diff options
author | Angelo P. Castellani <angelo.castellani@gmail.com> | 2006-06-05 20:29:09 -0400 |
---|---|---|
committer | David S. Miller <davem@sunset.davemloft.net> | 2006-06-18 00:29:25 -0400 |
commit | f890f921040fef6a35e39d15b729af1fd1a35f29 (patch) | |
tree | 130ee6a827a092cc205d6054d2e11f185e60ad1c /net | |
parent | 76f1017757aa0c308a0b83ca611c9a89ee9a79a4 (diff) |
[TCP]: TCP Compound congestion control
TCP Compound is a sender-side only change to TCP that uses
a mixed Reno/Vegas approach to calculate the cwnd.
For further details look here:
ftp://ftp.research.microsoft.com/pub/tr/TR-2005-86.pdf
Signed-off-by: Angelo P. Castellani <angelo.castellani@gmail.com>
Signed-off-by: Stephen Hemminger <shemminger@osdl.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'net')
-rw-r--r-- | net/ipv4/Kconfig | 10 | ||||
-rw-r--r-- | net/ipv4/Makefile | 1 | ||||
-rw-r--r-- | net/ipv4/tcp_compound.c | 407 |
3 files changed, 418 insertions, 0 deletions
diff --git a/net/ipv4/Kconfig b/net/ipv4/Kconfig index 8514106761b0..da33393be45f 100644 --- a/net/ipv4/Kconfig +++ b/net/ipv4/Kconfig | |||
@@ -572,6 +572,16 @@ config TCP_CONG_VENO | |||
572 | loss packets. | 572 | loss packets. |
573 | See http://www.ntu.edu.sg/home5/ZHOU0022/papers/CPFu03a.pdf | 573 | See http://www.ntu.edu.sg/home5/ZHOU0022/papers/CPFu03a.pdf |
574 | 574 | ||
575 | config TCP_CONG_COMPOUND | ||
576 | tristate "TCP Compound" | ||
577 | depends on EXPERIMENTAL | ||
578 | default n | ||
579 | ---help--- | ||
580 | TCP Compound is a sender-side only change to TCP that uses | ||
581 | a mixed Reno/Vegas approach to calculate the cwnd. | ||
582 | For further details look here: | ||
583 | ftp://ftp.research.microsoft.com/pub/tr/TR-2005-86.pdf | ||
584 | |||
575 | endmenu | 585 | endmenu |
576 | 586 | ||
577 | config TCP_CONG_BIC | 587 | config TCP_CONG_BIC |
diff --git a/net/ipv4/Makefile b/net/ipv4/Makefile index 00fcd2c1ba78..f30faefc2672 100644 --- a/net/ipv4/Makefile +++ b/net/ipv4/Makefile | |||
@@ -46,6 +46,7 @@ obj-$(CONFIG_TCP_CONG_VEGAS) += tcp_vegas.o | |||
46 | obj-$(CONFIG_TCP_CONG_VENO) += tcp_veno.o | 46 | obj-$(CONFIG_TCP_CONG_VENO) += tcp_veno.o |
47 | obj-$(CONFIG_TCP_CONG_SCALABLE) += tcp_scalable.o | 47 | obj-$(CONFIG_TCP_CONG_SCALABLE) += tcp_scalable.o |
48 | obj-$(CONFIG_TCP_CONG_LP) += tcp_lp.o | 48 | obj-$(CONFIG_TCP_CONG_LP) += tcp_lp.o |
49 | obj-$(CONFIG_TCP_CONG_COMPOUND) += tcp_compound.o | ||
49 | 50 | ||
50 | obj-$(CONFIG_XFRM) += xfrm4_policy.o xfrm4_state.o xfrm4_input.o \ | 51 | obj-$(CONFIG_XFRM) += xfrm4_policy.o xfrm4_state.o xfrm4_input.o \ |
51 | xfrm4_output.o | 52 | xfrm4_output.o |
diff --git a/net/ipv4/tcp_compound.c b/net/ipv4/tcp_compound.c new file mode 100644 index 000000000000..8c1ebfb7659e --- /dev/null +++ b/net/ipv4/tcp_compound.c | |||
@@ -0,0 +1,407 @@ | |||
1 | /* | ||
2 | * TCP Vegas congestion control | ||
3 | * | ||
4 | * This is based on the congestion detection/avoidance scheme described in | ||
5 | * Lawrence S. Brakmo and Larry L. Peterson. | ||
