aboutsummaryrefslogtreecommitdiffstats
path: root/security/keys/request_key_auth.c
diff options
context:
space:
mode:
authorDavid Howells <dhowells@redhat.com>2008-11-13 18:39:23 -0500
committerJames Morris <jmorris@namei.org>2008-11-13 18:39:23 -0500
commitd84f4f992cbd76e8f39c488cf0c5d123843923b1 (patch)
treefc4a0349c42995715b93d0f7a3c78e9ea9b3f36e /security/keys/request_key_auth.c
parent745ca2475a6ac596e3d8d37c2759c0fbe2586227 (diff)
CRED: Inaugurate COW credentials
Inaugurate copy-on-write credentials management. This uses RCU to manage the credentials pointer in the task_struct with respect to accesses by other tasks. A process may only modify its own credentials, and so does not need locking to access or modify its own credentials. A mutex (cred_replace_mutex) is added to the task_struct to control the effect of PTRACE_ATTACHED on credential calculations, particularly with respect to execve(). With this patch, the contents of an active credentials struct may not be changed directly; rather a new set of credentials must be prepared, modified and committed using something like the following sequence of events: struct cred *new = prepare_creds(); int ret = blah(new); if (ret < 0) { abort_creds(new); return ret; } return commit_creds(new); There are some exceptions to this rule: the keyrings pointed to by the active credentials may be instantiated - keyrings violate the COW rule as managing COW keyrings is tricky, given that it is possible for a task to directly alter the keys in a keyring in use by another task. To help enforce this, various pointers to sets of credentials, such as those in the task_struct, are declared const. The purpose of this is compile-time discouragement of altering credentials through those pointers. Once a set of credentials has been made public through one of these pointers, it may not be modified, except under special circumstances: (1) Its reference count may incremented and decremented. (2) The keyrings to which it points may be modified, but not replaced. The only safe way to modify anything else is to create a replacement and commit using the functions described in Documentation/credentials.txt (which will be added by a later patch). This patch and the preceding patches have been tested with the LTP SELinux testsuite. This patch makes several logical sets of alteration: (1) execve(). This now prepares and commits credentials in various places in the security code rather than altering the current creds directly. (2) Temporary credential overrides. do_coredump() and sys_faccessat() now prepare their own credentials and temporarily override the ones currently on the acting thread, whilst preventing interference from other threads by holding cred_replace_mutex on the thread being dumped. This will be replaced in a future patch by something that hands down the credentials directly to the functions being called, rather than altering the task's objective credentials. (3) LSM interface. A number of functions have been changed, added or removed: (*) security_capset_check(), ->capset_check() (*) security_capset_set(), ->capset_set() Removed in favour of security_capset(). (*) security_capset(), ->capset() New. This is passed a pointer to the new creds, a pointer to the old creds and the proposed capability sets. It should fill in the new creds or return an error. All pointers, barring the pointer to the new creds, are now const. (*) security_bprm_apply_creds(), ->bprm_apply_creds() Changed; now returns a value, which will cause the process to be killed if it's an error. (*) security_task_alloc(), ->task_alloc_security() Removed in favour of security_prepare_creds(). (*) security_cred_free(), ->cred_free() New. Free security data attached to cred->security. (*) security_prepare_creds(), ->cred_prepare() New. Duplicate any security data attached to cred->security. (*) security_commit_creds(), ->cred_commit() New. Apply any security effects for the upcoming installation of new security by commit_creds(). (*) security_task_post_setuid(), ->task_post_setuid() Removed in favour of security_task_fix_setuid(). (*) security_task_fix_setuid(), ->task_fix_setuid() Fix up the proposed new credentials for setuid(). This is used by cap_set_fix_setuid() to implicitly adjust capabilities in line with setuid() changes. Changes are made to the new credentials, rather than the task itself as in security_task_post_setuid(). (*) security_task_reparent_to_init(), ->task_reparent_to_init() Removed. Instead the task being reparented to init is referred directly to init's credentials. NOTE! This results in the loss of some state: SELinux's osid no longer records the sid of the thread that forked it. (*) security_key_alloc(), ->key_alloc() (*) security_key_permission(), ->key_permission() Changed. These now take cred pointers rather than task pointers to refer to the security context. (4) sys_capset(). This has been simplified and uses less locking. The LSM functions it calls have been