diff options
author | \"Talpey, Thomas\ <Thomas.Talpey@netapp.com> | 2007-09-10 13:50:42 -0400 |
---|---|---|
committer | Trond Myklebust <Trond.Myklebust@netapp.com> | 2007-10-09 17:18:06 -0400 |
commit | e96018280cb36210f4c69663561825114a57e7e1 (patch) | |
tree | 59a303368b9aaf005f5dc97448b1b7dc9789faee /net | |
parent | f58851e6b0f148fb4b2a1c6f70beb2f125863c0f (diff) |
RPCRDMA: rpc rdma protocol implementation
This implements the marshaling and unmarshaling of the rpcrdma transport
headers. Connection management is also addressed.
Signed-off-by: Tom Talpey <talpey@netapp.com>
Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Diffstat (limited to 'net')
-rw-r--r-- | net/sunrpc/xprtrdma/rpc_rdma.c | 867 |
1 files changed, 863 insertions, 4 deletions
diff --git a/net/sunrpc/xprtrdma/rpc_rdma.c b/net/sunrpc/xprtrdma/rpc_rdma.c index b0587f3a5d77..12db63580427 100644 --- a/net/sunrpc/xprtrdma/rpc_rdma.c +++ b/net/sunrpc/xprtrdma/rpc_rdma.c | |||
@@ -1,9 +1,868 @@ | |||
1 | /* | 1 | /* |
2 | * Placeholders for subsequent patches | 2 | * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved. |
3 | * | ||
4 | * This software is available to you under a choice of one of two | ||
5 | * licenses. You may choose to be licensed under the terms of the GNU | ||
6 | * General Public License (GPL) Version 2, available from the file | ||
7 | * COPYING in the main directory of this source tree, or the BSD-type | ||
8 | * license below: | ||
9 | * | ||
10 | * Redistribution and use in source and binary forms, with or without | ||
11 | * modification, are permitted provided that the following conditions | ||
12 | * are met: | ||
13 | * | ||
14 | * Redistributions of source code must retain the above copyright | ||
15 | * notice, this list of conditions and the following disclaimer. | ||
16 | * | ||
17 | * Redistributions in binary form must reproduce the above | ||
18 | * copyright notice, this list of conditions and the following | ||
19 | * disclaimer in the documentation and/or other materials provided | ||
20 | * with the distribution. | ||
21 | * | ||
22 | * Neither the name of the Network Appliance, Inc. nor the names of | ||
23 | * its contributors may be used to endorse or promote products | ||
24 | * derived from this software without specific prior written | ||
25 | * permission. | ||
26 | * | ||
27 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | ||
28 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | ||
29 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | ||
30 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | ||
31 | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
32 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | ||
33 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | ||
34 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | ||
35 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | ||
36 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | ||
37 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
38 | */ | ||
39 | |||
40 | /* | ||
41 | * rpc_rdma.c | ||
42 | * | ||
43 | * This file contains the guts of the RPC RDMA protocol, and | ||
44 | * does marshaling/unmarshaling, etc. It is also where interfacing | ||
45 | * to the Linux RPC framework lives. | ||
3 | */ | 46 | */ |
4 | 47 | ||
5 | #include "xprt_rdma.h" | 48 | #include "xprt_rdma.h" |
6 | 49 | ||
7 | void rpcrdma_conn_func(struct rpcrdma_ep *a) { } | 50 | #include <linux/highmem.h> |
8 | void rpcrdma_reply_handler(struct rpcrdma_rep *a) { } | 51 | |
9 | int rpcrdma_marshal_req(struct rpc_rqst *a) { return EINVAL; } | 52 | #ifdef RPC_DEBUG |
53 | # define RPCDBG_FACILITY RPCDBG_TRANS | ||
54 | #endif | ||
55 | |||
56 | enum rpcrdma_chunktype { | ||
57 | rpcrdma_noch = 0, | ||
58 | rpcrdma_readch, | ||
59 | rpcrdma_areadch, | ||
60 | rpcrdma_writech, | ||
61 | rpcrdma_replych | ||
62 | }; | ||
63 | |||
64 | #ifdef RPC_DEBUG | ||
65 | static const char transfertypes[][12] = { | ||
66 | "pure inline", /* no chunks */ | ||
67 | " read chunk", /* some argument via rdma read */ | ||
68 | "*read chunk", /* entire request via rdma read */ | ||
69 | "write chunk", /* some result via rdma write */ | ||
70 | "reply chunk" /* entire reply via rdma write */ | ||
71 | }; | ||
72 | #endif | ||
73 | |||
74 | /* | ||
75 | * Chunk assembly from upper layer xdr_buf. | ||
76 | * | ||
77 | * Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk | ||
78 | * elements. Segments are then coalesced when registered, if possible | ||
79 | * within the selected memreg mode. | ||