6 | * "TCP Vegas: End to end congestion avoidance on a global internet." | ||
7 | * IEEE Journal on Selected Areas in Communication, 13(8):1465--1480, | ||
8 | * October 1995. Available from: | ||
9 | * ftp://ftp.cs.arizona.edu/xkernel/Papers/jsac.ps | ||
10 | * | ||
11 | * See http://www.cs.arizona.edu/xkernel/ for their implementation. | ||
12 | * The main aspects that distinguish this implementation from the | ||
13 | * Arizona Vegas implementation are: | ||
14 | * o We do not change the loss detection or recovery mechanisms of | ||
15 | * Linux in any way. Linux already recovers from losses quite well, | ||
16 | * using fine-grained timers, NewReno, and FACK. | ||
17 | * o To avoid the performance penalty imposed by increasing cwnd | ||
18 | * only every-other RTT during slow start, we increase during | ||
19 | * every RTT during slow start, just like Reno. | ||
20 | * o Largely to allow continuous cwnd growth during slow start, | ||
21 | * we use the rate at which ACKs come back as the "actual" | ||
22 | * rate, rather than the rate at which data is sent. | ||
23 | * o To speed convergence to the right rate, we set the cwnd | ||
24 | * to achieve the right ("actual") rate when we exit slow start. | ||
25 | * o To filter out the noise caused by delayed ACKs, we use the | ||
26 | * minimum RTT sample observed during the last RTT to calculate | ||
27 | * the actual rate. | ||
28 | * o When the sender re-starts from idle, it waits until it has | ||
29 | * received ACKs for an entire flight of new data before making | ||
30 | * a cwnd adjustment decision. The original Vegas implementation | ||
31 | * assumed senders never went idle. | ||
32 | * | ||
33 | * | ||
34 | * TCP Compound based on TCP Vegas | ||
35 | * | ||
36 | * further details can be found here: | ||
37 | * ftp://ftp.research.microsoft.com/pub/tr/TR-2005-86.pdf | ||
38 | */ | ||
39 | |||
40 | #include <linux/config.h> | ||
41 | #include <linux/mm.h> | ||
42 | #include <linux/module.h> | ||
43 | #include <linux/skbuff.h> | ||
44 | #include <linux/inet_diag.h> | ||
45 | |||
46 | #include <net/tcp.h> | ||
47 | |||
48 | /* Default values of the Vegas variables, in fixed-point representation | ||
49 | * with V_PARAM_SHIFT bits to the right of the binary point. | ||
50 | */ | ||
51 | #define V_PARAM_SHIFT 1 | ||
52 | |||
53 | #define TCP_COMPOUND_ALPHA 3U | ||
54 | #define TCP_COMPOUND_BETA 1U | ||
55 | #define TCP_COMPOUND_KAPPA_POW 3 | ||
56 | #define TCP_COMPOUND_KAPPA_NSQRT 2 | ||
57 | #define TCP_COMPOUND_GAMMA 30 | ||
58 | #define TCP_COMPOUND_ZETA 1 | ||
59 | |||
60 | /* TCP compound variables */ | ||
61 | struct compound { | ||
62 | u32 beg_snd_nxt; /* right edge during last RTT */ | ||
63 | u32 beg_snd_una; /* left edge during last RTT */ | ||
64 | u32 beg_snd_cwnd; /* saves the size of the cwnd */ | ||
65 | u8 doing_vegas_now; /* if true, do vegas for this RTT */ | ||
66 | u16 cntRTT; /* # of RTTs measured within last RTT */ | ||
67 | u32 minRTT; /* min of RTTs measured within last RTT (in usec) */ | ||
68 | u32 baseRTT; /* the min of all Vegas RTT measurements seen (in usec) */ | ||
