aboutsummaryrefslogtreecommitdiffstats
path: root/net/openvswitch/flow.c
diff options
context:
space:
mode:
authorJesse Gross <jesse@nicira.com>2011-10-25 22:26:31 -0400
committerJesse Gross <jesse@nicira.com>2011-12-03 12:35:17 -0500
commitccb1352e76cff0524e7ccb2074826a092dd13016 (patch)
tree9122ceff5d75ec64e327a9fad4ad2013744c2999 /net/openvswitch/flow.c
parent75f2811c6460ccc59d83c66059943ce9c9f81a18 (diff)
net: Add Open vSwitch kernel components.
Open vSwitch is a multilayer Ethernet switch targeted at virtualized environments. In addition to supporting a variety of features expected in a traditional hardware switch, it enables fine-grained programmatic extension and flow-based control of the network. This control is useful in a wide variety of applications but is particularly important in multi-server virtualization deployments, which are often characterized by highly dynamic endpoints and the need to maintain logical abstractions for multiple tenants. The Open vSwitch datapath provides an in-kernel fast path for packet forwarding. It is complemented by a userspace daemon, ovs-vswitchd, which is able to accept configuration from a variety of sources and translate it into packet processing rules. See http://openvswitch.org for more information and userspace utilities. Signed-off-by: Jesse Gross <jesse@nicira.com>
Diffstat (limited to 'net/openvswitch/flow.c')
-rw-r--r--net/openvswitch/flow.c1346
1 files changed, 1346 insertions, 0 deletions
diff --git a/net/openvswitch/flow.c b/net/openvswitch/flow.c
new file mode 100644
index 000000000000..fe7f020a843e
--- /dev/null
+++ b/net/openvswitch/flow.c
@@ -0,0 +1,1346 @@
1/*
2 * Copyright (c) 2007-2011 Nicira Networks.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
17 */
18
19#include "flow.h"
20#include "datapath.h"
21#include <linux/uaccess.h>
22#include <linux/netdevice.h>
23#include <linux/etherdevice.h>
24#include <linux/if_ether.h>
25#include <linux/if_vlan.h>
26#include <net/llc_pdu.h>
27#include <linux/kernel.h>
28#include <linux/jhash.h>
29#include <linux/jiffies.h>
30#include <linux/llc.h>
31#include <linux/module.h>
32#include <linux/in.h>
33#include <linux/rcupdate.h>
34#include <linux/if_arp.h>
35#include <linux/if_ether.h>
36#include <linux/ip.h>
37#include <linux/ipv6.h>
38#include <linux/tcp.h>
39#include <linux/udp.h>
40#include <linux/icmp.h>
41#include <linux/icmpv6.h>
42#include <linux/rculist.h>
43#include <net/ip.h>
44#include <net/ipv6.h>
45#include <net/ndisc.h>
46
47static struct kmem_cache *flow_cache;
48
49static int check_header(struct sk_buff *skb, int len)
50{
51 if (unlikely(skb->len < len))
52 return -EINVAL;
53 if (unlikely(!pskb_may_pull(skb, len)))
54 return -ENOMEM;
55 return 0;
56}
57
58static bool arphdr_ok(struct sk_buff *skb)
59{
60 return pskb_may_pull(skb, skb_network_offset(skb) +
61 sizeof(struct arp_eth_header));
62}
63
64static int check_iphdr(struct sk_buff *skb)
65{
66 unsigned int nh_ofs = skb_network_offset(skb);
67 unsigned int ip_len;
68 int err;
69
70 err = check_header(skb, nh_ofs + sizeof(struct iphdr));
71 if (unlikely(err))
72 return err;
73
74 ip_len = ip_hdrlen(skb);
75 if (unlikely(ip_len < sizeof(struct iphdr) ||
76 skb->len < nh_ofs + ip_len))
77 return -EINVAL;
78
79 skb_set_transport_header(skb, nh_ofs + ip_len);
80 return 0;
81}
82
83static bool tcphdr_ok(struct sk_buff *skb)
84{
85 int th_ofs = skb_transport_offset(skb);
86 int tcp_len;
87
88 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
89 return false;
90
91 tcp_len = tcp_hdrlen(skb);
92 if (unlikely(tcp_len < sizeof(struct tcphdr) ||
93 skb->len < th_ofs + tcp_len))
94 return false;
95
96 return true;
97}
98
99static bool udphdr_ok(struct sk_buff *skb)
100{
101 return pskb_may_pull(skb, skb_transport_offset(skb) +
102 sizeof(struct udphdr));
103}
104
105static bool icmphdr_ok(struct sk_buff *skb)
106{
107 return pskb_may_pull(skb, skb_transport_offset(skb) +
108 sizeof(struct icmphdr));
109}
110
111u64 ovs_flow_used_time(unsigned long flow_jiffies)
112{
113 struct timespec cur_ts;
114 u64 cur_ms, idle_ms;
115
116 ktime_get_ts(&cur_ts);
117 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
118 cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
119 cur_ts.tv_nsec / NSEC_PER_MSEC;
120
121 return cur_ms - idle_ms;
122}
123
124#define SW_FLOW_KEY_OFFSET(field) \
125 (offsetof(struct sw_flow_key, field) + \
126 FIELD_SIZEOF(struct sw_flow_key, field))
127
128static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key,
129 int *key_lenp)
130{
131 unsigned int nh_ofs = skb_network_offset(skb);
132 unsigned int nh_len;
133 int payload_ofs;
134 struct ipv6hdr *nh;
135 uint8_t nexthdr;
136 __be16 frag_off;
137 int err;
138
139 *key_lenp = SW_FLOW_KEY_OFFSET(ipv6.label);
140
141 err = check_header(skb, nh_ofs + sizeof(*nh));
142 if (unlikely(err))
143 return err;
144
145 nh = ipv6_hdr(skb);
146 nexthdr = nh->nexthdr;