80 | * | ||
81 | * Note, this routine is never called if the connection's memory | ||
82 | * registration strategy is 0 (bounce buffers). | ||
83 | */ | ||
84 | |||
85 | static int | ||
86 | rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, int pos, | ||
87 | enum rpcrdma_chunktype type, struct rpcrdma_mr_seg *seg, int nsegs) | ||
88 | { | ||
89 | int len, n = 0, p; | ||
90 | |||
91 | if (pos == 0 && xdrbuf->head[0].iov_len) { | ||
92 | seg[n].mr_page = NULL; | ||
93 | seg[n].mr_offset = xdrbuf->head[0].iov_base; | ||
94 | seg[n].mr_len = xdrbuf->head[0].iov_len; | ||
95 | pos += xdrbuf->head[0].iov_len; | ||
96 | ++n; | ||
97 | } | ||
98 | |||
99 | if (xdrbuf->page_len && (xdrbuf->pages[0] != NULL)) { | ||
100 | if (n == nsegs) | ||
101 | return 0; | ||
102 | seg[n].mr_page = xdrbuf->pages[0]; | ||
103 | seg[n].mr_offset = (void *)(unsigned long) xdrbuf->page_base; | ||
104 | seg[n].mr_len = min_t(u32, | ||
105 | PAGE_SIZE - xdrbuf->page_base, xdrbuf->page_len); | ||
106 | len = xdrbuf->page_len - seg[n].mr_len; | ||
107 | pos += len; | ||
108 | ++n; | ||
109 | p = 1; | ||
110 | while (len > 0) { | ||
111 | if (n == nsegs) | ||
112 | return 0; | ||
113 | seg[n].mr_page = xdrbuf->pages[p]; | ||
114 | seg[n].mr_offset = NULL; | ||
115 | seg[n].mr_len = min_t(u32, PAGE_SIZE, len); | ||
116 | len -= seg[n].mr_len; | ||
117 | ++n; | ||
118 | ++p; | ||
119 | } | ||
120 | } | ||
121 | |||
122 | if (pos < xdrbuf->len && xdrbuf->tail[0].iov_len) { | ||
123 | if (n == nsegs) | ||
124 | return 0; | ||
125 | seg[n].mr_page = NULL; | ||
126 | seg[n].mr_offset = xdrbuf->tail[0].iov_base; | ||
127 | seg[n].mr_len = xdrbuf->tail[0].iov_len; | ||
128 | pos += xdrbuf->tail[0].iov_len; | ||
129 | ++n; | ||
130 | } | ||
131 | |||
132 | if (pos < xdrbuf->len) | ||
133 | dprintk("RPC: %s: marshaled only %d of %d\n", | ||
134 | __func__, pos, xdrbuf->len); | ||
135 | |||
136 | return n; | ||
137 | } | ||
138 | |||
139 | /* | ||
140 | * Create read/write chunk lists, and reply chunks, for RDMA | ||
141 | * | ||
142 | * Assume check against THRESHOLD has been done, and chunks are required. | ||
143 | * Assume only encoding one list entry for read|write chunks. The NFSv3 | ||
144 | * protocol is simple enough to allow this as it only has a single "bulk | ||
145 | * result" in each procedure - complicated NFSv4 COMPOUNDs are not. (The | ||
146 | * RDMA/Sessions NFSv4 proposal addresses this for future v4 revs.) | ||
147 | * | ||
148 | * When used for a single reply chunk (which is a special write | ||
149 | * chunk used for the entire reply, rather than just the data), it | ||
150 | * is used primarily for READDIR and READLINK which would otherwise | ||
151 | * be severely size-limited by a small rdma inline read max. The server | ||
152 | * response will come back as an RDMA Write, followed by a message | ||
153 | * of type RDMA_NOMSG carrying the xid and length. As a result, reply | ||
154 | * chunks do not provide data alignment, however they do not require | ||
155 | * "fixup" (moving the response to the upper layer buffer) either. | ||
156 | * | ||
157 | * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64): | ||
158 | * | ||
159 | * Read chunklist (a linked list): | ||
160 | * N elements, position P (same P for all chunks of same arg!): | ||
161 | * 1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0 | ||
162 | * | ||
163 | * Write chunklist (a list of (one) counted array): | ||
164 | * N elements: | ||
165 | * 1 - N - HLOO - HLOO - ... - HLOO - 0 | ||
166 | * | ||
167 | * Reply chunk (a counted array): | ||
168 | * N elements: | ||
169 | * 1 - N - HLOO - HLOO - ... - HLOO | ||
170 | */ | ||
171 | |||
172 | static unsigned int | ||
173 | rpcrdma_create_chunks(struct rpc_rqst *rqst, struct xdr_buf *target, | ||
174 | struct rpcrdma_msg *headerp, enum rpcrdma_chunktype type) | ||
175 | { | ||
176 | struct rpcrdma_req *req = rpcr_to_rdmar(rqst); | ||
177 | struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_task->tk_xprt); | ||
178 | int nsegs, nchunks = 0; | ||
179 | int pos; | ||
180 | struct rpcrdma_mr_seg *seg = req->rl_segments; | ||
181 | struct rpcrdma_read_chunk *cur_rchunk = NULL; | ||
182 | struct rpcrdma_write_array *warray = NULL; | ||
183 | struct rpcrdma_write_chunk *cur_wchunk = NULL; | ||
184 | u32 *iptr = headerp->rm_body.rm_chunks; | ||
185 | |||
186 | if (type == rpcrdma_readch || type == rpcrdma_areadch) { | ||
187 | /* a read chunk - server will RDMA Read our memory */ | ||
188 | cur_rchunk = (struct rpcrdma_read_chunk *) iptr; | ||
