diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /net/irda/irttp.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'net/irda/irttp.c')
-rw-r--r-- | net/irda/irttp.c | 1912 |
1 files changed, 1912 insertions, 0 deletions
diff --git a/net/irda/irttp.c b/net/irda/irttp.c new file mode 100644 index 000000000000..d091ccf773b3 --- /dev/null +++ b/net/irda/irttp.c | |||
@@ -0,0 +1,1912 @@ | |||
1 | /********************************************************************* | ||
2 | * | ||
3 | * Filename: irttp.c | ||
4 | * Version: 1.2 | ||
5 | * Description: Tiny Transport Protocol (TTP) implementation | ||
6 | * Status: Stable | ||
7 | * Author: Dag Brattli <dagb@cs.uit.no> | ||
8 | * Created at: Sun Aug 31 20:14:31 1997 | ||
9 | * Modified at: Wed Jan 5 11:31:27 2000 | ||
10 | * Modified by: Dag Brattli <dagb@cs.uit.no> | ||
11 | * | ||
12 | * Copyright (c) 1998-2000 Dag Brattli <dagb@cs.uit.no>, | ||
13 | * All Rights Reserved. | ||
14 | * Copyright (c) 2000-2003 Jean Tourrilhes <jt@hpl.hp.com> | ||
15 | * | ||
16 | * This program is free software; you can redistribute it and/or | ||
17 | * modify it under the terms of the GNU General Public License as | ||
18 | * published by the Free Software Foundation; either version 2 of | ||
19 | * the License, or (at your option) any later version. | ||
20 | * | ||
21 | * Neither Dag Brattli nor University of Tromsų admit liability nor | ||
22 | * provide warranty for any of this software. This material is | ||
23 | * provided "AS-IS" and at no charge. | ||
24 | * | ||
25 | ********************************************************************/ | ||
26 | |||
27 | #include <linux/config.h> | ||
28 | #include <linux/skbuff.h> | ||
29 | #include <linux/init.h> | ||
30 | #include <linux/seq_file.h> | ||
31 | |||
32 | #include <asm/byteorder.h> | ||
33 | #include <asm/unaligned.h> | ||
34 | |||
35 | #include <net/irda/irda.h> | ||
36 | #include <net/irda/irlap.h> | ||
37 | #include <net/irda/irlmp.h> | ||
38 | #include <net/irda/parameters.h> | ||
39 | #include <net/irda/irttp.h> | ||
40 | |||
41 | static struct irttp_cb *irttp = NULL; | ||
42 | |||
43 | static void __irttp_close_tsap(struct tsap_cb *self); | ||
44 | |||
45 | static int irttp_data_indication(void *instance, void *sap, | ||
46 | struct sk_buff *skb); | ||
47 | static int irttp_udata_indication(void *instance, void *sap, | ||
48 | struct sk_buff *skb); | ||
49 | static void irttp_disconnect_indication(void *instance, void *sap, | ||
50 | LM_REASON reason, struct sk_buff *); | ||
51 | static void irttp_connect_indication(void *instance, void *sap, | ||
52 | struct qos_info *qos, __u32 max_sdu_size, | ||
53 | __u8 header_size, struct sk_buff *skb); | ||
54 | static void irttp_connect_confirm(void *instance, void *sap, | ||
55 | struct qos_info *qos, __u32 max_sdu_size, | ||
56 | __u8 header_size, struct sk_buff *skb); | ||
57 | static void irttp_run_tx_queue(struct tsap_cb *self); | ||
58 | static void irttp_run_rx_queue(struct tsap_cb *self); | ||
59 | |||
60 | static void irttp_flush_queues(struct tsap_cb *self); | ||
61 | static void irttp_fragment_skb(struct tsap_cb *self, struct sk_buff *skb); | ||
62 | static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self); | ||
63 | static void irttp_todo_expired(unsigned long data); | ||
64 | static int irttp_param_max_sdu_size(void *instance, irda_param_t *param, | ||
65 | int get); | ||
66 | |||
67 | static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow); | ||
68 | static void irttp_status_indication(void *instance, | ||
69 | LINK_STATUS link, LOCK_STATUS lock); | ||
70 | |||
71 | /* Information for parsing parameters in IrTTP */ | ||
72 | static pi_minor_info_t pi_minor_call_table[] = { | ||
73 | { NULL, 0 }, /* 0x00 */ | ||
74 | { irttp_param_max_sdu_size, PV_INTEGER | PV_BIG_ENDIAN } /* 0x01 */ | ||
75 | }; | ||
76 | static pi_major_info_t pi_major_call_table[] = {{ pi_minor_call_table, 2 }}; | ||
77 | static pi_param_info_t param_info = { pi_major_call_table, 1, 0x0f, 4 }; | ||
78 | |||
79 | /************************ GLOBAL PROCEDURES ************************/ | ||
80 | |||
81 | /* | ||
82 | * Function irttp_init (void) | ||
83 | * | ||
84 | * Initialize the IrTTP layer. Called by module initialization code | ||
85 | * | ||
86 | */ | ||
87 | int __init irttp_init(void) | ||
88 | { | ||
89 | /* Initialize the irttp structure. */ | ||
90 | if (irttp == NULL) { | ||
91 | irttp = kmalloc(sizeof(struct irttp_cb), GFP_KERNEL); | ||
92 | if (irttp == NULL) | ||
93 | return -ENOMEM; | ||
94 | } | ||
95 | memset(irttp, 0, sizeof(struct irttp_cb)); | ||
96 | |||
97 | irttp->magic = TTP_MAGIC; | ||
98 | |||
99 | irttp->tsaps = hashbin_new(HB_LOCK); | ||
100 | if (!irttp->tsaps) { | ||
101 | IRDA_ERROR("%s: can't allocate IrTTP hashbin!\n", | ||
102 | __FUNCTION__); | ||
103 | return -ENOMEM; | ||
104 | } | ||
105 | |||
106 | return 0; | ||
107 | } | ||
108 | |||
109 | /* | ||
110 | * Function irttp_cleanup (void) | ||
111 | * | ||
112 | * Called by module destruction/cleanup code | ||
113 | * | ||
114 | */ | ||
115 | void __exit irttp_cleanup(void) | ||
116 | { | ||
117 | /* Check for main structure */ | ||
118 | IRDA_ASSERT(irttp != NULL, return;); | ||
119 | IRDA_ASSERT(irttp->magic == TTP_MAGIC, return;); | ||
120 | |||
121 | /* | ||
122 | * Delete hashbin and close all TSAP instances in it | ||
123 | */ | ||
124 | hashbin_delete(irttp->tsaps, (FREE_FUNC) __irttp_close_tsap); | ||
125 | |||
126 | irttp->magic = 0; | ||
127 | |||
128 | /* De-allocate main structure */ | ||
129 | kfree(irttp); | ||
130 | |||
131 | irttp = NULL; | ||
132 | } | ||
133 | |||
134 | /*************************** SUBROUTINES ***************************/ | ||
135 | |||
136 | /* | ||
137 | * Function irttp_start_todo_timer (self, timeout) | ||
138 | * | ||
139 | * Start todo timer. | ||
140 | * | ||
141 | * Made it more effient and unsensitive to race conditions - Jean II | ||
142 | */ | ||
143 | static inline void irttp_start_todo_timer(struct tsap_cb *self, int timeout) | ||
144 | { | ||
145 | /* Set new value for timer */ | ||
146 | mod_timer(&self->todo_timer, jiffies + timeout); | ||
147 | } | ||
148 | |||
149 | /* | ||
150 | * Function irttp_todo_expired (data) | ||
151 | * | ||
152 | * Todo timer has expired! | ||
153 | * | ||
154 | * One of the restriction of the timer is that it is run only on the timer | ||
155 | * interrupt which run every 10ms. This mean that even if you set the timer | ||
156 | * with a delay of 0, it may take up to 10ms before it's run. | ||
157 | * So, to minimise latency and keep cache fresh, we try to avoid using | ||
158 | * it as much as possible. | ||
159 | * Note : we can't use tasklets, because they can't be asynchronously | ||
160 | * killed (need user context), and we can't guarantee that here... | ||
161 | * Jean II | ||
162 | */ | ||
163 | static void irttp_todo_expired(unsigned long data) | ||
164 | { | ||
165 | struct tsap_cb *self = (struct tsap_cb *) data; | ||
166 | |||
167 | /* Check that we still exist */ | ||
168 | if (!self || self->magic != TTP_TSAP_MAGIC) | ||
169 | return; | ||
170 | |||
171 | IRDA_DEBUG(4, "%s(instance=%p)\n", __FUNCTION__, self); | ||
172 | |||
173 | /* Try to make some progress, especially on Tx side - Jean II */ | ||
174 | irttp_run_rx_queue(self); | ||
175 | irttp_run_tx_queue(self); | ||
176 | |||
177 | /* Check if time for disconnect */ | ||
178 | if (test_bit(0, &self->disconnect_pend)) { | ||
179 | /* Check if it's possible to disconnect yet */ | ||
180 | if (skb_queue_empty(&self->tx_queue)) { | ||
181 | /* Make sure disconnect is not pending anymore */ | ||
182 | clear_bit(0, &self->disconnect_pend); /* FALSE */ | ||
183 | |||
184 | /* Note : self->disconnect_skb may be NULL */ | ||
185 | irttp_disconnect_request(self, self->disconnect_skb, | ||
186 | P_NORMAL); | ||
187 | self->disconnect_skb = NULL; | ||
188 | } else { | ||
189 | /* Try again later */ | ||
190 | irttp_start_todo_timer(self, HZ/10); | ||
191 | |||
192 | /* No reason to try and close now */ | ||
193 | return; | ||
194 | } | ||
195 | } | ||
196 | |||
197 | /* Check if it's closing time */ | ||
198 | if (self->close_pend) | ||
199 | /* Finish cleanup */ | ||
200 | irttp_close_tsap(self); | ||
201 | } | ||
202 | |||
203 | /* | ||
204 | * Function irttp_flush_queues (self) | ||
205 | * | ||
206 | * Flushes (removes all frames) in transitt-buffer (tx_list) | ||
207 | */ | ||
208 | void irttp_flush_queues(struct tsap_cb *self) | ||
209 | { | ||
210 | struct sk_buff* skb; | ||
211 | |||
212 | IRDA_DEBUG(4, "%s()\n", __FUNCTION__); | ||
213 | |||
214 | IRDA_ASSERT(self != NULL, return;); | ||
215 | IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;); | ||
216 | |||
217 | /* Deallocate frames waiting to be sent */ | ||
218 | while ((skb = skb_dequeue(&self->tx_queue)) != NULL) | ||
219 | dev_kfree_skb(skb); | ||