69 | |||
70 | u32 cwnd; | ||
71 | u32 dwnd; | ||
72 | }; | ||
73 | |||
74 | /* There are several situations when we must "re-start" Vegas: | ||
75 | * | ||
76 | * o when a connection is established | ||
77 | * o after an RTO | ||
78 | * o after fast recovery | ||
79 | * o when we send a packet and there is no outstanding | ||
80 | * unacknowledged data (restarting an idle connection) | ||
81 | * | ||
82 | * In these circumstances we cannot do a Vegas calculation at the | ||
83 | * end of the first RTT, because any calculation we do is using | ||
84 | * stale info -- both the saved cwnd and congestion feedback are | ||
85 | * stale. | ||
86 | * | ||
87 | * Instead we must wait until the completion of an RTT during | ||
88 | * which we actually receive ACKs. | ||
89 | */ | ||
90 | static inline void vegas_enable(struct sock *sk) | ||
91 | { | ||
92 | const struct tcp_sock *tp = tcp_sk(sk); | ||
93 | struct compound *vegas = inet_csk_ca(sk); | ||
94 | |||
95 | /* Begin taking Vegas samples next time we send something. */ | ||
96 | vegas->doing_vegas_now = 1; | ||
97 | |||
98 | /* Set the beginning of the next send window. */ | ||
99 | vegas->beg_snd_nxt = tp->snd_nxt; | ||
100 | |||
101 | vegas->cntRTT = 0; | ||
102 | vegas->minRTT = 0x7fffffff; | ||
103 | } | ||
104 | |||
105 | /* Stop taking Vegas samples for now. */ | ||
106 | static inline void vegas_disable(struct sock *sk) | ||
107 | { | ||
108 | struct compound *vegas = inet_csk_ca(sk); | ||
109 | |||
110 | vegas->doing_vegas_now = 0; | ||
111 | } | ||
112 | |||
113 | static void tcp_compound_init(struct sock *sk) | ||
114 | { | ||
115 | struct compound *vegas = inet_csk_ca(sk); | ||
116 | const struct tcp_sock *tp = tcp_sk(sk); | ||
117 | |||
118 | vegas->baseRTT = 0x7fffffff; | ||
119 | vegas_enable(sk); | ||
120 | |||
121 | vegas->dwnd = 0; | ||
122 | vegas->cwnd = tp->snd_cwnd; | ||
123 | } | ||
124 | |||
125 | /* Do RTT sampling needed for Vegas. | ||
126 | * Basically we: | ||
127 | * o min-filter RTT samples from within an RTT to get the current | ||
128 | * propagation delay + queuing delay (we are min-filtering to try to | ||
129 | * avoid the effects of delayed ACKs) | ||
130 | * o min-filter RTT samples from a much longer window (forever for now) | ||
131 | * to find the propagation delay (baseRTT) | ||
132 | */ | ||
133 | static void tcp_compound_rtt_calc(struct sock *sk, u32 usrtt) | ||
134 | { | ||
135 | struct compound *vegas = inet_csk_ca(sk); | ||
136 | u32 vrtt = usrtt + 1; /* Never allow zero rtt or baseRTT */ | ||
137 | |||
138 | /* Filter to find propagation delay: */ | ||
139 | if (vrtt < vegas->baseRTT) | ||
140 | vegas->baseRTT = vrtt; | ||
141 | |||
142 | /* Find the min RTT during the last RTT to find | ||
143 | * the current prop. delay + queuing delay: | ||
144 | */ | ||
145 | |||
146 | vegas->minRTT = min(vegas->minRTT, vrtt); | ||
147 | vegas->cntRTT++; | ||
148 | } | ||
149 | |||
150 | static void tcp_compound_state(struct sock *sk, u8 ca_state) | ||
151 | { | ||
152 | |||