189 | } else { | ||
190 | /* a write or reply chunk - server will RDMA Write our memory */ | ||
191 | *iptr++ = xdr_zero; /* encode a NULL read chunk list */ | ||
192 | if (type == rpcrdma_replych) | ||
193 | *iptr++ = xdr_zero; /* a NULL write chunk list */ | ||
194 | warray = (struct rpcrdma_write_array *) iptr; | ||
195 | cur_wchunk = (struct rpcrdma_write_chunk *) (warray + 1); | ||
196 | } | ||
197 | |||
198 | if (type == rpcrdma_replych || type == rpcrdma_areadch) | ||
199 | pos = 0; | ||
200 | else | ||
201 | pos = target->head[0].iov_len; | ||
202 | |||
203 | nsegs = rpcrdma_convert_iovs(target, pos, type, seg, RPCRDMA_MAX_SEGS); | ||
204 | if (nsegs == 0) | ||
205 | return 0; | ||
206 | |||
207 | do { | ||
208 | /* bind/register the memory, then build chunk from result. */ | ||
209 | int n = rpcrdma_register_external(seg, nsegs, | ||
210 | cur_wchunk != NULL, r_xprt); | ||
211 | if (n <= 0) | ||
212 | goto out; | ||
213 | if (cur_rchunk) { /* read */ | ||
214 | cur_rchunk->rc_discrim = xdr_one; | ||
215 | /* all read chunks have the same "position" */ | ||
216 | cur_rchunk->rc_position = htonl(pos); | ||
217 | cur_rchunk->rc_target.rs_handle = htonl(seg->mr_rkey); | ||
218 | cur_rchunk->rc_target.rs_length = htonl(seg->mr_len); | ||
219 | xdr_encode_hyper( | ||
220 | (u32 *)&cur_rchunk->rc_target.rs_offset, | ||
221 | seg->mr_base); | ||
222 | dprintk("RPC: %s: read chunk " | ||
223 | "elem %d@0x%llx:0x%x pos %d (%s)\n", __func__, | ||
224 | seg->mr_len, seg->mr_base, seg->mr_rkey, pos, | ||
225 | n < nsegs ? "more" : "last"); | ||
226 | cur_rchunk++; | ||
227 | r_xprt->rx_stats.read_chunk_count++; | ||
228 | } else { /* write/reply */ | ||
229 | cur_wchunk->wc_target.rs_handle = htonl(seg->mr_rkey); | ||
230 | cur_wchunk->wc_target.rs_length = htonl(seg->mr_len); | ||
231 | xdr_encode_hyper( | ||
232 | (u32 *)&cur_wchunk->wc_target.rs_offset, | ||
233 | seg->mr_base); | ||
234 | dprintk("RPC: %s: %s chunk " | ||
235 | "elem %d@0x%llx:0x%x (%s)\n", __func__, | ||
236 | (type == rpcrdma_replych) ? "reply" : "write", | ||
237 | seg->mr_len, seg->mr_base, seg->mr_rkey, | ||
238 | n < nsegs ? "more" : "last"); | ||
239 | cur_wchunk++; | ||
240 | if (type == rpcrdma_replych) | ||
241 | r_xprt->rx_stats.reply_chunk_count++; | ||
242 | else | ||
243 | r_xprt->rx_stats.write_chunk_count++; | ||
244 | r_xprt->rx_stats.total_rdma_request += seg->mr_len; | ||
245 | } | ||
246 | nchunks++; | ||
247 | seg += n; | ||
248 | nsegs -= n; | ||
249 | } while (nsegs); | ||
250 | |||
251 | /* success. all failures return above */ | ||
252 | req->rl_nchunks = nchunks; | ||
253 | |||
254 | BUG_ON(nchunks == 0); | ||
255 | |||
256 | /* | ||
257 | * finish off header. If write, marshal discrim and nchunks. | ||
258 | */ | ||
259 | if (cur_rchunk) { | ||
260 | iptr = (u32 *) cur_rchunk; | ||
261 | *iptr++ = xdr_zero; /* finish the read chunk list */ | ||
262 | *iptr++ = xdr_zero; /* encode a NULL write chunk list */ | ||
263 | *iptr++ = xdr_zero; /* encode a NULL reply chunk */ | ||
264 | } else { | ||
265 | warray->wc_discrim = xdr_one; | ||
266 | warray->wc_nchunks = htonl(nchunks); | ||
267 | iptr = (u32 *) cur_wchunk; | ||
268 | if (type == rpcrdma_writech) { | ||
269 | *iptr++ = xdr_zero; /* finish the write chunk list */ | ||
270 | *iptr++ = xdr_zero; /* encode a NULL reply chunk */ | ||
271 | } | ||
272 | } | ||
273 | |||
274 | /* | ||
275 | * Return header size. | ||
276 | */ | ||
277 | return (unsigned char *)iptr - (unsigned char *)headerp; | ||
278 | |||
279 | out: | ||
280 | for (pos = 0; nchunks--;) | ||
281 | pos += rpcrdma_deregister_external( | ||
282 | &req->rl_segments[pos], r_xprt, NULL); | ||
283 | return 0; | ||
284 | } | ||
285 | |||
286 | /* | ||
287 | * Copy write data inline. | ||
288 | * This function is used for "small" requests. Data which is passed | ||
289 | * to RPC via iovecs (or page list) is copied directly into the | ||
290 | * pre-registered memory buffer for this request. For small amounts | ||
291 | * of data, this is efficient. The cutoff value is tunable. | ||
292 | */ | ||
293 | static int | ||
294 | rpcrdma_inline_pullup(struct rpc_rqst *rqst, int pad) | ||
295 | { | ||
296 | int i, npages, curlen; | ||
297 | int copy_len; | ||
298 | unsigned char *srcp, *destp; | ||
299 | struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt); | ||
300 | |||
301 | destp = rqst->rq_svec[0].iov_base; | ||
302 | curlen = rqst->rq_svec[0].iov_len; | ||
303 | destp += curlen; | ||
304 | /* | ||
305 | * Do optional padding where it makes sense. Alignment of write | ||