220 | |||
221 | /* Deallocate received frames */ | ||
222 | while ((skb = skb_dequeue(&self->rx_queue)) != NULL) | ||
223 | dev_kfree_skb(skb); | ||
224 | |||
225 | /* Deallocate received fragments */ | ||
226 | while ((skb = skb_dequeue(&self->rx_fragments)) != NULL) | ||
227 | dev_kfree_skb(skb); | ||
228 | } | ||
229 | |||
230 | /* | ||
231 | * Function irttp_reassemble (self) | ||
232 | * | ||
233 | * Makes a new (continuous) skb of all the fragments in the fragment | ||
234 | * queue | ||
235 | * | ||
236 | */ | ||
237 | static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self) | ||
238 | { | ||
239 | struct sk_buff *skb, *frag; | ||
240 | int n = 0; /* Fragment index */ | ||
241 | |||
242 | IRDA_ASSERT(self != NULL, return NULL;); | ||
243 | IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return NULL;); | ||
244 | |||
245 | IRDA_DEBUG(2, "%s(), self->rx_sdu_size=%d\n", __FUNCTION__, | ||
246 | self->rx_sdu_size); | ||
247 | |||
248 | skb = dev_alloc_skb(TTP_HEADER + self->rx_sdu_size); | ||
249 | if (!skb) | ||
250 | return NULL; | ||
251 | |||
252 | /* | ||
253 | * Need to reserve space for TTP header in case this skb needs to | ||
254 | * be requeued in case delivery failes | ||
255 | */ | ||
256 | skb_reserve(skb, TTP_HEADER); | ||
257 | skb_put(skb, self->rx_sdu_size); | ||
258 | |||
259 | /* | ||
260 | * Copy all fragments to a new buffer | ||
261 | */ | ||
262 | while ((frag = skb_dequeue(&self->rx_fragments)) != NULL) { | ||
263 | memcpy(skb->data+n, frag->data, frag->len); | ||
264 | n += frag->len; | ||
265 | |||
266 | dev_kfree_skb(frag); | ||
267 | } | ||
268 | |||
269 | IRDA_DEBUG(2, | ||
270 | "%s(), frame len=%d, rx_sdu_size=%d, rx_max_sdu_size=%d\n", | ||
271 | __FUNCTION__, n, self->rx_sdu_size, self->rx_max_sdu_size); | ||
272 | /* Note : irttp_run_rx_queue() calculate self->rx_sdu_size | ||
273 | * by summing the size of all fragments, so we should always | ||
274 | * have n == self->rx_sdu_size, except in cases where we | ||
275 | * droped the last fragment (when self->rx_sdu_size exceed | ||
276 | * self->rx_max_sdu_size), where n < self->rx_sdu_size. | ||
277 | * Jean II */ | ||
278 | IRDA_ASSERT(n <= self->rx_sdu_size, n = self->rx_sdu_size;); | ||
279 | |||
280 | /* Set the new length */ | ||
281 | skb_trim(skb, n); | ||
282 | |||
283 | self->rx_sdu_size = 0; | ||
284 | |||
285 | return skb; | ||
286 | } | ||
287 | |||
288 | /* | ||
289 | * Function irttp_fragment_skb (skb) | ||
290 | * | ||
291 | * Fragments a frame and queues all the fragments for transmission | ||
292 | * | ||
293 | */ | ||
294 | static inline void irttp_fragment_skb(struct tsap_cb *self, | ||
295 | struct sk_buff *skb) | ||
296 | { | ||
297 | struct sk_buff *frag; | ||
298 | __u8 *frame; | ||
299 | |||
300 | IRDA_DEBUG(2, "%s()\n", __FUNCTION__); | ||
301 | |||
302 | IRDA_ASSERT(self != NULL, return;); | ||
303 | IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;); | ||
304 | IRDA_ASSERT(skb != NULL, return;); | ||
305 | |||
306 | /* | ||
307 | * Split frame into a number of segments | ||
308 | */ | ||
309 | while (skb->len > self->max_seg_size) { | ||
310 | IRDA_DEBUG(2, "%s(), fragmenting ...\n", __FUNCTION__); | ||
311 | |||
312 | /* Make new segment */ | ||
313 | frag = dev_alloc_skb(self->max_seg_size+self->max_header_size); | ||
314 | if (!frag) | ||
315 | return; | ||
316 | |||
317 | skb_reserve(frag, self->max_header_size); | ||
318 | |||
319 | /* Copy data from the original skb into this fragment. */ | ||
320 | memcpy(skb_put(frag, self->max_seg_size), skb->data, | ||
321 | self->max_seg_size); | ||
322 | |||
323 | /* Insert TTP header, with the more bit set */ | ||
324 | frame = skb_push(frag, TTP_HEADER); | ||
325 | frame[0] = TTP_MORE; | ||
326 | |||
327 | /* Hide the copied data from the original skb */ | ||
328 | skb_pull(skb, self->max_seg_size); | ||
329 | |||
330 | /* Queue fragment */ | ||
331 | skb_queue_tail(&self->tx_queue, frag); | ||
332 | } | ||
333 | /* Queue what is left of the original skb */ | ||
334 | IRDA_DEBUG(2, "%s(), queuing last segment\n", __FUNCTION__); | ||
335 | |||
336 | frame = skb_push(skb, TTP_HEADER); | ||
337 | frame[0] = 0x00; /* Clear more bit */ | ||
338 | |||
339 | /* Queue fragment */ | ||
340 | skb_queue_tail(&self->tx_queue, skb); | ||
341 | } | ||
342 | |||
343 | /* | ||
344 | * Function irttp_param_max_sdu_size (self, param) | ||
345 | * | ||
346 | * Handle the MaxSduSize parameter in the connect frames, this function | ||
347 | * will be called both when this parameter needs to be inserted into, and | ||
348 | * extracted from the connect frames | ||
349 | */ | ||
350 | static int irttp_param_max_sdu_size(void *instance, irda_param_t *param, | ||
351 | int get) | ||
352 | { | ||
353 | struct tsap_cb *self; | ||
354 | |||
355 | self = (struct tsap_cb *) instance; | ||
356 | |||
357 | IRDA_ASSERT(self != NULL, return -1;); | ||
358 | IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;); | ||
359 | |||
360 | if (get) | ||
361 | param->pv.i = self->tx_max_sdu_size; | ||
362 | else | ||
363 | self->tx_max_sdu_size = param->pv.i; | ||
364 | |||
365 | IRDA_DEBUG(1, "%s(), MaxSduSize=%d\n", __FUNCTION__, param->pv.i); | ||
366 | |||
367 | return 0; | ||
368 | } | ||
369 | |||
370 | /*************************** CLIENT CALLS ***************************/ | ||
371 | /************************** LMP CALLBACKS **************************/ | ||
372 | /* Everything is happily mixed up. Waiting for next clean up - Jean II */ | ||
373 | |||
374 | /* | ||
375 | * Function irttp_open_tsap (stsap, notify) | ||
376 | * | ||
377 | * Create TSAP connection endpoint, | ||
378 | */ | ||
379 | struct tsap_cb *irttp_open_tsap(__u8 stsap_sel, int credit, notify_t *notify) | ||
380 | { | ||
381 | struct tsap_cb *self; | ||
382 | struct lsap_cb *lsap; | ||
383 | notify_t ttp_notify; | ||
384 | |||
385 | IRDA_ASSERT(irttp != NULL, return NULL;); | ||
386 | IRDA_ASSERT(irttp->magic == TTP_MAGIC, return NULL;); | ||
387 | |||
388 | /* The IrLMP spec (IrLMP 1.1 p10) says that we have the right to | ||
389 | * use only 0x01-0x6F. Of course, we can use LSAP_ANY as well. | ||
390 | * JeanII */ | ||
391 | if((stsap_sel != LSAP_ANY) && | ||
392 | ((stsap_sel < 0x01) || (stsap_sel >= 0x70))) { | ||
393 | IRDA_DEBUG(0, "%s(), invalid tsap!\n", __FUNCTION__); | ||
394 | return NULL; | ||
395 | } | ||
396 | |||
397 | self = kmalloc(sizeof(struct tsap_cb), GFP_ATOMIC); | ||
398 | if (self == NULL) { | ||
399 | IRDA_DEBUG(0, "%s(), unable to kmalloc!\n", __FUNCTION__); | ||
400 | return NULL; | ||
401 | } | ||
402 | memset(self, 0, sizeof(struct tsap_cb)); | ||
403 | spin_lock_init(&self->lock); | ||
404 | |||
405 | /* Initialise todo timer */ | ||
406 | init_timer(&self->todo_timer); | ||
407 | self->todo_timer.data = (unsigned long) self; | ||
408 | self->todo_timer.function = &irttp_todo_expired; | ||
409 | |||
410 | /* Initialize callbacks for IrLMP to use */ | ||
411 | irda_notify_init(&ttp_notify); | ||
412 | ttp_notify.connect_confirm = irttp_connect_confirm; | ||
413 | ttp_notify.connect_indication = irttp_connect_indication; | ||
414 | ttp_notify.disconnect_indication = irttp_disconnect_indication; | ||
415 | ttp_notify.data_indication = irttp_data_indication; | ||
416 | ttp_notify.udata_indication = irttp_udata_indication; | ||
417 | ttp_notify.flow_indication = irttp_flow_indication; | ||
418 | if(notify->status_indication != NULL) | ||
419 | ttp_notify.status_indication = irttp_status_indication; | ||
420 | ttp_notify.instance = self; | ||
421 | strncpy(ttp_notify.name, notify->name, NOTIFY_MAX_NAME); | ||
422 | |||
423 | self->magic = TTP_TSAP_MAGIC; | ||
424 | self->connected = FALSE; | ||
425 | |||
426 | skb_queue_head_init(&self->rx_queue); | ||
427 | skb_queue_head_init(&self->tx_queue); | ||
428 | skb_queue_head_init(&self->rx_fragments); | ||
429 | /* | ||
430 | * Create LSAP at IrLMP layer | ||
431 | */ | ||
432 | lsap = irlmp_open_lsap(stsap_sel, &ttp_notify, 0); | ||
433 | if (lsap == NULL) { | ||
434 | IRDA_WARNING("%s: unable to allocate LSAP!!\n", __FUNCTION__); | ||
435 | return NULL; | ||
436 | } | ||
437 | |||
438 | /* | ||
439 | * If user specified LSAP_ANY as source TSAP selector, then IrLMP | ||
440 | * will replace it with whatever source selector which is free, so | ||
441 | * the stsap_sel we have might not be valid anymore | ||
442 | */ | ||
443 | self->stsap_sel = lsap->slsap_sel; | ||
444 | IRDA_DEBUG(4, "%s(), stsap_sel=%02x\n", __FUNCTION__, self->stsap_sel); | ||
445 | |||
446 | self->notify = *notify; | ||
447 | self->lsap = lsap; | ||
448 | |||
449 | hashbin_insert(irttp->tsaps, (irda_queue_t *) self, (long) self, NULL); | ||
450 | |||
451 | if (credit > TTP_RX_MAX_CREDIT) | ||
452 | self->initial_credit = TTP_RX_MAX_CREDIT; | ||
453 | else | ||
454 | self->initial_credit = credit; | ||
455 | |||