153 | if (ca_state == TCP_CA_Open) | ||
154 | vegas_enable(sk); | ||
155 | else | ||
156 | vegas_disable(sk); | ||
157 | } | ||
158 | |||
159 | /* | ||
160 | * If the connection is idle and we are restarting, | ||
161 | * then we don't want to do any Vegas calculations | ||
162 | * until we get fresh RTT samples. So when we | ||
163 | * restart, we reset our Vegas state to a clean | ||
164 | * slate. After we get acks for this flight of | ||
165 | * packets, _then_ we can make Vegas calculations | ||
166 | * again. | ||
167 | */ | ||
168 | static void tcp_compound_cwnd_event(struct sock *sk, enum tcp_ca_event event) | ||
169 | { | ||
170 | if (event == CA_EVENT_CWND_RESTART || event == CA_EVENT_TX_START) | ||
171 | tcp_compound_init(sk); | ||
172 | } | ||
173 | |||
174 | static void tcp_compound_cong_avoid(struct sock *sk, u32 ack, | ||
175 | u32 seq_rtt, u32 in_flight, int flag) | ||
176 | { | ||
177 | struct tcp_sock *tp = tcp_sk(sk); | ||
178 | struct compound *vegas = inet_csk_ca(sk); | ||
179 | u8 inc = 0; | ||
180 | |||
181 | if (vegas->cwnd + vegas->dwnd > tp->snd_cwnd) { | ||
182 | if (vegas->cwnd > tp->snd_cwnd || vegas->dwnd > tp->snd_cwnd) { | ||
183 | vegas->cwnd = tp->snd_cwnd; | ||
184 | vegas->dwnd = 0; | ||
185 | } else | ||
186 | vegas->cwnd = tp->snd_cwnd - vegas->dwnd; | ||
187 | |||
188 | } | ||
189 | |||
190 | if (!tcp_is_cwnd_limited(sk, in_flight)) | ||
191 | return; | ||
192 | |||
193 | if (vegas->cwnd <= tp->snd_ssthresh) | ||
194 | inc = 1; | ||
195 | else if (tp->snd_cwnd_cnt < tp->snd_cwnd) | ||
196 | tp->snd_cwnd_cnt++; | ||
197 | |||
198 | if (tp->snd_cwnd_cnt >= tp->snd_cwnd) { | ||
199 | inc = 1; | ||
200 | tp->snd_cwnd_cnt = 0; | ||
201 | } | ||
202 | |||
203 | if (inc && tp->snd_cwnd < tp->snd_cwnd_clamp) | ||
204 | vegas->cwnd++; | ||
205 | |||
206 | /* The key players are v_beg_snd_una and v_beg_snd_nxt. | ||
207 | * | ||
208 | * These are so named because they represent the approximate values | ||
209 | * of snd_una and snd_nxt at the beginning of the current RTT. More | ||
210 | * precisely, they represent the amount of data sent during the RTT. | ||
211 | * At the end of the RTT, when we receive an ACK for v_beg_snd_nxt, | ||
212 | * we will calculate that (v_beg_snd_nxt - v_beg_snd_una) outstanding | ||
213 | * bytes of data have been ACKed during the course of the RTT, giving | ||
214 | * an "actual" rate of: | ||
215 | * | ||
216 | * (v_beg_snd_nxt - v_beg_snd_una) / (rtt duration) | ||
217 | * | ||
218 | * Unfortunately, v_beg_snd_una is not exactly equal to snd_una, | ||
219 | * because delayed ACKs can cover more than one segment, so they | ||
220 | * don't line up nicely with the boundaries of RTTs. | ||
221 | * | ||
222 | * Another unfortunate fact of life is that delayed ACKs delay the | ||
223 | * advance of the left edge of our send window, so that the number | ||
224 | * of bytes we send in an RTT is often less than our cwnd will allow. | ||
225 | * So we keep track of our cwnd separately, in v_beg_snd_cwnd. | ||
226 | */ | ||
227 | |||