306 | * payload can help the server, if our setting is accurate. | ||
307 | */ | ||
308 | pad -= (curlen + 36/*sizeof(struct rpcrdma_msg_padded)*/); | ||
309 | if (pad < 0 || rqst->rq_slen - curlen < RPCRDMA_INLINE_PAD_THRESH) | ||
310 | pad = 0; /* don't pad this request */ | ||
311 | |||
312 | dprintk("RPC: %s: pad %d destp 0x%p len %d hdrlen %d\n", | ||
313 | __func__, pad, destp, rqst->rq_slen, curlen); | ||
314 | |||
315 | copy_len = rqst->rq_snd_buf.page_len; | ||
316 | r_xprt->rx_stats.pullup_copy_count += copy_len; | ||
317 | npages = PAGE_ALIGN(rqst->rq_snd_buf.page_base+copy_len) >> PAGE_SHIFT; | ||
318 | for (i = 0; copy_len && i < npages; i++) { | ||
319 | if (i == 0) | ||
320 | curlen = PAGE_SIZE - rqst->rq_snd_buf.page_base; | ||
321 | else | ||
322 | curlen = PAGE_SIZE; | ||
323 | if (curlen > copy_len) | ||
324 | curlen = copy_len; | ||
325 | dprintk("RPC: %s: page %d destp 0x%p len %d curlen %d\n", | ||
326 | __func__, i, destp, copy_len, curlen); | ||
327 | srcp = kmap_atomic(rqst->rq_snd_buf.pages[i], | ||
328 | KM_SKB_SUNRPC_DATA); | ||
329 | if (i == 0) | ||
330 | memcpy(destp, srcp+rqst->rq_snd_buf.page_base, curlen); | ||
331 | else | ||
332 | memcpy(destp, srcp, curlen); | ||
333 | kunmap_atomic(srcp, KM_SKB_SUNRPC_DATA); | ||
334 | rqst->rq_svec[0].iov_len += curlen; | ||
335 | destp += curlen; | ||
336 | copy_len -= curlen; | ||
337 | } | ||
338 | if (rqst->rq_snd_buf.tail[0].iov_len) { | ||
339 | curlen = rqst->rq_snd_buf.tail[0].iov_len; | ||
340 | if (destp != rqst->rq_snd_buf.tail[0].iov_base) { | ||
341 | memcpy(destp, | ||
342 | rqst->rq_snd_buf.tail[0].iov_base, curlen); | ||
343 | r_xprt->rx_stats.pullup_copy_count += curlen; | ||
344 | } | ||
345 | dprintk("RPC: %s: tail destp 0x%p len %d curlen %d\n", | ||
346 | __func__, destp, copy_len, curlen); | ||
347 | rqst->rq_svec[0].iov_len += curlen; | ||
348 | } | ||
349 | /* header now contains entire send message */ | ||
350 | return pad; | ||
351 | } | ||
352 | |||
353 | /* | ||
354 | * Marshal a request: the primary job of this routine is to choose | ||
355 | * the transfer modes. See comments below. | ||
356 | * | ||
357 | * Uses multiple RDMA IOVs for a request: | ||
358 | * [0] -- RPC RDMA header, which uses memory from the *start* of the | ||
359 | * preregistered buffer that already holds the RPC data in | ||
360 | * its middle. | ||
361 | * [1] -- the RPC header/data, marshaled by RPC and the NFS protocol. | ||
362 | * [2] -- optional padding. | ||
363 | * [3] -- if padded, header only in [1] and data here. | ||
364 | */ | ||
365 | |||
366 | int | ||
367 | rpcrdma_marshal_req(struct rpc_rqst *rqst) | ||
368 | { | ||
369 | struct rpc_xprt *xprt = rqst->rq_task->tk_xprt; | ||
370 | struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); | ||
371 | struct rpcrdma_req *req = rpcr_to_rdmar(rqst); | ||
372 | char *base; | ||
373 | size_t hdrlen, rpclen, padlen; | ||
374 | enum rpcrdma_chunktype rtype, wtype; | ||
375 | struct rpcrdma_msg *headerp; | ||
376 | |||
377 | /* | ||
378 | * rpclen gets amount of data in first buffer, which is the | ||
379 | * pre-registered buffer. | ||
380 | */ | ||
381 | base = rqst->rq_svec[0].iov_base; | ||
382 | rpclen = rqst->rq_svec[0].iov_len; | ||
383 | |||
384 | /* build RDMA header in private area at front */ | ||
385 | headerp = (struct rpcrdma_msg *) req->rl_base; | ||
386 | /* don't htonl XID, it's already done in request */ | ||
387 | headerp->rm_xid = rqst->rq_xid; | ||
388 | headerp->rm_vers = xdr_one; | ||
389 | headerp->rm_credit = htonl(r_xprt->rx_buf.rb_max_requests); | ||
390 | headerp->rm_type = __constant_htonl(RDMA_MSG); | ||
391 | |||
392 | /* | ||
393 | * Chunks needed for results? | ||
394 | * | ||
395 | * o If the expected result is under the inline threshold, all ops | ||
396 | * return as inline (but see later). | ||
397 | * o Large non-read ops return as a single reply chunk. | ||
398 | * o Large read ops return data as write chunk(s), header as inline. | ||
399 | * | ||
400 | * Note: the NFS code sending down multiple result segments implies | ||
401 | * the op is one of read, readdir[plus], readlink or NFSv4 getacl. | ||
402 | */ | ||
403 | |||
404 | /* | ||
405 | * This code can handle read chunks, write chunks OR reply | ||
406 | * chunks -- only one type. If the request is too big to fit | ||
407 | * inline, then we will choose read chunks. If the request is | ||
408 | * a READ, then use write chunks to separate the file data | ||
409 | * into pages; otherwise use reply chunks. | ||