456 | return self; | ||
457 | } | ||
458 | EXPORT_SYMBOL(irttp_open_tsap); | ||
459 | |||
460 | /* | ||
461 | * Function irttp_close (handle) | ||
462 | * | ||
463 | * Remove an instance of a TSAP. This function should only deal with the | ||
464 | * deallocation of the TSAP, and resetting of the TSAPs values; | ||
465 | * | ||
466 | */ | ||
467 | static void __irttp_close_tsap(struct tsap_cb *self) | ||
468 | { | ||
469 | /* First make sure we're connected. */ | ||
470 | IRDA_ASSERT(self != NULL, return;); | ||
471 | IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;); | ||
472 | |||
473 | irttp_flush_queues(self); | ||
474 | |||
475 | del_timer(&self->todo_timer); | ||
476 | |||
477 | /* This one won't be cleaned up if we are disconnect_pend + close_pend | ||
478 | * and we receive a disconnect_indication */ | ||
479 | if (self->disconnect_skb) | ||
480 | dev_kfree_skb(self->disconnect_skb); | ||
481 | |||
482 | self->connected = FALSE; | ||
483 | self->magic = ~TTP_TSAP_MAGIC; | ||
484 | |||
485 | kfree(self); | ||
486 | } | ||
487 | |||
488 | /* | ||
489 | * Function irttp_close (self) | ||
490 | * | ||
491 | * Remove TSAP from list of all TSAPs and then deallocate all resources | ||
492 | * associated with this TSAP | ||
493 | * | ||
494 | * Note : because we *free* the tsap structure, it is the responsibility | ||
495 | * of the caller to make sure we are called only once and to deal with | ||
496 | * possible race conditions. - Jean II | ||
497 | */ | ||
498 | int irttp_close_tsap(struct tsap_cb *self) | ||
499 | { | ||
500 | struct tsap_cb *tsap; | ||
501 | |||
502 | IRDA_DEBUG(4, "%s()\n", __FUNCTION__); | ||
503 | |||
504 | IRDA_ASSERT(self != NULL, return -1;); | ||
505 | IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;); | ||
506 | |||
507 | /* Make sure tsap has been disconnected */ | ||
508 | if (self->connected) { | ||
509 | /* Check if disconnect is not pending */ | ||
510 | if (!test_bit(0, &self->disconnect_pend)) { | ||
511 | IRDA_WARNING("%s: TSAP still connected!\n", | ||
512 | __FUNCTION__); | ||
513 | irttp_disconnect_request(self, NULL, P_NORMAL); | ||
514 | } | ||
515 | self->close_pend = TRUE; | ||
516 | irttp_start_todo_timer(self, HZ/10); | ||
517 | |||
518 | return 0; /* Will be back! */ | ||
519 | } | ||
520 | |||
521 | tsap = hashbin_remove(irttp->tsaps, (long) self, NULL); | ||
522 | |||
523 | IRDA_ASSERT(tsap == self, return -1;); | ||
524 | |||
525 | /* Close corresponding LSAP */ | ||
526 | if (self->lsap) { | ||
527 | irlmp_close_lsap(self->lsap); | ||
528 | self->lsap = NULL; | ||
529 | } | ||
530 | |||
531 | __irttp_close_tsap(self); | ||
532 | |||
533 | return 0; | ||
534 | } | ||
535 | EXPORT_SYMBOL(irttp_close_tsap); | ||
536 | |||
537 | /* | ||
538 | * Function irttp_udata_request (self, skb) | ||
539 | * | ||
540 | * Send unreliable data on this TSAP | ||
541 | * | ||
542 | */ | ||
543 | int irttp_udata_request(struct tsap_cb *self, struct sk_buff *skb) | ||
544 | { | ||
545 | IRDA_ASSERT(self != NULL, return -1;); | ||
546 | IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;); | ||
547 | IRDA_ASSERT(skb != NULL, return -1;); | ||
548 | |||
549 | IRDA_DEBUG(4, "%s()\n", __FUNCTION__); | ||
550 | |||
551 | /* Check that nothing bad happens */ | ||
552 | if ((skb->len == 0) || (!self->connected)) { | ||
553 | IRDA_DEBUG(1, "%s(), No data, or not connected\n", | ||
554 | __FUNCTION__); | ||
555 | goto err; | ||
556 | } | ||
557 | |||
558 | if (skb->len > self->max_seg_size) { | ||
559 | IRDA_DEBUG(1, "%s(), UData is to large for IrLAP!\n", | ||
560 | __FUNCTION__); | ||
561 | goto err; | ||
562 | } | ||
563 | |||
564 | irlmp_udata_request(self->lsap, skb); | ||
565 | self->stats.tx_packets++; | ||
566 | |||
567 | return 0; | ||
568 | |||
569 | err: | ||
570 | dev_kfree_skb(skb); | ||
571 | return -1; | ||
572 | } | ||
573 | EXPORT_SYMBOL(irttp_udata_request); | ||
574 | |||
575 | |||
576 | /* | ||
577 | * Function irttp_data_request (handle, skb) | ||
578 | * | ||
579 | * Queue frame for transmission. If SAR is enabled, fragement the frame | ||
580 | * and queue the fragments for transmission | ||
581 | */ | ||
582 | int irttp_data_request(struct tsap_cb *self, struct sk_buff *skb) | ||
583 | { | ||
584 | __u8 *frame; | ||
585 | int ret; | ||
586 | |||
587 | IRDA_ASSERT(self != NULL, return -1;); | ||
588 | IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;); | ||
589 | IRDA_ASSERT(skb != NULL, return -1;); | ||
590 | |||
591 | IRDA_DEBUG(2, "%s() : queue len = %d\n", __FUNCTION__, | ||
592 | skb_queue_len(&self->tx_queue)); | ||
593 | |||
594 | /* Check that nothing bad happens */ | ||
595 | if ((skb->len == 0) || (!self->connected)) { | ||
596 | IRDA_WARNING("%s: No data, or not connected\n", __FUNCTION__); | ||
597 | ret = -ENOTCONN; | ||
598 | goto err; | ||
599 | } | ||
600 | |||
601 | /* | ||
602 | * Check if SAR is disabled, and the frame is larger than what fits | ||
603 | * inside an IrLAP frame | ||
604 | */ | ||
605 | if ((self->tx_max_sdu_size == 0) && (skb->len > self->max_seg_size)) { | ||
606 | IRDA_ERROR("%s: SAR disabled, and data is to large for IrLAP!\n", | ||
607 | __FUNCTION__); | ||
608 | ret = -EMSGSIZE; | ||
609 | goto err; | ||
610 | } | ||
611 | |||
612 | /* | ||
613 | * Check if SAR is enabled, and the frame is larger than the | ||
614 | * TxMaxSduSize | ||
615 | */ | ||
616 | if ((self->tx_max_sdu_size != 0) && | ||
617 | (self->tx_max_sdu_size != TTP_SAR_UNBOUND) && | ||
618 | (skb->len > self->tx_max_sdu_size)) | ||
619 | { | ||
620 | IRDA_ERROR("%s: SAR enabled, but data is larger than TxMaxSduSize!\n", | ||
621 | __FUNCTION__); | ||
622 | ret = -EMSGSIZE; | ||
623 | goto err; | ||
624 | } | ||
625 | /* | ||
626 | * Check if transmit queue is full | ||
627 | */ | ||
628 | if (skb_queue_len(&self->tx_queue) >= TTP_TX_MAX_QUEUE) { | ||
629 | /* | ||
630 | * Give it a chance to empty itself | ||
631 | */ | ||
632 | irttp_run_tx_queue(self); | ||
633 | |||
634 | /* Drop packet. This error code should trigger the caller | ||
635 | * to resend the data in the client code - Jean II */ | ||
636 | ret = -ENOBUFS; | ||
637 | goto err; | ||
638 | } | ||
639 | |||
640 | /* Queue frame, or queue frame segments */ | ||
641 | if ((self->tx_max_sdu_size == 0) || (skb->len < self->max_seg_size)) { | ||
642 | /* Queue frame */ | ||
643 | IRDA_ASSERT(skb_headroom(skb) >= TTP_HEADER, return -1;); | ||
644 | frame = skb_push(skb, TTP_HEADER); | ||
645 | frame[0] = 0x00; /* Clear more bit */ | ||
646 | |||
647 | skb_queue_tail(&self->tx_queue, skb); | ||
648 | } else { | ||
649 | /* | ||
650 | * Fragment the frame, this function will also queue the | ||
651 | * fragments, we don't care about the fact the transmit | ||
652 | * queue may be overfilled by all the segments for a little | ||
653 | * while | ||
654 | */ | ||
655 | irttp_fragment_skb(self, skb); | ||
656 | } | ||
657 | |||
658 | /* Check if we can accept more data from client */ | ||
659 | if ((!self->tx_sdu_busy) && | ||
660 | (skb_queue_len(&self->tx_queue) > TTP_TX_HIGH_THRESHOLD)) { | ||
661 | /* Tx queue filling up, so stop client. */ | ||
662 | if (self->notify.flow_indication) { | ||
663 | self->notify.flow_indication(self->notify.instance, | ||
664 | self, FLOW_STOP); | ||
665 | } | ||
666 | /* self->tx_sdu_busy is the state of the client. | ||
667 | * Update state after notifying client to avoid | ||
668 | * race condition with irttp_flow_indication(). | ||
669 | * If the queue empty itself after our test but before | ||
670 | * we set the flag, we will fix ourselves below in | ||
671 | * irttp_run_tx_queue(). | ||
672 | * Jean II */ | ||
673 | self->tx_sdu_busy = TRUE; | ||
674 | } | ||
675 | |||
676 | /* Try to make some progress */ | ||
677 | irttp_run_tx_queue(self); | ||
678 | |||
679 | return 0; | ||
680 | |||
681 | err: | ||
682 | dev_kfree_skb(skb); | ||
683 | return ret; | ||
684 | } | ||
685 | EXPORT_SYMBOL(irttp_data_request); | ||
686 | |||
687 | /* | ||
688 | * Function irttp_run_tx_queue (self) | ||
689 | * | ||
690 | * Transmit packets queued for transmission (if possible) | ||
691 | * | ||
692 | */ | ||
693 | static void irttp_run_tx_queue(struct tsap_cb *self) | ||
694 | { | ||
695 | struct sk_buff *skb; | ||
696 | unsigned long flags; | ||
697 | int n; | ||
698 | |||
699 | IRDA_DEBUG(2, "%s() : send_credit = %d, queue_len = %d\n", | ||
700 | __FUNCTION__, | ||
701 | self->send_credit, skb_queue_len(&self->tx_queue)); | ||
702 | |||
703 | /* Get exclusive access to the tx queue, otherwise don't touch it */ | ||
704 | if (irda_lock(&self->tx_queue_lock) == FALSE) | ||
705 | return; | ||
706 | |||
707 | /* Try to send out frames as long as we have credits | ||
708 | * and as long as LAP is not full. If LAP is full, it will | ||
709 | * poll us through irttp_flow_indication() - Jean II */ | ||
710 | while ((self->send_credit > 0) && | ||
