3_DMACFG_EVENHI | \
1471 HPC3_DMACFG_RTIME | \
1472 (8 << HPC3_DMACFG_BURST_SHIFT) | \
1473 HPC3_DMACFG_DRQLIVE)
1474 /*
1475 * Ignore what's mentioned in the specification and write value which
1476 * works in The Real World (TM)
1477 */
1478 hpc3->pbus_dmacfg[hal2->dac.pbus.pbusnr][0] = 0x8208844;
1479 hpc3->pbus_dmacfg[hal2->adc.pbus.pbusnr][0] = 0x8208844;
1480
1481 if (request_irq(SGI_HPCDMA_IRQ, hal2_interrupt, IRQF_SHARED,
1482 hal2str, hal2)) {
1483 printk(KERN_ERR "HAL2: Can't get irq %d\n", SGI_HPCDMA_IRQ);
1484 ret = -EAGAIN;
1485 goto free_card;
1486 }
1487
1488 hal2->dev_dsp = register_sound_dsp(&hal2_audio_fops, -1);
1489 if (hal2->dev_dsp < 0) {
1490 ret = hal2->dev_dsp;
1491 goto free_irq;
1492 }
1493
1494 hal2->dev_mixer = register_sound_mixer(&hal2_mixer_fops, -1);
1495 if (hal2->dev_mixer < 0) {
1496 ret = hal2->dev_mixer;
1497 goto unregister_dsp;
1498 }
1499
1500 hal2_init_mixer(hal2);
1501
1502 *phal2 = hal2;
1503 return 0;
1504unregister_dsp:
1505 unregister_sound_dsp(hal2->dev_dsp);
1506free_irq:
1507 free_irq(SGI_HPCDMA_IRQ, hal2);
1508free_card:
1509 kfree(hal2);
1510
1511 return ret;
1512}
1513
1514extern void (*indy_volume_button)(int);
1515
1516/*
1517 * Assuming only one HAL2 card. Mail me if you ever meet machine with
1518 * more than one.
1519 */
1520static int __init init_hal2(void)
1521{
1522 int i, error;
1523
1524 for (i = 0; i < MAXCARDS; i++)
1525 hal2_card[i] = NULL;
1526
1527 error = hal2_init_card(&hal2_card[0], hpc3c0);
1528
1529 /* let Indy's volume buttons work */
1530 if (!error && !ip22_is_fullhouse())
1531 indy_volume_button = hal2_volume_control;
1532
1533 return error;
1534
1535}
1536
1537static void __exit exit_hal2(void)
1538{
1539 int i;
1540
1541 /* unregister volume butons callback function */
1542 indy_volume_button = NULL;
1543
1544 for (i = 0; i < MAXCARDS; i++)
1545 if (hal2_card[i]) {
1546 free_irq(SGI_HPCDMA_IRQ, hal2_card[i]);
1547 unregister_sound_dsp(hal2_card[i]->dev_dsp);
1548 unregister_sound_mixer(hal2_card[i]->dev_mixer);
1549 kfree(hal2_card[i]);
1550 }
1551}
1552
1553module_init(init_hal2);
1554module_exit(exit_hal2);
1555
1556MODULE_DESCRIPTION("OSS compatible driver for SGI HAL2 audio");
1557MODULE_AUTHOR("Ladislav Michl");
1558MODULE_LICENSE("GPL");
diff --git a/sound/oss/hal2.h b/sound/oss/hal2.h
deleted file mode 100644
index 2bd3b52d8a37..000000000000
--- a/sound/oss/hal2.h
+++ /dev/null
@@ -1,248 +0,0 @@
1#ifndef __HAL2_H
2#define __HAL2_H
3
4/*
5 * Driver for HAL2 sound processors
6 * Copyright (c) 1999 Ulf Carlsson <ulfc@bun.falkenberg.se>
7 * Copyright (c) 2001, 2002, 2003 Ladislav Michl <ladis@linux-mips.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 *
22 */
23
24#include <asm/addrspace.h>
25#include <asm/sgi/hpc3.h>
26#include <linux/spinlock.h>
27#include <linux/types.h>
28
29/* Indirect status register */
30
31#define H2_ISR_TSTATUS 0x01 /* RO: transaction status 1=busy */
32#define H2_ISR_USTATUS 0x02 /* RO: utime status bit 1=armed */
33#define H2_ISR_QUAD_MODE 0x04 /* codec mode 0=indigo 1=quad */
34#define H2_ISR_GLOBAL_RESET_N 0x08 /* chip global reset 0=reset */
35#define H2_ISR_CODEC_RESET_N 0x10 /* codec/synth reset 0=reset */
36
37/* Revision register */
38
39#define H2_REV_AUDIO_PRESENT 0x8000 /* RO: audio present 0=present */
40#define H2_REV_BOARD_M 0x7000 /* RO: bits 14:12, board revision */
41#define H2_REV_MAJOR_CHIP_M 0x00F0 /* RO: bits 7:4, major chip revision */
42#define H2_REV_MINOR_CHIP_M 0x000F /* RO: bits 3:0, minor chip revision */
43
44/* Indirect address register */
45
46/*
47 * Address of indirect internal register to be accessed. A write to this
48 * register initiates read or write access to the indirect registers in the
49 * HAL2. Note that there af four indirect data registers for write access to
50 * registers larger than 16 byte.
