diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /net/sched/ematch.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'net/sched/ematch.c')
-rw-r--r-- | net/sched/ematch.c | 524 |
1 files changed, 524 insertions, 0 deletions
diff --git a/net/sched/ematch.c b/net/sched/ematch.c new file mode 100644 index 000000000000..ebfe2e7d21bd --- /dev/null +++ b/net/sched/ematch.c | |||
@@ -0,0 +1,524 @@ | |||
1 | /* | ||
2 | * net/sched/ematch.c Extended Match API | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of the GNU General Public License | ||
6 | * as published by the Free Software Foundation; either version | ||
7 | * 2 of the License, or (at your option) any later version. | ||
8 | * | ||
9 | * Authors: Thomas Graf <tgraf@suug.ch> | ||
10 | * | ||
11 | * ========================================================================== | ||
12 | * | ||
13 | * An extended match (ematch) is a small classification tool not worth | ||
14 | * writing a full classifier for. Ematches can be interconnected to form | ||
15 | * a logic expression and get attached to classifiers to extend their | ||
16 | * functionatlity. | ||
17 | * | ||
18 | * The userspace part transforms the logic expressions into an array | ||
19 | * consisting of multiple sequences of interconnected ematches separated | ||
20 | * by markers. Precedence is implemented by a special ematch kind | ||
21 | * referencing a sequence beyond the marker of the current sequence | ||
22 | * causing the current position in the sequence to be pushed onto a stack | ||
23 | * to allow the current position to be overwritten by the position referenced | ||
24 | * in the special ematch. Matching continues in the new sequence until a | ||
25 | * marker is reached causing the position to be restored from the stack. | ||
26 | * | ||
27 | * Example: | ||
28 | * A AND (B1 OR B2) AND C AND D | ||
29 | * | ||
30 | * ------->-PUSH------- | ||
31 | * -->-- / -->-- \ -->-- | ||
32 | * / \ / / \ \ / \ | ||
33 | * +-------+-------+-------+-------+-------+--------+ | ||
34 | * | A AND | B AND | C AND | D END | B1 OR | B2 END | | ||
35 | * +-------+-------+-------+-------+-------+--------+ | ||
36 | * \ / | ||
37 | * --------<-POP--------- | ||
38 | * | ||
39 | * where B is a virtual ematch referencing to sequence starting with B1. | ||
40 | * | ||
41 | * ========================================================================== | ||
42 | * | ||
43 | * How to write an ematch in 60 seconds | ||
44 | * ------------------------------------ | ||
45 | * | ||
46 | * 1) Provide a matcher function: | ||
47 | * static int my_match(struct sk_buff *skb, struct tcf_ematch *m, | ||
48 | * struct tcf_pkt_info *info) | ||
49 | * { | ||
50 | * struct mydata *d = (struct mydata *) m->data; | ||
51 | * | ||
52 | * if (...matching goes here...) | ||
53 | * return 1; | ||
54 | * else | ||
55 | * return 0; | ||
56 | * } | ||
57 | * | ||
58 | * 2) Fill out a struct tcf_ematch_ops: | ||
59 | * static struct tcf_ematch_ops my_ops = { | ||
60 | * .kind = unique id, | ||
61 | * .datalen = sizeof(struct mydata), | ||
62 | * .match = my_match, | ||
63 | * .owner = THIS_MODULE, | ||
64 | * }; | ||
65 | * | ||
66 | * 3) Register/Unregister your ematch: | ||
