diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /net/ipv4/tcp_minisocks.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'net/ipv4/tcp_minisocks.c')
-rw-r--r-- | net/ipv4/tcp_minisocks.c | 1077 |
1 files changed, 1077 insertions, 0 deletions
diff --git a/net/ipv4/tcp_minisocks.c b/net/ipv4/tcp_minisocks.c new file mode 100644 index 000000000000..fd70509f0d53 --- /dev/null +++ b/net/ipv4/tcp_minisocks.c | |||
@@ -0,0 +1,1077 @@ | |||
1 | /* | ||
2 | * INET An implementation of the TCP/IP protocol suite for the LINUX | ||
3 | * operating system. INET is implemented using the BSD Socket | ||
4 | * interface as the means of communication with the user level. | ||
5 | * | ||
6 | * Implementation of the Transmission Control Protocol(TCP). | ||
7 | * | ||
8 | * Version: $Id: tcp_minisocks.c,v 1.15 2002/02/01 22:01:04 davem Exp $ | ||
9 | * | ||
10 | * Authors: Ross Biro, <bir7@leland.Stanford.Edu> | ||
11 | * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> | ||
12 | * Mark Evans, <evansmp@uhura.aston.ac.uk> | ||
13 | * Corey Minyard <wf-rch!minyard@relay.EU.net> | ||
14 | * Florian La Roche, <flla@stud.uni-sb.de> | ||
15 | * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> | ||
16 | * Linus Torvalds, <torvalds@cs.helsinki.fi> | ||
17 | * Alan Cox, <gw4pts@gw4pts.ampr.org> | ||
18 | * Matthew Dillon, <dillon@apollo.west.oic.com> | ||
19 | * Arnt Gulbrandsen, <agulbra@nvg.unit.no> | ||
20 | * Jorge Cwik, <jorge@laser.satlink.net> | ||
21 | */ | ||
22 | |||
23 | #include <linux/config.h> | ||
24 | #include <linux/mm.h> | ||
25 | #include <linux/module.h> | ||
26 | #include <linux/sysctl.h> | ||
27 | #include <linux/workqueue.h> | ||
28 | #include <net/tcp.h> | ||
29 | #include <net/inet_common.h> | ||
30 | #include <net/xfrm.h> | ||
31 | |||
32 | #ifdef CONFIG_SYSCTL | ||
33 | #define SYNC_INIT 0 /* let the user enable it */ | ||
34 | #else | ||
35 | #define SYNC_INIT 1 | ||
36 | #endif | ||
37 | |||
38 | int sysctl_tcp_tw_recycle; | ||
39 | int sysctl_tcp_max_tw_buckets = NR_FILE*2; | ||
40 | |||
41 | int sysctl_tcp_syncookies = SYNC_INIT; | ||
42 | int sysctl_tcp_abort_on_overflow; | ||
43 | |||
44 | static void tcp_tw_schedule(struct tcp_tw_bucket *tw, int timeo); | ||
45 | |||
46 | static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win) | ||
47 | { | ||
48 | if (seq == s_win) | ||
49 | return 1; | ||
50 | if (after(end_seq, s_win) && before(seq, e_win)) | ||
51 | return 1; | ||
52 | return (seq == e_win && seq == end_seq); | ||
53 | } | ||
54 | |||
55 | /* New-style handling of TIME_WAIT sockets. */ | ||
56 | |||
57 | int tcp_tw_count; | ||
58 | |||
59 | |||
60 | /* Must be called with locally disabled BHs. */ | ||
61 | static void tcp_timewait_kill(struct tcp_tw_bucket *tw) | ||
62 | { | ||
63 | struct tcp_ehash_bucket *ehead; | ||
64 | struct tcp_bind_hashbucket *bhead; | ||
65 | struct tcp_bind_bucket *tb; | ||
66 | |||
67 | /* Unlink from established hashes. */ | ||
68 | ehead = &tcp_ehash[tw->tw_hashent]; | ||
69 | write_lock(&ehead->lock); | ||
70 | if (hlist_unhashed(&tw->tw_node)) { | ||
71 | write_unlock(&ehead->lock); | ||
72 | return; | ||
73 | } | ||
74 | __hlist_del(&tw->tw_node); | ||
75 | sk_node_init(&tw->tw_node); | ||
76 | write_unlock(&ehead->lock); | ||
77 | |||
78 | /* Disassociate with bind bucket. */ | ||
79 | bhead = &tcp_bhash[tcp_bhashfn(tw->tw_num)]; | ||
80 | spin_lock(&bhead->lock); | ||
81 | tb = tw->tw_tb; | ||
82 | __hlist_del(&tw->tw_bind_node); | ||
83 | tw->tw_tb = NULL; | ||
84 | tcp_bucket_destroy(tb); | ||
85 | spin_unlock(&bhead->lock); | ||
86 | |||
87 | #ifdef INET_REFCNT_DEBUG | ||
88 | if (atomic_read(&tw->tw_refcnt) != 1) { | ||
89 | printk(KERN_DEBUG "tw_bucket %p refcnt=%d\n", tw, | ||
90 | atomic_read(&tw->tw_refcnt)); | ||
91 | } | ||
92 | #endif | ||
93 | tcp_tw_put(tw); | ||
94 | } | ||
95 | |||
96 | /* | ||
97 | * * Main purpose of TIME-WAIT state is to close connection gracefully, | ||
98 | * when one of ends sits in LAST-ACK or CLOSING retransmitting FIN | ||
99 | * (and, probably, tail of data) and one or more our ACKs are lost. | ||
100 | * * What is TIME-WAIT timeout? It is associated with maximal packet | ||
101 | * lifetime in the internet, which results in wrong conclusion, that | ||
102 | * it is set to catch "old duplicate segments" wandering out of their path. | ||
103 | * It is not quite correct. This timeout is calculated so that it exceeds | ||
104 | * maximal retransmission timeout enough to allow to lose one (or more) | ||
105 | * segments sent by peer and our ACKs. This time may be calculated from RTO. | ||
106 | * * When TIME-WAIT socket receives RST, it means that another end | ||
107 | * finally closed and we are allowed to kill TIME-WAIT too. | ||
108 | * * Second purpose of TIME-WAIT is catching old duplicate segments. | ||
109 | * Well, certainly it is pure paranoia, but if we load TIME-WAIT | ||
110 | * with this semantics, we MUST NOT kill TIME-WAIT state with RSTs. | ||
111 | * * If we invented some more clever way to catch duplicates | ||
112 | * (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs. | ||
113 | * | ||
114 | * The algorithm below is based on FORMAL INTERPRETATION of RFCs. | ||
115 | * When you compare it to RFCs, please, read section SEGMENT ARRIVES | ||