51 */
52
53#define H2_IAR_TYPE_M 0xF000 /* bits 15:12, type of functional */
54 /* block the register resides in */
55 /* 1=DMA Port */
56 /* 9=Global DMA Control */
57 /* 2=Bresenham */
58 /* 3=Unix Timer */
59#define H2_IAR_NUM_M 0x0F00 /* bits 11:8 instance of the */
60 /* blockin which the indirect */
61 /* register resides */
62 /* If IAR_TYPE_M=DMA Port: */
63 /* 1=Synth In */
64 /* 2=AES In */
65 /* 3=AES Out */
66 /* 4=DAC Out */
67 /* 5=ADC Out */
68 /* 6=Synth Control */
69 /* If IAR_TYPE_M=Global DMA Control: */
70 /* 1=Control */
71 /* If IAR_TYPE_M=Bresenham: */
72 /* 1=Bresenham Clock Gen 1 */
73 /* 2=Bresenham Clock Gen 2 */
74 /* 3=Bresenham Clock Gen 3 */
75 /* If IAR_TYPE_M=Unix Timer: */
76 /* 1=Unix Timer */
77#define H2_IAR_ACCESS_SELECT 0x0080 /* 1=read 0=write */
78#define H2_IAR_PARAM 0x000C /* Parameter Select */
79#define H2_IAR_RB_INDEX_M 0x0003 /* Read Back Index */
80 /* 00:word0 */
81 /* 01:word1 */
82 /* 10:word2 */
83 /* 11:word3 */
84/*
85 * HAL2 internal addressing
86 *
87 * The HAL2 has "indirect registers" (idr) which are accessed by writing to the
88 * Indirect Data registers. Write the address to the Indirect Address register
89 * to transfer the data.
90 *
91 * We define the H2IR_* to the read address and H2IW_* to the write address and
92 * H2I_* to be fields in whatever register is referred to.
93 *
94 * When we write to indirect registers which are larger than one word (16 bit)
95 * we have to fill more than one indirect register before writing. When we read
96 * back however we have to read several times, each time with different Read
97 * Back Indexes (there are defs for doing this easily).
98 */
99
100/*
101 * Relay Control
102 */
103#define H2I_RELAY_C 0x9100
104#define H2I_RELAY_C_STATE 0x01 /* state of RELAY pin signal */
105
106/* DMA port enable */
107
108#define H2I_DMA_PORT_EN 0x9104
109#define H2I_DMA_PORT_EN_SY_IN 0x01 /* Synth_in DMA port */
110#define H2I_DMA_PORT_EN_AESRX 0x02 /* AES receiver DMA port */
111#define H2I_DMA_PORT_EN_AESTX 0x04 /* AES transmitter DMA port */
112#define H2I_DMA_PORT_EN_CODECTX 0x08 /* CODEC transmit DMA port */
113#define H2I_DMA_PORT_EN_CODECR 0x10 /* CODEC receive DMA port */
114
115#define H2I_DMA_END 0x9108 /* global dma endian select */
116#define H2I_DMA_END_SY_IN 0x01 /* Synth_in DMA port */
117#define H2I_DMA_END_AESRX 0x02 /* AES receiver DMA port */
118#define H2I_DMA_END_AESTX 0x04 /* AES transmitter DMA port */
119#define H2I_DMA_END_CODECTX 0x08 /* CODEC transmit DMA port */
120#define H2I_DMA_END_CODECR 0x10 /* CODEC receive DMA port */
121 /* 0=b_end 1=l_end */
122
123#define H2I_DMA_DRV 0x910C /* global PBUS DMA enable */
124
125#define H2I_SYNTH_C 0x1104 /* Synth DMA control */
126
127#define H2I_AESRX_C 0x1204 /* AES RX dma control */
128
129#define H2I_C_TS_EN 0x20 /* Timestamp enable */
130#define H2I_C_TS_FRMT 0x40 /* Timestamp format */
131#define H2I_C_NAUDIO 0x80 /* Sign extend */
132
133/* AESRX CTL, 16 bit */
134
135#define H2I_AESTX_C 0x1304 /* AES TX DMA control */
136#define H2I_AESTX_C_CLKID_SHIFT 3 /* Bresenham Clock Gen 1-3 */
137#define H2I_AESTX_C_CLKID_M 0x18
138#define H2I_AESTX_C_DATAT_SHIFT 8 /* 1=mono 2=stereo (3=quad) */
139#define H2I_AESTX_C_DATAT_M 0x300
140
141/* CODEC registers */
142
143#define H2I_DAC_C1 0x1404 /* DAC DMA control, 16 bit */
144#define H2I_DAC_C2 0x1408 /* DAC DMA control, 32 bit */
145#define H2I_ADC_C1 0x1504 /* ADC DMA control, 16 bit */
146#define H2I_ADC_C2 0x1508 /* ADC DMA control, 32 bit */
147
148/* Bits in CTL1 register */
