diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /net/ipv4/tcp_output.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'net/ipv4/tcp_output.c')
-rw-r--r-- | net/ipv4/tcp_output.c | 1739 |
1 files changed, 1739 insertions, 0 deletions
diff --git a/net/ipv4/tcp_output.c b/net/ipv4/tcp_output.c new file mode 100644 index 000000000000..13c14cb6dee4 --- /dev/null +++ b/net/ipv4/tcp_output.c | |||
@@ -0,0 +1,1739 @@ | |||
1 | /* | ||
2 | * INET An implementation of the TCP/IP protocol suite for the LINUX | ||
3 | * operating system. INET is implemented using the BSD Socket | ||
4 | * interface as the means of communication with the user level. | ||
5 | * | ||
6 | * Implementation of the Transmission Control Protocol(TCP). | ||
7 | * | ||
8 | * Version: $Id: tcp_output.c,v 1.146 2002/02/01 22:01:04 davem Exp $ | ||
9 | * | ||
10 | * Authors: Ross Biro, <bir7@leland.Stanford.Edu> | ||
11 | * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> | ||
12 | * Mark Evans, <evansmp@uhura.aston.ac.uk> | ||
13 | * Corey Minyard <wf-rch!minyard@relay.EU.net> | ||
14 | * Florian La Roche, <flla@stud.uni-sb.de> | ||
15 | * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> | ||
16 | * Linus Torvalds, <torvalds@cs.helsinki.fi> | ||
17 | * Alan Cox, <gw4pts@gw4pts.ampr.org> | ||
18 | * Matthew Dillon, <dillon@apollo.west.oic.com> | ||
19 | * Arnt Gulbrandsen, <agulbra@nvg.unit.no> | ||
20 | * Jorge Cwik, <jorge@laser.satlink.net> | ||
21 | */ | ||
22 | |||
23 | /* | ||
24 | * Changes: Pedro Roque : Retransmit queue handled by TCP. | ||
25 | * : Fragmentation on mtu decrease | ||
26 | * : Segment collapse on retransmit | ||
27 | * : AF independence | ||
28 | * | ||
29 | * Linus Torvalds : send_delayed_ack | ||
30 | * David S. Miller : Charge memory using the right skb | ||
31 | * during syn/ack processing. | ||
32 | * David S. Miller : Output engine completely rewritten. | ||
33 | * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. | ||
34 | * Cacophonix Gaul : draft-minshall-nagle-01 | ||
35 | * J Hadi Salim : ECN support | ||
36 | * | ||
37 | */ | ||
38 | |||
39 | #include <net/tcp.h> | ||
40 | |||
41 | #include <linux/compiler.h> | ||
42 | #include <linux/module.h> | ||
43 | #include <linux/smp_lock.h> | ||
44 | |||
45 | /* People can turn this off for buggy TCP's found in printers etc. */ | ||
46 | int sysctl_tcp_retrans_collapse = 1; | ||
47 | |||
48 | /* This limits the percentage of the congestion window which we | ||
49 | * will allow a single TSO frame to consume. Building TSO frames | ||
50 | * which are too large can cause TCP streams to be bursty. | ||
51 | */ | ||
52 | int sysctl_tcp_tso_win_divisor = 8; | ||
53 | |||
54 | static inline void update_send_head(struct sock *sk, struct tcp_sock *tp, | ||
55 | struct sk_buff *skb) | ||
56 | { | ||
57 | sk->sk_send_head = skb->next; | ||
58 | if (sk->sk_send_head == (struct sk_buff *)&sk->sk_write_queue) | ||
59 | sk->sk_send_head = NULL; | ||
60 | tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; | ||
61 | tcp_packets_out_inc(sk, tp, skb); | ||
62 | } | ||
63 | |||
64 | /* SND.NXT, if window was not shrunk. | ||
65 | * If window has been shrunk, what should we make? It is not clear at all. | ||
66 | * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( | ||
67 | * Anything in between SND.UNA...SND.UNA+SND.WND also can be already | ||
68 | * invalid. OK, let's make this for now: | ||
69 | */ | ||
70 | static inline __u32 tcp_acceptable_seq(struct sock *sk, struct tcp_sock *tp) | ||
71 | { | ||
72 | if (!before(tp->snd_una+tp->snd_wnd, tp->snd_nxt)) | ||
73 | return tp->snd_nxt; | ||
74 | else | ||
75 | return tp->snd_una+tp->snd_wnd; | ||
76 | } | ||
77 | |||
78 | /* Calculate mss to advertise in SYN segment. | ||
79 | * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: | ||
80 | * | ||
81 | * 1. It is independent of path mtu. | ||
82 | * 2. Ideally, it is maximal possible segment size i.e. 65535-40. | ||
83 | * 3. For IPv4 it is reasonable to calculate it from maximal MTU of | ||
84 | * attached devices, because some buggy hosts are confused by | ||
85 | * large MSS. | ||
86 | * 4. We do not make 3, we advertise MSS, calculated from first | ||
87 | * hop device mtu, but allow to raise it to ip_rt_min_advmss. | ||
88 | * This may be overridden via information stored in routing table. | ||
89 | * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, | ||
90 | * probably even Jumbo". | ||
91 | */ | ||
92 | static __u16 tcp_advertise_mss(struct sock *sk) | ||
93 | { | ||
94 | struct tcp_sock *tp = tcp_sk(sk); | ||
95 | struct dst_entry *dst = __sk_dst_get(sk); | ||
96 | int mss = tp->advmss; | ||
97 | |||
98 | if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) { | ||
99 | mss = dst_metric(dst, RTAX_ADVMSS); | ||
100 | tp->advmss = mss; | ||
101 | } | ||
102 | |||
103 | return (__u16)mss; | ||
104 | } | ||
105 | |||
106 | /* RFC2861. Reset CWND after idle period longer RTO to "restart window". | ||
107 | * This is the first part of cwnd validation mechanism. */ | ||
108 | static void tcp_cwnd_restart(struct tcp_sock *tp, struct dst_entry *dst) | ||
109 | { | ||
110 | s32 delta = tcp_time_stamp - tp->lsndtime; | ||
111 | u32 restart_cwnd = tcp_init_cwnd(tp, dst); | ||
112 | u32 cwnd = tp->snd_cwnd; | ||
113 | |||
114 | if (tcp_is_vegas(tp)) | ||
115 | tcp_vegas_enable(tp); | ||
116 | |||
117 | tp->snd_ssthresh = tcp_current_ssthresh(tp); | ||
118 | restart_cwnd = min(restart_cwnd, cwnd); | ||
119 | |||
120 | while ((delta -= tp->rto) > 0 && cwnd > restart_cwnd) | ||
121 | cwnd >>= 1; | ||
122 | tp->snd_cwnd = max(cwnd, restart_cwnd); | ||
123 | tp->snd_cwnd_stamp = tcp_time_stamp; | ||
124 | tp->snd_cwnd_used = 0; | ||
125 | } | ||
126 | |||
127 | static inline void tcp_event_data_sent(struct tcp_sock *tp, | ||
128 | struct sk_buff *skb, struct sock *sk) | ||
129 | { | ||
130 | u32 now = tcp_time_stamp; | ||
131 | |||
132 | if (!tp->packets_out && (s32)(now - tp->lsndtime) > tp->rto) | ||
133 | tcp_cwnd_restart(tp, __sk_dst_get(sk)); | ||
134 | |||
135 | tp->lsndtime = now; | ||
136 | |||
137 | /* If it is a reply for ato after last received | ||
138 | * packet, enter pingpong mode. | ||
139 | */ | ||
140 | if ((u32)(now - tp->ack.lrcvtime) < tp->ack.ato) | ||
141 | tp->ack.pingpong = 1; | ||
142 | } | ||
143 | |||
144 | static __inline__ void tcp_event_ack_sent(struct sock *sk) | ||
145 | { | ||
146 | struct tcp_sock *tp = tcp_sk(sk); | ||
147 | |||
148 | tcp_dec_quickack_mode(tp); | ||
149 | tcp_clear_xmit_timer(sk, TCP_TIME_DACK); | ||
150 | } | ||
151 | |||
152 | /* Determine a window scaling and initial window to offer. | ||
153 | * Based on the assumption that the given amount of space | ||
154 | * will be offered. Store the results in the tp structure. | ||
155 | * NOTE: for smooth operation initial space offering should | ||
156 | * be a multiple of mss if possible. We assume here that mss >= 1. | ||
157 | * This MUST be enforced by all callers. | ||
158 | */ | ||
159 | void tcp_select_initial_window(int __space, __u32 mss, | ||
160 | __u32 *rcv_wnd, __u32 *window_clamp, | ||
161 | int wscale_ok, __u8 *rcv_wscale) | ||
162 | { | ||
163 | unsigned int space = (__space < 0 ? 0 : __space); | ||
164 | |||
165 | /* If no clamp set the clamp to the max possible scaled window */ | ||
166 | if (*window_clamp == 0) | ||
167 | (*window_clamp) = (65535 << 14); | ||
168 | space = min(*window_clamp, space); | ||
169 | |||
170 | /* Quantize space offering to a multiple of mss if possible. */ | ||
171 | if (space > mss) | ||
172 | space = (space / mss) * mss; | ||
173 | |||
174 | /* NOTE: offering an initial window larger than 32767 | ||
175 | * will break some buggy TCP stacks. We try to be nice. | ||
176 | * If we are not window scaling, then this truncates | ||
177 | * our initial window offering to 32k. There should also | ||
178 | * be a sysctl option to stop being nice. | ||
179 | */ | ||
180 | (*rcv_wnd) = min(space, MAX_TCP_WINDOW); | ||
181 | (*rcv_wscale) = 0; | ||
182 | if (wscale_ok) { | ||
183 | /* Set window scaling on max possible window | ||
184 | * See RFC1323 for an explanation of the limit to 14 | ||
185 | */ | ||
186 | space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max); | ||
187 | while (space > 65535 && (*rcv_wscale) < 14) { | ||
188 | space >>= 1; | ||
189 | (*rcv_wscale)++; | ||
190 | } | ||
191 | } | ||
192 | |||
193 | /* Set initial window to value enough for senders, | ||
194 | * following RFC1414. Senders, not following this RFC, | ||
195 | * will be satisfied with 2. | ||
196 | */ | ||
197 | if (mss > (1<<*rcv_wscale)) { | ||
198 | int init_cwnd = 4; | ||
