diff options
| author | Angelo P. Castellani <angelo.castellani@gmail.com> | 2006-06-05 20:29:09 -0400 |
|---|---|---|
| committer | David S. Miller <davem@sunset.davemloft.net> | 2006-06-18 00:29:25 -0400 |
| commit | f890f921040fef6a35e39d15b729af1fd1a35f29 (patch) | |
| tree | 130ee6a827a092cc205d6054d2e11f185e60ad1c /net/ipv4/tcp_compound.c | |
| parent | 76f1017757aa0c308a0b83ca611c9a89ee9a79a4 (diff) | |
[TCP]: TCP Compound congestion control
TCP Compound is a sender-side only change to TCP that uses
a mixed Reno/Vegas approach to calculate the cwnd.
For further details look here:
ftp://ftp.research.microsoft.com/pub/tr/TR-2005-86.pdf
Signed-off-by: Angelo P. Castellani <angelo.castellani@gmail.com>
Signed-off-by: Stephen Hemminger <shemminger@osdl.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'net/ipv4/tcp_compound.c')
| -rw-r--r-- | net/ipv4/tcp_compound.c | 407 |
1 files changed, 407 insertions, 0 deletions
diff --git a/net/ipv4/tcp_compound.c b/net/ipv4/tcp_compound.c new file mode 100644 index 000000000000..8c1ebfb7659e --- /dev/null +++ b/net/ipv4/tcp_compound.c | |||
| @@ -0,0 +1,407 @@ | |||
| 1 | /* | ||
| 2 | * TCP Vegas congestion control | ||
| 3 | * | ||
| 4 | * This is based on the congestion detection/avoidance scheme described in | ||
| 5 | * Lawrence S. Brakmo and Larry L. Peterson. | ||
| 6 | * "TCP Vegas: End to end congestion avoidance on a global internet." | ||
| 7 | * IEEE Journal on Selected Areas in Communication, 13(8):1465--1480, | ||
| 8 | * October 1995. Available from: | ||
| 9 | * ftp://ftp.cs.arizona.edu/xkernel/Papers/jsac.ps | ||
| 10 | * | ||
| 11 | * See http://www.cs.arizona.edu/xkernel/ for their implementation. | ||
| 12 | * The main aspects that distinguish this implementation from the | ||
| 13 | * Arizona Vegas implementation are: | ||
| 14 | * o We do not change the loss detection or recovery mechanisms of | ||
| 15 | * Linux in any way. Linux already recovers from losses quite well, | ||
| 16 | * using fine-grained timers, NewReno, and FACK. | ||
| 17 | * o To avoid the performance penalty imposed by increasing cwnd | ||
| 18 | * only every-other RTT during slow start, we increase during | ||
| 19 | * every RTT during slow start, just like Reno. | ||
| 20 | * o Largely to allow continuous cwnd growth during slow start, | ||
| 21 | * we use the rate at which ACKs come back as the "actual" | ||
| 22 | * rate, rather than the rate at which data is sent. | ||
| 23 | * o To speed convergence to the right rate, we set the cwnd | ||
| 24 | * to achieve the right ("actual") rate when we exit slow start. | ||
| 25 | * o To filter out the noise caused by delayed ACKs, we use the | ||
| 26 | * minimum RTT sample observed during the last RTT to calculate | ||
| 27 | * the actual rate. | ||
| 28 | * o When the sender re-starts from idle, it waits until it has | ||
| 29 | * received ACKs for an entire flight of new data before making | ||
