diff options
author | Robert Olsson <Robert.Olsson@data.slu.se> | 2005-06-21 15:43:18 -0400 |
---|---|---|
committer | David S. Miller <davem@davemloft.net> | 2005-06-21 15:43:18 -0400 |
commit | 19baf839ff4a8daa1f2a7400897094fc18e4f5e9 (patch) | |
tree | 719e1b64a4fedc4fc028874b5562553c7a524473 /net | |
parent | 18b504e25fd617bee8830d2cdcaff7fb7b5931bb (diff) |
[IPV4]: Add LC-Trie FIB lookup algorithm.
Signed-off-by: Robert Olsson <Robert.Olsson@data.slu.se>
Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'net')
-rw-r--r-- | net/ipv4/Kconfig | 26 | ||||
-rw-r--r-- | net/ipv4/Makefile | 4 | ||||
-rw-r--r-- | net/ipv4/af_inet.c | 12 | ||||
-rw-r--r-- | net/ipv4/fib_trie.c | 2454 |
4 files changed, 2495 insertions, 1 deletions
diff --git a/net/ipv4/Kconfig b/net/ipv4/Kconfig index 6d3e8b1bd1f2..05107e0dc145 100644 --- a/net/ipv4/Kconfig +++ b/net/ipv4/Kconfig | |||
@@ -1,6 +1,32 @@ | |||
1 | # | 1 | # |
2 | # IP configuration | 2 | # IP configuration |
3 | # | 3 | # |
4 | choice | ||
5 | prompt "Choose IP: FIB lookup"" | ||
6 | depends on INET | ||
7 | default IP_FIB_HASH | ||
8 | |||
9 | config IP_FIB_HASH | ||
10 | bool "FIB_HASH" | ||
11 | ---help--- | ||
12 | Current FIB is very proven and good enough for most users. | ||
13 | |||
14 | config IP_FIB_TRIE | ||
15 | bool "FIB_TRIE" | ||
16 | ---help--- | ||
17 | Use new experimental LC-trie as FIB lookup algoritm. | ||
18 | This improves lookup performance | ||
19 | |||
20 | LC-trie is described in: | ||
21 | |||
22 | IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson | ||
23 | IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 | ||
24 | An experimental study of compression methods for dynamic tries | ||
25 | Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. | ||
26 | http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/ | ||
27 | |||
28 | endchoice | ||
29 | |||
4 | config IP_MULTICAST | 30 | config IP_MULTICAST |
5 | bool "IP: multicasting" | 31 | bool "IP: multicasting" |
6 | depends on INET | 32 | depends on INET |
diff --git a/net/ipv4/Makefile b/net/ipv4/Makefile index 8b379627ebb6..65d57d8e1add 100644 --- a/net/ipv4/Makefile +++ b/net/ipv4/Makefile | |||
@@ -7,8 +7,10 @@ obj-y := utils.o route.o inetpeer.o protocol.o \ | |||
7 | ip_output.o ip_sockglue.o \ | 7 | ip_output.o ip_sockglue.o \ |
8 | tcp.o tcp_input.o tcp_output.o tcp_timer.o tcp_ipv4.o tcp_minisocks.o \ | 8 | tcp.o tcp_input.o tcp_output.o tcp_timer.o tcp_ipv4.o tcp_minisocks.o \ |
9 | datagram.o raw.o udp.o arp.o icmp.o devinet.o af_inet.o igmp.o \ | 9 | datagram.o raw.o udp.o arp.o icmp.o devinet.o af_inet.o igmp.o \ |
10 | sysctl_net_ipv4.o fib_frontend.o fib_semantics.o fib_hash.o | 10 | sysctl_net_ipv4.o fib_frontend.o fib_semantics.o |
11 | 11 | ||
12 | obj-$(CONFIG_IP_FIB_HASH) += fib_hash.o | ||
13 | obj-$(CONFIG_IP_FIB_TRIE) += fib_trie.o | ||
12 | obj-$(CONFIG_PROC_FS) += proc.o | 14 | obj-$(CONFIG_PROC_FS) += proc.o |
13 | obj-$(CONFIG_IP_MULTIPLE_TABLES) += fib_rules.o | 15 | obj-$(CONFIG_IP_MULTIPLE_TABLES) += fib_rules.o |
14 | obj-$(CONFIG_IP_MROUTE) += ipmr.o | 16 | obj-$(CONFIG_IP_MROUTE) += ipmr.o |
diff --git a/net/ipv4/af_inet.c b/net/ipv4/af_inet.c index 03942f133944..658e7977924d 100644 --- a/net/ipv4/af_inet.c +++ b/net/ipv4/af_inet.c | |||
@@ -1119,6 +1119,10 @@ module_init(inet_init); | |||
1119 | #ifdef CONFIG_PROC_FS | 1119 | #ifdef CONFIG_PROC_FS |
1120 | extern int fib_proc_init(void); | 1120 | extern int fib_proc_init(void); |
1121 | extern void fib_proc_exit(void); | 1121 | extern void fib_proc_exit(void); |
1122 | #ifdef CONFIG_IP_FIB_TRIE | ||
1123 | extern int fib_stat_proc_init(void); | ||
1124 | extern void fib_stat_proc_exit(void); | ||
1125 | #endif | ||
1122 | extern int ip_misc_proc_init(void); | 1126 | extern int ip_misc_proc_init(void); |
1123 | extern int raw_proc_init(void); | 1127 | extern int raw_proc_init(void); |
1124 | extern void raw_proc_exit(void); | 1128 | extern void raw_proc_exit(void); |
@@ -1139,11 +1143,19 @@ static int __init ipv4_proc_init(void) | |||
1139 | goto out_udp; | 1143 | goto out_udp; |
1140 | if (fib_proc_init()) | 1144 | if (fib_proc_init()) |
1141 | goto out_fib; | 1145 | goto out_fib; |
1146 | #ifdef CONFIG_IP_FIB_TRIE | ||
1147 | if (fib_stat_proc_init()) | ||
1148 | goto out_fib_stat; | ||
1149 | #endif | ||
1142 | if (ip_misc_proc_init()) | 1150 | if (ip_misc_proc_init()) |
1143 | goto out_misc; | 1151 | goto out_misc; |
1144 | out: | 1152 | out: |
1145 | return rc; | 1153 | return rc; |
1146 | out_misc: | 1154 | out_misc: |
1155 | #ifdef CONFIG_IP_FIB_TRIE | ||
1156 | fib_stat_proc_exit(); | ||
1157 | out_fib_stat: | ||
1158 | #endif | ||
1147 | fib_proc_exit(); | 1159 | fib_proc_exit(); |
1148 | out_fib: | 1160 | out_fib: |
1149 | udp4_proc_exit(); | 1161 | udp4_proc_exit(); |
diff --git a/net/ipv4/fib_trie.c b/net/ipv4/fib_trie.c new file mode 100644 index 000000000000..c0ece94fc63e --- /dev/null +++ b/net/ipv4/fib_trie.c | |||
@@ -0,0 +1,2454 @@ | |||
1 | /* | ||
2 | * This program is free software; you can redistribute it and/or | ||
3 | * modify it under the terms of the GNU General Public License | ||
4 | * as published by the Free Software Foundation; either version | ||
5 | * 2 of the License, or (at your option) any later version. | ||
6 | * | ||
7 | * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet | ||
8 | * & Swedish University of Agricultural Sciences. | ||
9 | * | ||
10 | * Jens Laas <jens.laas@data.slu.se> Swedish University of | ||
11 | * Agricultural Sciences. | ||
12 | * | ||
13 | * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet | ||
14 | * | ||
15 | * This work is based on the LPC-trie which is originally descibed in: | ||
16 | * | ||
17 | * An experimental study of compression methods for dynamic tries | ||
18 | * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. | ||
19 | * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/ | ||
20 | * | ||
21 | * | ||
22 | * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson | ||
23 | * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 | ||
24 | * | ||
25 | * Version: $Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $ | ||
26 | * | ||
27 | * | ||
28 | * Code from fib_hash has been reused which includes the following header: | ||
29 | * | ||
30 | * | ||
31 | * INET An implementation of the TCP/IP protocol suite for the LINUX | ||
32 | * operating system. INET is implemented using the BSD Socket | ||
33 | * interface as the means of communication with the user level. | ||
34 | * | ||
35 | * IPv4 FIB: lookup engine and maintenance routines. | ||
36 | * | ||
37 | * | ||
38 | * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> | ||
39 | * | ||
40 | * This program is free software; you can redistribute it and/or | ||
41 | * modify it under the terms of the GNU General Public License | ||
42 | * as published by the Free Software Foundation; either version | ||
43 | * 2 of the License, or (at your option) any later version. | ||
44 | */ | ||
45 | |||
46 | #define VERSION "0.323" | ||
47 | |||
48 | #include <linux/config.h> | ||
49 | #include <asm/uaccess.h> | ||
50 | #include <asm/system.h> | ||
51 | #include <asm/bitops.h> | ||
52 | #include <linux/types.h> | ||
53 | #include <linux/kernel.h> | ||
54 | #include <linux/sched.h> | ||
55 | #include <linux/mm.h> | ||
56 | #include <linux/string.h> | ||
57 | #include <linux/socket.h> | ||
58 | #include <linux/sockios.h> | ||
59 | #include <linux/errno.h> | ||
60 | #include <linux/in.h> | ||
61 | #include <linux/inet.h> | ||
62 | #include <linux/netdevice.h> | ||
63 | #include <linux/if_arp.h> | ||
64 | #include <linux/proc_fs.h> | ||
65 | #include <linux/skbuff.h> | ||
66 | #include <linux/netlink.h> | ||
67 | #include <linux/init.h> | ||
68 | #include <linux/list.h> | ||
69 | #include <net/ip.h> | ||
70 | #include <net/protocol.h> | ||
71 | #include <net/route.h> | ||
72 | #include <net/tcp.h> | ||
73 | #include <net/sock.h> | ||
74 | #include <net/ip_fib.h> | ||
75 | #include "fib_lookup.h" | ||
76 | |||
77 | #undef CONFIG_IP_FIB_TRIE_STATS | ||
78 | #define MAX_CHILDS 16384 | ||
79 | |||
80 | #define EXTRACT(p, n, str) ((str)<<(p)>>(32-(n))) | ||
81 | #define KEYLENGTH (8*sizeof(t_key)) | ||
82 | #define MASK_PFX(k, l) (((l)==0)?0:(k >> (KEYLENGTH-l)) << (KEYLENGTH-l)) | ||
83 | #define TKEY_GET_MASK(offset, bits) (((bits)==0)?0:((t_key)(-1) << (KEYLENGTH - bits) >> offset)) | ||
84 | |||
85 | static DEFINE_RWLOCK(fib_lock); | ||
86 | |||
87 | typedef unsigned int t_key; | ||
88 | |||
89 | #define T_TNODE 0 | ||
90 | #define T_LEAF 1 | ||
91 | #define NODE_TYPE_MASK 0x1UL | ||
92 | #define NODE_PARENT(_node) \ | ||
93 | ((struct tnode *)((_node)->_parent & ~NODE_TYPE_MASK)) | ||
94 | #define NODE_SET_PARENT(_node, _ptr) \ | ||
95 | ((_node)->_parent = (((unsigned long)(_ptr)) | \ | ||
96 | ((_node)->_parent & NODE_TYPE_MASK))) | ||
97 | #define NODE_INIT_PARENT(_node, _type) \ | ||
98 | ((_node)->_parent = (_type)) | ||
99 | #define NODE_TYPE(_node) \ | ||
100 | ((_node)->_parent & NODE_TYPE_MASK) | ||
101 | |||
102 | #define IS_TNODE(n) (!(n->_parent & T_LEAF)) | ||
103 | #define IS_LEAF(n) (n->_parent & T_LEAF) | ||
104 | |||
105 | struct node { | ||
106 | t_key key; | ||
107 | unsigned long _parent; | ||
108 | }; | ||
109 | |||
110 | struct leaf { | ||
111 | t_key key; | ||
112 | unsigned long _parent; | ||
113 | struct hlist_head list; | ||
114 | }; | ||
115 | |||
116 | struct leaf_info { | ||
117 | struct hlist_node hlist; | ||
118 | int plen; | ||
119 | struct list_head falh; | ||
120 | }; | ||
121 | |||
122 | struct tnode { | ||
123 | t_key key; | ||
124 | unsigned long _parent; | ||
125 | unsigned short pos:5; /* 2log(KEYLENGTH) bits needed */ | ||
126 | unsigned short bits:5; /* 2log(KEYLENGTH) bits needed */ | ||
127 | unsigned short full_children; /* KEYLENGTH bits needed */ | ||
128 | unsigned short empty_children; /* KEYLENGTH bits needed */ | ||
129 | struct node *child[0]; | ||
130 | }; | ||
131 | |||
132 | #ifdef CONFIG_IP_FIB_TRIE_STATS | ||
133 | struct trie_use_stats { | ||
134 | unsigned int gets; | ||
135 | unsigned int backtrack; | ||
136 | unsigned int semantic_match_passed; | ||
137 | unsigned int semantic_match_miss; | ||
138 | unsigned int null_node_hit; | ||
139 | }; | ||
140 | #endif | ||
141 | |||
142 | struct trie_stat { | ||
143 | unsigned int totdepth; | ||
144 | unsigned int maxdepth; | ||
145 | unsigned int tnodes; | ||
146 | unsigned int leaves; | ||
147 | unsigned int nullpointers; | ||
148 | unsigned int nodesizes[MAX_CHILDS]; | ||
149 | }; | ||
150 | |||
151 | struct trie { | ||
152 | struct node *trie; | ||
153 | #ifdef CONFIG_IP_FIB_TRIE_STATS | ||
154 | struct trie_use_stats stats; | ||
155 | #endif | ||
156 | int size; | ||
157 | unsigned int revision; | ||