228 | if (after(ack, vegas->beg_snd_nxt)) { | ||
229 | /* Do the Vegas once-per-RTT cwnd adjustment. */ | ||
230 | u32 old_wnd, old_snd_cwnd; | ||
231 | |||
232 | /* Here old_wnd is essentially the window of data that was | ||
233 | * sent during the previous RTT, and has all | ||
234 | * been acknowledged in the course of the RTT that ended | ||
235 | * with the ACK we just received. Likewise, old_snd_cwnd | ||
236 | * is the cwnd during the previous RTT. | ||
237 | */ | ||
238 | if (!tp->mss_cache) | ||
239 | return; | ||
240 | |||
241 | old_wnd = (vegas->beg_snd_nxt - vegas->beg_snd_una) / | ||
242 | tp->mss_cache; | ||
243 | old_snd_cwnd = vegas->beg_snd_cwnd; | ||
244 | |||
245 | /* Save the extent of the current window so we can use this | ||
246 | * at the end of the next RTT. | ||
247 | */ | ||
248 | vegas->beg_snd_una = vegas->beg_snd_nxt; | ||
249 | vegas->beg_snd_nxt = tp->snd_nxt; | ||
250 | vegas->beg_snd_cwnd = tp->snd_cwnd; | ||
251 | |||
252 | /* We do the Vegas calculations only if we got enough RTT | ||
253 | * samples that we can be reasonably sure that we got | ||
254 | * at least one RTT sample that wasn't from a delayed ACK. | ||
255 | * If we only had 2 samples total, | ||
256 | * then that means we're getting only 1 ACK per RTT, which | ||
257 | * means they're almost certainly delayed ACKs. | ||
258 | * If we have 3 samples, we should be OK. | ||
259 | */ | ||
260 | |||
261 | if (vegas->cntRTT > 2) { | ||
262 | u32 rtt, target_cwnd, diff; | ||
263 | u32 brtt, dwnd; | ||
264 | |||
265 | /* We have enough RTT samples, so, using the Vegas | ||
266 | * algorithm, we determine if we should increase or | ||
267 | * decrease cwnd, and by how much. | ||
268 | */ | ||
269 | |||
270 | /* Pluck out the RTT we are using for the Vegas | ||
271 | * calculations. This is the min RTT seen during the | ||
272 | * last RTT. Taking the min filters out the effects | ||
273 | * of delayed ACKs, at the cost of noticing congestion | ||
274 | * a bit later. | ||
275 | */ | ||
276 | rtt = vegas->minRTT; | ||
277 | |||
278 | /* Calculate the cwnd we should have, if we weren't | ||
279 | * going too fast. | ||
280 | * | ||
281 | * This is: | ||
282 | * (actual rate in segments) * baseRTT | ||
283 | * We keep it as a fixed point number with | ||
284 | * V_PARAM_SHIFT bits to the right of the binary point. | ||
285 | */ | ||
286 | if (!rtt) | ||
287 | return; | ||
288 | |||
289 | brtt = vegas->baseRTT; | ||
290 | target_cwnd = ((old_wnd * brtt) | ||
291 | << V_PARAM_SHIFT) / rtt; | ||
292 | |||
293 | /* Calculate the difference between the window we had, | ||
294 | * and the window we would like to have. This quantity | ||
295 | * is the "Diff" from the Arizona Vegas papers. | ||
296 | * | ||
297 | * Again, this is a fixed point number with | ||
298 | * V_PARAM_SHIFT bits to the right of the binary | ||
299 | * point. | ||
300 | */ | ||
301 | |||
302 | diff = (old_wnd << V_PARAM_SHIFT) - target_cwnd; | ||
303 | |||
304 | dwnd = vegas->dwnd; | ||
305 | |||
306 | if (diff < (TCP_COMPOUND_GAMMA << V_PARAM_SHIFT)) { | ||
