aboutsummaryrefslogtreecommitdiffstats
path: root/net/sunrpc/sched.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /net/sunrpc/sched.c
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'net/sunrpc/sched.c')
-rw-r--r--net/sunrpc/sched.c1119
1 files changed, 1119 insertions, 0 deletions
diff --git a/net/sunrpc/sched.c b/net/sunrpc/sched.c
new file mode 100644
index 000000000000..c06614d0e31d
--- /dev/null
+++ b/net/sunrpc/sched.c
@@ -0,0 +1,1119 @@
1/*
2 * linux/net/sunrpc/sched.c
3 *
4 * Scheduling for synchronous and asynchronous RPC requests.
5 *
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7 *
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10 */
11
12#include <linux/module.h>
13
14#include <linux/sched.h>
15#include <linux/interrupt.h>
16#include <linux/slab.h>
17#include <linux/mempool.h>
18#include <linux/smp.h>
19#include <linux/smp_lock.h>
20#include <linux/spinlock.h>
21
22#include <linux/sunrpc/clnt.h>
23#include <linux/sunrpc/xprt.h>
24
25#ifdef RPC_DEBUG
26#define RPCDBG_FACILITY RPCDBG_SCHED
27#define RPC_TASK_MAGIC_ID 0xf00baa
28static int rpc_task_id;
29#endif
30
31/*
32 * RPC slabs and memory pools
33 */
34#define RPC_BUFFER_MAXSIZE (2048)
35#define RPC_BUFFER_POOLSIZE (8)
36#define RPC_TASK_POOLSIZE (8)
37static kmem_cache_t *rpc_task_slabp;
38static kmem_cache_t *rpc_buffer_slabp;
39static mempool_t *rpc_task_mempool;
40static mempool_t *rpc_buffer_mempool;
41
42static void __rpc_default_timer(struct rpc_task *task);
43static void rpciod_killall(void);
44static void rpc_free(struct rpc_task *task);
45
46static void rpc_async_schedule(void *);
47
48/*
49 * RPC tasks that create another task (e.g. for contacting the portmapper)
50 * will wait on this queue for their child's completion
51 */
52static RPC_WAITQ(childq, "childq");
53
54/*
55 * RPC tasks sit here while waiting for conditions to improve.
56 */
57static RPC_WAITQ(delay_queue, "delayq");
58
59/*
60 * All RPC tasks are linked into this list
61 */
62static LIST_HEAD(all_tasks);
63
64/*
65 * rpciod-related stuff
66 */
67static DECLARE_MUTEX(rpciod_sema);
68static unsigned int rpciod_users;
69static struct workqueue_struct *rpciod_workqueue;
70
71/*
72 * Spinlock for other critical sections of code.
73 */
74static DEFINE_SPINLOCK(rpc_sched_lock);
75
76/*
77 * Disable the timer for a given RPC task. Should be called with
78 * queue->lock and bh_disabled in order to avoid races within
79 * rpc_run_timer().
80 */
81static inline void
82__rpc_disable_timer(struct rpc_task *task)
83{
84 dprintk("RPC: %4d disabling timer\n", task->tk_pid);
85 task->tk_timeout_fn = NULL;
86 task->tk_timeout = 0;
87}
88
89/*
90 * Run a timeout function.
91 * We use the callback in order to allow __rpc_wake_up_task()
92 * and friends to disable the timer synchronously on SMP systems
93 * without calling del_timer_sync(). The latter could cause a
94 * deadlock if called while we're holding spinlocks...
95 */
96static void rpc_run_timer(struct rpc_task *task)
97{
98 void (*callback)(struct rpc_task *);
99
100 callback = task->tk_timeout_fn;
101 task->tk_timeout_fn = NULL;
102 if (callback && RPC_IS_QUEUED(task)) {
103 dprintk("RPC: %4d running timer\n", task->tk_pid);
104 callback(task);
105 }
106 smp_mb__before_clear_bit();
107 clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
108 smp_mb__after_clear_bit();
109}
110
111/*
112 * Set up a timer for the current task.
113 */
114static inline void
115__rpc_add_timer(struct rpc_task *task, rpc_action timer)
116{
117 if (!task->tk_timeout)
118 return;
119
120 dprintk("RPC: %4d setting alarm for %lu ms\n",
121 task->tk_pid, task->tk_timeout * 1000 / HZ);
122
123 if (timer)
124 task->tk_timeout_fn = timer;
125 else
126 task->tk_timeout_fn = __rpc_default_timer;
127 set_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
128 mod_timer(&task->tk_timer, jiffies + task->tk_timeout);
129}
130
131/*
132 * Delete any timer for the current task. Because we use del_timer_sync(),
133 * this function should never be called while holding queue->lock.
