aboutsummaryrefslogtreecommitdiffstats
path: root/security/keys/keyring.c
diff options
context:
space:
mode:
authorPaul Moore <pmoore@redhat.com>2014-01-28 14:44:16 -0500
committerPaul Moore <pmoore@redhat.com>2014-02-05 10:39:48 -0500
commit825e587af2e90e9b953849f3347a01d8f383d577 (patch)
treee48942a05882da47544e179c6a0c920e00137a6a /security/keys/keyring.c
parent8ed814602876bec9bad2649ca17f34b499357a1c (diff)
parentd8ec26d7f8287f5788a494f56e8814210f0e64be (diff)
Merge tag 'v3.13' into stable-3.14
Linux 3.13 Conflicts: security/selinux/hooks.c Trivial merge issue in selinux_inet_conn_request() likely due to me including patches that I sent to the stable folks in my next tree resulting in the patch hitting twice (I think). Thankfully it was an easy fix this time, but regardless, lesson learned, I will not do that again.
Diffstat (limited to 'security/keys/keyring.c')
-rw-r--r--security/keys/keyring.c1535
1 files changed, 808 insertions, 727 deletions
diff --git a/security/keys/keyring.c b/security/keys/keyring.c
index 6ece7f2e5707..d46cbc5e335e 100644
--- a/security/keys/keyring.c
+++ b/security/keys/keyring.c
@@ -1,6 +1,6 @@
1/* Keyring handling 1/* Keyring handling
2 * 2 *
3 * Copyright (C) 2004-2005, 2008 Red Hat, Inc. All Rights Reserved. 3 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com) 4 * Written by David Howells (dhowells@redhat.com)
5 * 5 *
6 * This program is free software; you can redistribute it and/or 6 * This program is free software; you can redistribute it and/or
@@ -17,25 +17,11 @@
17#include <linux/seq_file.h> 17#include <linux/seq_file.h>
18#include <linux/err.h> 18#include <linux/err.h>
19#include <keys/keyring-type.h> 19#include <keys/keyring-type.h>
20#include <keys/user-type.h>
21#include <linux/assoc_array_priv.h>
20#include <linux/uaccess.h> 22#include <linux/uaccess.h>
21#include "internal.h" 23#include "internal.h"
22 24
23#define rcu_dereference_locked_keyring(keyring) \
24 (rcu_dereference_protected( \
25 (keyring)->payload.subscriptions, \
26 rwsem_is_locked((struct rw_semaphore *)&(keyring)->sem)))
27
28#define rcu_deref_link_locked(klist, index, keyring) \
29 (rcu_dereference_protected( \
30 (klist)->keys[index], \
31 rwsem_is_locked((struct rw_semaphore *)&(keyring)->sem)))
32
33#define MAX_KEYRING_LINKS \
34 min_t(size_t, USHRT_MAX - 1, \
35 ((PAGE_SIZE - sizeof(struct keyring_list)) / sizeof(struct key *)))
36
37#define KEY_LINK_FIXQUOTA 1UL
38
39/* 25/*
40 * When plumbing the depths of the key tree, this sets a hard limit 26 * When plumbing the depths of the key tree, this sets a hard limit
41 * set on how deep we're willing to go. 27 * set on how deep we're willing to go.
@@ -47,6 +33,28 @@
47 */ 33 */
48#define KEYRING_NAME_HASH_SIZE (1 << 5) 34#define KEYRING_NAME_HASH_SIZE (1 << 5)
49 35
36/*
37 * We mark pointers we pass to the associative array with bit 1 set if
38 * they're keyrings and clear otherwise.
39 */
40#define KEYRING_PTR_SUBTYPE 0x2UL
41
42static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
43{
44 return (unsigned long)x & KEYRING_PTR_SUBTYPE;
45}
46static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
47{
48 void *object = assoc_array_ptr_to_leaf(x);
49 return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
50}
51static inline void *keyring_key_to_ptr(struct key *key)
52{
53 if (key->type == &key_type_keyring)
54 return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
55 return key;
56}
57
50static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE]; 58static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE];
51static DEFINE_RWLOCK(keyring_name_lock); 59static DEFINE_RWLOCK(keyring_name_lock);
52 60
@@ -67,7 +75,6 @@ static inline unsigned keyring_hash(const char *desc)
67 */ 75 */
68static int keyring_instantiate(struct key *keyring, 76static int keyring_instantiate(struct key *keyring,
69 struct key_preparsed_payload *prep); 77 struct key_preparsed_payload *prep);
70static int keyring_match(const struct key *keyring, const void *criterion);
71static void keyring_revoke(struct key *keyring); 78static void keyring_revoke(struct key *keyring);
72static void keyring_destroy(struct key *keyring); 79static void keyring_destroy(struct key *keyring);
73static void keyring_describe(const struct key *keyring, struct seq_file *m); 80static void keyring_describe(const struct key *keyring, struct seq_file *m);
@@ -76,9 +83,9 @@ static long keyring_read(const struct key *keyring,
76 83
77struct key_type key_type_keyring = { 84struct key_type key_type_keyring = {
78 .name = "keyring", 85 .name = "keyring",
79 .def_datalen = sizeof(struct keyring_list), 86 .def_datalen = 0,
80 .instantiate = keyring_instantiate, 87 .instantiate = keyring_instantiate,
81 .match = keyring_match, 88 .match = user_match,
82 .revoke = keyring_revoke, 89 .revoke = keyring_revoke,
83 .destroy = keyring_destroy, 90 .destroy = keyring_destroy,
84 .describe = keyring_describe, 91 .describe = keyring_describe,
@@ -127,6 +134,7 @@ static int keyring_instantiate(struct key *keyring,
127 134
128 ret = -EINVAL; 135 ret = -EINVAL;
129 if (prep->datalen == 0) { 136 if (prep->datalen == 0) {
137 assoc_array_init(&keyring->keys);
130 /* make the keyring available by name if it has one */ 138 /* make the keyring available by name if it has one */
131 keyring_publish_name(keyring); 139 keyring_publish_name(keyring);
132 ret = 0; 140 ret = 0;
@@ -136,15 +144,225 @@ static int keyring_instantiate(struct key *keyring,
136} 144}
137 145
138/* 146/*
139 * Match keyrings on their name 147 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit. Ideally we'd
148 * fold the carry back too, but that requires inline asm.
149 */
150static u64 mult_64x32_and_fold(u64 x, u32 y)
151{
152 u64 hi = (u64)(u32)(x >> 32) * y;
153 u64 lo = (u64)(u32)(x) * y;
154 return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
155}
156
157/*
158 * Hash a key type and description.
159 */
160static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
161{
162 const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
163 const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
164 const char *description = index_key->description;
165 unsigned long hash, type;
166 u32 piece;
167 u64 acc;
168 int n, desc_len = index_key->desc_len;
169
170 type = (unsigned long)index_key->type;
171
172 acc = mult_64x32_and_fold(type, desc_len + 13);
173 acc = mult_64x32_and_fold(acc, 9207);
174 for (;;) {
175 n = desc_len;
176 if (n <= 0)
177 break;
178 if (n > 4)
179 n = 4;
180 piece = 0;
181 memcpy(&piece, description, n);
182 description += n;
183 desc_len -= n;
184 acc = mult_64x32_and_fold(acc, piece);
185 acc = mult_64x32_and_fold(acc, 9207);
186 }
187
188 /* Fold the hash down to 32 bits if need be. */
189 hash = acc;
190 if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
191 hash ^= acc >> 32;
192
193 /* Squidge all the keyrings into a separate part of the tree to
194 * ordinary keys by making sure the lowest level segment in the hash is
195 * zero for keyrings and non-zero otherwise.
196 */
197 if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
198 return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
199 if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
200 return (hash + (hash << level_shift)) & ~fan_mask;
201 return hash;
202}
203
204/*
205 * Build the next index key chunk.
206 *
207 * On 32-bit systems the index key is laid out as:
208 *
209 * 0 4 5 9...
210 * hash desclen typeptr desc[]
211 *
212 * On 64-bit systems:
213 *
214 * 0 8 9 17...
215 * hash desclen typeptr desc[]
216 *
217 * We return it one word-sized chunk at a time.