158 | }; | ||
159 | |||
160 | static int trie_debug = 0; | ||
161 | |||
162 | static int tnode_full(struct tnode *tn, struct node *n); | ||
163 | static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n); | ||
164 | static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull); | ||
165 | static int tnode_child_length(struct tnode *tn); | ||
166 | static struct node *resize(struct trie *t, struct tnode *tn); | ||
167 | static struct tnode *inflate(struct trie *t, struct tnode *tn); | ||
168 | static struct tnode *halve(struct trie *t, struct tnode *tn); | ||
169 | static void tnode_free(struct tnode *tn); | ||
170 | static void trie_dump_seq(struct seq_file *seq, struct trie *t); | ||
171 | extern struct fib_alias *fib_find_alias(struct list_head *fah, u8 tos, u32 prio); | ||
172 | extern int fib_detect_death(struct fib_info *fi, int order, | ||
173 | struct fib_info **last_resort, int *last_idx, int *dflt); | ||
174 | |||
175 | extern void rtmsg_fib(int event, u32 key, struct fib_alias *fa, int z, int tb_id, | ||
176 | struct nlmsghdr *n, struct netlink_skb_parms *req); | ||
177 | |||
178 | static kmem_cache_t *fn_alias_kmem; | ||
179 | static struct trie *trie_local = NULL, *trie_main = NULL; | ||
180 | |||
181 | static void trie_bug(char *err) | ||
182 | { | ||
183 | printk("Trie Bug: %s\n", err); | ||
184 | BUG(); | ||
185 | } | ||
186 | |||
187 | static inline struct node *tnode_get_child(struct tnode *tn, int i) | ||
188 | { | ||
189 | if (i >= 1<<tn->bits) | ||
190 | trie_bug("tnode_get_child"); | ||
191 | |||
192 | return tn->child[i]; | ||
193 | } | ||
194 | |||
195 | static inline int tnode_child_length(struct tnode *tn) | ||
196 | { | ||
197 | return 1<<tn->bits; | ||
198 | } | ||
199 | |||
200 | /* | ||
201 | _________________________________________________________________ | ||
202 | | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | | ||
203 | ---------------------------------------------------------------- | ||
204 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | ||
205 | |||
206 | _________________________________________________________________ | ||
207 | | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | | ||
208 | ----------------------------------------------------------------- | ||
209 | 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | ||
210 | |||
211 | tp->pos = 7 | ||
212 | tp->bits = 3 | ||
213 | n->pos = 15 | ||
214 | n->bits=4 | ||
215 | KEYLENGTH=32 | ||
216 | */ | ||
217 | |||
218 | static inline t_key tkey_extract_bits(t_key a, int offset, int bits) | ||
219 | { | ||
220 | if (offset < KEYLENGTH) | ||
221 | return ((t_key)(a << offset)) >> (KEYLENGTH - bits); | ||
222 | else | ||
223 | return 0; | ||
224 | } | ||
225 | |||
226 | static inline int tkey_equals(t_key a, t_key b) | ||
227 | { | ||
228 | return a == b; | ||
229 | } | ||
230 | |||
231 | static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b) | ||
232 | { | ||
233 | if (bits == 0 || offset >= KEYLENGTH) | ||
234 | return 1; | ||
235 | bits = bits > KEYLENGTH ? KEYLENGTH : bits; | ||
236 | return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0; | ||
237 | } | ||
238 | |||
239 | static inline int tkey_mismatch(t_key a, int offset, t_key b) | ||
240 | { | ||
241 | t_key diff = a ^ b; | ||
242 | int i = offset; | ||
243 | |||
244 | if(!diff) | ||
245 | return 0; | ||
246 | while((diff << i) >> (KEYLENGTH-1) == 0) | ||
247 | i++; | ||
248 | return i; | ||
249 | } | ||
250 | |||
251 | /* Candiate for fib_semantics */ | ||
252 | |||
253 | static void fn_free_alias(struct fib_alias *fa) | ||
254 | { | ||
255 | fib_release_info(fa->fa_info); | ||
256 | kmem_cache_free(fn_alias_kmem, fa); | ||
257 | } | ||
258 | |||
259 | /* | ||
260 | To understand this stuff, an understanding of keys and all their bits is | ||
261 | necessary. Every node in the trie has a key associated with it, but not | ||
262 | all of the bits in that key are significant. | ||
263 | |||
264 | Consider a node 'n' and its parent 'tp'. | ||
265 | |||
266 | If n is a leaf, every bit in its key is significant. Its presence is | ||
267 | necessitaded by path compression, since during a tree traversal (when | ||
268 | searching for a leaf - unless we are doing an insertion) we will completely | ||
269 | ignore all skipped bits we encounter. Thus we need to verify, at the end of | ||
270 | a potentially successful search, that we have indeed been walking the | ||
271 | correct key path. | ||
272 | |||
273 | Note that we can never "miss" the correct key in the tree if present by | ||
274 | following the wrong path. Path compression ensures that segments of the key | ||
275 | that are the same for all keys with a given prefix are skipped, but the | ||
276 | skipped part *is* identical for each node in the subtrie below the skipped | ||
277 | bit! trie_insert() in this implementation takes care of that - note the | ||
278 | call to tkey_sub_equals() in trie_insert(). | ||
279 | |||
280 | if n is an internal node - a 'tnode' here, the various parts of its key | ||
281 | have many different meanings. | ||
282 | |||
283 | Example: | ||
284 | _________________________________________________________________ | ||
285 | | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | | ||
286 | ----------------------------------------------------------------- | ||
287 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | ||
288 | |||
289 | _________________________________________________________________ | ||
290 | | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | | ||
291 | ----------------------------------------------------------------- | ||
292 | 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | ||
293 | |||
294 | tp->pos = 7 | ||
295 | tp->bits = 3 | ||
296 | n->pos = 15 | ||
297 | n->bits=4 | ||
298 | |||
299 | First, let's just ignore the bits that come before the parent tp, that is | ||
300 | the bits from 0 to (tp->pos-1). They are *known* but at this point we do | ||
301 | not use them for anything. | ||
302 | |||
303 | The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the | ||
304 | index into the parent's child array. That is, they will be used to find | ||
305 | 'n' among tp's children. | ||
306 | |||
307 | The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits | ||
308 | for the node n. | ||
309 | |||
310 | All the bits we have seen so far are significant to the node n. The rest | ||
311 | of the bits are really not needed or indeed known in n->key. | ||
312 | |||
313 | The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into | ||
314 | n's child array, and will of course be different for each child. | ||
315 | |||
316 | The rest of the bits, from (n->pos + n->bits) onward, are completely unknown | ||
317 | at this point. | ||
318 | |||
319 | */ | ||
320 | |||
321 | static void check_tnode(struct tnode *tn) | ||
322 | { | ||
323 | if(tn && tn->pos+tn->bits > 32) { | ||
324 | printk("TNODE ERROR tn=%p, pos=%d, bits=%d\n", tn, tn->pos, tn->bits); | ||
325 | } | ||
326 | } | ||
327 | |||
328 | static int halve_threshold = 25; | ||
329 | static int inflate_threshold = 50; | ||
330 | |||
331 | static struct leaf *leaf_new(void) | ||
332 | { | ||
333 | struct leaf *l = kmalloc(sizeof(struct leaf), GFP_KERNEL); | ||
334 | if(l) { | ||
335 | NODE_INIT_PARENT(l, T_LEAF); | ||
336 | INIT_HLIST_HEAD(&l->list); | ||
337 | } | ||
338 | return l; | ||
339 | } | ||
340 | |||
341 | static struct leaf_info *leaf_info_new(int plen) | ||
342 | { | ||
343 | struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL); | ||
344 | li->plen = plen; | ||
345 | INIT_LIST_HEAD(&li->falh); | ||
346 | return li; | ||
347 | } | ||
348 | |||
349 | static inline void free_leaf(struct leaf *l) | ||
350 | { | ||
351 | kfree(l); | ||
352 | } | ||
353 | |||
354 | static inline void free_leaf_info(struct leaf_info *li) | ||
355 | { | ||
356 | kfree(li); | ||
357 | } | ||
358 | |||
359 | static struct tnode* tnode_new(t_key key, int pos, int bits) | ||
360 | { | ||
361 | int nchildren = 1<<bits; | ||
362 | int sz = sizeof(struct tnode) + nchildren * sizeof(struct node *); | ||
363 | struct tnode *tn = kmalloc(sz, GFP_KERNEL); | ||
364 | |||
365 | if(tn) { | ||
366 | memset(tn, 0, sz); | ||
367 | NODE_INIT_PARENT(tn, T_TNODE); | ||
368 | tn->pos = pos; | ||
369 | tn->bits = bits; | ||
370 | tn->key = key; | ||
371 | tn->full_children = 0; | ||
372 | tn->empty_children = 1<<bits; | ||
373 | } | ||
374 | if(trie_debug > 0) | ||
375 | printk("AT %p s=%u %u\n", tn, (unsigned int) sizeof(struct tnode), | ||
376 | (unsigned int) (sizeof(struct node) * 1<<bits)); | ||
377 | return tn; | ||
378 | } | ||
379 | |||
380 | static void tnode_free(struct tnode *tn) | ||
381 | { | ||
382 | if(!tn) { | ||
383 | trie_bug("tnode_free\n"); | ||
384 | } | ||
385 | if(IS_LEAF(tn)) { | ||
386 | free_leaf((struct leaf *)tn); | ||
387 | if(trie_debug > 0 ) | ||
388 | printk("FL %p \n", tn); | ||
389 | } | ||
390 | else if(IS_TNODE(tn)) { | ||
391 | kfree(tn); | ||
392 | if(trie_debug > 0 ) | ||
393 | printk("FT %p \n", tn); | ||
394 | } | ||
395 | else { | ||
396 | trie_bug("tnode_free\n"); | ||
397 | } | ||
398 | } | ||
399 | |||
400 | /* | ||
401 | * Check whether a tnode 'n' is "full", i.e. it is an internal node | ||
402 | * and no bits are skipped. See discussion in dyntree paper p. 6 | ||
403 | */ | ||
404 | |||
405 | static inline int tnode_full(struct tnode *tn, struct node *n) | ||
406 | { | ||
407 | if(n == NULL || IS_LEAF(n)) | ||
408 | return 0; | ||
409 | |||
410 | return ((struct tnode *) n)->pos == tn->pos + tn->bits; | ||
411 | } | ||
412 | |||
413 | static inline void put_child(struct trie *t, struct tnode *tn, int i, struct node *n) | ||
414 | { | ||
415 | tnode_put_child_reorg(tn, i, n, -1); | ||
416 | } | ||
417 | |||
418 | /* | ||
419 | * Add a child at position i overwriting the old value. | ||
420 | * Update the value of full_children and empty_children. | ||
421 | */ | ||
422 | |||
423 | static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull) | ||
424 | { | ||
425 | struct node *chi; | ||
426 | int isfull; | ||
427 | |||
428 | if(i >= 1<<tn->bits) { | ||
429 | printk("bits=%d, i=%d\n", tn->bits, i); | ||
430 | trie_bug("tnode_put_child_reorg bits"); | ||
431 | } | ||
432 | write_lock_bh(&fib_lock); | ||
433 | chi = tn->child[i]; | ||
434 | |||
435 | /* update emptyChildren */ | ||
436 | if (n == NULL && chi != NULL) | ||
437 | tn->empty_children++; | ||
438 | else if (n != NULL && chi == NULL) | ||
439 | tn->empty_children--; | ||
440 | |||
441 | /* update fullChildren */ | ||
442 | if (wasfull == -1) | ||
443 | wasfull = tnode_full(tn, chi); | ||
444 | |||
445 | isfull = tnode_full(tn, n); | ||
446 | if (wasfull && !isfull) | ||
447 | tn->full_children--; | ||