116 | * from the very beginning. | ||
117 | * | ||
118 | * NOTE. With recycling (and later with fin-wait-2) TW bucket | ||
119 | * is _not_ stateless. It means, that strictly speaking we must | ||
120 | * spinlock it. I do not want! Well, probability of misbehaviour | ||
121 | * is ridiculously low and, seems, we could use some mb() tricks | ||
122 | * to avoid misread sequence numbers, states etc. --ANK | ||
123 | */ | ||
124 | enum tcp_tw_status | ||
125 | tcp_timewait_state_process(struct tcp_tw_bucket *tw, struct sk_buff *skb, | ||
126 | struct tcphdr *th, unsigned len) | ||
127 | { | ||
128 | struct tcp_options_received tmp_opt; | ||
129 | int paws_reject = 0; | ||
130 | |||
131 | tmp_opt.saw_tstamp = 0; | ||
132 | if (th->doff > (sizeof(struct tcphdr) >> 2) && tw->tw_ts_recent_stamp) { | ||
133 | tcp_parse_options(skb, &tmp_opt, 0); | ||
134 | |||
135 | if (tmp_opt.saw_tstamp) { | ||
136 | tmp_opt.ts_recent = tw->tw_ts_recent; | ||
137 | tmp_opt.ts_recent_stamp = tw->tw_ts_recent_stamp; | ||
138 | paws_reject = tcp_paws_check(&tmp_opt, th->rst); | ||
139 | } | ||
140 | } | ||
141 | |||
142 | if (tw->tw_substate == TCP_FIN_WAIT2) { | ||
143 | /* Just repeat all the checks of tcp_rcv_state_process() */ | ||
144 | |||
145 | /* Out of window, send ACK */ | ||
146 | if (paws_reject || | ||
147 | !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq, | ||
148 | tw->tw_rcv_nxt, | ||
149 | tw->tw_rcv_nxt + tw->tw_rcv_wnd)) | ||
150 | return TCP_TW_ACK; | ||
151 | |||
152 | if (th->rst) | ||
153 | goto kill; | ||
154 | |||
155 | if (th->syn && !before(TCP_SKB_CB(skb)->seq, tw->tw_rcv_nxt)) | ||
156 | goto kill_with_rst; | ||
157 | |||
158 | /* Dup ACK? */ | ||
159 | if (!after(TCP_SKB_CB(skb)->end_seq, tw->tw_rcv_nxt) || | ||
160 | TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) { | ||
161 | tcp_tw_put(tw); | ||
162 | return TCP_TW_SUCCESS; | ||
163 | } | ||
164 | |||
165 | /* New data or FIN. If new data arrive after half-duplex close, | ||
166 | * reset. | ||
167 | */ | ||
168 | if (!th->fin || | ||
169 | TCP_SKB_CB(skb)->end_seq != tw->tw_rcv_nxt + 1) { | ||
170 | kill_with_rst: | ||
171 | tcp_tw_deschedule(tw); | ||
172 | tcp_tw_put(tw); | ||
173 | return TCP_TW_RST; | ||
174 | } | ||
175 | |||
176 | /* FIN arrived, enter true time-wait state. */ | ||
177 | tw->tw_substate = TCP_TIME_WAIT; | ||
178 | tw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq; | ||
179 | if (tmp_opt.saw_tstamp) { | ||
180 | tw->tw_ts_recent_stamp = xtime.tv_sec; | ||
181 | tw->tw_ts_recent = tmp_opt.rcv_tsval; | ||
182 | } | ||
183 | |||
184 | /* I am shamed, but failed to make it more elegant. | ||
185 | * Yes, it is direct reference to IP, which is impossible | ||
186 | * to generalize to IPv6. Taking into account that IPv6 | ||
187 | * do not undertsnad recycling in any case, it not | ||
188 | * a big problem in practice. --ANK */ | ||
189 | if (tw->tw_family == AF_INET && | ||
190 | sysctl_tcp_tw_recycle && tw->tw_ts_recent_stamp && | ||
191 | tcp_v4_tw_remember_stamp(tw)) | ||
192 | tcp_tw_schedule(tw, tw->tw_timeout); | ||
193 | else | ||
194 | tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN); | ||
195 | return TCP_TW_ACK; | ||
196 | } | ||
197 | |||
198 | /* | ||
199 | * Now real TIME-WAIT state. | ||
200 | * | ||
201 | * RFC 1122: | ||
202 | * "When a connection is [...] on TIME-WAIT state [...] | ||
203 | * [a TCP] MAY accept a new SYN from the remote TCP to | ||
204 | * reopen the connection directly, if it: | ||
205 | * | ||
206 | * (1) assigns its initial sequence number for the new | ||
207 | * connection to be larger than the largest sequence | ||
208 | * number it used on the previous connection incarnation, | ||
209 | * and | ||
210 | * | ||
211 | * (2) returns to TIME-WAIT state if the SYN turns out | ||
212 | * to be an old duplicate". | ||
213 | */ | ||
214 | |||
215 | if (!paws_reject && | ||
216 | (TCP_SKB_CB(skb)->seq == tw->tw_rcv_nxt && | ||
217 | (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) { | ||
218 | /* In window segment, it may be only reset or bare ack. */ | ||
219 | |||
220 | if (th->rst) { | ||
221 | /* This is TIME_WAIT assasination, in two flavors. | ||
222 | * Oh well... nobody has a sufficient solution to this | ||
223 | * protocol bug yet. | ||
224 | */ | ||
225 | if (sysctl_tcp_rfc1337 == 0) { | ||
226 | kill: | ||
227 | tcp_tw_deschedule(tw); | ||
228 | tcp_tw_put(tw); | ||
229 | return TCP_TW_SUCCESS; | ||
230 | } | ||
231 | } | ||
232 | tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN); | ||
233 | |||
234 | if (tmp_opt.saw_tstamp) { | ||
235 | tw->tw_ts_recent = tmp_opt.rcv_tsval; | ||
236 | tw->tw_ts_recent_stamp = xtime.tv_sec; | ||
237 | } | ||
238 | |||
239 | tcp_tw_put(tw); | ||
240 | return TCP_TW_SUCCESS; | ||
241 | } | ||
242 | |||
243 | /* Out of window segment. | ||
244 | |||
245 | All the segments are ACKed immediately. | ||
246 | |||
247 | The only exception is new SYN. We accept it, if it is | ||
248 | not old duplicate and we are not in danger to be killed | ||
249 | by delayed old duplicates. RFC check is that it has | ||
250 | newer sequence number works at rates <40Mbit/sec. | ||
251 | However, if paws works, it is reliable AND even more, | ||
252 | we even may relax silly seq space cutoff. | ||