67 | * static int __init init_my_ematch(void) | ||
68 | * { | ||
69 | * return tcf_em_register(&my_ops); | ||
70 | * } | ||
71 | * | ||
72 | * static void __exit exit_my_ematch(void) | ||
73 | * { | ||
74 | * return tcf_em_unregister(&my_ops); | ||
75 | * } | ||
76 | * | ||
77 | * module_init(init_my_ematch); | ||
78 | * module_exit(exit_my_ematch); | ||
79 | * | ||
80 | * 4) By now you should have two more seconds left, barely enough to | ||
81 | * open up a beer to watch the compilation going. | ||
82 | */ | ||
83 | |||
84 | #include <linux/config.h> | ||
85 | #include <linux/module.h> | ||
86 | #include <linux/types.h> | ||
87 | #include <linux/kernel.h> | ||
88 | #include <linux/sched.h> | ||
89 | #include <linux/mm.h> | ||
90 | #include <linux/errno.h> | ||
91 | #include <linux/interrupt.h> | ||
92 | #include <linux/rtnetlink.h> | ||
93 | #include <linux/skbuff.h> | ||
94 | #include <net/pkt_cls.h> | ||
95 | #include <config/net/ematch/stack.h> | ||
96 | |||
97 | static LIST_HEAD(ematch_ops); | ||
98 | static DEFINE_RWLOCK(ematch_mod_lock); | ||
99 | |||
100 | static inline struct tcf_ematch_ops * tcf_em_lookup(u16 kind) | ||
101 | { | ||
102 | struct tcf_ematch_ops *e = NULL; | ||
103 | |||
104 | read_lock(&ematch_mod_lock); | ||
105 | list_for_each_entry(e, &ematch_ops, link) { | ||
106 | if (kind == e->kind) { | ||
107 | if (!try_module_get(e->owner)) | ||
108 | e = NULL; | ||
109 | read_unlock(&ematch_mod_lock); | ||
110 | return e; | ||
111 | } | ||
112 | } | ||
113 | read_unlock(&ematch_mod_lock); | ||
114 | |||
115 | return NULL; | ||
116 | } | ||
117 | |||
118 | /** | ||
119 | * tcf_em_register - register an extended match | ||
120 | * | ||
121 | * @ops: ematch operations lookup table | ||
122 | * | ||
123 | * This function must be called by ematches to announce their presence. | ||
124 | * The given @ops must have kind set to a unique identifier and the | ||
125 | * callback match() must be implemented. All other callbacks are optional | ||
126 | * and a fallback implementation is used instead. | ||
127 | * | ||
128 | * Returns -EEXISTS if an ematch of the same kind has already registered. | ||
129 | */ | ||
130 | int tcf_em_register(struct tcf_ematch_ops *ops) | ||
131 | { | ||
132 | int err = -EEXIST; | ||
133 | struct tcf_ematch_ops *e; | ||
134 | |||
135 | if (ops->match == NULL) | ||
136 | return -EINVAL; | ||
137 | |||
138 | write_lock(&ematch_mod_lock); | ||
139 | list_for_each_entry(e, &ematch_ops, link) | ||
140 | if (ops->kind == e->kind) | ||
141 | goto errout; | ||
142 | |||
143 | list_add_tail(&ops->link, &ematch_ops); | ||
144 | err = 0; | ||
145 | errout: | ||
146 | write_unlock(&ematch_mod_lock); | ||
147 | return err; | ||
148 | } | ||
149 | |||
150 | /** | ||
151 | * tcf_em_unregister - unregster and extended match | ||
152 | * | ||
153 | * @ops: ematch operations lookup table | ||
154 | * | ||
155 | * This function must be called by ematches to announce their disappearance | ||
156 | * for examples when the module gets unloaded. The @ops parameter must be | ||
157 | * the same as the one used for registration. | ||
158 | * | ||
159 | * Returns -ENOENT if no matching ematch was found. | ||
160 | */ | ||
161 | int tcf_em_unregister(struct tcf_ematch_ops *ops) | ||