134 */
135static void
136rpc_delete_timer(struct rpc_task *task)
137{
138 if (RPC_IS_QUEUED(task))
139 return;
140 if (test_and_clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate)) {
141 del_singleshot_timer_sync(&task->tk_timer);
142 dprintk("RPC: %4d deleting timer\n", task->tk_pid);
143 }
144}
145
146/*
147 * Add new request to a priority queue.
148 */
149static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
150{
151 struct list_head *q;
152 struct rpc_task *t;
153
154 INIT_LIST_HEAD(&task->u.tk_wait.links);
155 q = &queue->tasks[task->tk_priority];
156 if (unlikely(task->tk_priority > queue->maxpriority))
157 q = &queue->tasks[queue->maxpriority];
158 list_for_each_entry(t, q, u.tk_wait.list) {
159 if (t->tk_cookie == task->tk_cookie) {
160 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
161 return;
162 }
163 }
164 list_add_tail(&task->u.tk_wait.list, q);
165}
166
167/*
168 * Add new request to wait queue.
169 *
170 * Swapper tasks always get inserted at the head of the queue.
171 * This should avoid many nasty memory deadlocks and hopefully
172 * improve overall performance.
173 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
174 */
175static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
176{
177 BUG_ON (RPC_IS_QUEUED(task));
178
179 if (RPC_IS_PRIORITY(queue))
180 __rpc_add_wait_queue_priority(queue, task);
181 else if (RPC_IS_SWAPPER(task))
182 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
183 else
184 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
185 task->u.tk_wait.rpc_waitq = queue;
186 rpc_set_queued(task);
187
188 dprintk("RPC: %4d added to queue %p \"%s\"\n",
189 task->tk_pid, queue, rpc_qname(queue));
190}
191
192/*
193 * Remove request from a priority queue.
194 */
195static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
196{
197 struct rpc_task *t;
198
199 if (!list_empty(&task->u.tk_wait.links)) {
200 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
201 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
202 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
203 }
204 list_del(&task->u.tk_wait.list);
205}
206
207/*
208 * Remove request from queue.
209 * Note: must be called with spin lock held.
210 */
211static void __rpc_remove_wait_queue(struct rpc_task *task)
212{
213 struct rpc_wait_queue *queue;
214 queue = task->u.tk_wait.rpc_waitq;
215
216 if (RPC_IS_PRIORITY(queue))
217 __rpc_remove_wait_queue_priority(task);
218 else
219 list_del(&task->u.tk_wait.list);
220 dprintk("RPC: %4d removed from queue %p \"%s\"\n",
221 task->tk_pid, queue, rpc_qname(queue));
222}
223
224static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
225{
226 queue->priority = priority;
227 queue->count = 1 << (priority * 2);
228}
229
230static inline void rpc_set_waitqueue_cookie(struct rpc_wait_queue *queue, unsigned long cookie)
231{
232 queue->cookie = cookie;
233 queue->nr = RPC_BATCH_COUNT;
234}
235
236static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
237{
238 rpc_set_waitqueue_priority(queue, queue->maxpriority);
239 rpc_set_waitqueue_cookie(queue, 0);
240}
241
242static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, int maxprio)
243{
244 int i;
245
246 spin_lock_init(&queue->lock);
247 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
248 INIT_LIST_HEAD(&queue->tasks[i]);
249 queue->maxpriority = maxprio;
250 rpc_reset_waitqueue_priority(queue);
251#ifdef RPC_DEBUG
252 queue->name = qname;
253#endif
254}
255
256void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
257{
258 __rpc_init_priority_wait_queue(queue, qname, RPC_PRIORITY_HIGH);
259}
260
261void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
262{
263 __rpc_init_priority_wait_queue(queue, qname, 0);
264}
265EXPORT_SYMBOL(rpc_init_wait_queue);
266
267/*
268 * Make an RPC task runnable.
269 *
270 * Note: If the task is ASYNC, this must be called with
271 * the spinlock held to protect the wait queue operation.
