diff options
author | Jesse Gross <jesse@nicira.com> | 2011-10-25 22:26:31 -0400 |
---|---|---|
committer | Jesse Gross <jesse@nicira.com> | 2011-12-03 12:35:17 -0500 |
commit | ccb1352e76cff0524e7ccb2074826a092dd13016 (patch) | |
tree | 9122ceff5d75ec64e327a9fad4ad2013744c2999 /net/openvswitch/flow.c | |
parent | 75f2811c6460ccc59d83c66059943ce9c9f81a18 (diff) |
net: Add Open vSwitch kernel components.
Open vSwitch is a multilayer Ethernet switch targeted at virtualized
environments. In addition to supporting a variety of features
expected in a traditional hardware switch, it enables fine-grained
programmatic extension and flow-based control of the network.
This control is useful in a wide variety of applications but is
particularly important in multi-server virtualization deployments,
which are often characterized by highly dynamic endpoints and the need
to maintain logical abstractions for multiple tenants.
The Open vSwitch datapath provides an in-kernel fast path for packet
forwarding. It is complemented by a userspace daemon, ovs-vswitchd,
which is able to accept configuration from a variety of sources and
translate it into packet processing rules.
See http://openvswitch.org for more information and userspace
utilities.
Signed-off-by: Jesse Gross <jesse@nicira.com>
Diffstat (limited to 'net/openvswitch/flow.c')
-rw-r--r-- | net/openvswitch/flow.c | 1346 |
1 files changed, 1346 insertions, 0 deletions
diff --git a/net/openvswitch/flow.c b/net/openvswitch/flow.c new file mode 100644 index 000000000000..fe7f020a843e --- /dev/null +++ b/net/openvswitch/flow.c | |||
@@ -0,0 +1,1346 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2007-2011 Nicira Networks. | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or | ||
5 | * modify it under the terms of version 2 of the GNU General Public | ||
6 | * License as published by the Free Software Foundation. | ||
7 | * | ||
8 | * This program is distributed in the hope that it will be useful, but | ||
9 | * WITHOUT ANY WARRANTY; without even the implied warranty of | ||
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
11 | * General Public License for more details. | ||
12 | * | ||
13 | * You should have received a copy of the GNU General Public License | ||
14 | * along with this program; if not, write to the Free Software | ||
15 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA | ||
16 | * 02110-1301, USA | ||
17 | */ | ||
18 | |||
19 | #include "flow.h" | ||
20 | #include "datapath.h" | ||
21 | #include <linux/uaccess.h> | ||
22 | #include <linux/netdevice.h> | ||
23 | #include <linux/etherdevice.h> | ||
24 | #include <linux/if_ether.h> | ||
25 | #include <linux/if_vlan.h> | ||
26 | #include <net/llc_pdu.h> | ||
27 | #include <linux/kernel.h> | ||
28 | #include <linux/jhash.h> | ||
29 | #include <linux/jiffies.h> | ||
30 | #include <linux/llc.h> | ||
31 | #include <linux/module.h> | ||
32 | #include <linux/in.h> | ||
33 | #include <linux/rcupdate.h> | ||
34 | #include <linux/if_arp.h> | ||
35 | #include <linux/if_ether.h> | ||
36 | #include <linux/ip.h> | ||
37 | #include <linux/ipv6.h> | ||
38 | #include <linux/tcp.h> | ||
39 | #include <linux/udp.h> | ||
40 | #include <linux/icmp.h> | ||
41 | #include <linux/icmpv6.h> | ||
42 | #include <linux/rculist.h> | ||
43 | #include <net/ip.h> | ||
44 | #include <net/ipv6.h> | ||
45 | #include <net/ndisc.h> | ||
46 | |||
47 | static struct kmem_cache *flow_cache; | ||
48 | |||
49 | static int check_header(struct sk_buff *skb, int len) | ||
50 | { | ||
51 | if (unlikely(skb->len < len)) | ||
52 | return -EINVAL; | ||
53 | if (unlikely(!pskb_may_pull(skb, len))) | ||
54 | return -ENOMEM; | ||
55 | return 0; | ||
56 | } | ||
57 | |||
58 | static bool arphdr_ok(struct sk_buff *skb) | ||
59 | { | ||
60 | return pskb_may_pull(skb, skb_network_offset(skb) + | ||
61 | sizeof(struct arp_eth_header)); | ||
62 | } | ||
63 | |||
64 | static int check_iphdr(struct sk_buff *skb) | ||
65 | { | ||
66 | unsigned int nh_ofs = skb_network_offset(skb); | ||
67 | unsigned int ip_len; | ||
68 | int err; | ||
69 | |||
70 | err = check_header(skb, nh_ofs + sizeof(struct iphdr)); | ||
71 | if (unlikely(err)) | ||
72 | return err; | ||
73 | |||
74 | ip_len = ip_hdrlen(skb); | ||
75 | if (unlikely(ip_len < sizeof(struct iphdr) || | ||
76 | skb->len < nh_ofs + ip_len)) | ||
77 | return -EINVAL; | ||
78 | |||
79 | skb_set_transport_header(skb, nh_ofs + ip_len); | ||
80 | return 0; | ||
81 | } | ||
82 | |||
83 | static bool tcphdr_ok(struct sk_buff *skb) | ||
84 | { | ||
85 | int th_ofs = skb_transport_offset(skb); | ||
86 | int tcp_len; | ||
87 | |||
88 | if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr)))) | ||
89 | return false; | ||
90 | |||
91 | tcp_len = tcp_hdrlen(skb); | ||
92 | if (unlikely(tcp_len < sizeof(struct tcphdr) || | ||
93 | skb->len < th_ofs + tcp_len)) | ||
94 | return false; | ||
95 | |||
96 | return true; | ||
97 | } | ||
98 | |||
99 | static bool udphdr_ok(struct sk_buff *skb) | ||
100 | { | ||
101 | return pskb_may_pull(skb, skb_transport_offset(skb) + | ||
102 | sizeof(struct udphdr)); | ||
103 | } | ||
104 | |||
105 | static bool icmphdr_ok(struct sk_buff *skb) | ||
106 | { | ||
107 | return pskb_may_pull(skb, skb_transport_offset(skb) + | ||
108 | sizeof(struct icmphdr)); | ||
109 | } | ||
110 | |||
111 | u64 ovs_flow_used_time(unsigned long flow_jiffies) | ||
112 | { | ||
113 | struct timespec cur_ts; | ||
114 | u64 cur_ms, idle_ms; | ||
115 | |||
116 | ktime_get_ts(&cur_ts); | ||
117 | idle_ms = jiffies_to_msecs(jiffies - flow_jiffies); | ||
118 | cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC + | ||
119 | cur_ts.tv_nsec / NSEC_PER_MSEC; | ||
120 | |||
121 | return cur_ms - idle_ms; | ||
122 | } | ||
123 | |||
124 | #define SW_FLOW_KEY_OFFSET(field) \ | ||
125 | (offsetof(struct sw_flow_key, field) + \ | ||
126 | FIELD_SIZEOF(struct sw_flow_key, field)) | ||
127 | |||
128 | static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key, | ||
129 | int *key_lenp) | ||
130 | { | ||
131 | unsigned int nh_ofs = skb_network_offset(skb); | ||
132 | unsigned int nh_len; | ||
133 | int payload_ofs; | ||
134 | struct ipv6hdr *nh; | ||
135 | uint8_t nexthdr; | ||
136 | __be16 frag_off; | ||
137 | int err; | ||
138 | |||
139 | *key_lenp = SW_FLOW_KEY_OFFSET(ipv6.label); | ||
140 | |||