| 30 | * a cwnd adjustment decision. The original Vegas implementation | ||
| 31 | * assumed senders never went idle. | ||
| 32 | * | ||
| 33 | * | ||
| 34 | * TCP Compound based on TCP Vegas | ||
| 35 | * | ||
| 36 | * further details can be found here: | ||
| 37 | * ftp://ftp.research.microsoft.com/pub/tr/TR-2005-86.pdf | ||
| 38 | */ | ||
| 39 | |||
| 40 | #include <linux/config.h> | ||
| 41 | #include <linux/mm.h> | ||
| 42 | #include <linux/module.h> | ||
| 43 | #include <linux/skbuff.h> | ||
| 44 | #include <linux/inet_diag.h> | ||
| 45 | |||
| 46 | #include <net/tcp.h> | ||
| 47 | |||
| 48 | /* Default values of the Vegas variables, in fixed-point representation | ||
| 49 | * with V_PARAM_SHIFT bits to the right of the binary point. | ||
| 50 | */ | ||
| 51 | #define V_PARAM_SHIFT 1 | ||
| 52 | |||
| 53 | #define TCP_COMPOUND_ALPHA 3U | ||
| 54 | #define TCP_COMPOUND_BETA 1U | ||
| 55 | #define TCP_COMPOUND_KAPPA_POW 3 | ||
| 56 | #define TCP_COMPOUND_KAPPA_NSQRT 2 | ||
| 57 | #define TCP_COMPOUND_GAMMA 30 | ||
| 58 | #define TCP_COMPOUND_ZETA 1 | ||
| 59 | |||
| 60 | /* TCP compound variables */ | ||
| 61 | struct compound { | ||
| 62 | u32 beg_snd_nxt; /* right edge during last RTT */ | ||
| 63 | u32 beg_snd_una; /* left edge during last RTT */ | ||
| 64 | u32 beg_snd_cwnd; /* saves the size of the cwnd */ | ||
| 65 | u8 doing_vegas_now; /* if true, do vegas for this RTT */ | ||
| 66 | u16 cntRTT; /* # of RTTs measured within last RTT */ | ||
| 67 | u32 minRTT; /* min of RTTs measured within last RTT (in usec) */ | ||
| 68 | u32 baseRTT; /* the min of all Vegas RTT measurements seen (in usec) */ | ||
| 69 | |||
| 70 | u32 cwnd; | ||
| 71 | u32 dwnd; | ||
| 72 | }; | ||
| 73 | |||
| 74 | /* There are several situations when we must "re-start" Vegas: | ||
| 75 | * | ||
| 76 | * o when a connection is established | ||
| 77 | * o after an RTO | ||
| 78 | * o after fast recovery | ||
| 79 | * o when we send a packet and there is no outstanding | ||
| 80 | * unacknowledged data (restarting an idle connection) | ||
| 81 | * | ||
| 82 | * In these circumstances we cannot do a Vegas calculation at the | ||
| 83 | * end of the first RTT, because any calculation we do is using | ||
| 84 | * stale info -- both the saved cwnd and congestion feedback are | ||
| 85 | * stale. | ||
| 86 | * | ||
| 87 | * Instead we must wait until the completion of an RTT during | ||
| 88 | * which we actually receive ACKs. | ||
| 89 | */ | ||
| 90 | static inline void vegas_enable(struct sock *sk) | ||
| 91 | { | ||
| 92 | const struct tcp_sock *tp = tcp_sk(sk); | ||
| 93 | struct compound *vegas = inet_csk_ca(sk); | ||
| 94 | |||
| 95 | /* Begin taking Vegas samples next time we send something. */ | ||
| 96 | vegas->doing_vegas_now = 1; | ||
| 97 | |||
| 98 | /* Set the beginning of the next send window. */ | ||
| 99 | vegas->beg_snd_nxt = tp->snd_nxt; | ||