410 | */ | ||
411 | if (rqst->rq_rcv_buf.buflen <= RPCRDMA_INLINE_READ_THRESHOLD(rqst)) | ||
412 | wtype = rpcrdma_noch; | ||
413 | else if (rqst->rq_rcv_buf.page_len == 0) | ||
414 | wtype = rpcrdma_replych; | ||
415 | else if (rqst->rq_rcv_buf.flags & XDRBUF_READ) | ||
416 | wtype = rpcrdma_writech; | ||
417 | else | ||
418 | wtype = rpcrdma_replych; | ||
419 | |||
420 | /* | ||
421 | * Chunks needed for arguments? | ||
422 | * | ||
423 | * o If the total request is under the inline threshold, all ops | ||
424 | * are sent as inline. | ||
425 | * o Large non-write ops are sent with the entire message as a | ||
426 | * single read chunk (protocol 0-position special case). | ||
427 | * o Large write ops transmit data as read chunk(s), header as | ||
428 | * inline. | ||
429 | * | ||
430 | * Note: the NFS code sending down multiple argument segments | ||
431 | * implies the op is a write. | ||
432 | * TBD check NFSv4 setacl | ||
433 | */ | ||
434 | if (rqst->rq_snd_buf.len <= RPCRDMA_INLINE_WRITE_THRESHOLD(rqst)) | ||
435 | rtype = rpcrdma_noch; | ||
436 | else if (rqst->rq_snd_buf.page_len == 0) | ||
437 | rtype = rpcrdma_areadch; | ||
438 | else | ||
439 | rtype = rpcrdma_readch; | ||
440 | |||
441 | /* The following simplification is not true forever */ | ||
442 | if (rtype != rpcrdma_noch && wtype == rpcrdma_replych) | ||
443 | wtype = rpcrdma_noch; | ||
444 | BUG_ON(rtype != rpcrdma_noch && wtype != rpcrdma_noch); | ||
445 | |||
446 | if (r_xprt->rx_ia.ri_memreg_strategy == RPCRDMA_BOUNCEBUFFERS && | ||
447 | (rtype != rpcrdma_noch || wtype != rpcrdma_noch)) { | ||
448 | /* forced to "pure inline"? */ | ||
449 | dprintk("RPC: %s: too much data (%d/%d) for inline\n", | ||
450 | __func__, rqst->rq_rcv_buf.len, rqst->rq_snd_buf.len); | ||
451 | return -1; | ||
452 | } | ||
453 | |||
454 | hdrlen = 28; /*sizeof *headerp;*/ | ||
455 | padlen = 0; | ||
456 | |||
457 | /* | ||
458 | * Pull up any extra send data into the preregistered buffer. | ||
459 | * When padding is in use and applies to the transfer, insert | ||
460 | * it and change the message type. | ||
461 | */ | ||
462 | if (rtype == rpcrdma_noch) { | ||
463 | |||
464 | padlen = rpcrdma_inline_pullup(rqst, | ||
465 | RPCRDMA_INLINE_PAD_VALUE(rqst)); | ||
466 | |||
467 | if (padlen) { | ||
468 | headerp->rm_type = __constant_htonl(RDMA_MSGP); | ||
469 | headerp->rm_body.rm_padded.rm_align = | ||
470 | htonl(RPCRDMA_INLINE_PAD_VALUE(rqst)); | ||
471 | headerp->rm_body.rm_padded.rm_thresh = | ||
472 | __constant_htonl(RPCRDMA_INLINE_PAD_THRESH); | ||
473 | headerp->rm_body.rm_padded.rm_pempty[0] = xdr_zero; | ||
474 | headerp->rm_body.rm_padded.rm_pempty[1] = xdr_zero; | ||
475 | headerp->rm_body.rm_padded.rm_pempty[2] = xdr_zero; | ||
476 | hdrlen += 2 * sizeof(u32); /* extra words in padhdr */ | ||
477 | BUG_ON(wtype != rpcrdma_noch); | ||
478 | |||
479 | } else { | ||
480 | headerp->rm_body.rm_nochunks.rm_empty[0] = xdr_zero; | ||
481 | headerp->rm_body.rm_nochunks.rm_empty[1] = xdr_zero; | ||
482 | headerp->rm_body.rm_nochunks.rm_empty[2] = xdr_zero; | ||
483 | /* new length after pullup */ | ||
484 | rpclen = rqst->rq_svec[0].iov_len; | ||
485 | /* | ||
486 | * Currently we try to not actually use read inline. | ||
487 | * Reply chunks have the desirable property that | ||
488 | * they land, packed, directly in the target buffers | ||
489 | * without headers, so they require no fixup. The | ||
490 | * additional RDMA Write op sends the same amount | ||
491 | * of data, streams on-the-wire and adds no overhead | ||
492 | * on receive. Therefore, we request a reply chunk | ||
493 | * for non-writes wherever feasible and efficient. | ||
494 | */ | ||
495 | if (wtype == rpcrdma_noch && | ||
496 | r_xprt->rx_ia.ri_memreg_strategy > RPCRDMA_REGISTER) | ||
497 | wtype = rpcrdma_replych; | ||
498 | } | ||
499 | } | ||
500 | |||
501 | /* | ||
502 | * Marshal chunks. This routine will return the header length | ||
503 | * consumed by marshaling. | ||
504 | */ | ||
505 | if (rtype != rpcrdma_noch) { | ||
506 | hdrlen = rpcrdma_create_chunks(rqst, | ||
507 | &rqst->rq_snd_buf, headerp, rtype); | ||
508 | wtype = rtype; /* simplify dprintk */ | ||
509 | |||
510 | } else if (wtype != rpcrdma_noch) { | ||
511 | hdrlen = rpcrdma_create_chunks(rqst, | ||
512 | &rqst->rq_rcv_buf, headerp, wtype); | ||
513 | } | ||
514 | |||
515 | if (hdrlen == 0) | ||
516 | return -1; | ||
517 | |||
518 | dprintk("RPC: %s: %s: hdrlen %zd rpclen %zd padlen %zd\n" | ||
519 | " headerp 0x%p base 0x%p lkey 0x%x\n", | ||