199 | if (mss > 1460*3) | ||
200 | init_cwnd = 2; | ||
201 | else if (mss > 1460) | ||
202 | init_cwnd = 3; | ||
203 | if (*rcv_wnd > init_cwnd*mss) | ||
204 | *rcv_wnd = init_cwnd*mss; | ||
205 | } | ||
206 | |||
207 | /* Set the clamp no higher than max representable value */ | ||
208 | (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); | ||
209 | } | ||
210 | |||
211 | /* Chose a new window to advertise, update state in tcp_sock for the | ||
212 | * socket, and return result with RFC1323 scaling applied. The return | ||
213 | * value can be stuffed directly into th->window for an outgoing | ||
214 | * frame. | ||
215 | */ | ||
216 | static __inline__ u16 tcp_select_window(struct sock *sk) | ||
217 | { | ||
218 | struct tcp_sock *tp = tcp_sk(sk); | ||
219 | u32 cur_win = tcp_receive_window(tp); | ||
220 | u32 new_win = __tcp_select_window(sk); | ||
221 | |||
222 | /* Never shrink the offered window */ | ||
223 | if(new_win < cur_win) { | ||
224 | /* Danger Will Robinson! | ||
225 | * Don't update rcv_wup/rcv_wnd here or else | ||
226 | * we will not be able to advertise a zero | ||
227 | * window in time. --DaveM | ||
228 | * | ||
229 | * Relax Will Robinson. | ||
230 | */ | ||
231 | new_win = cur_win; | ||
232 | } | ||
233 | tp->rcv_wnd = new_win; | ||
234 | tp->rcv_wup = tp->rcv_nxt; | ||
235 | |||
236 | /* Make sure we do not exceed the maximum possible | ||
237 | * scaled window. | ||
238 | */ | ||
239 | if (!tp->rx_opt.rcv_wscale) | ||
240 | new_win = min(new_win, MAX_TCP_WINDOW); | ||
241 | else | ||
242 | new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); | ||
243 | |||
244 | /* RFC1323 scaling applied */ | ||
245 | new_win >>= tp->rx_opt.rcv_wscale; | ||
246 | |||
247 | /* If we advertise zero window, disable fast path. */ | ||
248 | if (new_win == 0) | ||
249 | tp->pred_flags = 0; | ||
250 | |||
251 | return new_win; | ||
252 | } | ||
253 | |||
254 | |||
255 | /* This routine actually transmits TCP packets queued in by | ||
256 | * tcp_do_sendmsg(). This is used by both the initial | ||
257 | * transmission and possible later retransmissions. | ||
258 | * All SKB's seen here are completely headerless. It is our | ||
259 | * job to build the TCP header, and pass the packet down to | ||
260 | * IP so it can do the same plus pass the packet off to the | ||
261 | * device. | ||
262 | * | ||
263 | * We are working here with either a clone of the original | ||
264 | * SKB, or a fresh unique copy made by the retransmit engine. | ||
265 | */ | ||
266 | static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb) | ||
267 | { | ||
268 | if (skb != NULL) { | ||
269 | struct inet_sock *inet = inet_sk(sk); | ||
270 | struct tcp_sock *tp = tcp_sk(sk); | ||
271 | struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); | ||
272 | int tcp_header_size = tp->tcp_header_len; | ||
273 | struct tcphdr *th; | ||
274 | int sysctl_flags; | ||
275 | int err; | ||
276 | |||
277 | BUG_ON(!tcp_skb_pcount(skb)); | ||
278 | |||
279 | #define SYSCTL_FLAG_TSTAMPS 0x1 | ||
280 | #define SYSCTL_FLAG_WSCALE 0x2 | ||
281 | #define SYSCTL_FLAG_SACK 0x4 | ||
282 | |||
283 | sysctl_flags = 0; | ||
284 | if (tcb->flags & TCPCB_FLAG_SYN) { | ||
285 | tcp_header_size = sizeof(struct tcphdr) + TCPOLEN_MSS; | ||
286 | if(sysctl_tcp_timestamps) { | ||
287 | tcp_header_size += TCPOLEN_TSTAMP_ALIGNED; | ||
288 | sysctl_flags |= SYSCTL_FLAG_TSTAMPS; | ||
289 | } | ||
290 | if(sysctl_tcp_window_scaling) { | ||
291 | tcp_header_size += TCPOLEN_WSCALE_ALIGNED; | ||
292 | sysctl_flags |= SYSCTL_FLAG_WSCALE; | ||
293 | } | ||
294 | if(sysctl_tcp_sack) { | ||
295 | sysctl_flags |= SYSCTL_FLAG_SACK; | ||
296 | if(!(sysctl_flags & SYSCTL_FLAG_TSTAMPS)) | ||
297 | tcp_header_size += TCPOLEN_SACKPERM_ALIGNED; | ||
298 | } | ||
299 | } else if (tp->rx_opt.eff_sacks) { | ||
300 | /* A SACK is 2 pad bytes, a 2 byte header, plus | ||
301 | * 2 32-bit sequence numbers for each SACK block. | ||
302 | */ | ||
303 | tcp_header_size += (TCPOLEN_SACK_BASE_ALIGNED + | ||
304 | (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK)); | ||
305 | } | ||
306 | |||
307 | /* | ||
308 | * If the connection is idle and we are restarting, | ||
309 | * then we don't want to do any Vegas calculations | ||
310 | * until we get fresh RTT samples. So when we | ||
311 | * restart, we reset our Vegas state to a clean | ||
312 | * slate. After we get acks for this flight of | ||
313 | * packets, _then_ we can make Vegas calculations | ||
314 | * again. | ||
315 | */ | ||
316 | if (tcp_is_vegas(tp) && tcp_packets_in_flight(tp) == 0) | ||
317 | tcp_vegas_enable(tp); | ||
318 | |||
319 | th = (struct tcphdr *) skb_push(skb, tcp_header_size); | ||
320 | skb->h.th = th; | ||
321 | skb_set_owner_w(skb, sk); | ||
322 | |||
323 | /* Build TCP header and checksum it. */ | ||
324 | th->source = inet->sport; | ||
325 | th->dest = inet->dport; | ||
326 | th->seq = htonl(tcb->seq); | ||
327 | th->ack_seq = htonl(tp->rcv_nxt); | ||
328 | *(((__u16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | tcb->flags); | ||
329 | if (tcb->flags & TCPCB_FLAG_SYN) { | ||
330 | /* RFC1323: The window in SYN & SYN/ACK segments | ||
331 | * is never scaled. | ||
332 | */ | ||
333 | th->window = htons(tp->rcv_wnd); | ||
334 | } else { | ||
335 | th->window = htons(tcp_select_window(sk)); | ||
336 | } | ||
337 | th->check = 0; | ||
338 | th->urg_ptr = 0; | ||
339 | |||
340 | if (tp->urg_mode && | ||
341 | between(tp->snd_up, tcb->seq+1, tcb->seq+0xFFFF)) { | ||
342 | th->urg_ptr = htons(tp->snd_up-tcb->seq); | ||
343 | th->urg = 1; | ||
344 | } | ||
345 | |||
346 | if (tcb->flags & TCPCB_FLAG_SYN) { | ||
347 | tcp_syn_build_options((__u32 *)(th + 1), | ||
348 | tcp_advertise_mss(sk), | ||
349 | (sysctl_flags & SYSCTL_FLAG_TSTAMPS), | ||
350 | (sysctl_flags & SYSCTL_FLAG_SACK), | ||
351 | (sysctl_flags & SYSCTL_FLAG_WSCALE), | ||
352 | tp->rx_opt.rcv_wscale, | ||
353 | tcb->when, | ||
354 | tp->rx_opt.ts_recent); | ||
355 | } else { | ||
356 | tcp_build_and_update_options((__u32 *)(th + 1), | ||
357 | tp, tcb->when); | ||
358 | |||
359 | TCP_ECN_send(sk, tp, skb, tcp_header_size); | ||
360 | } | ||
361 | tp->af_specific->send_check(sk, th, skb->len, skb); | ||
362 | |||
363 | if (tcb->flags & TCPCB_FLAG_ACK) | ||
364 | tcp_event_ack_sent(sk); | ||
365 | |||
366 | if (skb->len != tcp_header_size) | ||
367 | tcp_event_data_sent(tp, skb, sk); | ||
368 | |||
369 | TCP_INC_STATS(TCP_MIB_OUTSEGS); | ||
370 | |||
371 | err = tp->af_specific->queue_xmit(skb, 0); | ||
372 | if (err <= 0) | ||
373 | return err; | ||
374 | |||
375 | tcp_enter_cwr(tp); | ||
376 | |||
377 | /* NET_XMIT_CN is special. It does not guarantee, | ||
378 | * that this packet is lost. It tells that device | ||
379 | * is about to start to drop packets or already | ||
380 | * drops some packets of the same priority and | ||
381 | * invokes us to send less aggressively. | ||
382 | */ | ||
383 | return err == NET_XMIT_CN ? 0 : err; | ||
384 | } | ||
385 | return -ENOBUFS; | ||
386 | #undef SYSCTL_FLAG_TSTAMPS | ||
387 | #undef SYSCTL_FLAG_WSCALE | ||
388 | #undef SYSCTL_FLAG_SACK | ||
389 | } | ||
390 | |||
391 | |||
392 | /* This routine just queue's the buffer | ||
393 | * | ||
394 | * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, | ||
395 | * otherwise socket can stall. | ||
396 | */ | ||
397 | static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) | ||
398 | { | ||
399 | struct tcp_sock *tp = tcp_sk(sk); | ||
400 | |||
401 | /* Advance write_seq and place onto the write_queue. */ | ||
402 | tp->write_seq = TCP_SKB_CB(skb)->end_seq; | ||
403 | skb_header_release(skb); | ||
404 | __skb_queue_tail(&sk->sk_write_queue, skb); | ||
405 | sk_charge_skb(sk, skb); | ||
406 | |||
407 | /* Queue it, remembering where we must start sending. */ | ||
408 | if (sk->sk_send_head == NULL) | ||
409 | sk->sk_send_head = skb; | ||
410 | } | ||
411 | |||
412 | static inline void tcp_tso_set_push(struct sk_buff *skb) | ||
413 | { | ||
414 | /* Force push to be on for any TSO frames to workaround | ||
415 | * problems with busted implementations like Mac OS-X that | ||
416 | * hold off socket receive wakeups until push is seen. | ||
417 | */ | ||
418 | if (tcp_skb_pcount(skb) > 1) | ||
419 | TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; | ||
420 | } | ||
421 | |||
422 | /* Send _single_ skb sitting at the send head. This function requires | ||
423 | * true push pending frames to setup probe timer etc. | ||
424 | */ | ||
425 | void tcp_push_one(struct sock *sk, unsigned cur_mss) | ||
426 | { | ||
427 | struct tcp_sock *tp = tcp_sk(sk); | ||
428 | struct sk_buff *skb = sk->sk_send_head; | ||