162 | { | ||
163 | int err = 0; | ||
164 | struct tcf_ematch_ops *e; | ||
165 | |||
166 | write_lock(&ematch_mod_lock); | ||
167 | list_for_each_entry(e, &ematch_ops, link) { | ||
168 | if (e == ops) { | ||
169 | list_del(&e->link); | ||
170 | goto out; | ||
171 | } | ||
172 | } | ||
173 | |||
174 | err = -ENOENT; | ||
175 | out: | ||
176 | write_unlock(&ematch_mod_lock); | ||
177 | return err; | ||
178 | } | ||
179 | |||
180 | static inline struct tcf_ematch * tcf_em_get_match(struct tcf_ematch_tree *tree, | ||
181 | int index) | ||
182 | { | ||
183 | return &tree->matches[index]; | ||
184 | } | ||
185 | |||
186 | |||
187 | static int tcf_em_validate(struct tcf_proto *tp, | ||
188 | struct tcf_ematch_tree_hdr *tree_hdr, | ||
189 | struct tcf_ematch *em, struct rtattr *rta, int idx) | ||
190 | { | ||
191 | int err = -EINVAL; | ||
192 | struct tcf_ematch_hdr *em_hdr = RTA_DATA(rta); | ||
193 | int data_len = RTA_PAYLOAD(rta) - sizeof(*em_hdr); | ||
194 | void *data = (void *) em_hdr + sizeof(*em_hdr); | ||
195 | |||
196 | if (!TCF_EM_REL_VALID(em_hdr->flags)) | ||
197 | goto errout; | ||
198 | |||
199 | if (em_hdr->kind == TCF_EM_CONTAINER) { | ||
200 | /* Special ematch called "container", carries an index | ||
201 | * referencing an external ematch sequence. */ | ||
202 | u32 ref; | ||
203 | |||
204 | if (data_len < sizeof(ref)) | ||
205 | goto errout; | ||
206 | ref = *(u32 *) data; | ||
207 | |||
208 | if (ref >= tree_hdr->nmatches) | ||
209 | goto errout; | ||
210 | |||
211 | /* We do not allow backward jumps to avoid loops and jumps | ||
212 | * to our own position are of course illegal. */ | ||
213 | if (ref <= idx) | ||
214 | goto errout; | ||
215 | |||
216 | |||
217 | em->data = ref; | ||
218 | } else { | ||
219 | /* Note: This lookup will increase the module refcnt | ||
220 | * of the ematch module referenced. In case of a failure, | ||
221 | * a destroy function is called by the underlying layer | ||
222 | * which automatically releases the reference again, therefore | ||
223 | * the module MUST not be given back under any circumstances | ||
224 | * here. Be aware, the destroy function assumes that the | ||
225 | * module is held if the ops field is non zero. */ | ||
226 | em->ops = tcf_em_lookup(em_hdr->kind); | ||
227 | |||
228 | if (em->ops == NULL) { | ||
229 | err = -ENOENT; | ||
230 | goto errout; | ||
231 | } | ||
232 | |||
233 | /* ematch module provides expected length of data, so we | ||
234 | * can do a basic sanity check. */ | ||
235 | if (em->ops->datalen && data_len < em->ops->datalen) | ||
236 | goto errout; | ||
237 | |||
238 | if (em->ops->change) { | ||
239 | err = em->ops->change(tp, data, data_len, em); | ||
240 | if (err < 0) | ||
241 | goto errout; | ||
242 | } else if (data_len > 0) { | ||
243 | /* ematch module doesn't provide an own change | ||
244 | * procedure and expects us to allocate and copy | ||
245 | * the ematch data. | ||
246 | * | ||
247 | * TCF_EM_SIMPLE may be specified stating that the | ||
248 | * data only consists of a u32 integer and the module | ||
249 | * does not expected a memory reference but rather | ||
250 | * the value carried. */ | ||
251 | if (em_hdr->flags & TCF_EM_SIMPLE) { | ||
252 | if (data_len < sizeof(u32)) | ||