140 */ 218 */
141static int keyring_match(const struct key *keyring, const void *description) 219static unsigned long keyring_get_key_chunk(const void *data, int level)
220{
221 const struct keyring_index_key *index_key = data;
222 unsigned long chunk = 0;
223 long offset = 0;
224 int desc_len = index_key->desc_len, n = sizeof(chunk);
225
226 level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
227 switch (level) {
228 case 0:
229 return hash_key_type_and_desc(index_key);
230 case 1:
231 return ((unsigned long)index_key->type << 8) | desc_len;
232 case 2:
233 if (desc_len == 0)
234 return (u8)((unsigned long)index_key->type >>
235 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
236 n--;
237 offset = 1;
238 default:
239 offset += sizeof(chunk) - 1;
240 offset += (level - 3) * sizeof(chunk);
241 if (offset >= desc_len)
242 return 0;
243 desc_len -= offset;
244 if (desc_len > n)
245 desc_len = n;
246 offset += desc_len;
247 do {
248 chunk <<= 8;
249 chunk |= ((u8*)index_key->description)[--offset];
250 } while (--desc_len > 0);
251
252 if (level == 2) {
253 chunk <<= 8;
254 chunk |= (u8)((unsigned long)index_key->type >>
255 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
256 }
257 return chunk;
258 }
259}
260
261static unsigned long keyring_get_object_key_chunk(const void *object, int level)
262{
263 const struct key *key = keyring_ptr_to_key(object);
264 return keyring_get_key_chunk(&key->index_key, level);
265}
266
267static bool keyring_compare_object(const void *object, const void *data)
142{ 268{
143 return keyring->description && 269 const struct keyring_index_key *index_key = data;
144 strcmp(keyring->description, description) == 0; 270 const struct key *key = keyring_ptr_to_key(object);
271
272 return key->index_key.type == index_key->type &&
273 key->index_key.desc_len == index_key->desc_len &&
274 memcmp(key->index_key.description, index_key->description,
275 index_key->desc_len) == 0;
145} 276}
146 277
147/* 278/*
279 * Compare the index keys of a pair of objects and determine the bit position
280 * at which they differ - if they differ.
281 */
282static int keyring_diff_objects(const void *object, const void *data)
283{
284 const struct key *key_a = keyring_ptr_to_key(object);
285 const struct keyring_index_key *a = &key_a->index_key;
286 const struct keyring_index_key *b = data;
287 unsigned long seg_a, seg_b;
288 int level, i;
289
290 level = 0;
291 seg_a = hash_key_type_and_desc(a);
292 seg_b = hash_key_type_and_desc(b);
293 if ((seg_a ^ seg_b) != 0)
294 goto differ;
295
296 /* The number of bits contributed by the hash is controlled by a
297 * constant in the assoc_array headers. Everything else thereafter we
298 * can deal with as being machine word-size dependent.
299 */
300 level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
301 seg_a = a->desc_len;
302 seg_b = b->desc_len;
303 if ((seg_a ^ seg_b) != 0)
304 goto differ;
305
306 /* The next bit may not work on big endian */
307 level++;
308 seg_a = (unsigned long)a->type;
309 seg_b = (unsigned long)b->type;
310 if ((seg_a ^ seg_b) != 0)
311 goto differ;
312
313 level += sizeof(unsigned long);
314 if (a->desc_len == 0)
315 goto same;
316
317 i = 0;
318 if (((unsigned long)a->description | (unsigned long)b->description) &
319 (sizeof(unsigned long) - 1)) {
320 do {
321 seg_a = *(unsigned long *)(a->description + i);
322 seg_b = *(unsigned long *)(b->description + i);
323 if ((seg_a ^ seg_b) != 0)
324 goto differ_plus_i;
325 i += sizeof(unsigned long);
326 } while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
327 }
328
329 for (; i < a->desc_len; i++) {
330 seg_a = *(unsigned char *)(a->description + i);
331 seg_b = *(unsigned char *)(b->description + i);
332 if ((seg_a ^ seg_b) != 0)
333 goto differ_plus_i;
334 }
335
336same:
337 return -1;
338
339differ_plus_i:
340 level += i;
341differ:
342 i = level * 8 + __ffs(seg_a ^ seg_b);
343 return i;
344}
345
346/*
347 * Free an object after stripping the keyring flag off of the pointer.
348 */
349static void keyring_free_object(void *object)
350{
351 key_put(keyring_ptr_to_key(object));
352}
353
354/*
355 * Operations for keyring management by the index-tree routines.
356 */
357static const struct assoc_array_ops keyring_assoc_array_ops = {
358 .get_key_chunk = keyring_get_key_chunk,
359 .get_object_key_chunk = keyring_get_object_key_chunk,
360 .compare_object = keyring_compare_object,
361 .diff_objects = keyring_diff_objects,
362 .free_object = keyring_free_object,
363};
364
365/*
148 * Clean up a keyring when it is destroyed. Unpublish its name if it had one 366 * Clean up a keyring when it is destroyed. Unpublish its name if it had one
149 * and dispose of its data. 367 * and dispose of its data.
150 * 368 *
@@ -155,9 +373,6 @@ static int keyring_match(const struct key *keyring, const void *description)
155 */ 373 */
156static void keyring_destroy(struct key *keyring) 374static void keyring_destroy(struct key *keyring)
157{ 375{
158 struct keyring_list *klist;
159 int loop;
160
161 if (keyring->description) { 376 if (keyring->description) {
162 write_lock(&keyring_name_lock); 377 write_lock(&keyring_name_lock);
163 378
@@ -168,12 +383,7 @@ static void keyring_destroy(struct key *keyring)
168 write_unlock(&keyring_name_lock); 383 write_unlock(&keyring_name_lock);
169 } 384 }
170 385
171 klist = rcu_access_pointer(keyring->payload.subscriptions); 386 assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
172 if (klist) {
173 for (loop = klist->nkeys - 1; loop >= 0; loop--)
174 key_put(rcu_access_pointer(klist->keys[loop]));
175 kfree(klist);
176 }
177} 387}
178 388
179/* 389/*
@@ -181,76 +391,88 @@ static void keyring_destroy(struct key *keyring)
181 */ 391 */
182static void keyring_describe(const struct key *keyring, struct seq_file *m) 392static void keyring_describe(const struct key *keyring, struct seq_file *m)
183{ 393{
184 struct keyring_list *klist;
185
186 if (keyring->description) 394 if (keyring->description)
187 seq_puts(m, keyring->description); 395 seq_puts(m, keyring->description);
188 else 396 else
189 seq_puts(m, "[anon]"); 397 seq_puts(m, "[anon]");
190 398
191 if (key_is_instantiated(keyring)) { 399 if (key_is_instantiated(keyring)) {
192 rcu_read_lock(); 400 if (keyring->keys.nr_leaves_on_tree != 0)
193 klist = rcu_dereference(keyring->payload.subscriptions); 401 seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
194 if (klist)
195 seq_printf(m, ": %u/%u", klist->nkeys, klist->maxkeys);
196 else 402 else
197 seq_puts(m, ": empty"); 403 seq_puts(m, ": empty");
198 rcu_read_unlock();
199 } 404 }
200} 405}
201 406
407struct keyring_read_iterator_context {
408 size_t qty;
409 size_t count;
410 key_serial_t __user *buffer;
411};
412
413static int keyring_read_iterator(const void *object, void *data)
414{
415 struct keyring_read_iterator_context *ctx = data;
416 const struct key *key = keyring_ptr_to_key(object);
417 int ret;
418
419 kenter("{%s,%d},,{%zu/%zu}",
420 key->type->name, key->serial, ctx->count, ctx->qty);
421
422 if (ctx->count >= ctx->qty)
423 return 1;
424
425 ret = put_user(key->serial, ctx->buffer);
426 if (ret < 0)
427 return ret;
428 ctx->buffer++;
429 ctx->count += sizeof(key->serial);
430 return 0;
431}
432
202/* 433/*
203 * Read a list of key IDs from the keyring's contents in binary form 434 * Read a list of key IDs from the keyring's contents in binary form
204 * 435 *
205 * The keyring's semaphore is read-locked by the caller. 436 * The keyring's semaphore is read-locked by the caller. This prevents someone
437 * from modifying it under us - which could cause us to read key IDs multiple
438 * times.
206 */ 439 */
207static long keyring_read(const struct key *keyring, 440static long keyring_read(const struct key *keyring,
208 char __user *buffer, size_t buflen) 441 char __user *buffer, size_t buflen)
209{ 442{
210 struct keyring_list *klist; 443 struct keyring_read_iterator_context ctx;
211 struct key *key; 444 unsigned long nr_keys;
212 size_t qty, tmp; 445 int ret;
213 int loop, ret;
214 446
215 ret = 0; 447 kenter("{%d},,%zu", key_serial(keyring), buflen);
216 klist = rcu_dereference_locked_keyring(keyring); 448
217 if (klist) { 449 if (buflen & (sizeof(key_serial_t) - 1))
218 /* calculate how much data we could return */ 450 return -EINVAL;
219 qty = klist->nkeys * sizeof(key_serial_t); 451
220 452 nr_keys = keyring->keys.nr_leaves_on_tree;
221 if (buffer && buflen > 0) { 453 if (nr_keys == 0)
222 if (buflen > qty) 454 return 0;
223 buflen = qty;
224
225 /* copy the IDs of the subscribed keys into the
226 * buffer */
227 ret = -EFAULT;
228
229 for (loop = 0; loop < klist->nkeys; loop++) {
230 key = rcu_deref_link_locked(klist, loop,
231 keyring);
232
233 tmp = sizeof(key_serial_t);
234 if (tmp > buflen)
235 tmp = buflen;
236
237 if (copy_to_user(buffer,
238 &key->serial,
239 tmp) != 0)
240 goto error;
241
242 buflen -= tmp;
243 if (buflen == 0)
244 break;
245 buffer += tmp;
246 }
247 }
248 455
249 ret = qty; 456 /* Calculate how much data we could return */
457 ctx.qty = nr_keys * sizeof(key_serial_t);
458
459 if (!buffer || !buflen)
460 return ctx.qty;
461
462 if (buflen > ctx.qty)
463 ctx.qty = buflen;
464
465 /* Copy the IDs of the subscribed keys into the buffer */
466 ctx.buffer = (key_serial_t __user *)buffer;
467 ctx.count = 0;
468 ret = assoc_array_iterate(&keyring->keys, keyring_read_iterator, &ctx);
469 if (ret < 0) {
470 kleave(" = %d [iterate]", ret);
471 return ret;
250 } 472 }
251 473
252error: 474 kleave(" = %zu [ok]", ctx.count);
253 return ret; 475 return ctx.count;
254} 476}
255 477
256/* 478/*
@@ -277,227 +499,361 @@ struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
277} 499}
278EXPORT_SYMBOL(keyring_alloc); 500EXPORT_SYMBOL(keyring_alloc);
279 501
280/** 502/*
281 * keyring_search_aux - Search a keyring tree for a key matching some criteria 503 * Iteration function to consider each key found.