448 | |||
449 | else if (!wasfull && isfull) | ||
450 | tn->full_children++; | ||
451 | if(n) | ||
452 | NODE_SET_PARENT(n, tn); | ||
453 | |||
454 | tn->child[i] = n; | ||
455 | write_unlock_bh(&fib_lock); | ||
456 | } | ||
457 | |||
458 | static struct node *resize(struct trie *t, struct tnode *tn) | ||
459 | { | ||
460 | int i; | ||
461 | |||
462 | if (!tn) | ||
463 | return NULL; | ||
464 | |||
465 | if(trie_debug) | ||
466 | printk("In tnode_resize %p inflate_threshold=%d threshold=%d\n", | ||
467 | tn, inflate_threshold, halve_threshold); | ||
468 | |||
469 | /* No children */ | ||
470 | if (tn->empty_children == tnode_child_length(tn)) { | ||
471 | tnode_free(tn); | ||
472 | return NULL; | ||
473 | } | ||
474 | /* One child */ | ||
475 | if (tn->empty_children == tnode_child_length(tn) - 1) | ||
476 | for (i = 0; i < tnode_child_length(tn); i++) { | ||
477 | |||
478 | write_lock_bh(&fib_lock); | ||
479 | if (tn->child[i] != NULL) { | ||
480 | |||
481 | /* compress one level */ | ||
482 | struct node *n = tn->child[i]; | ||
483 | if(n) | ||
484 | NODE_INIT_PARENT(n, NODE_TYPE(n)); | ||
485 | |||
486 | write_unlock_bh(&fib_lock); | ||
487 | tnode_free(tn); | ||
488 | return n; | ||
489 | } | ||
490 | write_unlock_bh(&fib_lock); | ||
491 | } | ||
492 | /* | ||
493 | * Double as long as the resulting node has a number of | ||
494 | * nonempty nodes that are above the threshold. | ||
495 | */ | ||
496 | |||
497 | /* | ||
498 | * From "Implementing a dynamic compressed trie" by Stefan Nilsson of | ||
499 | * the Helsinki University of Technology and Matti Tikkanen of Nokia | ||
500 | * Telecommunications, page 6: | ||
501 | * "A node is doubled if the ratio of non-empty children to all | ||
502 | * children in the *doubled* node is at least 'high'." | ||
503 | * | ||
504 | * 'high' in this instance is the variable 'inflate_threshold'. It | ||
505 | * is expressed as a percentage, so we multiply it with | ||
506 | * tnode_child_length() and instead of multiplying by 2 (since the | ||
507 | * child array will be doubled by inflate()) and multiplying | ||
508 | * the left-hand side by 100 (to handle the percentage thing) we | ||
509 | * multiply the left-hand side by 50. | ||
510 | * | ||
511 | * The left-hand side may look a bit weird: tnode_child_length(tn) | ||
512 | * - tn->empty_children is of course the number of non-null children | ||
513 | * in the current node. tn->full_children is the number of "full" | ||
514 | * children, that is non-null tnodes with a skip value of 0. | ||
515 | * All of those will be doubled in the resulting inflated tnode, so | ||
516 | * we just count them one extra time here. | ||
517 | * | ||
518 | * A clearer way to write this would be: | ||
519 | * | ||
520 | * to_be_doubled = tn->full_children; | ||
521 | * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children - | ||
522 | * tn->full_children; | ||
523 | * | ||
524 | * new_child_length = tnode_child_length(tn) * 2; | ||
525 | * | ||
526 | * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / | ||
527 | * new_child_length; | ||
528 | * if (new_fill_factor >= inflate_threshold) | ||
529 | * | ||
530 | * ...and so on, tho it would mess up the while() loop. | ||
531 | * | ||
532 | * anyway, | ||
533 | * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= | ||
534 | * inflate_threshold | ||
535 | * | ||
536 | * avoid a division: | ||
537 | * 100 * (not_to_be_doubled + 2*to_be_doubled) >= | ||
538 | * inflate_threshold * new_child_length | ||
539 | * | ||
540 | * expand not_to_be_doubled and to_be_doubled, and shorten: | ||
541 | * 100 * (tnode_child_length(tn) - tn->empty_children + | ||
542 | * tn->full_children ) >= inflate_threshold * new_child_length | ||
543 | * | ||
544 | * expand new_child_length: | ||
545 | * 100 * (tnode_child_length(tn) - tn->empty_children + | ||
546 | * tn->full_children ) >= | ||
547 | * inflate_threshold * tnode_child_length(tn) * 2 | ||
548 | * | ||
549 | * shorten again: | ||
550 | * 50 * (tn->full_children + tnode_child_length(tn) - | ||
551 | * tn->empty_children ) >= inflate_threshold * | ||
552 | * tnode_child_length(tn) | ||
553 | * | ||
554 | */ | ||
555 | |||
556 | check_tnode(tn); | ||
557 | |||
558 | while ((tn->full_children > 0 && | ||
559 | 50 * (tn->full_children + tnode_child_length(tn) - tn->empty_children) >= | ||
560 | inflate_threshold * tnode_child_length(tn))) { | ||
561 | |||
562 | tn = inflate(t, tn); | ||
563 | } | ||
564 | |||
565 | check_tnode(tn); | ||
566 | |||
567 | /* | ||
568 | * Halve as long as the number of empty children in this | ||
569 | * node is above threshold. | ||
570 | */ | ||
571 | while (tn->bits > 1 && | ||
572 | 100 * (tnode_child_length(tn) - tn->empty_children) < | ||
573 | halve_threshold * tnode_child_length(tn)) | ||
574 | |||
575 | tn = halve(t, tn); | ||
576 | |||
577 | /* Only one child remains */ | ||
578 | |||
579 | if (tn->empty_children == tnode_child_length(tn) - 1) | ||
580 | for (i = 0; i < tnode_child_length(tn); i++) { | ||
581 | |||
582 | write_lock_bh(&fib_lock); | ||
583 | if (tn->child[i] != NULL) { | ||
584 | /* compress one level */ | ||
585 | struct node *n = tn->child[i]; | ||
586 | |||
587 | if(n) | ||
588 | NODE_INIT_PARENT(n, NODE_TYPE(n)); | ||
589 | |||
590 | write_unlock_bh(&fib_lock); | ||
591 | tnode_free(tn); | ||
592 | return n; | ||
593 | } | ||
594 | write_unlock_bh(&fib_lock); | ||
595 | } | ||
596 | |||
597 | return (struct node *) tn; | ||
598 | } | ||
599 | |||
600 | static struct tnode *inflate(struct trie *t, struct tnode *tn) | ||
601 | { | ||
602 | struct tnode *inode; | ||
603 | struct tnode *oldtnode = tn; | ||
604 | int olen = tnode_child_length(tn); | ||
605 | int i; | ||
606 | |||
607 | if(trie_debug) | ||
608 | printk("In inflate\n"); | ||
609 | |||
610 | tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1); | ||
611 | |||
612 | if (!tn) | ||
613 | trie_bug("tnode_new failed"); | ||
614 | |||
615 | for(i = 0; i < olen; i++) { | ||
616 | struct node *node = tnode_get_child(oldtnode, i); | ||
617 | |||
618 | /* An empty child */ | ||
619 | if (node == NULL) | ||
620 | continue; | ||
621 | |||
622 | /* A leaf or an internal node with skipped bits */ | ||
623 | |||
624 | if(IS_LEAF(node) || ((struct tnode *) node)->pos > | ||
625 | tn->pos + tn->bits - 1) { | ||
626 | if(tkey_extract_bits(node->key, tn->pos + tn->bits - 1, | ||
627 | 1) == 0) | ||
628 | put_child(t, tn, 2*i, node); | ||
629 | else | ||
630 | put_child(t, tn, 2*i+1, node); | ||
631 | continue; | ||
632 | } | ||
633 | |||
634 | /* An internal node with two children */ | ||
635 | inode = (struct tnode *) node; | ||
636 | |||
637 | if (inode->bits == 1) { | ||
638 | put_child(t, tn, 2*i, inode->child[0]); | ||
639 | put_child(t, tn, 2*i+1, inode->child[1]); | ||
640 | |||
641 | tnode_free(inode); | ||
642 | } | ||
643 | |||
644 | /* An internal node with more than two children */ | ||
645 | else { | ||
646 | struct tnode *left, *right; | ||
647 | int size, j; | ||
648 | |||
649 | /* We will replace this node 'inode' with two new | ||
650 | * ones, 'left' and 'right', each with half of the | ||
651 | * original children. The two new nodes will have | ||
652 | * a position one bit further down the key and this | ||
653 | * means that the "significant" part of their keys | ||
654 | * (see the discussion near the top of this file) | ||
655 | * will differ by one bit, which will be "0" in | ||
656 | * left's key and "1" in right's key. Since we are | ||
657 | * moving the key position by one step, the bit that | ||
658 | * we are moving away from - the bit at position | ||
659 | * (inode->pos) - is the one that will differ between | ||
660 | * left and right. So... we synthesize that bit in the | ||
661 | * two new keys. | ||
662 | * The mask 'm' below will be a single "one" bit at | ||
663 | * the position (inode->pos) | ||
664 | */ | ||
665 | |||
666 | t_key m = TKEY_GET_MASK(inode->pos, 1); | ||
667 | |||
668 | /* Use the old key, but set the new significant | ||
669 | * bit to zero. | ||
670 | */ | ||
671 | left = tnode_new(inode->key&(~m), inode->pos + 1, | ||
672 | inode->bits - 1); | ||
673 | |||
674 | if(!left) | ||
675 | trie_bug("tnode_new failed"); | ||
676 | |||
677 | |||
678 | /* Use the old key, but set the new significant | ||
679 | * bit to one. | ||
680 | */ | ||
681 | right = tnode_new(inode->key|m, inode->pos + 1, | ||
682 | inode->bits - 1); | ||
683 | |||
684 | if(!right) | ||
685 | trie_bug("tnode_new failed"); | ||
686 | |||
687 | size = tnode_child_length(left); | ||
688 | for(j = 0; j < size; j++) { | ||
689 | put_child(t, left, j, inode->child[j]); | ||
690 | put_child(t, right, j, inode->child[j + size]); | ||
691 | } | ||
692 | put_child(t, tn, 2*i, resize(t, left)); | ||
693 | put_child(t, tn, 2*i+1, resize(t, right)); | ||
694 | |||
695 | tnode_free(inode); | ||
696 | } | ||
697 | } | ||
698 | tnode_free(oldtnode); | ||
699 | return tn; | ||
700 | } | ||
701 | |||
702 | static struct tnode *halve(struct trie *t, struct tnode *tn) | ||
703 | { | ||
704 | struct tnode *oldtnode = tn; | ||
705 | struct node *left, *right; | ||
706 | int i; | ||
707 | int olen = tnode_child_length(tn); | ||
708 | |||
709 | if(trie_debug) printk("In halve\n"); | ||
710 | |||
711 | tn=tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1); | ||
712 | |||
713 | if(!tn) | ||
714 | trie_bug("tnode_new failed"); | ||
715 | |||
716 | for(i = 0; i < olen; i += 2) { | ||
717 | left = tnode_get_child(oldtnode, i); | ||
718 | right = tnode_get_child(oldtnode, i+1); | ||
719 | |||
720 | /* At least one of the children is empty */ | ||
721 | if (left == NULL) { | ||
722 | if (right == NULL) /* Both are empty */ | ||
723 | continue; | ||
724 | put_child(t, tn, i/2, right); | ||
725 | } else if (right == NULL) | ||
726 | put_child(t, tn, i/2, left); | ||
727 | |||
728 | /* Two nonempty children */ | ||
729 | else { | ||
730 | struct tnode *newBinNode = | ||
731 | tnode_new(left->key, tn->pos + tn->bits, 1); | ||
732 | |||
733 | if(!newBinNode) | ||
734 | trie_bug("tnode_new failed"); | ||
735 | |||
736 | put_child(t, newBinNode, 0, left); | ||
737 | put_child(t, newBinNode, 1, right); | ||
738 | put_child(t, tn, i/2, resize(t, newBinNode)); | ||
739 | } | ||
740 | } | ||
741 | tnode_free(oldtnode); | ||
742 | return tn; | ||
743 | } | ||
744 | |||
745 | static void *trie_init(struct trie *t) | ||
746 | { | ||
747 | if(t) { | ||
748 | t->size = 0; | ||
749 | t->trie = NULL; | ||
750 | t->revision = 0; | ||
751 | #ifdef CONFIG_IP_FIB_TRIE_STATS | ||
752 | memset(&t->stats, 0, sizeof(struct trie_use_stats)); | ||
753 | #endif | ||
754 | } | ||
755 | return t; | ||
756 | } | ||
757 | |||
758 | static struct leaf_info *find_leaf_info(struct hlist_head *head, int plen) | ||