520 | __func__, transfertypes[wtype], hdrlen, rpclen, padlen, | ||
521 | headerp, base, req->rl_iov.lkey); | ||
522 | |||
523 | /* | ||
524 | * initialize send_iov's - normally only two: rdma chunk header and | ||
525 | * single preregistered RPC header buffer, but if padding is present, | ||
526 | * then use a preregistered (and zeroed) pad buffer between the RPC | ||
527 | * header and any write data. In all non-rdma cases, any following | ||
528 | * data has been copied into the RPC header buffer. | ||
529 | */ | ||
530 | req->rl_send_iov[0].addr = req->rl_iov.addr; | ||
531 | req->rl_send_iov[0].length = hdrlen; | ||
532 | req->rl_send_iov[0].lkey = req->rl_iov.lkey; | ||
533 | |||
534 | req->rl_send_iov[1].addr = req->rl_iov.addr + (base - req->rl_base); | ||
535 | req->rl_send_iov[1].length = rpclen; | ||
536 | req->rl_send_iov[1].lkey = req->rl_iov.lkey; | ||
537 | |||
538 | req->rl_niovs = 2; | ||
539 | |||
540 | if (padlen) { | ||
541 | struct rpcrdma_ep *ep = &r_xprt->rx_ep; | ||
542 | |||
543 | req->rl_send_iov[2].addr = ep->rep_pad.addr; | ||
544 | req->rl_send_iov[2].length = padlen; | ||
545 | req->rl_send_iov[2].lkey = ep->rep_pad.lkey; | ||
546 | |||
547 | req->rl_send_iov[3].addr = req->rl_send_iov[1].addr + rpclen; | ||
548 | req->rl_send_iov[3].length = rqst->rq_slen - rpclen; | ||
549 | req->rl_send_iov[3].lkey = req->rl_iov.lkey; | ||
550 | |||
551 | req->rl_niovs = 4; | ||
552 | } | ||
553 | |||
554 | return 0; | ||
555 | } | ||
556 | |||
557 | /* | ||
558 | * Chase down a received write or reply chunklist to get length | ||
559 | * RDMA'd by server. See map at rpcrdma_create_chunks()! :-) | ||
560 | */ | ||
561 | static int | ||
562 | rpcrdma_count_chunks(struct rpcrdma_rep *rep, int max, int wrchunk, u32 **iptrp) | ||
563 | { | ||
564 | unsigned int i, total_len; | ||
565 | struct rpcrdma_write_chunk *cur_wchunk; | ||
566 | |||
567 | i = ntohl(**iptrp); /* get array count */ | ||
568 | if (i > max) | ||
569 | return -1; | ||
570 | cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1); | ||
571 | total_len = 0; | ||
572 | while (i--) { | ||
573 | struct rpcrdma_segment *seg = &cur_wchunk->wc_target; | ||
574 | ifdebug(FACILITY) { | ||
575 | u64 off; | ||
576 | xdr_decode_hyper((u32 *)&seg->rs_offset, &off); | ||
577 | dprintk("RPC: %s: chunk %d@0x%llx:0x%x\n", | ||
578 | __func__, | ||
579 | ntohl(seg->rs_length), | ||
580 | off, | ||
581 | ntohl(seg->rs_handle)); | ||
582 | } | ||
583 | total_len += ntohl(seg->rs_length); | ||
584 | ++cur_wchunk; | ||
585 | } | ||
586 | /* check and adjust for properly terminated write chunk */ | ||
587 | if (wrchunk) { | ||
588 | u32 *w = (u32 *) cur_wchunk; | ||
589 | if (*w++ != xdr_zero) | ||
590 | return -1; | ||
591 | cur_wchunk = (struct rpcrdma_write_chunk *) w; | ||
592 | } | ||
593 | if ((char *) cur_wchunk > rep->rr_base + rep->rr_len) | ||
594 | return -1; | ||
595 | |||
596 | *iptrp = (u32 *) cur_wchunk; | ||
597 | return total_len; | ||
598 | } | ||
599 | |||
600 | /* | ||
601 | * Scatter inline received data back into provided iov's. | ||
602 | */ | ||
603 | static void | ||
604 | rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len) | ||
605 | { | ||
606 | int i, npages, curlen, olen; | ||
607 | char *destp; | ||
608 | |||
609 | curlen = rqst->rq_rcv_buf.head[0].iov_len; | ||
610 | if (curlen > copy_len) { /* write chunk header fixup */ | ||
611 | curlen = copy_len; | ||
612 | rqst->rq_rcv_buf.head[0].iov_len = curlen; | ||
613 | } | ||
614 | |||
615 | dprintk("RPC: %s: srcp 0x%p len %d hdrlen %d\n", | ||
616 | __func__, srcp, copy_len, curlen); | ||
617 | |||
618 | /* Shift pointer for first receive segment only */ | ||
619 | rqst->rq_rcv_buf.head[0].iov_base = srcp; | ||
620 | srcp += curlen; | ||
621 | copy_len -= curlen; | ||
622 | |||
623 | olen = copy_len; | ||
624 | i = 0; | ||
625 | rpcx_to_rdmax(rqst->rq_xprt)->rx_stats.fixup_copy_count += olen; | ||
626 | if (copy_len && rqst->rq_rcv_buf.page_len) { | ||
627 | npages = PAGE_ALIGN(rqst->rq_rcv_buf.page_base + | ||
628 | rqst->rq_rcv_buf.page_len) >> PAGE_SHIFT; | ||
629 | for (; i < npages; i++) { | ||
630 | if (i == 0) | ||
631 | curlen = PAGE_SIZE - rqst->rq_rcv_buf.page_base; | ||
632 | else | ||
633 | curlen = PAGE_SIZE; | ||
634 | if (curlen > copy_len) | ||
635 | curlen = copy_len; | ||
636 | dprintk("RPC: %s: page %d" | ||
637 | " srcp 0x%p len %d curlen %d\n", | ||
638 | __func__, i, srcp, copy_len, curlen); | ||
639 | destp = kmap_atomic(rqst->rq_rcv_buf.pages[i], | ||
640 | KM_SKB_SUNRPC_DATA); | ||
