aboutsummaryrefslogtreecommitdiffstats
path: root/security/selinux
diff options
context:
space:
mode:
authorCatherine Zhang <cxzhang@watson.ibm.com>2006-03-21 01:41:23 -0500
committerDavid S. Miller <davem@davemloft.net>2006-03-21 01:41:23 -0500
commit2c7946a7bf45ae86736ab3b43d0085e43947945c (patch)
treeb956f301033ebaefe8d2701b257edfd947f537f3 /security/selinux
parentbe33690d8fcf40377f16193c463681170eb6b295 (diff)
[SECURITY]: TCP/UDP getpeersec
This patch implements an application of the LSM-IPSec networking controls whereby an application can determine the label of the security association its TCP or UDP sockets are currently connected to via getsockopt and the auxiliary data mechanism of recvmsg. Patch purpose: This patch enables a security-aware application to retrieve the security context of an IPSec security association a particular TCP or UDP socket is using. The application can then use this security context to determine the security context for processing on behalf of the peer at the other end of this connection. In the case of UDP, the security context is for each individual packet. An example application is the inetd daemon, which could be modified to start daemons running at security contexts dependent on the remote client. Patch design approach: - Design for TCP The patch enables the SELinux LSM to set the peer security context for a socket based on the security context of the IPSec security association. The application may retrieve this context using getsockopt. When called, the kernel determines if the socket is a connected (TCP_ESTABLISHED) TCP socket and, if so, uses the dst_entry cache on the socket to retrieve the security associations. If a security association has a security context, the context string is returned, as for UNIX domain sockets. - Design for UDP Unlike TCP, UDP is connectionless. This requires a somewhat different API to retrieve the peer security context. With TCP, the peer security context stays the same throughout the connection, thus it can be retrieved at any time between when the connection is established and when it is torn down. With UDP, each read/write can have different peer and thus the security context might change every time. As a result the security context retrieval must be done TOGETHER with the packet retrieval. The solution is to build upon the existing Unix domain socket API for retrieving user credentials. Linux offers the API for obtaining user credentials via ancillary messages (i.e., out of band/control messages that are bundled together with a normal message). Patch implementation details: - Implementation for TCP The security context can be retrieved by applications using getsockopt with the existing SO_PEERSEC flag. As an example (ignoring error checking): getsockopt(sockfd, SOL_SOCKET, SO_PEERSEC, optbuf, &optlen); printf("Socket peer context is: %s\n", optbuf); The SELinux function, selinux_socket_getpeersec, is extended to check for labeled security associations for connected (TCP_ESTABLISHED == sk->sk_state) TCP sockets only. If so, the socket has a dst_cache of struct dst_entry values that may refer to security associations. If these have security associations with security contexts, the security context is returned. getsockopt returns a buffer that contains a security context string or the buffer is unmodified. - Implementation for UDP To retrieve the security context, the application first indicates to the kernel such desire by setting the IP_PASSSEC option via getsockopt. Then the application retrieves the security context using the auxiliary data mechanism. An example server application for UDP should look like this: toggle = 1; toggle_len = sizeof(toggle); setsockopt(sockfd, SOL_IP, IP_PASSSEC, &toggle, &toggle_len); recvmsg(sockfd, &msg_hdr, 0); if (msg_hdr.msg_controllen > sizeof(struct cmsghdr)) { cmsg_hdr = CMSG_FIRSTHDR(&msg_hdr); if (cmsg_hdr->cmsg_len <= CMSG_LEN(sizeof(scontext)) && cmsg_hdr->cmsg_level == SOL_IP && cmsg_hdr->cmsg_type == SCM_SECURITY) { memcpy(&scontext, CMSG_DATA(cmsg_hdr), sizeof(scontext)); } } ip_setsockopt is enhanced with a new socket option IP_PASSSEC to allow a server socket to receive security context of the peer. A new ancillary message type SCM_SECURITY. When the packet is received we get the security context from the sec_path pointer which is contained in the sk_buff, and copy it to the ancillary message space. An additional LSM hook, selinux_socket_getpeersec_udp, is defined to retrieve the security context from the SELinux space. The existing function, selinux_socket_getpeersec does not suit our purpose, because the security context is copied directly to user space, rather than to kernel space. Testing: We have tested the patch by setting up TCP and UDP connections between applications on two machines using the IPSec policies that result in labeled security associations being built. For TCP, we can then extract the peer security context using getsockopt on either end. For UDP, the receiving end can retrieve the security context using the auxiliary data mechanism of recvmsg. Signed-off-by: Catherine Zhang <cxzhang@watson.ibm.com> Acked-by: James Morris <jmorris@namei.org> Acked-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'security/selinux')
-rw-r--r--security/selinux/hooks.c46
-rw-r--r--security/selinux/include/xfrm.h2
-rw-r--r--security/selinux/xfrm.c68
3 files changed, 109 insertions, 7 deletions
diff --git a/security/selinux/hooks.c b/security/selinux/hooks.c
index b65c201e9ff5..5b16196f2823 100644
--- a/security/selinux/hooks.c
+++ b/security/selinux/hooks.c
@@ -3318,24 +3318,38 @@ out:
3318 return err; 3318 return err;
3319} 3319}
3320 3320
3321static int selinux_socket_getpeersec(struct socket *sock, char __user *optval, 3321static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
3322 int __user *optlen, unsigned len) 3322 int __user *optlen, unsigned len)
3323{ 3323{
3324 int err = 0; 3324 int err = 0;
3325 char *scontext; 3325 char *scontext;
3326 u32 scontext_len; 3326 u32 scontext_len;
3327 struct sk_security_struct *ssec; 3327 struct sk_security_struct *ssec;
3328 struct inode_security_struct *isec; 3328 struct inode_security_struct *isec;
3329 u32 peer_sid = 0;
3329 3330
3330 isec = SOCK_INODE(sock)->i_security; 3331 isec = SOCK_INODE(sock)->i_security;
3331 if (isec->sclass != SECCLASS_UNIX_STREAM_SOCKET) { 3332
3333 /* if UNIX_STREAM check peer_sid, if TCP check dst for labelled sa */
3334 if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET) {
3335 ssec = sock->sk->sk_security;
3336 peer_sid = ssec->peer_sid;
3337 }
3338 else if (isec->sclass == SECCLASS_TCP_SOCKET) {
3339 peer_sid = selinux_socket_getpeer_stream(sock->sk);
3340
3341 if (peer_sid == SECSID_NULL) {
3342 err = -ENOPROTOOPT;
3343 goto out;
3344 }
3345 }
3346 else {
3332 err = -ENOPROTOOPT; 3347 err = -ENOPROTOOPT;
3333 goto out; 3348 goto out;
3334 } 3349 }
3335 3350
3336 ssec = sock->sk->sk_security; 3351 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
3337 3352
3338 err = security_sid_to_context(ssec->peer_sid, &scontext, &scontext_len);
3339 if (err) 3353 if (err)
3340 goto out; 3354 goto out;
3341 3355
@@ -3356,6 +3370,23 @@ out:
3356 return err; 3370 return err;
3357} 3371}
3358 3372
3373static int selinux_socket_getpeersec_dgram(struct sk_buff *skb, char **secdata, u32 *seclen)
3374{
3375 int err = 0;
3376 u32 peer_sid = selinux_socket_getpeer_dgram(skb);
3377
3378 if (peer_sid == SECSID_NULL)
3379 return -EINVAL;
3380
3381 err = security_sid_to_context(peer_sid, secdata, seclen);
3382 if (err)
3383 return err;
3384
3385 return 0;
3386}
3387
3388
3389
3359static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 3390static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
3360{ 3391{
3361 return sk_alloc_security(sk, family, priority); 3392 return sk_alloc_security(sk, family, priority);
@@ -4344,7 +4375,8 @@ static struct security_operations selinux_ops = {