141 | err = check_header(skb, nh_ofs + sizeof(*nh)); | ||
142 | if (unlikely(err)) | ||
143 | return err; | ||
144 | |||
145 | nh = ipv6_hdr(skb); | ||
146 | nexthdr = nh->nexthdr; | ||
147 | payload_ofs = (u8 *)(nh + 1) - skb->data; | ||
148 | |||
149 | key->ip.proto = NEXTHDR_NONE; | ||
150 | key->ip.tos = ipv6_get_dsfield(nh); | ||
151 | key->ip.ttl = nh->hop_limit; | ||
152 | key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); | ||
153 | key->ipv6.addr.src = nh->saddr; | ||
154 | key->ipv6.addr.dst = nh->daddr; | ||
155 | |||
156 | payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off); | ||
157 | if (unlikely(payload_ofs < 0)) | ||
158 | return -EINVAL; | ||
159 | |||
160 | if (frag_off) { | ||
161 | if (frag_off & htons(~0x7)) | ||
162 | key->ip.frag = OVS_FRAG_TYPE_LATER; | ||
163 | else | ||
164 | key->ip.frag = OVS_FRAG_TYPE_FIRST; | ||
165 | } | ||
166 | |||
167 | nh_len = payload_ofs - nh_ofs; | ||
168 | skb_set_transport_header(skb, nh_ofs + nh_len); | ||
169 | key->ip.proto = nexthdr; | ||
170 | return nh_len; | ||
171 | } | ||
172 | |||
173 | static bool icmp6hdr_ok(struct sk_buff *skb) | ||
174 | { | ||
175 | return pskb_may_pull(skb, skb_transport_offset(skb) + | ||
176 | sizeof(struct icmp6hdr)); | ||
177 | } | ||
178 | |||
179 | #define TCP_FLAGS_OFFSET 13 | ||
180 | #define TCP_FLAG_MASK 0x3f | ||
181 | |||
182 | void ovs_flow_used(struct sw_flow *flow, struct sk_buff *skb) | ||
183 | { | ||
184 | u8 tcp_flags = 0; | ||
185 | |||
186 | if (flow->key.eth.type == htons(ETH_P_IP) && | ||
187 | flow->key.ip.proto == IPPROTO_TCP) { | ||
188 | u8 *tcp = (u8 *)tcp_hdr(skb); | ||
189 | tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK; | ||
190 | } | ||
191 | |||
192 | spin_lock(&flow->lock); | ||
193 | flow->used = jiffies; | ||
194 | flow->packet_count++; | ||
195 | flow->byte_count += skb->len; | ||
196 | flow->tcp_flags |= tcp_flags; | ||
197 | spin_unlock(&flow->lock); | ||
198 | } | ||
199 | |||
200 | struct sw_flow_actions *ovs_flow_actions_alloc(const struct nlattr *actions) | ||
201 | { | ||
202 | int actions_len = nla_len(actions); | ||
203 | struct sw_flow_actions *sfa; | ||
204 | |||
205 | /* At least DP_MAX_PORTS actions are required to be able to flood a | ||
206 | * packet to every port. Factor of 2 allows for setting VLAN tags, | ||
207 | * etc. */ | ||
208 | if (actions_len > 2 * DP_MAX_PORTS * nla_total_size(4)) | ||
209 | return ERR_PTR(-EINVAL); | ||
210 | |||
211 | sfa = kmalloc(sizeof(*sfa) + actions_len, GFP_KERNEL); | ||
212 | if (!sfa) | ||
213 | return ERR_PTR(-ENOMEM); | ||
214 | |||
215 | sfa->actions_len = actions_len; | ||
216 | memcpy(sfa->actions, nla_data(actions), actions_len); | ||
217 | return sfa; | ||
218 | } | ||
219 | |||
220 | struct sw_flow *ovs_flow_alloc(void) | ||
221 | { | ||
222 | struct sw_flow *flow; | ||
223 | |||
224 | flow = kmem_cache_alloc(flow_cache, GFP_KERNEL); | ||
225 | if (!flow) | ||
226 | return ERR_PTR(-ENOMEM); | ||
227 | |||
228 | spin_lock_init(&flow->lock); | ||
229 | flow->sf_acts = NULL; | ||
230 | |||
231 | return flow; | ||
232 | } | ||
233 | |||
234 | static struct hlist_head *find_bucket(struct flow_table *table, u32 hash) | ||
235 | { | ||
236 | hash = jhash_1word(hash, table->hash_seed); | ||
237 | return flex_array_get(table->buckets, | ||
238 | (hash & (table->n_buckets - 1))); | ||
239 | } | ||
240 | |||
241 | static struct flex_array *alloc_buckets(unsigned int n_buckets) | ||
242 | { | ||
243 | struct flex_array *buckets; | ||
244 | int i, err; | ||
245 | |||
246 | buckets = flex_array_alloc(sizeof(struct hlist_head *), | ||
247 | n_buckets, GFP_KERNEL); | ||
248 | if (!buckets) | ||
249 | return NULL; | ||
250 | |||
251 | err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL); | ||
252 | if (err) { | ||
253 | flex_array_free(buckets); | ||
254 | return NULL; | ||
255 | } | ||
256 | |||
257 | for (i = 0; i < n_buckets; i++) | ||
258 | INIT_HLIST_HEAD((struct hlist_head *) | ||
259 | flex_array_get(buckets, i)); | ||
260 | |||
261 | return buckets; | ||
262 | } | ||
263 | |||
264 | static void free_buckets(struct flex_array *buckets) | ||
265 | { | ||
266 | flex_array_free(buckets); | ||
267 | } | ||
268 | |||
269 | struct flow_table *ovs_flow_tbl_alloc(int new_size) | ||
270 | { | ||
271 | struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL); | ||
272 | |||
273 | if (!table) | ||
274 | return NULL; | ||
275 | |||
276 | table->buckets = alloc_buckets(new_size); | ||
277 | |||
278 | if (!table->buckets) { | ||
279 | kfree(table); | ||
280 | return NULL; | ||
281 | } | ||
282 | table->n_buckets = new_size; | ||
283 | table->count = 0; | ||
284 | table->node_ver = 0; | ||
285 | table->keep_flows = false; | ||
286 | get_random_bytes(&table->hash_seed, sizeof(u32)); | ||
287 | |||
288 | return table; | ||
289 | } | ||
290 | |||
291 | void ovs_flow_tbl_destroy(struct flow_table *table) | ||
292 | { | ||
293 | int i; | ||
294 | |||
295 | if (!table) | ||
296 | return; | ||
297 | |||
298 | if (table->keep_flows) | ||
299 | goto skip_flows; | ||
300 | |||
301 | for (i = 0; i < table->n_buckets; i++) { | ||
302 | struct sw_flow *flow; | ||
303 | struct hlist_head *head = flex_array_get(table->buckets, i); | ||
304 | struct hlist_node *node, *n; | ||
305 | int ver = table->node_ver; | ||
306 | |||
307 | hlist_for_each_entry_safe(flow, node, n, head, hash_node[ver]) { | ||
308 | hlist_del_rcu(&flow->hash_node[ver]); | ||
309 | ovs_flow_free(flow); | ||
310 | } | ||
311 | } | ||
312 | |||
313 | skip_flows: | ||
314 | free_buckets(table->buckets); | ||
315 | kfree(table); | ||
316 | } | ||
317 | |||
318 | static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu) | ||
319 | { | ||
320 | struct flow_table *table = container_of(rcu, struct flow_table, rcu); | ||
321 | |||
322 | ovs_flow_tbl_destroy(table); | ||
323 | } | ||
324 | |||
325 | void ovs_flow_tbl_deferred_destroy(struct flow_table *table) | ||
326 | { | ||
327 | if (!table) | ||
328 | return; | ||
329 | |||
330 | call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb); | ||
331 | } | ||
332 | |||
333 | struct sw_flow *ovs_flow_tbl_next(struct flow_table *table, u32 *bucket, u32 *last) | ||
334 | { | ||
335 | struct sw_flow *flow; | ||
336 | struct hlist_head *head; | ||
337 | struct hlist_node *n; | ||
338 | int ver; | ||
339 | int i; | ||