149
150#define H2I_C1_DMA_SHIFT 0 /* DMA channel */
151#define H2I_C1_DMA_M 0x7
152#define H2I_C1_CLKID_SHIFT 3 /* Bresenham Clock Gen 1-3 */
153#define H2I_C1_CLKID_M 0x18
154#define H2I_C1_DATAT_SHIFT 8 /* 1=mono 2=stereo (3=quad) */
155#define H2I_C1_DATAT_M 0x300
156
157/* Bits in CTL2 register */
158
159#define H2I_C2_R_GAIN_SHIFT 0 /* right a/d input gain */
160#define H2I_C2_R_GAIN_M 0xf
161#define H2I_C2_L_GAIN_SHIFT 4 /* left a/d input gain */
162#define H2I_C2_L_GAIN_M 0xf0
163#define H2I_C2_R_SEL 0x100 /* right input select */
164#define H2I_C2_L_SEL 0x200 /* left input select */
165#define H2I_C2_MUTE 0x400 /* mute */
166#define H2I_C2_DO1 0x00010000 /* digital output port bit 0 */
167#define H2I_C2_DO2 0x00020000 /* digital output port bit 1 */
168#define H2I_C2_R_ATT_SHIFT 18 /* right d/a output - */
169#define H2I_C2_R_ATT_M 0x007c0000 /* attenuation */
170#define H2I_C2_L_ATT_SHIFT 23 /* left d/a output - */
171#define H2I_C2_L_ATT_M 0x0f800000 /* attenuation */
172
173#define H2I_SYNTH_MAP_C 0x1104 /* synth dma handshake ctrl */
174
175/* Clock generator CTL 1, 16 bit */
176
177#define H2I_BRES1_C1 0x2104
178#define H2I_BRES2_C1 0x2204
179#define H2I_BRES3_C1 0x2304
180
181#define H2I_BRES_C1_SHIFT 0 /* 0=48.0 1=44.1 2=aes_rx */
182#define H2I_BRES_C1_M 0x03
183
184/* Clock generator CTL 2, 32 bit */
185
186#define H2I_BRES1_C2 0x2108
187#define H2I_BRES2_C2 0x2208
188#define H2I_BRES3_C2 0x2308
189
190#define H2I_BRES_C2_INC_SHIFT 0 /* increment value */
191#define H2I_BRES_C2_INC_M 0xffff
192#define H2I_BRES_C2_MOD_SHIFT 16 /* modcontrol value */
193#define H2I_BRES_C2_MOD_M 0xffff0000 /* modctrl=0xffff&(modinc-1) */
194
195/* Unix timer, 64 bit */
196
197#define H2I_UTIME 0x3104
198#define H2I_UTIME_0_LD 0xffff /* microseconds, LSB's */
199#define H2I_UTIME_1_LD0 0x0f /* microseconds, MSB's */
200#define H2I_UTIME_1_LD1 0xf0 /* tenths of microseconds */
201#define H2I_UTIME_2_LD 0xffff /* seconds, LSB's */
202#define H2I_UTIME_3_LD 0xffff /* seconds, MSB's */
203
204struct hal2_ctl_regs {
205 u32 _unused0[4];
206 volatile u32 isr; /* 0x10 Status Register */
207 u32 _unused1[3];
208 volatile u32 rev; /* 0x20 Revision Register */
209 u32 _unused2[3];
210 volatile u32 iar; /* 0x30 Indirect Address Register */
211 u32 _unused3[3];
212 volatile u32 idr0; /* 0x40 Indirect Data Register 0 */
213 u32 _unused4[3];
214 volatile u32 idr1; /* 0x50 Indirect Data Register 1 */
215 u32 _unused5[3];
216 volatile u32 idr2; /* 0x60 Indirect Data Register 2 */
217 u32 _unused6[3];
218 volatile u32 idr3; /* 0x70 Indirect Data Register 3 */
219};
220
221struct hal2_aes_regs {
222 volatile u32 rx_stat[2]; /* Status registers */
223 volatile u32 rx_cr[2]; /* Control registers */
224 volatile u32 rx_ud[4]; /* User data window */
225 volatile u32 rx_st[24]; /* Channel status data */
226
227 volatile u32 tx_stat[1]; /* Status register */
228 volatile u32 tx_cr[3]; /* Control registers */
229 volatile u32 tx_ud[4]; /* User data window */
230 volatile u32 tx_st[24]; /* Channel status data */
231};
232
233struct hal2_vol_regs {
234 volatile u32 right; /* Right volume */
235 volatile u32 left; /* Left volume */
236};
237
238struct hal2_syn_regs {
239 u32 _unused0[2];
240 volatile u32 page; /* DOC Page register */
241 volatile u32 regsel; /* DOC Register selection */
242 volatile u32 dlow; /* DOC Data low */
243 volatile u32 dhigh; /* DOC Data high */
244 volatile u32 irq; /* IRQ Status */
245 volatile u32 dram; /* DRAM Access */
246};
247
248#endif /* __HAL2_H */