253 | |||
254 | RED-PEN: we violate main RFC requirement, if this SYN will appear | ||
255 | old duplicate (i.e. we receive RST in reply to SYN-ACK), | ||
256 | we must return socket to time-wait state. It is not good, | ||
257 | but not fatal yet. | ||
258 | */ | ||
259 | |||
260 | if (th->syn && !th->rst && !th->ack && !paws_reject && | ||
261 | (after(TCP_SKB_CB(skb)->seq, tw->tw_rcv_nxt) || | ||
262 | (tmp_opt.saw_tstamp && (s32)(tw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) { | ||
263 | u32 isn = tw->tw_snd_nxt + 65535 + 2; | ||
264 | if (isn == 0) | ||
265 | isn++; | ||
266 | TCP_SKB_CB(skb)->when = isn; | ||
267 | return TCP_TW_SYN; | ||
268 | } | ||
269 | |||
270 | if (paws_reject) | ||
271 | NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); | ||
272 | |||
273 | if(!th->rst) { | ||
274 | /* In this case we must reset the TIMEWAIT timer. | ||
275 | * | ||
276 | * If it is ACKless SYN it may be both old duplicate | ||
277 | * and new good SYN with random sequence number <rcv_nxt. | ||
278 | * Do not reschedule in the last case. | ||
279 | */ | ||
280 | if (paws_reject || th->ack) | ||
281 | tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN); | ||
282 | |||
283 | /* Send ACK. Note, we do not put the bucket, | ||
284 | * it will be released by caller. | ||
285 | */ | ||
286 | return TCP_TW_ACK; | ||
287 | } | ||
288 | tcp_tw_put(tw); | ||
289 | return TCP_TW_SUCCESS; | ||
290 | } | ||
291 | |||
292 | /* Enter the time wait state. This is called with locally disabled BH. | ||
293 | * Essentially we whip up a timewait bucket, copy the | ||
294 | * relevant info into it from the SK, and mess with hash chains | ||
295 | * and list linkage. | ||
296 | */ | ||
297 | static void __tcp_tw_hashdance(struct sock *sk, struct tcp_tw_bucket *tw) | ||
298 | { | ||
299 | struct tcp_ehash_bucket *ehead = &tcp_ehash[sk->sk_hashent]; | ||
300 | struct tcp_bind_hashbucket *bhead; | ||
301 | |||
302 | /* Step 1: Put TW into bind hash. Original socket stays there too. | ||
303 | Note, that any socket with inet_sk(sk)->num != 0 MUST be bound in | ||
304 | binding cache, even if it is closed. | ||
305 | */ | ||
306 | bhead = &tcp_bhash[tcp_bhashfn(inet_sk(sk)->num)]; | ||
307 | spin_lock(&bhead->lock); | ||
308 | tw->tw_tb = tcp_sk(sk)->bind_hash; | ||
309 | BUG_TRAP(tcp_sk(sk)->bind_hash); | ||
310 | tw_add_bind_node(tw, &tw->tw_tb->owners); | ||
311 | spin_unlock(&bhead->lock); | ||
312 | |||
313 | write_lock(&ehead->lock); | ||
314 | |||
315 | /* Step 2: Remove SK from established hash. */ | ||
316 | if (__sk_del_node_init(sk)) | ||
317 | sock_prot_dec_use(sk->sk_prot); | ||
318 | |||
319 | /* Step 3: Hash TW into TIMEWAIT half of established hash table. */ | ||
320 | tw_add_node(tw, &(ehead + tcp_ehash_size)->chain); | ||
321 | atomic_inc(&tw->tw_refcnt); | ||
322 | |||
323 | write_unlock(&ehead->lock); | ||
324 | } | ||
325 | |||
326 | /* | ||
327 | * Move a socket to time-wait or dead fin-wait-2 state. | ||
328 | */ | ||
329 | void tcp_time_wait(struct sock *sk, int state, int timeo) | ||
330 | { | ||
331 | struct tcp_tw_bucket *tw = NULL; | ||
332 | struct tcp_sock *tp = tcp_sk(sk); | ||
333 | int recycle_ok = 0; | ||
334 | |||
335 | if (sysctl_tcp_tw_recycle && tp->rx_opt.ts_recent_stamp) | ||
336 | recycle_ok = tp->af_specific->remember_stamp(sk); | ||
337 | |||
338 | if (tcp_tw_count < sysctl_tcp_max_tw_buckets) | ||
339 | tw = kmem_cache_alloc(tcp_timewait_cachep, SLAB_ATOMIC); | ||
340 | |||
341 | if(tw != NULL) { | ||
342 | struct inet_sock *inet = inet_sk(sk); | ||
343 | int rto = (tp->rto<<2) - (tp->rto>>1); | ||
344 | |||
345 | /* Give us an identity. */ | ||
346 | tw->tw_daddr = inet->daddr; | ||
347 | tw->tw_rcv_saddr = inet->rcv_saddr; | ||
348 | tw->tw_bound_dev_if = sk->sk_bound_dev_if; | ||
349 | tw->tw_num = inet->num; | ||
350 | tw->tw_state = TCP_TIME_WAIT; | ||
351 | tw->tw_substate = state; | ||
352 | tw->tw_sport = inet->sport; | ||
353 | tw->tw_dport = inet->dport; | ||
354 | tw->tw_family = sk->sk_family; | ||
355 | tw->tw_reuse = sk->sk_reuse; | ||
356 | tw->tw_rcv_wscale = tp->rx_opt.rcv_wscale; | ||
357 | atomic_set(&tw->tw_refcnt, 1); | ||
358 | |||
359 | tw->tw_hashent = sk->sk_hashent; | ||
360 | tw->tw_rcv_nxt = tp->rcv_nxt; | ||
361 | tw->tw_snd_nxt = tp->snd_nxt; | ||
362 | tw->tw_rcv_wnd = tcp_receive_window(tp); | ||
363 | tw->tw_ts_recent = tp->rx_opt.ts_recent; | ||
364 | tw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp; | ||
365 | tw_dead_node_init(tw); | ||
366 | |||
367 | #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) | ||
368 | if (tw->tw_family == PF_INET6) { | ||
369 | struct ipv6_pinfo *np = inet6_sk(sk); | ||
370 | |||
371 | ipv6_addr_copy(&tw->tw_v6_daddr, &np->daddr); | ||
372 | ipv6_addr_copy(&tw->tw_v6_rcv_saddr, &np->rcv_saddr); | ||
373 | tw->tw_v6_ipv6only = np->ipv6only; | ||
374 | } else { | ||
375 | memset(&tw->tw_v6_daddr, 0, sizeof(tw->tw_v6_daddr)); | ||
376 | memset(&tw->tw_v6_rcv_saddr, 0, sizeof(tw->tw_v6_rcv_saddr)); | ||
377 | tw->tw_v6_ipv6only = 0; | ||
378 | } | ||
379 | #endif | ||
380 | /* Linkage updates. */ | ||
381 | __tcp_tw_hashdance(sk, tw); | ||
382 | |||
383 | /* Get the TIME_WAIT timeout firing. */ | ||
384 | if (timeo < rto) | ||
385 | timeo = rto; | ||
386 | |||