759 | { | ||
760 | struct hlist_node *node; | ||
761 | struct leaf_info *li; | ||
762 | |||
763 | hlist_for_each_entry(li, node, head, hlist) { | ||
764 | |||
765 | if ( li->plen == plen ) | ||
766 | return li; | ||
767 | } | ||
768 | return NULL; | ||
769 | } | ||
770 | |||
771 | static inline struct list_head * get_fa_head(struct leaf *l, int plen) | ||
772 | { | ||
773 | struct list_head *fa_head=NULL; | ||
774 | struct leaf_info *li = find_leaf_info(&l->list, plen); | ||
775 | |||
776 | if(li) | ||
777 | fa_head = &li->falh; | ||
778 | |||
779 | return fa_head; | ||
780 | } | ||
781 | |||
782 | static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new) | ||
783 | { | ||
784 | struct leaf_info *li=NULL, *last=NULL; | ||
785 | struct hlist_node *node, *tmp; | ||
786 | |||
787 | write_lock_bh(&fib_lock); | ||
788 | |||
789 | if(hlist_empty(head)) | ||
790 | hlist_add_head(&new->hlist, head); | ||
791 | else { | ||
792 | hlist_for_each_entry_safe(li, node, tmp, head, hlist) { | ||
793 | |||
794 | if (new->plen > li->plen) | ||
795 | break; | ||
796 | |||
797 | last = li; | ||
798 | } | ||
799 | if(last) | ||
800 | hlist_add_after(&last->hlist, &new->hlist); | ||
801 | else | ||
802 | hlist_add_before(&new->hlist, &li->hlist); | ||
803 | } | ||
804 | write_unlock_bh(&fib_lock); | ||
805 | } | ||
806 | |||
807 | static struct leaf * | ||
808 | fib_find_node(struct trie *t, u32 key) | ||
809 | { | ||
810 | int pos; | ||
811 | struct tnode *tn; | ||
812 | struct node *n; | ||
813 | |||
814 | pos = 0; | ||
815 | n=t->trie; | ||
816 | |||
817 | while (n != NULL && NODE_TYPE(n) == T_TNODE) { | ||
818 | tn = (struct tnode *) n; | ||
819 | |||
820 | check_tnode(tn); | ||
821 | |||
822 | if(tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { | ||
823 | pos=tn->pos + tn->bits; | ||
824 | n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits)); | ||
825 | } | ||
826 | else | ||
827 | break; | ||
828 | } | ||
829 | /* Case we have found a leaf. Compare prefixes */ | ||
830 | |||
831 | if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) { | ||
832 | struct leaf *l = (struct leaf *) n; | ||
833 | return l; | ||
834 | } | ||
835 | return NULL; | ||
836 | } | ||
837 | |||
838 | static struct node *trie_rebalance(struct trie *t, struct tnode *tn) | ||
839 | { | ||
840 | int i = 0; | ||
841 | int wasfull; | ||
842 | t_key cindex, key; | ||
843 | struct tnode *tp = NULL; | ||
844 | |||
845 | if(!tn) | ||
846 | BUG(); | ||
847 | |||
848 | key = tn->key; | ||
849 | i = 0; | ||
850 | |||
851 | while (tn != NULL && NODE_PARENT(tn) != NULL) { | ||
852 | |||
853 | if( i > 10 ) { | ||
854 | printk("Rebalance tn=%p \n", tn); | ||
855 | if(tn) printk("tn->parent=%p \n", NODE_PARENT(tn)); | ||
856 | |||
857 | printk("Rebalance tp=%p \n", tp); | ||
858 | if(tp) printk("tp->parent=%p \n", NODE_PARENT(tp)); | ||
859 | } | ||
860 | |||
861 | if( i > 12 ) BUG(); | ||
862 | i++; | ||
863 | |||
864 | tp = NODE_PARENT(tn); | ||
865 | cindex = tkey_extract_bits(key, tp->pos, tp->bits); | ||
866 | wasfull = tnode_full(tp, tnode_get_child(tp, cindex)); | ||
867 | tn = (struct tnode *) resize (t, (struct tnode *)tn); | ||
868 | tnode_put_child_reorg((struct tnode *)tp, cindex,(struct node*)tn, wasfull); | ||
869 | |||
870 | if(!NODE_PARENT(tn)) | ||
871 | break; | ||
872 | |||
873 | tn = NODE_PARENT(tn); | ||
874 | } | ||
875 | /* Handle last (top) tnode */ | ||
876 | if (IS_TNODE(tn)) | ||
877 | tn = (struct tnode*) resize(t, (struct tnode *)tn); | ||
878 | |||
879 | return (struct node*) tn; | ||
880 | } | ||
881 | |||
882 | static struct list_head * | ||
883 | fib_insert_node(struct trie *t, u32 key, int plen) | ||
884 | { | ||
885 | int pos, newpos; | ||
886 | struct tnode *tp = NULL, *tn = NULL; | ||
887 | struct node *n; | ||
888 | struct leaf *l; | ||
889 | int missbit; | ||
890 | struct list_head *fa_head=NULL; | ||
891 | struct leaf_info *li; | ||
892 | t_key cindex; | ||
893 | |||
894 | pos = 0; | ||
895 | n=t->trie; | ||
896 | |||
897 | /* If we point to NULL, stop. Either the tree is empty and we should | ||
898 | * just put a new leaf in if, or we have reached an empty child slot, | ||
899 | * and we should just put our new leaf in that. | ||
900 | * If we point to a T_TNODE, check if it matches our key. Note that | ||
901 | * a T_TNODE might be skipping any number of bits - its 'pos' need | ||
902 | * not be the parent's 'pos'+'bits'! | ||
903 | * | ||
904 | * If it does match the current key, get pos/bits from it, extract | ||
905 | * the index from our key, push the T_TNODE and walk the tree. | ||
906 | * | ||
907 | * If it doesn't, we have to replace it with a new T_TNODE. | ||
908 | * | ||
909 | * If we point to a T_LEAF, it might or might not have the same key | ||
910 | * as we do. If it does, just change the value, update the T_LEAF's | ||
911 | * value, and return it. | ||
912 | * If it doesn't, we need to replace it with a T_TNODE. | ||
913 | */ | ||
914 | |||
915 | while (n != NULL && NODE_TYPE(n) == T_TNODE) { | ||
916 | tn = (struct tnode *) n; | ||
917 | |||
918 | check_tnode(tn); | ||
919 | |||
920 | if(tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { | ||
921 | tp = tn; | ||
922 | pos=tn->pos + tn->bits; | ||
923 | n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits)); | ||
924 | |||
925 | if(n && NODE_PARENT(n) != tn) { | ||
926 | printk("BUG tn=%p, n->parent=%p\n", tn, NODE_PARENT(n)); | ||
927 | BUG(); | ||
928 | } | ||
929 | } | ||
930 | else | ||
931 | break; | ||
932 | } | ||
933 | |||
934 | /* | ||
935 | * n ----> NULL, LEAF or TNODE | ||
936 | * | ||
937 | * tp is n's (parent) ----> NULL or TNODE | ||
938 | */ | ||
939 | |||
940 | if(tp && IS_LEAF(tp)) | ||
941 | BUG(); | ||
942 | |||
943 | t->revision++; | ||
944 | |||
945 | /* Case 1: n is a leaf. Compare prefixes */ | ||
946 | |||
947 | if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) { | ||
948 | struct leaf *l = ( struct leaf *) n; | ||
949 | |||
950 | li = leaf_info_new(plen); | ||
951 | |||
952 | if(! li) | ||
953 | BUG(); | ||
954 | |||
955 | fa_head = &li->falh; | ||
956 | insert_leaf_info(&l->list, li); | ||
957 | goto done; | ||
958 | } | ||
959 | t->size++; | ||
960 | l = leaf_new(); | ||
961 | |||
962 | if(! l) | ||
963 | BUG(); | ||
964 | |||
965 | l->key = key; | ||
966 | li = leaf_info_new(plen); | ||
967 | |||
968 | if(! li) | ||
969 | BUG(); | ||
970 | |||
971 | fa_head = &li->falh; | ||
972 | insert_leaf_info(&l->list, li); | ||
973 | |||
974 | /* Case 2: n is NULL, and will just insert a new leaf */ | ||
975 | if (t->trie && n == NULL) { | ||
976 | |||
977 | NODE_SET_PARENT(l, tp); | ||
978 | |||
979 | if (!tp) | ||
980 | BUG(); | ||
981 | |||
982 | else { | ||
983 | cindex = tkey_extract_bits(key, tp->pos, tp->bits); | ||
984 | put_child(t, (struct tnode *)tp, cindex, (struct node *)l); | ||
985 | } | ||
986 | } | ||
987 | /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */ | ||
988 | else { | ||
989 | /* | ||
990 | * Add a new tnode here | ||
991 | * first tnode need some special handling | ||
992 | */ | ||
993 | |||
994 | if (tp) | ||
995 | pos=tp->pos+tp->bits; | ||
996 | else | ||
997 | pos=0; | ||
998 | if(n) { | ||
999 | newpos = tkey_mismatch(key, pos, n->key); | ||
1000 | tn = tnode_new(n->key, newpos, 1); | ||
1001 | } | ||
1002 | else { | ||
1003 | newpos = 0; | ||
1004 | tn = tnode_new(key, newpos, 1); /* First tnode */ | ||
1005 | } | ||
1006 | if(!tn) | ||
1007 | trie_bug("tnode_pfx_new failed"); | ||
1008 | |||
1009 | NODE_SET_PARENT(tn, tp); | ||
1010 | |||
1011 | missbit=tkey_extract_bits(key, newpos, 1); | ||
1012 | put_child(t, tn, missbit, (struct node *)l); | ||
1013 | put_child(t, tn, 1-missbit, n); | ||
1014 | |||
1015 | if(tp) { | ||
1016 | cindex = tkey_extract_bits(key, tp->pos, tp->bits); | ||
1017 | put_child(t, (struct tnode *)tp, cindex, (struct node *)tn); | ||
1018 | } | ||
1019 | else { | ||
1020 | t->trie = (struct node*) tn; /* First tnode */ | ||
1021 | tp = tn; | ||
1022 | } | ||
1023 | } | ||
1024 | if(tp && tp->pos+tp->bits > 32) { | ||
1025 | printk("ERROR tp=%p pos=%d, bits=%d, key=%0x plen=%d\n", | ||
1026 | tp, tp->pos, tp->bits, key, plen); | ||
1027 | } | ||
1028 | /* Rebalance the trie */ | ||
1029 | t->trie = trie_rebalance(t, tp); | ||
1030 | done:; | ||
1031 | return fa_head; | ||
1032 | } | ||
1033 | |||
1034 | static int | ||
1035 | fn_trie_insert(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta, | ||
1036 | struct nlmsghdr *nlhdr, struct netlink_skb_parms *req) | ||
1037 | { | ||
1038 | struct trie *t = (struct trie *) tb->tb_data; | ||
1039 | struct fib_alias *fa, *new_fa; | ||
1040 | struct list_head *fa_head=NULL; | ||
1041 | struct fib_info *fi; | ||
1042 | int plen = r->rtm_dst_len; | ||
1043 | int type = r->rtm_type; | ||
1044 | u8 tos = r->rtm_tos; | ||
1045 | u32 key, mask; | ||
1046 | int err; | ||
1047 | struct leaf *l; | ||
1048 | |||
1049 | if (plen > 32) | ||
1050 | return -EINVAL; | ||
1051 | |||
1052 | key = 0; | ||
1053 | if (rta->rta_dst) | ||
1054 | memcpy(&key, rta->rta_dst, 4); | ||
1055 | |||
1056 | key = ntohl(key); | ||
1057 | |||
1058 | if(trie_debug) | ||
1059 | printk("Insert table=%d %08x/%d\n", tb->tb_id, key, plen); | ||
1060 | |||
1061 | mask = ntohl( inet_make_mask(plen) ); | ||
1062 | |||
1063 | if(key & ~mask) | ||
1064 | return -EINVAL; | ||
1065 | |||
1066 | key = key & mask; | ||
1067 | |||
1068 | if ((fi = fib_create_info(r, rta, nlhdr, &err)) == NULL) | ||
1069 | goto err; | ||
1070 | |||
1071 | l = fib_find_node(t, key); | ||
1072 | fa = NULL; | ||
1073 | |||
1074 | if(l) { | ||
1075 | fa_head = get_fa_head(l, plen); | ||
1076 | fa = fib_find_alias(fa_head, tos, fi->fib_priority); | ||
1077 | } | ||
1078 | |||
1079 | /* Now fa, if non-NULL, points to the first fib alias | ||
1080 | * with the same keys [prefix,tos,priority], if such key already | ||
1081 | * exists or to the node before which we will insert new one. | ||
1082 | * | ||
1083 | * If fa is NULL, we will need to allocate a new one and | ||
1084 | * insert to the head of f. | ||
1085 | * | ||
1086 | * If f is NULL, no fib node matched the destination key | ||
1087 | * and we need to allocate a new one of those as well. | ||
1088 | */ | ||
1089 | |||
1090 | if (fa && | ||
1091 | fa->fa_info->fib_priority == fi->fib_priority) { | ||
1092 | struct fib_alias *fa_orig; | ||
1093 | |||
1094 | err = -EEXIST; | ||
1095 | if (nlhdr->nlmsg_flags & NLM_F_EXCL) | ||
1096 | goto out; | ||
1097 | |||
1098 | if (nlhdr->nlmsg_flags & NLM_F_REPLACE) { | ||
1099 | struct fib_info *fi_drop; | ||
1100 | u8 state; | ||
1101 | |||
1102 | write_lock_bh(&fib_lock); | ||
1103 | |||
1104 | fi_drop = fa->fa_info; | ||
1105 | fa->fa_info = fi; | ||
1106 | fa->fa_type = type; | ||
1107 | fa->fa_scope = r->rtm_scope; | ||
