diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /net/ipv4/ip_fragment.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'net/ipv4/ip_fragment.c')
-rw-r--r-- | net/ipv4/ip_fragment.c | 691 |
1 files changed, 691 insertions, 0 deletions
diff --git a/net/ipv4/ip_fragment.c b/net/ipv4/ip_fragment.c new file mode 100644 index 000000000000..7f68e27eb4ea --- /dev/null +++ b/net/ipv4/ip_fragment.c | |||
@@ -0,0 +1,691 @@ | |||
1 | /* | ||
2 | * INET An implementation of the TCP/IP protocol suite for the LINUX | ||
3 | * operating system. INET is implemented using the BSD Socket | ||
4 | * interface as the means of communication with the user level. | ||
5 | * | ||
6 | * The IP fragmentation functionality. | ||
7 | * | ||
8 | * Version: $Id: ip_fragment.c,v 1.59 2002/01/12 07:54:56 davem Exp $ | ||
9 | * | ||
10 | * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG> | ||
11 | * Alan Cox <Alan.Cox@linux.org> | ||
12 | * | ||
13 | * Fixes: | ||
14 | * Alan Cox : Split from ip.c , see ip_input.c for history. | ||
15 | * David S. Miller : Begin massive cleanup... | ||
16 | * Andi Kleen : Add sysctls. | ||
17 | * xxxx : Overlapfrag bug. | ||
18 | * Ultima : ip_expire() kernel panic. | ||
19 | * Bill Hawes : Frag accounting and evictor fixes. | ||
20 | * John McDonald : 0 length frag bug. | ||
21 | * Alexey Kuznetsov: SMP races, threading, cleanup. | ||
22 | * Patrick McHardy : LRU queue of frag heads for evictor. | ||
23 | */ | ||
24 | |||
25 | #include <linux/config.h> | ||
26 | #include <linux/module.h> | ||
27 | #include <linux/types.h> | ||
28 | #include <linux/mm.h> | ||
29 | #include <linux/jiffies.h> | ||
30 | #include <linux/skbuff.h> | ||
31 | #include <linux/list.h> | ||
32 | #include <linux/ip.h> | ||
33 | #include <linux/icmp.h> | ||
34 | #include <linux/netdevice.h> | ||
35 | #include <linux/jhash.h> | ||
36 | #include <linux/random.h> | ||
37 | #include <net/sock.h> | ||
38 | #include <net/ip.h> | ||
39 | #include <net/icmp.h> | ||
40 | #include <net/checksum.h> | ||
41 | #include <linux/tcp.h> | ||
42 | #include <linux/udp.h> | ||
43 | #include <linux/inet.h> | ||
44 | #include <linux/netfilter_ipv4.h> | ||
45 | |||
46 | /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6 | ||
47 | * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c | ||
48 | * as well. Or notify me, at least. --ANK | ||
49 | */ | ||
50 | |||
51 | /* Fragment cache limits. We will commit 256K at one time. Should we | ||
52 | * cross that limit we will prune down to 192K. This should cope with | ||
53 | * even the most extreme cases without allowing an attacker to measurably | ||
54 | * harm machine performance. | ||
55 | */ | ||
56 | int sysctl_ipfrag_high_thresh = 256*1024; | ||
57 | int sysctl_ipfrag_low_thresh = 192*1024; | ||
58 | |||
59 | /* Important NOTE! Fragment queue must be destroyed before MSL expires. | ||
60 | * RFC791 is wrong proposing to prolongate timer each fragment arrival by TTL. | ||
61 | */ | ||
62 | int sysctl_ipfrag_time = IP_FRAG_TIME; | ||
63 | |||
64 | struct ipfrag_skb_cb | ||
65 | { | ||
66 | struct inet_skb_parm h; | ||
67 | int offset; | ||
68 | }; | ||
69 | |||
70 | #define FRAG_CB(skb) ((struct ipfrag_skb_cb*)((skb)->cb)) | ||
71 | |||
72 | /* Describe an entry in the "incomplete datagrams" queue. */ | ||