282 * @keyring_ref: A pointer to the keyring with possession indicator.
283 * @cred: The credentials to use for permissions checks.
284 * @type: The type of key to search for.
285 * @description: Parameter for @match.
286 * @match: Function to rule on whether or not a key is the one required.
287 * @no_state_check: Don't check if a matching key is bad
288 *
289 * Search the supplied keyring tree for a key that matches the criteria given.
290 * The root keyring and any linked keyrings must grant Search permission to the
291 * caller to be searchable and keys can only be found if they too grant Search
292 * to the caller. The possession flag on the root keyring pointer controls use
293 * of the possessor bits in permissions checking of the entire tree. In
294 * addition, the LSM gets to forbid keyring searches and key matches.
295 *
296 * The search is performed as a breadth-then-depth search up to the prescribed
297 * limit (KEYRING_SEARCH_MAX_DEPTH).
298 *
299 * Keys are matched to the type provided and are then filtered by the match
300 * function, which is given the description to use in any way it sees fit. The
301 * match function may use any attributes of a key that it wishes to to
302 * determine the match. Normally the match function from the key type would be
303 * used.
304 *
305 * RCU is used to prevent the keyring key lists from disappearing without the
306 * need to take lots of locks.
307 *
308 * Returns a pointer to the found key and increments the key usage count if
309 * successful; -EAGAIN if no matching keys were found, or if expired or revoked
310 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
311 * specified keyring wasn't a keyring.
312 *
313 * In the case of a successful return, the possession attribute from
314 * @keyring_ref is propagated to the returned key reference.
315 */ 504 */
316key_ref_t keyring_search_aux(key_ref_t keyring_ref, 505static int keyring_search_iterator(const void *object, void *iterator_data)
317 const struct cred *cred,
318 struct key_type *type,
319 const void *description,
320 key_match_func_t match,
321 bool no_state_check)
322{ 506{
323 struct { 507 struct keyring_search_context *ctx = iterator_data;
324 /* Need a separate keylist pointer for RCU purposes */ 508 const struct key *key = keyring_ptr_to_key(object);
325 struct key *keyring; 509 unsigned long kflags = key->flags;
326 struct keyring_list *keylist;
327 int kix;
328 } stack[KEYRING_SEARCH_MAX_DEPTH];
329
330 struct keyring_list *keylist;
331 struct timespec now;
332 unsigned long possessed, kflags;
333 struct key *keyring, *key;
334 key_ref_t key_ref;
335 long err;
336 int sp, nkeys, kix;
337 510
338 keyring = key_ref_to_ptr(keyring_ref); 511 kenter("{%d}", key->serial);
339 possessed = is_key_possessed(keyring_ref);
340 key_check(keyring);
341 512
342 /* top keyring must have search permission to begin the search */ 513 /* ignore keys not of this type */
343 err = key_task_permission(keyring_ref, cred, KEY_SEARCH); 514 if (key->type != ctx->index_key.type) {
344 if (err < 0) { 515 kleave(" = 0 [!type]");
345 key_ref = ERR_PTR(err); 516 return 0;
346 goto error;
347 } 517 }
348 518
349 key_ref = ERR_PTR(-ENOTDIR); 519 /* skip invalidated, revoked and expired keys */
350 if (keyring->type != &key_type_keyring) 520 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
351 goto error; 521 if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
522 (1 << KEY_FLAG_REVOKED))) {
523 ctx->result = ERR_PTR(-EKEYREVOKED);
524 kleave(" = %d [invrev]", ctx->skipped_ret);
525 goto skipped;
526 }
352 527
353 rcu_read_lock(); 528 if (key->expiry && ctx->now.tv_sec >= key->expiry) {
529 ctx->result = ERR_PTR(-EKEYEXPIRED);
530 kleave(" = %d [expire]", ctx->skipped_ret);
531 goto skipped;
532 }
533 }
354 534
355 now = current_kernel_time(); 535 /* keys that don't match */
356 err = -EAGAIN; 536 if (!ctx->match(key, ctx->match_data)) {
357 sp = 0; 537 kleave(" = 0 [!match]");
358 538 return 0;
359 /* firstly we should check to see if this top-level keyring is what we 539 }
360 * are looking for */
361 key_ref = ERR_PTR(-EAGAIN);
362 kflags = keyring->flags;
363 if (keyring->type == type && match(keyring, description)) {
364 key = keyring;
365 if (no_state_check)
366 goto found;
367 540
368 /* check it isn't negative and hasn't expired or been 541 /* key must have search permissions */
369 * revoked */ 542 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
370 if (kflags & (1 << KEY_FLAG_REVOKED)) 543 key_task_permission(make_key_ref(key, ctx->possessed),
371 goto error_2; 544 ctx->cred, KEY_SEARCH) < 0) {
372 if (key->expiry && now.tv_sec >= key->expiry) 545 ctx->result = ERR_PTR(-EACCES);
373 goto error_2; 546 kleave(" = %d [!perm]", ctx->skipped_ret);
374 key_ref = ERR_PTR(key->type_data.reject_error); 547 goto skipped;
375 if (kflags & (1 << KEY_FLAG_NEGATIVE))
376 goto error_2;
377 goto found;
378 } 548 }
379 549
380 /* otherwise, the top keyring must not be revoked, expired, or 550 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
381 * negatively instantiated if we are to search it */ 551 /* we set a different error code if we pass a negative key */
382 key_ref = ERR_PTR(-EAGAIN); 552 if (kflags & (1 << KEY_FLAG_NEGATIVE)) {
383 if (kflags & ((1 << KEY_FLAG_INVALIDATED) | 553 smp_rmb();
384 (1 << KEY_FLAG_REVOKED) | 554 ctx->result = ERR_PTR(key->type_data.reject_error);
385 (1 << KEY_FLAG_NEGATIVE)) || 555 kleave(" = %d [neg]", ctx->skipped_ret);
386 (keyring->expiry && now.tv_sec >= keyring->expiry)) 556 goto skipped;
387 goto error_2; 557 }
388 558 }
389 /* start processing a new keyring */
390descend:
391 kflags = keyring->flags;
392 if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
393 (1 << KEY_FLAG_REVOKED)))
394 goto not_this_keyring;
395 559
396 keylist = rcu_dereference(keyring->payload.subscriptions); 560 /* Found */
397 if (!keylist) 561 ctx->result = make_key_ref(key, ctx->possessed);
398 goto not_this_keyring; 562 kleave(" = 1 [found]");
563 return 1;
399 564
400 /* iterate through the keys in this keyring first */ 565skipped:
401 nkeys = keylist->nkeys; 566 return ctx->skipped_ret;
402 smp_rmb(); 567}
403 for (kix = 0; kix < nkeys; kix++) {
404 key = rcu_dereference(keylist->keys[kix]);
405 kflags = key->flags;
406 568
407 /* ignore keys not of this type */ 569/*
408 if (key->type != type) 570 * Search inside a keyring for a key. We can search by walking to it
409 continue; 571 * directly based on its index-key or we can iterate over the entire
572 * tree looking for it, based on the match function.
573 */
574static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
575{
576 if ((ctx->flags & KEYRING_SEARCH_LOOKUP_TYPE) ==
577 KEYRING_SEARCH_LOOKUP_DIRECT) {
578 const void *object;
579
580 object = assoc_array_find(&keyring->keys,
581 &keyring_assoc_array_ops,
582 &ctx->index_key);
583 return object ? ctx->iterator(object, ctx) : 0;
584 }
585 return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
586}
410 587
411 /* skip invalidated, revoked and expired keys */ 588/*
412 if (!no_state_check) { 589 * Search a tree of keyrings that point to other keyrings up to the maximum
413 if (kflags & ((1 << KEY_FLAG_INVALIDATED) | 590 * depth.