272 */
273static void rpc_make_runnable(struct rpc_task *task)
274{
275 int do_ret;
276
277 BUG_ON(task->tk_timeout_fn);
278 do_ret = rpc_test_and_set_running(task);
279 rpc_clear_queued(task);
280 if (do_ret)
281 return;
282 if (RPC_IS_ASYNC(task)) {
283 int status;
284
285 INIT_WORK(&task->u.tk_work, rpc_async_schedule, (void *)task);
286 status = queue_work(task->tk_workqueue, &task->u.tk_work);
287 if (status < 0) {
288 printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
289 task->tk_status = status;
290 return;
291 }
292 } else
293 wake_up(&task->u.tk_wait.waitq);
294}
295
296/*
297 * Place a newly initialized task on the workqueue.
298 */
299static inline void
300rpc_schedule_run(struct rpc_task *task)
301{
302 /* Don't run a child twice! */
303 if (RPC_IS_ACTIVATED(task))
304 return;
305 task->tk_active = 1;
306 rpc_make_runnable(task);
307}
308
309/*
310 * Prepare for sleeping on a wait queue.
311 * By always appending tasks to the list we ensure FIFO behavior.
312 * NB: An RPC task will only receive interrupt-driven events as long
313 * as it's on a wait queue.
314 */
315static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
316 rpc_action action, rpc_action timer)
317{
318 dprintk("RPC: %4d sleep_on(queue \"%s\" time %ld)\n", task->tk_pid,
319 rpc_qname(q), jiffies);
320
321 if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
322 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
323 return;
324 }
325
326 /* Mark the task as being activated if so needed */
327 if (!RPC_IS_ACTIVATED(task))
328 task->tk_active = 1;
329
330 __rpc_add_wait_queue(q, task);
331
332 BUG_ON(task->tk_callback != NULL);
333 task->tk_callback = action;
334 __rpc_add_timer(task, timer);
335}
336
337void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
338 rpc_action action, rpc_action timer)
339{
340 /*
341 * Protect the queue operations.
342 */
343 spin_lock_bh(&q->lock);
344 __rpc_sleep_on(q, task, action, timer);
345 spin_unlock_bh(&q->lock);
346}
347
348/**
349 * __rpc_do_wake_up_task - wake up a single rpc_task
350 * @task: task to be woken up
351 *
352 * Caller must hold queue->lock, and have cleared the task queued flag.
353 */
354static void __rpc_do_wake_up_task(struct rpc_task *task)
355{
356 dprintk("RPC: %4d __rpc_wake_up_task (now %ld)\n", task->tk_pid, jiffies);
357
358#ifdef RPC_DEBUG
359 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
360#endif
361 /* Has the task been executed yet? If not, we cannot wake it up! */
362 if (!RPC_IS_ACTIVATED(task)) {
363 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
364 return;
365 }
366
367 __rpc_disable_timer(task);
368 __rpc_remove_wait_queue(task);
369
370 rpc_make_runnable(task);
371
372 dprintk("RPC: __rpc_wake_up_task done\n");
373}
374
375/*
376 * Wake up the specified task
377 */
378static void __rpc_wake_up_task(struct rpc_task *task)
379{
380 if (rpc_start_wakeup(task)) {
381 if (RPC_IS_QUEUED(task))
382 __rpc_do_wake_up_task(task);
383 rpc_finish_wakeup(task);
384 }
385}
386
387/*
388 * Default timeout handler if none specified by user
389 */
390static void
391__rpc_default_timer(struct rpc_task *task)
392{
393 dprintk("RPC: %d timeout (default timer)\n", task->tk_pid);
394 task->tk_status = -ETIMEDOUT;
395 rpc_wake_up_task(task);
396}
397
398/*
399 * Wake up the specified task
400 */
401void rpc_wake_up_task(struct rpc_task *task)
402{
403 if (rpc_start_wakeup(task)) {
404 if (RPC_IS_QUEUED(task)) {
405 struct rpc_wait_queue *queue = task->u.tk_wait.rpc_waitq;
406
407 spin_lock_bh(&queue->lock);
408 __rpc_do_wake_up_task(task);
409 spin_unlock_bh(&queue->lock);
410 }
411 rpc_finish_wakeup(task);
412 }
413}
414
415/*
416 * Wake up the next task on a priority queue.
417 */
418static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
419{
420 struct list_head *q;
421 struct rpc_task *task;
422
423 /*
424 * Service a batch of tasks from a single cookie.
425 */
426 q = &queue->tasks[queue->priority];
427 if (!list_empty(q)) {
428 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
429 if (queue->cookie == task->tk_cookie) {
430 if (--queue->nr)
431 goto out;
432 list_move_tail(&task->u.tk_wait.list, q);
433 }
434 /*
435 * Check if we need to switch queues.