340 | |||
341 | ver = table->node_ver; | ||
342 | while (*bucket < table->n_buckets) { | ||
343 | i = 0; | ||
344 | head = flex_array_get(table->buckets, *bucket); | ||
345 | hlist_for_each_entry_rcu(flow, n, head, hash_node[ver]) { | ||
346 | if (i < *last) { | ||
347 | i++; | ||
348 | continue; | ||
349 | } | ||
350 | *last = i + 1; | ||
351 | return flow; | ||
352 | } | ||
353 | (*bucket)++; | ||
354 | *last = 0; | ||
355 | } | ||
356 | |||
357 | return NULL; | ||
358 | } | ||
359 | |||
360 | static void flow_table_copy_flows(struct flow_table *old, struct flow_table *new) | ||
361 | { | ||
362 | int old_ver; | ||
363 | int i; | ||
364 | |||
365 | old_ver = old->node_ver; | ||
366 | new->node_ver = !old_ver; | ||
367 | |||
368 | /* Insert in new table. */ | ||
369 | for (i = 0; i < old->n_buckets; i++) { | ||
370 | struct sw_flow *flow; | ||
371 | struct hlist_head *head; | ||
372 | struct hlist_node *n; | ||
373 | |||
374 | head = flex_array_get(old->buckets, i); | ||
375 | |||
376 | hlist_for_each_entry(flow, n, head, hash_node[old_ver]) | ||
377 | ovs_flow_tbl_insert(new, flow); | ||
378 | } | ||
379 | old->keep_flows = true; | ||
380 | } | ||
381 | |||
382 | static struct flow_table *__flow_tbl_rehash(struct flow_table *table, int n_buckets) | ||
383 | { | ||
384 | struct flow_table *new_table; | ||
385 | |||
386 | new_table = ovs_flow_tbl_alloc(n_buckets); | ||
387 | if (!new_table) | ||
388 | return ERR_PTR(-ENOMEM); | ||
389 | |||
390 | flow_table_copy_flows(table, new_table); | ||
391 | |||
392 | return new_table; | ||
393 | } | ||
394 | |||
395 | struct flow_table *ovs_flow_tbl_rehash(struct flow_table *table) | ||
396 | { | ||
397 | return __flow_tbl_rehash(table, table->n_buckets); | ||
398 | } | ||
399 | |||
400 | struct flow_table *ovs_flow_tbl_expand(struct flow_table *table) | ||
401 | { | ||
402 | return __flow_tbl_rehash(table, table->n_buckets * 2); | ||
403 | } | ||
404 | |||
405 | void ovs_flow_free(struct sw_flow *flow) | ||
406 | { | ||
407 | if (unlikely(!flow)) | ||
408 | return; | ||
409 | |||
410 | kfree((struct sf_flow_acts __force *)flow->sf_acts); | ||
411 | kmem_cache_free(flow_cache, flow); | ||
412 | } | ||
413 | |||
414 | /* RCU callback used by ovs_flow_deferred_free. */ | ||
415 | static void rcu_free_flow_callback(struct rcu_head *rcu) | ||
416 | { | ||
417 | struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu); | ||
418 | |||
419 | ovs_flow_free(flow); | ||
420 | } | ||
421 | |||
422 | /* Schedules 'flow' to be freed after the next RCU grace period. | ||
423 | * The caller must hold rcu_read_lock for this to be sensible. */ | ||
424 | void ovs_flow_deferred_free(struct sw_flow *flow) | ||
425 | { | ||
426 | call_rcu(&flow->rcu, rcu_free_flow_callback); | ||
427 | } | ||
428 | |||
429 | /* RCU callback used by ovs_flow_deferred_free_acts. */ | ||
430 | static void rcu_free_acts_callback(struct rcu_head *rcu) | ||
431 | { | ||
432 | struct sw_flow_actions *sf_acts = container_of(rcu, | ||
433 | struct sw_flow_actions, rcu); | ||
434 | kfree(sf_acts); | ||
435 | } | ||
436 | |||
437 | /* Schedules 'sf_acts' to be freed after the next RCU grace period. | ||
438 | * The caller must hold rcu_read_lock for this to be sensible. */ | ||
439 | void ovs_flow_deferred_free_acts(struct sw_flow_actions *sf_acts) | ||
440 | { | ||
441 | call_rcu(&sf_acts->rcu, rcu_free_acts_callback); | ||
442 | } | ||
443 | |||
444 | static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key) | ||
445 | { | ||
446 | struct qtag_prefix { | ||
447 | __be16 eth_type; /* ETH_P_8021Q */ | ||
448 | __be16 tci; | ||
449 | }; | ||
450 | struct qtag_prefix *qp; | ||
451 | |||
452 | if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16))) | ||
453 | return 0; | ||
454 | |||
455 | if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) + | ||
456 | sizeof(__be16)))) | ||
457 | return -ENOMEM; | ||
458 | |||
459 | qp = (struct qtag_prefix *) skb->data; | ||
460 | key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT); | ||
461 | __skb_pull(skb, sizeof(struct qtag_prefix)); | ||
462 | |||
463 | return 0; | ||
464 | } | ||
465 | |||
466 | static __be16 parse_ethertype(struct sk_buff *skb) | ||
467 | { | ||
468 | struct llc_snap_hdr { | ||
469 | u8 dsap; /* Always 0xAA */ | ||
470 | u8 ssap; /* Always 0xAA */ | ||
471 | u8 ctrl; | ||
472 | u8 oui[3]; | ||
473 | __be16 ethertype; | ||
474 | }; | ||
475 | struct llc_snap_hdr *llc; | ||
476 | __be16 proto; | ||
477 | |||
478 | proto = *(__be16 *) skb->data; | ||
479 | __skb_pull(skb, sizeof(__be16)); | ||
480 | |||
481 | if (ntohs(proto) >= 1536) | ||
482 | return proto; | ||
483 | |||
484 | if (skb->len < sizeof(struct llc_snap_hdr)) | ||
485 | return htons(ETH_P_802_2); | ||
486 | |||
487 | if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr)))) | ||
488 | return htons(0); | ||
489 | |||
490 | llc = (struct llc_snap_hdr *) skb->data; | ||
491 | if (llc->dsap != LLC_SAP_SNAP || | ||
492 | llc->ssap != LLC_SAP_SNAP || | ||
493 | (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0) | ||
494 | return htons(ETH_P_802_2); | ||
495 | |||
496 | __skb_pull(skb, sizeof(struct llc_snap_hdr)); | ||
497 | return llc->ethertype; | ||
498 | } | ||
499 | |||
500 | static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key, | ||
501 | int *key_lenp, int nh_len) | ||
502 | { | ||
503 | struct icmp6hdr *icmp = icmp6_hdr(skb); | ||
504 | int error = 0; | ||
505 | int key_len; | ||
506 | |||
507 | /* The ICMPv6 type and code fields use the 16-bit transport port | ||
508 | * fields, so we need to store them in 16-bit network byte order. | ||
509 | */ | ||
510 | key->ipv6.tp.src = htons(icmp->icmp6_type); | ||
511 | key->ipv6.tp.dst = htons(icmp->icmp6_code); | ||
512 | key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); | ||
513 | |||
514 | if (icmp->icmp6_code == 0 && | ||
515 | (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION || | ||
516 | icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) { | ||
517 | int icmp_len = skb->len - skb_transport_offset(skb); | ||
518 | struct nd_msg *nd; | ||
519 | int offset; | ||
520 | |||
521 | key_len = SW_FLOW_KEY_OFFSET(ipv6.nd); | ||
522 | |||
523 | /* In order to process neighbor discovery options, we need the | ||
524 | * entire packet. | ||
525 | */ | ||
