aboutsummaryrefslogtreecommitdiffstats
path: root/net/ipv4
diff options
context:
space:
mode:
authorTom Herbert <therbert@google.com>2010-04-16 19:01:27 -0400
committerDavid S. Miller <davem@davemloft.net>2010-04-16 19:01:27 -0400
commitfec5e652e58fa6017b2c9e06466cb2a6538de5b4 (patch)
treee034f2a1e7930a0a225bd30896f834ec5e09c084 /net/ipv4
parentb5d43998234331b9c01bd2165fdbb25115f4387f (diff)
rfs: Receive Flow Steering
This patch implements receive flow steering (RFS). RFS steers received packets for layer 3 and 4 processing to the CPU where the application for the corresponding flow is running. RFS is an extension of Receive Packet Steering (RPS). The basic idea of RFS is that when an application calls recvmsg (or sendmsg) the application's running CPU is stored in a hash table that is indexed by the connection's rxhash which is stored in the socket structure. The rxhash is passed in skb's received on the connection from netif_receive_skb. For each received packet, the associated rxhash is used to look up the CPU in the hash table, if a valid CPU is set then the packet is steered to that CPU using the RPS mechanisms. The convolution of the simple approach is that it would potentially allow OOO packets. If threads are thrashing around CPUs or multiple threads are trying to read from the same sockets, a quickly changing CPU value in the hash table could cause rampant OOO packets-- we consider this a non-starter. To avoid OOO packets, this solution implements two types of hash tables: rps_sock_flow_table and rps_dev_flow_table. rps_sock_table is a global hash table. Each entry is just a CPU number and it is populated in recvmsg and sendmsg as described above. This table contains the "desired" CPUs for flows. rps_dev_flow_table is specific to each device queue. Each entry contains a CPU and a tail queue counter. The CPU is the "current" CPU for a matching flow. The tail queue counter holds the value of a tail queue counter for the associated CPU's backlog queue at the time of last enqueue for a flow matching the entry. Each backlog queue has a queue head counter which is incremented on dequeue, and so a queue tail counter is computed as queue head count + queue length. When a packet is enqueued on a backlog queue, the current value of the queue tail counter is saved in the hash entry of the rps_dev_flow_table. And now the trick: when selecting the CPU for RPS (get_rps_cpu) the rps_sock_flow table and the rps_dev_flow table for the RX queue are consulted. When the desired CPU for the flow (found in the rps_sock_flow table) does not match the current CPU (found in the rps_dev_flow table), the current CPU is changed to the desired CPU if one of the following is true: - The current CPU is unset (equal to RPS_NO_CPU) - Current CPU is offline - The current CPU's queue head counter >= queue tail counter in the rps_dev_flow table. This checks if the queue tail has advanced beyond the last packet that was enqueued using this table entry. This guarantees that all packets queued using this entry have been dequeued, thus preserving in order delivery. Making each queue have its own rps_dev_flow table has two advantages: 1) the tail queue counters will be written on each receive, so keeping the table local to interrupting CPU s good for locality. 