73 | struct ipq { | ||
74 | struct ipq *next; /* linked list pointers */ | ||
75 | struct list_head lru_list; /* lru list member */ | ||
76 | u32 user; | ||
77 | u32 saddr; | ||
78 | u32 daddr; | ||
79 | u16 id; | ||
80 | u8 protocol; | ||
81 | u8 last_in; | ||
82 | #define COMPLETE 4 | ||
83 | #define FIRST_IN 2 | ||
84 | #define LAST_IN 1 | ||
85 | |||
86 | struct sk_buff *fragments; /* linked list of received fragments */ | ||
87 | int len; /* total length of original datagram */ | ||
88 | int meat; | ||
89 | spinlock_t lock; | ||
90 | atomic_t refcnt; | ||
91 | struct timer_list timer; /* when will this queue expire? */ | ||
92 | struct ipq **pprev; | ||
93 | int iif; | ||
94 | struct timeval stamp; | ||
95 | }; | ||
96 | |||
97 | /* Hash table. */ | ||
98 | |||
99 | #define IPQ_HASHSZ 64 | ||
100 | |||
101 | /* Per-bucket lock is easy to add now. */ | ||
102 | static struct ipq *ipq_hash[IPQ_HASHSZ]; | ||
103 | static DEFINE_RWLOCK(ipfrag_lock); | ||
104 | static u32 ipfrag_hash_rnd; | ||
105 | static LIST_HEAD(ipq_lru_list); | ||
106 | int ip_frag_nqueues = 0; | ||
107 | |||
108 | static __inline__ void __ipq_unlink(struct ipq *qp) | ||
109 | { | ||
110 | if(qp->next) | ||
111 | qp->next->pprev = qp->pprev; | ||
112 | *qp->pprev = qp->next; | ||
113 | list_del(&qp->lru_list); | ||
114 | ip_frag_nqueues--; | ||
115 | } | ||
116 | |||
117 | static __inline__ void ipq_unlink(struct ipq *ipq) | ||
118 | { | ||
119 | write_lock(&ipfrag_lock); | ||
120 | __ipq_unlink(ipq); | ||
121 | write_unlock(&ipfrag_lock); | ||
122 | } | ||
123 | |||
124 | static unsigned int ipqhashfn(u16 id, u32 saddr, u32 daddr, u8 prot) | ||
125 | { | ||
126 | return jhash_3words((u32)id << 16 | prot, saddr, daddr, | ||
127 | ipfrag_hash_rnd) & (IPQ_HASHSZ - 1); | ||
128 | } | ||
129 | |||
130 | static struct timer_list ipfrag_secret_timer; | ||
131 | int sysctl_ipfrag_secret_interval = 10 * 60 * HZ; | ||
132 | |||
133 | static void ipfrag_secret_rebuild(unsigned long dummy) | ||
134 | { | ||
135 | unsigned long now = jiffies; | ||
136 | int i; | ||
137 | |||
138 | write_lock(&ipfrag_lock); | ||
139 | get_random_bytes(&ipfrag_hash_rnd, sizeof(u32)); | ||
140 | for (i = 0; i < IPQ_HASHSZ; i++) { | ||
141 | struct ipq *q; | ||
142 | |||
143 | q = ipq_hash[i]; | ||
144 | while (q) { | ||
145 | struct ipq *next = q->next; | ||
146 | unsigned int hval = ipqhashfn(q->id, q->saddr, | ||
147 | q->daddr, q->protocol); | ||
148 | |||
149 | if (hval != i) { | ||
150 | /* Unlink. */ | ||
151 | if (q->next) | ||
152 | q->next->pprev = q->pprev; | ||
153 | *q->pprev = q->next; | ||
154 | |||
155 | /* Relink to new hash chain. */ | ||
156 | if ((q->next = ipq_hash[hval]) != NULL) | ||
157 | q->next->pprev = &q->next; | ||
158 | ipq_hash[hval] = q; | ||
159 | q->pprev = &ipq_hash[hval]; | ||
160 | } | ||
161 | |||
162 | q = next; | ||
163 | } | ||
164 | } | ||
165 | write_unlock(&ipfrag_lock); | ||
166 | |||
167 | mod_timer(&ipfrag_secret_timer, now + sysctl_ipfrag_secret_interval); | ||
168 | } | ||
169 | |||
170 | atomic_t ip_frag_mem = ATOMIC_INIT(0); /* Memory used for fragments */ | ||
171 | |||
172 | /* Memory Tracking Functions. */ | ||
173 | static __inline__ void frag_kfree_skb(struct sk_buff *skb, int *work) | ||
174 | { | ||
175 | if (work) | ||