| 100 | |||
| 101 | vegas->cntRTT = 0; | ||
| 102 | vegas->minRTT = 0x7fffffff; | ||
| 103 | } | ||
| 104 | |||
| 105 | /* Stop taking Vegas samples for now. */ | ||
| 106 | static inline void vegas_disable(struct sock *sk) | ||
| 107 | { | ||
| 108 | struct compound *vegas = inet_csk_ca(sk); | ||
| 109 | |||
| 110 | vegas->doing_vegas_now = 0; | ||
| 111 | } | ||
| 112 | |||
| 113 | static void tcp_compound_init(struct sock *sk) | ||
| 114 | { | ||
| 115 | struct compound *vegas = inet_csk_ca(sk); | ||
| 116 | const struct tcp_sock *tp = tcp_sk(sk); | ||
| 117 | |||
| 118 | vegas->baseRTT = 0x7fffffff; | ||
| 119 | vegas_enable(sk); | ||
| 120 | |||
| 121 | vegas->dwnd = 0; | ||
| 122 | vegas->cwnd = tp->snd_cwnd; | ||
| 123 | } | ||
| 124 | |||
| 125 | /* Do RTT sampling needed for Vegas. | ||
| 126 | * Basically we: | ||
| 127 | * o min-filter RTT samples from within an RTT to get the current | ||
| 128 | * propagation delay + queuing delay (we are min-filtering to try to | ||
| 129 | * avoid the effects of delayed ACKs) | ||
| 130 | * o min-filter RTT samples from a much longer window (forever for now) | ||
| 131 | * to find the propagation delay (baseRTT) | ||
| 132 | */ | ||
| 133 | static void tcp_compound_rtt_calc(struct sock *sk, u32 usrtt) | ||
| 134 | { | ||
| 135 | struct compound *vegas = inet_csk_ca(sk); | ||
| 136 | u32 vrtt = usrtt + 1; /* Never allow zero rtt or baseRTT */ | ||
| 137 | |||
| 138 | /* Filter to find propagation delay: */ | ||
| 139 | if (vrtt < vegas->baseRTT) | ||
| 140 | vegas->baseRTT = vrtt; | ||
| 141 | |||
| 142 | /* Find the min RTT during the last RTT to find | ||
| 143 | * the current prop. delay + queuing delay: | ||
| 144 | */ | ||
| 145 | |||
| 146 | vegas->minRTT = min(vegas->minRTT, vrtt); | ||
| 147 | vegas->cntRTT++; | ||
| 148 | } | ||
| 149 | |||
| 150 | static void tcp_compound_state(struct sock *sk, u8 ca_state) | ||
| 151 | { | ||
| 152 | |||
| 153 | if (ca_state == TCP_CA_Open) | ||
| 154 | vegas_enable(sk); | ||
| 155 | else | ||
| 156 | vegas_disable(sk); | ||
| 157 | } | ||
| 158 | |||
| 159 | /* | ||
| 160 | * If the connection is idle and we are restarting, | ||
| 161 | * then we don't want to do any Vegas calculations | ||
| 162 | * until we get fresh RTT samples. So when we | ||
| 163 | * restart, we reset our Vegas state to a clean | ||
| 164 | * slate. After we get acks for this flight of | ||
| 165 | * packets, _then_ we can make Vegas calculations | ||
| 166 | * again. | ||
| 167 | */ | ||
| 168 | static void tcp_compound_cwnd_event(struct sock *sk, enum tcp_ca_event event) | ||
| 169 | { | ||
| 170 | if (event == CA_EVENT_CWND_RESTART || event == CA_EVENT_TX_START) | ||
| 171 | tcp_compound_init(sk); | ||
| 172 | } | ||
| 173 | |||
| 174 | static void tcp_compound_cong_avoid(struct sock *sk, u32 ack, | ||
| 175 | u32 seq_rtt, u32 in_flight, int flag) | ||
| 176 | { | ||