387 | if (recycle_ok) { | ||
388 | tw->tw_timeout = rto; | ||
389 | } else { | ||
390 | tw->tw_timeout = TCP_TIMEWAIT_LEN; | ||
391 | if (state == TCP_TIME_WAIT) | ||
392 | timeo = TCP_TIMEWAIT_LEN; | ||
393 | } | ||
394 | |||
395 | tcp_tw_schedule(tw, timeo); | ||
396 | tcp_tw_put(tw); | ||
397 | } else { | ||
398 | /* Sorry, if we're out of memory, just CLOSE this | ||
399 | * socket up. We've got bigger problems than | ||
400 | * non-graceful socket closings. | ||
401 | */ | ||
402 | if (net_ratelimit()) | ||
403 | printk(KERN_INFO "TCP: time wait bucket table overflow\n"); | ||
404 | } | ||
405 | |||
406 | tcp_update_metrics(sk); | ||
407 | tcp_done(sk); | ||
408 | } | ||
409 | |||
410 | /* Kill off TIME_WAIT sockets once their lifetime has expired. */ | ||
411 | static int tcp_tw_death_row_slot; | ||
412 | |||
413 | static void tcp_twkill(unsigned long); | ||
414 | |||
415 | /* TIME_WAIT reaping mechanism. */ | ||
416 | #define TCP_TWKILL_SLOTS 8 /* Please keep this a power of 2. */ | ||
417 | #define TCP_TWKILL_PERIOD (TCP_TIMEWAIT_LEN/TCP_TWKILL_SLOTS) | ||
418 | |||
419 | #define TCP_TWKILL_QUOTA 100 | ||
420 | |||
421 | static struct hlist_head tcp_tw_death_row[TCP_TWKILL_SLOTS]; | ||
422 | static DEFINE_SPINLOCK(tw_death_lock); | ||
423 | static struct timer_list tcp_tw_timer = TIMER_INITIALIZER(tcp_twkill, 0, 0); | ||
424 | static void twkill_work(void *); | ||
425 | static DECLARE_WORK(tcp_twkill_work, twkill_work, NULL); | ||
426 | static u32 twkill_thread_slots; | ||
427 | |||
428 | /* Returns non-zero if quota exceeded. */ | ||
429 | static int tcp_do_twkill_work(int slot, unsigned int quota) | ||
430 | { | ||
431 | struct tcp_tw_bucket *tw; | ||
432 | struct hlist_node *node; | ||
433 | unsigned int killed; | ||
434 | int ret; | ||
435 | |||
436 | /* NOTE: compare this to previous version where lock | ||
437 | * was released after detaching chain. It was racy, | ||
438 | * because tw buckets are scheduled in not serialized context | ||
439 | * in 2.3 (with netfilter), and with softnet it is common, because | ||
440 | * soft irqs are not sequenced. | ||
441 | */ | ||
442 | killed = 0; | ||
443 | ret = 0; | ||
444 | rescan: | ||
445 | tw_for_each_inmate(tw, node, &tcp_tw_death_row[slot]) { | ||
446 | __tw_del_dead_node(tw); | ||
447 | spin_unlock(&tw_death_lock); | ||
448 | tcp_timewait_kill(tw); | ||
449 | tcp_tw_put(tw); | ||
450 | killed++; | ||
451 | spin_lock(&tw_death_lock); | ||
452 | if (killed > quota) { | ||
453 | ret = 1; | ||
454 | break; | ||
455 | } | ||
456 | |||
457 | /* While we dropped tw_death_lock, another cpu may have | ||
458 | * killed off the next TW bucket in the list, therefore | ||
459 | * do a fresh re-read of the hlist head node with the | ||
460 | * lock reacquired. We still use the hlist traversal | ||
461 | * macro in order to get the prefetches. | ||
462 | */ | ||
463 | goto rescan; | ||
464 | } | ||
465 | |||
466 | tcp_tw_count -= killed; | ||
467 | NET_ADD_STATS_BH(LINUX_MIB_TIMEWAITED, killed); | ||
468 | |||
469 | return ret; | ||
470 | } | ||
471 | |||
472 | static void tcp_twkill(unsigned long dummy) | ||
473 | { | ||
474 | int need_timer, ret; | ||
475 | |||
476 | spin_lock(&tw_death_lock); | ||
477 | |||
478 | if (tcp_tw_count == 0) | ||
479 | goto out; | ||
480 | |||
481 | need_timer = 0; | ||
482 | ret = tcp_do_twkill_work(tcp_tw_death_row_slot, TCP_TWKILL_QUOTA); | ||
483 | if (ret) { | ||
484 | twkill_thread_slots |= (1 << tcp_tw_death_row_slot); | ||
485 | mb(); | ||
486 | schedule_work(&tcp_twkill_work); | ||
487 | need_timer = 1; | ||
488 | } else { | ||
489 | /* We purged the entire slot, anything left? */ | ||
490 | if (tcp_tw_count) | ||
491 | need_timer = 1; | ||
492 | } | ||
493 | tcp_tw_death_row_slot = | ||
494 | ((tcp_tw_death_row_slot + 1) & (TCP_TWKILL_SLOTS - 1)); | ||
495 | if (need_timer) | ||
496 | mod_timer(&tcp_tw_timer, jiffies + TCP_TWKILL_PERIOD); | ||
497 | out: | ||
498 | spin_unlock(&tw_death_lock); | ||
499 | } | ||
500 | |||
501 | extern void twkill_slots_invalid(void); | ||
502 | |||
503 | static void twkill_work(void *dummy) | ||
504 | { | ||
505 | int i; | ||
506 | |||
507 | if ((TCP_TWKILL_SLOTS - 1) > (sizeof(twkill_thread_slots) * 8)) | ||
508 | twkill_slots_invalid(); | ||
509 | |||
510 | while (twkill_thread_slots) { | ||
511 | spin_lock_bh(&tw_death_lock); | ||
512 | for (i = 0; i < TCP_TWKILL_SLOTS; i++) { | ||
513 | if (!(twkill_thread_slots & (1 << i))) | ||
514 | continue; | ||
515 | |||
516 | while (tcp_do_twkill_work(i, TCP_TWKILL_QUOTA) != 0) { | ||
517 | if (need_resched()) { | ||
518 | spin_unlock_bh(&tw_death_lock); | ||
519 | schedule(); | ||
520 | spin_lock_bh(&tw_death_lock); | ||
521 | } | ||
522 | } | ||
523 | |||
524 | twkill_thread_slots &= ~(1 << i); | ||
525 | } | ||
526 | spin_unlock_bh(&tw_death_lock); | ||
527 | } | ||
528 | } | ||
529 | |||
530 | /* These are always called from BH context. See callers in | ||
531 | * tcp_input.c to verify this. | ||
532 | */ | ||
533 | |||
534 | /* This is for handling early-kills of TIME_WAIT sockets. */ | ||
535 | void tcp_tw_deschedule(struct tcp_tw_bucket *tw) | ||
536 | { | ||
537 | spin_lock(&tw_death_lock); | ||
538 | if (tw_del_dead_node(tw)) { | ||
539 | tcp_tw_put(tw); | ||
540 | if (--tcp_tw_count == 0) | ||