253 | goto errout; | ||
254 | em->data = *(u32 *) data; | ||
255 | } else { | ||
256 | void *v = kmalloc(data_len, GFP_KERNEL); | ||
257 | if (v == NULL) { | ||
258 | err = -ENOBUFS; | ||
259 | goto errout; | ||
260 | } | ||
261 | memcpy(v, data, data_len); | ||
262 | em->data = (unsigned long) v; | ||
263 | } | ||
264 | } | ||
265 | } | ||
266 | |||
267 | em->matchid = em_hdr->matchid; | ||
268 | em->flags = em_hdr->flags; | ||
269 | em->datalen = data_len; | ||
270 | |||
271 | err = 0; | ||
272 | errout: | ||
273 | return err; | ||
274 | } | ||
275 | |||
276 | /** | ||
277 | * tcf_em_tree_validate - validate ematch config TLV and build ematch tree | ||
278 | * | ||
279 | * @tp: classifier kind handle | ||
280 | * @rta: ematch tree configuration TLV | ||
281 | * @tree: destination ematch tree variable to store the resulting | ||
282 | * ematch tree. | ||
283 | * | ||
284 | * This function validates the given configuration TLV @rta and builds an | ||
285 | * ematch tree in @tree. The resulting tree must later be copied into | ||
286 | * the private classifier data using tcf_em_tree_change(). You MUST NOT | ||
287 | * provide the ematch tree variable of the private classifier data directly, | ||
288 | * the changes would not be locked properly. | ||
289 | * | ||
290 | * Returns a negative error code if the configuration TLV contains errors. | ||
291 | */ | ||
292 | int tcf_em_tree_validate(struct tcf_proto *tp, struct rtattr *rta, | ||
293 | struct tcf_ematch_tree *tree) | ||
294 | { | ||
295 | int idx, list_len, matches_len, err = -EINVAL; | ||
296 | struct rtattr *tb[TCA_EMATCH_TREE_MAX]; | ||
297 | struct rtattr *rt_match, *rt_hdr, *rt_list; | ||
298 | struct tcf_ematch_tree_hdr *tree_hdr; | ||
299 | struct tcf_ematch *em; | ||
300 | |||
301 | if (rtattr_parse_nested(tb, TCA_EMATCH_TREE_MAX, rta) < 0) | ||
302 | goto errout; | ||
303 | |||
304 | rt_hdr = tb[TCA_EMATCH_TREE_HDR-1]; | ||
305 | rt_list = tb[TCA_EMATCH_TREE_LIST-1]; | ||
306 | |||
307 | if (rt_hdr == NULL || rt_list == NULL) | ||
308 | goto errout; | ||
309 | |||
310 | if (RTA_PAYLOAD(rt_hdr) < sizeof(*tree_hdr) || | ||
311 | RTA_PAYLOAD(rt_list) < sizeof(*rt_match)) | ||
312 | goto errout; | ||
313 | |||
314 | tree_hdr = RTA_DATA(rt_hdr); | ||
315 | memcpy(&tree->hdr, tree_hdr, sizeof(*tree_hdr)); | ||
316 | |||
317 | rt_match = RTA_DATA(rt_list); | ||
318 | list_len = RTA_PAYLOAD(rt_list); | ||
319 | matches_len = tree_hdr->nmatches * sizeof(*em); | ||
320 | |||
321 | tree->matches = kmalloc(matches_len, GFP_KERNEL); | ||
322 | if (tree->matches == NULL) | ||
323 | goto errout; | ||
324 | memset(tree->matches, 0, matches_len); | ||
325 | |||
326 | /* We do not use rtattr_parse_nested here because the maximum | ||
327 | * number of attributes is unknown. This saves us the allocation | ||
328 | * for a tb buffer which would serve no purpose at all. | ||
329 | * | ||
330 | * The array of rt attributes is parsed in the order as they are | ||
331 | * provided, their type must be incremental from 1 to n. Even | ||
332 | * if it does not serve any real purpose, a failure of sticking | ||
333 | * to this policy will result in parsing failure. */ | ||
334 | for (idx = 0; RTA_OK(rt_match, list_len); idx++) { | ||
