aboutsummaryrefslogtreecommitdiffstats
path: root/net/rxrpc/ar-accept.c
diff options
context:
space:
mode:
authorDavid Howells <dhowells@redhat.com>2007-04-26 18:50:17 -0400
committerDavid S. Miller <davem@davemloft.net>2007-04-26 18:50:17 -0400
commit651350d10f93bed7003c9a66e24cf25e0f8eed3d (patch)
tree4748c1dd0b1a905b0e34b100c3c6ced6565a06de /net/rxrpc/ar-accept.c
parentec26815ad847dbf74a1e27aa5515fb7d5dc6ee6f (diff)
[AF_RXRPC]: Add an interface to the AF_RXRPC module for the AFS filesystem to use
Add an interface to the AF_RXRPC module so that the AFS filesystem module can more easily make use of the services available. AFS still opens a socket but then uses the action functions in lieu of sendmsg() and registers an intercept functions to grab messages before they're queued on the socket Rx queue. This permits AFS (or whatever) to: (1) Avoid the overhead of using the recvmsg() call. (2) Use different keys directly on individual client calls on one socket rather than having to open a whole slew of sockets, one for each key it might want to use. (3) Avoid calling request_key() at the point of issue of a call or opening of a socket. This is done instead by AFS at the point of open(), unlink() or other VFS operation and the key handed through. (4) Request the use of something other than GFP_KERNEL to allocate memory. Furthermore: (*) The socket buffer markings used by RxRPC are made available for AFS so that it can interpret the cooked RxRPC messages itself. (*) rxgen (un)marshalling abort codes are made available. The following documentation for the kernel interface is added to Documentation/networking/rxrpc.txt: ========================= AF_RXRPC KERNEL INTERFACE ========================= The AF_RXRPC module also provides an interface for use by in-kernel utilities such as the AFS filesystem. This permits such a utility to: (1) Use different keys directly on individual client calls on one socket rather than having to open a whole slew of sockets, one for each key it might want to use. (2) Avoid having RxRPC call request_key() at the point of issue of a call or opening of a socket. Instead the utility is responsible for requesting a key at the appropriate point. AFS, for instance, would do this during VFS operations such as open() or unlink(). The key is then handed through when the call is initiated. (3) Request the use of something other than GFP_KERNEL to allocate memory. (4) Avoid the overhead of using the recvmsg() call. RxRPC messages can be intercepted before they get put into the socket Rx queue and the socket buffers manipulated directly. To use the RxRPC facility, a kernel utility must still open an AF_RXRPC socket, bind an addess as appropriate and listen if it's to be a server socket, but then it passes this to the kernel interface functions. The kernel interface functions are as follows: (*) Begin a new client call. struct rxrpc_call * rxrpc_kernel_begin_call(struct socket *sock, struct sockaddr_rxrpc *srx, struct key *key, unsigned long user_call_ID, gfp_t gfp); This allocates the infrastructure to make a new RxRPC call and assigns call and connection numbers. The call will be made on the UDP port that the socket is bound to. The call will go to the destination address of a connected client socket unless an alternative is supplied (srx is non-NULL). If a key is supplied then this will be used to secure the call instead of the key bound to the socket with the RXRPC_SECURITY_KEY sockopt. Calls secured in this way will still share connections if at all possible. The user_call_ID is equivalent to that supplied to sendmsg() in the control data buffer. It is entirely feasible to use this to point to a kernel data structure. If this function is successful, an opaque reference to the RxRPC call is returned. The caller now holds a reference on this and it must be properly ended. (*) End a client