429 | |||
430 | if (tcp_snd_test(tp, skb, cur_mss, TCP_NAGLE_PUSH)) { | ||
431 | /* Send it out now. */ | ||
432 | TCP_SKB_CB(skb)->when = tcp_time_stamp; | ||
433 | tcp_tso_set_push(skb); | ||
434 | if (!tcp_transmit_skb(sk, skb_clone(skb, sk->sk_allocation))) { | ||
435 | sk->sk_send_head = NULL; | ||
436 | tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; | ||
437 | tcp_packets_out_inc(sk, tp, skb); | ||
438 | return; | ||
439 | } | ||
440 | } | ||
441 | } | ||
442 | |||
443 | void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_std) | ||
444 | { | ||
445 | if (skb->len <= mss_std) { | ||
446 | /* Avoid the costly divide in the normal | ||
447 | * non-TSO case. | ||
448 | */ | ||
449 | skb_shinfo(skb)->tso_segs = 1; | ||
450 | skb_shinfo(skb)->tso_size = 0; | ||
451 | } else { | ||
452 | unsigned int factor; | ||
453 | |||
454 | factor = skb->len + (mss_std - 1); | ||
455 | factor /= mss_std; | ||
456 | skb_shinfo(skb)->tso_segs = factor; | ||
457 | skb_shinfo(skb)->tso_size = mss_std; | ||
458 | } | ||
459 | } | ||
460 | |||
461 | /* Function to create two new TCP segments. Shrinks the given segment | ||
462 | * to the specified size and appends a new segment with the rest of the | ||
463 | * packet to the list. This won't be called frequently, I hope. | ||
464 | * Remember, these are still headerless SKBs at this point. | ||
465 | */ | ||
466 | static int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len) | ||
467 | { | ||
468 | struct tcp_sock *tp = tcp_sk(sk); | ||
469 | struct sk_buff *buff; | ||
470 | int nsize; | ||
471 | u16 flags; | ||
472 | |||
473 | nsize = skb_headlen(skb) - len; | ||
474 | if (nsize < 0) | ||
475 | nsize = 0; | ||
476 | |||
477 | if (skb_cloned(skb) && | ||
478 | skb_is_nonlinear(skb) && | ||
479 | pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) | ||
480 | return -ENOMEM; | ||
481 | |||
482 | /* Get a new skb... force flag on. */ | ||
483 | buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC); | ||
484 | if (buff == NULL) | ||
485 | return -ENOMEM; /* We'll just try again later. */ | ||
486 | sk_charge_skb(sk, buff); | ||
487 | |||
488 | /* Correct the sequence numbers. */ | ||
489 | TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; | ||
490 | TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; | ||
491 | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; | ||
492 | |||
493 | /* PSH and FIN should only be set in the second packet. */ | ||
494 | flags = TCP_SKB_CB(skb)->flags; | ||
495 | TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH); | ||
496 | TCP_SKB_CB(buff)->flags = flags; | ||
497 | TCP_SKB_CB(buff)->sacked = | ||
498 | (TCP_SKB_CB(skb)->sacked & | ||
499 | (TCPCB_LOST | TCPCB_EVER_RETRANS | TCPCB_AT_TAIL)); | ||
500 | TCP_SKB_CB(skb)->sacked &= ~TCPCB_AT_TAIL; | ||
501 | |||
502 | if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_HW) { | ||
503 | /* Copy and checksum data tail into the new buffer. */ | ||
504 | buff->csum = csum_partial_copy_nocheck(skb->data + len, skb_put(buff, nsize), | ||
505 | nsize, 0); | ||
506 | |||
507 | skb_trim(skb, len); | ||
508 | |||
509 | skb->csum = csum_block_sub(skb->csum, buff->csum, len); | ||
510 | } else { | ||
511 | skb->ip_summed = CHECKSUM_HW; | ||
512 | skb_split(skb, buff, len); | ||
513 | } | ||
514 | |||
515 | buff->ip_summed = skb->ip_summed; | ||
516 | |||
517 | /* Looks stupid, but our code really uses when of | ||
518 | * skbs, which it never sent before. --ANK | ||
519 | */ | ||
520 | TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when; | ||
521 | |||
522 | if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) { | ||
523 | tp->lost_out -= tcp_skb_pcount(skb); | ||
524 | tp->left_out -= tcp_skb_pcount(skb); | ||
525 | } | ||
526 | |||
527 | /* Fix up tso_factor for both original and new SKB. */ | ||
528 | tcp_set_skb_tso_segs(skb, tp->mss_cache_std); | ||
529 | tcp_set_skb_tso_segs(buff, tp->mss_cache_std); | ||
530 | |||
531 | if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) { | ||
532 | tp->lost_out += tcp_skb_pcount(skb); | ||
533 | tp->left_out += tcp_skb_pcount(skb); | ||
534 | } | ||
535 | |||
536 | if (TCP_SKB_CB(buff)->sacked&TCPCB_LOST) { | ||
537 | tp->lost_out += tcp_skb_pcount(buff); | ||
538 | tp->left_out += tcp_skb_pcount(buff); | ||
539 | } | ||
540 | |||
541 | /* Link BUFF into the send queue. */ | ||
542 | __skb_append(skb, buff); | ||
543 | |||
544 | return 0; | ||
545 | } | ||
546 | |||
547 | /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c | ||
548 | * eventually). The difference is that pulled data not copied, but | ||
549 | * immediately discarded. | ||
550 | */ | ||
551 | static unsigned char *__pskb_trim_head(struct sk_buff *skb, int len) | ||
552 | { | ||
553 | int i, k, eat; | ||
554 | |||
555 | eat = len; | ||
556 | k = 0; | ||
557 | for (i=0; i<skb_shinfo(skb)->nr_frags; i++) { | ||
558 | if (skb_shinfo(skb)->frags[i].size <= eat) { | ||
559 | put_page(skb_shinfo(skb)->frags[i].page); | ||
560 | eat -= skb_shinfo(skb)->frags[i].size; | ||
561 | } else { | ||
562 | skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; | ||
563 | if (eat) { | ||
564 | skb_shinfo(skb)->frags[k].page_offset += eat; | ||
565 | skb_shinfo(skb)->frags[k].size -= eat; | ||
566 | eat = 0; | ||
567 | } | ||
568 | k++; | ||
569 | } | ||
570 | } | ||
571 | skb_shinfo(skb)->nr_frags = k; | ||
572 | |||
573 | skb->tail = skb->data; | ||
574 | skb->data_len -= len; | ||
575 | skb->len = skb->data_len; | ||
576 | return skb->tail; | ||
577 | } | ||
578 | |||
579 | int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) | ||
580 | { | ||
581 | if (skb_cloned(skb) && | ||
582 | pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) | ||
583 | return -ENOMEM; | ||
584 | |||
585 | if (len <= skb_headlen(skb)) { | ||
586 | __skb_pull(skb, len); | ||
587 | } else { | ||
588 | if (__pskb_trim_head(skb, len-skb_headlen(skb)) == NULL) | ||
589 | return -ENOMEM; | ||
590 | } | ||
591 | |||
592 | TCP_SKB_CB(skb)->seq += len; | ||
593 | skb->ip_summed = CHECKSUM_HW; | ||
594 | |||
595 | skb->truesize -= len; | ||
596 | sk->sk_wmem_queued -= len; | ||
597 | sk->sk_forward_alloc += len; | ||
598 | sock_set_flag(sk, SOCK_QUEUE_SHRUNK); | ||
599 | |||
600 | /* Any change of skb->len requires recalculation of tso | ||
601 | * factor and mss. | ||
602 | */ | ||
603 | if (tcp_skb_pcount(skb) > 1) | ||
604 | tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb)); | ||
605 | |||
606 | return 0; | ||
607 | } | ||
608 | |||
609 | /* This function synchronize snd mss to current pmtu/exthdr set. | ||
610 | |||
611 | tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts | ||
612 | for TCP options, but includes only bare TCP header. | ||
613 | |||
614 | tp->rx_opt.mss_clamp is mss negotiated at connection setup. | ||
615 | It is minumum of user_mss and mss received with SYN. | ||
616 | It also does not include TCP options. | ||
617 | |||
618 | tp->pmtu_cookie is last pmtu, seen by this function. | ||
619 | |||
620 | tp->mss_cache is current effective sending mss, including | ||
621 | all tcp options except for SACKs. It is evaluated, | ||
622 | taking into account current pmtu, but never exceeds | ||
623 | tp->rx_opt.mss_clamp. | ||
624 | |||
625 | NOTE1. rfc1122 clearly states that advertised MSS | ||
626 | DOES NOT include either tcp or ip options. | ||
627 | |||
628 | NOTE2. tp->pmtu_cookie and tp->mss_cache are READ ONLY outside | ||
629 | this function. --ANK (980731) | ||
630 | */ | ||
631 | |||
632 | unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) | ||
633 | { | ||
634 | struct tcp_sock *tp = tcp_sk(sk); | ||
635 | int mss_now; | ||
636 | |||
637 | /* Calculate base mss without TCP options: | ||
638 | It is MMS_S - sizeof(tcphdr) of rfc1122 | ||
639 | */ | ||
640 | mss_now = pmtu - tp->af_specific->net_header_len - sizeof(struct tcphdr); | ||
641 | |||
642 | /* Clamp it (mss_clamp does not include tcp options) */ | ||
643 | if (mss_now > tp->rx_opt.mss_clamp) | ||
644 | mss_now = tp->rx_opt.mss_clamp; | ||
645 | |||
646 | /* Now subtract optional transport overhead */ | ||
647 | mss_now -= tp->ext_header_len; | ||
648 | |||
649 | /* Then reserve room for full set of TCP options and 8 bytes of data */ | ||
650 | if (mss_now < 48) | ||
651 | mss_now = 48; | ||
652 | |||
653 | /* Now subtract TCP options size, not including SACKs */ | ||
654 | mss_now -= tp->tcp_header_len - sizeof(struct tcphdr); | ||
655 | |||
656 | /* Bound mss with half of window */ | ||
657 | if (tp->max_window && mss_now > (tp->max_window>>1)) | ||
658 | mss_now = max((tp->max_window>>1), 68U - tp->tcp_header_len); | ||
659 | |||