711 | (!irlmp_lap_tx_queue_full(self->lsap)) && | ||
712 | (skb = skb_dequeue(&self->tx_queue))) | ||
713 | { | ||
714 | /* | ||
715 | * Since we can transmit and receive frames concurrently, | ||
716 | * the code below is a critical region and we must assure that | ||
717 | * nobody messes with the credits while we update them. | ||
718 | */ | ||
719 | spin_lock_irqsave(&self->lock, flags); | ||
720 | |||
721 | n = self->avail_credit; | ||
722 | self->avail_credit = 0; | ||
723 | |||
724 | /* Only room for 127 credits in frame */ | ||
725 | if (n > 127) { | ||
726 | self->avail_credit = n-127; | ||
727 | n = 127; | ||
728 | } | ||
729 | self->remote_credit += n; | ||
730 | self->send_credit--; | ||
731 | |||
732 | spin_unlock_irqrestore(&self->lock, flags); | ||
733 | |||
734 | /* | ||
735 | * More bit must be set by the data_request() or fragment() | ||
736 | * functions | ||
737 | */ | ||
738 | skb->data[0] |= (n & 0x7f); | ||
739 | |||
740 | /* Detach from socket. | ||
741 | * The current skb has a reference to the socket that sent | ||
742 | * it (skb->sk). When we pass it to IrLMP, the skb will be | ||
743 | * stored in in IrLAP (self->wx_list). When we are within | ||
744 | * IrLAP, we lose the notion of socket, so we should not | ||
745 | * have a reference to a socket. So, we drop it here. | ||
746 | * | ||
747 | * Why does it matter ? | ||
748 | * When the skb is freed (kfree_skb), if it is associated | ||
749 | * with a socket, it release buffer space on the socket | ||
750 | * (through sock_wfree() and sock_def_write_space()). | ||
751 | * If the socket no longer exist, we may crash. Hard. | ||
752 | * When we close a socket, we make sure that associated packets | ||
753 | * in IrTTP are freed. However, we have no way to cancel | ||
754 | * the packet that we have passed to IrLAP. So, if a packet | ||
755 | * remains in IrLAP (retry on the link or else) after we | ||
756 | * close the socket, we are dead ! | ||
757 | * Jean II */ | ||
758 | if (skb->sk != NULL) { | ||
759 | /* IrSOCK application, IrOBEX, ... */ | ||
760 | skb_orphan(skb); | ||
761 | } | ||
762 | /* IrCOMM over IrTTP, IrLAN, ... */ | ||
763 | |||
764 | /* Pass the skb to IrLMP - done */ | ||
765 | irlmp_data_request(self->lsap, skb); | ||
766 | self->stats.tx_packets++; | ||
767 | } | ||
768 | |||
769 | /* Check if we can accept more frames from client. | ||
770 | * We don't want to wait until the todo timer to do that, and we | ||
771 | * can't use tasklets (grr...), so we are obliged to give control | ||
772 | * to client. That's ok, this test will be true not too often | ||
773 | * (max once per LAP window) and we are called from places | ||
774 | * where we can spend a bit of time doing stuff. - Jean II */ | ||
775 | if ((self->tx_sdu_busy) && | ||
776 | (skb_queue_len(&self->tx_queue) < TTP_TX_LOW_THRESHOLD) && | ||
777 | (!self->close_pend)) | ||
778 | { | ||
779 | if (self->notify.flow_indication) | ||
780 | self->notify.flow_indication(self->notify.instance, | ||
781 | self, FLOW_START); | ||
782 | |||
783 | /* self->tx_sdu_busy is the state of the client. | ||
784 | * We don't really have a race here, but it's always safer | ||
785 | * to update our state after the client - Jean II */ | ||
786 | self->tx_sdu_busy = FALSE; | ||
787 | } | ||
788 | |||
789 | /* Reset lock */ | ||
790 | self->tx_queue_lock = 0; | ||
791 | } | ||
792 | |||
793 | /* | ||
794 | * Function irttp_give_credit (self) | ||
795 | * | ||
796 | * Send a dataless flowdata TTP-PDU and give available credit to peer | ||
797 | * TSAP | ||
798 | */ | ||
799 | static inline void irttp_give_credit(struct tsap_cb *self) | ||
800 | { | ||
801 | struct sk_buff *tx_skb = NULL; | ||
802 | unsigned long flags; | ||
803 | int n; | ||
804 | |||
805 | IRDA_ASSERT(self != NULL, return;); | ||
806 | IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;); | ||
807 | |||
808 | IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n", | ||
809 | __FUNCTION__, | ||
810 | self->send_credit, self->avail_credit, self->remote_credit); | ||
811 | |||
812 | /* Give credit to peer */ | ||
813 | tx_skb = dev_alloc_skb(64); | ||
814 | if (!tx_skb) | ||
815 | return; | ||
816 | |||
817 | /* Reserve space for LMP, and LAP header */ | ||
818 | skb_reserve(tx_skb, self->max_header_size); | ||
819 | |||
820 | /* | ||
821 | * Since we can transmit and receive frames concurrently, | ||
822 | * the code below is a critical region and we must assure that | ||
823 | * nobody messes with the credits while we update them. | ||
824 | */ | ||
825 | spin_lock_irqsave(&self->lock, flags); | ||
826 | |||
827 | n = self->avail_credit; | ||
828 | self->avail_credit = 0; | ||
829 | |||
830 | /* Only space for 127 credits in frame */ | ||
831 | if (n > 127) { | ||
832 | self->avail_credit = n - 127; | ||
833 | n = 127; | ||
834 | } | ||
835 | self->remote_credit += n; | ||
836 | |||
837 | spin_unlock_irqrestore(&self->lock, flags); | ||
838 | |||
839 | skb_put(tx_skb, 1); | ||
840 | tx_skb->data[0] = (__u8) (n & 0x7f); | ||
841 | |||
842 | irlmp_data_request(self->lsap, tx_skb); | ||
843 | self->stats.tx_packets++; | ||
844 | } | ||
845 | |||
846 | /* | ||
847 | * Function irttp_udata_indication (instance, sap, skb) | ||
848 | * | ||
849 | * Received some unit-data (unreliable) | ||
850 | * | ||
851 | */ | ||
852 | static int irttp_udata_indication(void *instance, void *sap, | ||
853 | struct sk_buff *skb) | ||
854 | { | ||
855 | struct tsap_cb *self; | ||
856 | int err; | ||
857 | |||
858 | IRDA_DEBUG(4, "%s()\n", __FUNCTION__); | ||
859 | |||
860 | self = (struct tsap_cb *) instance; | ||
861 | |||
862 | IRDA_ASSERT(self != NULL, return -1;); | ||
863 | IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;); | ||
864 | IRDA_ASSERT(skb != NULL, return -1;); | ||
865 | |||
866 | self->stats.rx_packets++; | ||
867 | |||
868 | /* Just pass data to layer above */ | ||
869 | if (self->notify.udata_indication) { | ||
870 | err = self->notify.udata_indication(self->notify.instance, | ||
871 | self,skb); | ||
872 | /* Same comment as in irttp_do_data_indication() */ | ||
873 | if (!err) | ||
874 | return 0; | ||
875 | } | ||
876 | /* Either no handler, or handler returns an error */ | ||
877 | dev_kfree_skb(skb); | ||
878 | |||
879 | return 0; | ||
880 | } | ||
881 | |||
882 | /* | ||
883 | * Function irttp_data_indication (instance, sap, skb) | ||
884 | * | ||
885 | * Receive segment from IrLMP. | ||
886 | * | ||
887 | */ | ||
888 | static int irttp_data_indication(void *instance, void *sap, | ||
889 | struct sk_buff *skb) | ||
890 | { | ||
891 | struct tsap_cb *self; | ||
892 | unsigned long flags; | ||
893 | int n; | ||
894 | |||
895 | self = (struct tsap_cb *) instance; | ||
896 | |||
897 | n = skb->data[0] & 0x7f; /* Extract the credits */ | ||
898 | |||
899 | self->stats.rx_packets++; | ||
900 | |||
901 | /* Deal with inbound credit | ||
902 | * Since we can transmit and receive frames concurrently, | ||
903 | * the code below is a critical region and we must assure that | ||
904 | * nobody messes with the credits while we update them. | ||
905 | */ | ||
906 | spin_lock_irqsave(&self->lock, flags); | ||
907 | self->send_credit += n; | ||
908 | if (skb->len > 1) | ||
909 | self->remote_credit--; | ||
910 | spin_unlock_irqrestore(&self->lock, flags); | ||
911 | |||
912 | /* | ||
913 | * Data or dataless packet? Dataless frames contains only the | ||
914 | * TTP_HEADER. | ||
915 | */ | ||
916 | if (skb->len > 1) { | ||
917 | /* | ||
918 | * We don't remove the TTP header, since we must preserve the | ||
919 | * more bit, so the defragment routing knows what to do | ||
920 | */ | ||
921 | skb_queue_tail(&self->rx_queue, skb); | ||
922 | } else { | ||
923 | /* Dataless flowdata TTP-PDU */ | ||
924 | dev_kfree_skb(skb); | ||
925 | } | ||
926 | |||
927 | |||
928 | /* Push data to the higher layer. | ||
929 | * We do it synchronously because running the todo timer for each | ||
930 | * receive packet would be too much overhead and latency. | ||
931 | * By passing control to the higher layer, we run the risk that | ||
932 | * it may take time or grab a lock. Most often, the higher layer | ||
933 | * will only put packet in a queue. | ||
934 | * Anyway, packets are only dripping through the IrDA, so we can | ||
935 | * have time before the next packet. | ||
936 | * Further, we are run from NET_BH, so the worse that can happen is | ||
937 | * us missing the optimal time to send back the PF bit in LAP. | ||
938 | * Jean II */ | ||
939 | irttp_run_rx_queue(self); | ||
940 | |||
941 | /* We now give credits to peer in irttp_run_rx_queue(). | ||
942 | * We need to send credit *NOW*, otherwise we are going | ||
943 | * to miss the next Tx window. The todo timer may take | ||
944 | * a while before it's run... - Jean II */ | ||
945 | |||
946 | /* | ||