526 | if (unlikely(icmp_len < sizeof(*nd))) | ||
527 | goto out; | ||
528 | if (unlikely(skb_linearize(skb))) { | ||
529 | error = -ENOMEM; | ||
530 | goto out; | ||
531 | } | ||
532 | |||
533 | nd = (struct nd_msg *)skb_transport_header(skb); | ||
534 | key->ipv6.nd.target = nd->target; | ||
535 | key_len = SW_FLOW_KEY_OFFSET(ipv6.nd); | ||
536 | |||
537 | icmp_len -= sizeof(*nd); | ||
538 | offset = 0; | ||
539 | while (icmp_len >= 8) { | ||
540 | struct nd_opt_hdr *nd_opt = | ||
541 | (struct nd_opt_hdr *)(nd->opt + offset); | ||
542 | int opt_len = nd_opt->nd_opt_len * 8; | ||
543 | |||
544 | if (unlikely(!opt_len || opt_len > icmp_len)) | ||
545 | goto invalid; | ||
546 | |||
547 | /* Store the link layer address if the appropriate | ||
548 | * option is provided. It is considered an error if | ||
549 | * the same link layer option is specified twice. | ||
550 | */ | ||
551 | if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR | ||
552 | && opt_len == 8) { | ||
553 | if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll))) | ||
554 | goto invalid; | ||
555 | memcpy(key->ipv6.nd.sll, | ||
556 | &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN); | ||
557 | } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR | ||
558 | && opt_len == 8) { | ||
559 | if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll))) | ||
560 | goto invalid; | ||
561 | memcpy(key->ipv6.nd.tll, | ||
562 | &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN); | ||
563 | } | ||
564 | |||
565 | icmp_len -= opt_len; | ||
566 | offset += opt_len; | ||
567 | } | ||
568 | } | ||
569 | |||
570 | goto out; | ||
571 | |||
572 | invalid: | ||
573 | memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target)); | ||
574 | memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll)); | ||
575 | memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll)); | ||
576 | |||
577 | out: | ||
578 | *key_lenp = key_len; | ||
579 | return error; | ||
580 | } | ||
581 | |||
582 | /** | ||
583 | * ovs_flow_extract - extracts a flow key from an Ethernet frame. | ||
584 | * @skb: sk_buff that contains the frame, with skb->data pointing to the | ||
585 | * Ethernet header | ||
586 | * @in_port: port number on which @skb was received. | ||
587 | * @key: output flow key | ||
588 | * @key_lenp: length of output flow key | ||
589 | * | ||
590 | * The caller must ensure that skb->len >= ETH_HLEN. | ||
591 | * | ||
592 | * Returns 0 if successful, otherwise a negative errno value. | ||
593 | * | ||
594 | * Initializes @skb header pointers as follows: | ||
595 | * | ||
596 | * - skb->mac_header: the Ethernet header. | ||
597 | * | ||
598 | * - skb->network_header: just past the Ethernet header, or just past the | ||
599 | * VLAN header, to the first byte of the Ethernet payload. | ||
600 | * | ||
601 | * - skb->transport_header: If key->dl_type is ETH_P_IP or ETH_P_IPV6 | ||
602 | * on output, then just past the IP header, if one is present and | ||
603 | * of a correct length, otherwise the same as skb->network_header. | ||
604 | * For other key->dl_type values it is left untouched. | ||
605 | */ | ||
606 | int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key, | ||
607 | int *key_lenp) | ||
608 | { | ||
609 | int error = 0; | ||
610 | int key_len = SW_FLOW_KEY_OFFSET(eth); | ||
611 | struct ethhdr *eth; | ||
612 | |||
613 | memset(key, 0, sizeof(*key)); | ||
614 | |||
615 | key->phy.priority = skb->priority; | ||
616 | key->phy.in_port = in_port; | ||
617 | |||
618 | skb_reset_mac_header(skb); | ||
619 | |||
620 | /* Link layer. We are guaranteed to have at least the 14 byte Ethernet | ||
621 | * header in the linear data area. | ||
622 | */ | ||
623 | eth = eth_hdr(skb); | ||
624 | memcpy(key->eth.src, eth->h_source, ETH_ALEN); | ||
625 | memcpy(key->eth.dst, eth->h_dest, ETH_ALEN); | ||
626 | |||
627 | __skb_pull(skb, 2 * ETH_ALEN); | ||
628 | |||
629 | if (vlan_tx_tag_present(skb)) | ||
630 | key->eth.tci = htons(skb->vlan_tci); | ||
631 | else if (eth->h_proto == htons(ETH_P_8021Q)) | ||
632 | if (unlikely(parse_vlan(skb, key))) | ||
633 | return -ENOMEM; | ||
634 | |||
635 | key->eth.type = parse_ethertype(skb); | ||
636 | if (unlikely(key->eth.type == htons(0))) | ||
637 | return -ENOMEM; | ||
638 | |||
639 | skb_reset_network_header(skb); | ||
640 | __skb_push(skb, skb->data - skb_mac_header(skb)); | ||
641 | |||
642 | /* Network layer. */ | ||
643 | if (key->eth.type == htons(ETH_P_IP)) { | ||
644 | struct iphdr *nh; | ||
645 | __be16 offset; | ||
646 | |||
647 | key_len = SW_FLOW_KEY_OFFSET(ipv4.addr); | ||
648 | |||
649 | error = check_iphdr(skb); | ||
650 | if (unlikely(error)) { | ||
651 | if (error == -EINVAL) { | ||
652 | skb->transport_header = skb->network_header; | ||
653 | error = 0; | ||
654 | } | ||
655 | goto out; | ||
656 | } | ||
657 | |||
658 | nh = ip_hdr(skb); | ||
659 | key->ipv4.addr.src = nh->saddr; | ||
660 | key->ipv4.addr.dst = nh->daddr; | ||
661 | |||
662 | key->ip.proto = nh->protocol; | ||
663 | key->ip.tos = nh->tos; | ||
664 | key->ip.ttl = nh->ttl; | ||
665 | |||
666 | offset = nh->frag_off & htons(IP_OFFSET); | ||
667 | if (offset) { | ||
668 | key->ip.frag = OVS_FRAG_TYPE_LATER; | ||
669 | goto out; | ||
670 | } | ||
671 | if (nh->frag_off & htons(IP_MF) || | ||
672 | skb_shinfo(skb)->gso_type & SKB_GSO_UDP) | ||
673 | key->ip.frag = OVS_FRAG_TYPE_FIRST; | ||
674 | |||
675 | /* Transport layer. */ | ||
676 | if (key->ip.proto == IPPROTO_TCP) { | ||
677 | key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); | ||
678 | if (tcphdr_ok(skb)) { | ||
679 | struct tcphdr *tcp = tcp_hdr(skb); | ||
680 | key->ipv4.tp.src = tcp->source; | ||
681 | key->ipv4.tp.dst = tcp->dest; | ||
682 | } | ||
683 | } else if (key->ip.proto == IPPROTO_UDP) { | ||
684 | key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); | ||
685 | if (udphdr_ok(skb)) { | ||
686 | struct udphdr *udp = udp_hdr(skb); | ||
687 | key->ipv4.tp.src = udp->source; | ||
688 | key->ipv4.tp.dst = udp->dest; | ||
689 | } | ||
690 | } else if (key->ip.proto == IPPROTO_ICMP) { | ||
691 | key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); | ||
692 | if (icmphdr_ok(skb)) { | ||
693 | struct icmphdr *icmp = icmp_hdr(skb); | ||
694 | /* The ICMP type and code fields use the 16-bit | ||
695 | * transport port fields, so we need to store | ||
