aboutsummaryrefslogtreecommitdiffstats
path: root/net/tipc/socket.c
diff options
context:
space:
mode:
authorClemens Ladisch <clemens@ladisch.de>2010-02-15 02:55:28 -0500
committerJaroslav Kysela <perex@perex.cz>2010-02-16 02:08:01 -0500
commitf167e1d073278fe231bbdd5d6c24fb9d091aa544 (patch)
tree98eea3aa4c5a559a608d375c4a8d269f333a5cb8 /net/tipc/socket.c
parent9d4c7464458770d309169f7a7ce1ea6f8a4a7de5 (diff)
ALSA: usb-audio: reduce MIDI packet size to work around broken firmware
Extend the list of devices whose firmware does not expect more than one USB MIDI packet in one USB packet. bug report: https://bugtrack.alsa-project.org/alsa-bug/view.php?id=3752 Signed-off-by: Clemens Ladisch <clemens@ladisch.de> Cc: <stable@kernel.org> Signed-off-by: Jaroslav Kysela <perex@perex.cz>
Diffstat (limited to 'net/tipc/socket.c')
0 files changed, 0 insertions, 0 deletions
68'>268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
/*
 * Char device interface.
 *
 * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

#ifndef _LINUX_FIREWIRE_CDEV_H
#define _LINUX_FIREWIRE_CDEV_H

#include <linux/ioctl.h>
#include <linux/types.h>
#include <linux/firewire-constants.h>

/* available since kernel version 2.6.22 */
#define FW_CDEV_EVENT_BUS_RESET				0x00
#define FW_CDEV_EVENT_RESPONSE				0x01
#define FW_CDEV_EVENT_REQUEST				0x02
#define FW_CDEV_EVENT_ISO_INTERRUPT			0x03

/* available since kernel version 2.6.30 */
#define FW_CDEV_EVENT_ISO_RESOURCE_ALLOCATED		0x04
#define FW_CDEV_EVENT_ISO_RESOURCE_DEALLOCATED		0x05

/* available since kernel version 2.6.36 */
#define FW_CDEV_EVENT_REQUEST2				0x06
#define FW_CDEV_EVENT_PHY_PACKET_SENT			0x07
#define FW_CDEV_EVENT_PHY_PACKET_RECEIVED		0x08
#define FW_CDEV_EVENT_ISO_INTERRUPT_MULTICHANNEL	0x09

/**
 * struct fw_cdev_event_common - Common part of all fw_cdev_event_ types
 * @closure:	For arbitrary use by userspace
 * @type:	Discriminates the fw_cdev_event_ types
 *
 * This struct may be used to access generic members of all fw_cdev_event_
 * types regardless of the specific type.
 *
 * Data passed in the @closure field for a request will be returned in the
 * corresponding event.  It is big enough to hold a pointer on all platforms.
 * The ioctl used to set @closure depends on the @type of event.
 */
struct fw_cdev_event_common {
	__u64 closure;
	__u32 type;
};

/**
 * struct fw_cdev_event_bus_reset - Sent when a bus reset occurred
 * @closure:	See &fw_cdev_event_common; set by %FW_CDEV_IOC_GET_INFO ioctl
 * @type:	See &fw_cdev_event_common; always %FW_CDEV_EVENT_BUS_RESET
 * @node_id:       New node ID of this node
 * @local_node_id: Node ID of the local node, i.e. of the controller
 * @bm_node_id:    Node ID of the bus manager
 * @irm_node_id:   Node ID of the iso resource manager
 * @root_node_id:  Node ID of the root node
 * @generation:    New bus generation
 *
 * This event is sent when the bus the device belongs to goes through a bus
 * reset.  It provides information about the new bus configuration, such as
 * new node ID for this device, new root ID, and others.
 *
 * If @bm_node_id is 0xffff right after bus reset it can be reread by an
 * %FW_CDEV_IOC_GET_INFO ioctl after bus manager selection was finished.
 * Kernels with ABI version < 4 do not set @bm_node_id.
 */
struct fw_cdev_event_bus_reset {
	__u64 closure;
	__u32 type;
	__u32 node_id;
	__u32 local_node_id;
	__u32 bm_node_id;
	__u32 irm_node_id;
	__u32 root_node_id;
	__u32 generation;
};