1108 | state = fa->fa_state; | ||
1109 | fa->fa_state &= ~FA_S_ACCESSED; | ||
1110 | |||
1111 | write_unlock_bh(&fib_lock); | ||
1112 | |||
1113 | fib_release_info(fi_drop); | ||
1114 | if (state & FA_S_ACCESSED) | ||
1115 | rt_cache_flush(-1); | ||
1116 | |||
1117 | goto succeeded; | ||
1118 | } | ||
1119 | /* Error if we find a perfect match which | ||
1120 | * uses the same scope, type, and nexthop | ||
1121 | * information. | ||
1122 | */ | ||
1123 | fa_orig = fa; | ||
1124 | list_for_each_entry(fa, fa_orig->fa_list.prev, fa_list) { | ||
1125 | if (fa->fa_tos != tos) | ||
1126 | break; | ||
1127 | if (fa->fa_info->fib_priority != fi->fib_priority) | ||
1128 | break; | ||
1129 | if (fa->fa_type == type && | ||
1130 | fa->fa_scope == r->rtm_scope && | ||
1131 | fa->fa_info == fi) { | ||
1132 | goto out; | ||
1133 | } | ||
1134 | } | ||
1135 | if (!(nlhdr->nlmsg_flags & NLM_F_APPEND)) | ||
1136 | fa = fa_orig; | ||
1137 | } | ||
1138 | err = -ENOENT; | ||
1139 | if (!(nlhdr->nlmsg_flags&NLM_F_CREATE)) | ||
1140 | goto out; | ||
1141 | |||
1142 | err = -ENOBUFS; | ||
1143 | new_fa = kmem_cache_alloc(fn_alias_kmem, SLAB_KERNEL); | ||
1144 | if (new_fa == NULL) | ||
1145 | goto out; | ||
1146 | |||
1147 | new_fa->fa_info = fi; | ||
1148 | new_fa->fa_tos = tos; | ||
1149 | new_fa->fa_type = type; | ||
1150 | new_fa->fa_scope = r->rtm_scope; | ||
1151 | new_fa->fa_state = 0; | ||
1152 | #if 0 | ||
1153 | new_fa->dst = NULL; | ||
1154 | #endif | ||
1155 | /* | ||
1156 | * Insert new entry to the list. | ||
1157 | */ | ||
1158 | |||
1159 | if(!fa_head) | ||
1160 | fa_head = fib_insert_node(t, key, plen); | ||
1161 | |||
1162 | write_lock_bh(&fib_lock); | ||
1163 | |||
1164 | list_add_tail(&new_fa->fa_list, | ||
1165 | (fa ? &fa->fa_list : fa_head)); | ||
1166 | |||
1167 | write_unlock_bh(&fib_lock); | ||
1168 | |||
1169 | rt_cache_flush(-1); | ||
1170 | rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, nlhdr, req); | ||
1171 | succeeded: | ||
1172 | return 0; | ||
1173 | out: | ||
1174 | fib_release_info(fi); | ||
1175 | err:; | ||
1176 | return err; | ||
1177 | } | ||
1178 | |||
1179 | static inline int check_leaf(struct trie *t, struct leaf *l, t_key key, int *plen, const struct flowi *flp, | ||
1180 | struct fib_result *res, int *err) | ||
1181 | { | ||
1182 | int i; | ||
1183 | t_key mask; | ||
1184 | struct leaf_info *li; | ||
1185 | struct hlist_head *hhead = &l->list; | ||
1186 | struct hlist_node *node; | ||
1187 | |||
1188 | hlist_for_each_entry(li, node, hhead, hlist) { | ||
1189 | |||
1190 | i = li->plen; | ||
1191 | mask = ntohl(inet_make_mask(i)); | ||
1192 | if (l->key != (key & mask)) | ||
1193 | continue; | ||
1194 | |||
1195 | if (((*err) = fib_semantic_match(&li->falh, flp, res, l->key, mask, i)) == 0) { | ||
1196 | *plen = i; | ||
1197 | #ifdef CONFIG_IP_FIB_TRIE_STATS | ||
1198 | t->stats.semantic_match_passed++; | ||
1199 | #endif | ||
1200 | return 1; | ||
1201 | } | ||
1202 | #ifdef CONFIG_IP_FIB_TRIE_STATS | ||
1203 | t->stats.semantic_match_miss++; | ||
1204 | #endif | ||
1205 | } | ||
1206 | return 0; | ||
1207 | } | ||
1208 | |||
1209 | static int | ||
1210 | fn_trie_lookup(struct fib_table *tb, const struct flowi *flp, struct fib_result *res) | ||
1211 | { | ||
1212 | struct trie *t = (struct trie *) tb->tb_data; | ||
1213 | int plen, ret = 0; | ||
1214 | struct node *n; | ||
1215 | struct tnode *pn; | ||
1216 | int pos, bits; | ||
1217 | t_key key=ntohl(flp->fl4_dst); | ||
1218 | int chopped_off; | ||
1219 | t_key cindex = 0; | ||
1220 | int current_prefix_length = KEYLENGTH; | ||
1221 | n = t->trie; | ||
1222 | |||
1223 | read_lock(&fib_lock); | ||
1224 | if(!n) | ||
1225 | goto failed; | ||
1226 | |||
1227 | #ifdef CONFIG_IP_FIB_TRIE_STATS | ||
1228 | t->stats.gets++; | ||
1229 | #endif | ||
1230 | |||
1231 | /* Just a leaf? */ | ||
1232 | if (IS_LEAF(n)) { | ||
1233 | if( check_leaf(t, (struct leaf *)n, key, &plen, flp, res, &ret) ) | ||
1234 | goto found; | ||
1235 | goto failed; | ||
1236 | } | ||
1237 | pn = (struct tnode *) n; | ||
1238 | chopped_off = 0; | ||
1239 | |||
1240 | while (pn) { | ||
1241 | |||
1242 | pos = pn->pos; | ||
1243 | bits = pn->bits; | ||
1244 | |||
1245 | if(!chopped_off) | ||
1246 | cindex = tkey_extract_bits(MASK_PFX(key, current_prefix_length), pos, bits); | ||
1247 | |||
1248 | n = tnode_get_child(pn, cindex); | ||
1249 | |||
1250 | if (n == NULL) { | ||
1251 | #ifdef CONFIG_IP_FIB_TRIE_STATS | ||
1252 | t->stats.null_node_hit++; | ||
1253 | #endif | ||
1254 | goto backtrace; | ||
1255 | } | ||
1256 | |||
1257 | if (IS_TNODE(n)) { | ||
1258 | #define HL_OPTIMIZE | ||
1259 | #ifdef HL_OPTIMIZE | ||
1260 | struct tnode *cn = (struct tnode *)n; | ||
1261 | t_key node_prefix, key_prefix, pref_mismatch; | ||
1262 | int mp; | ||
1263 | |||
1264 | /* | ||
1265 | * It's a tnode, and we can do some extra checks here if we | ||
1266 | * like, to avoid descending into a dead-end branch. | ||
1267 | * This tnode is in the parent's child array at index | ||
1268 | * key[p_pos..p_pos+p_bits] but potentially with some bits | ||
1269 | * chopped off, so in reality the index may be just a | ||
1270 | * subprefix, padded with zero at the end. | ||
1271 | * We can also take a look at any skipped bits in this | ||
1272 | * tnode - everything up to p_pos is supposed to be ok, | ||
1273 | * and the non-chopped bits of the index (se previous | ||
1274 | * paragraph) are also guaranteed ok, but the rest is | ||
1275 | * considered unknown. | ||
1276 | * | ||
1277 | * The skipped bits are key[pos+bits..cn->pos]. | ||
1278 | */ | ||
1279 | |||
1280 | /* If current_prefix_length < pos+bits, we are already doing | ||
1281 | * actual prefix matching, which means everything from | ||
1282 | * pos+(bits-chopped_off) onward must be zero along some | ||
1283 | * branch of this subtree - otherwise there is *no* valid | ||
1284 | * prefix present. Here we can only check the skipped | ||
1285 | * bits. Remember, since we have already indexed into the | ||
1286 | * parent's child array, we know that the bits we chopped of | ||
1287 | * *are* zero. | ||
1288 | */ | ||
1289 | |||
1290 | /* NOTA BENE: CHECKING ONLY SKIPPED BITS FOR THE NEW NODE HERE */ | ||
1291 | |||
1292 | if (current_prefix_length < pos+bits) { | ||
1293 | if (tkey_extract_bits(cn->key, current_prefix_length, | ||
1294 | cn->pos - current_prefix_length) != 0 || | ||
1295 | !(cn->child[0])) | ||
1296 | goto backtrace; | ||
1297 | } | ||
1298 | |||
1299 | /* | ||
1300 | * If chopped_off=0, the index is fully validated and we | ||
1301 | * only need to look at the skipped bits for this, the new, | ||
1302 | * tnode. What we actually want to do is to find out if | ||
1303 | * these skipped bits match our key perfectly, or if we will | ||
1304 | * have to count on finding a matching prefix further down, | ||
1305 | * because if we do, we would like to have some way of | ||
1306 | * verifying the existence of such a prefix at this point. | ||
1307 | */ | ||
1308 | |||
1309 | /* The only thing we can do at this point is to verify that | ||
1310 | * any such matching prefix can indeed be a prefix to our | ||
1311 | * key, and if the bits in the node we are inspecting that | ||
1312 | * do not match our key are not ZERO, this cannot be true. | ||
1313 | * Thus, find out where there is a mismatch (before cn->pos) | ||
1314 | * and verify that all the mismatching bits are zero in the | ||
1315 | * new tnode's key. | ||
1316 | */ | ||
1317 | |||
1318 | /* Note: We aren't very concerned about the piece of the key | ||
1319 | * that precede pn->pos+pn->bits, since these have already been | ||
1320 | * checked. The bits after cn->pos aren't checked since these are | ||
1321 | * by definition "unknown" at this point. Thus, what we want to | ||
1322 | * see is if we are about to enter the "prefix matching" state, | ||
1323 | * and in that case verify that the skipped bits that will prevail | ||
1324 | * throughout this subtree are zero, as they have to be if we are | ||
1325 | * to find a matching prefix. | ||
1326 | */ | ||
1327 | |||
1328 | node_prefix = MASK_PFX(cn->key, cn->pos); | ||
1329 | key_prefix = MASK_PFX(key, cn->pos); | ||
1330 | pref_mismatch = key_prefix^node_prefix; | ||
1331 | mp = 0; | ||
1332 | |||
1333 | /* In short: If skipped bits in this node do not match the search | ||
1334 | * key, enter the "prefix matching" state.directly. | ||
1335 | */ | ||
1336 | if (pref_mismatch) { | ||
1337 | while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) { | ||
1338 | mp++; | ||
1339 | pref_mismatch = pref_mismatch <<1; | ||
1340 | } | ||
1341 | key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp); | ||
1342 | |||
1343 | if (key_prefix != 0) | ||
1344 | goto backtrace; | ||
1345 | |||
1346 | if (current_prefix_length >= cn->pos) | ||
1347 | current_prefix_length=mp; | ||
1348 | } | ||
1349 | #endif | ||
1350 | pn = (struct tnode *)n; /* Descend */ | ||
1351 | chopped_off = 0; | ||
1352 | continue; | ||
1353 | } | ||
1354 | if (IS_LEAF(n)) { | ||
1355 | if( check_leaf(t, (struct leaf *)n, key, &plen, flp, res, &ret)) | ||
1356 | goto found; | ||
1357 | } | ||
1358 | backtrace: | ||
1359 | chopped_off++; | ||
1360 | |||
1361 | /* As zero don't change the child key (cindex) */ | ||
1362 | while ((chopped_off <= pn->bits) && !(cindex & (1<<(chopped_off-1)))) { | ||
1363 | chopped_off++; | ||
1364 | } | ||
1365 | |||
1366 | /* Decrease current_... with bits chopped off */ | ||
1367 | if (current_prefix_length > pn->pos + pn->bits - chopped_off) | ||
1368 | current_prefix_length = pn->pos + pn->bits - chopped_off; | ||
1369 | |||
1370 | /* | ||
1371 | * Either we do the actual chop off according or if we have | ||
1372 | * chopped off all bits in this tnode walk up to our parent. | ||
1373 | */ | ||
1374 | |||
1375 | if(chopped_off <= pn->bits) | ||
1376 | cindex &= ~(1 << (chopped_off-1)); | ||
1377 | else { | ||
1378 | if( NODE_PARENT(pn) == NULL) | ||
1379 | goto failed; | ||
1380 | |||
1381 | /* Get Child's index */ | ||
1382 | cindex = tkey_extract_bits(pn->key, NODE_PARENT(pn)->pos, NODE_PARENT(pn)->bits); | ||
1383 | pn = NODE_PARENT(pn); | ||
1384 | chopped_off = 0; | ||
1385 | |||
1386 | #ifdef CONFIG_IP_FIB_TRIE_STATS | ||
1387 | t->stats.backtrack++; | ||
1388 | #endif | ||
1389 | goto backtrace; | ||
1390 | } | ||
1391 | } | ||
1392 | failed: | ||
1393 | ret = 1; | ||
1394 | found: | ||
1395 | read_unlock(&fib_lock); | ||
1396 | return ret; | ||
1397 | } | ||
1398 | |||
1399 | static int trie_leaf_remove(struct trie *t, t_key key) | ||
1400 | { | ||
1401 | t_key cindex; | ||
1402 | struct tnode *tp = NULL; | ||
1403 | struct node *n = t->trie; | ||
1404 | struct leaf *l; | ||
1405 | |||
1406 | if(trie_debug) | ||