335 | err = -EINVAL; | ||
336 | |||
337 | if (rt_match->rta_type != (idx + 1)) | ||
338 | goto errout_abort; | ||
339 | |||
340 | if (idx >= tree_hdr->nmatches) | ||
341 | goto errout_abort; | ||
342 | |||
343 | if (RTA_PAYLOAD(rt_match) < sizeof(struct tcf_ematch_hdr)) | ||
344 | goto errout_abort; | ||
345 | |||
346 | em = tcf_em_get_match(tree, idx); | ||
347 | |||
348 | err = tcf_em_validate(tp, tree_hdr, em, rt_match, idx); | ||
349 | if (err < 0) | ||
350 | goto errout_abort; | ||
351 | |||
352 | rt_match = RTA_NEXT(rt_match, list_len); | ||
353 | } | ||
354 | |||
355 | /* Check if the number of matches provided by userspace actually | ||
356 | * complies with the array of matches. The number was used for | ||
357 | * the validation of references and a mismatch could lead to | ||
358 | * undefined references during the matching process. */ | ||
359 | if (idx != tree_hdr->nmatches) { | ||
360 | err = -EINVAL; | ||
361 | goto errout_abort; | ||
362 | } | ||
363 | |||
364 | err = 0; | ||
365 | errout: | ||
366 | return err; | ||
367 | |||
368 | errout_abort: | ||
369 | tcf_em_tree_destroy(tp, tree); | ||
370 | return err; | ||
371 | } | ||
372 | |||
373 | /** | ||
374 | * tcf_em_tree_destroy - destroy an ematch tree | ||
375 | * | ||
376 | * @tp: classifier kind handle | ||
377 | * @tree: ematch tree to be deleted | ||
378 | * | ||
379 | * This functions destroys an ematch tree previously created by | ||
380 | * tcf_em_tree_validate()/tcf_em_tree_change(). You must ensure that | ||
381 | * the ematch tree is not in use before calling this function. | ||
382 | */ | ||
383 | void tcf_em_tree_destroy(struct tcf_proto *tp, struct tcf_ematch_tree *tree) | ||
384 | { | ||
385 | int i; | ||
386 | |||
387 | if (tree->matches == NULL) | ||
388 | return; | ||
389 | |||
390 | for (i = 0; i < tree->hdr.nmatches; i++) { | ||
391 | struct tcf_ematch *em = tcf_em_get_match(tree, i); | ||
392 | |||
393 | if (em->ops) { | ||
394 | if (em->ops->destroy) | ||
395 | em->ops->destroy(tp, em); | ||
396 | else if (!tcf_em_is_simple(em) && em->data) | ||
397 | kfree((void *) em->data); | ||
398 | module_put(em->ops->owner); | ||
399 | } | ||
400 | } | ||
401 | |||
402 | tree->hdr.nmatches = 0; | ||
403 | kfree(tree->matches); | ||
404 | } | ||
405 | |||
406 | /** | ||
407 | * tcf_em_tree_dump - dump ematch tree into a rtnl message | ||
408 | * | ||
409 | * @skb: skb holding the rtnl message | ||
410 | * @t: ematch tree to be dumped | ||
411 | * @tlv: TLV type to be used to encapsulate the tree | ||
412 | * | ||
413 | * This function dumps a ematch tree into a rtnl message. It is valid to | ||
414 | * call this function while the ematch tree is in use. | ||
415 | * | ||
416 | * Returns -1 if the skb tailroom is insufficient. | ||
417 | */ | ||
418 | int tcf_em_tree_dump(struct sk_buff *skb, struct tcf_ematch_tree *tree, int tlv) | ||
419 | { | ||
420 | int i; | ||
421 | struct rtattr * top_start = (struct rtattr*) skb->tail; | ||
422 | struct rtattr * list_start; | ||
423 | |||
424 | RTA_PUT(skb, tlv, 0, NULL); | ||
425 | RTA_PUT(skb, TCA_EMATCH_TREE_HDR, sizeof(tree->hdr), &tree->hdr); | ||
426 | |||
427 | list_start = (struct rtattr *) skb->tail; | ||
428 | RTA_PUT(skb, TCA_EMATCH_TREE_LIST, 0, NULL); | ||