merged. (5) reparent_to_kthreadd(). This gives the current thread the same credentials as init by simply using commit_thread() to point that way. (6) __sigqueue_alloc() and switch_uid() __sigqueue_alloc() can't stop the target task from changing its creds beneath it, so this function gets a reference to the currently applicable user_struct which it then passes into the sigqueue struct it returns if successful. switch_uid() is now called from commit_creds(), and possibly should be folded into that. commit_creds() should take care of protecting __sigqueue_alloc(). (7) [sg]et[ug]id() and co and [sg]et_current_groups. The set functions now all use prepare_creds(), commit_creds() and abort_creds() to build and check a new set of credentials before applying it. security_task_set[ug]id() is called inside the prepared section. This guarantees that nothing else will affect the creds until we've finished. The calling of set_dumpable() has been moved into commit_creds(). Much of the functionality of set_user() has been moved into commit_creds(). The get functions all simply access the data directly. (8) security_task_prctl() and cap_task_prctl(). security_task_prctl() has been modified to return -ENOSYS if it doesn't want to handle a function, or otherwise return the return value directly rather than through an argument. Additionally, cap_task_prctl() now prepares a new set of credentials, even if it doesn't end up using it. (9) Keyrings. A number of changes have been made to the keyrings code: (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have all been dropped and built in to the credentials functions directly. They may want separating out again later. (b) key_alloc() and search_process_keyrings() now take a cred pointer rather than a task pointer to specify the security context. (c) copy_creds() gives a new thread within the same thread group a new thread keyring if its parent had one, otherwise it discards the thread keyring. (d) The authorisation key now points directly to the credentials to extend the search into rather pointing to the task that carries them. (e) Installing thread, process or session keyrings causes a new set of credentials to be created, even though it's not strictly necessary for process or session keyrings (they're shared). (10) Usermode helper. The usermode helper code now carries a cred struct pointer in its subprocess_info struct instead of a new session keyring pointer. This set of credentials is derived from init_cred and installed on the new process after it has been cloned. call_usermodehelper_setup() allocates the new credentials and call_usermodehelper_freeinfo() discards them if they haven't been used. A special cred function (prepare_usermodeinfo_creds()) is provided specifically for call_usermodehelper_setup() to call. call_usermodehelper_setkeys() adjusts the credentials to sport the supplied keyring as the new session keyring. (11) SELinux. SELinux has a number of changes, in addition to those to support the LSM interface changes mentioned above: (a) selinux_setprocattr() no longer does its check for whether the current ptracer can access processes with the new SID inside the lock that covers getting the ptracer's SID. Whilst this lock ensures that the check is done with the ptracer pinned, the result is only valid until the lock is released, so there's no point doing it inside the lock. (12) is_single_threaded(). This function has been extracted from selinux_setprocattr() and put into a file of its own in the lib/ directory as join_session_keyring() now wants to use it too. The code in SELinux just checked to see whether a task shared mm_structs with other tasks (CLONE_VM), but that isn't good enough. We really want to know if they're part of the same thread group (CLONE_THREAD). (13) nfsd. The NFS server daemon now has to use the COW credentials to set the credentials it is going to use. It really needs to pass the credentials down to the functions it calls, but it can't do that until other patches in this series have been applied. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: James Morris <jmorris@namei.org> Signed-off-by: James Morris <jmorris@namei.org>
Diffstat (limited to 'security/keys/request_key_auth.c')
-rw-r--r--security/keys/request_key_auth.c41
1 files changed, 20 insertions, 21 deletions
diff --git a/security/keys/request_key_auth.c b/security/keys/request_key_auth.c
index 2125579d5d73..86747151ee5b 100644
--- a/security/keys/request_key_auth.c
+++ b/security/keys/request_key_auth.c
@@ -105,9 +105,9 @@ static void request_key_auth_revoke(struct key *key)
105 105
106 kenter("{%d}", key->serial); 106 kenter("{%d}", key->serial);
107 107
108 if (rka->context) { 108 if (rka->cred) {
109 put_task_struct(rka->context); 109 put_cred(rka->cred);
110 rka->context = NULL; 110 rka->cred = NULL;
111 } 111 }
112 112
113} /* end request_key_auth_revoke() */ 113} /* end request_key_auth_revoke() */
@@ -122,9 +122,9 @@ static void request_key_auth_destroy(struct key *key)