696 | * them in 16-bit network byte order. */ | ||
697 | key->ipv4.tp.src = htons(icmp->type); | ||
698 | key->ipv4.tp.dst = htons(icmp->code); | ||
699 | } | ||
700 | } | ||
701 | |||
702 | } else if (key->eth.type == htons(ETH_P_ARP) && arphdr_ok(skb)) { | ||
703 | struct arp_eth_header *arp; | ||
704 | |||
705 | arp = (struct arp_eth_header *)skb_network_header(skb); | ||
706 | |||
707 | if (arp->ar_hrd == htons(ARPHRD_ETHER) | ||
708 | && arp->ar_pro == htons(ETH_P_IP) | ||
709 | && arp->ar_hln == ETH_ALEN | ||
710 | && arp->ar_pln == 4) { | ||
711 | |||
712 | /* We only match on the lower 8 bits of the opcode. */ | ||
713 | if (ntohs(arp->ar_op) <= 0xff) | ||
714 | key->ip.proto = ntohs(arp->ar_op); | ||
715 | |||
716 | if (key->ip.proto == ARPOP_REQUEST | ||
717 | || key->ip.proto == ARPOP_REPLY) { | ||
718 | memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src)); | ||
719 | memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst)); | ||
720 | memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN); | ||
721 | memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN); | ||
722 | key_len = SW_FLOW_KEY_OFFSET(ipv4.arp); | ||
723 | } | ||
724 | } | ||
725 | } else if (key->eth.type == htons(ETH_P_IPV6)) { | ||
726 | int nh_len; /* IPv6 Header + Extensions */ | ||
727 | |||
728 | nh_len = parse_ipv6hdr(skb, key, &key_len); | ||
729 | if (unlikely(nh_len < 0)) { | ||
730 | if (nh_len == -EINVAL) | ||
731 | skb->transport_header = skb->network_header; | ||
732 | else | ||
733 | error = nh_len; | ||
734 | goto out; | ||
735 | } | ||
736 | |||
737 | if (key->ip.frag == OVS_FRAG_TYPE_LATER) | ||
738 | goto out; | ||
739 | if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP) | ||
740 | key->ip.frag = OVS_FRAG_TYPE_FIRST; | ||
741 | |||
742 | /* Transport layer. */ | ||
743 | if (key->ip.proto == NEXTHDR_TCP) { | ||
744 | key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); | ||
745 | if (tcphdr_ok(skb)) { | ||
746 | struct tcphdr *tcp = tcp_hdr(skb); | ||
747 | key->ipv6.tp.src = tcp->source; | ||
748 | key->ipv6.tp.dst = tcp->dest; | ||
749 | } | ||
750 | } else if (key->ip.proto == NEXTHDR_UDP) { | ||
751 | key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); | ||
752 | if (udphdr_ok(skb)) { | ||
753 | struct udphdr *udp = udp_hdr(skb); | ||
754 | key->ipv6.tp.src = udp->source; | ||
755 | key->ipv6.tp.dst = udp->dest; | ||
756 | } | ||
757 | } else if (key->ip.proto == NEXTHDR_ICMP) { | ||
758 | key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); | ||
759 | if (icmp6hdr_ok(skb)) { | ||
760 | error = parse_icmpv6(skb, key, &key_len, nh_len); | ||
761 | if (error < 0) | ||
762 | goto out; | ||
763 | } | ||
764 | } | ||
765 | } | ||
766 | |||
767 | out: | ||
768 | *key_lenp = key_len; | ||
769 | return error; | ||
770 | } | ||
771 | |||
772 | u32 ovs_flow_hash(const struct sw_flow_key *key, int key_len) | ||
773 | { | ||
774 | return jhash2((u32 *)key, DIV_ROUND_UP(key_len, sizeof(u32)), 0); | ||
775 | } | ||
776 | |||
777 | struct sw_flow *ovs_flow_tbl_lookup(struct flow_table *table, | ||
778 | struct sw_flow_key *key, int key_len) | ||
779 | { | ||
780 | struct sw_flow *flow; | ||
781 | struct hlist_node *n; | ||
782 | struct hlist_head *head; | ||
783 | u32 hash; | ||
784 | |||
785 | hash = ovs_flow_hash(key, key_len); | ||
786 | |||
787 | head = find_bucket(table, hash); | ||
788 | hlist_for_each_entry_rcu(flow, n, head, hash_node[table->node_ver]) { | ||
789 | |||
790 | if (flow->hash == hash && | ||
791 | !memcmp(&flow->key, key, key_len)) { | ||
792 | return flow; | ||
793 | } | ||
794 | } | ||
795 | return NULL; | ||
796 | } | ||
797 | |||
798 | void ovs_flow_tbl_insert(struct flow_table *table, struct sw_flow *flow) | ||
799 | { | ||
800 | struct hlist_head *head; | ||
801 | |||
802 | head = find_bucket(table, flow->hash); | ||
803 | hlist_add_head_rcu(&flow->hash_node[table->node_ver], head); | ||
804 | table->count++; | ||
805 | } | ||
806 | |||
807 | void ovs_flow_tbl_remove(struct flow_table *table, struct sw_flow *flow) | ||
808 | { | ||
809 | hlist_del_rcu(&flow->hash_node[table->node_ver]); | ||
810 | table->count--; | ||
811 | BUG_ON(table->count < 0); | ||
812 | } | ||
813 | |||
814 | /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */ | ||
815 | const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = { | ||
816 | [OVS_KEY_ATTR_ENCAP] = -1, | ||
817 | [OVS_KEY_ATTR_PRIORITY] = sizeof(u32), | ||
818 | [OVS_KEY_ATTR_IN_PORT] = sizeof(u32), | ||
819 | [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet), | ||
820 | [OVS_KEY_ATTR_VLAN] = sizeof(__be16), | ||
821 | [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16), | ||
822 | [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4), | ||
823 | [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6), | ||
824 | [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp), | ||
825 | [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp), | ||
826 | [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp), | ||
827 | [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6), | ||
828 | [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp), | ||
829 | [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd), | ||
830 | }; | ||
831 | |||
832 | static int ipv4_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len, | ||
833 | const struct nlattr *a[], u32 *attrs) | ||
834 | { | ||
835 | const struct ovs_key_icmp *icmp_key; | ||
836 | const struct ovs_key_tcp *tcp_key; | ||
837 | const struct ovs_key_udp *udp_key; | ||
838 | |||
839 | switch (swkey->ip.proto) { | ||
840 | case IPPROTO_TCP: | ||
841 | if (!(*attrs & (1 << OVS_KEY_ATTR_TCP))) | ||
842 | return -EINVAL; | ||
843 | *attrs &= ~(1 << OVS_KEY_ATTR_TCP); | ||
844 | |||
845 | *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); | ||
846 | tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]); | ||
847 | swkey->ipv4.tp.src = tcp_key->tcp_src; | ||
848 | swkey->ipv4.tp.dst = tcp_key->tcp_dst; | ||
849 | break; | ||
850 | |||
851 | case IPPROTO_UDP: | ||
852 | if (!(*attrs & (1 << OVS_KEY_ATTR_UDP))) | ||
853 | return -EINVAL; | ||
854 | *attrs &= ~(1 << OVS_KEY_ATTR_UDP); | ||
855 | |||
856 | *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); | ||
857 | udp_key = nla_data(a[OVS_KEY_ATTR_UDP]); | ||