429 | |||
430 | for (i = 0; i < tree->hdr.nmatches; i++) { | ||
431 | struct rtattr *match_start = (struct rtattr*) skb->tail; | ||
432 | struct tcf_ematch *em = tcf_em_get_match(tree, i); | ||
433 | struct tcf_ematch_hdr em_hdr = { | ||
434 | .kind = em->ops ? em->ops->kind : TCF_EM_CONTAINER, | ||
435 | .matchid = em->matchid, | ||
436 | .flags = em->flags | ||
437 | }; | ||
438 | |||
439 | RTA_PUT(skb, i+1, sizeof(em_hdr), &em_hdr); | ||
440 | |||
441 | if (em->ops && em->ops->dump) { | ||
442 | if (em->ops->dump(skb, em) < 0) | ||
443 | goto rtattr_failure; | ||
444 | } else if (tcf_em_is_container(em) || tcf_em_is_simple(em)) { | ||
445 | u32 u = em->data; | ||
446 | RTA_PUT_NOHDR(skb, sizeof(u), &u); | ||
447 | } else if (em->datalen > 0) | ||
448 | RTA_PUT_NOHDR(skb, em->datalen, (void *) em->data); | ||
449 | |||
450 | match_start->rta_len = skb->tail - (u8*) match_start; | ||
451 | } | ||
452 | |||
453 | list_start->rta_len = skb->tail - (u8 *) list_start; | ||
454 | top_start->rta_len = skb->tail - (u8 *) top_start; | ||
455 | |||
456 | return 0; | ||
457 | |||
458 | rtattr_failure: | ||
459 | return -1; | ||
460 | } | ||
461 | |||
462 | static inline int tcf_em_match(struct sk_buff *skb, struct tcf_ematch *em, | ||
463 | struct tcf_pkt_info *info) | ||
464 | { | ||
465 | int r = em->ops->match(skb, em, info); | ||
466 | return tcf_em_is_inverted(em) ? !r : r; | ||
467 | } | ||
468 | |||
469 | /* Do not use this function directly, use tcf_em_tree_match instead */ | ||
470 | int __tcf_em_tree_match(struct sk_buff *skb, struct tcf_ematch_tree *tree, | ||
471 | struct tcf_pkt_info *info) | ||
472 | { | ||
473 | int stackp = 0, match_idx = 0, res = 0; | ||
474 | struct tcf_ematch *cur_match; | ||
475 | int stack[CONFIG_NET_EMATCH_STACK]; | ||
476 | |||
477 | proceed: | ||
478 | while (match_idx < tree->hdr.nmatches) { | ||
479 | cur_match = tcf_em_get_match(tree, match_idx); | ||
480 | |||
481 | if (tcf_em_is_container(cur_match)) { | ||
482 | if (unlikely(stackp >= CONFIG_NET_EMATCH_STACK)) | ||
483 | goto stack_overflow; | ||
484 | |||
485 | stack[stackp++] = match_idx; | ||
486 | match_idx = cur_match->data; | ||
487 | goto proceed; | ||
488 | } | ||
489 | |||
490 | res = tcf_em_match(skb, cur_match, info); | ||
491 | |||
492 | if (tcf_em_early_end(cur_match, res)) | ||
493 | break; | ||
494 | |||
495 | match_idx++; | ||
496 | } | ||
497 | |||
498 | pop_stack: | ||
499 | if (stackp > 0) { | ||
500 | match_idx = stack[--stackp]; | ||
501 | cur_match = tcf_em_get_match(tree, match_idx); | ||
502 | |||
503 | if (tcf_em_early_end(cur_match, res)) | ||
504 | goto pop_stack; | ||
505 | else { | ||
506 | match_idx++; | ||
507 | goto proceed; | ||
508 | } | ||
509 | } | ||
510 | |||
511 | return res; | ||
512 | |||
513 | stack_overflow: | ||
514 | if (net_ratelimit()) | ||
515 | printk("Local stack overflow, increase NET_EMATCH_STACK\n"); | ||
516 | return -1; | ||
517 | } | ||
518 | |||
519 | EXPORT_SYMBOL(tcf_em_register); | ||
520 | EXPORT_SYMBOL(tcf_em_unregister); | ||
521 | EXPORT_SYMBOL(tcf_em_tree_validate); | ||
522 | EXPORT_SYMBOL(tcf_em_tree_destroy); | ||
523 | EXPORT_SYMBOL(tcf_em_tree_dump); | ||
524 | EXPORT_SYMBOL(__tcf_em_tree_match); | ||