660 | /* And store cached results */ | ||
661 | tp->pmtu_cookie = pmtu; | ||
662 | tp->mss_cache = tp->mss_cache_std = mss_now; | ||
663 | |||
664 | return mss_now; | ||
665 | } | ||
666 | |||
667 | /* Compute the current effective MSS, taking SACKs and IP options, | ||
668 | * and even PMTU discovery events into account. | ||
669 | * | ||
670 | * LARGESEND note: !urg_mode is overkill, only frames up to snd_up | ||
671 | * cannot be large. However, taking into account rare use of URG, this | ||
672 | * is not a big flaw. | ||
673 | */ | ||
674 | |||
675 | unsigned int tcp_current_mss(struct sock *sk, int large) | ||
676 | { | ||
677 | struct tcp_sock *tp = tcp_sk(sk); | ||
678 | struct dst_entry *dst = __sk_dst_get(sk); | ||
679 | unsigned int do_large, mss_now; | ||
680 | |||
681 | mss_now = tp->mss_cache_std; | ||
682 | if (dst) { | ||
683 | u32 mtu = dst_mtu(dst); | ||
684 | if (mtu != tp->pmtu_cookie) | ||
685 | mss_now = tcp_sync_mss(sk, mtu); | ||
686 | } | ||
687 | |||
688 | do_large = (large && | ||
689 | (sk->sk_route_caps & NETIF_F_TSO) && | ||
690 | !tp->urg_mode); | ||
691 | |||
692 | if (do_large) { | ||
693 | unsigned int large_mss, factor, limit; | ||
694 | |||
695 | large_mss = 65535 - tp->af_specific->net_header_len - | ||
696 | tp->ext_header_len - tp->tcp_header_len; | ||
697 | |||
698 | if (tp->max_window && large_mss > (tp->max_window>>1)) | ||
699 | large_mss = max((tp->max_window>>1), | ||
700 | 68U - tp->tcp_header_len); | ||
701 | |||
702 | factor = large_mss / mss_now; | ||
703 | |||
704 | /* Always keep large mss multiple of real mss, but | ||
705 | * do not exceed 1/tso_win_divisor of the congestion window | ||
706 | * so we can keep the ACK clock ticking and minimize | ||
707 | * bursting. | ||
708 | */ | ||
709 | limit = tp->snd_cwnd; | ||
710 | if (sysctl_tcp_tso_win_divisor) | ||
711 | limit /= sysctl_tcp_tso_win_divisor; | ||
712 | limit = max(1U, limit); | ||
713 | if (factor > limit) | ||
714 | factor = limit; | ||
715 | |||
716 | tp->mss_cache = mss_now * factor; | ||
717 | |||
718 | mss_now = tp->mss_cache; | ||
719 | } | ||
720 | |||
721 | if (tp->rx_opt.eff_sacks) | ||
722 | mss_now -= (TCPOLEN_SACK_BASE_ALIGNED + | ||
723 | (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK)); | ||
724 | return mss_now; | ||
725 | } | ||
726 | |||
727 | /* This routine writes packets to the network. It advances the | ||
728 | * send_head. This happens as incoming acks open up the remote | ||
729 | * window for us. | ||
730 | * | ||
731 | * Returns 1, if no segments are in flight and we have queued segments, but | ||
732 | * cannot send anything now because of SWS or another problem. | ||
733 | */ | ||
734 | int tcp_write_xmit(struct sock *sk, int nonagle) | ||
735 | { | ||
736 | struct tcp_sock *tp = tcp_sk(sk); | ||
737 | unsigned int mss_now; | ||
738 | |||
739 | /* If we are closed, the bytes will have to remain here. | ||
740 | * In time closedown will finish, we empty the write queue and all | ||
741 | * will be happy. | ||
742 | */ | ||
743 | if (sk->sk_state != TCP_CLOSE) { | ||
744 | struct sk_buff *skb; | ||
745 | int sent_pkts = 0; | ||
746 | |||
747 | /* Account for SACKS, we may need to fragment due to this. | ||
748 | * It is just like the real MSS changing on us midstream. | ||
749 | * We also handle things correctly when the user adds some | ||
750 | * IP options mid-stream. Silly to do, but cover it. | ||
751 | */ | ||
752 | mss_now = tcp_current_mss(sk, 1); | ||
753 | |||
754 | while ((skb = sk->sk_send_head) && | ||
755 | tcp_snd_test(tp, skb, mss_now, | ||
756 | tcp_skb_is_last(sk, skb) ? nonagle : | ||
757 | TCP_NAGLE_PUSH)) { | ||
758 | if (skb->len > mss_now) { | ||
759 | if (tcp_fragment(sk, skb, mss_now)) | ||
760 | break; | ||
761 | } | ||
762 | |||
763 | TCP_SKB_CB(skb)->when = tcp_time_stamp; | ||
764 | tcp_tso_set_push(skb); | ||
765 | if (tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC))) | ||
766 | break; | ||
767 | |||
768 | /* Advance the send_head. This one is sent out. | ||
769 | * This call will increment packets_out. | ||
770 | */ | ||
771 | update_send_head(sk, tp, skb); | ||
772 | |||
773 | tcp_minshall_update(tp, mss_now, skb); | ||
774 | sent_pkts = 1; | ||
775 | } | ||
776 | |||
777 | if (sent_pkts) { | ||
778 | tcp_cwnd_validate(sk, tp); | ||
779 | return 0; | ||
780 | } | ||
781 | |||
782 | return !tp->packets_out && sk->sk_send_head; | ||
783 | } | ||
784 | return 0; | ||
785 | } | ||
786 | |||
787 | /* This function returns the amount that we can raise the | ||
788 | * usable window based on the following constraints | ||
789 | * | ||
790 | * 1. The window can never be shrunk once it is offered (RFC 793) | ||
791 | * 2. We limit memory per socket | ||
792 | * | ||
793 | * RFC 1122: | ||
794 | * "the suggested [SWS] avoidance algorithm for the receiver is to keep | ||
795 | * RECV.NEXT + RCV.WIN fixed until: | ||
796 | * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" | ||
797 | * | ||
798 | * i.e. don't raise the right edge of the window until you can raise | ||
799 | * it at least MSS bytes. | ||
800 | * | ||
801 | * Unfortunately, the recommended algorithm breaks header prediction, | ||
802 | * since header prediction assumes th->window stays fixed. | ||
803 | * | ||
804 | * Strictly speaking, keeping th->window fixed violates the receiver | ||
805 | * side SWS prevention criteria. The problem is that under this rule | ||
806 | * a stream of single byte packets will cause the right side of the | ||
807 | * window to always advance by a single byte. | ||
808 | * | ||
809 | * Of course, if the sender implements sender side SWS prevention | ||
810 | * then this will not be a problem. | ||
811 | * | ||
812 | * BSD seems to make the following compromise: | ||
813 | * | ||
814 | * If the free space is less than the 1/4 of the maximum | ||
815 | * space available and the free space is less than 1/2 mss, | ||
816 | * then set the window to 0. | ||
817 | * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] | ||
818 | * Otherwise, just prevent the window from shrinking | ||
819 | * and from being larger than the largest representable value. | ||
820 | * | ||
821 | * This prevents incremental opening of the window in the regime | ||
822 | * where TCP is limited by the speed of the reader side taking | ||
823 | * data out of the TCP receive queue. It does nothing about | ||
824 | * those cases where the window is constrained on the sender side | ||
825 | * because the pipeline is full. | ||
826 | * | ||
827 | * BSD also seems to "accidentally" limit itself to windows that are a | ||
828 | * multiple of MSS, at least until the free space gets quite small. | ||
829 | * This would appear to be a side effect of the mbuf implementation. | ||
830 | * Combining these two algorithms results in the observed behavior | ||
831 | * of having a fixed window size at almost all times. | ||
832 | * | ||
833 | * Below we obtain similar behavior by forcing the offered window to | ||
834 | * a multiple of the mss when it is feasible to do so. | ||
835 | * | ||
836 | * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. | ||
837 | * Regular options like TIMESTAMP are taken into account. | ||
838 | */ | ||
839 | u32 __tcp_select_window(struct sock *sk) | ||
840 | { | ||
841 | struct tcp_sock *tp = tcp_sk(sk); | ||
842 | /* MSS for the peer's data. Previous verions used mss_clamp | ||
843 | * here. I don't know if the value based on our guesses | ||
844 | * of peer's MSS is better for the performance. It's more correct | ||
845 | * but may be worse for the performance because of rcv_mss | ||
846 | * fluctuations. --SAW 1998/11/1 | ||
847 | */ | ||
848 | int mss = tp->ack.rcv_mss; | ||
849 | int free_space = tcp_space(sk); | ||
850 | int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk)); | ||
851 | int window; | ||
852 | |||
853 | if (mss > full_space) | ||
854 | mss = full_space; | ||
855 | |||
856 | if (free_space < full_space/2) { | ||
857 | tp->ack.quick = 0; | ||
858 | |||
859 | if (tcp_memory_pressure) | ||
860 | tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U*tp->advmss); | ||
861 | |||
862 | if (free_space < mss) | ||
863 | return 0; | ||
864 | } | ||
865 | |||
866 | if (free_space > tp->rcv_ssthresh) | ||
867 | free_space = tp->rcv_ssthresh; | ||
868 | |||
869 | /* Don't do rounding if we are using window scaling, since the | ||
870 | * scaled window will not line up with the MSS boundary anyway. | ||
871 | */ | ||
872 | window = tp->rcv_wnd; | ||
873 | if (tp->rx_opt.rcv_wscale) { | ||
874 | window = free_space; | ||
875 | |||
876 | /* Advertise enough space so that it won't get scaled away. | ||
