diff options
author | Julius Volz <juliusv@google.com> | 2008-09-19 06:32:57 -0400 |
---|---|---|
committer | Simon Horman <horms@verge.net.au> | 2008-10-06 17:38:24 -0400 |
commit | cb7f6a7b716e801097b564dec3ccb58d330aef56 (patch) | |
tree | 92fa8fa5381e04576c43eab88874ab54ea670767 /net/ipv4/ipvs/Kconfig | |
parent | 8d5803bf6fbe5264000afc8c34bff08e8ecc023b (diff) |
IPVS: Move IPVS to net/netfilter/ipvs
Since IPVS now has partial IPv6 support, this patch moves IPVS from
net/ipv4/ipvs to net/netfilter/ipvs. It's a result of:
$ git mv net/ipv4/ipvs net/netfilter
and adapting the relevant Kconfigs/Makefiles to the new path.
Signed-off-by: Julius Volz <juliusv@google.com>
Signed-off-by: Simon Horman <horms@verge.net.au>
Diffstat (limited to 'net/ipv4/ipvs/Kconfig')
-rw-r--r-- | net/ipv4/ipvs/Kconfig | 239 |
1 files changed, 0 insertions, 239 deletions
diff --git a/net/ipv4/ipvs/Kconfig b/net/ipv4/ipvs/Kconfig deleted file mode 100644 index de6004de80bc..000000000000 --- a/net/ipv4/ipvs/Kconfig +++ /dev/null | |||
@@ -1,239 +0,0 @@ | |||
1 | # | ||
2 | # IP Virtual Server configuration | ||
3 | # | ||
4 | menuconfig IP_VS | ||
5 | tristate "IP virtual server support (EXPERIMENTAL)" | ||
6 | depends on NETFILTER | ||
7 | ---help--- | ||
8 | IP Virtual Server support will let you build a high-performance | ||
9 | virtual server based on cluster of two or more real servers. This | ||
10 | option must be enabled for at least one of the clustered computers | ||
11 | that will take care of intercepting incoming connections to a | ||
12 | single IP address and scheduling them to real servers. | ||
13 | |||
14 | Three request dispatching techniques are implemented, they are | ||
15 | virtual server via NAT, virtual server via tunneling and virtual | ||
16 | server via direct routing. The several scheduling algorithms can | ||
17 | be used to choose which server the connection is directed to, | ||
18 | thus load balancing can be achieved among the servers. For more | ||
19 | information and its administration program, please visit the | ||
20 | following URL: <http://www.linuxvirtualserver.org/>. | ||
21 | |||
22 | If you want to compile it in kernel, say Y. To compile it as a | ||
23 | module, choose M here. If unsure, say N. | ||
24 | |||
25 | if IP_VS | ||
26 | |||
27 | config IP_VS_IPV6 | ||
28 | bool "IPv6 support for IPVS (DANGEROUS)" | ||
29 | depends on EXPERIMENTAL && (IPV6 = y || IP_VS = IPV6) | ||
30 | ---help--- | ||
31 | Add IPv6 support to IPVS. This is incomplete and might be dangerous. | ||
32 | |||
33 | Say N if unsure. | ||
34 | |||
35 | config IP_VS_DEBUG | ||
36 | bool "IP virtual server debugging" | ||
37 | ---help--- | ||
38 | Say Y here if you want to get additional messages useful in | ||
39 | debugging the IP virtual server code. You can change the debug | ||
40 | level in /proc/sys/net/ipv4/vs/debug_level | ||
41 | |||
42 | config IP_VS_TAB_BITS | ||
43 | int "IPVS connection table size (the Nth power of 2)" | ||
44 | range 8 20 | ||
45 | default 12 | ||
46 | ---help--- | ||
47 | The IPVS connection hash table uses the chaining scheme to handle | ||
48 | hash collisions. Using a big IPVS connection hash table will greatly | ||
49 | reduce conflicts when there are hundreds of thousands of connections | ||
50 | in the hash table. | ||
51 | |||
52 | Note the table size must be power of 2. The table size will be the | ||
53 | value of 2 to the your input number power. The number to choose is | ||
54 | from 8 to 20, the default number is 12, which means the table size | ||
55 | is 4096. Don't input the number too small, otherwise you will lose | ||
56 | performance on it. You can adapt the table size yourself, according | ||
57 | to your virtual server application. It is good to set the table size | ||
58 | not far less than the number of connections per second multiplying | ||
59 | average lasting time of connection in the table. For example, your | ||
60 | virtual server gets 200 connections per second, the connection lasts | ||
61 | for 200 seconds in average in the connection table, the table size | ||
62 | should be not far less than 200x200, it is good to set the table | ||