436 */
437 if (--queue->count)
438 goto new_cookie;
439 }
440
441 /*
442 * Service the next queue.
443 */
444 do {
445 if (q == &queue->tasks[0])
446 q = &queue->tasks[queue->maxpriority];
447 else
448 q = q - 1;
449 if (!list_empty(q)) {
450 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
451 goto new_queue;
452 }
453 } while (q != &queue->tasks[queue->priority]);
454
455 rpc_reset_waitqueue_priority(queue);
456 return NULL;
457
458new_queue:
459 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
460new_cookie:
461 rpc_set_waitqueue_cookie(queue, task->tk_cookie);
462out:
463 __rpc_wake_up_task(task);
464 return task;
465}
466
467/*
468 * Wake up the next task on the wait queue.
469 */
470struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
471{
472 struct rpc_task *task = NULL;
473
474 dprintk("RPC: wake_up_next(%p \"%s\")\n", queue, rpc_qname(queue));
475 spin_lock_bh(&queue->lock);
476 if (RPC_IS_PRIORITY(queue))
477 task = __rpc_wake_up_next_priority(queue);
478 else {
479 task_for_first(task, &queue->tasks[0])
480 __rpc_wake_up_task(task);
481 }
482 spin_unlock_bh(&queue->lock);
483
484 return task;
485}
486
487/**
488 * rpc_wake_up - wake up all rpc_tasks
489 * @queue: rpc_wait_queue on which the tasks are sleeping
490 *
491 * Grabs queue->lock
492 */
493void rpc_wake_up(struct rpc_wait_queue *queue)
494{
495 struct rpc_task *task;
496
497 struct list_head *head;
498 spin_lock_bh(&queue->lock);
499 head = &queue->tasks[queue->maxpriority];
500 for (;;) {
501 while (!list_empty(head)) {
502 task = list_entry(head->next, struct rpc_task, u.tk_wait.list);
503 __rpc_wake_up_task(task);
504 }
505 if (head == &queue->tasks[0])
506 break;
507 head--;
508 }
509 spin_unlock_bh(&queue->lock);
510}
511
512/**
513 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
514 * @queue: rpc_wait_queue on which the tasks are sleeping
515 * @status: status value to set
516 *
517 * Grabs queue->lock
518 */
519void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
520{
521 struct list_head *head;
522 struct rpc_task *task;
523
524 spin_lock_bh(&queue->lock);
525 head = &queue->tasks[queue->maxpriority];
526 for (;;) {
527 while (!list_empty(head)) {
528 task = list_entry(head->next, struct rpc_task, u.tk_wait.list);
529 task->tk_status = status;
530 __rpc_wake_up_task(task);
531 }
532 if (head == &queue->tasks[0])
533 break;
534 head--;
535 }
536 spin_unlock_bh(&queue->lock);
537}
538
539/*
540 * Run a task at a later time
541 */
542static void __rpc_atrun(struct rpc_task *);
543void
544rpc_delay(struct rpc_task *task, unsigned long delay)
545{
546 task->tk_timeout = delay;
547 rpc_sleep_on(&delay_queue, task, NULL, __rpc_atrun);
548}
549
550static void
551__rpc_atrun(struct rpc_task *task)
552{
553 task->tk_status = 0;
554 rpc_wake_up_task(task);
555}
556
557/*
558 * This is the RPC `scheduler' (or rather, the finite state machine).
559 */
560static int __rpc_execute(struct rpc_task *task)
561{
562 int status = 0;
563
564 dprintk("RPC: %4d rpc_execute flgs %x\n",
565 task->tk_pid, task->tk_flags);
566
567 BUG_ON(RPC_IS_QUEUED(task));
568
569 restarted:
570 while (1) {
571 /*
572 * Garbage collection of pending timers...
573 */
574 rpc_delete_timer(task);
575
576 /*
577 * Execute any pending callback.
578 */
579 if (RPC_DO_CALLBACK(task)) {
580 /* Define a callback save pointer */
581 void (*save_callback)(struct rpc_task *);
582
583 /*
584 * If a callback exists, save it, reset it,
585 * call it.
586 * The save is needed to stop from resetting
587 * another callback set within the callback handler
588 * - Dave
589 */
590 save_callback=task->tk_callback;
591 task->tk_callback=NULL;
592 lock_kernel();
593 save_callback(task);
594 unlock_kernel();
595 }
596
597 /*
598 * Perform the next FSM step.