call. void rxrpc_kernel_end_call(struct rxrpc_call *call); This is used to end a previously begun call. The user_call_ID is expunged from AF_RXRPC's knowledge and will not be seen again in association with the specified call. (*) Send data through a call. int rxrpc_kernel_send_data(struct rxrpc_call *call, struct msghdr *msg, size_t len); This is used to supply either the request part of a client call or the reply part of a server call. msg.msg_iovlen and msg.msg_iov specify the data buffers to be used. msg_iov may not be NULL and must point exclusively to in-kernel virtual addresses. msg.msg_flags may be given MSG_MORE if there will be subsequent data sends for this call. The msg must not specify a destination address, control data or any flags other than MSG_MORE. len is the total amount of data to transmit. (*) Abort a call. void rxrpc_kernel_abort_call(struct rxrpc_call *call, u32 abort_code); This is used to abort a call if it's still in an abortable state. The abort code specified will be placed in the ABORT message sent. (*) Intercept received RxRPC messages. typedef void (*rxrpc_interceptor_t)(struct sock *sk, unsigned long user_call_ID, struct sk_buff *skb); void rxrpc_kernel_intercept_rx_messages(struct socket *sock, rxrpc_interceptor_t interceptor); This installs an interceptor function on the specified AF_RXRPC socket. All messages that would otherwise wind up in the socket's Rx queue are then diverted to this function. Note that care must be taken to process the messages in the right order to maintain DATA message sequentiality. The interceptor function itself is provided with the address of the socket and handling the incoming message, the ID assigned by the kernel utility to the call and the socket buffer containing the message. The skb->mark field indicates the type of message: MARK MEANING =============================== ======================================= RXRPC_SKB_MARK_DATA Data message RXRPC_SKB_MARK_FINAL_ACK Final ACK received for an incoming call RXRPC_SKB_MARK_BUSY Client call rejected as server busy RXRPC_SKB_MARK_REMOTE_ABORT Call aborted by peer RXRPC_SKB_MARK_NET_ERROR Network error detected RXRPC_SKB_MARK_LOCAL_ERROR Local error encountered RXRPC_SKB_MARK_NEW_CALL New incoming call awaiting acceptance The remote abort message can be probed with rxrpc_kernel_get_abort_code(). The two error messages can be probed with rxrpc_kernel_get_error_number(). A new call can be accepted with rxrpc_kernel_accept_call(). Data messages can have their contents extracted with the usual bunch of socket buffer manipulation functions. A data message can be determined to be the last one in a sequence with rxrpc_kernel_is_data_last(). When a data message has been used up, rxrpc_kernel_data_delivered() should be called on it.. Non-data messages should be handled to rxrpc_kernel_free_skb() to dispose of. It is possible to get extra refs on all types of message for later freeing, but this may pin the state of a call until the message is finally freed. (*) Accept an incoming call. struct rxrpc_call * rxrpc_kernel_accept_call(struct socket *sock, unsigned long user_call_ID); This is used to accept an incoming call and to assign it a call ID. This function is similar to rxrpc_kernel_begin_call() and calls accepted must be ended in the same way. If this function is successful, an opaque reference to the RxRPC call is returned. The caller now holds a reference on this and it must be properly ended. (*) Reject an incoming call. int rxrpc_kernel_reject_call(struct socket *sock); This is used to reject the first incoming call on the socket's queue with a BUSY message. -ENODATA is returned if there were no incoming calls. Other errors may be returned if the call had been aborted (-ECONNABORTED) or had timed out (-ETIME). (*) Record the delivery of a data message and free it. void rxrpc_kernel_data_delivered(struct