414 (1 << KEY_FLAG_REVOKED))) 591 */
415 continue; 592static bool search_nested_keyrings(struct key *keyring,
593 struct keyring_search_context *ctx)
594{
595 struct {
596 struct key *keyring;
597 struct assoc_array_node *node;
598 int slot;
599 } stack[KEYRING_SEARCH_MAX_DEPTH];
416 600
417 if (key->expiry && now.tv_sec >= key->expiry) 601 struct assoc_array_shortcut *shortcut;
418 continue; 602 struct assoc_array_node *node;
419 } 603 struct assoc_array_ptr *ptr;
604 struct key *key;
605 int sp = 0, slot;
420 606
421 /* keys that don't match */ 607 kenter("{%d},{%s,%s}",
422 if (!match(key, description)) 608 keyring->serial,
423 continue; 609 ctx->index_key.type->name,
610 ctx->index_key.description);
424 611
425 /* key must have search permissions */ 612 if (ctx->index_key.description)
426 if (key_task_permission(make_key_ref(key, possessed), 613 ctx->index_key.desc_len = strlen(ctx->index_key.description);
427 cred, KEY_SEARCH) < 0)
428 continue;
429 614
430 if (no_state_check) 615 /* Check to see if this top-level keyring is what we are looking for
616 * and whether it is valid or not.
617 */
618 if (ctx->flags & KEYRING_SEARCH_LOOKUP_ITERATE ||
619 keyring_compare_object(keyring, &ctx->index_key)) {
620 ctx->skipped_ret = 2;
621 ctx->flags |= KEYRING_SEARCH_DO_STATE_CHECK;
622 switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
623 case 1:
431 goto found; 624 goto found;
432 625 case 2:
433 /* we set a different error code if we pass a negative key */ 626 return false;
434 if (kflags & (1 << KEY_FLAG_NEGATIVE)) { 627 default:
435 err = key->type_data.reject_error; 628 break;
436 continue;
437 } 629 }
630 }
631
632 ctx->skipped_ret = 0;
633 if (ctx->flags & KEYRING_SEARCH_NO_STATE_CHECK)
634 ctx->flags &= ~KEYRING_SEARCH_DO_STATE_CHECK;
438 635
636 /* Start processing a new keyring */
637descend_to_keyring:
638 kdebug("descend to %d", keyring->serial);
639 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
640 (1 << KEY_FLAG_REVOKED)))
641 goto not_this_keyring;
642
643 /* Search through the keys in this keyring before its searching its
644 * subtrees.
645 */
646 if (search_keyring(keyring, ctx))
439 goto found; 647 goto found;
440 }
441 648
442 /* search through the keyrings nested in this one */ 649 /* Then manually iterate through the keyrings nested in this one.
443 kix = 0; 650 *
444ascend: 651 * Start from the root node of the index tree. Because of the way the
445 nkeys = keylist->nkeys; 652 * hash function has been set up, keyrings cluster on the leftmost
446 smp_rmb(); 653 * branch of the root node (root slot 0) or in the root node itself.
447 for (; kix < nkeys; kix++) { 654 * Non-keyrings avoid the leftmost branch of the root entirely (root
448 key = rcu_dereference(keylist->keys[kix]); 655 * slots 1-15).
449 if (key->type != &key_type_keyring) 656 */
450 continue; 657 ptr = ACCESS_ONCE(keyring->keys.root);
658 if (!ptr)
659 goto not_this_keyring;
451 660
452 /* recursively search nested keyrings 661 if (assoc_array_ptr_is_shortcut(ptr)) {
453 * - only search keyrings for which we have search permission 662 /* If the root is a shortcut, either the keyring only contains
663 * keyring pointers (everything clusters behind root slot 0) or
664 * doesn't contain any keyring pointers.
454 */ 665 */
455 if (sp >= KEYRING_SEARCH_MAX_DEPTH) 666 shortcut = assoc_array_ptr_to_shortcut(ptr);
667 smp_read_barrier_depends();
668 if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
669 goto not_this_keyring;
670
671 ptr = ACCESS_ONCE(shortcut->next_node);
672 node = assoc_array_ptr_to_node(ptr);
673 goto begin_node;
674 }
675
676 node = assoc_array_ptr_to_node(ptr);
677 smp_read_barrier_depends();
678
679 ptr = node->slots[0];
680 if (!assoc_array_ptr_is_meta(ptr))
681 goto begin_node;
682
683descend_to_node:
684 /* Descend to a more distal node in this keyring's content tree and go
685 * through that.
686 */
687 kdebug("descend");
688 if (assoc_array_ptr_is_shortcut(ptr)) {
689 shortcut = assoc_array_ptr_to_shortcut(ptr);
690 smp_read_barrier_depends();
691 ptr = ACCESS_ONCE(shortcut->next_node);
692 BUG_ON(!assoc_array_ptr_is_node(ptr));
693 }
694 node = assoc_array_ptr_to_node(ptr);
695
696begin_node:
697 kdebug("begin_node");
698 smp_read_barrier_depends();
699 slot = 0;
700ascend_to_node:
701 /* Go through the slots in a node */
702 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
703 ptr = ACCESS_ONCE(node->slots[slot]);
704
705 if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
706 goto descend_to_node;
707
708 if (!keyring_ptr_is_keyring(ptr))
456 continue; 709 continue;
457 710
458 if (key_task_permission(make_key_ref(key, possessed), 711 key = keyring_ptr_to_key(ptr);
459 cred, KEY_SEARCH) < 0) 712
713 if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
714 if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
715 ctx->result = ERR_PTR(-ELOOP);
716 return false;
717 }
718 goto not_this_keyring;
719 }
720
721 /* Search a nested keyring */
722 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
723 key_task_permission(make_key_ref(key, ctx->possessed),
724 ctx->cred, KEY_SEARCH) < 0)
460 continue; 725 continue;
461 726
462 /* stack the current position */ 727 /* stack the current position */
463 stack[sp].keyring = keyring; 728 stack[sp].keyring = keyring;
464 stack[sp].keylist = keylist; 729 stack[sp].node = node;
465 stack[sp].kix = kix; 730 stack[sp].slot = slot;
466 sp++; 731 sp++;
467 732
468 /* begin again with the new keyring */ 733 /* begin again with the new keyring */
469 keyring = key; 734 keyring = key;
470 goto descend; 735 goto descend_to_keyring;
471 } 736 }
472 737
473 /* the keyring we're looking at was disqualified or didn't contain a 738 /* We've dealt with all the slots in the current node, so now we need
474 * matching key */ 739 * to ascend to the parent and continue processing there.
740 */
741 ptr = ACCESS_ONCE(node->back_pointer);
742 slot = node->parent_slot;
743
744 if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
745 shortcut = assoc_array_ptr_to_shortcut(ptr);
746 smp_read_barrier_depends();
747 ptr = ACCESS_ONCE(shortcut->back_pointer);
748 slot = shortcut->parent_slot;
749 }
750 if (!ptr)
751 goto not_this_keyring;
752 node = assoc_array_ptr_to_node(ptr);
753 smp_read_barrier_depends();
754 slot++;
755
756 /* If we've ascended to the root (zero backpointer), we must have just
757 * finished processing the leftmost branch rather than the root slots -
758 * so there can't be any more keyrings for us to find.
759 */
760 if (node->back_pointer) {
761 kdebug("ascend %d", slot);
762 goto ascend_to_node;
763 }
764
765 /* The keyring we're looking at was disqualified or didn't contain a
766 * matching key.
767 */
475not_this_keyring: 768not_this_keyring:
476 if (sp > 0) { 769 kdebug("not_this_keyring %d", sp);
477 /* resume the processing of a keyring higher up in the tree */ 770 if (sp <= 0) {
478 sp--; 771 kleave(" = false");
479 keyring = stack[sp].keyring; 772 return false;
480 keylist = stack[sp].keylist;
481 kix = stack[sp].kix + 1;
482 goto ascend;
483 } 773 }
484 774
485 key_ref = ERR_PTR(err); 775 /* Resume the processing of a keyring higher up in the tree */
486 goto error_2; 776 sp--;
777 keyring = stack[sp].keyring;
778 node = stack[sp].node;
779 slot = stack[sp].slot + 1;
780 kdebug("ascend to %d [%d]", keyring->serial, slot);
781 goto ascend_to_node;
487 782
488 /* we found a viable match */ 783 /* We found a viable match */
489found: 784found:
490 atomic_inc(&key->usage); 785 key = key_ref_to_ptr(ctx->result);
491 key->last_used_at = now.tv_sec;
492 keyring->last_used_at = now.tv_sec;
493 while (sp > 0)
494 stack[--sp].keyring->last_used_at = now.tv_sec;
495 key_check(key); 786 key_check(key);
496 key_ref = make_key_ref(key, possessed); 787 if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
497error_2: 788 key->last_used_at = ctx->now.tv_sec;
789 keyring->last_used_at = ctx->now.tv_sec;
790 while (sp > 0)
791 stack[--sp].keyring->last_used_at = ctx->now.tv_sec;
792 }
793 kleave(" = true");
794 return true;
795}
796
797/**
798 * keyring_search_aux - Search a keyring tree for a key matching some criteria
799 * @keyring_ref: A pointer to the keyring with possession indicator.