63 | size 32768 (2**15). | ||
64 | |||
65 | Another note that each connection occupies 128 bytes effectively and | ||
66 | each hash entry uses 8 bytes, so you can estimate how much memory is | ||
67 | needed for your box. | ||
68 | |||
69 | comment "IPVS transport protocol load balancing support" | ||
70 | |||
71 | config IP_VS_PROTO_TCP | ||
72 | bool "TCP load balancing support" | ||
73 | ---help--- | ||
74 | This option enables support for load balancing TCP transport | ||
75 | protocol. Say Y if unsure. | ||
76 | |||
77 | config IP_VS_PROTO_UDP | ||
78 | bool "UDP load balancing support" | ||
79 | ---help--- | ||
80 | This option enables support for load balancing UDP transport | ||
81 | protocol. Say Y if unsure. | ||
82 | |||
83 | config IP_VS_PROTO_AH_ESP | ||
84 | bool | ||
85 | depends on UNDEFINED | ||
86 | |||
87 | config IP_VS_PROTO_ESP | ||
88 | bool "ESP load balancing support" | ||
89 | select IP_VS_PROTO_AH_ESP | ||
90 | ---help--- | ||
91 | This option enables support for load balancing ESP (Encapsulation | ||
92 | Security Payload) transport protocol. Say Y if unsure. | ||
93 | |||
94 | config IP_VS_PROTO_AH | ||
95 | bool "AH load balancing support" | ||
96 | select IP_VS_PROTO_AH_ESP | ||
97 | ---help--- | ||
98 | This option enables support for load balancing AH (Authentication | ||
99 | Header) transport protocol. Say Y if unsure. | ||
100 | |||
101 | comment "IPVS scheduler" | ||
102 | |||
103 | config IP_VS_RR | ||
104 | tristate "round-robin scheduling" | ||
105 | ---help--- | ||
106 | The robin-robin scheduling algorithm simply directs network | ||
107 | connections to different real servers in a round-robin manner. | ||
108 | |||
109 | If you want to compile it in kernel, say Y. To compile it as a | ||
110 | module, choose M here. If unsure, say N. | ||
111 | |||
112 | config IP_VS_WRR | ||
113 | tristate "weighted round-robin scheduling" | ||
114 | ---help--- | ||
115 | The weighted robin-robin scheduling algorithm directs network | ||
116 | connections to different real servers based on server weights | ||
117 | in a round-robin manner. Servers with higher weights receive | ||
118 | new connections first than those with less weights, and servers | ||
119 | with higher weights get more connections than those with less | ||
120 | weights and servers with equal weights get equal connections. | ||
121 | |||
122 | If you want to compile it in kernel, say Y. To compile it as a | ||
123 | module, choose M here. If unsure, say N. | ||
124 | |||
125 | config IP_VS_LC | ||
126 | tristate "least-connection scheduling" | ||
127 | ---help--- | ||
128 | The least-connection scheduling algorithm directs network | ||
129 | connections to the server with the least number of active | ||
130 | connections. | ||
131 | |||
132 | If you want to compile it in kernel, say Y. To compile it as a | ||
133 | module, choose M here. If unsure, say N. | ||
134 | |||
135 | config IP_VS_WLC | ||
136 | tristate "weighted least-connection scheduling" | ||
137 | ---help--- | ||
138 | The weighted least-connection scheduling algorithm directs network | ||
139 | connections to the server with the least active connections | ||
140 | normalized by the server weight. | ||
141 | |||
142 | If you want to compile it in kernel, say Y. To compile it as a | ||
143 | module, choose M here. If unsure, say N. | ||
144 | |||
145 | config IP_VS_LBLC | ||
146 | tristate "locality-based least-connection scheduling" | ||
147 | ---help--- | ||
148 | The locality-based least-connection scheduling algorithm is for | ||
149 | destination IP load balancing. It is usually used in cache cluster. | ||
150 | This algorithm usually directs packet destined for an IP address to | ||
151 | its server if the server is alive and under load. If the server is | ||
152 | overloaded (its active connection numbers is larger than its weight) | ||
153 | and there is a server in its half load, then allocate the weighted | ||
154 | least-connection server to this IP address. | ||
155 | |||
156 | If you want to compile it in kernel, say Y. To compile it as a | ||