541 | del_timer(&tcp_tw_timer); | ||
542 | } | ||
543 | spin_unlock(&tw_death_lock); | ||
544 | tcp_timewait_kill(tw); | ||
545 | } | ||
546 | |||
547 | /* Short-time timewait calendar */ | ||
548 | |||
549 | static int tcp_twcal_hand = -1; | ||
550 | static int tcp_twcal_jiffie; | ||
551 | static void tcp_twcal_tick(unsigned long); | ||
552 | static struct timer_list tcp_twcal_timer = | ||
553 | TIMER_INITIALIZER(tcp_twcal_tick, 0, 0); | ||
554 | static struct hlist_head tcp_twcal_row[TCP_TW_RECYCLE_SLOTS]; | ||
555 | |||
556 | static void tcp_tw_schedule(struct tcp_tw_bucket *tw, int timeo) | ||
557 | { | ||
558 | struct hlist_head *list; | ||
559 | int slot; | ||
560 | |||
561 | /* timeout := RTO * 3.5 | ||
562 | * | ||
563 | * 3.5 = 1+2+0.5 to wait for two retransmits. | ||
564 | * | ||
565 | * RATIONALE: if FIN arrived and we entered TIME-WAIT state, | ||
566 | * our ACK acking that FIN can be lost. If N subsequent retransmitted | ||
567 | * FINs (or previous seqments) are lost (probability of such event | ||
568 | * is p^(N+1), where p is probability to lose single packet and | ||
569 | * time to detect the loss is about RTO*(2^N - 1) with exponential | ||
570 | * backoff). Normal timewait length is calculated so, that we | ||
571 | * waited at least for one retransmitted FIN (maximal RTO is 120sec). | ||
572 | * [ BTW Linux. following BSD, violates this requirement waiting | ||
573 | * only for 60sec, we should wait at least for 240 secs. | ||
574 | * Well, 240 consumes too much of resources 8) | ||
575 | * ] | ||
576 | * This interval is not reduced to catch old duplicate and | ||
577 | * responces to our wandering segments living for two MSLs. | ||
578 | * However, if we use PAWS to detect | ||
579 | * old duplicates, we can reduce the interval to bounds required | ||
580 | * by RTO, rather than MSL. So, if peer understands PAWS, we | ||
581 | * kill tw bucket after 3.5*RTO (it is important that this number | ||
582 | * is greater than TS tick!) and detect old duplicates with help | ||
583 | * of PAWS. | ||
584 | */ | ||
585 | slot = (timeo + (1<<TCP_TW_RECYCLE_TICK) - 1) >> TCP_TW_RECYCLE_TICK; | ||
586 | |||
587 | spin_lock(&tw_death_lock); | ||
588 | |||
589 | /* Unlink it, if it was scheduled */ | ||
590 | if (tw_del_dead_node(tw)) | ||
591 | tcp_tw_count--; | ||
592 | else | ||
593 | atomic_inc(&tw->tw_refcnt); | ||
594 | |||
595 | if (slot >= TCP_TW_RECYCLE_SLOTS) { | ||
596 | /* Schedule to slow timer */ | ||
597 | if (timeo >= TCP_TIMEWAIT_LEN) { | ||
598 | slot = TCP_TWKILL_SLOTS-1; | ||
599 | } else { | ||
600 | slot = (timeo + TCP_TWKILL_PERIOD-1) / TCP_TWKILL_PERIOD; | ||
601 | if (slot >= TCP_TWKILL_SLOTS) | ||
602 | slot = TCP_TWKILL_SLOTS-1; | ||
603 | } | ||
604 | tw->tw_ttd = jiffies + timeo; | ||
605 | slot = (tcp_tw_death_row_slot + slot) & (TCP_TWKILL_SLOTS - 1); | ||
606 | list = &tcp_tw_death_row[slot]; | ||
607 | } else { | ||
608 | tw->tw_ttd = jiffies + (slot << TCP_TW_RECYCLE_TICK); | ||
609 | |||
610 | if (tcp_twcal_hand < 0) { | ||
611 | tcp_twcal_hand = 0; | ||
612 | tcp_twcal_jiffie = jiffies; | ||
613 | tcp_twcal_timer.expires = tcp_twcal_jiffie + (slot<<TCP_TW_RECYCLE_TICK); | ||
614 | add_timer(&tcp_twcal_timer); | ||
615 | } else { | ||
616 | if (time_after(tcp_twcal_timer.expires, jiffies + (slot<<TCP_TW_RECYCLE_TICK))) | ||
617 | mod_timer(&tcp_twcal_timer, jiffies + (slot<<TCP_TW_RECYCLE_TICK)); | ||
618 | slot = (tcp_twcal_hand + slot)&(TCP_TW_RECYCLE_SLOTS-1); | ||
619 | } | ||
620 | list = &tcp_twcal_row[slot]; | ||
621 | } | ||
622 | |||
623 | hlist_add_head(&tw->tw_death_node, list); | ||
624 | |||
625 | if (tcp_tw_count++ == 0) | ||
626 | mod_timer(&tcp_tw_timer, jiffies+TCP_TWKILL_PERIOD); | ||
627 | spin_unlock(&tw_death_lock); | ||
628 | } | ||
629 | |||
630 | void tcp_twcal_tick(unsigned long dummy) | ||
631 | { | ||
632 | int n, slot; | ||
633 | unsigned long j; | ||
634 | unsigned long now = jiffies; | ||
635 | int killed = 0; | ||
636 | int adv = 0; | ||
637 | |||
638 | spin_lock(&tw_death_lock); | ||
639 | if (tcp_twcal_hand < 0) | ||
640 | goto out; | ||
641 | |||
642 | slot = tcp_twcal_hand; | ||
643 | j = tcp_twcal_jiffie; | ||
644 | |||
645 | for (n=0; n<TCP_TW_RECYCLE_SLOTS; n++) { | ||
646 | if (time_before_eq(j, now)) { | ||
647 | struct hlist_node *node, *safe; | ||
648 | struct tcp_tw_bucket *tw; | ||
649 | |||
650 | tw_for_each_inmate_safe(tw, node, safe, | ||
651 | &tcp_twcal_row[slot]) { | ||
652 | __tw_del_dead_node(tw); | ||
653 | tcp_timewait_kill(tw); | ||
654 | tcp_tw_put(tw); | ||
655 | killed++; | ||
656 | } | ||
657 | } else { | ||
658 | if (!adv) { | ||
659 | adv = 1; | ||
660 | tcp_twcal_jiffie = j; | ||
661 | tcp_twcal_hand = slot; | ||
662 | } | ||
663 | |||
664 | if (!hlist_empty(&tcp_twcal_row[slot])) { | ||
665 | mod_timer(&tcp_twcal_timer, j); | ||
666 | goto out; | ||
667 | } | ||
668 | } | ||
669 | j += (1<<TCP_TW_RECYCLE_TICK); | ||
670 | slot = (slot+1)&(TCP_TW_RECYCLE_SLOTS-1); | ||
671 | } | ||
672 | tcp_twcal_hand = -1; | ||
673 | |||
674 | out: | ||
675 | if ((tcp_tw_count -= killed) == 0) | ||
676 | del_timer(&tcp_tw_timer); | ||
677 | NET_ADD_STATS_BH(LINUX_MIB_TIMEWAITKILLED, killed); | ||
678 | spin_unlock(&tw_death_lock); | ||
679 | } | ||
680 | |||