/**
 * struct fw_cdev_event_response - Sent when a response packet was received
 * @closure:	See &fw_cdev_event_common; set by %FW_CDEV_IOC_SEND_REQUEST
 *		or %FW_CDEV_IOC_SEND_BROADCAST_REQUEST
 *		or %FW_CDEV_IOC_SEND_STREAM_PACKET ioctl
 * @type:	See &fw_cdev_event_common; always %FW_CDEV_EVENT_RESPONSE
 * @rcode:	Response code returned by the remote node
 * @length:	Data length, i.e. the response's payload size in bytes
 * @data:	Payload data, if any
 *
 * This event is sent when the stack receives a response to an outgoing request
 * sent by %FW_CDEV_IOC_SEND_REQUEST ioctl.  The payload data for responses
 * carrying data (read and lock responses) follows immediately and can be
 * accessed through the @data field.
 *
 * The event is also generated after conclusions of transactions that do not
 * involve response packets.  This includes unified write transactions,
 * broadcast write transactions, and transmission of asynchronous stream
 * packets.  @rcode indicates success or failure of such transmissions.
 */
struct fw_cdev_event_response {
	__u64 closure;
	__u32 type;
	__u32 rcode;
	__u32 length;
	__u32 data[0];
};

/**
 * struct fw_cdev_event_request - Old version of &fw_cdev_event_request2
 * @type:	See &fw_cdev_event_common; always %FW_CDEV_EVENT_REQUEST
 *
 * This event is sent instead of &fw_cdev_event_request2 if the kernel or
 * the client implements ABI version <= 3.  &fw_cdev_event_request lacks
 * essential information; use &fw_cdev_event_request2 instead.
 */
struct fw_cdev_event_request {
	__u64 closure;
	__u32 type;
	__u32 tcode;
	__u64 offset;
	__u32 handle;
	__u32 length;
	__u32 data[0];
};

/**
 * struct fw_cdev_event_request2 - Sent on incoming request to an address region
 * @closure:	See &fw_cdev_event_common; set by %FW_CDEV_IOC_ALLOCATE ioctl
 * @type:	See &fw_cdev_event_common; always %FW_CDEV_EVENT_REQUEST2
 * @tcode:	Transaction code of the incoming request
 * @offset:	The offset into the 48-bit per-node address space
 * @source_node_id: Sender node ID
 * @destination_node_id: Destination node ID
 * @card:	The index of the card from which the request came
 * @generation:	Bus generation in which the request is valid
 * @handle:	Reference to the kernel-side pending request
 * @length:	Data length, i.e. the request's payload size in bytes
 * @data:	Incoming data, if any
 *
 * This event is sent when the stack receives an incoming request to an address
 * region registered using the %FW_CDEV_IOC_ALLOCATE ioctl.  The request is
 * guaranteed to be completely contained in the specified region.  Userspace is
 * responsible for sending the response by %FW_CDEV_IOC_SEND_RESPONSE ioctl,
 * using the same @handle.
 *
 * The payload data for requests carrying data (write and lock requests)
 * follows immediately and can be accessed through the @data field.
 *
 * Unlike &fw_cdev_event_request, @tcode of lock requests is one of the
 * firewire-core specific %TCODE_LOCK_MASK_SWAP...%TCODE_LOCK_VENDOR_DEPENDENT,
 * i.e. encodes the extended transaction code.
 *
 * @card may differ from &fw_cdev_get_info.card because requests are received
 * from all cards of the Linux host.  @source_node_id, @destination_node_id, and
 * @generation pertain to that card.  Destination node ID and bus generation may
 * therefore differ from the corresponding fields of the last
 * &fw_cdev_event_bus_reset.
 *
 * @destination_node_id may also differ from the current node ID because of a
 * non-local bus ID part or in case of a broadcast write request.  Note, a
 * client must call an %FW_CDEV_IOC_SEND_RESPONSE ioctl even in case of a
 * broadcast write request; the kernel will then release the kernel-side pending
 * request but will not actually send a response packet.
 *
 * In case of a write request to FCP_REQUEST or FCP_RESPONSE, the kernel already
 * sent a write response immediately after the request was received; in this
 * case the client must still call an %FW_CDEV_IOC_SEND_RESPONSE ioctl to
 * release the kernel-side pending request, though another response won't be
 * sent.
 *
 * If the client subsequently needs to initiate requests to the sender node of
 * an &fw_cdev_event_request2, it needs to use a device file with matching
 * card index, node ID, and generation for outbound requests.
 */
struct fw_cdev_event_request2 {
	__u64 closure;
	__u32 type;
	__u32 tcode;
	__u64 offset;
	__u32 source_node_id;
	__u32 destination_node_id;
	__u32 card;
	__u32 generation;
	__u32 handle;
	__u32 length;
	__u32 data[0];
};