147 payload_ofs = (u8 *)(nh + 1) - skb->data;
148
149 key->ip.proto = NEXTHDR_NONE;
150 key->ip.tos = ipv6_get_dsfield(nh);
151 key->ip.ttl = nh->hop_limit;
152 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
153 key->ipv6.addr.src = nh->saddr;
154 key->ipv6.addr.dst = nh->daddr;
155
156 payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
157 if (unlikely(payload_ofs < 0))
158 return -EINVAL;
159
160 if (frag_off) {
161 if (frag_off & htons(~0x7))
162 key->ip.frag = OVS_FRAG_TYPE_LATER;
163 else
164 key->ip.frag = OVS_FRAG_TYPE_FIRST;
165 }
166
167 nh_len = payload_ofs - nh_ofs;
168 skb_set_transport_header(skb, nh_ofs + nh_len);
169 key->ip.proto = nexthdr;
170 return nh_len;
171}
172
173static bool icmp6hdr_ok(struct sk_buff *skb)
174{
175 return pskb_may_pull(skb, skb_transport_offset(skb) +
176 sizeof(struct icmp6hdr));
177}
178
179#define TCP_FLAGS_OFFSET 13
180#define TCP_FLAG_MASK 0x3f
181
182void ovs_flow_used(struct sw_flow *flow, struct sk_buff *skb)
183{
184 u8 tcp_flags = 0;
185
186 if (flow->key.eth.type == htons(ETH_P_IP) &&
187 flow->key.ip.proto == IPPROTO_TCP) {
188 u8 *tcp = (u8 *)tcp_hdr(skb);
189 tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK;
190 }
191
192 spin_lock(&flow->lock);
193 flow->used = jiffies;
194 flow->packet_count++;
195 flow->byte_count += skb->len;
196 flow->tcp_flags |= tcp_flags;
197 spin_unlock(&flow->lock);
198}
199
200struct sw_flow_actions *ovs_flow_actions_alloc(const struct nlattr *actions)
201{
202 int actions_len = nla_len(actions);
203 struct sw_flow_actions *sfa;
204
205 /* At least DP_MAX_PORTS actions are required to be able to flood a
206 * packet to every port. Factor of 2 allows for setting VLAN tags,
207 * etc. */
208 if (actions_len > 2 * DP_MAX_PORTS * nla_total_size(4))
209 return ERR_PTR(-EINVAL);
210
211 sfa = kmalloc(sizeof(*sfa) + actions_len, GFP_KERNEL);
212 if (!sfa)
213 return ERR_PTR(-ENOMEM);
214
215 sfa->actions_len = actions_len;
216 memcpy(sfa->actions, nla_data(actions), actions_len);
217 return sfa;
218}
219
220struct sw_flow *ovs_flow_alloc(void)
221{
222 struct sw_flow *flow;
223
224 flow = kmem_cache_alloc(flow_cache, GFP_KERNEL);
225 if (!flow)
226 return ERR_PTR(-ENOMEM);
227
228 spin_lock_init(&flow->lock);
229 flow->sf_acts = NULL;
230
231 return flow;
232}
233
234static struct hlist_head *find_bucket(struct flow_table *table, u32 hash)
235{
236 hash = jhash_1word(hash, table->hash_seed);
237 return flex_array_get(table->buckets,
238 (hash & (table->n_buckets - 1)));
239}
240
241static struct flex_array *alloc_buckets(unsigned int n_buckets)
242{
243 struct flex_array *buckets;
244 int i, err;
245
246 buckets = flex_array_alloc(sizeof(struct hlist_head *),
247 n_buckets, GFP_KERNEL);
248 if (!buckets)
249 return NULL;
250
251 err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL);
252 if (err) {
253 flex_array_free(buckets);
254 return NULL;
255 }
256
257 for (i = 0; i < n_buckets; i++)
258 INIT_HLIST_HEAD((struct hlist_head *)
259 flex_array_get(buckets, i));
260
261 return buckets;
262}
263
264static void free_buckets(struct flex_array *buckets)
265{
266 flex_array_free(buckets);
267}
268
269struct flow_table *ovs_flow_tbl_alloc(int new_size)
270{
271 struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL);
272
273 if (!table)
274 return NULL;
275
276 table->buckets = alloc_buckets(new_size);
277
278 if (!table->buckets) {
279 kfree(table);
280 return NULL;
281 }
282 table->n_buckets = new_size;
283 table->count = 0;
284 table->node_ver = 0;
285 table->keep_flows = false;
286 get_random_bytes(&table->hash_seed, sizeof(u32));
287
288 return table;
289}
290
291void ovs_flow_tbl_destroy(struct flow_table *table)
292{
293 int i;
294
295 if (!table)
296 return;
297
298 if (table->keep_flows)
299 goto skip_flows;
300
301 for (i = 0; i < table->n_buckets; i++) {
302 struct sw_flow *flow;
303 struct hlist_head *head = flex_array_get(table->buckets, i);
304 struct hlist_node *node, *n;
305 int ver = table->node_ver;
306
307 hlist_for_each_entry_safe(flow, node, n, head, hash_node[ver]) {
308 hlist_del_rcu(&flow->hash_node[ver]);
309 ovs_flow_free(flow);
310 }
311 }
312
313skip_flows:
314 free_buckets(table->buckets);
315 kfree(table);
316}
317
318static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu)
319{
320 struct flow_table *table = container_of(rcu, struct flow_table, rcu);
321
322 ovs_flow_tbl_destroy(table);
323}
324
325void ovs_flow_tbl_deferred_destroy(struct flow_table *table)
326{
327 if (!table)
328 return;
329
330 call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb);
331}
332
333struct sw_flow *ovs_flow_tbl_next(struct flow_table *table, u32 *bucket, u32 *last)
334{
335 struct sw_flow *flow;
336 struct hlist_head *head;
337 struct hlist_node *n;
338 int ver;
339 int i;
340
341 ver = table->node_ver;
342 while (*bucket < table->n_buckets) {