157 | module, choose M here. If unsure, say N. | ||
158 | |||
159 | config IP_VS_LBLCR | ||
160 | tristate "locality-based least-connection with replication scheduling" | ||
161 | ---help--- | ||
162 | The locality-based least-connection with replication scheduling | ||
163 | algorithm is also for destination IP load balancing. It is | ||
164 | usually used in cache cluster. It differs from the LBLC scheduling | ||
165 | as follows: the load balancer maintains mappings from a target | ||
166 | to a set of server nodes that can serve the target. Requests for | ||
167 | a target are assigned to the least-connection node in the target's | ||
168 | server set. If all the node in the server set are over loaded, | ||
169 | it picks up a least-connection node in the cluster and adds it | ||
170 | in the sever set for the target. If the server set has not been | ||
171 | modified for the specified time, the most loaded node is removed | ||
172 | from the server set, in order to avoid high degree of replication. | ||
173 | |||
174 | If you want to compile it in kernel, say Y. To compile it as a | ||
175 | module, choose M here. If unsure, say N. | ||
176 | |||
177 | config IP_VS_DH | ||
178 | tristate "destination hashing scheduling" | ||
179 | ---help--- | ||
180 | The destination hashing scheduling algorithm assigns network | ||
181 | connections to the servers through looking up a statically assigned | ||
182 | hash table by their destination IP addresses. | ||
183 | |||
184 | If you want to compile it in kernel, say Y. To compile it as a | ||
185 | module, choose M here. If unsure, say N. | ||
186 | |||
187 | config IP_VS_SH | ||
188 | tristate "source hashing scheduling" | ||
189 | ---help--- | ||
190 | The source hashing scheduling algorithm assigns network | ||
191 | connections to the servers through looking up a statically assigned | ||
192 | hash table by their source IP addresses. | ||
193 | |||
194 | If you want to compile it in kernel, say Y. To compile it as a | ||
195 | module, choose M here. If unsure, say N. | ||
196 | |||
197 | config IP_VS_SED | ||
198 | tristate "shortest expected delay scheduling" | ||
199 | ---help--- | ||
200 | The shortest expected delay scheduling algorithm assigns network | ||
201 | connections to the server with the shortest expected delay. The | ||
202 | expected delay that the job will experience is (Ci + 1) / Ui if | ||
203 | sent to the ith server, in which Ci is the number of connections | ||
204 | on the ith server and Ui is the fixed service rate (weight) | ||
205 | of the ith server. | ||
206 | |||
207 | If you want to compile it in kernel, say Y. To compile it as a | ||
208 | module, choose M here. If unsure, say N. | ||
209 | |||
210 | config IP_VS_NQ | ||
211 | tristate "never queue scheduling" | ||
212 | ---help--- | ||
213 | The never queue scheduling algorithm adopts a two-speed model. | ||
214 | When there is an idle server available, the job will be sent to | ||
215 | the idle server, instead of waiting for a fast one. When there | ||
216 | is no idle server available, the job will be sent to the server | ||
217 | that minimize its expected delay (The Shortest Expected Delay | ||
218 | scheduling algorithm). | ||
219 | |||
220 | If you want to compile it in kernel, say Y. To compile it as a | ||
221 | module, choose M here. If unsure, say N. | ||
222 | |||
223 | comment 'IPVS application helper' | ||
224 | |||
225 | config IP_VS_FTP | ||
226 | tristate "FTP protocol helper" | ||
227 | depends on IP_VS_PROTO_TCP | ||
228 | ---help--- | ||
229 | FTP is a protocol that transfers IP address and/or port number in | ||
230 | the payload. In the virtual server via Network Address Translation, | ||
231 | the IP address and port number of real servers cannot be sent to | ||
232 | clients in ftp connections directly, so FTP protocol helper is | ||
233 | required for tracking the connection and mangling it back to that of | ||
234 | virtual service. | ||
235 | |||
236 | If you want to compile it in kernel, say Y. To compile it as a | ||
237 | module, choose M here. If unsure, say N. | ||
238 | |||
239 | endif # IP_VS | ||