/**
 * struct fw_cdev_event_iso_interrupt - Sent when an iso packet was completed
 * @closure:	See &fw_cdev_event_common;
 *		set by %FW_CDEV_CREATE_ISO_CONTEXT ioctl
 * @type:	See &fw_cdev_event_common; always %FW_CDEV_EVENT_ISO_INTERRUPT
 * @cycle:	Cycle counter of the interrupt packet
 * @header_length: Total length of following headers, in bytes
 * @header:	Stripped headers, if any
 *
 * This event is sent when the controller has completed an &fw_cdev_iso_packet
 * with the %FW_CDEV_ISO_INTERRUPT bit set.
 *
 * Isochronous transmit events (context type %FW_CDEV_ISO_CONTEXT_TRANSMIT):
 *
 * In version 3 and some implementations of version 2 of the ABI, &header_length
 * is a multiple of 4 and &header contains timestamps of all packets up until
 * the interrupt packet.  The format of the timestamps is as described below for
 * isochronous reception.  In version 1 of the ABI, &header_length was 0.
 *
 * Isochronous receive events (context type %FW_CDEV_ISO_CONTEXT_RECEIVE):
 *
 * The headers stripped of all packets up until and including the interrupt
 * packet are returned in the @header field.  The amount of header data per
 * packet is as specified at iso context creation by
 * &fw_cdev_create_iso_context.header_size.
 *
 * Hence, _interrupt.header_length / _context.header_size is the number of
 * packets received in this interrupt event.  The client can now iterate
 * through the mmap()'ed DMA buffer according to this number of packets and
 * to the buffer sizes as the client specified in &fw_cdev_queue_iso.
 *
 * Since version 2 of this ABI, the portion for each packet in _interrupt.header
 * consists of the 1394 isochronous packet header, followed by a timestamp
 * quadlet if &fw_cdev_create_iso_context.header_size > 4, followed by quadlets
 * from the packet payload if &fw_cdev_create_iso_context.header_size > 8.
 *
 * Format of 1394 iso packet header:  16 bits data_length, 2 bits tag, 6 bits
 * channel, 4 bits tcode, 4 bits sy, in big endian byte order.
 * data_length is the actual received size of the packet without the four
 * 1394 iso packet header bytes.
 *
 * Format of timestamp:  16 bits invalid, 3 bits cycleSeconds, 13 bits
 * cycleCount, in big endian byte order.
 *
 * In version 1 of the ABI, no timestamp quadlet was inserted; instead, payload
 * data followed directly after the 1394 is header if header_size > 4.
 * Behaviour of ver. 1 of this ABI is no longer available since ABI ver. 2.
 */
struct fw_cdev_event_iso_interrupt {
	__u64 closure;
	__u32 type;
	__u32 cycle;
	__u32 header_length;
	__u32 header[0];
};

/**
 * struct fw_cdev_event_iso_interrupt_mc - An iso buffer chunk was completed
 * @closure:	See &fw_cdev_event_common;
 *		set by %FW_CDEV_CREATE_ISO_CONTEXT ioctl
 * @type:	%FW_CDEV_EVENT_ISO_INTERRUPT_MULTICHANNEL
 * @completed:	Offset into the receive buffer; data before this offset is valid
 *
 * This event is sent in multichannel contexts (context type
 * %FW_CDEV_ISO_CONTEXT_RECEIVE_MULTICHANNEL) for &fw_cdev_iso_packet buffer
 * chunks that have the %FW_CDEV_ISO_INTERRUPT bit set.  Whether this happens
 * when a packet is completed and/or when a buffer chunk is completed depends
 * on the hardware implementation.
 *
 * The buffer is continuously filled with the following data, per packet:
 *  - the 1394 iso packet header as described at &fw_cdev_event_iso_interrupt,
 *    but in little endian byte order,
 *  - packet payload (as many bytes as specified in the data_length field of
 *    the 1394 iso packet header) in big endian byte order,
 *  - 0...3 padding bytes as needed to align the following trailer quadlet,
 *  - trailer quadlet, containing the reception timestamp as described at
 *    &fw_cdev_event_iso_interrupt, but in little endian byte order.
 *
 * Hence the per-packet size is data_length (rounded up to a multiple of 4) + 8.
 * When processing the data, stop before a packet that would cross the
 * @completed offset.
 *
 * A packet near the end of a buffer chunk will typically spill over into the
 * next queued buffer chunk.  It is the responsibility of the client to check
 * for this condition, assemble a broken-up packet from its parts, and not to
 * re-queue any buffer chunks in which as yet unread packet parts reside.
 */
struct fw_cdev_event_iso_interrupt_mc {
	__u64 closure;
	__u32 type;
	__u32 completed;
};