858 | swkey->ipv4.tp.src = udp_key->udp_src; | ||
859 | swkey->ipv4.tp.dst = udp_key->udp_dst; | ||
860 | break; | ||
861 | |||
862 | case IPPROTO_ICMP: | ||
863 | if (!(*attrs & (1 << OVS_KEY_ATTR_ICMP))) | ||
864 | return -EINVAL; | ||
865 | *attrs &= ~(1 << OVS_KEY_ATTR_ICMP); | ||
866 | |||
867 | *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp); | ||
868 | icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]); | ||
869 | swkey->ipv4.tp.src = htons(icmp_key->icmp_type); | ||
870 | swkey->ipv4.tp.dst = htons(icmp_key->icmp_code); | ||
871 | break; | ||
872 | } | ||
873 | |||
874 | return 0; | ||
875 | } | ||
876 | |||
877 | static int ipv6_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len, | ||
878 | const struct nlattr *a[], u32 *attrs) | ||
879 | { | ||
880 | const struct ovs_key_icmpv6 *icmpv6_key; | ||
881 | const struct ovs_key_tcp *tcp_key; | ||
882 | const struct ovs_key_udp *udp_key; | ||
883 | |||
884 | switch (swkey->ip.proto) { | ||
885 | case IPPROTO_TCP: | ||
886 | if (!(*attrs & (1 << OVS_KEY_ATTR_TCP))) | ||
887 | return -EINVAL; | ||
888 | *attrs &= ~(1 << OVS_KEY_ATTR_TCP); | ||
889 | |||
890 | *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); | ||
891 | tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]); | ||
892 | swkey->ipv6.tp.src = tcp_key->tcp_src; | ||
893 | swkey->ipv6.tp.dst = tcp_key->tcp_dst; | ||
894 | break; | ||
895 | |||
896 | case IPPROTO_UDP: | ||
897 | if (!(*attrs & (1 << OVS_KEY_ATTR_UDP))) | ||
898 | return -EINVAL; | ||
899 | *attrs &= ~(1 << OVS_KEY_ATTR_UDP); | ||
900 | |||
901 | *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); | ||
902 | udp_key = nla_data(a[OVS_KEY_ATTR_UDP]); | ||
903 | swkey->ipv6.tp.src = udp_key->udp_src; | ||
904 | swkey->ipv6.tp.dst = udp_key->udp_dst; | ||
905 | break; | ||
906 | |||
907 | case IPPROTO_ICMPV6: | ||
908 | if (!(*attrs & (1 << OVS_KEY_ATTR_ICMPV6))) | ||
909 | return -EINVAL; | ||
910 | *attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6); | ||
911 | |||
912 | *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp); | ||
913 | icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]); | ||
914 | swkey->ipv6.tp.src = htons(icmpv6_key->icmpv6_type); | ||
915 | swkey->ipv6.tp.dst = htons(icmpv6_key->icmpv6_code); | ||
916 | |||
917 | if (swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) || | ||
918 | swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) { | ||
919 | const struct ovs_key_nd *nd_key; | ||
920 | |||
921 | if (!(*attrs & (1 << OVS_KEY_ATTR_ND))) | ||
922 | return -EINVAL; | ||
923 | *attrs &= ~(1 << OVS_KEY_ATTR_ND); | ||
924 | |||
925 | *key_len = SW_FLOW_KEY_OFFSET(ipv6.nd); | ||
926 | nd_key = nla_data(a[OVS_KEY_ATTR_ND]); | ||
927 | memcpy(&swkey->ipv6.nd.target, nd_key->nd_target, | ||
928 | sizeof(swkey->ipv6.nd.target)); | ||
929 | memcpy(swkey->ipv6.nd.sll, nd_key->nd_sll, ETH_ALEN); | ||
930 | memcpy(swkey->ipv6.nd.tll, nd_key->nd_tll, ETH_ALEN); | ||
931 | } | ||
932 | break; | ||
933 | } | ||
934 | |||
935 | return 0; | ||
936 | } | ||
937 | |||
938 | static int parse_flow_nlattrs(const struct nlattr *attr, | ||
939 | const struct nlattr *a[], u32 *attrsp) | ||
940 | { | ||
941 | const struct nlattr *nla; | ||
942 | u32 attrs; | ||
943 | int rem; | ||
944 | |||
945 | attrs = 0; | ||
946 | nla_for_each_nested(nla, attr, rem) { | ||
947 | u16 type = nla_type(nla); | ||
948 | int expected_len; | ||
949 | |||
950 | if (type > OVS_KEY_ATTR_MAX || attrs & (1 << type)) | ||
951 | return -EINVAL; | ||
952 | |||
953 | expected_len = ovs_key_lens[type]; | ||
954 | if (nla_len(nla) != expected_len && expected_len != -1) | ||
955 | return -EINVAL; | ||
956 | |||
957 | attrs |= 1 << type; | ||
958 | a[type] = nla; | ||
959 | } | ||
960 | if (rem) | ||
961 | return -EINVAL; | ||
962 | |||
963 | *attrsp = attrs; | ||
964 | return 0; | ||
965 | } | ||
966 | |||
967 | /** | ||
968 | * ovs_flow_from_nlattrs - parses Netlink attributes into a flow key. | ||
969 | * @swkey: receives the extracted flow key. | ||
970 | * @key_lenp: number of bytes used in @swkey. | ||
971 | * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute | ||
972 | * sequence. | ||
973 | */ | ||
974 | int ovs_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_lenp, | ||
975 | const struct nlattr *attr) | ||
976 | { | ||
977 | const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; | ||
978 | const struct ovs_key_ethernet *eth_key; | ||
979 | int key_len; | ||
980 | u32 attrs; | ||
981 | int err; | ||
982 | |||
983 | memset(swkey, 0, sizeof(struct sw_flow_key)); | ||
984 | key_len = SW_FLOW_KEY_OFFSET(eth); | ||
985 | |||
986 | err = parse_flow_nlattrs(attr, a, &attrs); | ||
987 | if (err) | ||
988 | return err; | ||
989 | |||
990 | /* Metadata attributes. */ | ||
991 | if (attrs & (1 << OVS_KEY_ATTR_PRIORITY)) { | ||
992 | swkey->phy.priority = nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]); | ||
993 | attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY); | ||
994 | } | ||
995 | if (attrs & (1 << OVS_KEY_ATTR_IN_PORT)) { | ||
996 | u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]); | ||
997 | if (in_port >= DP_MAX_PORTS) | ||
998 | return -EINVAL; | ||
999 | swkey->phy.in_port = in_port; | ||
1000 | attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT); | ||
1001 | } else { | ||
1002 | swkey->phy.in_port = USHRT_MAX; | ||
1003 | } | ||
1004 | |||
1005 | /* Data attributes. */ | ||
1006 | if (!(attrs & (1 << OVS_KEY_ATTR_ETHERNET))) | ||
1007 | return -EINVAL; | ||
1008 | attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET); | ||
1009 | |||
1010 | eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]); | ||
1011 | memcpy(swkey->eth.src, eth_key->eth_src, ETH_ALEN); | ||
1012 | memcpy(swkey->eth.dst, eth_key->eth_dst, ETH_ALEN); | ||
1013 | |||
1014 | if (attrs & (1u << OVS_KEY_ATTR_ETHERTYPE) && | ||
1015 | nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q)) { | ||
1016 | const struct nlattr *encap; | ||
1017 | __be16 tci; | ||
1018 | |||
1019 | if (attrs != ((1 << OVS_KEY_ATTR_VLAN) | | ||
1020 | (1 << OVS_KEY_ATTR_ETHERTYPE) | | ||
1021 | (1 << OVS_KEY_ATTR_ENCAP))) | ||
1022 | return -EINVAL; | ||
1023 | |||
1024 | encap = a[OVS_KEY_ATTR_ENCAP]; | ||
1025 | tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); | ||