| 177 | struct tcp_sock *tp = tcp_sk(sk); | ||
| 178 | struct compound *vegas = inet_csk_ca(sk); | ||
| 179 | u8 inc = 0; | ||
| 180 | |||
| 181 | if (vegas->cwnd + vegas->dwnd > tp->snd_cwnd) { | ||
| 182 | if (vegas->cwnd > tp->snd_cwnd || vegas->dwnd > tp->snd_cwnd) { | ||
| 183 | vegas->cwnd = tp->snd_cwnd; | ||
| 184 | vegas->dwnd = 0; | ||
| 185 | } else | ||
| 186 | vegas->cwnd = tp->snd_cwnd - vegas->dwnd; | ||
| 187 | |||
| 188 | } | ||
| 189 | |||
| 190 | if (!tcp_is_cwnd_limited(sk, in_flight)) | ||
| 191 | return; | ||
| 192 | |||
| 193 | if (vegas->cwnd <= tp->snd_ssthresh) | ||
| 194 | inc = 1; | ||
| 195 | else if (tp->snd_cwnd_cnt < tp->snd_cwnd) | ||
| 196 | tp->snd_cwnd_cnt++; | ||
| 197 | |||
| 198 | if (tp->snd_cwnd_cnt >= tp->snd_cwnd) { | ||
| 199 | inc = 1; | ||
| 200 | tp->snd_cwnd_cnt = 0; | ||
| 201 | } | ||
| 202 | |||
| 203 | if (inc && tp->snd_cwnd < tp->snd_cwnd_clamp) | ||
| 204 | vegas->cwnd++; | ||
| 205 | |||
| 206 | /* The key players are v_beg_snd_una and v_beg_snd_nxt. | ||
| 207 | * | ||
| 208 | * These are so named because they represent the approximate values | ||
| 209 | * of snd_una and snd_nxt at the beginning of the current RTT. More | ||
| 210 | * precisely, they represent the amount of data sent during the RTT. | ||
| 211 | * At the end of the RTT, when we receive an ACK for v_beg_snd_nxt, | ||
| 212 | * we will calculate that (v_beg_snd_nxt - v_beg_snd_una) outstanding | ||
| 213 | * bytes of data have been ACKed during the course of the RTT, giving | ||
| 214 | * an "actual" rate of: | ||
| 215 | * | ||
| 216 | * (v_beg_snd_nxt - v_beg_snd_una) / (rtt duration) | ||
| 217 | * | ||
| 218 | * Unfortunately, v_beg_snd_una is not exactly equal to snd_una, | ||
| 219 | * because delayed ACKs can cover more than one segment, so they | ||
| 220 | * don't line up nicely with the boundaries of RTTs. | ||
| 221 | * | ||
| 222 | * Another unfortunate fact of life is that delayed ACKs delay the | ||
| 223 | * advance of the left edge of our send window, so that the number | ||
| 224 | * of bytes we send in an RTT is often less than our cwnd will allow. | ||
| 225 | * So we keep track of our cwnd separately, in v_beg_snd_cwnd. | ||
| 226 | */ | ||
| 227 | |||
| 228 | if (after(ack, vegas->beg_snd_nxt)) { | ||
| 229 | /* Do the Vegas once-per-RTT cwnd adjustment. */ | ||
| 230 | u32 old_wnd, old_snd_cwnd; | ||
| 231 | |||
| 232 | /* Here old_wnd is essentially the window of data that was | ||
| 233 | * sent during the previous RTT, and has all | ||
| 234 | * been acknowledged in the course of the RTT that ended | ||
| 235 | * with the ACK we just received. Likewise, old_snd_cwnd | ||
| 236 | * is the cwnd during the previous RTT. | ||
| 237 | */ | ||
| 238 | if (!tp->mss_cache) | ||
| 239 | return; | ||
| 240 | |||
| 241 | old_wnd = (vegas->beg_snd_nxt - vegas->beg_snd_una) / | ||
| 242 | tp->mss_cache; | ||