641 | if (i == 0) | ||
642 | memcpy(destp + rqst->rq_rcv_buf.page_base, | ||
643 | srcp, curlen); | ||
644 | else | ||
645 | memcpy(destp, srcp, curlen); | ||
646 | flush_dcache_page(rqst->rq_rcv_buf.pages[i]); | ||
647 | kunmap_atomic(destp, KM_SKB_SUNRPC_DATA); | ||
648 | srcp += curlen; | ||
649 | copy_len -= curlen; | ||
650 | if (copy_len == 0) | ||
651 | break; | ||
652 | } | ||
653 | rqst->rq_rcv_buf.page_len = olen - copy_len; | ||
654 | } else | ||
655 | rqst->rq_rcv_buf.page_len = 0; | ||
656 | |||
657 | if (copy_len && rqst->rq_rcv_buf.tail[0].iov_len) { | ||
658 | curlen = copy_len; | ||
659 | if (curlen > rqst->rq_rcv_buf.tail[0].iov_len) | ||
660 | curlen = rqst->rq_rcv_buf.tail[0].iov_len; | ||
661 | if (rqst->rq_rcv_buf.tail[0].iov_base != srcp) | ||
662 | memcpy(rqst->rq_rcv_buf.tail[0].iov_base, srcp, curlen); | ||
663 | dprintk("RPC: %s: tail srcp 0x%p len %d curlen %d\n", | ||
664 | __func__, srcp, copy_len, curlen); | ||
665 | rqst->rq_rcv_buf.tail[0].iov_len = curlen; | ||
666 | copy_len -= curlen; ++i; | ||
667 | } else | ||
668 | rqst->rq_rcv_buf.tail[0].iov_len = 0; | ||
669 | |||
670 | if (copy_len) | ||
671 | dprintk("RPC: %s: %d bytes in" | ||
672 | " %d extra segments (%d lost)\n", | ||
673 | __func__, olen, i, copy_len); | ||
674 | |||
675 | /* TBD avoid a warning from call_decode() */ | ||
676 | rqst->rq_private_buf = rqst->rq_rcv_buf; | ||
677 | } | ||
678 | |||
679 | /* | ||
680 | * This function is called when an async event is posted to | ||
681 | * the connection which changes the connection state. All it | ||
682 | * does at this point is mark the connection up/down, the rpc | ||
683 | * timers do the rest. | ||
684 | */ | ||
685 | void | ||
686 | rpcrdma_conn_func(struct rpcrdma_ep *ep) | ||
687 | { | ||
688 | struct rpc_xprt *xprt = ep->rep_xprt; | ||
689 | |||
690 | spin_lock_bh(&xprt->transport_lock); | ||
691 | if (ep->rep_connected > 0) { | ||
692 | if (!xprt_test_and_set_connected(xprt)) | ||
693 | xprt_wake_pending_tasks(xprt, 0); | ||
694 | } else { | ||
695 | if (xprt_test_and_clear_connected(xprt)) | ||
696 | xprt_wake_pending_tasks(xprt, ep->rep_connected); | ||
697 | } | ||
698 | spin_unlock_bh(&xprt->transport_lock); | ||
699 | } | ||
700 | |||
701 | /* | ||
702 | * This function is called when memory window unbind which we are waiting | ||
703 | * for completes. Just use rr_func (zeroed by upcall) to signal completion. | ||
704 | */ | ||
705 | static void | ||
706 | rpcrdma_unbind_func(struct rpcrdma_rep *rep) | ||
707 | { | ||
708 | wake_up(&rep->rr_unbind); | ||
709 | } | ||
710 | |||
711 | /* | ||
712 | * Called as a tasklet to do req/reply match and complete a request | ||
713 | * Errors must result in the RPC task either being awakened, or | ||
714 | * allowed to timeout, to discover the errors at that time. | ||
715 | */ | ||
716 | void | ||
717 | rpcrdma_reply_handler(struct rpcrdma_rep *rep) | ||
718 | { | ||
719 | struct rpcrdma_msg *headerp; | ||
720 | struct rpcrdma_req *req; | ||
721 | struct rpc_rqst *rqst; | ||
722 | struct rpc_xprt *xprt = rep->rr_xprt; | ||
723 | struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); | ||
724 | u32 *iptr; | ||
725 | int i, rdmalen, status; | ||
726 | |||
727 | /* Check status. If bad, signal disconnect and return rep to pool */ | ||
728 | if (rep->rr_len == ~0U) { | ||
729 | rpcrdma_recv_buffer_put(rep); | ||
730 | if (r_xprt->rx_ep.rep_connected == 1) { | ||
731 | r_xprt->rx_ep.rep_connected = -EIO; | ||
732 | rpcrdma_conn_func(&r_xprt->rx_ep); | ||
733 | } | ||
734 | return; | ||
735 | } | ||
736 | if (rep->rr_len < 28) { | ||
737 | dprintk("RPC: %s: short/invalid reply\n", __func__); | ||
738 | goto repost; | ||
739 | } | ||
740 | headerp = (struct rpcrdma_msg *) rep->rr_base; | ||
741 | if (headerp->rm_vers != xdr_one) { | ||
742 | dprintk("RPC: %s: invalid version %d\n", | ||
743 | __func__, ntohl(headerp->rm_vers)); | ||
744 | goto repost; | ||
745 | } | ||
746 | |||
747 | /* Get XID and try for a match. */ | ||
748 | spin_lock(&xprt->transport_lock); | ||
749 | rqst = xprt_lookup_rqst(xprt, headerp->rm_xid); | ||
750 | if (rqst == NULL) { | ||
751 | spin_unlock(&xprt->transport_lock); | ||
752 | dprintk("RPC: %s: reply 0x%p failed " | ||
753 | "to match any request xid 0x%08x len %d\n", | ||
754 | __func__, rep, headerp->rm_xid, rep->rr_len); | ||
755 | repost: | ||
756 | r_xprt->rx_stats.bad_reply_count++; | ||
757 | rep->rr_func = rpcrdma_reply_handler; | ||
758 | if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, &r_xprt->rx_ep, rep)) | ||