176 | *work -= skb->truesize; | ||
177 | atomic_sub(skb->truesize, &ip_frag_mem); | ||
178 | kfree_skb(skb); | ||
179 | } | ||
180 | |||
181 | static __inline__ void frag_free_queue(struct ipq *qp, int *work) | ||
182 | { | ||
183 | if (work) | ||
184 | *work -= sizeof(struct ipq); | ||
185 | atomic_sub(sizeof(struct ipq), &ip_frag_mem); | ||
186 | kfree(qp); | ||
187 | } | ||
188 | |||
189 | static __inline__ struct ipq *frag_alloc_queue(void) | ||
190 | { | ||
191 | struct ipq *qp = kmalloc(sizeof(struct ipq), GFP_ATOMIC); | ||
192 | |||
193 | if(!qp) | ||
194 | return NULL; | ||
195 | atomic_add(sizeof(struct ipq), &ip_frag_mem); | ||
196 | return qp; | ||
197 | } | ||
198 | |||
199 | |||
200 | /* Destruction primitives. */ | ||
201 | |||
202 | /* Complete destruction of ipq. */ | ||
203 | static void ip_frag_destroy(struct ipq *qp, int *work) | ||
204 | { | ||
205 | struct sk_buff *fp; | ||
206 | |||
207 | BUG_TRAP(qp->last_in&COMPLETE); | ||
208 | BUG_TRAP(del_timer(&qp->timer) == 0); | ||
209 | |||
210 | /* Release all fragment data. */ | ||
211 | fp = qp->fragments; | ||
212 | while (fp) { | ||
213 | struct sk_buff *xp = fp->next; | ||
214 | |||
215 | frag_kfree_skb(fp, work); | ||
216 | fp = xp; | ||
217 | } | ||
218 | |||
219 | /* Finally, release the queue descriptor itself. */ | ||
220 | frag_free_queue(qp, work); | ||
221 | } | ||
222 | |||
223 | static __inline__ void ipq_put(struct ipq *ipq, int *work) | ||
224 | { | ||
225 | if (atomic_dec_and_test(&ipq->refcnt)) | ||
226 | ip_frag_destroy(ipq, work); | ||
227 | } | ||
228 | |||
229 | /* Kill ipq entry. It is not destroyed immediately, | ||
230 | * because caller (and someone more) holds reference count. | ||
231 | */ | ||
232 | static void ipq_kill(struct ipq *ipq) | ||
233 | { | ||
234 | if (del_timer(&ipq->timer)) | ||
235 | atomic_dec(&ipq->refcnt); | ||
236 | |||
237 | if (!(ipq->last_in & COMPLETE)) { | ||
238 | ipq_unlink(ipq); | ||
239 | atomic_dec(&ipq->refcnt); | ||
240 | ipq->last_in |= COMPLETE; | ||
241 | } | ||
242 | } | ||
243 | |||
244 | /* Memory limiting on fragments. Evictor trashes the oldest | ||
245 | * fragment queue until we are back under the threshold. | ||
246 | */ | ||
247 | static void ip_evictor(void) | ||
248 | { | ||
249 | struct ipq *qp; | ||
250 | struct list_head *tmp; | ||
251 | int work; | ||
252 | |||
253 | work = atomic_read(&ip_frag_mem) - sysctl_ipfrag_low_thresh; | ||
254 | if (work <= 0) | ||
255 | return; | ||
256 | |||
257 | while (work > 0) { | ||
258 | read_lock(&ipfrag_lock); | ||
259 | if (list_empty(&ipq_lru_list)) { | ||
260 | read_unlock(&ipfrag_lock); | ||
261 | return; | ||
262 | } | ||
263 | tmp = ipq_lru_list.next; | ||
264 | qp = list_entry(tmp, struct ipq, lru_list); | ||
265 | atomic_inc(&qp->refcnt); | ||
266 | read_unlock(&ipfrag_lock); | ||
267 | |||
268 | spin_lock(&qp->lock); | ||
269 | if (!(qp->last_in&COMPLETE)) | ||
270 | ipq_kill(qp); | ||
271 | spin_unlock(&qp->lock); | ||
272 | |||
273 | ipq_put(qp, &work); | ||
274 | IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS); | ||
275 | } | ||
276 | } | ||
277 | |||
278 | /* | ||
279 | * Oops, a fragment queue timed out. Kill it and send an ICMP reply. | ||
280 | */ | ||
281 | static void ip_expire(unsigned long arg) | ||
282 | { | ||
283 | struct ipq *qp = (struct ipq *) arg; | ||