2) this allows lockless access to the table-- the CPU number and queue tail counter need to be accessed together under mutual exclusion from netif_receive_skb, we assume that this is only called from device napi_poll which is non-reentrant. This patch implements RFS for TCP and connected UDP sockets. It should be usable for other flow oriented protocols. There are two configuration parameters for RFS. The "rps_flow_entries" kernel init parameter sets the number of entries in the rps_sock_flow_table, the per rxqueue sysfs entry "rps_flow_cnt" contains the number of entries in the rps_dev_flow table for the rxqueue. Both are rounded to power of two. The obvious benefit of RFS (over just RPS) is that it achieves CPU locality between the receive processing for a flow and the applications processing; this can result in increased performance (higher pps, lower latency). The benefits of RFS are dependent on cache hierarchy, application load, and other factors. On simple benchmarks, we don't necessarily see improvement and sometimes see degradation. However, for more complex benchmarks and for applications where cache pressure is much higher this technique seems to perform very well. Below are some benchmark results which show the potential benfit of this patch. The netperf test has 500 instances of netperf TCP_RR test with 1 byte req. and resp. The RPC test is an request/response test similar in structure to netperf RR test ith 100 threads on each host, but does more work in userspace that netperf. e1000e on 8 core Intel No RFS or RPS 104K tps at 30% CPU No RFS (best RPS config): 290K tps at 63% CPU RFS 303K tps at 61% CPU RPC test tps CPU% 50/90/99% usec latency Latency StdDev No RFS/RPS 103K 48% 757/900/3185 4472.35 RPS only: 174K 73% 415/993/2468 491.66 RFS 223K 73% 379/651/1382 315.61 Signed-off-by: Tom Herbert <therbert@google.com> Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'net/ipv4')
-rw-r--r--net/ipv4/af_inet.c29
-rw-r--r--net/ipv4/tcp_ipv4.c2
-rw-r--r--net/ipv4/udp.c7
3 files changed, 33 insertions, 5 deletions
diff --git a/net/ipv4/af_inet.c b/net/ipv4/af_inet.c
index 193dcd6ed64f..c5376c725503 100644
--- a/net/ipv4/af_inet.c
+++ b/net/ipv4/af_inet.c
@@ -419,6 +419,8 @@ int inet_release(struct socket *sock)
419 if (sk) { 419 if (sk) {
420 long timeout; 420 long timeout;
421 421
422 inet_rps_reset_flow(sk);
423
422 /* Applications forget to leave groups before exiting */ 424 /* Applications forget to leave groups before exiting */
423 ip_mc_drop_socket(sk); 425 ip_mc_drop_socket(sk);
424 426
@@ -720,6 +722,8 @@ int inet_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
720{ 722{
721 struct sock *sk = sock->sk; 723 struct sock *sk = sock->sk;
722 724
725 inet_rps_record_flow(sk);
726
723 /* We may need to bind the socket. */ 727 /* We may need to bind the socket. */
724 if (!inet_sk(sk)->inet_num && inet_autobind(sk)) 728 if (!inet_sk(sk)->inet_num && inet_autobind(sk))
725 return -EAGAIN; 729 return -EAGAIN;
@@ -728,12 +732,13 @@ int inet_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
728} 732}
729EXPORT_SYMBOL(inet_sendmsg); 733EXPORT_SYMBOL(inet_sendmsg);
730 734
731
732static ssize_t inet_sendpage(struct socket *sock, struct page *page, int offset, 735static ssize_t inet_sendpage(struct socket *sock, struct page *page, int offset,
733 size_t size, int flags) 736 size_t size, int flags)
734{ 737{
735 struct sock *sk = sock->sk; 738 struct sock *sk = sock->sk;
736 739
740 inet_rps_record_flow(sk);
741
737 /* We may need to bind the socket. */ 742 /* We may need to bind the socket. */
738 if (!inet_sk(sk)->inet_num && inet_autobind(sk)) 743 if (!inet_sk(sk)->inet_num && inet_autobind(sk))
739 return -EAGAIN; 744 return -EAGAIN;
@@ -743,6 +748,22 @@ static ssize_t inet_sendpage(struct socket *sock, struct page *page, int offset,
743 return sock_no_sendpage(sock, page, offset, size, flags); 748 return sock_no_sendpage(sock, page, offset, size, flags);
744} 749}
745 750
751int inet_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