947 | * If the peer device has given us some credits and we didn't have | ||
948 | * anyone from before, then we need to shedule the tx queue. | ||
949 | * We need to do that because our Tx have stopped (so we may not | ||
950 | * get any LAP flow indication) and the user may be stopped as | ||
951 | * well. - Jean II | ||
952 | */ | ||
953 | if (self->send_credit == n) { | ||
954 | /* Restart pushing stuff to LAP */ | ||
955 | irttp_run_tx_queue(self); | ||
956 | /* Note : we don't want to schedule the todo timer | ||
957 | * because it has horrible latency. No tasklets | ||
958 | * because the tasklet API is broken. - Jean II */ | ||
959 | } | ||
960 | |||
961 | return 0; | ||
962 | } | ||
963 | |||
964 | /* | ||
965 | * Function irttp_status_indication (self, reason) | ||
966 | * | ||
967 | * Status_indication, just pass to the higher layer... | ||
968 | * | ||
969 | */ | ||
970 | static void irttp_status_indication(void *instance, | ||
971 | LINK_STATUS link, LOCK_STATUS lock) | ||
972 | { | ||
973 | struct tsap_cb *self; | ||
974 | |||
975 | IRDA_DEBUG(4, "%s()\n", __FUNCTION__); | ||
976 | |||
977 | self = (struct tsap_cb *) instance; | ||
978 | |||
979 | IRDA_ASSERT(self != NULL, return;); | ||
980 | IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;); | ||
981 | |||
982 | /* Check if client has already closed the TSAP and gone away */ | ||
983 | if (self->close_pend) | ||
984 | return; | ||
985 | |||
986 | /* | ||
987 | * Inform service user if he has requested it | ||
988 | */ | ||
989 | if (self->notify.status_indication != NULL) | ||
990 | self->notify.status_indication(self->notify.instance, | ||
991 | link, lock); | ||
992 | else | ||
993 | IRDA_DEBUG(2, "%s(), no handler\n", __FUNCTION__); | ||
994 | } | ||
995 | |||
996 | /* | ||
997 | * Function irttp_flow_indication (self, reason) | ||
998 | * | ||
999 | * Flow_indication : IrLAP tells us to send more data. | ||
1000 | * | ||
1001 | */ | ||
1002 | static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow) | ||
1003 | { | ||
1004 | struct tsap_cb *self; | ||
1005 | |||
1006 | self = (struct tsap_cb *) instance; | ||
1007 | |||
1008 | IRDA_ASSERT(self != NULL, return;); | ||
1009 | IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;); | ||
1010 | |||
1011 | IRDA_DEBUG(4, "%s(instance=%p)\n", __FUNCTION__, self); | ||
1012 | |||
1013 | /* We are "polled" directly from LAP, and the LAP want to fill | ||
1014 | * its Tx window. We want to do our best to send it data, so that | ||
1015 | * we maximise the window. On the other hand, we want to limit the | ||
1016 | * amount of work here so that LAP doesn't hang forever waiting | ||
1017 | * for packets. - Jean II */ | ||
1018 | |||
1019 | /* Try to send some packets. Currently, LAP calls us every time | ||
1020 | * there is one free slot, so we will send only one packet. | ||
1021 | * This allow the scheduler to do its round robin - Jean II */ | ||
1022 | irttp_run_tx_queue(self); | ||
1023 | |||
1024 | /* Note regarding the interraction with higher layer. | ||
1025 | * irttp_run_tx_queue() may call the client when its queue | ||
1026 | * start to empty, via notify.flow_indication(). Initially. | ||
1027 | * I wanted this to happen in a tasklet, to avoid client | ||
1028 | * grabbing the CPU, but we can't use tasklets safely. And timer | ||
1029 | * is definitely too slow. | ||
1030 | * This will happen only once per LAP window, and usually at | ||
1031 | * the third packet (unless window is smaller). LAP is still | ||
1032 | * doing mtt and sending first packet so it's sort of OK | ||
1033 | * to do that. Jean II */ | ||
1034 | |||
1035 | /* If we need to send disconnect. try to do it now */ | ||
1036 | if(self->disconnect_pend) | ||
1037 | irttp_start_todo_timer(self, 0); | ||
1038 | } | ||
1039 | |||
1040 | /* | ||
1041 | * Function irttp_flow_request (self, command) | ||
1042 | * | ||
1043 | * This function could be used by the upper layers to tell IrTTP to stop | ||
1044 | * delivering frames if the receive queues are starting to get full, or | ||
1045 | * to tell IrTTP to start delivering frames again. | ||
1046 | */ | ||
1047 | void irttp_flow_request(struct tsap_cb *self, LOCAL_FLOW flow) | ||
1048 | { | ||
1049 | IRDA_DEBUG(1, "%s()\n", __FUNCTION__); | ||
1050 | |||
1051 | IRDA_ASSERT(self != NULL, return;); | ||
1052 | IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;); | ||
1053 | |||
1054 | switch (flow) { | ||
1055 | case FLOW_STOP: | ||
1056 | IRDA_DEBUG(1, "%s(), flow stop\n", __FUNCTION__); | ||
1057 | self->rx_sdu_busy = TRUE; | ||
1058 | break; | ||
1059 | case FLOW_START: | ||
1060 | IRDA_DEBUG(1, "%s(), flow start\n", __FUNCTION__); | ||
1061 | self->rx_sdu_busy = FALSE; | ||
1062 | |||
1063 | /* Client say he can accept more data, try to free our | ||
1064 | * queues ASAP - Jean II */ | ||
1065 | irttp_run_rx_queue(self); | ||
1066 | |||
1067 | break; | ||
1068 | default: | ||
1069 | IRDA_DEBUG(1, "%s(), Unknown flow command!\n", __FUNCTION__); | ||
1070 | } | ||
1071 | } | ||
1072 | EXPORT_SYMBOL(irttp_flow_request); | ||
1073 | |||
1074 | /* | ||
1075 | * Function irttp_connect_request (self, dtsap_sel, daddr, qos) | ||
1076 | * | ||
1077 | * Try to connect to remote destination TSAP selector | ||
1078 | * | ||
1079 | */ | ||
1080 | int irttp_connect_request(struct tsap_cb *self, __u8 dtsap_sel, | ||
1081 | __u32 saddr, __u32 daddr, | ||
1082 | struct qos_info *qos, __u32 max_sdu_size, | ||
1083 | struct sk_buff *userdata) | ||
1084 | { | ||
1085 | struct sk_buff *tx_skb; | ||
1086 | __u8 *frame; | ||
1087 | __u8 n; | ||
1088 | |||
1089 | IRDA_DEBUG(4, "%s(), max_sdu_size=%d\n", __FUNCTION__, max_sdu_size); | ||
1090 | |||
1091 | IRDA_ASSERT(self != NULL, return -EBADR;); | ||
1092 | IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -EBADR;); | ||
1093 | |||
1094 | if (self->connected) { | ||
1095 | if(userdata) | ||
1096 | dev_kfree_skb(userdata); | ||
1097 | return -EISCONN; | ||
1098 | } | ||
1099 | |||
1100 | /* Any userdata supplied? */ | ||
1101 | if (userdata == NULL) { | ||
1102 | tx_skb = dev_alloc_skb(64); | ||
1103 | if (!tx_skb) | ||
1104 | return -ENOMEM; | ||
1105 | |||
1106 | /* Reserve space for MUX_CONTROL and LAP header */ | ||
1107 | skb_reserve(tx_skb, TTP_MAX_HEADER); | ||
1108 | } else { | ||
1109 | tx_skb = userdata; | ||
1110 | /* | ||
1111 | * Check that the client has reserved enough space for | ||
1112 | * headers | ||
1113 | */ | ||
1114 | IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER, | ||
1115 | { dev_kfree_skb(userdata); return -1; } ); | ||
1116 | } | ||
1117 | |||
1118 | /* Initialize connection parameters */ | ||
1119 | self->connected = FALSE; | ||
1120 | self->avail_credit = 0; | ||
1121 | self->rx_max_sdu_size = max_sdu_size; | ||
1122 | self->rx_sdu_size = 0; | ||
1123 | self->rx_sdu_busy = FALSE; | ||
1124 | self->dtsap_sel = dtsap_sel; | ||
1125 | |||
1126 | n = self->initial_credit; | ||
1127 | |||
1128 | self->remote_credit = 0; | ||
1129 | self->send_credit = 0; | ||
1130 | |||
1131 | /* | ||
1132 | * Give away max 127 credits for now | ||
1133 | */ | ||
1134 | if (n > 127) { | ||
1135 | self->avail_credit=n-127; | ||
1136 | n = 127; | ||
1137 | } | ||
1138 | |||
1139 | self->remote_credit = n; | ||
1140 | |||
1141 | /* SAR enabled? */ | ||
1142 | if (max_sdu_size > 0) { | ||
1143 | IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER), | ||
1144 | { dev_kfree_skb(tx_skb); return -1; } ); | ||
1145 | |||
1146 | /* Insert SAR parameters */ | ||
1147 | frame = skb_push(tx_skb, TTP_HEADER+TTP_SAR_HEADER); | ||
1148 | |||
1149 | frame[0] = TTP_PARAMETERS | n; | ||
1150 | frame[1] = 0x04; /* Length */ | ||
1151 | frame[2] = 0x01; /* MaxSduSize */ | ||
1152 | frame[3] = 0x02; /* Value length */ | ||
1153 | |||
1154 | put_unaligned(cpu_to_be16((__u16) max_sdu_size), | ||
1155 | (__u16 *)(frame+4)); | ||
1156 | } else { | ||
1157 | /* Insert plain TTP header */ | ||
1158 | frame = skb_push(tx_skb, TTP_HEADER); | ||
1159 | |||
1160 | /* Insert initial credit in frame */ | ||
1161 | frame[0] = n & 0x7f; | ||
1162 | } | ||
1163 | |||
1164 | /* Connect with IrLMP. No QoS parameters for now */ | ||
1165 | return irlmp_connect_request(self->lsap, dtsap_sel, saddr, daddr, qos, | ||
1166 | tx_skb); | ||
1167 | } | ||
1168 | EXPORT_SYMBOL(irttp_connect_request); | ||
1169 | |||
1170 | /* | ||
1171 | * Function irttp_connect_confirm (handle, qos, skb) | ||
1172 | * | ||
1173 | * Sevice user confirms TSAP connection with peer. | ||
1174 | * | ||
1175 | */ | ||
1176 | static void irttp_connect_confirm(void *instance, void *sap, | ||
1177 | struct qos_info *qos, __u32 max_seg_size, | ||
1178 | __u8 max_header_size, struct sk_buff *skb) | ||
1179 | { | ||
1180 | struct tsap_cb *self; | ||
1181 | int parameters; | ||
1182 | int ret; | ||
1183 | __u8 plen; | ||
1184 | __u8 n; | ||
1185 | |||