681 | /* This is not only more efficient than what we used to do, it eliminates | ||
682 | * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM | ||
683 | * | ||
684 | * Actually, we could lots of memory writes here. tp of listening | ||
685 | * socket contains all necessary default parameters. | ||
686 | */ | ||
687 | struct sock *tcp_create_openreq_child(struct sock *sk, struct open_request *req, struct sk_buff *skb) | ||
688 | { | ||
689 | /* allocate the newsk from the same slab of the master sock, | ||
690 | * if not, at sk_free time we'll try to free it from the wrong | ||
691 | * slabcache (i.e. is it TCPv4 or v6?), this is handled thru sk->sk_prot -acme */ | ||
692 | struct sock *newsk = sk_alloc(PF_INET, GFP_ATOMIC, sk->sk_prot, 0); | ||
693 | |||
694 | if(newsk != NULL) { | ||
695 | struct tcp_sock *newtp; | ||
696 | struct sk_filter *filter; | ||
697 | |||
698 | memcpy(newsk, sk, sizeof(struct tcp_sock)); | ||
699 | newsk->sk_state = TCP_SYN_RECV; | ||
700 | |||
701 | /* SANITY */ | ||
702 | sk_node_init(&newsk->sk_node); | ||
703 | tcp_sk(newsk)->bind_hash = NULL; | ||
704 | |||
705 | /* Clone the TCP header template */ | ||
706 | inet_sk(newsk)->dport = req->rmt_port; | ||
707 | |||
708 | sock_lock_init(newsk); | ||
709 | bh_lock_sock(newsk); | ||
710 | |||
711 | rwlock_init(&newsk->sk_dst_lock); | ||
712 | atomic_set(&newsk->sk_rmem_alloc, 0); | ||
713 | skb_queue_head_init(&newsk->sk_receive_queue); | ||
714 | atomic_set(&newsk->sk_wmem_alloc, 0); | ||
715 | skb_queue_head_init(&newsk->sk_write_queue); | ||
716 | atomic_set(&newsk->sk_omem_alloc, 0); | ||
717 | newsk->sk_wmem_queued = 0; | ||
718 | newsk->sk_forward_alloc = 0; | ||
719 | |||
720 | sock_reset_flag(newsk, SOCK_DONE); | ||
721 | newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; | ||
722 | newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; | ||
723 | newsk->sk_send_head = NULL; | ||
724 | rwlock_init(&newsk->sk_callback_lock); | ||
725 | skb_queue_head_init(&newsk->sk_error_queue); | ||
726 | newsk->sk_write_space = sk_stream_write_space; | ||
727 | |||
728 | if ((filter = newsk->sk_filter) != NULL) | ||
729 | sk_filter_charge(newsk, filter); | ||
730 | |||
731 | if (unlikely(xfrm_sk_clone_policy(newsk))) { | ||
732 | /* It is still raw copy of parent, so invalidate | ||
733 | * destructor and make plain sk_free() */ | ||
734 | newsk->sk_destruct = NULL; | ||
735 | sk_free(newsk); | ||
736 | return NULL; | ||
737 | } | ||
738 | |||
739 | /* Now setup tcp_sock */ | ||
740 | newtp = tcp_sk(newsk); | ||
741 | newtp->pred_flags = 0; | ||
742 | newtp->rcv_nxt = req->rcv_isn + 1; | ||
743 | newtp->snd_nxt = req->snt_isn + 1; | ||
744 | newtp->snd_una = req->snt_isn + 1; | ||
745 | newtp->snd_sml = req->snt_isn + 1; | ||
746 | |||
747 | tcp_prequeue_init(newtp); | ||
748 | |||
749 | tcp_init_wl(newtp, req->snt_isn, req->rcv_isn); | ||
750 | |||
751 | newtp->retransmits = 0; | ||
752 | newtp->backoff = 0; | ||
753 | newtp->srtt = 0; | ||
754 | newtp->mdev = TCP_TIMEOUT_INIT; | ||
755 | newtp->rto = TCP_TIMEOUT_INIT; | ||
756 | |||
757 | newtp->packets_out = 0; | ||
758 | newtp->left_out = 0; | ||
759 | newtp->retrans_out = 0; | ||
760 | newtp->sacked_out = 0; | ||
761 | newtp->fackets_out = 0; | ||
762 | newtp->snd_ssthresh = 0x7fffffff; | ||
763 | |||
764 | /* So many TCP implementations out there (incorrectly) count the | ||
765 | * initial SYN frame in their delayed-ACK and congestion control | ||
766 | * algorithms that we must have the following bandaid to talk | ||
767 | * efficiently to them. -DaveM | ||
768 | */ | ||
769 | newtp->snd_cwnd = 2; | ||
770 | newtp->snd_cwnd_cnt = 0; | ||
771 | |||
772 | newtp->frto_counter = 0; | ||
773 | newtp->frto_highmark = 0; | ||
774 | |||
775 | tcp_set_ca_state(newtp, TCP_CA_Open); | ||
776 | tcp_init_xmit_timers(newsk); | ||
777 | skb_queue_head_init(&newtp->out_of_order_queue); | ||
778 | newtp->rcv_wup = req->rcv_isn + 1; | ||
779 | newtp->write_seq = req->snt_isn + 1; | ||
780 | newtp->pushed_seq = newtp->write_seq; | ||
781 | newtp->copied_seq = req->rcv_isn + 1; | ||
782 | |||
783 | newtp->rx_opt.saw_tstamp = 0; | ||
784 | |||
785 | newtp->rx_opt.dsack = 0; | ||
786 | newtp->rx_opt.eff_sacks = 0; | ||
787 | |||
788 | newtp->probes_out = 0; | ||
789 | newtp->rx_opt.num_sacks = 0; | ||
790 | newtp->urg_data = 0; | ||
791 | newtp->listen_opt = NULL; | ||
792 | newtp->accept_queue = newtp->accept_queue_tail = NULL; | ||
793 | /* Deinitialize syn_wait_lock to trap illegal accesses. */ | ||
794 | memset(&newtp->syn_wait_lock, 0, sizeof(newtp->syn_wait_lock)); | ||
795 | |||
796 | /* Back to base struct sock members. */ | ||
797 | newsk->sk_err = 0; | ||
798 | newsk->sk_priority = 0; | ||
799 | atomic_set(&newsk->sk_refcnt, 2); | ||
800 | #ifdef INET_REFCNT_DEBUG | ||
801 | atomic_inc(&inet_sock_nr); | ||
802 | #endif | ||
803 | atomic_inc(&tcp_sockets_allocated); | ||
804 | |||
805 | if (sock_flag(newsk, SOCK_KEEPOPEN)) | ||
806 | tcp_reset_keepalive_timer(newsk, | ||
807 | keepalive_time_when(newtp)); | ||
808 | newsk->sk_socket = NULL; | ||
809 | newsk->sk_sleep = NULL; | ||
810 | |||
811 | newtp->rx_opt.tstamp_ok = req->tstamp_ok; | ||
812 | if((newtp->rx_opt.sack_ok = req->sack_ok) != 0) { | ||
813 | if (sysctl_tcp_fack) | ||
814 | newtp->rx_opt.sack_ok |= 2; | ||