759 | rpcrdma_recv_buffer_put(rep); | ||
760 | |||
761 | return; | ||
762 | } | ||
763 | |||
764 | /* get request object */ | ||
765 | req = rpcr_to_rdmar(rqst); | ||
766 | |||
767 | dprintk("RPC: %s: reply 0x%p completes request 0x%p\n" | ||
768 | " RPC request 0x%p xid 0x%08x\n", | ||
769 | __func__, rep, req, rqst, headerp->rm_xid); | ||
770 | |||
771 | BUG_ON(!req || req->rl_reply); | ||
772 | |||
773 | /* from here on, the reply is no longer an orphan */ | ||
774 | req->rl_reply = rep; | ||
775 | |||
776 | /* check for expected message types */ | ||
777 | /* The order of some of these tests is important. */ | ||
778 | switch (headerp->rm_type) { | ||
779 | case __constant_htonl(RDMA_MSG): | ||
780 | /* never expect read chunks */ | ||
781 | /* never expect reply chunks (two ways to check) */ | ||
782 | /* never expect write chunks without having offered RDMA */ | ||
783 | if (headerp->rm_body.rm_chunks[0] != xdr_zero || | ||
784 | (headerp->rm_body.rm_chunks[1] == xdr_zero && | ||
785 | headerp->rm_body.rm_chunks[2] != xdr_zero) || | ||
786 | (headerp->rm_body.rm_chunks[1] != xdr_zero && | ||
787 | req->rl_nchunks == 0)) | ||
788 | goto badheader; | ||
789 | if (headerp->rm_body.rm_chunks[1] != xdr_zero) { | ||
790 | /* count any expected write chunks in read reply */ | ||
791 | /* start at write chunk array count */ | ||
792 | iptr = &headerp->rm_body.rm_chunks[2]; | ||
793 | rdmalen = rpcrdma_count_chunks(rep, | ||
794 | req->rl_nchunks, 1, &iptr); | ||
795 | /* check for validity, and no reply chunk after */ | ||
796 | if (rdmalen < 0 || *iptr++ != xdr_zero) | ||
797 | goto badheader; | ||
798 | rep->rr_len -= | ||
799 | ((unsigned char *)iptr - (unsigned char *)headerp); | ||
800 | status = rep->rr_len + rdmalen; | ||
801 | r_xprt->rx_stats.total_rdma_reply += rdmalen; | ||
802 | } else { | ||
803 | /* else ordinary inline */ | ||
804 | iptr = (u32 *)((unsigned char *)headerp + 28); | ||
805 | rep->rr_len -= 28; /*sizeof *headerp;*/ | ||
806 | status = rep->rr_len; | ||
807 | } | ||
808 | /* Fix up the rpc results for upper layer */ | ||
809 | rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len); | ||
810 | break; | ||
811 | |||
812 | case __constant_htonl(RDMA_NOMSG): | ||
813 | /* never expect read or write chunks, always reply chunks */ | ||
814 | if (headerp->rm_body.rm_chunks[0] != xdr_zero || | ||
815 | headerp->rm_body.rm_chunks[1] != xdr_zero || | ||
816 | headerp->rm_body.rm_chunks[2] != xdr_one || | ||
817 | req->rl_nchunks == 0) | ||
818 | goto badheader; | ||
819 | iptr = (u32 *)((unsigned char *)headerp + 28); | ||
820 | rdmalen = rpcrdma_count_chunks(rep, req->rl_nchunks, 0, &iptr); | ||
821 | if (rdmalen < 0) | ||
822 | goto badheader; | ||
823 | r_xprt->rx_stats.total_rdma_reply += rdmalen; | ||
824 | /* Reply chunk buffer already is the reply vector - no fixup. */ | ||
825 | status = rdmalen; | ||
826 | break; | ||
827 | |||
828 | badheader: | ||
829 | default: | ||
830 | dprintk("%s: invalid rpcrdma reply header (type %d):" | ||
831 | " chunks[012] == %d %d %d" | ||
832 | " expected chunks <= %d\n", | ||
833 | __func__, ntohl(headerp->rm_type), | ||
834 | headerp->rm_body.rm_chunks[0], | ||
835 | headerp->rm_body.rm_chunks[1], | ||
836 | headerp->rm_body.rm_chunks[2], | ||
837 | req->rl_nchunks); | ||
838 | status = -EIO; | ||
839 | r_xprt->rx_stats.bad_reply_count++; | ||
840 | break; | ||
841 | } | ||
842 | |||
843 | /* If using mw bind, start the deregister process now. */ | ||
844 | /* (Note: if mr_free(), cannot perform it here, in tasklet context) */ | ||
845 | if (req->rl_nchunks) switch (r_xprt->rx_ia.ri_memreg_strategy) { | ||
846 | case RPCRDMA_MEMWINDOWS: | ||
847 | for (i = 0; req->rl_nchunks-- > 1;) | ||
848 | i += rpcrdma_deregister_external( | ||
849 | &req->rl_segments[i], r_xprt, NULL); | ||
850 | /* Optionally wait (not here) for unbinds to complete */ | ||
851 | rep->rr_func = rpcrdma_unbind_func; | ||
852 | (void) rpcrdma_deregister_external(&req->rl_segments[i], | ||
853 | r_xprt, rep); | ||
854 | break; | ||
855 | case RPCRDMA_MEMWINDOWS_ASYNC: | ||
856 | for (i = 0; req->rl_nchunks--;) | ||
857 | i += rpcrdma_deregister_external(&req->rl_segments[i], | ||
858 | r_xprt, NULL); | ||
859 | break; | ||
860 | default: | ||
861 | break; | ||
862 | } | ||
863 | |||
864 | dprintk("RPC: %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n", | ||
865 | __func__, xprt, rqst, status); | ||
866 | xprt_complete_rqst(rqst->rq_task, status); | ||
867 | spin_unlock(&xprt->transport_lock); | ||
868 | } | ||