800 * @ctx: The keyring search context.
801 *
802 * Search the supplied keyring tree for a key that matches the criteria given.
803 * The root keyring and any linked keyrings must grant Search permission to the
804 * caller to be searchable and keys can only be found if they too grant Search
805 * to the caller. The possession flag on the root keyring pointer controls use
806 * of the possessor bits in permissions checking of the entire tree. In
807 * addition, the LSM gets to forbid keyring searches and key matches.
808 *
809 * The search is performed as a breadth-then-depth search up to the prescribed
810 * limit (KEYRING_SEARCH_MAX_DEPTH).
811 *
812 * Keys are matched to the type provided and are then filtered by the match
813 * function, which is given the description to use in any way it sees fit. The
814 * match function may use any attributes of a key that it wishes to to
815 * determine the match. Normally the match function from the key type would be
816 * used.
817 *
818 * RCU can be used to prevent the keyring key lists from disappearing without
819 * the need to take lots of locks.
820 *
821 * Returns a pointer to the found key and increments the key usage count if
822 * successful; -EAGAIN if no matching keys were found, or if expired or revoked
823 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
824 * specified keyring wasn't a keyring.
825 *
826 * In the case of a successful return, the possession attribute from
827 * @keyring_ref is propagated to the returned key reference.
828 */
829key_ref_t keyring_search_aux(key_ref_t keyring_ref,
830 struct keyring_search_context *ctx)
831{
832 struct key *keyring;
833 long err;
834
835 ctx->iterator = keyring_search_iterator;
836 ctx->possessed = is_key_possessed(keyring_ref);
837 ctx->result = ERR_PTR(-EAGAIN);
838
839 keyring = key_ref_to_ptr(keyring_ref);
840 key_check(keyring);
841
842 if (keyring->type != &key_type_keyring)
843 return ERR_PTR(-ENOTDIR);
844
845 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
846 err = key_task_permission(keyring_ref, ctx->cred, KEY_SEARCH);
847 if (err < 0)
848 return ERR_PTR(err);
849 }
850
851 rcu_read_lock();
852 ctx->now = current_kernel_time();
853 if (search_nested_keyrings(keyring, ctx))
854 __key_get(key_ref_to_ptr(ctx->result));
498 rcu_read_unlock(); 855 rcu_read_unlock();
499error: 856 return ctx->result;
500 return key_ref;
501} 857}
502 858
503/** 859/**
@@ -507,77 +863,73 @@ error:
507 * @description: The name of the keyring we want to find. 863 * @description: The name of the keyring we want to find.
508 * 864 *
509 * As keyring_search_aux() above, but using the current task's credentials and 865 * As keyring_search_aux() above, but using the current task's credentials and
510 * type's default matching function. 866 * type's default matching function and preferred search method.
511 */ 867 */
512key_ref_t keyring_search(key_ref_t keyring, 868key_ref_t keyring_search(key_ref_t keyring,
513 struct key_type *type, 869 struct key_type *type,
514 const char *description) 870 const char *description)
515{ 871{
516 if (!type->match) 872 struct keyring_search_context ctx = {
873 .index_key.type = type,
874 .index_key.description = description,
875 .cred = current_cred(),
876 .match = type->match,
877 .match_data = description,
878 .flags = (type->def_lookup_type |
879 KEYRING_SEARCH_DO_STATE_CHECK),
880 };
881
882 if (!ctx.match)
517 return ERR_PTR(-ENOKEY); 883 return ERR_PTR(-ENOKEY);
518 884
519 return keyring_search_aux(keyring, current->cred, 885 return keyring_search_aux(keyring, &ctx);
520 type, description, type->match, false);
521} 886}
522EXPORT_SYMBOL(keyring_search); 887EXPORT_SYMBOL(keyring_search);
523 888
524/* 889/*
525 * Search the given keyring only (no recursion). 890 * Search the given keyring for a key that might be updated.
526 * 891 *
527 * The caller must guarantee that the keyring is a keyring and that the 892 * The caller must guarantee that the keyring is a keyring and that the
528 * permission is granted to search the keyring as no check is made here. 893 * permission is granted to modify the keyring as no check is made here. The
529 * 894 * caller must also hold a lock on the keyring semaphore.
530 * RCU is used to make it unnecessary to lock the keyring key list here.
531 * 895 *
532 * Returns a pointer to the found key with usage count incremented if 896 * Returns a pointer to the found key with usage count incremented if
533 * successful and returns -ENOKEY if not found. Revoked keys and keys not 897 * successful and returns NULL if not found. Revoked and invalidated keys are
534 * providing the requested permission are skipped over. 898 * skipped over.
535 * 899 *
536 * If successful, the possession indicator is propagated from the keyring ref 900 * If successful, the possession indicator is propagated from the keyring ref
537 * to the returned key reference. 901 * to the returned key reference.
538 */ 902 */
539key_ref_t __keyring_search_one(key_ref_t keyring_ref, 903key_ref_t find_key_to_update(key_ref_t keyring_ref,
540 const struct key_type *ktype, 904 const struct keyring_index_key *index_key)
541 const char *description,
542 key_perm_t perm)
543{ 905{
544 struct keyring_list *klist;
545 unsigned long possessed;
546 struct key *keyring, *key; 906 struct key *keyring, *key;
547 int nkeys, loop; 907 const void *object;
548 908
549 keyring = key_ref_to_ptr(keyring_ref); 909 keyring = key_ref_to_ptr(keyring_ref);
550 possessed = is_key_possessed(keyring_ref);
551 910
552 rcu_read_lock(); 911 kenter("{%d},{%s,%s}",
912 keyring->serial, index_key->type->name, index_key->description);
553 913
554 klist = rcu_dereference(keyring->payload.subscriptions); 914 object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
555 if (klist) { 915 index_key);
556 nkeys = klist->nkeys;
557 smp_rmb();
558 for (loop = 0; loop < nkeys ; loop++) {
559 key = rcu_dereference(klist->keys[loop]);
560 if (key->type == ktype &&
561 (!key->type->match ||
562 key->type->match(key, description)) &&
563 key_permission(make_key_ref(key, possessed),
564 perm) == 0 &&
565 !(key->flags & ((1 << KEY_FLAG_INVALIDATED) |
566 (1 << KEY_FLAG_REVOKED)))
567 )
568 goto found;
569 }
570 }
571 916
572 rcu_read_unlock(); 917 if (object)
573 return ERR_PTR(-ENOKEY); 918 goto found;
919
920 kleave(" = NULL");
921 return NULL;
574 922
575found: 923found:
576 atomic_inc(&key->usage); 924 key = keyring_ptr_to_key(object);
577 keyring->last_used_at = key->last_used_at = 925 if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
578 current_kernel_time().tv_sec; 926 (1 << KEY_FLAG_REVOKED))) {
579 rcu_read_unlock(); 927 kleave(" = NULL [x]");
580 return make_key_ref(key, possessed); 928 return NULL;
929 }
930 __key_get(key);
931 kleave(" = {%d}", key->serial);
932 return make_key_ref(key, is_key_possessed(keyring_ref));
581} 933}
582 934
583/* 935/*
@@ -640,6 +992,19 @@ out:
640 return keyring; 992 return keyring;
641} 993}
642 994
995static int keyring_detect_cycle_iterator(const void *object,
996 void *iterator_data)
997{
998 struct keyring_search_context *ctx = iterator_data;
999 const struct key *key = keyring_ptr_to_key(object);
1000
1001 kenter("{%d}", key->serial);
1002
1003 BUG_ON(key != ctx->match_data);
1004 ctx->result = ERR_PTR(-EDEADLK);
1005 return 1;
1006}
1007
643/* 1008/*
644 * See if a cycle will will be created by inserting acyclic tree B in acyclic 1009 * See if a cycle will will be created by inserting acyclic tree B in acyclic
645 * tree A at the topmost level (ie: as a direct child of A). 1010 * tree A at the topmost level (ie: as a direct child of A).