815 | } | ||
816 | newtp->window_clamp = req->window_clamp; | ||
817 | newtp->rcv_ssthresh = req->rcv_wnd; | ||
818 | newtp->rcv_wnd = req->rcv_wnd; | ||
819 | newtp->rx_opt.wscale_ok = req->wscale_ok; | ||
820 | if (newtp->rx_opt.wscale_ok) { | ||
821 | newtp->rx_opt.snd_wscale = req->snd_wscale; | ||
822 | newtp->rx_opt.rcv_wscale = req->rcv_wscale; | ||
823 | } else { | ||
824 | newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0; | ||
825 | newtp->window_clamp = min(newtp->window_clamp, 65535U); | ||
826 | } | ||
827 | newtp->snd_wnd = ntohs(skb->h.th->window) << newtp->rx_opt.snd_wscale; | ||
828 | newtp->max_window = newtp->snd_wnd; | ||
829 | |||
830 | if (newtp->rx_opt.tstamp_ok) { | ||
831 | newtp->rx_opt.ts_recent = req->ts_recent; | ||
832 | newtp->rx_opt.ts_recent_stamp = xtime.tv_sec; | ||
833 | newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; | ||
834 | } else { | ||
835 | newtp->rx_opt.ts_recent_stamp = 0; | ||
836 | newtp->tcp_header_len = sizeof(struct tcphdr); | ||
837 | } | ||
838 | if (skb->len >= TCP_MIN_RCVMSS+newtp->tcp_header_len) | ||
839 | newtp->ack.last_seg_size = skb->len-newtp->tcp_header_len; | ||
840 | newtp->rx_opt.mss_clamp = req->mss; | ||
841 | TCP_ECN_openreq_child(newtp, req); | ||
842 | if (newtp->ecn_flags&TCP_ECN_OK) | ||
843 | sock_set_flag(newsk, SOCK_NO_LARGESEND); | ||
844 | |||
845 | tcp_ca_init(newtp); | ||
846 | |||
847 | TCP_INC_STATS_BH(TCP_MIB_PASSIVEOPENS); | ||
848 | } | ||
849 | return newsk; | ||
850 | } | ||
851 | |||
852 | /* | ||
853 | * Process an incoming packet for SYN_RECV sockets represented | ||
854 | * as an open_request. | ||
855 | */ | ||
856 | |||
857 | struct sock *tcp_check_req(struct sock *sk,struct sk_buff *skb, | ||
858 | struct open_request *req, | ||
859 | struct open_request **prev) | ||
860 | { | ||
861 | struct tcphdr *th = skb->h.th; | ||
862 | struct tcp_sock *tp = tcp_sk(sk); | ||
863 | u32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK); | ||
864 | int paws_reject = 0; | ||
865 | struct tcp_options_received tmp_opt; | ||
866 | struct sock *child; | ||
867 | |||
868 | tmp_opt.saw_tstamp = 0; | ||
869 | if (th->doff > (sizeof(struct tcphdr)>>2)) { | ||
870 | tcp_parse_options(skb, &tmp_opt, 0); | ||
871 | |||
872 | if (tmp_opt.saw_tstamp) { | ||
873 | tmp_opt.ts_recent = req->ts_recent; | ||
874 | /* We do not store true stamp, but it is not required, | ||
875 | * it can be estimated (approximately) | ||
876 | * from another data. | ||
877 | */ | ||
878 | tmp_opt.ts_recent_stamp = xtime.tv_sec - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans); | ||
879 | paws_reject = tcp_paws_check(&tmp_opt, th->rst); | ||
880 | } | ||
881 | } | ||
882 | |||
883 | /* Check for pure retransmitted SYN. */ | ||
884 | if (TCP_SKB_CB(skb)->seq == req->rcv_isn && | ||
885 | flg == TCP_FLAG_SYN && | ||
886 | !paws_reject) { | ||
887 | /* | ||
888 | * RFC793 draws (Incorrectly! It was fixed in RFC1122) | ||
889 | * this case on figure 6 and figure 8, but formal | ||
890 | * protocol description says NOTHING. | ||
891 | * To be more exact, it says that we should send ACK, | ||
892 | * because this segment (at least, if it has no data) | ||
893 | * is out of window. | ||
894 | * | ||
895 | * CONCLUSION: RFC793 (even with RFC1122) DOES NOT | ||
896 | * describe SYN-RECV state. All the description | ||
897 | * is wrong, we cannot believe to it and should | ||
898 | * rely only on common sense and implementation | ||
899 | * experience. | ||
900 | * | ||
901 | * Enforce "SYN-ACK" according to figure 8, figure 6 | ||
902 | * of RFC793, fixed by RFC1122. | ||
903 | */ | ||
904 | req->class->rtx_syn_ack(sk, req, NULL); | ||
905 | return NULL; | ||
906 | } | ||
907 | |||
908 | /* Further reproduces section "SEGMENT ARRIVES" | ||
909 | for state SYN-RECEIVED of RFC793. | ||
910 | It is broken, however, it does not work only | ||
911 | when SYNs are crossed. | ||
912 | |||
913 | You would think that SYN crossing is impossible here, since | ||
914 | we should have a SYN_SENT socket (from connect()) on our end, | ||
915 | but this is not true if the crossed SYNs were sent to both | ||
916 | ends by a malicious third party. We must defend against this, | ||
917 | and to do that we first verify the ACK (as per RFC793, page | ||
918 | 36) and reset if it is invalid. Is this a true full defense? | ||
919 | To convince ourselves, let us consider a way in which the ACK | ||
920 | test can still pass in this 'malicious crossed SYNs' case. | ||
921 | Malicious sender sends identical SYNs (and thus identical sequence | ||
922 | numbers) to both A and B: | ||
923 | |||
924 | A: gets SYN, seq=7 | ||
925 | B: gets SYN, seq=7 | ||
926 | |||
927 | By our good fortune, both A and B select the same initial | ||
928 | send sequence number of seven :-) | ||
929 | |||
930 | A: sends SYN|ACK, seq=7, ack_seq=8 | ||
931 | B: sends SYN|ACK, seq=7, ack_seq=8 | ||
932 | |||
933 | So we are now A eating this SYN|ACK, ACK test passes. So | ||
934 | does sequence test, SYN is truncated, and thus we consider | ||
935 | it a bare ACK. | ||
936 | |||
937 | If tp->defer_accept, we silently drop this bare ACK. Otherwise, | ||
938 | we create an established connection. Both ends (listening sockets) | ||