343 i = 0;
344 head = flex_array_get(table->buckets, *bucket);
345 hlist_for_each_entry_rcu(flow, n, head, hash_node[ver]) {
346 if (i < *last) {
347 i++;
348 continue;
349 }
350 *last = i + 1;
351 return flow;
352 }
353 (*bucket)++;
354 *last = 0;
355 }
356
357 return NULL;
358}
359
360static void flow_table_copy_flows(struct flow_table *old, struct flow_table *new)
361{
362 int old_ver;
363 int i;
364
365 old_ver = old->node_ver;
366 new->node_ver = !old_ver;
367
368 /* Insert in new table. */
369 for (i = 0; i < old->n_buckets; i++) {
370 struct sw_flow *flow;
371 struct hlist_head *head;
372 struct hlist_node *n;
373
374 head = flex_array_get(old->buckets, i);
375
376 hlist_for_each_entry(flow, n, head, hash_node[old_ver])
377 ovs_flow_tbl_insert(new, flow);
378 }
379 old->keep_flows = true;
380}
381
382static struct flow_table *__flow_tbl_rehash(struct flow_table *table, int n_buckets)
383{
384 struct flow_table *new_table;
385
386 new_table = ovs_flow_tbl_alloc(n_buckets);
387 if (!new_table)
388 return ERR_PTR(-ENOMEM);
389
390 flow_table_copy_flows(table, new_table);
391
392 return new_table;
393}
394
395struct flow_table *ovs_flow_tbl_rehash(struct flow_table *table)
396{
397 return __flow_tbl_rehash(table, table->n_buckets);
398}
399
400struct flow_table *ovs_flow_tbl_expand(struct flow_table *table)
401{
402 return __flow_tbl_rehash(table, table->n_buckets * 2);
403}
404
405void ovs_flow_free(struct sw_flow *flow)
406{
407 if (unlikely(!flow))
408 return;
409
410 kfree((struct sf_flow_acts __force *)flow->sf_acts);
411 kmem_cache_free(flow_cache, flow);
412}
413
414/* RCU callback used by ovs_flow_deferred_free. */
415static void rcu_free_flow_callback(struct rcu_head *rcu)
416{
417 struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
418
419 ovs_flow_free(flow);
420}
421
422/* Schedules 'flow' to be freed after the next RCU grace period.
423 * The caller must hold rcu_read_lock for this to be sensible. */
424void ovs_flow_deferred_free(struct sw_flow *flow)
425{
426 call_rcu(&flow->rcu, rcu_free_flow_callback);
427}
428
429/* RCU callback used by ovs_flow_deferred_free_acts. */
430static void rcu_free_acts_callback(struct rcu_head *rcu)
431{
432 struct sw_flow_actions *sf_acts = container_of(rcu,
433 struct sw_flow_actions, rcu);
434 kfree(sf_acts);
435}
436
437/* Schedules 'sf_acts' to be freed after the next RCU grace period.
438 * The caller must hold rcu_read_lock for this to be sensible. */
439void ovs_flow_deferred_free_acts(struct sw_flow_actions *sf_acts)
440{
441 call_rcu(&sf_acts->rcu, rcu_free_acts_callback);
442}
443
444static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
445{
446 struct qtag_prefix {
447 __be16 eth_type; /* ETH_P_8021Q */
448 __be16 tci;
449 };
450 struct qtag_prefix *qp;
451
452 if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
453 return 0;
454
455 if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
456 sizeof(__be16))))
457 return -ENOMEM;
458
459 qp = (struct qtag_prefix *) skb->data;
460 key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
461 __skb_pull(skb, sizeof(struct qtag_prefix));
462
463 return 0;
464}
465
466static __be16 parse_ethertype(struct sk_buff *skb)
467{
468 struct llc_snap_hdr {
469 u8 dsap; /* Always 0xAA */
470 u8 ssap; /* Always 0xAA */
471 u8 ctrl;
472 u8 oui[3];
473 __be16 ethertype;
474 };
475 struct llc_snap_hdr *llc;
476 __be16 proto;
477
478 proto = *(__be16 *) skb->data;
479 __skb_pull(skb, sizeof(__be16));
480
481 if (ntohs(proto) >= 1536)
482 return proto;
483
484 if (skb->len < sizeof(struct llc_snap_hdr))
485 return htons(ETH_P_802_2);
486
487 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
488 return htons(0);
489
490 llc = (struct llc_snap_hdr *) skb->data;
491 if (llc->dsap != LLC_SAP_SNAP ||
492 llc->ssap != LLC_SAP_SNAP ||
493 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
494 return htons(ETH_P_802_2);
495
496 __skb_pull(skb, sizeof(struct llc_snap_hdr));
497 return llc->ethertype;
498}
499
500static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
501 int *key_lenp, int nh_len)
502{
503 struct icmp6hdr *icmp = icmp6_hdr(skb);
504 int error = 0;
505 int key_len;
506
507 /* The ICMPv6 type and code fields use the 16-bit transport port
508 * fields, so we need to store them in 16-bit network byte order.
509 */
510 key->ipv6.tp.src = htons(icmp->icmp6_type);
511 key->ipv6.tp.dst = htons(icmp->icmp6_code);
512 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
513
514 if (icmp->icmp6_code == 0 &&
515 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
516 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
517 int icmp_len = skb->len - skb_transport_offset(skb);
518 struct nd_msg *nd;
519 int offset;
520
521 key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
522
523 /* In order to process neighbor discovery options, we need the
524 * entire packet.