@@ -649,116 +1014,39 @@ out:
649 */ 1014 */
650static int keyring_detect_cycle(struct key *A, struct key *B) 1015static int keyring_detect_cycle(struct key *A, struct key *B)
651{ 1016{
652 struct { 1017 struct keyring_search_context ctx = {
653 struct keyring_list *keylist; 1018 .index_key = A->index_key,
654 int kix; 1019 .match_data = A,
655 } stack[KEYRING_SEARCH_MAX_DEPTH]; 1020 .iterator = keyring_detect_cycle_iterator,
656 1021 .flags = (KEYRING_SEARCH_LOOKUP_DIRECT |
657 struct keyring_list *keylist; 1022 KEYRING_SEARCH_NO_STATE_CHECK |
658 struct key *subtree, *key; 1023 KEYRING_SEARCH_NO_UPDATE_TIME |
659 int sp, nkeys, kix, ret; 1024 KEYRING_SEARCH_NO_CHECK_PERM |
1025 KEYRING_SEARCH_DETECT_TOO_DEEP),
1026 };
660 1027
661 rcu_read_lock(); 1028 rcu_read_lock();
662 1029 search_nested_keyrings(B, &ctx);
663 ret = -EDEADLK;
664 if (A == B)
665 goto cycle_detected;
666
667 subtree = B;
668 sp = 0;
669
670 /* start processing a new keyring */
671descend:
672 if (test_bit(KEY_FLAG_REVOKED, &subtree->flags))
673 goto not_this_keyring;
674
675 keylist = rcu_dereference(subtree->payload.subscriptions);
676 if (!keylist)
677 goto not_this_keyring;
678 kix = 0;
679
680ascend:
681 /* iterate through the remaining keys in this keyring */
682 nkeys = keylist->nkeys;
683 smp_rmb();
684 for (; kix < nkeys; kix++) {
685 key = rcu_dereference(keylist->keys[kix]);
686
687 if (key == A)
688 goto cycle_detected;
689
690 /* recursively check nested keyrings */
691 if (key->type == &key_type_keyring) {
692 if (sp >= KEYRING_SEARCH_MAX_DEPTH)
693 goto too_deep;
694
695 /* stack the current position */
696 stack[sp].keylist = keylist;
697 stack[sp].kix = kix;
698 sp++;
699
700 /* begin again with the new keyring */
701 subtree = key;
702 goto descend;
703 }
704 }
705
706 /* the keyring we're looking at was disqualified or didn't contain a
707 * matching key */
708not_this_keyring:
709 if (sp > 0) {
710 /* resume the checking of a keyring higher up in the tree */
711 sp--;
712 keylist = stack[sp].keylist;
713 kix = stack[sp].kix + 1;
714 goto ascend;
715 }
716
717 ret = 0; /* no cycles detected */
718
719error:
720 rcu_read_unlock(); 1030 rcu_read_unlock();
721 return ret; 1031 return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
722
723too_deep:
724 ret = -ELOOP;
725 goto error;
726
727cycle_detected:
728 ret = -EDEADLK;
729 goto error;
730}
731
732/*
733 * Dispose of a keyring list after the RCU grace period, freeing the unlinked
734 * key
735 */
736static void keyring_unlink_rcu_disposal(struct rcu_head *rcu)
737{
738 struct keyring_list *klist =
739 container_of(rcu, struct keyring_list, rcu);
740
741 if (klist->delkey != USHRT_MAX)
742 key_put(rcu_access_pointer(klist->keys[klist->delkey]));
743 kfree(klist);
744} 1032}
745 1033
746/* 1034/*
747 * Preallocate memory so that a key can be linked into to a keyring. 1035 * Preallocate memory so that a key can be linked into to a keyring.
748 */ 1036 */
749int __key_link_begin(struct key *keyring, const struct key_type *type, 1037int __key_link_begin(struct key *keyring,
750 const char *description, unsigned long *_prealloc) 1038 const struct keyring_index_key *index_key,
1039 struct assoc_array_edit **_edit)
751 __acquires(&keyring->sem) 1040 __acquires(&keyring->sem)
752 __acquires(&keyring_serialise_link_sem) 1041 __acquires(&keyring_serialise_link_sem)
753{ 1042{
754 struct keyring_list *klist, *nklist; 1043 struct assoc_array_edit *edit;
755 unsigned long prealloc; 1044 int ret;
756 unsigned max; 1045
757 time_t lowest_lru; 1046 kenter("%d,%s,%s,",
758 size_t size; 1047 keyring->serial, index_key->type->name, index_key->description);
759 int loop, lru, ret;
760 1048
761 kenter("%d,%s,%s,", key_serial(keyring), type->name, description); 1049 BUG_ON(index_key->desc_len == 0);
762 1050
763 if (keyring->type != &key_type_keyring) 1051 if (keyring->type != &key_type_keyring)
764 return -ENOTDIR; 1052 return -ENOTDIR;
@@ -771,100 +1059,39 @@ int __key_link_begin(struct key *keyring, const struct key_type *type,
771 1059
772 /* serialise link/link calls to prevent parallel calls causing a cycle 1060 /* serialise link/link calls to prevent parallel calls causing a cycle
773 * when linking two keyring in opposite orders */ 1061 * when linking two keyring in opposite orders */
774 if (type == &key_type_keyring) 1062 if (index_key->type == &key_type_keyring)
775 down_write(&keyring_serialise_link_sem); 1063 down_write(&keyring_serialise_link_sem);
776 1064
777 klist = rcu_dereference_locked_keyring(keyring); 1065 /* Create an edit script that will insert/replace the key in the
778 1066 * keyring tree.
779 /* see if there's a matching key we can displace */ 1067 */
780 lru = -1; 1068 edit = assoc_array_insert(&keyring->keys,
781 if (klist && klist->nkeys > 0) { 1069 &keyring_assoc_array_ops,
782 lowest_lru = TIME_T_MAX; 1070 index_key,
783 for (loop = klist->nkeys - 1; loop >= 0; loop--) { 1071 NULL);
784 struct key *key = rcu_deref_link_locked(klist, loop, 1072 if (IS_ERR(edit)) {
785 keyring); 1073 ret = PTR_ERR(edit);
786 if (key->type == type &&
787 strcmp(key->description, description) == 0) {
788 /* Found a match - we'll replace the link with
789 * one to the new key. We record the slot
790 * position.
791 */
792 klist->delkey = loop;
793 prealloc = 0;
794 goto done;
795 }
796 if (key->last_used_at < lowest_lru) {
797 lowest_lru = key->last_used_at;
798 lru = loop;
799 }
800 }
801 }
802
803 /* If the keyring is full then do an LRU discard */
804 if (klist &&
805 klist->nkeys == klist->maxkeys &&
806 klist->maxkeys >= MAX_KEYRING_LINKS) {
807 kdebug("LRU discard %d\n", lru);
808 klist->delkey = lru;
809 prealloc = 0;
810 goto done;
811 }
812
813 /* check that we aren't going to overrun the user's quota */
814 ret = key_payload_reserve(keyring,
815 keyring->datalen + KEYQUOTA_LINK_BYTES);
816 if (ret < 0)
817 goto error_sem; 1074 goto error_sem;
1075 }
818 1076
819 if (klist && klist->nkeys < klist->maxkeys) { 1077 /* If we're not replacing a link in-place then we're going to need some
820 /* there's sufficient slack space to append directly */ 1078 * extra quota.
821 klist->delkey = klist->nkeys; 1079 */
822 prealloc = KEY_LINK_FIXQUOTA; 1080 if (!edit->dead_leaf) {
823 } else { 1081 ret = key_payload_reserve(keyring,
824 /* grow the key list */ 1082 keyring->datalen + KEYQUOTA_LINK_BYTES);
825 max = 4; 1083 if (ret < 0)
826 if (klist) { 1084 goto error_cancel;
827 max += klist->maxkeys;
828 if (max > MAX_KEYRING_LINKS)
829 max = MAX_KEYRING_LINKS;
830 BUG_ON(max <= klist->maxkeys);
831 }
832
833 size = sizeof(*klist) + sizeof(struct key *) * max;
834
835 ret = -ENOMEM;
836 nklist = kmalloc(size, GFP_KERNEL);
837 if (!nklist)
838 goto error_quota;
839
840 nklist->maxkeys = max;
841 if (klist) {
842 memcpy(nklist->keys, klist->keys,
843 sizeof(struct key *) * klist->nkeys);
844 nklist->delkey = klist->nkeys;
845 nklist->nkeys = klist->nkeys + 1;
846 klist->delkey = USHRT_MAX;
847 } else {
848 nklist->nkeys = 1;
849 nklist->delkey = 0;
850 }
851
852 /* add the key into the new space */
853 RCU_INIT_POINTER(nklist->keys[nklist->delkey], NULL);
854 prealloc = (unsigned long)nklist | KEY_LINK_FIXQUOTA;
855 } 1085 }
856 1086
857done: 1087 *_edit = edit;
858 *_prealloc = prealloc;
859 kleave(" = 0"); 1088 kleave(" = 0");
860 return 0; 1089 return 0;
861 1090
862error_quota: 1091error_cancel:
863 /* undo the quota changes */ 1092 assoc_array_cancel_edit(edit);
864 key_payload_reserve(keyring,
865 keyring->datalen - KEYQUOTA_LINK_BYTES);
866error_sem: 1093error_sem:
867 if (type == &key_type_keyring) 1094 if (index_key->type == &key_type_keyring)
868 up_write(&keyring_serialise_link_sem); 1095 up_write(&keyring_serialise_link_sem);
869error_krsem: 1096error_krsem:
870 up_write(&keyring->sem); 1097 up_write(&keyring->sem);
@@ -895,60 +1122,12 @@ int __key_link_check_live_key(struct key *keyring, struct key *key)
895 * holds at most one link to any given key of a particular type+description 1122 * holds at most one link to any given key of a particular type+description
896 * combination. 1123 * combination.