1186 | IRDA_DEBUG(4, "%s()\n", __FUNCTION__); | ||
1187 | |||
1188 | self = (struct tsap_cb *) instance; | ||
1189 | |||
1190 | IRDA_ASSERT(self != NULL, return;); | ||
1191 | IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;); | ||
1192 | IRDA_ASSERT(skb != NULL, return;); | ||
1193 | |||
1194 | self->max_seg_size = max_seg_size - TTP_HEADER; | ||
1195 | self->max_header_size = max_header_size + TTP_HEADER; | ||
1196 | |||
1197 | /* | ||
1198 | * Check if we have got some QoS parameters back! This should be the | ||
1199 | * negotiated QoS for the link. | ||
1200 | */ | ||
1201 | if (qos) { | ||
1202 | IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %02x\n", | ||
1203 | qos->baud_rate.bits); | ||
1204 | IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %d bps.\n", | ||
1205 | qos->baud_rate.value); | ||
1206 | } | ||
1207 | |||
1208 | n = skb->data[0] & 0x7f; | ||
1209 | |||
1210 | IRDA_DEBUG(4, "%s(), Initial send_credit=%d\n", __FUNCTION__, n); | ||
1211 | |||
1212 | self->send_credit = n; | ||
1213 | self->tx_max_sdu_size = 0; | ||
1214 | self->connected = TRUE; | ||
1215 | |||
1216 | parameters = skb->data[0] & 0x80; | ||
1217 | |||
1218 | IRDA_ASSERT(skb->len >= TTP_HEADER, return;); | ||
1219 | skb_pull(skb, TTP_HEADER); | ||
1220 | |||
1221 | if (parameters) { | ||
1222 | plen = skb->data[0]; | ||
1223 | |||
1224 | ret = irda_param_extract_all(self, skb->data+1, | ||
1225 | IRDA_MIN(skb->len-1, plen), | ||
1226 | ¶m_info); | ||
1227 | |||
1228 | /* Any errors in the parameter list? */ | ||
1229 | if (ret < 0) { | ||
1230 | IRDA_WARNING("%s: error extracting parameters\n", | ||
1231 | __FUNCTION__); | ||
1232 | dev_kfree_skb(skb); | ||
1233 | |||
1234 | /* Do not accept this connection attempt */ | ||
1235 | return; | ||
1236 | } | ||
1237 | /* Remove parameters */ | ||
1238 | skb_pull(skb, IRDA_MIN(skb->len, plen+1)); | ||
1239 | } | ||
1240 | |||
1241 | IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n", __FUNCTION__, | ||
1242 | self->send_credit, self->avail_credit, self->remote_credit); | ||
1243 | |||
1244 | IRDA_DEBUG(2, "%s(), MaxSduSize=%d\n", __FUNCTION__, | ||
1245 | self->tx_max_sdu_size); | ||
1246 | |||
1247 | if (self->notify.connect_confirm) { | ||
1248 | self->notify.connect_confirm(self->notify.instance, self, qos, | ||
1249 | self->tx_max_sdu_size, | ||
1250 | self->max_header_size, skb); | ||
1251 | } else | ||
1252 | dev_kfree_skb(skb); | ||
1253 | } | ||
1254 | |||
1255 | /* | ||
1256 | * Function irttp_connect_indication (handle, skb) | ||
1257 | * | ||
1258 | * Some other device is connecting to this TSAP | ||
1259 | * | ||
1260 | */ | ||
1261 | void irttp_connect_indication(void *instance, void *sap, struct qos_info *qos, | ||
1262 | __u32 max_seg_size, __u8 max_header_size, | ||
1263 | struct sk_buff *skb) | ||
1264 | { | ||
1265 | struct tsap_cb *self; | ||
1266 | struct lsap_cb *lsap; | ||
1267 | int parameters; | ||
1268 | int ret; | ||
1269 | __u8 plen; | ||
1270 | __u8 n; | ||
1271 | |||
1272 | self = (struct tsap_cb *) instance; | ||
1273 | |||
1274 | IRDA_ASSERT(self != NULL, return;); | ||
1275 | IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;); | ||
1276 | IRDA_ASSERT(skb != NULL, return;); | ||
1277 | |||
1278 | lsap = (struct lsap_cb *) sap; | ||
1279 | |||
1280 | self->max_seg_size = max_seg_size - TTP_HEADER; | ||
1281 | self->max_header_size = max_header_size+TTP_HEADER; | ||
1282 | |||
1283 | IRDA_DEBUG(4, "%s(), TSAP sel=%02x\n", __FUNCTION__, self->stsap_sel); | ||
1284 | |||
1285 | /* Need to update dtsap_sel if its equal to LSAP_ANY */ | ||
1286 | self->dtsap_sel = lsap->dlsap_sel; | ||
1287 | |||
1288 | n = skb->data[0] & 0x7f; | ||
1289 | |||
1290 | self->send_credit = n; | ||
1291 | self->tx_max_sdu_size = 0; | ||
1292 | |||
1293 | parameters = skb->data[0] & 0x80; | ||
1294 | |||
1295 | IRDA_ASSERT(skb->len >= TTP_HEADER, return;); | ||
1296 | skb_pull(skb, TTP_HEADER); | ||
1297 | |||
1298 | if (parameters) { | ||
1299 | plen = skb->data[0]; | ||
1300 | |||
1301 | ret = irda_param_extract_all(self, skb->data+1, | ||
1302 | IRDA_MIN(skb->len-1, plen), | ||
1303 | ¶m_info); | ||
1304 | |||
1305 | /* Any errors in the parameter list? */ | ||
1306 | if (ret < 0) { | ||
1307 | IRDA_WARNING("%s: error extracting parameters\n", | ||
1308 | __FUNCTION__); | ||
1309 | dev_kfree_skb(skb); | ||
1310 | |||
1311 | /* Do not accept this connection attempt */ | ||
1312 | return; | ||
1313 | } | ||
1314 | |||
1315 | /* Remove parameters */ | ||
1316 | skb_pull(skb, IRDA_MIN(skb->len, plen+1)); | ||
1317 | } | ||
1318 | |||
1319 | if (self->notify.connect_indication) { | ||
1320 | self->notify.connect_indication(self->notify.instance, self, | ||
1321 | qos, self->tx_max_sdu_size, | ||
1322 | self->max_header_size, skb); | ||
1323 | } else | ||
1324 | dev_kfree_skb(skb); | ||
1325 | } | ||
1326 | |||
1327 | /* | ||
1328 | * Function irttp_connect_response (handle, userdata) | ||
1329 | * | ||
1330 | * Service user is accepting the connection, just pass it down to | ||
1331 | * IrLMP! | ||
1332 | * | ||
1333 | */ | ||
1334 | int irttp_connect_response(struct tsap_cb *self, __u32 max_sdu_size, | ||
1335 | struct sk_buff *userdata) | ||
1336 | { | ||
1337 | struct sk_buff *tx_skb; | ||
1338 | __u8 *frame; | ||
1339 | int ret; | ||
1340 | __u8 n; | ||
1341 | |||
1342 | IRDA_ASSERT(self != NULL, return -1;); | ||
1343 | IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;); | ||
1344 | |||
1345 | IRDA_DEBUG(4, "%s(), Source TSAP selector=%02x\n", __FUNCTION__, | ||
1346 | self->stsap_sel); | ||
1347 | |||
1348 | /* Any userdata supplied? */ | ||
1349 | if (userdata == NULL) { | ||
1350 | tx_skb = dev_alloc_skb(64); | ||
1351 | if (!tx_skb) | ||
1352 | return -ENOMEM; | ||
1353 | |||
1354 | /* Reserve space for MUX_CONTROL and LAP header */ | ||
1355 | skb_reserve(tx_skb, TTP_MAX_HEADER); | ||
1356 | } else { | ||
1357 | tx_skb = userdata; | ||
1358 | /* | ||
1359 | * Check that the client has reserved enough space for | ||
1360 | * headers | ||
1361 | */ | ||
1362 | IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER, | ||
1363 | { dev_kfree_skb(userdata); return -1; } ); | ||
1364 | } | ||
1365 | |||
1366 | self->avail_credit = 0; | ||
1367 | self->remote_credit = 0; | ||
1368 | self->rx_max_sdu_size = max_sdu_size; | ||
1369 | self->rx_sdu_size = 0; | ||
1370 | self->rx_sdu_busy = FALSE; | ||
1371 | |||
1372 | n = self->initial_credit; | ||
1373 | |||
1374 | /* Frame has only space for max 127 credits (7 bits) */ | ||
1375 | if (n > 127) { | ||
1376 | self->avail_credit = n - 127; | ||
1377 | n = 127; | ||
1378 | } | ||
1379 | |||
1380 | self->remote_credit = n; | ||
1381 | self->connected = TRUE; | ||
1382 | |||
1383 | /* SAR enabled? */ | ||
1384 | if (max_sdu_size > 0) { | ||
1385 | IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER), | ||
1386 | { dev_kfree_skb(tx_skb); return -1; } ); | ||
1387 | |||
1388 | /* Insert TTP header with SAR parameters */ | ||
1389 | frame = skb_push(tx_skb, TTP_HEADER+TTP_SAR_HEADER); | ||
1390 | |||
1391 | frame[0] = TTP_PARAMETERS | n; | ||
1392 | frame[1] = 0x04; /* Length */ | ||
1393 | |||
1394 | /* irda_param_insert(self, IRTTP_MAX_SDU_SIZE, frame+1, */ | ||
1395 | /* TTP_SAR_HEADER, ¶m_info) */ | ||
1396 | |||
1397 | frame[2] = 0x01; /* MaxSduSize */ | ||
1398 | frame[3] = 0x02; /* Value length */ | ||
1399 | |||
1400 | put_unaligned(cpu_to_be16((__u16) max_sdu_size), | ||
1401 | (__u16 *)(frame+4)); | ||
1402 | } else { | ||
1403 | /* Insert TTP header */ | ||
1404 | frame = skb_push(tx_skb, TTP_HEADER); | ||
1405 | |||
1406 | frame[0] = n & 0x7f; | ||
1407 | } | ||
1408 | |||
1409 | ret = irlmp_connect_response(self->lsap, tx_skb); | ||
1410 | |||
1411 | return ret; | ||
1412 | } | ||
1413 | EXPORT_SYMBOL(irttp_connect_response); | ||
1414 | |||
1415 | /* | ||
1416 | * Function irttp_dup (self, instance) | ||
1417 | * | ||
1418 | * Duplicate TSAP, can be used by servers to confirm a connection on a | ||
1419 | * new TSAP so it can keep listening on the old one. | ||
1420 | */ | ||
1421 | struct tsap_cb *irttp_dup(struct tsap_cb *orig, void *instance) | ||
1422 | { | ||
1423 | struct tsap_cb *new; | ||
1424 | unsigned long flags; | ||
1425 | |||
1426 | IRDA_DEBUG(1, "%s()\n", __FUNCTION__); | ||
1427 | |||
1428 | /* Protect our access to the old tsap instance */ | ||
1429 | spin_lock_irqsave(&irttp->tsaps->hb_spinlock, flags); | ||
1430 | |||
1431 | /* Find the old instance */ | ||
1432 | if (!hashbin_find(irttp->tsaps, (long) orig, NULL)) { | ||
1433 | IRDA_DEBUG(0, "%s(), unable to find TSAP\n", __FUNCTION__); | ||
1434 | spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags); | ||
1435 | return NULL; | ||
1436 | } | ||
1437 | |||
1438 | /* Allocate a new instance */ | ||
1439 | new = kmalloc(sizeof(struct tsap_cb), GFP_ATOMIC); | ||
1440 | if (!new) { | ||