sk_buff *skb); This is used to record a data message as having been delivered and to update the ACK state for the call. The socket buffer will be freed. (*) Free a message. void rxrpc_kernel_free_skb(struct sk_buff *skb); This is used to free a non-DATA socket buffer intercepted from an AF_RXRPC socket. (*) Determine if a data message is the last one on a call. bool rxrpc_kernel_is_data_last(struct sk_buff *skb); This is used to determine if a socket buffer holds the last data message to be received for a call (true will be returned if it does, false if not). The data message will be part of the reply on a client call and the request on an incoming call. In the latter case there will be more messages, but in the former case there will not. (*) Get the abort code from an abort message. u32 rxrpc_kernel_get_abort_code(struct sk_buff *skb); This is used to extract the abort code from a remote abort message. (*) Get the error number from a local or network error message. int rxrpc_kernel_get_error_number(struct sk_buff *skb); This is used to extract the error number from a message indicating either a local error occurred or a network error occurred. Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'net/rxrpc/ar-accept.c')
-rw-r--r--net/rxrpc/ar-accept.c119
1 files changed, 112 insertions, 7 deletions
diff --git a/net/rxrpc/ar-accept.c b/net/rxrpc/ar-accept.c
index e7af780cd6f9..92a87fde8bfe 100644
--- a/net/rxrpc/ar-accept.c
+++ b/net/rxrpc/ar-accept.c
@@ -139,7 +139,7 @@ static int rxrpc_accept_incoming_call(struct rxrpc_local *local,
139 call->conn->state = RXRPC_CONN_SERVER_CHALLENGING; 139 call->conn->state = RXRPC_CONN_SERVER_CHALLENGING;
140 atomic_inc(&call->conn->usage); 140 atomic_inc(&call->conn->usage);
141 set_bit(RXRPC_CONN_CHALLENGE, &call->conn->events); 141 set_bit(RXRPC_CONN_CHALLENGE, &call->conn->events);
142 schedule_work(&call->conn->processor); 142 rxrpc_queue_conn(call->conn);
143 } else { 143 } else {
144 _debug("conn ready"); 144 _debug("conn ready");
145 call->state = RXRPC_CALL_SERVER_ACCEPTING; 145 call->state = RXRPC_CALL_SERVER_ACCEPTING;
@@ -183,7 +183,7 @@ invalid_service:
183 if (!test_bit(RXRPC_CALL_RELEASE, &call->flags) && 183 if (!test_bit(RXRPC_CALL_RELEASE, &call->flags) &&
184 !test_and_set_bit(RXRPC_CALL_RELEASE, &call->events)) { 184 !test_and_set_bit(RXRPC_CALL_RELEASE, &call->events)) {
185 rxrpc_get_call(call); 185 rxrpc_get_call(call);
186 schedule_work(&call->processor); 186 rxrpc_queue_call(call);
187 } 187 }
188 read_unlock_bh(&call->state_lock); 188 read_unlock_bh(&call->state_lock);
189 rxrpc_put_call(call); 189 rxrpc_put_call(call);
@@ -310,7 +310,8 @@ security_mismatch:
310 * handle acceptance of a call by userspace 310 * handle acceptance of a call by userspace
311 * - assign the user call ID to the call at the front of the queue 311 * - assign the user call ID to the call at the front of the queue
312 */ 312 */
313int rxrpc_accept_call(struct rxrpc_sock *rx, unsigned long user_call_ID) 313struct rxrpc_call *rxrpc_accept_call(struct rxrpc_sock *rx,
314 unsigned long user_call_ID)
314{ 315{
315 struct rxrpc_call *call; 316 struct rxrpc_call *call;
316 struct rb_node *parent, **pp; 317 struct rb_node *parent, **pp;
@@ -374,12 +375,76 @@ int rxrpc_accept_call(struct rxrpc_sock *rx, unsigned long user_call_ID)
374 BUG(); 375 BUG();
375 if (test_and_set_bit(RXRPC_CALL_ACCEPTED, &call->events)) 376 if (test_and_set_bit(RXRPC_CALL_ACCEPTED, &call->events))
376 BUG(); 377 BUG();
377 schedule_work(&call->processor); 378 rxrpc_queue_call(call);
378 379
380 rxrpc_get_call(call);
379 write_unlock_bh(&call->state_lock); 381 write_unlock_bh(&call->state_lock);
380 write_unlock(&rx->call_lock); 382 write_unlock(&rx->call_lock);
381 _leave(" = 0"); 383 _leave(" = %p{%d}", call, call->debug_id);
382 return 0; 384 return call;
385