599 * tk_action may be NULL when the task has been killed
600 * by someone else.
601 */
602 if (!RPC_IS_QUEUED(task)) {
603 if (!task->tk_action)
604 break;
605 lock_kernel();
606 task->tk_action(task);
607 unlock_kernel();
608 }
609
610 /*
611 * Lockless check for whether task is sleeping or not.
612 */
613 if (!RPC_IS_QUEUED(task))
614 continue;
615 rpc_clear_running(task);
616 if (RPC_IS_ASYNC(task)) {
617 /* Careful! we may have raced... */
618 if (RPC_IS_QUEUED(task))
619 return 0;
620 if (rpc_test_and_set_running(task))
621 return 0;
622 continue;
623 }
624
625 /* sync task: sleep here */
626 dprintk("RPC: %4d sync task going to sleep\n", task->tk_pid);
627 if (RPC_TASK_UNINTERRUPTIBLE(task)) {
628 __wait_event(task->u.tk_wait.waitq, !RPC_IS_QUEUED(task));
629 } else {
630 __wait_event_interruptible(task->u.tk_wait.waitq, !RPC_IS_QUEUED(task), status);
631 /*
632 * When a sync task receives a signal, it exits with
633 * -ERESTARTSYS. In order to catch any callbacks that
634 * clean up after sleeping on some queue, we don't
635 * break the loop here, but go around once more.
636 */
637 if (status == -ERESTARTSYS) {
638 dprintk("RPC: %4d got signal\n", task->tk_pid);
639 task->tk_flags |= RPC_TASK_KILLED;
640 rpc_exit(task, -ERESTARTSYS);
641 rpc_wake_up_task(task);
642 }
643 }
644 rpc_set_running(task);
645 dprintk("RPC: %4d sync task resuming\n", task->tk_pid);
646 }
647
648 if (task->tk_exit) {
649 lock_kernel();
650 task->tk_exit(task);
651 unlock_kernel();
652 /* If tk_action is non-null, the user wants us to restart */
653 if (task->tk_action) {
654 if (!RPC_ASSASSINATED(task)) {
655 /* Release RPC slot and buffer memory */
656 if (task->tk_rqstp)
657 xprt_release(task);
658 rpc_free(task);
659 goto restarted;
660 }
661 printk(KERN_ERR "RPC: dead task tries to walk away.\n");
662 }
663 }
664
665 dprintk("RPC: %4d exit() = %d\n", task->tk_pid, task->tk_status);
666 status = task->tk_status;
667
668 /* Release all resources associated with the task */
669 rpc_release_task(task);
670 return status;
671}
672
673/*
674 * User-visible entry point to the scheduler.
675 *
676 * This may be called recursively if e.g. an async NFS task updates
677 * the attributes and finds that dirty pages must be flushed.
678 * NOTE: Upon exit of this function the task is guaranteed to be
679 * released. In particular note that tk_release() will have
680 * been called, so your task memory may have been freed.
681 */
682int
683rpc_execute(struct rpc_task *task)
684{
685 BUG_ON(task->tk_active);
686
687 task->tk_active = 1;
688 rpc_set_running(task);
689 return __rpc_execute(task);
690}
691
692static void rpc_async_schedule(void *arg)
693{
694 __rpc_execute((struct rpc_task *)arg);
695}
696
697/*
698 * Allocate memory for RPC purposes.
699 *
700 * We try to ensure that some NFS reads and writes can always proceed
701 * by using a mempool when allocating 'small' buffers.
702 * In order to avoid memory starvation triggering more writebacks of
703 * NFS requests, we use GFP_NOFS rather than GFP_KERNEL.