307 | u32 i, j, x, x2; | ||
308 | u64 v; | ||
309 | |||
310 | v = 1; | ||
311 | |||
312 | for (i = 0; i < TCP_COMPOUND_KAPPA_POW; i++) | ||
313 | v *= old_wnd; | ||
314 | |||
315 | for (i = 0; i < TCP_COMPOUND_KAPPA_NSQRT; i++) { | ||
316 | x = 1; | ||
317 | for (j = 0; j < 200; j++) { | ||
318 | x2 = (x + v / x) / 2; | ||
319 | |||
320 | if (x2 == x || !x2) | ||
321 | break; | ||
322 | |||
323 | x = x2; | ||
324 | } | ||
325 | v = x; | ||
326 | } | ||
327 | |||
328 | x = (u32) v >> TCP_COMPOUND_ALPHA; | ||
329 | |||
330 | if (x > 1) | ||
331 | dwnd = x - 1; | ||
332 | else | ||
333 | dwnd = 0; | ||
334 | |||
335 | dwnd += vegas->dwnd; | ||
336 | |||
337 | } else if ((dwnd << V_PARAM_SHIFT) < | ||
338 | (diff * TCP_COMPOUND_BETA)) | ||
339 | dwnd = 0; | ||
340 | else | ||
341 | dwnd = | ||
342 | ((dwnd << V_PARAM_SHIFT) - | ||
343 | (diff * | ||
344 | TCP_COMPOUND_BETA)) >> V_PARAM_SHIFT; | ||
345 | |||
346 | vegas->dwnd = dwnd; | ||
347 | |||
348 | } | ||
349 | |||
350 | /* Wipe the slate clean for the next RTT. */ | ||
351 | vegas->cntRTT = 0; | ||
352 | vegas->minRTT = 0x7fffffff; | ||
353 | } | ||
354 | |||
355 | tp->snd_cwnd = vegas->cwnd + vegas->dwnd; | ||
356 | } | ||
357 | |||
358 | /* Extract info for Tcp socket info provided via netlink. */ | ||
359 | static void tcp_compound_get_info(struct sock *sk, u32 ext, struct sk_buff *skb) | ||
360 | { | ||
361 | const struct compound *ca = inet_csk_ca(sk); | ||
362 | if (ext & (1 << (INET_DIAG_VEGASINFO - 1))) { | ||
363 | struct tcpvegas_info *info; | ||
364 | |||
365 | info = RTA_DATA(__RTA_PUT(skb, INET_DIAG_VEGASINFO, | ||
366 | sizeof(*info))); | ||
367 | |||
368 | info->tcpv_enabled = ca->doing_vegas_now; | ||
369 | info->tcpv_rttcnt = ca->cntRTT; | ||
370 | info->tcpv_rtt = ca->baseRTT; | ||
371 | info->tcpv_minrtt = ca->minRTT; | ||
372 | rtattr_failure:; | ||
373 | } | ||
374 | } | ||
375 | |||
376 | static struct tcp_congestion_ops tcp_compound = { | ||
377 | .init = tcp_compound_init, | ||
378 | .ssthresh = tcp_reno_ssthresh, | ||
379 | .cong_avoid = tcp_compound_cong_avoid, | ||
380 | .min_cwnd = tcp_reno_min_cwnd, | ||
381 | .rtt_sample = tcp_compound_rtt_calc, | ||
382 | .set_state = tcp_compound_state, | ||
383 | .cwnd_event = tcp_compound_cwnd_event, | ||
384 | .get_info = tcp_compound_get_info, | ||
385 | |||
386 | .owner = THIS_MODULE, | ||
387 | .name = "compound", | ||
388 | }; | ||
389 | |||
390 | static int __init tcp_compound_register(void) | ||
391 | { | ||
392 | BUG_ON(sizeof(struct compound) > ICSK_CA_PRIV_SIZE); | ||
393 | tcp_register_congestion_control(&tcp_compound); | ||
394 | return 0; | ||
395 | } | ||
396 | |||
397 | static void __exit tcp_compound_unregister(void) | ||
398 | { | ||
399 | tcp_unregister_congestion_control(&tcp_compound); | ||
400 | } | ||
401 | |||
402 | module_init(tcp_compound_register); | ||
403 | module_exit(tcp_compound_unregister); | ||
404 | |||
405 | MODULE_AUTHOR("Angelo P. Castellani, Stephen Hemminger"); | ||
406 | MODULE_LICENSE("GPL"); | ||
407 | MODULE_DESCRIPTION("TCP Compound"); | ||