1441 | IRDA_DEBUG(0, "%s(), unable to kmalloc\n", __FUNCTION__); | ||
1442 | spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags); | ||
1443 | return NULL; | ||
1444 | } | ||
1445 | /* Dup */ | ||
1446 | memcpy(new, orig, sizeof(struct tsap_cb)); | ||
1447 | |||
1448 | /* We don't need the old instance any more */ | ||
1449 | spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags); | ||
1450 | |||
1451 | /* Try to dup the LSAP (may fail if we were too slow) */ | ||
1452 | new->lsap = irlmp_dup(orig->lsap, new); | ||
1453 | if (!new->lsap) { | ||
1454 | IRDA_DEBUG(0, "%s(), dup failed!\n", __FUNCTION__); | ||
1455 | kfree(new); | ||
1456 | return NULL; | ||
1457 | } | ||
1458 | |||
1459 | /* Not everything should be copied */ | ||
1460 | new->notify.instance = instance; | ||
1461 | init_timer(&new->todo_timer); | ||
1462 | |||
1463 | skb_queue_head_init(&new->rx_queue); | ||
1464 | skb_queue_head_init(&new->tx_queue); | ||
1465 | skb_queue_head_init(&new->rx_fragments); | ||
1466 | |||
1467 | /* This is locked */ | ||
1468 | hashbin_insert(irttp->tsaps, (irda_queue_t *) new, (long) new, NULL); | ||
1469 | |||
1470 | return new; | ||
1471 | } | ||
1472 | EXPORT_SYMBOL(irttp_dup); | ||
1473 | |||
1474 | /* | ||
1475 | * Function irttp_disconnect_request (self) | ||
1476 | * | ||
1477 | * Close this connection please! If priority is high, the queued data | ||
1478 | * segments, if any, will be deallocated first | ||
1479 | * | ||
1480 | */ | ||
1481 | int irttp_disconnect_request(struct tsap_cb *self, struct sk_buff *userdata, | ||
1482 | int priority) | ||
1483 | { | ||
1484 | int ret; | ||
1485 | |||
1486 | IRDA_ASSERT(self != NULL, return -1;); | ||
1487 | IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;); | ||
1488 | |||
1489 | /* Already disconnected? */ | ||
1490 | if (!self->connected) { | ||
1491 | IRDA_DEBUG(4, "%s(), already disconnected!\n", __FUNCTION__); | ||
1492 | if (userdata) | ||
1493 | dev_kfree_skb(userdata); | ||
1494 | return -1; | ||
1495 | } | ||
1496 | |||
1497 | /* Disconnect already pending ? | ||
1498 | * We need to use an atomic operation to prevent reentry. This | ||
1499 | * function may be called from various context, like user, timer | ||
1500 | * for following a disconnect_indication() (i.e. net_bh). | ||
1501 | * Jean II */ | ||
1502 | if(test_and_set_bit(0, &self->disconnect_pend)) { | ||
1503 | IRDA_DEBUG(0, "%s(), disconnect already pending\n", | ||
1504 | __FUNCTION__); | ||
1505 | if (userdata) | ||
1506 | dev_kfree_skb(userdata); | ||
1507 | |||
1508 | /* Try to make some progress */ | ||
1509 | irttp_run_tx_queue(self); | ||
1510 | return -1; | ||
1511 | } | ||
1512 | |||
1513 | /* | ||
1514 | * Check if there is still data segments in the transmit queue | ||
1515 | */ | ||
1516 | if (skb_queue_len(&self->tx_queue) > 0) { | ||
1517 | if (priority == P_HIGH) { | ||
1518 | /* | ||
1519 | * No need to send the queued data, if we are | ||
1520 | * disconnecting right now since the data will | ||
1521 | * not have any usable connection to be sent on | ||
1522 | */ | ||
1523 | IRDA_DEBUG(1, "%s(): High priority!!()\n", __FUNCTION__); | ||
1524 | irttp_flush_queues(self); | ||
1525 | } else if (priority == P_NORMAL) { | ||
1526 | /* | ||
1527 | * Must delay disconnect until after all data segments | ||
1528 | * have been sent and the tx_queue is empty | ||
1529 | */ | ||
1530 | /* We'll reuse this one later for the disconnect */ | ||
1531 | self->disconnect_skb = userdata; /* May be NULL */ | ||
1532 | |||
1533 | irttp_run_tx_queue(self); | ||
1534 | |||
1535 | irttp_start_todo_timer(self, HZ/10); | ||
1536 | return -1; | ||
1537 | } | ||
1538 | } | ||
1539 | /* Note : we don't need to check if self->rx_queue is full and the | ||
1540 | * state of self->rx_sdu_busy because the disconnect response will | ||
1541 | * be sent at the LMP level (so even if the peer has its Tx queue | ||
1542 | * full of data). - Jean II */ | ||
1543 | |||
1544 | IRDA_DEBUG(1, "%s(), Disconnecting ...\n", __FUNCTION__); | ||
1545 | self->connected = FALSE; | ||
1546 | |||
1547 | if (!userdata) { | ||
1548 | struct sk_buff *tx_skb; | ||
1549 | tx_skb = dev_alloc_skb(64); | ||
1550 | if (!tx_skb) | ||
1551 | return -ENOMEM; | ||
1552 | |||
1553 | /* | ||
1554 | * Reserve space for MUX and LAP header | ||
1555 | */ | ||
1556 | skb_reserve(tx_skb, TTP_MAX_HEADER); | ||
1557 | |||
1558 | userdata = tx_skb; | ||
1559 | } | ||
1560 | ret = irlmp_disconnect_request(self->lsap, userdata); | ||
1561 | |||
1562 | /* The disconnect is no longer pending */ | ||
1563 | clear_bit(0, &self->disconnect_pend); /* FALSE */ | ||
1564 | |||
1565 | return ret; | ||
1566 | } | ||
1567 | EXPORT_SYMBOL(irttp_disconnect_request); | ||
1568 | |||
1569 | /* | ||
1570 | * Function irttp_disconnect_indication (self, reason) | ||
1571 | * | ||
1572 | * Disconnect indication, TSAP disconnected by peer? | ||
1573 | * | ||
1574 | */ | ||
1575 | void irttp_disconnect_indication(void *instance, void *sap, LM_REASON reason, | ||
1576 | struct sk_buff *skb) | ||
1577 | { | ||
1578 | struct tsap_cb *self; | ||
1579 | |||
1580 | IRDA_DEBUG(4, "%s()\n", __FUNCTION__); | ||
1581 | |||
1582 | self = (struct tsap_cb *) instance; | ||
1583 | |||
1584 | IRDA_ASSERT(self != NULL, return;); | ||
1585 | IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;); | ||
1586 | |||
1587 | /* Prevent higher layer to send more data */ | ||
1588 | self->connected = FALSE; | ||
1589 | |||
1590 | /* Check if client has already tried to close the TSAP */ | ||
1591 | if (self->close_pend) { | ||
1592 | /* In this case, the higher layer is probably gone. Don't | ||
1593 | * bother it and clean up the remains - Jean II */ | ||
1594 | if (skb) | ||
1595 | dev_kfree_skb(skb); | ||
1596 | irttp_close_tsap(self); | ||
1597 | return; | ||
1598 | } | ||
1599 | |||
1600 | /* If we are here, we assume that is the higher layer is still | ||
1601 | * waiting for the disconnect notification and able to process it, | ||
1602 | * even if he tried to disconnect. Otherwise, it would have already | ||
1603 | * attempted to close the tsap and self->close_pend would be TRUE. | ||
1604 | * Jean II */ | ||
1605 | |||
1606 | /* No need to notify the client if has already tried to disconnect */ | ||
1607 | if(self->notify.disconnect_indication) | ||
1608 | self->notify.disconnect_indication(self->notify.instance, self, | ||
1609 | reason, skb); | ||
1610 | else | ||
1611 | if (skb) | ||
1612 | dev_kfree_skb(skb); | ||
1613 | } | ||
1614 | |||
1615 | /* | ||
1616 | * Function irttp_do_data_indication (self, skb) | ||
1617 | * | ||
1618 | * Try to deliver reassembled skb to layer above, and requeue it if that | ||
1619 | * for some reason should fail. We mark rx sdu as busy to apply back | ||
1620 | * pressure is necessary. | ||
1621 | */ | ||
1622 | static void irttp_do_data_indication(struct tsap_cb *self, struct sk_buff *skb) | ||
1623 | { | ||
1624 | int err; | ||
1625 | |||
1626 | /* Check if client has already closed the TSAP and gone away */ | ||
1627 | if (self->close_pend) { | ||
1628 | dev_kfree_skb(skb); | ||
1629 | return; | ||
1630 | } | ||
1631 | |||
1632 | err = self->notify.data_indication(self->notify.instance, self, skb); | ||
1633 | |||
1634 | /* Usually the layer above will notify that it's input queue is | ||
1635 | * starting to get filled by using the flow request, but this may | ||
1636 | * be difficult, so it can instead just refuse to eat it and just | ||
1637 | * give an error back | ||
1638 | */ | ||
1639 | if (err) { | ||
1640 | IRDA_DEBUG(0, "%s() requeueing skb!\n", __FUNCTION__); | ||
1641 | |||
1642 | /* Make sure we take a break */ | ||
1643 | self->rx_sdu_busy = TRUE; | ||
1644 | |||
1645 | /* Need to push the header in again */ | ||
1646 | skb_push(skb, TTP_HEADER); | ||
1647 | skb->data[0] = 0x00; /* Make sure MORE bit is cleared */ | ||
1648 | |||
1649 | /* Put skb back on queue */ | ||
1650 | skb_queue_head(&self->rx_queue, skb); | ||
1651 | } | ||
1652 | } | ||
1653 | |||
1654 | /* | ||
1655 | * Function irttp_run_rx_queue (self) | ||
1656 | * | ||
1657 | * Check if we have any frames to be transmitted, or if we have any | ||
1658 | * available credit to give away. | ||
1659 | */ | ||
1660 | void irttp_run_rx_queue(struct tsap_cb *self) | ||
1661 | { | ||
1662 | struct sk_buff *skb; | ||
1663 | int more = 0; | ||
1664 | |||
1665 | IRDA_DEBUG(2, "%s() send=%d,avail=%d,remote=%d\n", __FUNCTION__, | ||
1666 | self->send_credit, self->avail_credit, self->remote_credit); | ||
1667 | |||
1668 | /* Get exclusive access to the rx queue, otherwise don't touch it */ | ||
1669 | if (irda_lock(&self->rx_queue_lock) == FALSE) | ||
1670 | return; | ||
1671 | |||
1672 | /* | ||
1673 | * Reassemble all frames in receive queue and deliver them | ||
1674 | */ | ||