704 */
705void *
706rpc_malloc(struct rpc_task *task, size_t size)
707{
708 int gfp;
709
710 if (task->tk_flags & RPC_TASK_SWAPPER)
711 gfp = GFP_ATOMIC;
712 else
713 gfp = GFP_NOFS;
714
715 if (size > RPC_BUFFER_MAXSIZE) {
716 task->tk_buffer = kmalloc(size, gfp);
717 if (task->tk_buffer)
718 task->tk_bufsize = size;
719 } else {
720 task->tk_buffer = mempool_alloc(rpc_buffer_mempool, gfp);
721 if (task->tk_buffer)
722 task->tk_bufsize = RPC_BUFFER_MAXSIZE;
723 }
724 return task->tk_buffer;
725}
726
727static void
728rpc_free(struct rpc_task *task)
729{
730 if (task->tk_buffer) {
731 if (task->tk_bufsize == RPC_BUFFER_MAXSIZE)
732 mempool_free(task->tk_buffer, rpc_buffer_mempool);
733 else
734 kfree(task->tk_buffer);
735 task->tk_buffer = NULL;
736 task->tk_bufsize = 0;
737 }
738}
739
740/*
741 * Creation and deletion of RPC task structures
742 */
743void rpc_init_task(struct rpc_task *task, struct rpc_clnt *clnt, rpc_action callback, int flags)
744{
745 memset(task, 0, sizeof(*task));
746 init_timer(&task->tk_timer);
747 task->tk_timer.data = (unsigned long) task;
748 task->tk_timer.function = (void (*)(unsigned long)) rpc_run_timer;
749 task->tk_client = clnt;
750 task->tk_flags = flags;
751 task->tk_exit = callback;
752
753 /* Initialize retry counters */
754 task->tk_garb_retry = 2;
755 task->tk_cred_retry = 2;
756
757 task->tk_priority = RPC_PRIORITY_NORMAL;
758 task->tk_cookie = (unsigned long)current;
759
760 /* Initialize workqueue for async tasks */
761 task->tk_workqueue = rpciod_workqueue;
762 if (!RPC_IS_ASYNC(task))
763 init_waitqueue_head(&task->u.tk_wait.waitq);
764
765 if (clnt) {
766 atomic_inc(&clnt->cl_users);
767 if (clnt->cl_softrtry)
768 task->tk_flags |= RPC_TASK_SOFT;
769 if (!clnt->cl_intr)
770 task->tk_flags |= RPC_TASK_NOINTR;
771 }
772
773#ifdef RPC_DEBUG
774 task->tk_magic = RPC_TASK_MAGIC_ID;
775 task->tk_pid = rpc_task_id++;
776#endif
777 /* Add to global list of all tasks */
778 spin_lock(&rpc_sched_lock);
779 list_add_tail(&task->tk_task, &all_tasks);
780 spin_unlock(&rpc_sched_lock);
781
782 dprintk("RPC: %4d new task procpid %d\n", task->tk_pid,
783 current->pid);
784}
785
786static struct rpc_task *
787rpc_alloc_task(void)
788{
789 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
790}
791
792static void
793rpc_default_free_task(struct rpc_task *task)
794{
795 dprintk("RPC: %4d freeing task\n", task->tk_pid);
796 mempool_free(task, rpc_task_mempool);
797}
798
799/*
800 * Create a new task for the specified client. We have to
801 * clean up after an allocation failure, as the client may
802 * have specified "oneshot".
803 */
804struct rpc_task *
805rpc_new_task(struct rpc_clnt *clnt, rpc_action callback, int flags)
806{
807 struct rpc_task *task;
808
809 task = rpc_alloc_task();
810 if (!task)
811 goto cleanup;
812
813 rpc_init_task(task, clnt, callback, flags);
814
815 /* Replace tk_release */
816 task->tk_release = rpc_default_free_task;
817
818 dprintk("RPC: %4d allocated task\n", task->tk_pid);
819 task->tk_flags |= RPC_TASK_DYNAMIC;
820out:
821 return task;
822
823cleanup:
824 /* Check whether to release the client */
825 if (clnt) {
826 printk("rpc_new_task: failed, users=%d, oneshot=%d\n",
827 atomic_read(&clnt->cl_users), clnt->cl_oneshot);
828 atomic_inc(&clnt->cl_users); /* pretend we were used ... */
829 rpc_release_client(clnt);
830 }
831 goto out;
832}
833
834void rpc_release_task(struct rpc_task *task)
835{
836 dprintk("RPC: %4d release task\n", task->tk_pid);
837
838#ifdef RPC_DEBUG
839 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
840#endif
841
842 /* Remove from global task list */
843 spin_lock(&rpc_sched_lock);
844 list_del(&task->tk_task);
845 spin_unlock(&rpc_sched_lock);
846
847 BUG_ON (RPC_IS_QUEUED(task));
848 task->tk_active = 0;
849
850 /* Synchronously delete any running timer */
851 rpc_delete_timer(task);
852
853 /* Release resources */
854 if (task->tk_rqstp)
855 xprt_release(task);
856 if (task->tk_msg.rpc_cred)
857 rpcauth_unbindcred(task);
858 rpc_free(task);
859 if (task->tk_client) {
860 rpc_release_client(task->tk_client);
861 task->tk_client = NULL;
862 }
863
864#ifdef RPC_DEBUG
865 task->tk_magic = 0;
866#endif
867 if (task->tk_release)
868 task->tk_release(task);
869}
870
871/**
872 * rpc_find_parent - find the parent of a child task.