525 */
526 if (unlikely(icmp_len < sizeof(*nd)))
527 goto out;
528 if (unlikely(skb_linearize(skb))) {
529 error = -ENOMEM;
530 goto out;
531 }
532
533 nd = (struct nd_msg *)skb_transport_header(skb);
534 key->ipv6.nd.target = nd->target;
535 key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
536
537 icmp_len -= sizeof(*nd);
538 offset = 0;
539 while (icmp_len >= 8) {
540 struct nd_opt_hdr *nd_opt =
541 (struct nd_opt_hdr *)(nd->opt + offset);
542 int opt_len = nd_opt->nd_opt_len * 8;
543
544 if (unlikely(!opt_len || opt_len > icmp_len))
545 goto invalid;
546
547 /* Store the link layer address if the appropriate
548 * option is provided. It is considered an error if
549 * the same link layer option is specified twice.
550 */
551 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
552 && opt_len == 8) {
553 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
554 goto invalid;
555 memcpy(key->ipv6.nd.sll,
556 &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
557 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
558 && opt_len == 8) {
559 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
560 goto invalid;
561 memcpy(key->ipv6.nd.tll,
562 &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
563 }
564
565 icmp_len -= opt_len;
566 offset += opt_len;
567 }
568 }
569
570 goto out;
571
572invalid:
573 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
574 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
575 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
576
577out:
578 *key_lenp = key_len;
579 return error;
580}
581
582/**
583 * ovs_flow_extract - extracts a flow key from an Ethernet frame.
584 * @skb: sk_buff that contains the frame, with skb->data pointing to the
585 * Ethernet header
586 * @in_port: port number on which @skb was received.
587 * @key: output flow key
588 * @key_lenp: length of output flow key
589 *
590 * The caller must ensure that skb->len >= ETH_HLEN.
591 *
592 * Returns 0 if successful, otherwise a negative errno value.
593 *
594 * Initializes @skb header pointers as follows:
595 *
596 * - skb->mac_header: the Ethernet header.
597 *
598 * - skb->network_header: just past the Ethernet header, or just past the
599 * VLAN header, to the first byte of the Ethernet payload.
600 *
601 * - skb->transport_header: If key->dl_type is ETH_P_IP or ETH_P_IPV6
602 * on output, then just past the IP header, if one is present and
603 * of a correct length, otherwise the same as skb->network_header.
604 * For other key->dl_type values it is left untouched.
605 */
606int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key,
607 int *key_lenp)
608{
609 int error = 0;
610 int key_len = SW_FLOW_KEY_OFFSET(eth);
611 struct ethhdr *eth;
612
613 memset(key, 0, sizeof(*key));
614
615 key->phy.priority = skb->priority;
616 key->phy.in_port = in_port;
617
618 skb_reset_mac_header(skb);
619
620 /* Link layer. We are guaranteed to have at least the 14 byte Ethernet
621 * header in the linear data area.
622 */
623 eth = eth_hdr(skb);
624 memcpy(key->eth.src, eth->h_source, ETH_ALEN);
625 memcpy(key->eth.dst, eth->h_dest, ETH_ALEN);
626
627 __skb_pull(skb, 2 * ETH_ALEN);
628
629 if (vlan_tx_tag_present(skb))
630 key->eth.tci = htons(skb->vlan_tci);
631 else if (eth->h_proto == htons(ETH_P_8021Q))
632 if (unlikely(parse_vlan(skb, key)))
633 return -ENOMEM;
634
635 key->eth.type = parse_ethertype(skb);
636 if (unlikely(key->eth.type == htons(0)))
637 return -ENOMEM;
638
639 skb_reset_network_header(skb);
640 __skb_push(skb, skb->data - skb_mac_header(skb));
641
642 /* Network layer. */
643 if (key->eth.type == htons(ETH_P_IP)) {
644 struct iphdr *nh;
645 __be16 offset;
646
647 key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
648
649 error = check_iphdr(skb);
650 if (unlikely(error)) {
651 if (error == -EINVAL) {
652 skb->transport_header = skb->network_header;
653 error = 0;
654 }
655 goto out;
656 }
657
658 nh = ip_hdr(skb);
659 key->ipv4.addr.src = nh->saddr;
660 key->ipv4.addr.dst = nh->daddr;
661
662 key->ip.proto = nh->protocol;
663 key->ip.tos = nh->tos;
664 key->ip.ttl = nh->ttl;
665
666 offset = nh->frag_off & htons(IP_OFFSET);
667 if (offset) {
668 key->ip.frag = OVS_FRAG_TYPE_LATER;
669 goto out;
670 }
671 if (nh->frag_off & htons(IP_MF) ||
672 skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
673 key->ip.frag = OVS_FRAG_TYPE_FIRST;
674
675 /* Transport layer. */
676 if (key->ip.proto == IPPROTO_TCP) {
677 key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
678 if (tcphdr_ok(skb)) {
679 struct tcphdr *tcp = tcp_hdr(skb);
680 key->ipv4.tp.src = tcp->source;
681 key->ipv4.tp.dst = tcp->dest;
682 }
683 } else if (key->ip.proto == IPPROTO_UDP) {
684 key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
685 if (udphdr_ok(skb)) {
686 struct udphdr *udp = udp_hdr(skb);
687 key->ipv4.tp.src = udp->source;
688 key->ipv4.tp.dst = udp->dest;
689 }
690 } else if (key->ip.proto == IPPROTO_ICMP) {
691 key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
692 if (icmphdr_ok(skb)) {
693 struct icmphdr *icmp = icmp_hdr(skb);
694 /* The ICMP type and code fields use the 16-bit
695 * transport port fields, so we need to store
696 * them in 16-bit network byte order. */