752 size_t size, int flags)
753{
754 struct sock *sk = sock->sk;
755 int addr_len = 0;
756 int err;
757
758 inet_rps_record_flow(sk);
759
760 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
761 flags & ~MSG_DONTWAIT, &addr_len);
762 if (err >= 0)
763 msg->msg_namelen = addr_len;
764 return err;
765}
766EXPORT_SYMBOL(inet_recvmsg);
746 767
747int inet_shutdown(struct socket *sock, int how) 768int inet_shutdown(struct socket *sock, int how)
748{ 769{
@@ -872,7 +893,7 @@ const struct proto_ops inet_stream_ops = {
872 .setsockopt = sock_common_setsockopt, 893 .setsockopt = sock_common_setsockopt,
873 .getsockopt = sock_common_getsockopt, 894 .getsockopt = sock_common_getsockopt,
874 .sendmsg = tcp_sendmsg, 895 .sendmsg = tcp_sendmsg,
875 .recvmsg = sock_common_recvmsg, 896 .recvmsg = inet_recvmsg,
876 .mmap = sock_no_mmap, 897 .mmap = sock_no_mmap,
877 .sendpage = tcp_sendpage, 898 .sendpage = tcp_sendpage,
878 .splice_read = tcp_splice_read, 899 .splice_read = tcp_splice_read,
@@ -899,7 +920,7 @@ const struct proto_ops inet_dgram_ops = {
899 .setsockopt = sock_common_setsockopt, 920 .setsockopt = sock_common_setsockopt,
900 .getsockopt = sock_common_getsockopt, 921 .getsockopt = sock_common_getsockopt,
901 .sendmsg = inet_sendmsg, 922 .sendmsg = inet_sendmsg,
902 .recvmsg = sock_common_recvmsg, 923 .recvmsg = inet_recvmsg,
903 .mmap = sock_no_mmap, 924 .mmap = sock_no_mmap,
904 .sendpage = inet_sendpage, 925 .sendpage = inet_sendpage,
905#ifdef CONFIG_COMPAT 926#ifdef CONFIG_COMPAT
@@ -929,7 +950,7 @@ static const struct proto_ops inet_sockraw_ops = {
929 .setsockopt = sock_common_setsockopt, 950 .setsockopt = sock_common_setsockopt,
930 .getsockopt = sock_common_getsockopt, 951 .getsockopt = sock_common_getsockopt,
931 .sendmsg = inet_sendmsg, 952 .sendmsg = inet_sendmsg,
932 .recvmsg = sock_common_recvmsg, 953 .recvmsg = inet_recvmsg,
933 .mmap = sock_no_mmap, 954 .mmap = sock_no_mmap,
934 .sendpage = inet_sendpage, 955 .sendpage = inet_sendpage,
935#ifdef CONFIG_COMPAT 956#ifdef CONFIG_COMPAT
diff --git a/net/ipv4/tcp_ipv4.c b/net/ipv4/tcp_ipv4.c
index a24995cdc4b6..ad08392a738c 100644
--- a/net/ipv4/tcp_ipv4.c
+++ b/net/ipv4/tcp_ipv4.c
@@ -1672,6 +1672,8 @@ process:
1672 1672
1673 skb->dev = NULL; 1673 skb->dev = NULL;
1674 1674
1675 inet_rps_save_rxhash(sk, skb->rxhash);
1676
1675 bh_lock_sock_nested(sk); 1677 bh_lock_sock_nested(sk);
1676 ret = 0; 1678 ret = 0;
1677 if (!sock_owned_by_user(sk)) { 1679 if (!sock_owned_by_user(sk)) {
diff --git a/net/ipv4/udp.c b/net/ipv4/udp.c
index 8fef859db35d..666b963496ff 100644
--- a/net/ipv4/udp.c
+++ b/net/ipv4/udp.c
@@ -1217,6 +1217,7 @@ int udp_disconnect(struct sock *sk, int flags)
1217 sk->sk_state = TCP_CLOSE; 1217 sk->sk_state = TCP_CLOSE;
1218 inet->inet_daddr = 0; 1218 inet->inet_daddr = 0;
1219 inet->inet_dport = 0; 1219 inet->inet_dport = 0;
1220 inet_rps_save_rxhash(sk, 0);
1220 sk->sk_bound_dev_if = 0; 1221 sk->sk_bound_dev_if = 0;
1221 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 1222 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1222 inet_reset_saddr(sk); 1223 inet_reset_saddr(sk);
@@ -1258,8 +1259,12 @@ EXPORT_SYMBOL(udp_lib_unhash);
1258 1259
1259static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) 1260static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1260{ 1261{
1261 int rc = sock_queue_rcv_skb(sk, skb); 1262 int rc;
1263
1264 if (inet_sk(sk)->inet_daddr)
1265 inet_rps_save_rxhash(sk, skb->rxhash);
1262 1266
1267 rc = sock_queue_rcv_skb(sk, skb);
1263 if (rc < 0) { 1268 if (rc < 0) {
1264 int is_udplite = IS_UDPLITE(sk); 1269 int is_udplite = IS_UDPLITE(sk);
1265 1270