1407 | printk("entering trie_leaf_remove(%p)\n", n); | ||
1408 | |||
1409 | /* Note that in the case skipped bits, those bits are *not* checked! | ||
1410 | * When we finish this, we will have NULL or a T_LEAF, and the | ||
1411 | * T_LEAF may or may not match our key. | ||
1412 | */ | ||
1413 | |||
1414 | while (n != NULL && IS_TNODE(n)) { | ||
1415 | struct tnode *tn = (struct tnode *) n; | ||
1416 | check_tnode(tn); | ||
1417 | n = tnode_get_child(tn ,tkey_extract_bits(key, tn->pos, tn->bits)); | ||
1418 | |||
1419 | if(n && NODE_PARENT(n) != tn) { | ||
1420 | printk("BUG tn=%p, n->parent=%p\n", tn, NODE_PARENT(n)); | ||
1421 | BUG(); | ||
1422 | } | ||
1423 | } | ||
1424 | l = (struct leaf *) n; | ||
1425 | |||
1426 | if(!n || !tkey_equals(l->key, key)) | ||
1427 | return 0; | ||
1428 | |||
1429 | /* | ||
1430 | * Key found. | ||
1431 | * Remove the leaf and rebalance the tree | ||
1432 | */ | ||
1433 | |||
1434 | t->revision++; | ||
1435 | t->size--; | ||
1436 | |||
1437 | tp = NODE_PARENT(n); | ||
1438 | tnode_free((struct tnode *) n); | ||
1439 | |||
1440 | if(tp) { | ||
1441 | cindex = tkey_extract_bits(key, tp->pos, tp->bits); | ||
1442 | put_child(t, (struct tnode *)tp, cindex, NULL); | ||
1443 | t->trie = trie_rebalance(t, tp); | ||
1444 | } | ||
1445 | else | ||
1446 | t->trie = NULL; | ||
1447 | |||
1448 | return 1; | ||
1449 | } | ||
1450 | |||
1451 | static int | ||
1452 | fn_trie_delete(struct fib_table *tb, struct rtmsg *r, struct kern_rta *rta, | ||
1453 | struct nlmsghdr *nlhdr, struct netlink_skb_parms *req) | ||
1454 | { | ||
1455 | struct trie *t = (struct trie *) tb->tb_data; | ||
1456 | u32 key, mask; | ||
1457 | int plen = r->rtm_dst_len; | ||
1458 | u8 tos = r->rtm_tos; | ||
1459 | struct fib_alias *fa, *fa_to_delete; | ||
1460 | struct list_head *fa_head; | ||
1461 | struct leaf *l; | ||
1462 | |||
1463 | if (plen > 32) | ||
1464 | return -EINVAL; | ||
1465 | |||
1466 | key = 0; | ||
1467 | if (rta->rta_dst) | ||
1468 | memcpy(&key, rta->rta_dst, 4); | ||
1469 | |||
1470 | key = ntohl(key); | ||
1471 | mask = ntohl( inet_make_mask(plen) ); | ||
1472 | |||
1473 | if(key & ~mask) | ||
1474 | return -EINVAL; | ||
1475 | |||
1476 | key = key & mask; | ||
1477 | l = fib_find_node(t, key); | ||
1478 | |||
1479 | if(!l) | ||
1480 | return -ESRCH; | ||
1481 | |||
1482 | fa_head = get_fa_head(l, plen); | ||
1483 | fa = fib_find_alias(fa_head, tos, 0); | ||
1484 | |||
1485 | if (!fa) | ||
1486 | return -ESRCH; | ||
1487 | |||
1488 | if (trie_debug) | ||
1489 | printk("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); | ||
1490 | |||
1491 | fa_to_delete = NULL; | ||
1492 | fa_head = fa->fa_list.prev; | ||
1493 | list_for_each_entry(fa, fa_head, fa_list) { | ||
1494 | struct fib_info *fi = fa->fa_info; | ||
1495 | |||
1496 | if (fa->fa_tos != tos) | ||
1497 | break; | ||
1498 | |||
1499 | if ((!r->rtm_type || | ||
1500 | fa->fa_type == r->rtm_type) && | ||
1501 | (r->rtm_scope == RT_SCOPE_NOWHERE || | ||
1502 | fa->fa_scope == r->rtm_scope) && | ||
1503 | (!r->rtm_protocol || | ||
1504 | fi->fib_protocol == r->rtm_protocol) && | ||
1505 | fib_nh_match(r, nlhdr, rta, fi) == 0) { | ||
1506 | fa_to_delete = fa; | ||
1507 | break; | ||
1508 | } | ||
1509 | } | ||
1510 | |||
1511 | if (fa_to_delete) { | ||
1512 | int kill_li = 0; | ||
1513 | struct leaf_info *li; | ||
1514 | |||
1515 | fa = fa_to_delete; | ||
1516 | rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id, nlhdr, req); | ||
1517 | |||
1518 | l = fib_find_node(t, key); | ||
1519 | li = find_leaf_info(&l->list, plen); | ||
1520 | |||
1521 | write_lock_bh(&fib_lock); | ||
1522 | |||
1523 | list_del(&fa->fa_list); | ||
1524 | |||
1525 | if(list_empty(fa_head)) { | ||
1526 | hlist_del(&li->hlist); | ||
1527 | kill_li = 1; | ||
1528 | } | ||
1529 | write_unlock_bh(&fib_lock); | ||
1530 | |||
1531 | if(kill_li) | ||
1532 | free_leaf_info(li); | ||
1533 | |||
1534 | if(hlist_empty(&l->list)) | ||
1535 | trie_leaf_remove(t, key); | ||
1536 | |||
1537 | if (fa->fa_state & FA_S_ACCESSED) | ||
1538 | rt_cache_flush(-1); | ||
1539 | |||
1540 | fn_free_alias(fa); | ||
1541 | return 0; | ||
1542 | } | ||
1543 | return -ESRCH; | ||
1544 | } | ||
1545 | |||
1546 | static int trie_flush_list(struct trie *t, struct list_head *head) | ||
1547 | { | ||
1548 | struct fib_alias *fa, *fa_node; | ||
1549 | int found = 0; | ||
1550 | |||
1551 | list_for_each_entry_safe(fa, fa_node, head, fa_list) { | ||
1552 | struct fib_info *fi = fa->fa_info; | ||
1553 | |||
1554 | if (fi && (fi->fib_flags&RTNH_F_DEAD)) { | ||
1555 | |||
1556 | write_lock_bh(&fib_lock); | ||
1557 | list_del(&fa->fa_list); | ||
1558 | write_unlock_bh(&fib_lock); | ||
1559 | |||
1560 | fn_free_alias(fa); | ||
1561 | found++; | ||
1562 | } | ||
1563 | } | ||
1564 | return found; | ||
1565 | } | ||
1566 | |||
1567 | static int trie_flush_leaf(struct trie *t, struct leaf *l) | ||
1568 | { | ||
1569 | int found = 0; | ||
1570 | struct hlist_head *lih = &l->list; | ||
1571 | struct hlist_node *node, *tmp; | ||
1572 | struct leaf_info *li = NULL; | ||
1573 | |||
1574 | hlist_for_each_entry_safe(li, node, tmp, lih, hlist) { | ||
1575 | |||
1576 | found += trie_flush_list(t, &li->falh); | ||
1577 | |||
1578 | if (list_empty(&li->falh)) { | ||
1579 | |||
1580 | write_lock_bh(&fib_lock); | ||
1581 | hlist_del(&li->hlist); | ||
1582 | write_unlock_bh(&fib_lock); | ||
1583 | |||
1584 | free_leaf_info(li); | ||
1585 | } | ||
1586 | } | ||
1587 | return found; | ||
1588 | } | ||
1589 | |||
1590 | static struct leaf *nextleaf(struct trie *t, struct leaf *thisleaf) | ||
1591 | { | ||
1592 | struct node *c = (struct node *) thisleaf; | ||
1593 | struct tnode *p; | ||
1594 | int idx; | ||
1595 | |||
1596 | if(c == NULL) { | ||
1597 | if(t->trie == NULL) | ||
1598 | return NULL; | ||
1599 | |||
1600 | if (IS_LEAF(t->trie)) /* trie w. just a leaf */ | ||
1601 | return (struct leaf *) t->trie; | ||
1602 | |||
1603 | p = (struct tnode*) t->trie; /* Start */ | ||
1604 | } | ||
1605 | else | ||
1606 | p = (struct tnode *) NODE_PARENT(c); | ||
1607 | while (p) { | ||
1608 | int pos, last; | ||
1609 | |||
1610 | /* Find the next child of the parent */ | ||
1611 | if(c) | ||
1612 | pos = 1 + tkey_extract_bits(c->key, p->pos, p->bits); | ||
1613 | else | ||
1614 | pos = 0; | ||
1615 | |||
1616 | last = 1 << p->bits; | ||
1617 | for(idx = pos; idx < last ; idx++) { | ||
1618 | if( p->child[idx]) { | ||
1619 | |||
1620 | /* Decend if tnode */ | ||
1621 | |||
1622 | while (IS_TNODE(p->child[idx])) { | ||
1623 | p = (struct tnode*) p->child[idx]; | ||
1624 | idx = 0; | ||
1625 | |||
1626 | /* Rightmost non-NULL branch */ | ||
1627 | if( p && IS_TNODE(p) ) | ||
1628 | while ( p->child[idx] == NULL && idx < (1 << p->bits) ) idx++; | ||
1629 | |||
1630 | /* Done with this tnode? */ | ||
1631 | if( idx >= (1 << p->bits) || p->child[idx] == NULL ) | ||
1632 | goto up; | ||
1633 | } | ||
1634 | return (struct leaf*) p->child[idx]; | ||
1635 | } | ||
1636 | } | ||
1637 | up: | ||
1638 | /* No more children go up one step */ | ||
1639 | c = (struct node*) p; | ||
1640 | p = (struct tnode *) NODE_PARENT(p); | ||
1641 | } | ||
1642 | return NULL; /* Ready. Root of trie */ | ||
1643 | } | ||
1644 | |||
1645 | static int fn_trie_flush(struct fib_table *tb) | ||
1646 | { | ||
1647 | struct trie *t = (struct trie *) tb->tb_data; | ||
1648 | struct leaf *ll = NULL, *l = NULL; | ||
1649 | int found = 0, h; | ||
1650 | |||
1651 | t->revision++; | ||
1652 | |||
1653 | for (h=0; (l = nextleaf(t, l)) != NULL; h++) { | ||
1654 | found += trie_flush_leaf(t, l); | ||
1655 | |||
1656 | if (ll && hlist_empty(&ll->list)) | ||
1657 | trie_leaf_remove(t, ll->key); | ||
1658 | ll = l; | ||
1659 | } | ||
1660 | |||
1661 | if (ll && hlist_empty(&ll->list)) | ||
1662 | trie_leaf_remove(t, ll->key); | ||
1663 | |||
1664 | if(trie_debug) | ||
1665 | printk("trie_flush found=%d\n", found); | ||
1666 | return found; | ||
1667 | } | ||
1668 | |||
1669 | static int trie_last_dflt=-1; | ||
1670 | |||
1671 | static void | ||
1672 | fn_trie_select_default(struct fib_table *tb, const struct flowi *flp, struct fib_result *res) | ||
1673 | { | ||
1674 | struct trie *t = (struct trie *) tb->tb_data; | ||
1675 | int order, last_idx; | ||
1676 | struct fib_info *fi = NULL; | ||
1677 | struct fib_info *last_resort; | ||
1678 | struct fib_alias *fa = NULL; | ||
1679 | struct list_head *fa_head; | ||
1680 | struct leaf *l; | ||
1681 | |||
1682 | last_idx = -1; | ||
1683 | last_resort = NULL; | ||
1684 | order = -1; | ||
1685 | |||
1686 | read_lock(&fib_lock); | ||
1687 | |||
1688 | l = fib_find_node(t, 0); | ||
1689 | if(!l) | ||
1690 | goto out; | ||
1691 | |||
1692 | fa_head = get_fa_head(l, 0); | ||
1693 | if(!fa_head) | ||
1694 | goto out; | ||
1695 | |||
1696 | if (list_empty(fa_head)) | ||
1697 | goto out; | ||
1698 | |||
1699 | list_for_each_entry(fa, fa_head, fa_list) { | ||
1700 | struct fib_info *next_fi = fa->fa_info; | ||
1701 | |||
1702 | if (fa->fa_scope != res->scope || | ||
1703 | fa->fa_type != RTN_UNICAST) | ||
1704 | continue; | ||
1705 | |||
1706 | if (next_fi->fib_priority > res->fi->fib_priority) | ||
1707 | break; | ||
1708 | if (!next_fi->fib_nh[0].nh_gw || | ||
1709 | next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK) | ||
1710 | continue; | ||
1711 | fa->fa_state |= FA_S_ACCESSED; | ||
1712 | |||
1713 | if (fi == NULL) { | ||
1714 | if (next_fi != res->fi) | ||
1715 | break; | ||
1716 | } else if (!fib_detect_death(fi, order, &last_resort, | ||
1717 | &last_idx, &trie_last_dflt)) { | ||
1718 | if (res->fi) | ||
1719 | fib_info_put(res->fi); | ||
1720 | res->fi = fi; | ||
1721 | atomic_inc(&fi->fib_clntref); | ||
1722 | trie_last_dflt = order; | ||
1723 | goto out; | ||
1724 | } | ||
1725 | fi = next_fi; | ||
1726 | order++; | ||
1727 | } | ||
1728 | if (order <= 0 || fi == NULL) { | ||
1729 | trie_last_dflt = -1; | ||
1730 | goto out; | ||
1731 | } | ||
1732 | |||
1733 | if (!fib_detect_death(fi, order, &last_resort, &last_idx, &trie_last_dflt)) { | ||
1734 | if (res->fi) | ||
1735 | fib_info_put(res->fi); | ||
1736 | res->fi = fi; | ||
1737 | atomic_inc(&fi->fib_clntref); | ||
1738 | trie_last_dflt = order; | ||
1739 | goto out; | ||
1740 | } | ||
1741 | if (last_idx >= 0) { | ||
1742 | if (res->fi) | ||
1743 | fib_info_put(res->fi); | ||
1744 | res->fi = last_resort; | ||
1745 | if (last_resort) | ||
1746 | atomic_inc(&last_resort->fib_clntref); | ||
1747 | } | ||
1748 | trie_last_dflt = last_idx; | ||
1749 | out:; | ||
1750 | read_unlock(&fib_lock); | ||
1751 | } | ||
1752 | |||
1753 | static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, struct fib_table *tb, | ||
1754 | struct sk_buff *skb, struct netlink_callback *cb) | ||
1755 | { | ||
1756 | int i, s_i; | ||