697 key->ipv4.tp.src = htons(icmp->type);
698 key->ipv4.tp.dst = htons(icmp->code);
699 }
700 }
701
702 } else if (key->eth.type == htons(ETH_P_ARP) && arphdr_ok(skb)) {
703 struct arp_eth_header *arp;
704
705 arp = (struct arp_eth_header *)skb_network_header(skb);
706
707 if (arp->ar_hrd == htons(ARPHRD_ETHER)
708 && arp->ar_pro == htons(ETH_P_IP)
709 && arp->ar_hln == ETH_ALEN
710 && arp->ar_pln == 4) {
711
712 /* We only match on the lower 8 bits of the opcode. */
713 if (ntohs(arp->ar_op) <= 0xff)
714 key->ip.proto = ntohs(arp->ar_op);
715
716 if (key->ip.proto == ARPOP_REQUEST
717 || key->ip.proto == ARPOP_REPLY) {
718 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
719 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
720 memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN);
721 memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN);
722 key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
723 }
724 }
725 } else if (key->eth.type == htons(ETH_P_IPV6)) {
726 int nh_len; /* IPv6 Header + Extensions */
727
728 nh_len = parse_ipv6hdr(skb, key, &key_len);
729 if (unlikely(nh_len < 0)) {
730 if (nh_len == -EINVAL)
731 skb->transport_header = skb->network_header;
732 else
733 error = nh_len;
734 goto out;
735 }
736
737 if (key->ip.frag == OVS_FRAG_TYPE_LATER)
738 goto out;
739 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
740 key->ip.frag = OVS_FRAG_TYPE_FIRST;
741
742 /* Transport layer. */
743 if (key->ip.proto == NEXTHDR_TCP) {
744 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
745 if (tcphdr_ok(skb)) {
746 struct tcphdr *tcp = tcp_hdr(skb);
747 key->ipv6.tp.src = tcp->source;
748 key->ipv6.tp.dst = tcp->dest;
749 }
750 } else if (key->ip.proto == NEXTHDR_UDP) {
751 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
752 if (udphdr_ok(skb)) {
753 struct udphdr *udp = udp_hdr(skb);
754 key->ipv6.tp.src = udp->source;
755 key->ipv6.tp.dst = udp->dest;
756 }
757 } else if (key->ip.proto == NEXTHDR_ICMP) {
758 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
759 if (icmp6hdr_ok(skb)) {
760 error = parse_icmpv6(skb, key, &key_len, nh_len);
761 if (error < 0)
762 goto out;
763 }
764 }
765 }
766
767out:
768 *key_lenp = key_len;
769 return error;
770}
771
772u32 ovs_flow_hash(const struct sw_flow_key *key, int key_len)
773{
774 return jhash2((u32 *)key, DIV_ROUND_UP(key_len, sizeof(u32)), 0);
775}
776
777struct sw_flow *ovs_flow_tbl_lookup(struct flow_table *table,
778 struct sw_flow_key *key, int key_len)
779{
780 struct sw_flow *flow;
781 struct hlist_node *n;
782 struct hlist_head *head;
783 u32 hash;
784
785 hash = ovs_flow_hash(key, key_len);
786
787 head = find_bucket(table, hash);
788 hlist_for_each_entry_rcu(flow, n, head, hash_node[table->node_ver]) {
789
790 if (flow->hash == hash &&
791 !memcmp(&flow->key, key, key_len)) {
792 return flow;
793 }
794 }
795 return NULL;
796}
797
798void ovs_flow_tbl_insert(struct flow_table *table, struct sw_flow *flow)
799{
800 struct hlist_head *head;
801
802 head = find_bucket(table, flow->hash);
803 hlist_add_head_rcu(&flow->hash_node[table->node_ver], head);
804 table->count++;
805}
806
807void ovs_flow_tbl_remove(struct flow_table *table, struct sw_flow *flow)
808{
809 hlist_del_rcu(&flow->hash_node[table->node_ver]);
810 table->count--;
811 BUG_ON(table->count < 0);
812}
813
814/* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
815const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
816 [OVS_KEY_ATTR_ENCAP] = -1,
817 [OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
818 [OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
819 [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
820 [OVS_KEY_ATTR_VLAN] = sizeof(__be16),
821 [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
822 [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
823 [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
824 [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
825 [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
826 [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
827 [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
828 [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
829 [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
830};
831
832static int ipv4_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
833 const struct nlattr *a[], u32 *attrs)
834{
835 const struct ovs_key_icmp *icmp_key;
836 const struct ovs_key_tcp *tcp_key;
837 const struct ovs_key_udp *udp_key;
838
839 switch (swkey->ip.proto) {
840 case IPPROTO_TCP:
841 if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
842 return -EINVAL;
843 *attrs &= ~(1 << OVS_KEY_ATTR_TCP);
844
845 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
846 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
847 swkey->ipv4.tp.src = tcp_key->tcp_src;
848 swkey->ipv4.tp.dst = tcp_key->tcp_dst;
849 break;
850
851 case IPPROTO_UDP:
852 if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
853 return -EINVAL;
854 *attrs &= ~(1 << OVS_KEY_ATTR_UDP);
855
856 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
857 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
858 swkey->ipv4.tp.src = udp_key->udp_src;