1026 | if (tci & htons(VLAN_TAG_PRESENT)) { | ||
1027 | swkey->eth.tci = tci; | ||
1028 | |||
1029 | err = parse_flow_nlattrs(encap, a, &attrs); | ||
1030 | if (err) | ||
1031 | return err; | ||
1032 | } else if (!tci) { | ||
1033 | /* Corner case for truncated 802.1Q header. */ | ||
1034 | if (nla_len(encap)) | ||
1035 | return -EINVAL; | ||
1036 | |||
1037 | swkey->eth.type = htons(ETH_P_8021Q); | ||
1038 | *key_lenp = key_len; | ||
1039 | return 0; | ||
1040 | } else { | ||
1041 | return -EINVAL; | ||
1042 | } | ||
1043 | } | ||
1044 | |||
1045 | if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) { | ||
1046 | swkey->eth.type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); | ||
1047 | if (ntohs(swkey->eth.type) < 1536) | ||
1048 | return -EINVAL; | ||
1049 | attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); | ||
1050 | } else { | ||
1051 | swkey->eth.type = htons(ETH_P_802_2); | ||
1052 | } | ||
1053 | |||
1054 | if (swkey->eth.type == htons(ETH_P_IP)) { | ||
1055 | const struct ovs_key_ipv4 *ipv4_key; | ||
1056 | |||
1057 | if (!(attrs & (1 << OVS_KEY_ATTR_IPV4))) | ||
1058 | return -EINVAL; | ||
1059 | attrs &= ~(1 << OVS_KEY_ATTR_IPV4); | ||
1060 | |||
1061 | key_len = SW_FLOW_KEY_OFFSET(ipv4.addr); | ||
1062 | ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]); | ||
1063 | if (ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) | ||
1064 | return -EINVAL; | ||
1065 | swkey->ip.proto = ipv4_key->ipv4_proto; | ||
1066 | swkey->ip.tos = ipv4_key->ipv4_tos; | ||
1067 | swkey->ip.ttl = ipv4_key->ipv4_ttl; | ||
1068 | swkey->ip.frag = ipv4_key->ipv4_frag; | ||
1069 | swkey->ipv4.addr.src = ipv4_key->ipv4_src; | ||
1070 | swkey->ipv4.addr.dst = ipv4_key->ipv4_dst; | ||
1071 | |||
1072 | if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) { | ||
1073 | err = ipv4_flow_from_nlattrs(swkey, &key_len, a, &attrs); | ||
1074 | if (err) | ||
1075 | return err; | ||
1076 | } | ||
1077 | } else if (swkey->eth.type == htons(ETH_P_IPV6)) { | ||
1078 | const struct ovs_key_ipv6 *ipv6_key; | ||
1079 | |||
1080 | if (!(attrs & (1 << OVS_KEY_ATTR_IPV6))) | ||
1081 | return -EINVAL; | ||
1082 | attrs &= ~(1 << OVS_KEY_ATTR_IPV6); | ||
1083 | |||
1084 | key_len = SW_FLOW_KEY_OFFSET(ipv6.label); | ||
1085 | ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]); | ||
1086 | if (ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) | ||
1087 | return -EINVAL; | ||
1088 | swkey->ipv6.label = ipv6_key->ipv6_label; | ||
1089 | swkey->ip.proto = ipv6_key->ipv6_proto; | ||
1090 | swkey->ip.tos = ipv6_key->ipv6_tclass; | ||
1091 | swkey->ip.ttl = ipv6_key->ipv6_hlimit; | ||
1092 | swkey->ip.frag = ipv6_key->ipv6_frag; | ||
1093 | memcpy(&swkey->ipv6.addr.src, ipv6_key->ipv6_src, | ||
1094 | sizeof(swkey->ipv6.addr.src)); | ||
1095 | memcpy(&swkey->ipv6.addr.dst, ipv6_key->ipv6_dst, | ||
1096 | sizeof(swkey->ipv6.addr.dst)); | ||
1097 | |||
1098 | if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) { | ||
1099 | err = ipv6_flow_from_nlattrs(swkey, &key_len, a, &attrs); | ||
1100 | if (err) | ||
1101 | return err; | ||
1102 | } | ||
1103 | } else if (swkey->eth.type == htons(ETH_P_ARP)) { | ||
1104 | const struct ovs_key_arp *arp_key; | ||
1105 | |||
1106 | if (!(attrs & (1 << OVS_KEY_ATTR_ARP))) | ||
1107 | return -EINVAL; | ||
1108 | attrs &= ~(1 << OVS_KEY_ATTR_ARP); | ||
1109 | |||
1110 | key_len = SW_FLOW_KEY_OFFSET(ipv4.arp); | ||
1111 | arp_key = nla_data(a[OVS_KEY_ATTR_ARP]); | ||
1112 | swkey->ipv4.addr.src = arp_key->arp_sip; | ||
1113 | swkey->ipv4.addr.dst = arp_key->arp_tip; | ||
1114 | if (arp_key->arp_op & htons(0xff00)) | ||
1115 | return -EINVAL; | ||
1116 | swkey->ip.proto = ntohs(arp_key->arp_op); | ||
1117 | memcpy(swkey->ipv4.arp.sha, arp_key->arp_sha, ETH_ALEN); | ||
1118 | memcpy(swkey->ipv4.arp.tha, arp_key->arp_tha, ETH_ALEN); | ||
1119 | } | ||
1120 | |||
1121 | if (attrs) | ||
1122 | return -EINVAL; | ||
1123 | *key_lenp = key_len; | ||
1124 | |||
1125 | return 0; | ||
1126 | } | ||
1127 | |||
1128 | /** | ||
1129 | * ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key. | ||
1130 | * @in_port: receives the extracted input port. | ||
1131 | * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute | ||
1132 | * sequence. | ||
1133 | * | ||
1134 | * This parses a series of Netlink attributes that form a flow key, which must | ||
1135 | * take the same form accepted by flow_from_nlattrs(), but only enough of it to | ||
1136 | * get the metadata, that is, the parts of the flow key that cannot be | ||
1137 | * extracted from the packet itself. | ||
1138 | */ | ||
1139 | int ovs_flow_metadata_from_nlattrs(u32 *priority, u16 *in_port, | ||
1140 | const struct nlattr *attr) | ||
1141 | { | ||
1142 | const struct nlattr *nla; | ||
1143 | int rem; | ||
1144 | |||
1145 | *in_port = USHRT_MAX; | ||
1146 | *priority = 0; | ||
1147 | |||
1148 | nla_for_each_nested(nla, attr, rem) { | ||
1149 | int type = nla_type(nla); | ||
1150 | |||
1151 | if (type <= OVS_KEY_ATTR_MAX && ovs_key_lens[type] > 0) { | ||
1152 | if (nla_len(nla) != ovs_key_lens[type]) | ||
1153 | return -EINVAL; | ||
1154 | |||
1155 | switch (type) { | ||
1156 | case OVS_KEY_ATTR_PRIORITY: | ||
1157 | *priority = nla_get_u32(nla); | ||
1158 | break; | ||
1159 | |||
1160 | case OVS_KEY_ATTR_IN_PORT: | ||
1161 | if (nla_get_u32(nla) >= DP_MAX_PORTS) | ||
1162 | return -EINVAL; | ||
1163 | *in_port = nla_get_u32(nla); | ||
1164 | break; | ||
1165 | } | ||
1166 | } | ||
1167 | } | ||
1168 | if (rem) | ||
1169 | return -EINVAL; | ||
1170 | return 0; | ||
1171 | } | ||
1172 | |||
1173 | int ovs_flow_to_nlattrs(const struct sw_flow_key *swkey, struct sk_buff *skb) | ||
1174 | { | ||
1175 | struct ovs_key_ethernet *eth_key; | ||
1176 | struct nlattr *nla, *encap; | ||
1177 | |||
1178 | if (swkey->phy.priority) | ||
1179 | NLA_PUT_U32(skb, OVS_KEY_ATTR_PRIORITY, swkey->phy.priority); | ||
1180 | |||
1181 | if (swkey->phy.in_port != USHRT_MAX) | ||
1182 | NLA_PUT_U32(skb, OVS_KEY_ATTR_IN_PORT, swkey->phy.in_port); | ||
1183 | |||
1184 | nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key)); | ||
1185 | if (!nla) | ||
1186 | goto nla_put_failure; | ||
1187 | eth_key = nla_data(nla); | ||
1188 | memcpy(eth_key->eth_src, swkey->eth.src, ETH_ALEN); | ||
1189 | memcpy(eth_key->eth_dst, swkey->eth.dst, ETH_ALEN); | ||
1190 | |||