1757 | struct fib_alias *fa; | ||
1758 | |||
1759 | u32 xkey=htonl(key); | ||
1760 | |||
1761 | s_i=cb->args[3]; | ||
1762 | i = 0; | ||
1763 | |||
1764 | list_for_each_entry(fa, fah, fa_list) { | ||
1765 | if (i < s_i) { | ||
1766 | i++; | ||
1767 | continue; | ||
1768 | } | ||
1769 | if (fa->fa_info->fib_nh == NULL) { | ||
1770 | printk("Trie error _fib_nh=NULL in fa[%d] k=%08x plen=%d\n", i, key, plen); | ||
1771 | i++; | ||
1772 | continue; | ||
1773 | } | ||
1774 | if (fa->fa_info == NULL) { | ||
1775 | printk("Trie error fa_info=NULL in fa[%d] k=%08x plen=%d\n", i, key, plen); | ||
1776 | i++; | ||
1777 | continue; | ||
1778 | } | ||
1779 | |||
1780 | if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid, | ||
1781 | cb->nlh->nlmsg_seq, | ||
1782 | RTM_NEWROUTE, | ||
1783 | tb->tb_id, | ||
1784 | fa->fa_type, | ||
1785 | fa->fa_scope, | ||
1786 | &xkey, | ||
1787 | plen, | ||
1788 | fa->fa_tos, | ||
1789 | fa->fa_info) < 0) { | ||
1790 | cb->args[3] = i; | ||
1791 | return -1; | ||
1792 | } | ||
1793 | i++; | ||
1794 | } | ||
1795 | cb->args[3]=i; | ||
1796 | return skb->len; | ||
1797 | } | ||
1798 | |||
1799 | static int fn_trie_dump_plen(struct trie *t, int plen, struct fib_table *tb, struct sk_buff *skb, | ||
1800 | struct netlink_callback *cb) | ||
1801 | { | ||
1802 | int h, s_h; | ||
1803 | struct list_head *fa_head; | ||
1804 | struct leaf *l = NULL; | ||
1805 | s_h=cb->args[2]; | ||
1806 | |||
1807 | for (h=0; (l = nextleaf(t, l)) != NULL; h++) { | ||
1808 | |||
1809 | if (h < s_h) | ||
1810 | continue; | ||
1811 | if (h > s_h) | ||
1812 | memset(&cb->args[3], 0, | ||
1813 | sizeof(cb->args) - 3*sizeof(cb->args[0])); | ||
1814 | |||
1815 | fa_head = get_fa_head(l, plen); | ||
1816 | |||
1817 | if(!fa_head) | ||
1818 | continue; | ||
1819 | |||
1820 | if(list_empty(fa_head)) | ||
1821 | continue; | ||
1822 | |||
1823 | if (fn_trie_dump_fa(l->key, plen, fa_head, tb, skb, cb)<0) { | ||
1824 | cb->args[2]=h; | ||
1825 | return -1; | ||
1826 | } | ||
1827 | } | ||
1828 | cb->args[2]=h; | ||
1829 | return skb->len; | ||
1830 | } | ||
1831 | |||
1832 | static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb, struct netlink_callback *cb) | ||
1833 | { | ||
1834 | int m, s_m; | ||
1835 | struct trie *t = (struct trie *) tb->tb_data; | ||
1836 | |||
1837 | s_m = cb->args[1]; | ||
1838 | |||
1839 | read_lock(&fib_lock); | ||
1840 | for (m=0; m<=32; m++) { | ||
1841 | |||
1842 | if (m < s_m) | ||
1843 | continue; | ||
1844 | if (m > s_m) | ||
1845 | memset(&cb->args[2], 0, | ||
1846 | sizeof(cb->args) - 2*sizeof(cb->args[0])); | ||
1847 | |||
1848 | if (fn_trie_dump_plen(t, 32-m, tb, skb, cb)<0) { | ||
1849 | cb->args[1] = m; | ||
1850 | goto out; | ||
1851 | } | ||
1852 | } | ||
1853 | read_unlock(&fib_lock); | ||
1854 | cb->args[1] = m; | ||
1855 | return skb->len; | ||
1856 | out: | ||
1857 | read_unlock(&fib_lock); | ||
1858 | return -1; | ||
1859 | } | ||
1860 | |||
1861 | /* Fix more generic FIB names for init later */ | ||
1862 | |||
1863 | #ifdef CONFIG_IP_MULTIPLE_TABLES | ||
1864 | struct fib_table * fib_hash_init(int id) | ||
1865 | #else | ||
1866 | struct fib_table * __init fib_hash_init(int id) | ||
1867 | #endif | ||
1868 | { | ||
1869 | struct fib_table *tb; | ||
1870 | struct trie *t; | ||
1871 | |||
1872 | if (fn_alias_kmem == NULL) | ||
1873 | fn_alias_kmem = kmem_cache_create("ip_fib_alias", | ||
1874 | sizeof(struct fib_alias), | ||
1875 | 0, SLAB_HWCACHE_ALIGN, | ||
1876 | NULL, NULL); | ||
1877 | |||
1878 | tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie), | ||
1879 | GFP_KERNEL); | ||
1880 | if (tb == NULL) | ||
1881 | return NULL; | ||
1882 | |||
1883 | tb->tb_id = id; | ||
1884 | tb->tb_lookup = fn_trie_lookup; | ||
1885 | tb->tb_insert = fn_trie_insert; | ||
1886 | tb->tb_delete = fn_trie_delete; | ||
1887 | tb->tb_flush = fn_trie_flush; | ||
1888 | tb->tb_select_default = fn_trie_select_default; | ||
1889 | tb->tb_dump = fn_trie_dump; | ||
1890 | memset(tb->tb_data, 0, sizeof(struct trie)); | ||
1891 | |||
1892 | t = (struct trie *) tb->tb_data; | ||
1893 | |||
1894 | trie_init(t); | ||
1895 | |||
1896 | if (id == RT_TABLE_LOCAL) | ||
1897 | trie_local=t; | ||
1898 | else if (id == RT_TABLE_MAIN) | ||
1899 | trie_main=t; | ||
1900 | |||
1901 | if (id == RT_TABLE_LOCAL) | ||
1902 | printk("IPv4 FIB: Using LC-trie version %s\n", VERSION); | ||
1903 | |||
1904 | return tb; | ||
1905 | } | ||
1906 | |||
1907 | /* Trie dump functions */ | ||
1908 | |||
1909 | static void putspace_seq(struct seq_file *seq, int n) | ||
1910 | { | ||
1911 | while (n--) seq_printf(seq, " "); | ||
1912 | } | ||
1913 | |||
1914 | static void printbin_seq(struct seq_file *seq, unsigned int v, int bits) | ||
1915 | { | ||
1916 | while (bits--) | ||
1917 | seq_printf(seq, "%s", (v & (1<<bits))?"1":"0"); | ||
1918 | } | ||
1919 | |||
1920 | static void printnode_seq(struct seq_file *seq, int indent, struct node *n, | ||
1921 | int pend, int cindex, int bits) | ||
1922 | { | ||
1923 | putspace_seq(seq, indent); | ||
1924 | if (IS_LEAF(n)) | ||
1925 | seq_printf(seq, "|"); | ||
1926 | else | ||
1927 | seq_printf(seq, "+"); | ||
1928 | if (bits) { | ||
1929 | seq_printf(seq, "%d/", cindex); | ||
1930 | printbin_seq(seq, cindex, bits); | ||
1931 | seq_printf(seq, ": "); | ||
1932 | } | ||
1933 | else | ||
1934 | seq_printf(seq, "<root>: "); | ||
1935 | seq_printf(seq, "%s:%p ", IS_LEAF(n)?"Leaf":"Internal node", n); | ||
1936 | |||
1937 | if (IS_LEAF(n)) | ||
1938 | seq_printf(seq, "key=%d.%d.%d.%d\n", | ||
1939 | n->key >> 24, (n->key >> 16) % 256, (n->key >> 8) % 256, n->key % 256); | ||
1940 | else { | ||
1941 | int plen=((struct tnode *)n)->pos; | ||
1942 | t_key prf=MASK_PFX(n->key, plen); | ||
1943 | seq_printf(seq, "key=%d.%d.%d.%d/%d\n", | ||
1944 | prf >> 24, (prf >> 16) % 256, (prf >> 8) % 256, prf % 256, plen); | ||
1945 | } | ||
1946 | if (IS_LEAF(n)) { | ||
1947 | struct leaf *l=(struct leaf *)n; | ||
1948 | struct fib_alias *fa; | ||
1949 | int i; | ||
1950 | for (i=32; i>=0; i--) | ||
1951 | if(find_leaf_info(&l->list, i)) { | ||
1952 | |||
1953 | struct list_head *fa_head = get_fa_head(l, i); | ||
1954 | |||
1955 | if(!fa_head) | ||
1956 | continue; | ||
1957 | |||
1958 | if(list_empty(fa_head)) | ||
1959 | continue; | ||
1960 | |||
1961 | putspace_seq(seq, indent+2); | ||
1962 | seq_printf(seq, "{/%d...dumping}\n", i); | ||
1963 | |||
1964 | |||
1965 | list_for_each_entry(fa, fa_head, fa_list) { | ||
1966 | putspace_seq(seq, indent+2); | ||
1967 | if (fa->fa_info->fib_nh == NULL) { | ||
1968 | seq_printf(seq, "Error _fib_nh=NULL\n"); | ||
1969 | continue; | ||
1970 | } | ||
1971 | if (fa->fa_info == NULL) { | ||
1972 | seq_printf(seq, "Error fa_info=NULL\n"); | ||
1973 | continue; | ||
1974 | } | ||
1975 | |||
1976 | seq_printf(seq, "{type=%d scope=%d TOS=%d}\n", | ||
1977 | fa->fa_type, | ||
1978 | fa->fa_scope, | ||
1979 | fa->fa_tos); | ||
1980 | } | ||
1981 | } | ||
1982 | } | ||
1983 | else if (IS_TNODE(n)) { | ||
1984 | struct tnode *tn=(struct tnode *)n; | ||
1985 | putspace_seq(seq, indent); seq_printf(seq, "| "); | ||
1986 | seq_printf(seq, "{key prefix=%08x/", tn->key&TKEY_GET_MASK(0, tn->pos)); | ||
1987 | printbin_seq(seq, tkey_extract_bits(tn->key, 0, tn->pos), tn->pos); | ||
1988 | seq_printf(seq, "}\n"); | ||
1989 | putspace_seq(seq, indent); seq_printf(seq, "| "); | ||
1990 | seq_printf(seq, "{pos=%d", tn->pos); | ||
1991 | seq_printf(seq, " (skip=%d bits)", tn->pos - pend); | ||
1992 | seq_printf(seq, " bits=%d (%u children)}\n", tn->bits, (1 << tn->bits)); | ||
1993 | putspace_seq(seq, indent); seq_printf(seq, "| "); | ||
1994 | seq_printf(seq, "{empty=%d full=%d}\n", tn->empty_children, tn->full_children); | ||
1995 | } | ||
1996 | } | ||
1997 | |||
1998 | static void trie_dump_seq(struct seq_file *seq, struct trie *t) | ||
1999 | { | ||
2000 | struct node *n=t->trie; | ||
2001 | int cindex=0; | ||
2002 | int indent=1; | ||
2003 | int pend=0; | ||
2004 | int depth = 0; | ||
2005 | |||
2006 | read_lock(&fib_lock); | ||
2007 | |||
2008 | seq_printf(seq, "------ trie_dump of t=%p ------\n", t); | ||
2009 | if (n) { | ||
2010 | printnode_seq(seq, indent, n, pend, cindex, 0); | ||
2011 | if (IS_TNODE(n)) { | ||
2012 | struct tnode *tn=(struct tnode *)n; | ||
2013 | pend = tn->pos+tn->bits; | ||
2014 | putspace_seq(seq, indent); seq_printf(seq, "\\--\n"); | ||
2015 | indent += 3; | ||
2016 | depth++; | ||
2017 | |||
2018 | while (tn && cindex < (1 << tn->bits)) { | ||
2019 | if (tn->child[cindex]) { | ||
2020 | |||
2021 | /* Got a child */ | ||
2022 | |||
2023 | printnode_seq(seq, indent, tn->child[cindex], pend, cindex, tn->bits); | ||
2024 | if (IS_LEAF(tn->child[cindex])) { | ||
2025 | cindex++; | ||
2026 | |||
2027 | } | ||
2028 | else { | ||
2029 | /* | ||
2030 | * New tnode. Decend one level | ||
2031 | */ | ||
2032 | |||
2033 | depth++; | ||
2034 | n=tn->child[cindex]; | ||
2035 | tn=(struct tnode *)n; | ||
2036 | pend=tn->pos+tn->bits; | ||
2037 | putspace_seq(seq, indent); seq_printf(seq, "\\--\n"); | ||
2038 | indent+=3; | ||
2039 | cindex=0; | ||
2040 | } | ||
2041 | } | ||
2042 | else | ||
2043 | cindex++; | ||
2044 | |||
2045 | /* | ||
2046 | * Test if we are done | ||
2047 | */ | ||
2048 | |||
2049 | while (cindex >= (1 << tn->bits)) { | ||
2050 | |||
2051 | /* | ||
2052 | * Move upwards and test for root | ||
2053 | * pop off all traversed nodes | ||
2054 | */ | ||
2055 | |||
2056 | if (NODE_PARENT(tn) == NULL) { | ||
2057 | tn = NULL; | ||
2058 | n = NULL; | ||
2059 | break; | ||
2060 | } | ||
2061 | else { | ||
2062 | cindex = tkey_extract_bits(tn->key, NODE_PARENT(tn)->pos, NODE_PARENT(tn)->bits); | ||
2063 | tn = NODE_PARENT(tn); | ||
2064 | cindex++; | ||
2065 | n=(struct node *)tn; | ||
2066 | pend=tn->pos+tn->bits; | ||
2067 | indent-=3; | ||
2068 | depth--; | ||
2069 | } | ||
2070 | } | ||
2071 | } | ||
2072 | } | ||
2073 | else n = NULL; | ||
2074 | } | ||
2075 | else seq_printf(seq, "------ trie is empty\n"); | ||
2076 | |||
2077 | read_unlock(&fib_lock); | ||
2078 | } | ||
2079 | |||
2080 | static struct trie_stat *trie_stat_new(void) | ||
2081 | { | ||
2082 | struct trie_stat *s = kmalloc(sizeof(struct trie_stat), GFP_KERNEL); | ||
2083 | int i; | ||
2084 | |||
2085 | if(s) { | ||
2086 | s->totdepth = 0; | ||
2087 | s->maxdepth = 0; | ||
2088 | s->tnodes = 0; | ||
2089 | s->leaves = 0; | ||
2090 | s->nullpointers = 0; | ||
2091 | |||
2092 | for(i=0; i< MAX_CHILDS; i++) | ||
2093 | s->nodesizes[i] = 0; | ||
2094 | } | ||
2095 | return s; | ||
2096 | } | ||
2097 | |||
2098 | static struct trie_stat *trie_collect_stats(struct trie *t) | ||
2099 | { | ||
2100 | struct node *n=t->trie; | ||
2101 | struct trie_stat *s = trie_stat_new(); | ||
2102 | int cindex = 0; | ||
2103 | int indent = 1; | ||