/**
 * struct fw_cdev_event_iso_resource - Iso resources were allocated or freed
 * @closure:	See &fw_cdev_event_common;
 *		set by %FW_CDEV_IOC_(DE)ALLOCATE_ISO_RESOURCE(_ONCE) ioctl
 * @type:	%FW_CDEV_EVENT_ISO_RESOURCE_ALLOCATED or
 *		%FW_CDEV_EVENT_ISO_RESOURCE_DEALLOCATED
 * @handle:	Reference by which an allocated resource can be deallocated
 * @channel:	Isochronous channel which was (de)allocated, if any
 * @bandwidth:	Bandwidth allocation units which were (de)allocated, if any
 *
 * An %FW_CDEV_EVENT_ISO_RESOURCE_ALLOCATED event is sent after an isochronous
 * resource was allocated at the IRM.  The client has to check @channel and
 * @bandwidth for whether the allocation actually succeeded.
 *
 * An %FW_CDEV_EVENT_ISO_RESOURCE_DEALLOCATED event is sent after an isochronous
 * resource was deallocated at the IRM.  It is also sent when automatic
 * reallocation after a bus reset failed.
 *
 * @channel is <0 if no channel was (de)allocated or if reallocation failed.
 * @bandwidth is 0 if no bandwidth was (de)allocated or if reallocation failed.
 */
struct fw_cdev_event_iso_resource {
	__u64 closure;
	__u32 type;
	__u32 handle;
	__s32 channel;
	__s32 bandwidth;
};

/**
 * struct fw_cdev_event_phy_packet - A PHY packet was transmitted or received
 * @closure:	See &fw_cdev_event_common; set by %FW_CDEV_IOC_SEND_PHY_PACKET
 *		or %FW_CDEV_IOC_RECEIVE_PHY_PACKETS ioctl
 * @type:	%FW_CDEV_EVENT_PHY_PACKET_SENT or %..._RECEIVED
 * @rcode:	%RCODE_..., indicates success or failure of transmission
 * @length:	Data length in bytes
 * @data:	Incoming data
 *
 * If @type is %FW_CDEV_EVENT_PHY_PACKET_SENT, @length is 0 and @data empty,
 * except in case of a ping packet:  Then, @length is 4, and @data[0] is the
 * ping time in 49.152MHz clocks if @rcode is %RCODE_COMPLETE.
 *
 * If @type is %FW_CDEV_EVENT_PHY_PACKET_RECEIVED, @length is 8 and @data
 * consists of the two PHY packet quadlets, in host byte order.
 */
struct fw_cdev_event_phy_packet {
	__u64 closure;
	__u32 type;
	__u32 rcode;
	__u32 length;
	__u32 data[0];
};

/**
 * union fw_cdev_event - Convenience union of fw_cdev_event_ types
 * @common:		Valid for all types
 * @bus_reset:		Valid if @common.type == %FW_CDEV_EVENT_BUS_RESET
 * @response:		Valid if @common.type == %FW_CDEV_EVENT_RESPONSE
 * @request:		Valid if @common.type == %FW_CDEV_EVENT_REQUEST
 * @request2:		Valid if @common.type == %FW_CDEV_EVENT_REQUEST2
 * @iso_interrupt:	Valid if @common.type == %FW_CDEV_EVENT_ISO_INTERRUPT
 * @iso_interrupt_mc:	Valid if @common.type ==
 *				%FW_CDEV_EVENT_ISO_INTERRUPT_MULTICHANNEL
 * @iso_resource:	Valid if @common.type ==