122 122
123 kenter("{%d}", key->serial); 123 kenter("{%d}", key->serial);
124 124
125 if (rka->context) { 125 if (rka->cred) {
126 put_task_struct(rka->context); 126 put_cred(rka->cred);
127 rka->context = NULL; 127 rka->cred = NULL;
128 } 128 }
129 129
130 key_put(rka->target_key); 130 key_put(rka->target_key);
@@ -143,6 +143,7 @@ struct key *request_key_auth_new(struct key *target, const void *callout_info,
143 size_t callout_len, struct key *dest_keyring) 143 size_t callout_len, struct key *dest_keyring)
144{ 144{
145 struct request_key_auth *rka, *irka; 145 struct request_key_auth *rka, *irka;
146 const struct cred *cred = current->cred;
146 struct key *authkey = NULL; 147 struct key *authkey = NULL;
147 char desc[20]; 148 char desc[20];
148 int ret; 149 int ret;
@@ -164,28 +165,25 @@ struct key *request_key_auth_new(struct key *target, const void *callout_info,
164 165
165 /* see if the calling process is already servicing the key request of 166 /* see if the calling process is already servicing the key request of
166 * another process */ 167 * another process */
167 if (current->cred->request_key_auth) { 168 if (cred->request_key_auth) {
168 /* it is - use that instantiation context here too */ 169 /* it is - use that instantiation context here too */
169 down_read(&current->cred->request_key_auth->sem); 170 down_read(&cred->request_key_auth->sem);
170 171
171 /* if the auth key has been revoked, then the key we're 172 /* if the auth key has been revoked, then the key we're
172 * servicing is already instantiated */ 173 * servicing is already instantiated */
173 if (test_bit(KEY_FLAG_REVOKED, 174 if (test_bit(KEY_FLAG_REVOKED, &cred->request_key_auth->flags))
174 &current->cred->request_key_auth->flags))
175 goto auth_key_revoked; 175 goto auth_key_revoked;
176 176
177 irka = current->cred->request_key_auth->payload.data; 177 irka = cred->request_key_auth->payload.data;
178 rka->context = irka->context; 178 rka->cred = get_cred(irka->cred);
179 rka->pid = irka->pid; 179 rka->pid = irka->pid;
180 get_task_struct(rka->context);
181 180
182 up_read(&current->cred->request_key_auth->sem); 181 up_read(&cred->request_key_auth->sem);
183 } 182 }
184 else { 183 else {
185 /* it isn't - use this process as the context */ 184 /* it isn't - use this process as the context */
186 rka->context = current; 185 rka->cred = get_cred(cred);
187 rka->pid = current->pid; 186 rka->pid = current->pid;
188 get_task_struct(rka->context);
189 } 187 }
190 188
191 rka->target_key = key_get(target); 189 rka->target_key = key_get(target);
@@ -197,7 +195,7 @@ struct key *request_key_auth_new(struct key *target, const void *callout_info,
197 sprintf(desc, "%x", target->serial); 195 sprintf(desc, "%x", target->serial);
198 196
199 authkey = key_alloc(&key_type_request_key_auth, desc, 197 authkey = key_alloc(&key_type_request_key_auth, desc,
200 current_fsuid(), current_fsgid(), current, 198 cred->fsuid, cred->fsgid, cred,
201 KEY_POS_VIEW | KEY_POS_READ | KEY_POS_SEARCH | 199 KEY_POS_VIEW | KEY_POS_READ | KEY_POS_SEARCH |
202 KEY_USR_VIEW, KEY_ALLOC_NOT_IN_QUOTA); 200 KEY_USR_VIEW, KEY_ALLOC_NOT_IN_QUOTA);
203 if (IS_ERR(authkey)) { 201 if (IS_ERR(authkey)) {
@@ -205,16 +203,16 @@ struct key *request_key_auth_new(struct key *target, const void *callout_info,
205 goto error_alloc; 203 goto error_alloc;
206 } 204 }
207 205
208 /* construct and attach to the keyring */ 206 /* construct the auth key */
209 ret = key_instantiate_and_link(authkey, rka, 0, NULL, NULL); 207 ret = key_instantiate_and_link(authkey, rka, 0, NULL, NULL);
210 if (ret < 0) 208 if (ret < 0)
211 goto error_inst; 209 goto error_inst;
212 210
213 kleave(" = {%d}", authkey->serial); 211 kleave(" = {%d,%d}", authkey->serial, atomic_read(&authkey->usage));
214 return authkey; 212 return authkey;
215 213
216auth_key_revoked: 214auth_key_revoked:
217 up_read(&current->cred->request_key_auth->sem); 215 up_read(&cred->request_key_auth->sem);
218 kfree(rka->callout_info); 216 kfree(rka->callout_info);
219 kfree(rka); 217 kfree(rka);
220 kleave("= -EKEYREVOKED"); 218 kleave("= -EKEYREVOKED");
@@ -257,6 +255,7 @@ static int key_get_instantiation_authkey_match(const struct key *key,
257 */ 255 */
258struct key *key_get_instantiation_authkey(key_serial_t target_id) 256struct key *key_get_instantiation_authkey(key_serial_t target_id)
259{ 257{
258 const struct cred *cred = current_cred();
260 struct key *authkey; 259 struct key *authkey;
261 key_ref_t authkey_ref; 260 key_ref_t authkey_ref;
262 261
@@ -264,7 +263,7 @@ struct key *key_get_instantiation_authkey(key_serial_t target_id)
264 &key_type_request_key_auth, 263 &key_type_request_key_auth,
265 (void *) (unsigned long) target_id, 264 (void *) (unsigned long) target_id,
266 key_get_instantiation_authkey_match, 265 key_get_instantiation_authkey_match,
267 current); 266 cred);
268 267
269 if (IS_ERR(authkey_ref)) { 268 if (IS_ERR(authkey_ref)) {
270 authkey = ERR_CAST(authkey_ref); 269 authkey = ERR_CAST(authkey_ref);