897 */ 1124 */
898void __key_link(struct key *keyring, struct key *key, 1125void __key_link(struct key *key, struct assoc_array_edit **_edit)
899 unsigned long *_prealloc)
900{ 1126{
901 struct keyring_list *klist, *nklist; 1127 __key_get(key);
902 struct key *discard; 1128 assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
903 1129 assoc_array_apply_edit(*_edit);
904 nklist = (struct keyring_list *)(*_prealloc & ~KEY_LINK_FIXQUOTA); 1130 *_edit = NULL;
905 *_prealloc = 0;
906
907 kenter("%d,%d,%p", keyring->serial, key->serial, nklist);
908
909 klist = rcu_dereference_locked_keyring(keyring);
910
911 atomic_inc(&key->usage);
912 keyring->last_used_at = key->last_used_at =
913 current_kernel_time().tv_sec;
914
915 /* there's a matching key we can displace or an empty slot in a newly
916 * allocated list we can fill */
917 if (nklist) {
918 kdebug("reissue %hu/%hu/%hu",
919 nklist->delkey, nklist->nkeys, nklist->maxkeys);
920
921 RCU_INIT_POINTER(nklist->keys[nklist->delkey], key);
922
923 rcu_assign_pointer(keyring->payload.subscriptions, nklist);
924
925 /* dispose of the old keyring list and, if there was one, the
926 * displaced key */
927 if (klist) {
928 kdebug("dispose %hu/%hu/%hu",
929 klist->delkey, klist->nkeys, klist->maxkeys);
930 call_rcu(&klist->rcu, keyring_unlink_rcu_disposal);
931 }
932 } else if (klist->delkey < klist->nkeys) {
933 kdebug("replace %hu/%hu/%hu",
934 klist->delkey, klist->nkeys, klist->maxkeys);
935
936 discard = rcu_dereference_protected(
937 klist->keys[klist->delkey],
938 rwsem_is_locked(&keyring->sem));
939 rcu_assign_pointer(klist->keys[klist->delkey], key);
940 /* The garbage collector will take care of RCU
941 * synchronisation */
942 key_put(discard);
943 } else {
944 /* there's sufficient slack space to append directly */
945 kdebug("append %hu/%hu/%hu",
946 klist->delkey, klist->nkeys, klist->maxkeys);
947
948 RCU_INIT_POINTER(klist->keys[klist->delkey], key);
949 smp_wmb();
950 klist->nkeys++;
951 }
952} 1131}
953 1132
954/* 1133/*
@@ -956,24 +1135,22 @@ void __key_link(struct key *keyring, struct key *key,
956 * 1135 *
957 * Must be called with __key_link_begin() having being called. 1136 * Must be called with __key_link_begin() having being called.
958 */ 1137 */
959void __key_link_end(struct key *keyring, struct key_type *type, 1138void __key_link_end(struct key *keyring,
960 unsigned long prealloc) 1139 const struct keyring_index_key *index_key,
1140 struct assoc_array_edit *edit)
961 __releases(&keyring->sem) 1141 __releases(&keyring->sem)
962 __releases(&keyring_serialise_link_sem) 1142 __releases(&keyring_serialise_link_sem)
963{ 1143{
964 BUG_ON(type == NULL); 1144 BUG_ON(index_key->type == NULL);
965 BUG_ON(type->name == NULL); 1145 kenter("%d,%s,", keyring->serial, index_key->type->name);
966 kenter("%d,%s,%lx", keyring->serial, type->name, prealloc);
967 1146
968 if (type == &key_type_keyring) 1147 if (index_key->type == &key_type_keyring)
969 up_write(&keyring_serialise_link_sem); 1148 up_write(&keyring_serialise_link_sem);
970 1149
971 if (prealloc) { 1150 if (edit && !edit->dead_leaf) {
972 if (prealloc & KEY_LINK_FIXQUOTA) 1151 key_payload_reserve(keyring,
973 key_payload_reserve(keyring, 1152 keyring->datalen - KEYQUOTA_LINK_BYTES);
974 keyring->datalen - 1153 assoc_array_cancel_edit(edit);
975 KEYQUOTA_LINK_BYTES);
976 kfree((struct keyring_list *)(prealloc & ~KEY_LINK_FIXQUOTA));
977 } 1154 }
978 up_write(&keyring->sem); 1155 up_write(&keyring->sem);
979} 1156}
@@ -1000,20 +1177,28 @@ void __key_link_end(struct key *keyring, struct key_type *type,
1000 */ 1177 */
1001int key_link(struct key *keyring, struct key *key) 1178int key_link(struct key *keyring, struct key *key)
1002{ 1179{
1003 unsigned long prealloc; 1180 struct assoc_array_edit *edit;
1004 int ret; 1181 int ret;
1005 1182
1183 kenter("{%d,%d}", keyring->serial, atomic_read(&keyring->usage));
1184
1006 key_check(keyring); 1185 key_check(keyring);
1007 key_check(key); 1186 key_check(key);
1008 1187
1009 ret = __key_link_begin(keyring, key->type, key->description, &prealloc); 1188 if (test_bit(KEY_FLAG_TRUSTED_ONLY, &keyring->flags) &&
1189 !test_bit(KEY_FLAG_TRUSTED, &key->flags))
1190 return -EPERM;
1191
1192 ret = __key_link_begin(keyring, &key->index_key, &edit);
1010 if (ret == 0) { 1193 if (ret == 0) {
1194 kdebug("begun {%d,%d}", keyring->serial, atomic_read(&keyring->usage));
1011 ret = __key_link_check_live_key(keyring, key); 1195 ret = __key_link_check_live_key(keyring, key);
1012 if (ret == 0) 1196 if (ret == 0)
1013 __key_link(keyring, key, &prealloc); 1197 __key_link(key, &edit);
1014 __key_link_end(keyring, key->type, prealloc); 1198 __key_link_end(keyring, &key->index_key, edit);
1015 } 1199 }
1016 1200
1201 kleave(" = %d {%d,%d}", ret, keyring->serial, atomic_read(&keyring->usage));
1017 return ret; 1202 return ret;
1018} 1203}
1019EXPORT_SYMBOL(key_link); 1204EXPORT_SYMBOL(key_link);
@@ -1037,90 +1222,37 @@ EXPORT_SYMBOL(key_link);
1037 */ 1222 */
1038int key_unlink(struct key *keyring, struct key *key) 1223int key_unlink(struct key *keyring, struct key *key)
1039{ 1224{
1040 struct keyring_list *klist, *nklist; 1225 struct assoc_array_edit *edit;
1041 int loop, ret; 1226 int ret;
1042 1227
1043 key_check(keyring); 1228 key_check(keyring);
1044 key_check(key); 1229 key_check(key);
1045 1230
1046 ret = -ENOTDIR;
1047 if (keyring->type != &key_type_keyring) 1231 if (keyring->type != &key_type_keyring)
1048 goto error; 1232 return -ENOTDIR;
1049 1233
1050 down_write(&keyring->sem); 1234 down_write(&keyring->sem);
1051 1235
1052 klist = rcu_dereference_locked_keyring(keyring); 1236 edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1053 if (klist) { 1237 &key->index_key);
1054 /* search the keyring for the key */ 1238 if (IS_ERR(edit)) {
1055 for (loop = 0; loop < klist->nkeys; loop++) 1239 ret = PTR_ERR(edit);
1056 if (rcu_access_pointer(klist->keys[loop]) == key) 1240 goto error;
1057 goto key_is_present;
1058 } 1241 }
1059
1060 up_write(&keyring->sem);
1061 ret = -ENOENT; 1242 ret = -ENOENT;
1062 goto error; 1243 if (edit == NULL)
1063 1244 goto error;
1064key_is_present:
1065 /* we need to copy the key list for RCU purposes */
1066 nklist = kmalloc(sizeof(*klist) +
1067 sizeof(struct key *) * klist->maxkeys,
1068 GFP_KERNEL);
1069 if (!nklist)
1070 goto nomem;
1071 nklist->maxkeys = klist->maxkeys;
1072 nklist->nkeys = klist->nkeys - 1;
1073
1074 if (loop > 0)
1075 memcpy(&nklist->keys[0],
1076 &klist->keys[0],
1077 loop * sizeof(struct key *));
1078
1079 if (loop < nklist->nkeys)
1080 memcpy(&nklist->keys[loop],
1081 &klist->keys[loop + 1],
1082 (nklist->nkeys - loop) * sizeof(struct key *));
1083
1084 /* adjust the user's quota */
1085 key_payload_reserve(keyring,
1086 keyring->datalen - KEYQUOTA_LINK_BYTES);
1087
1088 rcu_assign_pointer(keyring->payload.subscriptions, nklist);
1089
1090 up_write(&keyring->sem);
1091
1092 /* schedule for later cleanup */
1093 klist->delkey = loop;
1094 call_rcu(&klist->rcu, keyring_unlink_rcu_disposal);
1095 1245
1246 assoc_array_apply_edit(edit);
1247 key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1096 ret = 0; 1248 ret = 0;
1097 1249
1098error: 1250error:
1099 return ret;
1100nomem:
1101 ret = -ENOMEM;
1102 up_write(&keyring->sem); 1251 up_write(&keyring->sem);
1103 goto error; 1252 return ret;
1104} 1253}
1105EXPORT_SYMBOL(key_unlink); 1254EXPORT_SYMBOL(key_unlink);
1106 1255
1107/*
1108 * Dispose of a keyring list after the RCU grace period, releasing the keys it
1109 * links to.