859 swkey->ipv4.tp.dst = udp_key->udp_dst;
860 break;
861
862 case IPPROTO_ICMP:
863 if (!(*attrs & (1 << OVS_KEY_ATTR_ICMP)))
864 return -EINVAL;
865 *attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
866
867 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
868 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
869 swkey->ipv4.tp.src = htons(icmp_key->icmp_type);
870 swkey->ipv4.tp.dst = htons(icmp_key->icmp_code);
871 break;
872 }
873
874 return 0;
875}
876
877static int ipv6_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
878 const struct nlattr *a[], u32 *attrs)
879{
880 const struct ovs_key_icmpv6 *icmpv6_key;
881 const struct ovs_key_tcp *tcp_key;
882 const struct ovs_key_udp *udp_key;
883
884 switch (swkey->ip.proto) {
885 case IPPROTO_TCP:
886 if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
887 return -EINVAL;
888 *attrs &= ~(1 << OVS_KEY_ATTR_TCP);
889
890 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
891 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
892 swkey->ipv6.tp.src = tcp_key->tcp_src;
893 swkey->ipv6.tp.dst = tcp_key->tcp_dst;
894 break;
895
896 case IPPROTO_UDP:
897 if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
898 return -EINVAL;
899 *attrs &= ~(1 << OVS_KEY_ATTR_UDP);
900
901 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
902 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
903 swkey->ipv6.tp.src = udp_key->udp_src;
904 swkey->ipv6.tp.dst = udp_key->udp_dst;
905 break;
906
907 case IPPROTO_ICMPV6:
908 if (!(*attrs & (1 << OVS_KEY_ATTR_ICMPV6)))
909 return -EINVAL;
910 *attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
911
912 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
913 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
914 swkey->ipv6.tp.src = htons(icmpv6_key->icmpv6_type);
915 swkey->ipv6.tp.dst = htons(icmpv6_key->icmpv6_code);
916
917 if (swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) ||
918 swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
919 const struct ovs_key_nd *nd_key;
920
921 if (!(*attrs & (1 << OVS_KEY_ATTR_ND)))
922 return -EINVAL;
923 *attrs &= ~(1 << OVS_KEY_ATTR_ND);
924
925 *key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
926 nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
927 memcpy(&swkey->ipv6.nd.target, nd_key->nd_target,
928 sizeof(swkey->ipv6.nd.target));
929 memcpy(swkey->ipv6.nd.sll, nd_key->nd_sll, ETH_ALEN);
930 memcpy(swkey->ipv6.nd.tll, nd_key->nd_tll, ETH_ALEN);
931 }
932 break;
933 }
934
935 return 0;
936}
937
938static int parse_flow_nlattrs(const struct nlattr *attr,
939 const struct nlattr *a[], u32 *attrsp)
940{
941 const struct nlattr *nla;
942 u32 attrs;
943 int rem;
944
945 attrs = 0;
946 nla_for_each_nested(nla, attr, rem) {
947 u16 type = nla_type(nla);
948 int expected_len;
949
950 if (type > OVS_KEY_ATTR_MAX || attrs & (1 << type))
951 return -EINVAL;
952
953 expected_len = ovs_key_lens[type];
954 if (nla_len(nla) != expected_len && expected_len != -1)
955 return -EINVAL;
956
957 attrs |= 1 << type;
958 a[type] = nla;
959 }
960 if (rem)
961 return -EINVAL;
962
963 *attrsp = attrs;
964 return 0;
965}
966
967/**
968 * ovs_flow_from_nlattrs - parses Netlink attributes into a flow key.
969 * @swkey: receives the extracted flow key.
970 * @key_lenp: number of bytes used in @swkey.
971 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
972 * sequence.
973 */
974int ovs_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_lenp,
975 const struct nlattr *attr)
976{
977 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
978 const struct ovs_key_ethernet *eth_key;
979 int key_len;
980 u32 attrs;
981 int err;
982
983 memset(swkey, 0, sizeof(struct sw_flow_key));
984 key_len = SW_FLOW_KEY_OFFSET(eth);
985
986 err = parse_flow_nlattrs(attr, a, &attrs);
987 if (err)
988 return err;
989
990 /* Metadata attributes. */
991 if (attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
992 swkey->phy.priority = nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]);
993 attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
994 }
995 if (attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
996 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
997 if (in_port >= DP_MAX_PORTS)
998 return -EINVAL;
999 swkey->phy.in_port = in_port;
1000 attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1001 } else {
1002 swkey->phy.in_port = USHRT_MAX;
1003 }
1004
1005 /* Data attributes. */
1006 if (!(attrs & (1 << OVS_KEY_ATTR_ETHERNET)))
1007 return -EINVAL;
1008 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1009
1010 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1011 memcpy(swkey->eth.src, eth_key->eth_src, ETH_ALEN);
1012 memcpy(swkey->eth.dst, eth_key->eth_dst, ETH_ALEN);
1013
1014 if (attrs & (1u << OVS_KEY_ATTR_ETHERTYPE) &&
1015 nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q)) {
1016 const struct nlattr *encap;
1017 __be16 tci;
1018
1019 if (attrs != ((1 << OVS_KEY_ATTR_VLAN) |
1020 (1 << OVS_KEY_ATTR_ETHERTYPE) |
1021 (1 << OVS_KEY_ATTR_ENCAP)))
1022 return -EINVAL;
1023
1024 encap = a[OVS_KEY_ATTR_ENCAP];
1025 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1026 if (tci & htons(VLAN_TAG_PRESENT)) {