873 * @child: child task
874 *
875 * Checks that the parent task is still sleeping on the
876 * queue 'childq'. If so returns a pointer to the parent.
877 * Upon failure returns NULL.
878 *
879 * Caller must hold childq.lock
880 */
881static inline struct rpc_task *rpc_find_parent(struct rpc_task *child)
882{
883 struct rpc_task *task, *parent;
884 struct list_head *le;
885
886 parent = (struct rpc_task *) child->tk_calldata;
887 task_for_each(task, le, &childq.tasks[0])
888 if (task == parent)
889 return parent;
890
891 return NULL;
892}
893
894static void rpc_child_exit(struct rpc_task *child)
895{
896 struct rpc_task *parent;
897
898 spin_lock_bh(&childq.lock);
899 if ((parent = rpc_find_parent(child)) != NULL) {
900 parent->tk_status = child->tk_status;
901 __rpc_wake_up_task(parent);
902 }
903 spin_unlock_bh(&childq.lock);
904}
905
906/*
907 * Note: rpc_new_task releases the client after a failure.
908 */
909struct rpc_task *
910rpc_new_child(struct rpc_clnt *clnt, struct rpc_task *parent)
911{
912 struct rpc_task *task;
913
914 task = rpc_new_task(clnt, NULL, RPC_TASK_ASYNC | RPC_TASK_CHILD);
915 if (!task)
916 goto fail;
917 task->tk_exit = rpc_child_exit;
918 task->tk_calldata = parent;
919 return task;
920
921fail:
922 parent->tk_status = -ENOMEM;
923 return NULL;
924}
925
926void rpc_run_child(struct rpc_task *task, struct rpc_task *child, rpc_action func)
927{
928 spin_lock_bh(&childq.lock);
929 /* N.B. Is it possible for the child to have already finished? */
930 __rpc_sleep_on(&childq, task, func, NULL);
931 rpc_schedule_run(child);
932 spin_unlock_bh(&childq.lock);
933}
934
935/*
936 * Kill all tasks for the given client.
937 * XXX: kill their descendants as well?
938 */
939void rpc_killall_tasks(struct rpc_clnt *clnt)
940{
941 struct rpc_task *rovr;
942 struct list_head *le;
943
944 dprintk("RPC: killing all tasks for client %p\n", clnt);
945
946 /*
947 * Spin lock all_tasks to prevent changes...
948 */
949 spin_lock(&rpc_sched_lock);
950 alltask_for_each(rovr, le, &all_tasks) {
951 if (! RPC_IS_ACTIVATED(rovr))
952 continue;
953 if (!clnt || rovr->tk_client == clnt) {
954 rovr->tk_flags |= RPC_TASK_KILLED;
955 rpc_exit(rovr, -EIO);
956 rpc_wake_up_task(rovr);
957 }
958 }
959 spin_unlock(&rpc_sched_lock);
960}
961
962static DECLARE_MUTEX_LOCKED(rpciod_running);
963
964static void rpciod_killall(void)
965{
966 unsigned long flags;
967
968 while (!list_empty(&all_tasks)) {
969 clear_thread_flag(TIF_SIGPENDING);
970 rpc_killall_tasks(NULL);
971 flush_workqueue(rpciod_workqueue);
972 if (!list_empty(&all_tasks)) {
973 dprintk("rpciod_killall: waiting for tasks to exit\n");
974 yield();
975 }
976 }
977
978 spin_lock_irqsave(&current->sighand->siglock, flags);
979 recalc_sigpending();
980 spin_unlock_irqrestore(&current->sighand->siglock, flags);
981}
982
983/*
984 * Start up the rpciod process if it's not already running.
985 */
986int
987rpciod_up(void)
988{
989 struct workqueue_struct *wq;
990 int error = 0;
991
992 down(&rpciod_sema);
993 dprintk("rpciod_up: users %d\n", rpciod_users);
994 rpciod_users++;
995 if (rpciod_workqueue)
996 goto out;
997 /*
998 * If there's no pid, we should be the first user.
999 */
1000 if (rpciod_users > 1)
1001 printk(KERN_WARNING "rpciod_up: no workqueue, %d users??\n", rpciod_users);
1002 /*
1003 * Create the rpciod thread and wait for it to start.