1110 */
1111static void keyring_clear_rcu_disposal(struct rcu_head *rcu)
1112{
1113 struct keyring_list *klist;
1114 int loop;
1115
1116 klist = container_of(rcu, struct keyring_list, rcu);
1117
1118 for (loop = klist->nkeys - 1; loop >= 0; loop--)
1119 key_put(rcu_access_pointer(klist->keys[loop]));
1120
1121 kfree(klist);
1122}
1123
1124/** 1256/**
1125 * keyring_clear - Clear a keyring 1257 * keyring_clear - Clear a keyring
1126 * @keyring: The keyring to clear. 1258 * @keyring: The keyring to clear.
@@ -1131,33 +1263,25 @@ static void keyring_clear_rcu_disposal(struct rcu_head *rcu)
1131 */ 1263 */
1132int keyring_clear(struct key *keyring) 1264int keyring_clear(struct key *keyring)
1133{ 1265{
1134 struct keyring_list *klist; 1266 struct assoc_array_edit *edit;
1135 int ret; 1267 int ret;
1136 1268
1137 ret = -ENOTDIR; 1269 if (keyring->type != &key_type_keyring)
1138 if (keyring->type == &key_type_keyring) { 1270 return -ENOTDIR;
1139 /* detach the pointer block with the locks held */
1140 down_write(&keyring->sem);
1141
1142 klist = rcu_dereference_locked_keyring(keyring);
1143 if (klist) {
1144 /* adjust the quota */
1145 key_payload_reserve(keyring,
1146 sizeof(struct keyring_list));
1147
1148 rcu_assign_pointer(keyring->payload.subscriptions,
1149 NULL);
1150 }
1151
1152 up_write(&keyring->sem);
1153 1271
1154 /* free the keys after the locks have been dropped */ 1272 down_write(&keyring->sem);
1155 if (klist)
1156 call_rcu(&klist->rcu, keyring_clear_rcu_disposal);
1157 1273
1274 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1275 if (IS_ERR(edit)) {
1276 ret = PTR_ERR(edit);
1277 } else {
1278 if (edit)
1279 assoc_array_apply_edit(edit);
1280 key_payload_reserve(keyring, 0);
1158 ret = 0; 1281 ret = 0;
1159 } 1282 }
1160 1283
1284 up_write(&keyring->sem);
1161 return ret; 1285 return ret;
1162} 1286}
1163EXPORT_SYMBOL(keyring_clear); 1287EXPORT_SYMBOL(keyring_clear);
@@ -1169,111 +1293,68 @@ EXPORT_SYMBOL(keyring_clear);
1169 */ 1293 */
1170static void keyring_revoke(struct key *keyring) 1294static void keyring_revoke(struct key *keyring)
1171{ 1295{
1172 struct keyring_list *klist; 1296 struct assoc_array_edit *edit;
1297
1298 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1299 if (!IS_ERR(edit)) {
1300 if (edit)
1301 assoc_array_apply_edit(edit);
1302 key_payload_reserve(keyring, 0);
1303 }
1304}
1305
1306static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1307{
1308 struct key *key = keyring_ptr_to_key(object);
1309 time_t *limit = iterator_data;
1173 1310
1174 klist = rcu_dereference_locked_keyring(keyring); 1311 if (key_is_dead(key, *limit))
1312 return false;
1313 key_get(key);
1314 return true;
1315}
1175 1316
1176 /* adjust the quota */ 1317static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1177 key_payload_reserve(keyring, 0); 1318{
1319 const struct key *key = keyring_ptr_to_key(object);
1320 time_t *limit = iterator_data;
1178 1321
1179 if (klist) { 1322 key_check(key);
1180 rcu_assign_pointer(keyring->payload.subscriptions, NULL); 1323 return key_is_dead(key, *limit);
1181 call_rcu(&klist->rcu, keyring_clear_rcu_disposal);
1182 }
1183} 1324}
1184 1325
1185/* 1326/*
1186 * Collect garbage from the contents of a keyring, replacing the old list with 1327 * Garbage collect pointers from a keyring.
1187 * a new one with the pointers all shuffled down.
1188 * 1328 *
1189 * Dead keys are classed as oned that are flagged as being dead or are revoked, 1329 * Not called with any locks held. The keyring's key struct will not be
1190 * expired or negative keys that were revoked or expired before the specified 1330 * deallocated under us as only our caller may deallocate it.
1191 * limit.
1192 */ 1331 */
1193void keyring_gc(struct key *keyring, time_t limit) 1332void keyring_gc(struct key *keyring, time_t limit)
1194{ 1333{
1195 struct keyring_list *klist, *new; 1334 int result;
1196 struct key *key;
1197 int loop, keep, max;
1198
1199 kenter("{%x,%s}", key_serial(keyring), keyring->description);
1200
1201 down_write(&keyring->sem);
1202
1203 klist = rcu_dereference_locked_keyring(keyring);
1204 if (!klist)
1205 goto no_klist;
1206
1207 /* work out how many subscriptions we're keeping */
1208 keep = 0;
1209 for (loop = klist->nkeys - 1; loop >= 0; loop--)
1210 if (!key_is_dead(rcu_deref_link_locked(klist, loop, keyring),
1211 limit))
1212 keep++;
1213
1214 if (keep == klist->nkeys)
1215 goto just_return;
1216
1217 /* allocate a new keyring payload */
1218 max = roundup(keep, 4);
1219 new = kmalloc(sizeof(struct keyring_list) + max * sizeof(struct key *),
1220 GFP_KERNEL);
1221 if (!new)
1222 goto nomem;
1223 new->maxkeys = max;
1224 new->nkeys = 0;
1225 new->delkey = 0;
1226
1227 /* install the live keys
1228 * - must take care as expired keys may be updated back to life
1229 */
1230 keep = 0;
1231 for (loop = klist->nkeys - 1; loop >= 0; loop--) {
1232 key = rcu_deref_link_locked(klist, loop, keyring);
1233 if (!key_is_dead(key, limit)) {
1234 if (keep >= max)
1235 goto discard_new;
1236 RCU_INIT_POINTER(new->keys[keep++], key_get(key));
1237 }
1238 }
1239 new->nkeys = keep;
1240
1241 /* adjust the quota */
1242 key_payload_reserve(keyring,
1243 sizeof(struct keyring_list) +
1244 KEYQUOTA_LINK_BYTES * keep);
1245 1335
1246 if (keep == 0) { 1336 kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1247 rcu_assign_pointer(keyring->payload.subscriptions, NULL);
1248 kfree(new);
1249 } else {
1250 rcu_assign_pointer(keyring->payload.subscriptions, new);
1251 }
1252 1337
1253 up_write(&keyring->sem); 1338 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1339 (1 << KEY_FLAG_REVOKED)))
1340 goto dont_gc;
1254 1341
1255 call_rcu(&klist->rcu, keyring_clear_rcu_disposal); 1342 /* scan the keyring looking for dead keys */
1256 kleave(" [yes]"); 1343 rcu_read_lock();
1257 return; 1344 result = assoc_array_iterate(&keyring->keys,
1258 1345 keyring_gc_check_iterator, &limit);
1259discard_new: 1346 rcu_read_unlock();
1260 new->nkeys = keep; 1347 if (result == true)
1261 keyring_clear_rcu_disposal(&new->rcu); 1348 goto do_gc;
1262 up_write(&keyring->sem);
1263 kleave(" [discard]");
1264 return;
1265
1266just_return:
1267 up_write(&keyring->sem);
1268 kleave(" [no dead]");
1269 return;
1270 1349
1271no_klist: 1350dont_gc:
1272 up_write(&keyring->sem); 1351 kleave(" [no gc]");
1273 kleave(" [no_klist]");
1274 return; 1352 return;
1275 1353
1276nomem: 1354do_gc:
1355 down_write(&keyring->sem);
1356 assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1357 keyring_gc_select_iterator, &limit);
1277 up_write(&keyring->sem); 1358 up_write(&keyring->sem);
1278 kleave(" [oom]"); 1359 kleave(" [gc]");
1279} 1360}