1027 swkey->eth.tci = tci;
1028
1029 err = parse_flow_nlattrs(encap, a, &attrs);
1030 if (err)
1031 return err;
1032 } else if (!tci) {
1033 /* Corner case for truncated 802.1Q header. */
1034 if (nla_len(encap))
1035 return -EINVAL;
1036
1037 swkey->eth.type = htons(ETH_P_8021Q);
1038 *key_lenp = key_len;
1039 return 0;
1040 } else {
1041 return -EINVAL;
1042 }
1043 }
1044
1045 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1046 swkey->eth.type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1047 if (ntohs(swkey->eth.type) < 1536)
1048 return -EINVAL;
1049 attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1050 } else {
1051 swkey->eth.type = htons(ETH_P_802_2);
1052 }
1053
1054 if (swkey->eth.type == htons(ETH_P_IP)) {
1055 const struct ovs_key_ipv4 *ipv4_key;
1056
1057 if (!(attrs & (1 << OVS_KEY_ATTR_IPV4)))
1058 return -EINVAL;
1059 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1060
1061 key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
1062 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1063 if (ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX)
1064 return -EINVAL;
1065 swkey->ip.proto = ipv4_key->ipv4_proto;
1066 swkey->ip.tos = ipv4_key->ipv4_tos;
1067 swkey->ip.ttl = ipv4_key->ipv4_ttl;
1068 swkey->ip.frag = ipv4_key->ipv4_frag;
1069 swkey->ipv4.addr.src = ipv4_key->ipv4_src;
1070 swkey->ipv4.addr.dst = ipv4_key->ipv4_dst;
1071
1072 if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1073 err = ipv4_flow_from_nlattrs(swkey, &key_len, a, &attrs);
1074 if (err)
1075 return err;
1076 }
1077 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1078 const struct ovs_key_ipv6 *ipv6_key;
1079
1080 if (!(attrs & (1 << OVS_KEY_ATTR_IPV6)))
1081 return -EINVAL;
1082 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1083
1084 key_len = SW_FLOW_KEY_OFFSET(ipv6.label);
1085 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1086 if (ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX)
1087 return -EINVAL;
1088 swkey->ipv6.label = ipv6_key->ipv6_label;
1089 swkey->ip.proto = ipv6_key->ipv6_proto;
1090 swkey->ip.tos = ipv6_key->ipv6_tclass;
1091 swkey->ip.ttl = ipv6_key->ipv6_hlimit;
1092 swkey->ip.frag = ipv6_key->ipv6_frag;
1093 memcpy(&swkey->ipv6.addr.src, ipv6_key->ipv6_src,
1094 sizeof(swkey->ipv6.addr.src));
1095 memcpy(&swkey->ipv6.addr.dst, ipv6_key->ipv6_dst,
1096 sizeof(swkey->ipv6.addr.dst));
1097
1098 if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1099 err = ipv6_flow_from_nlattrs(swkey, &key_len, a, &attrs);
1100 if (err)
1101 return err;
1102 }
1103 } else if (swkey->eth.type == htons(ETH_P_ARP)) {
1104 const struct ovs_key_arp *arp_key;
1105
1106 if (!(attrs & (1 << OVS_KEY_ATTR_ARP)))
1107 return -EINVAL;
1108 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1109
1110 key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
1111 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1112 swkey->ipv4.addr.src = arp_key->arp_sip;
1113 swkey->ipv4.addr.dst = arp_key->arp_tip;
1114 if (arp_key->arp_op & htons(0xff00))
1115 return -EINVAL;
1116 swkey->ip.proto = ntohs(arp_key->arp_op);
1117 memcpy(swkey->ipv4.arp.sha, arp_key->arp_sha, ETH_ALEN);
1118 memcpy(swkey->ipv4.arp.tha, arp_key->arp_tha, ETH_ALEN);
1119 }
1120
1121 if (attrs)
1122 return -EINVAL;
1123 *key_lenp = key_len;
1124
1125 return 0;
1126}
1127
1128/**
1129 * ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key.
1130 * @in_port: receives the extracted input port.
1131 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1132 * sequence.
1133 *
1134 * This parses a series of Netlink attributes that form a flow key, which must
1135 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1136 * get the metadata, that is, the parts of the flow key that cannot be
1137 * extracted from the packet itself.
1138 */
1139int ovs_flow_metadata_from_nlattrs(u32 *priority, u16 *in_port,
1140 const struct nlattr *attr)
1141{
1142 const struct nlattr *nla;
1143 int rem;
1144
1145 *in_port = USHRT_MAX;
1146 *priority = 0;
1147
1148 nla_for_each_nested(nla, attr, rem) {
1149 int type = nla_type(nla);
1150
1151 if (type <= OVS_KEY_ATTR_MAX && ovs_key_lens[type] > 0) {
1152 if (nla_len(nla) != ovs_key_lens[type])
1153 return -EINVAL;
1154
1155 switch (type) {
1156 case OVS_KEY_ATTR_PRIORITY:
1157 *priority = nla_get_u32(nla);
1158 break;
1159
1160 case OVS_KEY_ATTR_IN_PORT:
1161 if (nla_get_u32(nla) >= DP_MAX_PORTS)
1162 return -EINVAL;
1163 *in_port = nla_get_u32(nla);
1164 break;
1165 }
1166 }
1167 }
1168 if (rem)
1169 return -EINVAL;
1170 return 0;
1171}
1172
1173int ovs_flow_to_nlattrs(const struct sw_flow_key *swkey, struct sk_buff *skb)
1174{
1175 struct ovs_key_ethernet *eth_key;
1176 struct nlattr *nla, *encap;
1177
1178 if (swkey->phy.priority)
1179 NLA_PUT_U32(skb, OVS_KEY_ATTR_PRIORITY, swkey->phy.priority);
1180
1181 if (swkey->phy.in_port != USHRT_MAX)
1182 NLA_PUT_U32(skb, OVS_KEY_ATTR_IN_PORT, swkey->phy.in_port);
1183
1184 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1185 if (!nla)
1186 goto nla_put_failure;
1187 eth_key = nla_data(nla);
1188 memcpy(eth_key->eth_src, swkey->eth.src, ETH_ALEN);
1189 memcpy(eth_key->eth_dst, swkey->eth.dst, ETH_ALEN);