877 | * Import case: prevent zero window announcement if | ||
878 | * 1<<rcv_wscale > mss. | ||
879 | */ | ||
880 | if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) | ||
881 | window = (((window >> tp->rx_opt.rcv_wscale) + 1) | ||
882 | << tp->rx_opt.rcv_wscale); | ||
883 | } else { | ||
884 | /* Get the largest window that is a nice multiple of mss. | ||
885 | * Window clamp already applied above. | ||
886 | * If our current window offering is within 1 mss of the | ||
887 | * free space we just keep it. This prevents the divide | ||
888 | * and multiply from happening most of the time. | ||
889 | * We also don't do any window rounding when the free space | ||
890 | * is too small. | ||
891 | */ | ||
892 | if (window <= free_space - mss || window > free_space) | ||
893 | window = (free_space/mss)*mss; | ||
894 | } | ||
895 | |||
896 | return window; | ||
897 | } | ||
898 | |||
899 | /* Attempt to collapse two adjacent SKB's during retransmission. */ | ||
900 | static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *skb, int mss_now) | ||
901 | { | ||
902 | struct tcp_sock *tp = tcp_sk(sk); | ||
903 | struct sk_buff *next_skb = skb->next; | ||
904 | |||
905 | /* The first test we must make is that neither of these two | ||
906 | * SKB's are still referenced by someone else. | ||
907 | */ | ||
908 | if (!skb_cloned(skb) && !skb_cloned(next_skb)) { | ||
909 | int skb_size = skb->len, next_skb_size = next_skb->len; | ||
910 | u16 flags = TCP_SKB_CB(skb)->flags; | ||
911 | |||
912 | /* Also punt if next skb has been SACK'd. */ | ||
913 | if(TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_ACKED) | ||
914 | return; | ||
915 | |||
916 | /* Next skb is out of window. */ | ||
917 | if (after(TCP_SKB_CB(next_skb)->end_seq, tp->snd_una+tp->snd_wnd)) | ||
918 | return; | ||
919 | |||
920 | /* Punt if not enough space exists in the first SKB for | ||
921 | * the data in the second, or the total combined payload | ||
922 | * would exceed the MSS. | ||
923 | */ | ||
924 | if ((next_skb_size > skb_tailroom(skb)) || | ||
925 | ((skb_size + next_skb_size) > mss_now)) | ||
926 | return; | ||
927 | |||
928 | BUG_ON(tcp_skb_pcount(skb) != 1 || | ||
929 | tcp_skb_pcount(next_skb) != 1); | ||
930 | |||
931 | /* Ok. We will be able to collapse the packet. */ | ||
932 | __skb_unlink(next_skb, next_skb->list); | ||
933 | |||
934 | memcpy(skb_put(skb, next_skb_size), next_skb->data, next_skb_size); | ||
935 | |||
936 | if (next_skb->ip_summed == CHECKSUM_HW) | ||
937 | skb->ip_summed = CHECKSUM_HW; | ||
938 | |||
939 | if (skb->ip_summed != CHECKSUM_HW) | ||
940 | skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); | ||
941 | |||
942 | /* Update sequence range on original skb. */ | ||
943 | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; | ||
944 | |||
945 | /* Merge over control information. */ | ||
946 | flags |= TCP_SKB_CB(next_skb)->flags; /* This moves PSH/FIN etc. over */ | ||
947 | TCP_SKB_CB(skb)->flags = flags; | ||
948 | |||
949 | /* All done, get rid of second SKB and account for it so | ||
950 | * packet counting does not break. | ||
951 | */ | ||
952 | TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked&(TCPCB_EVER_RETRANS|TCPCB_AT_TAIL); | ||
953 | if (TCP_SKB_CB(next_skb)->sacked&TCPCB_SACKED_RETRANS) | ||
954 | tp->retrans_out -= tcp_skb_pcount(next_skb); | ||
955 | if (TCP_SKB_CB(next_skb)->sacked&TCPCB_LOST) { | ||
956 | tp->lost_out -= tcp_skb_pcount(next_skb); | ||
957 | tp->left_out -= tcp_skb_pcount(next_skb); | ||
958 | } | ||
959 | /* Reno case is special. Sigh... */ | ||
960 | if (!tp->rx_opt.sack_ok && tp->sacked_out) { | ||
961 | tcp_dec_pcount_approx(&tp->sacked_out, next_skb); | ||
962 | tp->left_out -= tcp_skb_pcount(next_skb); | ||
963 | } | ||
964 | |||
965 | /* Not quite right: it can be > snd.fack, but | ||
966 | * it is better to underestimate fackets. | ||
967 | */ | ||
968 | tcp_dec_pcount_approx(&tp->fackets_out, next_skb); | ||
969 | tcp_packets_out_dec(tp, next_skb); | ||
970 | sk_stream_free_skb(sk, next_skb); | ||
971 | } | ||
972 | } | ||
973 | |||
974 | /* Do a simple retransmit without using the backoff mechanisms in | ||
975 | * tcp_timer. This is used for path mtu discovery. | ||
976 | * The socket is already locked here. | ||
977 | */ | ||
978 | void tcp_simple_retransmit(struct sock *sk) | ||
979 | { | ||
980 | struct tcp_sock *tp = tcp_sk(sk); | ||
981 | struct sk_buff *skb; | ||
982 | unsigned int mss = tcp_current_mss(sk, 0); | ||
983 | int lost = 0; | ||
984 | |||
985 | sk_stream_for_retrans_queue(skb, sk) { | ||
986 | if (skb->len > mss && | ||
987 | !(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) { | ||
988 | if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) { | ||
989 | TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; | ||
990 | tp->retrans_out -= tcp_skb_pcount(skb); | ||
991 | } | ||
992 | if (!(TCP_SKB_CB(skb)->sacked&TCPCB_LOST)) { | ||
993 | TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; | ||
994 | tp->lost_out += tcp_skb_pcount(skb); | ||
995 | lost = 1; | ||
996 | } | ||
997 | } | ||
998 | } | ||
999 | |||
1000 | if (!lost) | ||
1001 | return; | ||
1002 | |||
1003 | tcp_sync_left_out(tp); | ||
1004 | |||
1005 | /* Don't muck with the congestion window here. | ||
1006 | * Reason is that we do not increase amount of _data_ | ||
1007 | * in network, but units changed and effective | ||
1008 | * cwnd/ssthresh really reduced now. | ||
1009 | */ | ||
1010 | if (tp->ca_state != TCP_CA_Loss) { | ||
1011 | tp->high_seq = tp->snd_nxt; | ||
1012 | tp->snd_ssthresh = tcp_current_ssthresh(tp); | ||
1013 | tp->prior_ssthresh = 0; | ||
1014 | tp->undo_marker = 0; | ||
1015 | tcp_set_ca_state(tp, TCP_CA_Loss); | ||
1016 | } | ||
1017 | tcp_xmit_retransmit_queue(sk); | ||
1018 | } | ||
1019 | |||
1020 | /* This retransmits one SKB. Policy decisions and retransmit queue | ||
1021 | * state updates are done by the caller. Returns non-zero if an | ||
1022 | * error occurred which prevented the send. | ||
1023 | */ | ||
1024 | int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) | ||
1025 | { | ||
1026 | struct tcp_sock *tp = tcp_sk(sk); | ||
1027 | unsigned int cur_mss = tcp_current_mss(sk, 0); | ||
1028 | int err; | ||
1029 | |||
1030 | /* Do not sent more than we queued. 1/4 is reserved for possible | ||
1031 | * copying overhead: frgagmentation, tunneling, mangling etc. | ||
1032 | */ | ||
1033 | if (atomic_read(&sk->sk_wmem_alloc) > | ||
1034 | min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf)) | ||
1035 | return -EAGAIN; | ||
1036 | |||
1037 | if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { | ||
1038 | if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) | ||
1039 | BUG(); | ||
1040 | |||
1041 | if (sk->sk_route_caps & NETIF_F_TSO) { | ||
1042 | sk->sk_route_caps &= ~NETIF_F_TSO; | ||
1043 | sock_set_flag(sk, SOCK_NO_LARGESEND); | ||
1044 | tp->mss_cache = tp->mss_cache_std; | ||
1045 | } | ||
1046 | |||
1047 | if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) | ||
1048 | return -ENOMEM; | ||
1049 | } | ||
1050 | |||
1051 | /* If receiver has shrunk his window, and skb is out of | ||
1052 | * new window, do not retransmit it. The exception is the | ||
1053 | * case, when window is shrunk to zero. In this case | ||
1054 | * our retransmit serves as a zero window probe. | ||
1055 | */ | ||
1056 | if (!before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd) | ||
1057 | && TCP_SKB_CB(skb)->seq != tp->snd_una) | ||
1058 | return -EAGAIN; | ||
1059 | |||
1060 | if (skb->len > cur_mss) { | ||
1061 | int old_factor = tcp_skb_pcount(skb); | ||
1062 | int new_factor; | ||
1063 | |||
1064 | if (tcp_fragment(sk, skb, cur_mss)) | ||
1065 | return -ENOMEM; /* We'll try again later. */ | ||
1066 | |||
1067 | /* New SKB created, account for it. */ | ||
1068 | new_factor = tcp_skb_pcount(skb); | ||
1069 | tp->packets_out -= old_factor - new_factor; | ||
1070 | tp->packets_out += tcp_skb_pcount(skb->next); | ||
1071 | } | ||
1072 | |||
1073 | /* Collapse two adjacent packets if worthwhile and we can. */ | ||
1074 | if(!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN) && | ||
1075 | (skb->len < (cur_mss >> 1)) && | ||
1076 | (skb->next != sk->sk_send_head) && | ||
1077 | (skb->next != (struct sk_buff *)&sk->sk_write_queue) && | ||
1078 | (skb_shinfo(skb)->nr_frags == 0 && skb_shinfo(skb->next)->nr_frags == 0) && | ||
1079 | (tcp_skb_pcount(skb) == 1 && tcp_skb_pcount(skb->next) == 1) && | ||
1080 | (sysctl_tcp_retrans_collapse != 0)) | ||
1081 | tcp_retrans_try_collapse(sk, skb, cur_mss); | ||
1082 | |||
1083 | if(tp->af_specific->rebuild_header(sk)) | ||