| 243 | old_snd_cwnd = vegas->beg_snd_cwnd; | ||
| 244 | |||
| 245 | /* Save the extent of the current window so we can use this | ||
| 246 | * at the end of the next RTT. | ||
| 247 | */ | ||
| 248 | vegas->beg_snd_una = vegas->beg_snd_nxt; | ||
| 249 | vegas->beg_snd_nxt = tp->snd_nxt; | ||
| 250 | vegas->beg_snd_cwnd = tp->snd_cwnd; | ||
| 251 | |||
| 252 | /* We do the Vegas calculations only if we got enough RTT | ||
| 253 | * samples that we can be reasonably sure that we got | ||
| 254 | * at least one RTT sample that wasn't from a delayed ACK. | ||
| 255 | * If we only had 2 samples total, | ||
| 256 | * then that means we're getting only 1 ACK per RTT, which | ||
| 257 | * means they're almost certainly delayed ACKs. | ||
| 258 | * If we have 3 samples, we should be OK. | ||
| 259 | */ | ||
| 260 | |||
| 261 | if (vegas->cntRTT > 2) { | ||
| 262 | u32 rtt, target_cwnd, diff; | ||
| 263 | u32 brtt, dwnd; | ||
| 264 | |||
| 265 | /* We have enough RTT samples, so, using the Vegas | ||
| 266 | * algorithm, we determine if we should increase or | ||
| 267 | * decrease cwnd, and by how much. | ||
| 268 | */ | ||
| 269 | |||
| 270 | /* Pluck out the RTT we are using for the Vegas | ||
| 271 | * calculations. This is the min RTT seen during the | ||
| 272 | * last RTT. Taking the min filters out the effects | ||
| 273 | * of delayed ACKs, at the cost of noticing congestion | ||
| 274 | * a bit later. | ||
| 275 | */ | ||
| 276 | rtt = vegas->minRTT; | ||
| 277 | |||
| 278 | /* Calculate the cwnd we should have, if we weren't | ||
| 279 | * going too fast. | ||
| 280 | * | ||
| 281 | * This is: | ||
| 282 | * (actual rate in segments) * baseRTT | ||
| 283 | * We keep it as a fixed point number with | ||
| 284 | * V_PARAM_SHIFT bits to the right of the binary point. | ||
| 285 | */ | ||
| 286 | if (!rtt) | ||
| 287 | return; | ||
| 288 | |||
| 289 | brtt = vegas->baseRTT; | ||
| 290 | target_cwnd = ((old_wnd * brtt) | ||
| 291 | << V_PARAM_SHIFT) / rtt; | ||
| 292 | |||
| 293 | /* Calculate the difference between the window we had, | ||
| 294 | * and the window we would like to have. This quantity | ||
| 295 | * is the "Diff" from the Arizona Vegas papers. | ||
| 296 | * | ||
| 297 | * Again, this is a fixed point number with | ||
| 298 | * V_PARAM_SHIFT bits to the right of the binary | ||
| 299 | * point. | ||
| 300 | */ | ||
| 301 | |||
| 302 | diff = (old_wnd << V_PARAM_SHIFT) - target_cwnd; | ||
| 303 | |||
| 304 | dwnd = vegas->dwnd; | ||
| 305 | |||
| 306 | if (diff < (TCP_COMPOUND_GAMMA << V_PARAM_SHIFT)) { | ||
| 307 | u32 i, j, x, x2; | ||
| 308 | u64 v; | ||
| 309 | |||
| 310 | v = 1; | ||
| 311 | |||
| 312 | for (i = 0; i < TCP_COMPOUND_KAPPA_POW; i++) | ||
| 313 | v *= old_wnd; | ||
| 314 | |||
| 315 | for (i = 0; i < TCP_COMPOUND_KAPPA_NSQRT; i++) { | ||
| 316 | x = 1; | ||
| 317 | for (j = 0; j < 200; j++) { | ||
| 318 | x2 = (x + v / x) / 2; | ||