939 | accept the new incoming connection and try to talk to each other. 8-) | ||
940 | |||
941 | Note: This case is both harmless, and rare. Possibility is about the | ||
942 | same as us discovering intelligent life on another plant tomorrow. | ||
943 | |||
944 | But generally, we should (RFC lies!) to accept ACK | ||
945 | from SYNACK both here and in tcp_rcv_state_process(). | ||
946 | tcp_rcv_state_process() does not, hence, we do not too. | ||
947 | |||
948 | Note that the case is absolutely generic: | ||
949 | we cannot optimize anything here without | ||
950 | violating protocol. All the checks must be made | ||
951 | before attempt to create socket. | ||
952 | */ | ||
953 | |||
954 | /* RFC793 page 36: "If the connection is in any non-synchronized state ... | ||
955 | * and the incoming segment acknowledges something not yet | ||
956 | * sent (the segment carries an unaccaptable ACK) ... | ||
957 | * a reset is sent." | ||
958 | * | ||
959 | * Invalid ACK: reset will be sent by listening socket | ||
960 | */ | ||
961 | if ((flg & TCP_FLAG_ACK) && | ||
962 | (TCP_SKB_CB(skb)->ack_seq != req->snt_isn+1)) | ||
963 | return sk; | ||
964 | |||
965 | /* Also, it would be not so bad idea to check rcv_tsecr, which | ||
966 | * is essentially ACK extension and too early or too late values | ||
967 | * should cause reset in unsynchronized states. | ||
968 | */ | ||
969 | |||
970 | /* RFC793: "first check sequence number". */ | ||
971 | |||
972 | if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq, | ||
973 | req->rcv_isn+1, req->rcv_isn+1+req->rcv_wnd)) { | ||
974 | /* Out of window: send ACK and drop. */ | ||
975 | if (!(flg & TCP_FLAG_RST)) | ||
976 | req->class->send_ack(skb, req); | ||
977 | if (paws_reject) | ||
978 | NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); | ||
979 | return NULL; | ||
980 | } | ||
981 | |||
982 | /* In sequence, PAWS is OK. */ | ||
983 | |||
984 | if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, req->rcv_isn+1)) | ||
985 | req->ts_recent = tmp_opt.rcv_tsval; | ||
986 | |||
987 | if (TCP_SKB_CB(skb)->seq == req->rcv_isn) { | ||
988 | /* Truncate SYN, it is out of window starting | ||
989 | at req->rcv_isn+1. */ | ||
990 | flg &= ~TCP_FLAG_SYN; | ||
991 | } | ||
992 | |||
993 | /* RFC793: "second check the RST bit" and | ||
994 | * "fourth, check the SYN bit" | ||
995 | */ | ||
996 | if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) | ||
997 | goto embryonic_reset; | ||
998 | |||
999 | /* ACK sequence verified above, just make sure ACK is | ||
1000 | * set. If ACK not set, just silently drop the packet. | ||
1001 | */ | ||
1002 | if (!(flg & TCP_FLAG_ACK)) | ||
1003 | return NULL; | ||
1004 | |||
1005 | /* If TCP_DEFER_ACCEPT is set, drop bare ACK. */ | ||
1006 | if (tp->defer_accept && TCP_SKB_CB(skb)->end_seq == req->rcv_isn+1) { | ||
1007 | req->acked = 1; | ||
1008 | return NULL; | ||
1009 | } | ||
1010 | |||
1011 | /* OK, ACK is valid, create big socket and | ||
1012 | * feed this segment to it. It will repeat all | ||
1013 | * the tests. THIS SEGMENT MUST MOVE SOCKET TO | ||
1014 | * ESTABLISHED STATE. If it will be dropped after | ||
1015 | * socket is created, wait for troubles. | ||
1016 | */ | ||
1017 | child = tp->af_specific->syn_recv_sock(sk, skb, req, NULL); | ||
1018 | if (child == NULL) | ||
1019 | goto listen_overflow; | ||
1020 | |||
1021 | tcp_synq_unlink(tp, req, prev); | ||
1022 | tcp_synq_removed(sk, req); | ||
1023 | |||
1024 | tcp_acceptq_queue(sk, req, child); | ||
1025 | return child; | ||
1026 | |||
1027 | listen_overflow: | ||
1028 | if (!sysctl_tcp_abort_on_overflow) { | ||
1029 | req->acked = 1; | ||
1030 | return NULL; | ||
1031 | } | ||
1032 | |||
1033 | embryonic_reset: | ||
1034 | NET_INC_STATS_BH(LINUX_MIB_EMBRYONICRSTS); | ||
1035 | if (!(flg & TCP_FLAG_RST)) | ||
1036 | req->class->send_reset(skb); | ||
1037 | |||
1038 | tcp_synq_drop(sk, req, prev); | ||
1039 | return NULL; | ||
1040 | } | ||
1041 | |||
1042 | /* | ||
1043 | * Queue segment on the new socket if the new socket is active, | ||
1044 | * otherwise we just shortcircuit this and continue with | ||
1045 | * the new socket. | ||
1046 | */ | ||
1047 | |||
1048 | int tcp_child_process(struct sock *parent, struct sock *child, | ||
1049 | struct sk_buff *skb) | ||
1050 | { | ||
1051 | int ret = 0; | ||
1052 | int state = child->sk_state; | ||
1053 | |||
1054 | if (!sock_owned_by_user(child)) { | ||
1055 | ret = tcp_rcv_state_process(child, skb, skb->h.th, skb->len); | ||
1056 | |||
1057 | /* Wakeup parent, send SIGIO */ | ||
1058 | if (state == TCP_SYN_RECV && child->sk_state != state) | ||
1059 | parent->sk_data_ready(parent, 0); | ||
1060 | } else { | ||
1061 | /* Alas, it is possible again, because we do lookup | ||
1062 | * in main socket hash table and lock on listening | ||
1063 | * socket does not protect us more. | ||
1064 | */ | ||
1065 | sk_add_backlog(child, skb); | ||
1066 | } | ||
1067 | |||
1068 | bh_unlock_sock(child); | ||
1069 | sock_put(child); | ||
1070 | return ret; | ||
1071 | } | ||
1072 | |||
1073 | EXPORT_SYMBOL(tcp_check_req); | ||
1074 | EXPORT_SYMBOL(tcp_child_process); | ||
1075 | EXPORT_SYMBOL(tcp_create_openreq_child); | ||
1076 | EXPORT_SYMBOL(tcp_timewait_state_process); | ||
1077 | EXPORT_SYMBOL(tcp_tw_deschedule); | ||