1084 | return -EHOSTUNREACH; /* Routing failure or similar. */ | ||
1085 | |||
1086 | /* Some Solaris stacks overoptimize and ignore the FIN on a | ||
1087 | * retransmit when old data is attached. So strip it off | ||
1088 | * since it is cheap to do so and saves bytes on the network. | ||
1089 | */ | ||
1090 | if(skb->len > 0 && | ||
1091 | (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) && | ||
1092 | tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) { | ||
1093 | if (!pskb_trim(skb, 0)) { | ||
1094 | TCP_SKB_CB(skb)->seq = TCP_SKB_CB(skb)->end_seq - 1; | ||
1095 | skb_shinfo(skb)->tso_segs = 1; | ||
1096 | skb_shinfo(skb)->tso_size = 0; | ||
1097 | skb->ip_summed = CHECKSUM_NONE; | ||
1098 | skb->csum = 0; | ||
1099 | } | ||
1100 | } | ||
1101 | |||
1102 | /* Make a copy, if the first transmission SKB clone we made | ||
1103 | * is still in somebody's hands, else make a clone. | ||
1104 | */ | ||
1105 | TCP_SKB_CB(skb)->when = tcp_time_stamp; | ||
1106 | tcp_tso_set_push(skb); | ||
1107 | |||
1108 | err = tcp_transmit_skb(sk, (skb_cloned(skb) ? | ||
1109 | pskb_copy(skb, GFP_ATOMIC): | ||
1110 | skb_clone(skb, GFP_ATOMIC))); | ||
1111 | |||
1112 | if (err == 0) { | ||
1113 | /* Update global TCP statistics. */ | ||
1114 | TCP_INC_STATS(TCP_MIB_RETRANSSEGS); | ||
1115 | |||
1116 | tp->total_retrans++; | ||
1117 | |||
1118 | #if FASTRETRANS_DEBUG > 0 | ||
1119 | if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) { | ||
1120 | if (net_ratelimit()) | ||
1121 | printk(KERN_DEBUG "retrans_out leaked.\n"); | ||
1122 | } | ||
1123 | #endif | ||
1124 | TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; | ||
1125 | tp->retrans_out += tcp_skb_pcount(skb); | ||
1126 | |||
1127 | /* Save stamp of the first retransmit. */ | ||
1128 | if (!tp->retrans_stamp) | ||
1129 | tp->retrans_stamp = TCP_SKB_CB(skb)->when; | ||
1130 | |||
1131 | tp->undo_retrans++; | ||
1132 | |||
1133 | /* snd_nxt is stored to detect loss of retransmitted segment, | ||
1134 | * see tcp_input.c tcp_sacktag_write_queue(). | ||
1135 | */ | ||
1136 | TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt; | ||
1137 | } | ||
1138 | return err; | ||
1139 | } | ||
1140 | |||
1141 | /* This gets called after a retransmit timeout, and the initially | ||
1142 | * retransmitted data is acknowledged. It tries to continue | ||
1143 | * resending the rest of the retransmit queue, until either | ||
1144 | * we've sent it all or the congestion window limit is reached. | ||
1145 | * If doing SACK, the first ACK which comes back for a timeout | ||
1146 | * based retransmit packet might feed us FACK information again. | ||
1147 | * If so, we use it to avoid unnecessarily retransmissions. | ||
1148 | */ | ||
1149 | void tcp_xmit_retransmit_queue(struct sock *sk) | ||
1150 | { | ||
1151 | struct tcp_sock *tp = tcp_sk(sk); | ||
1152 | struct sk_buff *skb; | ||
1153 | int packet_cnt = tp->lost_out; | ||
1154 | |||
1155 | /* First pass: retransmit lost packets. */ | ||
1156 | if (packet_cnt) { | ||
1157 | sk_stream_for_retrans_queue(skb, sk) { | ||
1158 | __u8 sacked = TCP_SKB_CB(skb)->sacked; | ||
1159 | |||
1160 | /* Assume this retransmit will generate | ||
1161 | * only one packet for congestion window | ||
1162 | * calculation purposes. This works because | ||
1163 | * tcp_retransmit_skb() will chop up the | ||
1164 | * packet to be MSS sized and all the | ||
1165 | * packet counting works out. | ||
1166 | */ | ||
1167 | if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) | ||
1168 | return; | ||
1169 | |||
1170 | if (sacked&TCPCB_LOST) { | ||
1171 | if (!(sacked&(TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))) { | ||
1172 | if (tcp_retransmit_skb(sk, skb)) | ||
1173 | return; | ||
1174 | if (tp->ca_state != TCP_CA_Loss) | ||
1175 | NET_INC_STATS_BH(LINUX_MIB_TCPFASTRETRANS); | ||
1176 | else | ||
1177 | NET_INC_STATS_BH(LINUX_MIB_TCPSLOWSTARTRETRANS); | ||
1178 | |||
1179 | if (skb == | ||
1180 | skb_peek(&sk->sk_write_queue)) | ||
1181 | tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto); | ||
1182 | } | ||
1183 | |||
1184 | packet_cnt -= tcp_skb_pcount(skb); | ||
1185 | if (packet_cnt <= 0) | ||
1186 | break; | ||
1187 | } | ||
1188 | } | ||
1189 | } | ||
1190 | |||
1191 | /* OK, demanded retransmission is finished. */ | ||
1192 | |||
1193 | /* Forward retransmissions are possible only during Recovery. */ | ||
1194 | if (tp->ca_state != TCP_CA_Recovery) | ||
1195 | return; | ||
1196 | |||
1197 | /* No forward retransmissions in Reno are possible. */ | ||
1198 | if (!tp->rx_opt.sack_ok) | ||
1199 | return; | ||
1200 | |||
1201 | /* Yeah, we have to make difficult choice between forward transmission | ||
1202 | * and retransmission... Both ways have their merits... | ||
1203 | * | ||
1204 | * For now we do not retransmit anything, while we have some new | ||
1205 | * segments to send. | ||
1206 | */ | ||
1207 | |||
1208 | if (tcp_may_send_now(sk, tp)) | ||
1209 | return; | ||
1210 | |||
1211 | packet_cnt = 0; | ||
1212 | |||
1213 | sk_stream_for_retrans_queue(skb, sk) { | ||
1214 | /* Similar to the retransmit loop above we | ||
1215 | * can pretend that the retransmitted SKB | ||
1216 | * we send out here will be composed of one | ||
1217 | * real MSS sized packet because tcp_retransmit_skb() | ||
1218 | * will fragment it if necessary. | ||
1219 | */ | ||
1220 | if (++packet_cnt > tp->fackets_out) | ||
1221 | break; | ||
1222 | |||
1223 | if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) | ||
1224 | break; | ||
1225 | |||
1226 | if (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) | ||
1227 | continue; | ||
1228 | |||
1229 | /* Ok, retransmit it. */ | ||
1230 | if (tcp_retransmit_skb(sk, skb)) | ||
1231 | break; | ||
1232 | |||
1233 | if (skb == skb_peek(&sk->sk_write_queue)) | ||
1234 | tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto); | ||
1235 | |||
1236 | NET_INC_STATS_BH(LINUX_MIB_TCPFORWARDRETRANS); | ||
1237 | } | ||
1238 | } | ||
1239 | |||
1240 | |||
1241 | /* Send a fin. The caller locks the socket for us. This cannot be | ||
1242 | * allowed to fail queueing a FIN frame under any circumstances. | ||
1243 | */ | ||
1244 | void tcp_send_fin(struct sock *sk) | ||
1245 | { | ||
1246 | struct tcp_sock *tp = tcp_sk(sk); | ||
1247 | struct sk_buff *skb = skb_peek_tail(&sk->sk_write_queue); | ||
1248 | int mss_now; | ||
1249 | |||
1250 | /* Optimization, tack on the FIN if we have a queue of | ||
1251 | * unsent frames. But be careful about outgoing SACKS | ||
1252 | * and IP options. | ||
1253 | */ | ||
1254 | mss_now = tcp_current_mss(sk, 1); | ||
1255 | |||
1256 | if (sk->sk_send_head != NULL) { | ||
1257 | TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN; | ||
1258 | TCP_SKB_CB(skb)->end_seq++; | ||
1259 | tp->write_seq++; | ||
1260 | } else { | ||
1261 | /* Socket is locked, keep trying until memory is available. */ | ||
1262 | for (;;) { | ||
1263 | skb = alloc_skb(MAX_TCP_HEADER, GFP_KERNEL); | ||
1264 | if (skb) | ||
1265 | break; | ||
1266 | yield(); | ||
1267 | } | ||
1268 | |||
1269 | /* Reserve space for headers and prepare control bits. */ | ||
1270 | skb_reserve(skb, MAX_TCP_HEADER); | ||
1271 | skb->csum = 0; | ||
1272 | TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_FIN); | ||
1273 | TCP_SKB_CB(skb)->sacked = 0; | ||
1274 | skb_shinfo(skb)->tso_segs = 1; | ||
1275 | skb_shinfo(skb)->tso_size = 0; | ||
1276 | |||
1277 | /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ | ||
1278 | TCP_SKB_CB(skb)->seq = tp->write_seq; | ||
1279 | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1; | ||
1280 | tcp_queue_skb(sk, skb); | ||
1281 | } | ||
1282 | __tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_OFF); | ||
1283 | } | ||
1284 | |||
1285 | /* We get here when a process closes a file descriptor (either due to | ||
1286 | * an explicit close() or as a byproduct of exit()'ing) and there | ||
1287 | * was unread data in the receive queue. This behavior is recommended | ||
1288 | * by draft-ietf-tcpimpl-prob-03.txt section 3.10. -DaveM | ||
1289 | */ | ||
1290 | void tcp_send_active_reset(struct sock *sk, int priority) | ||
1291 | { | ||
1292 | struct tcp_sock *tp = tcp_sk(sk); | ||
1293 | struct sk_buff *skb; | ||
1294 | |||
1295 | /* NOTE: No TCP options attached and we never retransmit this. */ | ||
1296 | skb = alloc_skb(MAX_TCP_HEADER, priority); | ||
1297 | if (!skb) { | ||
1298 | NET_INC_STATS(LINUX_MIB_TCPABORTFAILED); | ||
1299 | return; | ||
1300 | } | ||
1301 | |||
1302 | /* Reserve space for headers and prepare control bits. */ | ||
1303 | skb_reserve(skb, MAX_TCP_HEADER); | ||