4344 .socket_setsockopt = selinux_socket_setsockopt, 4375 .socket_setsockopt = selinux_socket_setsockopt,
4345 .socket_shutdown = selinux_socket_shutdown, 4376 .socket_shutdown = selinux_socket_shutdown,
4346 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb, 4377 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
4347 .socket_getpeersec = selinux_socket_getpeersec, 4378 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
4379 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
4348 .sk_alloc_security = selinux_sk_alloc_security, 4380 .sk_alloc_security = selinux_sk_alloc_security,
4349 .sk_free_security = selinux_sk_free_security, 4381 .sk_free_security = selinux_sk_free_security,
4350 .sk_getsid = selinux_sk_getsid_security, 4382 .sk_getsid = selinux_sk_getsid_security,
diff --git a/security/selinux/include/xfrm.h b/security/selinux/include/xfrm.h
index 8e87996c6dd5..a7f388bff3f2 100644
--- a/security/selinux/include/xfrm.h
+++ b/security/selinux/include/xfrm.h
@@ -39,6 +39,8 @@ static inline u32 selinux_no_sk_sid(struct flowi *fl)
39#ifdef CONFIG_SECURITY_NETWORK_XFRM 39#ifdef CONFIG_SECURITY_NETWORK_XFRM
40int selinux_xfrm_sock_rcv_skb(u32 sid, struct sk_buff *skb); 40int selinux_xfrm_sock_rcv_skb(u32 sid, struct sk_buff *skb);
41int selinux_xfrm_postroute_last(u32 isec_sid, struct sk_buff *skb); 41int selinux_xfrm_postroute_last(u32 isec_sid, struct sk_buff *skb);
42u32 selinux_socket_getpeer_stream(struct sock *sk);
43u32 selinux_socket_getpeer_dgram(struct sk_buff *skb);
42#else 44#else
43static inline int selinux_xfrm_sock_rcv_skb(u32 isec_sid, struct sk_buff *skb) 45static inline int selinux_xfrm_sock_rcv_skb(u32 isec_sid, struct sk_buff *skb)
44{ 46{
diff --git a/security/selinux/xfrm.c b/security/selinux/xfrm.c
index b2af7ca496c1..dfab6c886698 100644
--- a/security/selinux/xfrm.c
+++ b/security/selinux/xfrm.c
@@ -225,6 +225,74 @@ void selinux_xfrm_state_free(struct xfrm_state *x)
225} 225}
226 226
227/* 227/*
228 * SELinux internal function to retrieve the context of a connected
229 * (sk->sk_state == TCP_ESTABLISHED) TCP socket based on its security
230 * association used to connect to the remote socket.
231 *
232 * Retrieve via getsockopt SO_PEERSEC.
233 */
234u32 selinux_socket_getpeer_stream(struct sock *sk)
235{
236 struct dst_entry *dst, *dst_test;
237 u32 peer_sid = SECSID_NULL;
238
239 if (sk->sk_state != TCP_ESTABLISHED)
240 goto out;
241
242 dst = sk_dst_get(sk);
243 if (!dst)
244 goto out;
245
246 for (dst_test = dst; dst_test != 0;
247 dst_test = dst_test->child) {
248 struct xfrm_state *x = dst_test->xfrm;
249
250 if (x && selinux_authorizable_xfrm(x)) {
251 struct xfrm_sec_ctx *ctx = x->security;
252 peer_sid = ctx->ctx_sid;
253 break;
254 }
255 }
256 dst_release(dst);
257
258out:
259 return peer_sid;
260}
261
262/*
263 * SELinux internal function to retrieve the context of a UDP packet
264 * based on its security association used to connect to the remote socket.
265 *
266 * Retrieve via setsockopt IP_PASSSEC and recvmsg with control message
267 * type SCM_SECURITY.
268 */
269u32 selinux_socket_getpeer_dgram(struct sk_buff *skb)
270{
271 struct sec_path *sp;
272
273 if (skb == NULL)
274 return SECSID_NULL;
275
276 if (skb->sk->sk_protocol != IPPROTO_UDP)
277 return SECSID_NULL;
278
279 sp = skb->sp;
280 if (sp) {
281 int i;
282
283 for (i = sp->len-1; i >= 0; i--) {
284 struct xfrm_state *x = sp->x[i].xvec;
285 if (selinux_authorizable_xfrm(x)) {
286 struct xfrm_sec_ctx *ctx = x->security;
287 return ctx->ctx_sid;
288 }
289 }
290 }
291
292 return SECSID_NULL;
293}
294
295/*
228 * LSM hook that controls access to unlabelled packets. If 296 * LSM hook that controls access to unlabelled packets. If
229 * a xfrm_state is authorizable (defined by macro) then it was 297 * a xfrm_state is authorizable (defined by macro) then it was
230 * already authorized by the IPSec process. If not, then 298 * already authorized by the IPSec process. If not, then