1190
1191 if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
1192 NLA_PUT_BE16(skb, OVS_KEY_ATTR_ETHERTYPE, htons(ETH_P_8021Q));
1193 NLA_PUT_BE16(skb, OVS_KEY_ATTR_VLAN, swkey->eth.tci);
1194 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1195 if (!swkey->eth.tci)
1196 goto unencap;
1197 } else {
1198 encap = NULL;
1199 }
1200
1201 if (swkey->eth.type == htons(ETH_P_802_2))
1202 goto unencap;
1203
1204 NLA_PUT_BE16(skb, OVS_KEY_ATTR_ETHERTYPE, swkey->eth.type);
1205
1206 if (swkey->eth.type == htons(ETH_P_IP)) {
1207 struct ovs_key_ipv4 *ipv4_key;
1208
1209 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1210 if (!nla)
1211 goto nla_put_failure;
1212 ipv4_key = nla_data(nla);
1213 ipv4_key->ipv4_src = swkey->ipv4.addr.src;
1214 ipv4_key->ipv4_dst = swkey->ipv4.addr.dst;
1215 ipv4_key->ipv4_proto = swkey->ip.proto;
1216 ipv4_key->ipv4_tos = swkey->ip.tos;
1217 ipv4_key->ipv4_ttl = swkey->ip.ttl;
1218 ipv4_key->ipv4_frag = swkey->ip.frag;
1219 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1220 struct ovs_key_ipv6 *ipv6_key;
1221
1222 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1223 if (!nla)
1224 goto nla_put_failure;
1225 ipv6_key = nla_data(nla);
1226 memcpy(ipv6_key->ipv6_src, &swkey->ipv6.addr.src,
1227 sizeof(ipv6_key->ipv6_src));
1228 memcpy(ipv6_key->ipv6_dst, &swkey->ipv6.addr.dst,
1229 sizeof(ipv6_key->ipv6_dst));
1230 ipv6_key->ipv6_label = swkey->ipv6.label;
1231 ipv6_key->ipv6_proto = swkey->ip.proto;
1232 ipv6_key->ipv6_tclass = swkey->ip.tos;
1233 ipv6_key->ipv6_hlimit = swkey->ip.ttl;
1234 ipv6_key->ipv6_frag = swkey->ip.frag;
1235 } else if (swkey->eth.type == htons(ETH_P_ARP)) {
1236 struct ovs_key_arp *arp_key;
1237
1238 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1239 if (!nla)
1240 goto nla_put_failure;
1241 arp_key = nla_data(nla);
1242 memset(arp_key, 0, sizeof(struct ovs_key_arp));
1243 arp_key->arp_sip = swkey->ipv4.addr.src;
1244 arp_key->arp_tip = swkey->ipv4.addr.dst;
1245 arp_key->arp_op = htons(swkey->ip.proto);
1246 memcpy(arp_key->arp_sha, swkey->ipv4.arp.sha, ETH_ALEN);
1247 memcpy(arp_key->arp_tha, swkey->ipv4.arp.tha, ETH_ALEN);
1248 }
1249
1250 if ((swkey->eth.type == htons(ETH_P_IP) ||
1251 swkey->eth.type == htons(ETH_P_IPV6)) &&
1252 swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1253
1254 if (swkey->ip.proto == IPPROTO_TCP) {
1255 struct ovs_key_tcp *tcp_key;
1256
1257 nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1258 if (!nla)
1259 goto nla_put_failure;
1260 tcp_key = nla_data(nla);
1261 if (swkey->eth.type == htons(ETH_P_IP)) {
1262 tcp_key->tcp_src = swkey->ipv4.tp.src;
1263 tcp_key->tcp_dst = swkey->ipv4.tp.dst;
1264 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1265 tcp_key->tcp_src = swkey->ipv6.tp.src;
1266 tcp_key->tcp_dst = swkey->ipv6.tp.dst;
1267 }
1268 } else if (swkey->ip.proto == IPPROTO_UDP) {
1269 struct ovs_key_udp *udp_key;
1270
1271 nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1272 if (!nla)
1273 goto nla_put_failure;
1274 udp_key = nla_data(nla);
1275 if (swkey->eth.type == htons(ETH_P_IP)) {
1276 udp_key->udp_src = swkey->ipv4.tp.src;
1277 udp_key->udp_dst = swkey->ipv4.tp.dst;
1278 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1279 udp_key->udp_src = swkey->ipv6.tp.src;
1280 udp_key->udp_dst = swkey->ipv6.tp.dst;
1281 }
1282 } else if (swkey->eth.type == htons(ETH_P_IP) &&
1283 swkey->ip.proto == IPPROTO_ICMP) {
1284 struct ovs_key_icmp *icmp_key;
1285
1286 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1287 if (!nla)
1288 goto nla_put_failure;
1289 icmp_key = nla_data(nla);
1290 icmp_key->icmp_type = ntohs(swkey->ipv4.tp.src);
1291 icmp_key->icmp_code = ntohs(swkey->ipv4.tp.dst);
1292 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1293 swkey->ip.proto == IPPROTO_ICMPV6) {
1294 struct ovs_key_icmpv6 *icmpv6_key;
1295
1296 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1297 sizeof(*icmpv6_key));
1298 if (!nla)
1299 goto nla_put_failure;
1300 icmpv6_key = nla_data(nla);
1301 icmpv6_key->icmpv6_type = ntohs(swkey->ipv6.tp.src);
1302 icmpv6_key->icmpv6_code = ntohs(swkey->ipv6.tp.dst);
1303
1304 if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1305 icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1306 struct ovs_key_nd *nd_key;
1307
1308 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1309 if (!nla)
1310 goto nla_put_failure;
1311 nd_key = nla_data(nla);
1312 memcpy(nd_key->nd_target, &swkey->ipv6.nd.target,
1313 sizeof(nd_key->nd_target));
1314 memcpy(nd_key->nd_sll, swkey->ipv6.nd.sll, ETH_ALEN);
1315 memcpy(nd_key->nd_tll, swkey->ipv6.nd.tll, ETH_ALEN);
1316 }
1317 }
1318 }
1319
1320unencap:
1321 if (encap)
1322 nla_nest_end(skb, encap);
1323
1324 return 0;
1325
1326nla_put_failure:
1327 return -EMSGSIZE;
1328}
1329
1330/* Initializes the flow module.
1331 * Returns zero if successful or a negative error code. */
1332int ovs_flow_init(void)
1333{
1334 flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0,
1335 0, NULL);
1336 if (flow_cache == NULL)
1337 return -ENOMEM;
1338
1339 return 0;
1340}
1341
1342/* Uninitializes the flow module. */
1343void ovs_flow_exit(void)
1344{
1345 kmem_cache_destroy(flow_cache);
1346}