1675 | while (!self->rx_sdu_busy && (skb = skb_dequeue(&self->rx_queue))) { | ||
1676 | /* This bit will tell us if it's the last fragment or not */ | ||
1677 | more = skb->data[0] & 0x80; | ||
1678 | |||
1679 | /* Remove TTP header */ | ||
1680 | skb_pull(skb, TTP_HEADER); | ||
1681 | |||
1682 | /* Add the length of the remaining data */ | ||
1683 | self->rx_sdu_size += skb->len; | ||
1684 | |||
1685 | /* | ||
1686 | * If SAR is disabled, or user has requested no reassembly | ||
1687 | * of received fragments then we just deliver them | ||
1688 | * immediately. This can be requested by clients that | ||
1689 | * implements byte streams without any message boundaries | ||
1690 | */ | ||
1691 | if (self->rx_max_sdu_size == TTP_SAR_DISABLE) { | ||
1692 | irttp_do_data_indication(self, skb); | ||
1693 | self->rx_sdu_size = 0; | ||
1694 | |||
1695 | continue; | ||
1696 | } | ||
1697 | |||
1698 | /* Check if this is a fragment, and not the last fragment */ | ||
1699 | if (more) { | ||
1700 | /* | ||
1701 | * Queue the fragment if we still are within the | ||
1702 | * limits of the maximum size of the rx_sdu | ||
1703 | */ | ||
1704 | if (self->rx_sdu_size <= self->rx_max_sdu_size) { | ||
1705 | IRDA_DEBUG(4, "%s(), queueing frag\n", | ||
1706 | __FUNCTION__); | ||
1707 | skb_queue_tail(&self->rx_fragments, skb); | ||
1708 | } else { | ||
1709 | /* Free the part of the SDU that is too big */ | ||
1710 | dev_kfree_skb(skb); | ||
1711 | } | ||
1712 | continue; | ||
1713 | } | ||
1714 | /* | ||
1715 | * This is the last fragment, so time to reassemble! | ||
1716 | */ | ||
1717 | if ((self->rx_sdu_size <= self->rx_max_sdu_size) || | ||
1718 | (self->rx_max_sdu_size == TTP_SAR_UNBOUND)) | ||
1719 | { | ||
1720 | /* | ||
1721 | * A little optimizing. Only queue the fragment if | ||
1722 | * there are other fragments. Since if this is the | ||
1723 | * last and only fragment, there is no need to | ||
1724 | * reassemble :-) | ||
1725 | */ | ||
1726 | if (!skb_queue_empty(&self->rx_fragments)) { | ||
1727 | skb_queue_tail(&self->rx_fragments, | ||
1728 | skb); | ||
1729 | |||
1730 | skb = irttp_reassemble_skb(self); | ||
1731 | } | ||
1732 | |||
1733 | /* Now we can deliver the reassembled skb */ | ||
1734 | irttp_do_data_indication(self, skb); | ||
1735 | } else { | ||
1736 | IRDA_DEBUG(1, "%s(), Truncated frame\n", __FUNCTION__); | ||
1737 | |||
1738 | /* Free the part of the SDU that is too big */ | ||
1739 | dev_kfree_skb(skb); | ||
1740 | |||
1741 | /* Deliver only the valid but truncated part of SDU */ | ||
1742 | skb = irttp_reassemble_skb(self); | ||
1743 | |||
1744 | irttp_do_data_indication(self, skb); | ||
1745 | } | ||
1746 | self->rx_sdu_size = 0; | ||
1747 | } | ||
1748 | |||
1749 | /* | ||
1750 | * It's not trivial to keep track of how many credits are available | ||
1751 | * by incrementing at each packet, because delivery may fail | ||
1752 | * (irttp_do_data_indication() may requeue the frame) and because | ||
1753 | * we need to take care of fragmentation. | ||
1754 | * We want the other side to send up to initial_credit packets. | ||
1755 | * We have some frames in our queues, and we have already allowed it | ||
1756 | * to send remote_credit. | ||
1757 | * No need to spinlock, write is atomic and self correcting... | ||
1758 | * Jean II | ||
1759 | */ | ||
1760 | self->avail_credit = (self->initial_credit - | ||
1761 | (self->remote_credit + | ||
1762 | skb_queue_len(&self->rx_queue) + | ||
1763 | skb_queue_len(&self->rx_fragments))); | ||
1764 | |||
1765 | /* Do we have too much credits to send to peer ? */ | ||
1766 | if ((self->remote_credit <= TTP_RX_MIN_CREDIT) && | ||
1767 | (self->avail_credit > 0)) { | ||
1768 | /* Send explicit credit frame */ | ||
1769 | irttp_give_credit(self); | ||
1770 | /* Note : do *NOT* check if tx_queue is non-empty, that | ||
1771 | * will produce deadlocks. I repeat : send a credit frame | ||
1772 | * even if we have something to send in our Tx queue. | ||
1773 | * If we have credits, it means that our Tx queue is blocked. | ||
1774 | * | ||
1775 | * Let's suppose the peer can't keep up with our Tx. He will | ||
1776 | * flow control us by not sending us any credits, and we | ||
1777 | * will stop Tx and start accumulating credits here. | ||
1778 | * Up to the point where the peer will stop its Tx queue, | ||
1779 | * for lack of credits. | ||
1780 | * Let's assume the peer application is single threaded. | ||
1781 | * It will block on Tx and never consume any Rx buffer. | ||
1782 | * Deadlock. Guaranteed. - Jean II | ||
1783 | */ | ||
1784 | } | ||
1785 | |||
1786 | /* Reset lock */ | ||
1787 | self->rx_queue_lock = 0; | ||
1788 | } | ||
1789 | |||
1790 | #ifdef CONFIG_PROC_FS | ||
1791 | struct irttp_iter_state { | ||
1792 | int id; | ||
1793 | }; | ||
1794 | |||
1795 | static void *irttp_seq_start(struct seq_file *seq, loff_t *pos) | ||
1796 | { | ||
1797 | struct irttp_iter_state *iter = seq->private; | ||
1798 | struct tsap_cb *self; | ||
1799 | |||
1800 | /* Protect our access to the tsap list */ | ||
1801 | spin_lock_irq(&irttp->tsaps->hb_spinlock); | ||
1802 | iter->id = 0; | ||
1803 | |||
1804 | for (self = (struct tsap_cb *) hashbin_get_first(irttp->tsaps); | ||
1805 | self != NULL; | ||
1806 | self = (struct tsap_cb *) hashbin_get_next(irttp->tsaps)) { | ||
1807 | if (iter->id == *pos) | ||
1808 | break; | ||
1809 | ++iter->id; | ||
1810 | } | ||
1811 | |||
1812 | return self; | ||
1813 | } | ||
1814 | |||
1815 | static void *irttp_seq_next(struct seq_file *seq, void *v, loff_t *pos) | ||
1816 | { | ||
1817 | struct irttp_iter_state *iter = seq->private; | ||
1818 | |||
1819 | ++*pos; | ||
1820 | ++iter->id; | ||
1821 | return (void *) hashbin_get_next(irttp->tsaps); | ||
1822 | } | ||
1823 | |||
1824 | static void irttp_seq_stop(struct seq_file *seq, void *v) | ||
1825 | { | ||
1826 | spin_unlock_irq(&irttp->tsaps->hb_spinlock); | ||
1827 | } | ||
1828 | |||
1829 | static int irttp_seq_show(struct seq_file *seq, void *v) | ||
1830 | { | ||
1831 | const struct irttp_iter_state *iter = seq->private; | ||
1832 | const struct tsap_cb *self = v; | ||
1833 | |||
1834 | seq_printf(seq, "TSAP %d, ", iter->id); | ||
1835 | seq_printf(seq, "stsap_sel: %02x, ", | ||
1836 | self->stsap_sel); | ||
1837 | seq_printf(seq, "dtsap_sel: %02x\n", | ||
1838 | self->dtsap_sel); | ||
1839 | seq_printf(seq, " connected: %s, ", | ||
1840 | self->connected? "TRUE":"FALSE"); | ||
1841 | seq_printf(seq, "avail credit: %d, ", | ||
1842 | self->avail_credit); | ||
1843 | seq_printf(seq, "remote credit: %d, ", | ||
1844 | self->remote_credit); | ||
1845 | seq_printf(seq, "send credit: %d\n", | ||
1846 | self->send_credit); | ||
1847 | seq_printf(seq, " tx packets: %ld, ", | ||
1848 | self->stats.tx_packets); | ||
1849 | seq_printf(seq, "rx packets: %ld, ", | ||
1850 | self->stats.rx_packets); | ||
1851 | seq_printf(seq, "tx_queue len: %d ", | ||
1852 | skb_queue_len(&self->tx_queue)); | ||
1853 | seq_printf(seq, "rx_queue len: %d\n", | ||
1854 | skb_queue_len(&self->rx_queue)); | ||
1855 | seq_printf(seq, " tx_sdu_busy: %s, ", | ||
1856 | self->tx_sdu_busy? "TRUE":"FALSE"); | ||
1857 | seq_printf(seq, "rx_sdu_busy: %s\n", | ||
1858 | self->rx_sdu_busy? "TRUE":"FALSE"); | ||
1859 | seq_printf(seq, " max_seg_size: %d, ", | ||
1860 | self->max_seg_size); | ||
1861 | seq_printf(seq, "tx_max_sdu_size: %d, ", | ||
1862 | self->tx_max_sdu_size); | ||
1863 | seq_printf(seq, "rx_max_sdu_size: %d\n", | ||
1864 | self->rx_max_sdu_size); | ||
1865 | |||
1866 | seq_printf(seq, " Used by (%s)\n\n", | ||
1867 | self->notify.name); | ||
1868 | return 0; | ||
1869 | } | ||
1870 | |||
1871 | static struct seq_operations irttp_seq_ops = { | ||
1872 | .start = irttp_seq_start, | ||
1873 | .next = irttp_seq_next, | ||
1874 | .stop = irttp_seq_stop, | ||
1875 | .show = irttp_seq_show, | ||
1876 | }; | ||
1877 | |||
1878 | static int irttp_seq_open(struct inode *inode, struct file *file) | ||
1879 | { | ||
1880 | struct seq_file *seq; | ||
1881 | int rc = -ENOMEM; | ||
1882 | struct irttp_iter_state *s; | ||
1883 | |||
1884 | IRDA_ASSERT(irttp != NULL, return -EINVAL;); | ||
1885 | |||
1886 | s = kmalloc(sizeof(*s), GFP_KERNEL); | ||
1887 | if (!s) | ||
1888 | goto out; | ||
1889 | |||
1890 | rc = seq_open(file, &irttp_seq_ops); | ||
1891 | if (rc) | ||
1892 | goto out_kfree; | ||
1893 | |||
1894 | seq = file->private_data; | ||
1895 | seq->private = s; | ||
1896 | memset(s, 0, sizeof(*s)); | ||
1897 | out: | ||
1898 | return rc; | ||
1899 | out_kfree: | ||
1900 | kfree(s); | ||
1901 | goto out; | ||
1902 | } | ||
1903 | |||
1904 | struct file_operations irttp_seq_fops = { | ||
1905 | .owner = THIS_MODULE, | ||
1906 | .open = irttp_seq_open, | ||
1907 | .read = seq_read, | ||
1908 | .llseek = seq_lseek, | ||
1909 | .release = seq_release_private, | ||
1910 | }; | ||
1911 | |||
1912 | #endif /* PROC_FS */ | ||