386 /* if the call is already dying or dead, then we leave the socket's ref
387 * on it to be released by rxrpc_dead_call_expired() as induced by
388 * rxrpc_release_call() */
389out_release:
390 _debug("release %p", call);
391 if (!test_bit(RXRPC_CALL_RELEASED, &call->flags) &&
392 !test_and_set_bit(RXRPC_CALL_RELEASE, &call->events))
393 rxrpc_queue_call(call);
394out_discard:
395 write_unlock_bh(&call->state_lock);
396 _debug("discard %p", call);
397out:
398 write_unlock(&rx->call_lock);
399 _leave(" = %d", ret);
400 return ERR_PTR(ret);
401}
402
403/*
404 * handle rejectance of a call by userspace
405 * - reject the call at the front of the queue
406 */
407int rxrpc_reject_call(struct rxrpc_sock *rx)
408{
409 struct rxrpc_call *call;
410 int ret;
411
412 _enter("");
413
414 ASSERT(!irqs_disabled());
415
416 write_lock(&rx->call_lock);
417
418 ret = -ENODATA;
419 if (list_empty(&rx->acceptq))
420 goto out;
421
422 /* dequeue the first call and check it's still valid */
423 call = list_entry(rx->acceptq.next, struct rxrpc_call, accept_link);
424 list_del_init(&call->accept_link);
425 sk_acceptq_removed(&rx->sk);
426
427 write_lock_bh(&call->state_lock);
428 switch (call->state) {
429 case RXRPC_CALL_SERVER_ACCEPTING:
430 call->state = RXRPC_CALL_SERVER_BUSY;
431 if (test_and_set_bit(RXRPC_CALL_REJECT_BUSY, &call->events))
432 rxrpc_queue_call(call);
433 ret = 0;
434 goto out_release;
435 case RXRPC_CALL_REMOTELY_ABORTED:
436 case RXRPC_CALL_LOCALLY_ABORTED:
437 ret = -ECONNABORTED;
438 goto out_release;
439 case RXRPC_CALL_NETWORK_ERROR:
440 ret = call->conn->error;
441 goto out_release;
442 case RXRPC_CALL_DEAD:
443 ret = -ETIME;
444 goto out_discard;
445 default:
446 BUG();
447 }
383 448
384 /* if the call is already dying or dead, then we leave the socket's ref 449 /* if the call is already dying or dead, then we leave the socket's ref
385 * on it to be released by rxrpc_dead_call_expired() as induced by 450 * on it to be released by rxrpc_dead_call_expired() as induced by
@@ -388,7 +453,7 @@ out_release:
388 _debug("release %p", call); 453 _debug("release %p", call);
389 if (!test_bit(RXRPC_CALL_RELEASED, &call->flags) && 454 if (!test_bit(RXRPC_CALL_RELEASED, &call->flags) &&
390 !test_and_set_bit(RXRPC_CALL_RELEASE, &call->events)) 455 !test_and_set_bit(RXRPC_CALL_RELEASE, &call->events))
391 schedule_work(&call->processor); 456 rxrpc_queue_call(call);
392out_discard: 457out_discard:
393 write_unlock_bh(&call->state_lock); 458 write_unlock_bh(&call->state_lock);
394 _debug("discard %p", call); 459 _debug("discard %p", call);
@@ -397,3 +462,43 @@ out:
397 _leave(" = %d", ret); 462 _leave(" = %d", ret);
398 return ret; 463 return ret;
399} 464}
465
466/**
467 * rxrpc_kernel_accept_call - Allow a kernel service to accept an incoming call
468 * @sock: The socket on which the impending call is waiting
469 * @user_call_ID: The tag to attach to the call
470 *
471 * Allow a kernel service to accept an incoming call, assuming the incoming
472 * call is still valid.
473 */
474struct rxrpc_call *rxrpc_kernel_accept_call(struct socket *sock,
475 unsigned long user_call_ID)
476{
477 struct rxrpc_call *call;
478
479 _enter(",%lx", user_call_ID);
480 call = rxrpc_accept_call(rxrpc_sk(sock->sk), user_call_ID);
481 _leave(" = %p", call);
482 return call;
483}
484
485EXPORT_SYMBOL(rxrpc_kernel_accept_call);
486
487/**
488 * rxrpc_kernel_reject_call - Allow a kernel service to reject an incoming call
489 * @sock: The socket on which the impending call is waiting
490 *
491 * Allow a kernel service to reject an incoming call with a BUSY message,
492 * assuming the incoming call is still valid.
493 */
494int rxrpc_kernel_reject_call(struct socket *sock)
495{
496 int ret;
497
498 _enter("");
499 ret = rxrpc_reject_call(rxrpc_sk(sock->sk));
500 _leave(" = %d", ret);
501 return ret;
502}
503
504EXPORT_SYMBOL(rxrpc_kernel_reject_call);