1004 */
1005 error = -ENOMEM;
1006 wq = create_workqueue("rpciod");
1007 if (wq == NULL) {
1008 printk(KERN_WARNING "rpciod_up: create workqueue failed, error=%d\n", error);
1009 rpciod_users--;
1010 goto out;
1011 }
1012 rpciod_workqueue = wq;
1013 error = 0;
1014out:
1015 up(&rpciod_sema);
1016 return error;
1017}
1018
1019void
1020rpciod_down(void)
1021{
1022 down(&rpciod_sema);
1023 dprintk("rpciod_down sema %d\n", rpciod_users);
1024 if (rpciod_users) {
1025 if (--rpciod_users)
1026 goto out;
1027 } else
1028 printk(KERN_WARNING "rpciod_down: no users??\n");
1029
1030 if (!rpciod_workqueue) {
1031 dprintk("rpciod_down: Nothing to do!\n");
1032 goto out;
1033 }
1034 rpciod_killall();
1035
1036 destroy_workqueue(rpciod_workqueue);
1037 rpciod_workqueue = NULL;
1038 out:
1039 up(&rpciod_sema);
1040}
1041
1042#ifdef RPC_DEBUG
1043void rpc_show_tasks(void)
1044{
1045 struct list_head *le;
1046 struct rpc_task *t;
1047
1048 spin_lock(&rpc_sched_lock);
1049 if (list_empty(&all_tasks)) {
1050 spin_unlock(&rpc_sched_lock);
1051 return;
1052 }
1053 printk("-pid- proc flgs status -client- -prog- --rqstp- -timeout "
1054 "-rpcwait -action- --exit--\n");
1055 alltask_for_each(t, le, &all_tasks) {
1056 const char *rpc_waitq = "none";
1057
1058 if (RPC_IS_QUEUED(t))
1059 rpc_waitq = rpc_qname(t->u.tk_wait.rpc_waitq);
1060
1061 printk("%05d %04d %04x %06d %8p %6d %8p %08ld %8s %8p %8p\n",
1062 t->tk_pid,
1063 (t->tk_msg.rpc_proc ? t->tk_msg.rpc_proc->p_proc : -1),
1064 t->tk_flags, t->tk_status,
1065 t->tk_client,
1066 (t->tk_client ? t->tk_client->cl_prog : 0),
1067 t->tk_rqstp, t->tk_timeout,
1068 rpc_waitq,
1069 t->tk_action, t->tk_exit);
1070 }
1071 spin_unlock(&rpc_sched_lock);
1072}
1073#endif
1074
1075void
1076rpc_destroy_mempool(void)
1077{
1078 if (rpc_buffer_mempool)
1079 mempool_destroy(rpc_buffer_mempool);
1080 if (rpc_task_mempool)
1081 mempool_destroy(rpc_task_mempool);
1082 if (rpc_task_slabp && kmem_cache_destroy(rpc_task_slabp))
1083 printk(KERN_INFO "rpc_task: not all structures were freed\n");
1084 if (rpc_buffer_slabp && kmem_cache_destroy(rpc_buffer_slabp))
1085 printk(KERN_INFO "rpc_buffers: not all structures were freed\n");
1086}
1087
1088int
1089rpc_init_mempool(void)
1090{
1091 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1092 sizeof(struct rpc_task),
1093 0, SLAB_HWCACHE_ALIGN,
1094 NULL, NULL);
1095 if (!rpc_task_slabp)
1096 goto err_nomem;
1097 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1098 RPC_BUFFER_MAXSIZE,
1099 0, SLAB_HWCACHE_ALIGN,
1100 NULL, NULL);
1101 if (!rpc_buffer_slabp)
1102 goto err_nomem;
1103 rpc_task_mempool = mempool_create(RPC_TASK_POOLSIZE,
1104 mempool_alloc_slab,
1105 mempool_free_slab,
1106 rpc_task_slabp);
1107 if (!rpc_task_mempool)
1108 goto err_nomem;
1109 rpc_buffer_mempool = mempool_create(RPC_BUFFER_POOLSIZE,
1110 mempool_alloc_slab,
1111 mempool_free_slab,
1112 rpc_buffer_slabp);
1113 if (!rpc_buffer_mempool)
1114 goto err_nomem;
1115 return 0;
1116err_nomem:
1117 rpc_destroy_mempool();
1118 return -ENOMEM;
1119}