| 319 | |||
| 320 | if (x2 == x || !x2) | ||
| 321 | break; | ||
| 322 | |||
| 323 | x = x2; | ||
| 324 | } | ||
| 325 | v = x; | ||
| 326 | } | ||
| 327 | |||
| 328 | x = (u32) v >> TCP_COMPOUND_ALPHA; | ||
| 329 | |||
| 330 | if (x > 1) | ||
| 331 | dwnd = x - 1; | ||
| 332 | else | ||
| 333 | dwnd = 0; | ||
| 334 | |||
| 335 | dwnd += vegas->dwnd; | ||
| 336 | |||
| 337 | } else if ((dwnd << V_PARAM_SHIFT) < | ||
| 338 | (diff * TCP_COMPOUND_BETA)) | ||
| 339 | dwnd = 0; | ||
| 340 | else | ||
| 341 | dwnd = | ||
| 342 | ((dwnd << V_PARAM_SHIFT) - | ||
| 343 | (diff * | ||
| 344 | TCP_COMPOUND_BETA)) >> V_PARAM_SHIFT; | ||
| 345 | |||
| 346 | vegas->dwnd = dwnd; | ||
| 347 | |||
| 348 | } | ||
| 349 | |||
| 350 | /* Wipe the slate clean for the next RTT. */ | ||
| 351 | vegas->cntRTT = 0; | ||
| 352 | vegas->minRTT = 0x7fffffff; | ||
| 353 | } | ||
| 354 | |||
| 355 | tp->snd_cwnd = vegas->cwnd + vegas->dwnd; | ||
| 356 | } | ||
| 357 | |||
| 358 | /* Extract info for Tcp socket info provided via netlink. */ | ||
| 359 | static void tcp_compound_get_info(struct sock *sk, u32 ext, struct sk_buff *skb) | ||
| 360 | { | ||
| 361 | const struct compound *ca = inet_csk_ca(sk); | ||
| 362 | if (ext & (1 << (INET_DIAG_VEGASINFO - 1))) { | ||
| 363 | struct tcpvegas_info *info; | ||
| 364 | |||
| 365 | info = RTA_DATA(__RTA_PUT(skb, INET_DIAG_VEGASINFO, | ||
| 366 | sizeof(*info))); | ||
| 367 | |||
| 368 | info->tcpv_enabled = ca->doing_vegas_now; | ||
| 369 | info->tcpv_rttcnt = ca->cntRTT; | ||
| 370 | info->tcpv_rtt = ca->baseRTT; | ||
| 371 | info->tcpv_minrtt = ca->minRTT; | ||
| 372 | rtattr_failure:; | ||
| 373 | } | ||
| 374 | } | ||
| 375 | |||
| 376 | static struct tcp_congestion_ops tcp_compound = { | ||
| 377 | .init = tcp_compound_init, | ||
| 378 | .ssthresh = tcp_reno_ssthresh, | ||
| 379 | .cong_avoid = tcp_compound_cong_avoid, | ||
| 380 | .min_cwnd = tcp_reno_min_cwnd, | ||
| 381 | .rtt_sample = tcp_compound_rtt_calc, | ||
| 382 | .set_state = tcp_compound_state, | ||
| 383 | .cwnd_event = tcp_compound_cwnd_event, | ||
| 384 | .get_info = tcp_compound_get_info, | ||
| 385 | |||
| 386 | .owner = THIS_MODULE, | ||
| 387 | .name = "compound", | ||
| 388 | }; | ||
| 389 | |||
| 390 | static int __init tcp_compound_register(void) | ||
| 391 | { | ||
| 392 | BUG_ON(sizeof(struct compound) > ICSK_CA_PRIV_SIZE); | ||
| 393 | tcp_register_congestion_control(&tcp_compound); | ||
| 394 | return 0; | ||
| 395 | } | ||
| 396 | |||
| 397 | static void __exit tcp_compound_unregister(void) | ||
| 398 | { | ||
| 399 | tcp_unregister_congestion_control(&tcp_compound); | ||
| 400 | } | ||
| 401 | |||
| 402 | module_init(tcp_compound_register); | ||
| 403 | module_exit(tcp_compound_unregister); | ||
| 404 | |||
| 405 | MODULE_AUTHOR("Angelo P. Castellani, Stephen Hemminger"); | ||
| 406 | MODULE_LICENSE("GPL"); | ||
| 407 | MODULE_DESCRIPTION("TCP Compound"); | ||