2104 | int pend = 0; | ||
2105 | int depth = 0; | ||
2106 | |||
2107 | read_lock(&fib_lock); | ||
2108 | |||
2109 | if (s) { | ||
2110 | if (n) { | ||
2111 | if (IS_TNODE(n)) { | ||
2112 | struct tnode *tn = (struct tnode *)n; | ||
2113 | pend=tn->pos+tn->bits; | ||
2114 | indent += 3; | ||
2115 | s->nodesizes[tn->bits]++; | ||
2116 | depth++; | ||
2117 | |||
2118 | while (tn && cindex < (1 << tn->bits)) { | ||
2119 | if (tn->child[cindex]) { | ||
2120 | /* Got a child */ | ||
2121 | |||
2122 | if (IS_LEAF(tn->child[cindex])) { | ||
2123 | cindex++; | ||
2124 | |||
2125 | /* stats */ | ||
2126 | if (depth > s->maxdepth) | ||
2127 | s->maxdepth = depth; | ||
2128 | s->totdepth += depth; | ||
2129 | s->leaves++; | ||
2130 | } | ||
2131 | |||
2132 | else { | ||
2133 | /* | ||
2134 | * New tnode. Decend one level | ||
2135 | */ | ||
2136 | |||
2137 | s->tnodes++; | ||
2138 | s->nodesizes[tn->bits]++; | ||
2139 | depth++; | ||
2140 | |||
2141 | n = tn->child[cindex]; | ||
2142 | tn = (struct tnode *)n; | ||
2143 | pend = tn->pos+tn->bits; | ||
2144 | |||
2145 | indent += 3; | ||
2146 | cindex = 0; | ||
2147 | } | ||
2148 | } | ||
2149 | else { | ||
2150 | cindex++; | ||
2151 | s->nullpointers++; | ||
2152 | } | ||
2153 | |||
2154 | /* | ||
2155 | * Test if we are done | ||
2156 | */ | ||
2157 | |||
2158 | while (cindex >= (1 << tn->bits)) { | ||
2159 | |||
2160 | /* | ||
2161 | * Move upwards and test for root | ||
2162 | * pop off all traversed nodes | ||
2163 | */ | ||
2164 | |||
2165 | |||
2166 | if (NODE_PARENT(tn) == NULL) { | ||
2167 | tn = NULL; | ||
2168 | n = NULL; | ||
2169 | break; | ||
2170 | } | ||
2171 | else { | ||
2172 | cindex = tkey_extract_bits(tn->key, NODE_PARENT(tn)->pos, NODE_PARENT(tn)->bits); | ||
2173 | tn = NODE_PARENT(tn); | ||
2174 | cindex++; | ||
2175 | n = (struct node *)tn; | ||
2176 | pend=tn->pos+tn->bits; | ||
2177 | indent -= 3; | ||
2178 | depth--; | ||
2179 | } | ||
2180 | } | ||
2181 | } | ||
2182 | } | ||
2183 | else n = NULL; | ||
2184 | } | ||
2185 | } | ||
2186 | |||
2187 | read_unlock(&fib_lock); | ||
2188 | return s; | ||
2189 | } | ||
2190 | |||
2191 | #ifdef CONFIG_PROC_FS | ||
2192 | |||
2193 | static struct fib_alias *fib_triestat_get_first(struct seq_file *seq) | ||
2194 | { | ||
2195 | return NULL; | ||
2196 | } | ||
2197 | |||
2198 | static struct fib_alias *fib_triestat_get_next(struct seq_file *seq) | ||
2199 | { | ||
2200 | return NULL; | ||
2201 | } | ||
2202 | |||
2203 | static void *fib_triestat_seq_start(struct seq_file *seq, loff_t *pos) | ||
2204 | { | ||
2205 | void *v = NULL; | ||
2206 | |||
2207 | if (ip_fib_main_table) | ||
2208 | v = *pos ? fib_triestat_get_next(seq) : SEQ_START_TOKEN; | ||
2209 | return v; | ||
2210 | } | ||
2211 | |||
2212 | static void *fib_triestat_seq_next(struct seq_file *seq, void *v, loff_t *pos) | ||
2213 | { | ||
2214 | ++*pos; | ||
2215 | return v == SEQ_START_TOKEN ? fib_triestat_get_first(seq) : fib_triestat_get_next(seq); | ||
2216 | } | ||
2217 | |||
2218 | static void fib_triestat_seq_stop(struct seq_file *seq, void *v) | ||
2219 | { | ||
2220 | |||
2221 | } | ||
2222 | |||
2223 | /* | ||
2224 | * This outputs /proc/net/fib_triestats | ||
2225 | * | ||
2226 | * It always works in backward compatibility mode. | ||
2227 | * The format of the file is not supposed to be changed. | ||
2228 | */ | ||
2229 | |||
2230 | static void collect_and_show(struct trie *t, struct seq_file *seq) | ||
2231 | { | ||
2232 | int bytes = 0; /* How many bytes are used, a ref is 4 bytes */ | ||
2233 | int i, max, pointers; | ||
2234 | struct trie_stat *stat; | ||
2235 | int avdepth; | ||
2236 | |||
2237 | stat = trie_collect_stats(t); | ||
2238 | |||
2239 | bytes=0; | ||
2240 | seq_printf(seq, "trie=%p\n", t); | ||
2241 | |||
2242 | if (stat) { | ||
2243 | if (stat->leaves) | ||
2244 | avdepth=stat->totdepth*100 / stat->leaves; | ||
2245 | else | ||
2246 | avdepth=0; | ||
2247 | seq_printf(seq, "Aver depth: %d.%02d\n", avdepth / 100, avdepth % 100 ); | ||
2248 | seq_printf(seq, "Max depth: %4d\n", stat->maxdepth); | ||
2249 | |||
2250 | seq_printf(seq, "Leaves: %d\n", stat->leaves); | ||
2251 | bytes += sizeof(struct leaf) * stat->leaves; | ||
2252 | seq_printf(seq, "Internal nodes: %d\n", stat->tnodes); | ||
2253 | bytes += sizeof(struct tnode) * stat->tnodes; | ||
2254 | |||
2255 | max = MAX_CHILDS-1; | ||
2256 | |||
2257 | while (max >= 0 && stat->nodesizes[max] == 0) | ||
2258 | max--; | ||
2259 | pointers = 0; | ||
2260 | |||
2261 | for (i = 1; i <= max; i++) | ||
2262 | if (stat->nodesizes[i] != 0) { | ||
2263 | seq_printf(seq, " %d: %d", i, stat->nodesizes[i]); | ||
2264 | pointers += (1<<i) * stat->nodesizes[i]; | ||
2265 | } | ||
2266 | seq_printf(seq, "\n"); | ||
2267 | seq_printf(seq, "Pointers: %d\n", pointers); | ||
2268 | bytes += sizeof(struct node *) * pointers; | ||
2269 | seq_printf(seq, "Null ptrs: %d\n", stat->nullpointers); | ||
2270 | seq_printf(seq, "Total size: %d kB\n", bytes / 1024); | ||
2271 | |||
2272 | kfree(stat); | ||
2273 | } | ||
2274 | |||
2275 | #ifdef CONFIG_IP_FIB_TRIE_STATS | ||
2276 | seq_printf(seq, "Counters:\n---------\n"); | ||
2277 | seq_printf(seq,"gets = %d\n", t->stats.gets); | ||
2278 | seq_printf(seq,"backtracks = %d\n", t->stats.backtrack); | ||
2279 | seq_printf(seq,"semantic match passed = %d\n", t->stats.semantic_match_passed); | ||
2280 | seq_printf(seq,"semantic match miss = %d\n", t->stats.semantic_match_miss); | ||
2281 | seq_printf(seq,"null node hit= %d\n", t->stats.null_node_hit); | ||
2282 | #ifdef CLEAR_STATS | ||
2283 | memset(&(t->stats), 0, sizeof(t->stats)); | ||
2284 | #endif | ||
2285 | #endif /* CONFIG_IP_FIB_TRIE_STATS */ | ||
2286 | } | ||
2287 | |||
2288 | static int fib_triestat_seq_show(struct seq_file *seq, void *v) | ||
2289 | { | ||
2290 | char bf[128]; | ||
2291 | |||
2292 | if (v == SEQ_START_TOKEN) { | ||
2293 | seq_printf(seq, "Basic info: size of leaf: %Zd bytes, size of tnode: %Zd bytes.\n", | ||
2294 | sizeof(struct leaf), sizeof(struct tnode)); | ||
2295 | if (trie_local) | ||
2296 | collect_and_show(trie_local, seq); | ||
2297 | |||
2298 | if (trie_main) | ||
2299 | collect_and_show(trie_main, seq); | ||
2300 | } | ||
2301 | else { | ||
2302 | snprintf(bf, sizeof(bf), | ||
2303 | "*\t%08X\t%08X", 200, 400); | ||
2304 | |||
2305 | seq_printf(seq, "%-127s\n", bf); | ||
2306 | } | ||
2307 | return 0; | ||
2308 | } | ||
2309 | |||
2310 | static struct seq_operations fib_triestat_seq_ops = { | ||
2311 | .start = fib_triestat_seq_start, | ||
2312 | .next = fib_triestat_seq_next, | ||
2313 | .stop = fib_triestat_seq_stop, | ||
2314 | .show = fib_triestat_seq_show, | ||
2315 | }; | ||
2316 | |||
2317 | static int fib_triestat_seq_open(struct inode *inode, struct file *file) | ||
2318 | { | ||
2319 | struct seq_file *seq; | ||
2320 | int rc = -ENOMEM; | ||
2321 | |||
2322 | rc = seq_open(file, &fib_triestat_seq_ops); | ||
2323 | if (rc) | ||
2324 | goto out_kfree; | ||
2325 | |||
2326 | seq = file->private_data; | ||
2327 | out: | ||
2328 | return rc; | ||
2329 | out_kfree: | ||
2330 | goto out; | ||
2331 | } | ||
2332 | |||
2333 | static struct file_operations fib_triestat_seq_fops = { | ||
2334 | .owner = THIS_MODULE, | ||
2335 | .open = fib_triestat_seq_open, | ||
2336 | .read = seq_read, | ||
2337 | .llseek = seq_lseek, | ||
2338 | .release = seq_release_private, | ||
2339 | }; | ||
2340 | |||
2341 | int __init fib_stat_proc_init(void) | ||
2342 | { | ||
2343 | if (!proc_net_fops_create("fib_triestat", S_IRUGO, &fib_triestat_seq_fops)) | ||
2344 | return -ENOMEM; | ||
2345 | return 0; | ||
2346 | } | ||
2347 | |||
2348 | void __init fib_stat_proc_exit(void) | ||
2349 | { | ||
2350 | proc_net_remove("fib_triestat"); | ||
2351 | } | ||
2352 | |||
2353 | static struct fib_alias *fib_trie_get_first(struct seq_file *seq) | ||
2354 | { | ||
2355 | return NULL; | ||
2356 | } | ||
2357 | |||
2358 | static struct fib_alias *fib_trie_get_next(struct seq_file *seq) | ||
2359 | { | ||
2360 | return NULL; | ||
2361 | } | ||
2362 | |||
2363 | static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) | ||
2364 | { | ||
2365 | void *v = NULL; | ||
2366 | |||
2367 | if (ip_fib_main_table) | ||
2368 | v = *pos ? fib_trie_get_next(seq) : SEQ_START_TOKEN; | ||
2369 | return v; | ||
2370 | } | ||
2371 | |||
2372 | static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) | ||
2373 | { | ||
2374 | ++*pos; | ||
2375 | return v == SEQ_START_TOKEN ? fib_trie_get_first(seq) : fib_trie_get_next(seq); | ||
2376 | } | ||
2377 | |||
2378 | static void fib_trie_seq_stop(struct seq_file *seq, void *v) | ||
2379 | { | ||
2380 | |||
2381 | } | ||
2382 | |||
2383 | /* | ||
2384 | * This outputs /proc/net/fib_trie. | ||
2385 | * | ||
2386 | * It always works in backward compatibility mode. | ||
2387 | * The format of the file is not supposed to be changed. | ||
2388 | */ | ||
2389 | |||
2390 | static int fib_trie_seq_show(struct seq_file *seq, void *v) | ||
2391 | { | ||
2392 | char bf[128]; | ||
2393 | |||
2394 | if (v == SEQ_START_TOKEN) { | ||
2395 | if (trie_local) | ||
2396 | trie_dump_seq(seq, trie_local); | ||
2397 | |||
2398 | if (trie_main) | ||
2399 | trie_dump_seq(seq, trie_main); | ||
2400 | } | ||
2401 | |||
2402 | else { | ||
2403 | snprintf(bf, sizeof(bf), | ||
2404 | "*\t%08X\t%08X", 200, 400); | ||
2405 | seq_printf(seq, "%-127s\n", bf); | ||
2406 | } | ||
2407 | |||
2408 | return 0; | ||
2409 | } | ||
2410 | |||
2411 | static struct seq_operations fib_trie_seq_ops = { | ||
2412 | .start = fib_trie_seq_start, | ||
2413 | .next = fib_trie_seq_next, | ||
2414 | .stop = fib_trie_seq_stop, | ||
2415 | .show = fib_trie_seq_show, | ||
2416 | }; | ||
2417 | |||
2418 | static int fib_trie_seq_open(struct inode *inode, struct file *file) | ||
2419 | { | ||
2420 | struct seq_file *seq; | ||
2421 | int rc = -ENOMEM; | ||
2422 | |||
2423 | rc = seq_open(file, &fib_trie_seq_ops); | ||
2424 | if (rc) | ||
2425 | goto out_kfree; | ||
2426 | |||
2427 | seq = file->private_data; | ||
2428 | out: | ||
2429 | return rc; | ||
2430 | out_kfree: | ||
2431 | goto out; | ||
2432 | } | ||
2433 | |||
2434 | static struct file_operations fib_trie_seq_fops = { | ||
2435 | .owner = THIS_MODULE, | ||
2436 | .open = fib_trie_seq_open, | ||
2437 | .read = seq_read, | ||
2438 | .llseek = seq_lseek, | ||
2439 | .release = seq_release_private, | ||
2440 | }; | ||
2441 | |||
2442 | int __init fib_proc_init(void) | ||
2443 | { | ||
2444 | if (!proc_net_fops_create("fib_trie", S_IRUGO, &fib_trie_seq_fops)) | ||
2445 | return -ENOMEM; | ||
2446 | return 0; | ||
2447 | } | ||
2448 | |||
2449 | void __init fib_proc_exit(void) | ||
2450 | { | ||
2451 | proc_net_remove("fib_trie"); | ||
2452 | } | ||
2453 | |||
2454 | #endif /* CONFIG_PROC_FS */ | ||