1191 | if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) { | ||
1192 | NLA_PUT_BE16(skb, OVS_KEY_ATTR_ETHERTYPE, htons(ETH_P_8021Q)); | ||
1193 | NLA_PUT_BE16(skb, OVS_KEY_ATTR_VLAN, swkey->eth.tci); | ||
1194 | encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP); | ||
1195 | if (!swkey->eth.tci) | ||
1196 | goto unencap; | ||
1197 | } else { | ||
1198 | encap = NULL; | ||
1199 | } | ||
1200 | |||
1201 | if (swkey->eth.type == htons(ETH_P_802_2)) | ||
1202 | goto unencap; | ||
1203 | |||
1204 | NLA_PUT_BE16(skb, OVS_KEY_ATTR_ETHERTYPE, swkey->eth.type); | ||
1205 | |||
1206 | if (swkey->eth.type == htons(ETH_P_IP)) { | ||
1207 | struct ovs_key_ipv4 *ipv4_key; | ||
1208 | |||
1209 | nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key)); | ||
1210 | if (!nla) | ||
1211 | goto nla_put_failure; | ||
1212 | ipv4_key = nla_data(nla); | ||
1213 | ipv4_key->ipv4_src = swkey->ipv4.addr.src; | ||
1214 | ipv4_key->ipv4_dst = swkey->ipv4.addr.dst; | ||
1215 | ipv4_key->ipv4_proto = swkey->ip.proto; | ||
1216 | ipv4_key->ipv4_tos = swkey->ip.tos; | ||
1217 | ipv4_key->ipv4_ttl = swkey->ip.ttl; | ||
1218 | ipv4_key->ipv4_frag = swkey->ip.frag; | ||
1219 | } else if (swkey->eth.type == htons(ETH_P_IPV6)) { | ||
1220 | struct ovs_key_ipv6 *ipv6_key; | ||
1221 | |||
1222 | nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key)); | ||
1223 | if (!nla) | ||
1224 | goto nla_put_failure; | ||
1225 | ipv6_key = nla_data(nla); | ||
1226 | memcpy(ipv6_key->ipv6_src, &swkey->ipv6.addr.src, | ||
1227 | sizeof(ipv6_key->ipv6_src)); | ||
1228 | memcpy(ipv6_key->ipv6_dst, &swkey->ipv6.addr.dst, | ||
1229 | sizeof(ipv6_key->ipv6_dst)); | ||
1230 | ipv6_key->ipv6_label = swkey->ipv6.label; | ||
1231 | ipv6_key->ipv6_proto = swkey->ip.proto; | ||
1232 | ipv6_key->ipv6_tclass = swkey->ip.tos; | ||
1233 | ipv6_key->ipv6_hlimit = swkey->ip.ttl; | ||
1234 | ipv6_key->ipv6_frag = swkey->ip.frag; | ||
1235 | } else if (swkey->eth.type == htons(ETH_P_ARP)) { | ||
1236 | struct ovs_key_arp *arp_key; | ||
1237 | |||
1238 | nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key)); | ||
1239 | if (!nla) | ||
1240 | goto nla_put_failure; | ||
1241 | arp_key = nla_data(nla); | ||
1242 | memset(arp_key, 0, sizeof(struct ovs_key_arp)); | ||
1243 | arp_key->arp_sip = swkey->ipv4.addr.src; | ||
1244 | arp_key->arp_tip = swkey->ipv4.addr.dst; | ||
1245 | arp_key->arp_op = htons(swkey->ip.proto); | ||
1246 | memcpy(arp_key->arp_sha, swkey->ipv4.arp.sha, ETH_ALEN); | ||
1247 | memcpy(arp_key->arp_tha, swkey->ipv4.arp.tha, ETH_ALEN); | ||
1248 | } | ||
1249 | |||
1250 | if ((swkey->eth.type == htons(ETH_P_IP) || | ||
1251 | swkey->eth.type == htons(ETH_P_IPV6)) && | ||
1252 | swkey->ip.frag != OVS_FRAG_TYPE_LATER) { | ||
1253 | |||
1254 | if (swkey->ip.proto == IPPROTO_TCP) { | ||
1255 | struct ovs_key_tcp *tcp_key; | ||
1256 | |||
1257 | nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key)); | ||
1258 | if (!nla) | ||
1259 | goto nla_put_failure; | ||
1260 | tcp_key = nla_data(nla); | ||
1261 | if (swkey->eth.type == htons(ETH_P_IP)) { | ||
1262 | tcp_key->tcp_src = swkey->ipv4.tp.src; | ||
1263 | tcp_key->tcp_dst = swkey->ipv4.tp.dst; | ||
1264 | } else if (swkey->eth.type == htons(ETH_P_IPV6)) { | ||
1265 | tcp_key->tcp_src = swkey->ipv6.tp.src; | ||
1266 | tcp_key->tcp_dst = swkey->ipv6.tp.dst; | ||
1267 | } | ||
1268 | } else if (swkey->ip.proto == IPPROTO_UDP) { | ||
1269 | struct ovs_key_udp *udp_key; | ||
1270 | |||
1271 | nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key)); | ||
1272 | if (!nla) | ||
1273 | goto nla_put_failure; | ||
1274 | udp_key = nla_data(nla); | ||
1275 | if (swkey->eth.type == htons(ETH_P_IP)) { | ||
1276 | udp_key->udp_src = swkey->ipv4.tp.src; | ||
1277 | udp_key->udp_dst = swkey->ipv4.tp.dst; | ||
1278 | } else if (swkey->eth.type == htons(ETH_P_IPV6)) { | ||
1279 | udp_key->udp_src = swkey->ipv6.tp.src; | ||
1280 | udp_key->udp_dst = swkey->ipv6.tp.dst; | ||
1281 | } | ||
1282 | } else if (swkey->eth.type == htons(ETH_P_IP) && | ||
1283 | swkey->ip.proto == IPPROTO_ICMP) { | ||
1284 | struct ovs_key_icmp *icmp_key; | ||
1285 | |||
1286 | nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key)); | ||
1287 | if (!nla) | ||
1288 | goto nla_put_failure; | ||
1289 | icmp_key = nla_data(nla); | ||
1290 | icmp_key->icmp_type = ntohs(swkey->ipv4.tp.src); | ||
1291 | icmp_key->icmp_code = ntohs(swkey->ipv4.tp.dst); | ||
1292 | } else if (swkey->eth.type == htons(ETH_P_IPV6) && | ||
1293 | swkey->ip.proto == IPPROTO_ICMPV6) { | ||
1294 | struct ovs_key_icmpv6 *icmpv6_key; | ||
1295 | |||
1296 | nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6, | ||
1297 | sizeof(*icmpv6_key)); | ||
1298 | if (!nla) | ||
1299 | goto nla_put_failure; | ||
1300 | icmpv6_key = nla_data(nla); | ||
1301 | icmpv6_key->icmpv6_type = ntohs(swkey->ipv6.tp.src); | ||
1302 | icmpv6_key->icmpv6_code = ntohs(swkey->ipv6.tp.dst); | ||
1303 | |||
1304 | if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION || | ||
1305 | icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) { | ||
1306 | struct ovs_key_nd *nd_key; | ||
1307 | |||
1308 | nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key)); | ||
1309 | if (!nla) | ||
1310 | goto nla_put_failure; | ||
1311 | nd_key = nla_data(nla); | ||
1312 | memcpy(nd_key->nd_target, &swkey->ipv6.nd.target, | ||
1313 | sizeof(nd_key->nd_target)); | ||
1314 | memcpy(nd_key->nd_sll, swkey->ipv6.nd.sll, ETH_ALEN); | ||
1315 | memcpy(nd_key->nd_tll, swkey->ipv6.nd.tll, ETH_ALEN); | ||
1316 | } | ||
1317 | } | ||
1318 | } | ||
1319 | |||
1320 | unencap: | ||
1321 | if (encap) | ||
1322 | nla_nest_end(skb, encap); | ||
1323 | |||
1324 | return 0; | ||
1325 | |||
1326 | nla_put_failure: | ||
1327 | return -EMSGSIZE; | ||
1328 | } | ||
1329 | |||
1330 | /* Initializes the flow module. | ||
1331 | * Returns zero if successful or a negative error code. */ | ||
1332 | int ovs_flow_init(void) | ||
1333 | { | ||
1334 | flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0, | ||
1335 | 0, NULL); | ||
1336 | if (flow_cache == NULL) | ||
1337 | return -ENOMEM; | ||
1338 | |||
1339 | return 0; | ||
1340 | } | ||
1341 | |||
1342 | /* Uninitializes the flow module. */ | ||
1343 | void ovs_flow_exit(void) | ||
1344 | { | ||
1345 | kmem_cache_destroy(flow_cache); | ||
1346 | } | ||