1304 | skb->csum = 0; | ||
1305 | TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_RST); | ||
1306 | TCP_SKB_CB(skb)->sacked = 0; | ||
1307 | skb_shinfo(skb)->tso_segs = 1; | ||
1308 | skb_shinfo(skb)->tso_size = 0; | ||
1309 | |||
1310 | /* Send it off. */ | ||
1311 | TCP_SKB_CB(skb)->seq = tcp_acceptable_seq(sk, tp); | ||
1312 | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq; | ||
1313 | TCP_SKB_CB(skb)->when = tcp_time_stamp; | ||
1314 | if (tcp_transmit_skb(sk, skb)) | ||
1315 | NET_INC_STATS(LINUX_MIB_TCPABORTFAILED); | ||
1316 | } | ||
1317 | |||
1318 | /* WARNING: This routine must only be called when we have already sent | ||
1319 | * a SYN packet that crossed the incoming SYN that caused this routine | ||
1320 | * to get called. If this assumption fails then the initial rcv_wnd | ||
1321 | * and rcv_wscale values will not be correct. | ||
1322 | */ | ||
1323 | int tcp_send_synack(struct sock *sk) | ||
1324 | { | ||
1325 | struct sk_buff* skb; | ||
1326 | |||
1327 | skb = skb_peek(&sk->sk_write_queue); | ||
1328 | if (skb == NULL || !(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_SYN)) { | ||
1329 | printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n"); | ||
1330 | return -EFAULT; | ||
1331 | } | ||
1332 | if (!(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_ACK)) { | ||
1333 | if (skb_cloned(skb)) { | ||
1334 | struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); | ||
1335 | if (nskb == NULL) | ||
1336 | return -ENOMEM; | ||
1337 | __skb_unlink(skb, &sk->sk_write_queue); | ||
1338 | skb_header_release(nskb); | ||
1339 | __skb_queue_head(&sk->sk_write_queue, nskb); | ||
1340 | sk_stream_free_skb(sk, skb); | ||
1341 | sk_charge_skb(sk, nskb); | ||
1342 | skb = nskb; | ||
1343 | } | ||
1344 | |||
1345 | TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK; | ||
1346 | TCP_ECN_send_synack(tcp_sk(sk), skb); | ||
1347 | } | ||
1348 | TCP_SKB_CB(skb)->when = tcp_time_stamp; | ||
1349 | return tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC)); | ||
1350 | } | ||
1351 | |||
1352 | /* | ||
1353 | * Prepare a SYN-ACK. | ||
1354 | */ | ||
1355 | struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst, | ||
1356 | struct open_request *req) | ||
1357 | { | ||
1358 | struct tcp_sock *tp = tcp_sk(sk); | ||
1359 | struct tcphdr *th; | ||
1360 | int tcp_header_size; | ||
1361 | struct sk_buff *skb; | ||
1362 | |||
1363 | skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC); | ||
1364 | if (skb == NULL) | ||
1365 | return NULL; | ||
1366 | |||
1367 | /* Reserve space for headers. */ | ||
1368 | skb_reserve(skb, MAX_TCP_HEADER); | ||
1369 | |||
1370 | skb->dst = dst_clone(dst); | ||
1371 | |||
1372 | tcp_header_size = (sizeof(struct tcphdr) + TCPOLEN_MSS + | ||
1373 | (req->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0) + | ||
1374 | (req->wscale_ok ? TCPOLEN_WSCALE_ALIGNED : 0) + | ||
1375 | /* SACK_PERM is in the place of NOP NOP of TS */ | ||
1376 | ((req->sack_ok && !req->tstamp_ok) ? TCPOLEN_SACKPERM_ALIGNED : 0)); | ||
1377 | skb->h.th = th = (struct tcphdr *) skb_push(skb, tcp_header_size); | ||
1378 | |||
1379 | memset(th, 0, sizeof(struct tcphdr)); | ||
1380 | th->syn = 1; | ||
1381 | th->ack = 1; | ||
1382 | if (dst->dev->features&NETIF_F_TSO) | ||
1383 | req->ecn_ok = 0; | ||
1384 | TCP_ECN_make_synack(req, th); | ||
1385 | th->source = inet_sk(sk)->sport; | ||
1386 | th->dest = req->rmt_port; | ||
1387 | TCP_SKB_CB(skb)->seq = req->snt_isn; | ||
1388 | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1; | ||
1389 | TCP_SKB_CB(skb)->sacked = 0; | ||
1390 | skb_shinfo(skb)->tso_segs = 1; | ||
1391 | skb_shinfo(skb)->tso_size = 0; | ||
1392 | th->seq = htonl(TCP_SKB_CB(skb)->seq); | ||
1393 | th->ack_seq = htonl(req->rcv_isn + 1); | ||
1394 | if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */ | ||
1395 | __u8 rcv_wscale; | ||
1396 | /* Set this up on the first call only */ | ||
1397 | req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW); | ||
1398 | /* tcp_full_space because it is guaranteed to be the first packet */ | ||
1399 | tcp_select_initial_window(tcp_full_space(sk), | ||
1400 | dst_metric(dst, RTAX_ADVMSS) - (req->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0), | ||
1401 | &req->rcv_wnd, | ||
1402 | &req->window_clamp, | ||
1403 | req->wscale_ok, | ||
1404 | &rcv_wscale); | ||
1405 | req->rcv_wscale = rcv_wscale; | ||
1406 | } | ||
1407 | |||
1408 | /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ | ||
1409 | th->window = htons(req->rcv_wnd); | ||
1410 | |||
1411 | TCP_SKB_CB(skb)->when = tcp_time_stamp; | ||
1412 | tcp_syn_build_options((__u32 *)(th + 1), dst_metric(dst, RTAX_ADVMSS), req->tstamp_ok, | ||
1413 | req->sack_ok, req->wscale_ok, req->rcv_wscale, | ||
1414 | TCP_SKB_CB(skb)->when, | ||
1415 | req->ts_recent); | ||
1416 | |||
1417 | skb->csum = 0; | ||
1418 | th->doff = (tcp_header_size >> 2); | ||
1419 | TCP_INC_STATS(TCP_MIB_OUTSEGS); | ||
1420 | return skb; | ||
1421 | } | ||
1422 | |||
1423 | /* | ||
1424 | * Do all connect socket setups that can be done AF independent. | ||
1425 | */ | ||
1426 | static inline void tcp_connect_init(struct sock *sk) | ||
1427 | { | ||
1428 | struct dst_entry *dst = __sk_dst_get(sk); | ||
1429 | struct tcp_sock *tp = tcp_sk(sk); | ||
1430 | __u8 rcv_wscale; | ||
1431 | |||
1432 | /* We'll fix this up when we get a response from the other end. | ||
1433 | * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. | ||
1434 | */ | ||
1435 | tp->tcp_header_len = sizeof(struct tcphdr) + | ||
1436 | (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); | ||
1437 | |||
1438 | /* If user gave his TCP_MAXSEG, record it to clamp */ | ||
1439 | if (tp->rx_opt.user_mss) | ||
1440 | tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; | ||
1441 | tp->max_window = 0; | ||
1442 | tcp_sync_mss(sk, dst_mtu(dst)); | ||
1443 | |||
1444 | if (!tp->window_clamp) | ||
1445 | tp->window_clamp = dst_metric(dst, RTAX_WINDOW); | ||
1446 | tp->advmss = dst_metric(dst, RTAX_ADVMSS); | ||
1447 | tcp_initialize_rcv_mss(sk); | ||
1448 | tcp_ca_init(tp); | ||
1449 | |||
1450 | tcp_select_initial_window(tcp_full_space(sk), | ||
1451 | tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), | ||
1452 | &tp->rcv_wnd, | ||
1453 | &tp->window_clamp, | ||
1454 | sysctl_tcp_window_scaling, | ||
1455 | &rcv_wscale); | ||
1456 | |||
1457 | tp->rx_opt.rcv_wscale = rcv_wscale; | ||
1458 | tp->rcv_ssthresh = tp->rcv_wnd; | ||
1459 | |||
1460 | sk->sk_err = 0; | ||
1461 | sock_reset_flag(sk, SOCK_DONE); | ||
1462 | tp->snd_wnd = 0; | ||
1463 | tcp_init_wl(tp, tp->write_seq, 0); | ||
1464 | tp->snd_una = tp->write_seq; | ||
1465 | tp->snd_sml = tp->write_seq; | ||
1466 | tp->rcv_nxt = 0; | ||
1467 | tp->rcv_wup = 0; | ||
1468 | tp->copied_seq = 0; | ||
1469 | |||
1470 | tp->rto = TCP_TIMEOUT_INIT; | ||
1471 | tp->retransmits = 0; | ||
1472 | tcp_clear_retrans(tp); | ||
1473 | } | ||
1474 | |||
1475 | /* | ||
1476 | * Build a SYN and send it off. | ||
1477 | */ | ||
1478 | int tcp_connect(struct sock *sk) | ||
1479 | { | ||
1480 | struct tcp_sock *tp = tcp_sk(sk); | ||
1481 | struct sk_buff *buff; | ||
1482 | |||
1483 | tcp_connect_init(sk); | ||
1484 | |||
1485 | buff = alloc_skb(MAX_TCP_HEADER + 15, sk->sk_allocation); | ||
1486 | if (unlikely(buff == NULL)) | ||
1487 | return -ENOBUFS; | ||
1488 | |||
1489 | /* Reserve space for headers. */ | ||
1490 | skb_reserve(buff, MAX_TCP_HEADER); | ||
1491 | |||
1492 | TCP_SKB_CB(buff)->flags = TCPCB_FLAG_SYN; | ||
1493 | TCP_ECN_send_syn(sk, tp, buff); | ||
1494 | TCP_SKB_CB(buff)->sacked = 0; | ||
1495 | skb_shinfo(buff)->tso_segs = 1; | ||
1496 | skb_shinfo(buff)->tso_size = 0; | ||
1497 | buff->csum = 0; | ||
1498 | TCP_SKB_CB(buff)->seq = tp->write_seq++; | ||
1499 | TCP_SKB_CB(buff)->end_seq = tp->write_seq; | ||
1500 | tp->snd_nxt = tp->write_seq; | ||
1501 | tp->pushed_seq = tp->write_seq; | ||
1502 | tcp_ca_init(tp); | ||
1503 | |||
1504 | /* Send it off. */ | ||
1505 | TCP_SKB_CB(buff)->when = tcp_time_stamp; | ||
1506 | tp->retrans_stamp = TCP_SKB_CB(buff)->when; | ||
1507 | skb_header_release(buff); | ||
1508 | __skb_queue_tail(&sk->sk_write_queue, buff); | ||
1509 | sk_charge_skb(sk, buff); | ||
1510 | tp->packets_out += tcp_skb_pcount(buff); | ||
1511 | tcp_transmit_skb(sk, skb_clone(buff, GFP_KERNEL)); | ||
1512 | TCP_INC_STATS(TCP_MIB_ACTIVEOPENS); | ||
1513 | |||
1514 | /* Timer for repeating the SYN until an answer. */ | ||
1515 | tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto); | ||
1516 | return 0; | ||
1517 | } | ||
1518 | |||
1519 | /* Send out a delayed ack, the caller does the policy checking | ||
1520 | * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() | ||
1521 | * for details. | ||
1522 | */ | ||
1523 | void tcp_send_delayed_ack(struct sock *sk) | ||
1524 | { | ||
1525 | struct tcp_sock *tp = tcp_sk(sk); | ||
1526 | int ato = tp->ack.ato; | ||
1527 | unsigned long timeout; | ||
1528 | |||
1529 | if (ato > TCP_DELACK_MIN) { | ||
1530 | int max_ato = HZ/2; | ||
1531 | |||
1532 | if (tp->ack.pingpong || (tp->ack.pending&TCP_ACK_PUSHED)) | ||
1533 | max_ato = TCP_DELACK_MAX; | ||
1534 | |||
1535 | /* Slow path, intersegment interval is "high". */ | ||
1536 | |||
1537 | /* If some rtt estimate is known, use it to bound delayed ack. | ||
1538 | * Do not use tp->rto here, use results of rtt measurements | ||
1539 | * directly. | ||
1540 | */ | ||
1541 | if (tp->srtt) { | ||
1542 | int rtt = max(tp->srtt>>3, TCP_DELACK_MIN); | ||
1543 | |||
1544 | if (rtt < max_ato) | ||
1545 | max_ato = rtt; | ||
1546 | } | ||
1547 | |||
1548 | ato = min(ato, max_ato); | ||
1549 | } | ||
1550 | |||
1551 | /* Stay within the limit we were given */ | ||
1552 | timeout = jiffies + ato; | ||
1553 | |||
1554 | /* Use new timeout only if there wasn't a older one earlier. */ | ||
1555 | if (tp->ack.pending&TCP_ACK_TIMER) { | ||
1556 | /* If delack timer was blocked or is about to expire, | ||
1557 | * send ACK now. | ||
1558 | */ | ||
1559 | if (tp->ack.blocked || time_before_eq(tp->ack.timeout, jiffies+(ato>>2))) { | ||
1560 | tcp_send_ack(sk); | ||
1561 | return; | ||
1562 | } | ||
1563 | |||
1564 | if (!time_before(timeout, tp->ack.timeout)) | ||
1565 | timeout = tp->ack.timeout; | ||
1566 | } | ||
1567 | tp->ack.pending |= TCP_ACK_SCHED|TCP_ACK_TIMER; | ||
1568 | tp->ack.timeout = timeout; | ||
1569 | sk_reset_timer(sk, &tp->delack_timer, timeout); | ||
1570 | } | ||
1571 | |||
1572 | /* This routine sends an ack and also updates the window. */ | ||
1573 | void tcp_send_ack(struct sock *sk) | ||
1574 | { | ||
1575 | /* If we have been reset, we may not send again. */ | ||
1576 | if (sk->sk_state != TCP_CLOSE) { | ||
1577 | struct tcp_sock *tp = tcp_sk(sk); | ||
1578 | struct sk_buff *buff; | ||
1579 | |||
1580 | /* We are not putting this on the write queue, so | ||
1581 | * tcp_transmit_skb() will set the ownership to this | ||
1582 | * sock. | ||
1583 | */ | ||
1584 | buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); | ||
1585 | if (buff == NULL) { | ||
1586 | tcp_schedule_ack(tp); | ||
1587 | tp->ack.ato = TCP_ATO_MIN; | ||
1588 | tcp_reset_xmit_timer(sk, TCP_TIME_DACK, TCP_DELACK_MAX); | ||
1589 | return; | ||
1590 | } | ||
1591 | |||
1592 | /* Reserve space for headers and prepare control bits. */ | ||
1593 | skb_reserve(buff, MAX_TCP_HEADER); | ||
1594 | buff->csum = 0; | ||
1595 | TCP_SKB_CB(buff)->flags = TCPCB_FLAG_ACK; | ||
1596 | TCP_SKB_CB(buff)->sacked = 0; | ||
1597 | skb_shinfo(buff)->tso_segs = 1; | ||
1598 | skb_shinfo(buff)->tso_size = 0; | ||
1599 | |||
1600 | /* Send it off, this clears delayed acks for us. */ | ||
1601 | TCP_SKB_CB(buff)->seq = TCP_SKB_CB(buff)->end_seq = tcp_acceptable_seq(sk, tp); | ||
1602 | TCP_SKB_CB(buff)->when = tcp_time_stamp; | ||
1603 | tcp_transmit_skb(sk, buff); | ||
1604 | } | ||
1605 | } | ||
1606 | |||
1607 | /* This routine sends a packet with an out of date sequence | ||
1608 | * number. It assumes the other end will try to ack it. | ||
1609 | * | ||
1610 | * Question: what should we make while urgent mode? | ||
1611 | * 4.4BSD forces sending single byte of data. We cannot send | ||
1612 | * out of window data, because we have SND.NXT==SND.MAX... | ||
1613 | * | ||
1614 | * Current solution: to send TWO zero-length segments in urgent mode: | ||
1615 | * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is | ||
1616 | * out-of-date with SND.UNA-1 to probe window. | ||
1617 | */ | ||
1618 | static int tcp_xmit_probe_skb(struct sock *sk, int urgent) | ||
1619 | { | ||
1620 | struct tcp_sock *tp = tcp_sk(sk); | ||
1621 | struct sk_buff *skb; | ||
1622 | |||
1623 | /* We don't queue it, tcp_transmit_skb() sets ownership. */ | ||
1624 | skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); | ||
1625 | if (skb == NULL) | ||
1626 | return -1; | ||
1627 | |||
1628 | /* Reserve space for headers and set control bits. */ | ||
1629 | skb_reserve(skb, MAX_TCP_HEADER); | ||
1630 | skb->csum = 0; | ||
1631 | TCP_SKB_CB(skb)->flags = TCPCB_FLAG_ACK; | ||
1632 | TCP_SKB_CB(skb)->sacked = urgent; | ||
1633 | skb_shinfo(skb)->tso_segs = 1; | ||
1634 | skb_shinfo(skb)->tso_size = 0; | ||
1635 | |||
1636 | /* Use a previous sequence. This should cause the other | ||
1637 | * end to send an ack. Don't queue or clone SKB, just | ||
1638 | * send it. | ||
1639 | */ | ||
1640 | TCP_SKB_CB(skb)->seq = urgent ? tp->snd_una : tp->snd_una - 1; | ||
1641 | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq; | ||
1642 | TCP_SKB_CB(skb)->when = tcp_time_stamp; | ||
1643 | return tcp_transmit_skb(sk, skb); | ||
1644 | } | ||
1645 | |||
1646 | int tcp_write_wakeup(struct sock *sk) | ||
1647 | { | ||
1648 | if (sk->sk_state != TCP_CLOSE) { | ||
1649 | struct tcp_sock *tp = tcp_sk(sk); | ||
1650 | struct sk_buff *skb; | ||
1651 | |||
1652 | if ((skb = sk->sk_send_head) != NULL && | ||
1653 | before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)) { | ||
1654 | int err; | ||
1655 | unsigned int mss = tcp_current_mss(sk, 0); | ||
1656 | unsigned int seg_size = tp->snd_una+tp->snd_wnd-TCP_SKB_CB(skb)->seq; | ||
1657 | |||
1658 | if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) | ||
1659 | tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; | ||
1660 | |||
1661 | /* We are probing the opening of a window | ||
1662 | * but the window size is != 0 | ||
1663 | * must have been a result SWS avoidance ( sender ) | ||
1664 | */ | ||
1665 | if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || | ||
1666 | skb->len > mss) { | ||
1667 | seg_size = min(seg_size, mss); | ||
1668 | TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; | ||
1669 | if (tcp_fragment(sk, skb, seg_size)) | ||
1670 | return -1; | ||
1671 | /* SWS override triggered forced fragmentation. | ||
1672 | * Disable TSO, the connection is too sick. */ | ||
1673 | if (sk->sk_route_caps & NETIF_F_TSO) { | ||
1674 | sock_set_flag(sk, SOCK_NO_LARGESEND); | ||
1675 | sk->sk_route_caps &= ~NETIF_F_TSO; | ||
1676 | tp->mss_cache = tp->mss_cache_std; | ||
1677 | } | ||
1678 | } else if (!tcp_skb_pcount(skb)) | ||
1679 | tcp_set_skb_tso_segs(skb, tp->mss_cache_std); | ||
1680 | |||
1681 | TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; | ||
1682 | TCP_SKB_CB(skb)->when = tcp_time_stamp; | ||
1683 | tcp_tso_set_push(skb); | ||
1684 | err = tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC)); | ||
1685 | if (!err) { | ||
1686 | update_send_head(sk, tp, skb); | ||
1687 | } | ||
1688 | return err; | ||
1689 | } else { | ||
1690 | if (tp->urg_mode && | ||
1691 | between(tp->snd_up, tp->snd_una+1, tp->snd_una+0xFFFF)) | ||
1692 | tcp_xmit_probe_skb(sk, TCPCB_URG); | ||
1693 | return tcp_xmit_probe_skb(sk, 0); | ||
1694 | } | ||
1695 | } | ||
1696 | return -1; | ||
1697 | } | ||
1698 | |||
1699 | /* A window probe timeout has occurred. If window is not closed send | ||
1700 | * a partial packet else a zero probe. | ||
1701 | */ | ||
1702 | void tcp_send_probe0(struct sock *sk) | ||
1703 | { | ||
1704 | struct tcp_sock *tp = tcp_sk(sk); | ||
1705 | int err; | ||
1706 | |||
1707 | err = tcp_write_wakeup(sk); | ||
1708 | |||
1709 | if (tp->packets_out || !sk->sk_send_head) { | ||
1710 | /* Cancel probe timer, if it is not required. */ | ||
1711 | tp->probes_out = 0; | ||
1712 | tp->backoff = 0; | ||
1713 | return; | ||
1714 | } | ||
1715 | |||
1716 | if (err <= 0) { | ||
1717 | if (tp->backoff < sysctl_tcp_retries2) | ||
1718 | tp->backoff++; | ||
1719 | tp->probes_out++; | ||
1720 | tcp_reset_xmit_timer (sk, TCP_TIME_PROBE0, | ||
1721 | min(tp->rto << tp->backoff, TCP_RTO_MAX)); | ||
1722 | } else { | ||
1723 | /* If packet was not sent due to local congestion, | ||
1724 | * do not backoff and do not remember probes_out. | ||
1725 | * Let local senders to fight for local resources. | ||
1726 | * | ||
1727 | * Use accumulated backoff yet. | ||
1728 | */ | ||
1729 | if (!tp->probes_out) | ||
1730 | tp->probes_out=1; | ||
1731 | tcp_reset_xmit_timer (sk, TCP_TIME_PROBE0, | ||
1732 | min(tp->rto << tp->backoff, TCP_RESOURCE_PROBE_INTERVAL)); | ||
1733 | } | ||
1734 | } | ||
1735 | |||
1736 | EXPORT_SYMBOL(tcp_connect); | ||
1737 | EXPORT_SYMBOL(tcp_make_synack); | ||
1738 | EXPORT_SYMBOL(tcp_simple_retransmit); | ||
1739 | EXPORT_SYMBOL(tcp_sync_mss); | ||