284 | |||
285 | spin_lock(&qp->lock); | ||
286 | |||
287 | if (qp->last_in & COMPLETE) | ||
288 | goto out; | ||
289 | |||
290 | ipq_kill(qp); | ||
291 | |||
292 | IP_INC_STATS_BH(IPSTATS_MIB_REASMTIMEOUT); | ||
293 | IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS); | ||
294 | |||
295 | if ((qp->last_in&FIRST_IN) && qp->fragments != NULL) { | ||
296 | struct sk_buff *head = qp->fragments; | ||
297 | /* Send an ICMP "Fragment Reassembly Timeout" message. */ | ||
298 | if ((head->dev = dev_get_by_index(qp->iif)) != NULL) { | ||
299 | icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0); | ||
300 | dev_put(head->dev); | ||
301 | } | ||
302 | } | ||
303 | out: | ||
304 | spin_unlock(&qp->lock); | ||
305 | ipq_put(qp, NULL); | ||
306 | } | ||
307 | |||
308 | /* Creation primitives. */ | ||
309 | |||
310 | static struct ipq *ip_frag_intern(unsigned int hash, struct ipq *qp_in) | ||
311 | { | ||
312 | struct ipq *qp; | ||
313 | |||
314 | write_lock(&ipfrag_lock); | ||
315 | #ifdef CONFIG_SMP | ||
316 | /* With SMP race we have to recheck hash table, because | ||
317 | * such entry could be created on other cpu, while we | ||
318 | * promoted read lock to write lock. | ||
319 | */ | ||
320 | for(qp = ipq_hash[hash]; qp; qp = qp->next) { | ||
321 | if(qp->id == qp_in->id && | ||
322 | qp->saddr == qp_in->saddr && | ||
323 | qp->daddr == qp_in->daddr && | ||
324 | qp->protocol == qp_in->protocol && | ||
325 | qp->user == qp_in->user) { | ||
326 | atomic_inc(&qp->refcnt); | ||
327 | write_unlock(&ipfrag_lock); | ||
328 | qp_in->last_in |= COMPLETE; | ||
329 | ipq_put(qp_in, NULL); | ||
330 | return qp; | ||
331 | } | ||
332 | } | ||
333 | #endif | ||
334 | qp = qp_in; | ||
335 | |||
336 | if (!mod_timer(&qp->timer, jiffies + sysctl_ipfrag_time)) | ||
337 | atomic_inc(&qp->refcnt); | ||
338 | |||
339 | atomic_inc(&qp->refcnt); | ||
340 | if((qp->next = ipq_hash[hash]) != NULL) | ||
341 | qp->next->pprev = &qp->next; | ||
342 | ipq_hash[hash] = qp; | ||
343 | qp->pprev = &ipq_hash[hash]; | ||
344 | INIT_LIST_HEAD(&qp->lru_list); | ||
345 | list_add_tail(&qp->lru_list, &ipq_lru_list); | ||
346 | ip_frag_nqueues++; | ||
347 | write_unlock(&ipfrag_lock); | ||
348 | return qp; | ||
349 | } | ||
350 | |||
351 | /* Add an entry to the 'ipq' queue for a newly received IP datagram. */ | ||
352 | static struct ipq *ip_frag_create(unsigned hash, struct iphdr *iph, u32 user) | ||
353 | { | ||
354 | struct ipq *qp; | ||
355 | |||
356 | if ((qp = frag_alloc_queue()) == NULL) | ||
357 | goto out_nomem; | ||
358 | |||
359 | qp->protocol = iph->protocol; | ||
360 | qp->last_in = 0; | ||
361 | qp->id = iph->id; | ||
362 | qp->saddr = iph->saddr; | ||
363 | qp->daddr = iph->daddr; | ||
364 | qp->user = user; | ||
365 | qp->len = 0; | ||
366 | qp->meat = 0; | ||
367 | qp->fragments = NULL; | ||
368 | qp->iif = 0; | ||
369 | |||
370 | /* Initialize a timer for this entry. */ | ||
371 | init_timer(&qp->timer); | ||
372 | qp->timer.data = (unsigned long) qp; /* pointer to queue */ | ||
373 | qp->timer.function = ip_expire; /* expire function */ | ||
374 | spin_lock_init(&qp->lock); | ||
375 | atomic_set(&qp->refcnt, 1); | ||
376 | |||
377 | return ip_frag_intern(hash, qp); | ||
378 | |||
379 | out_nomem: | ||
380 | NETDEBUG(if (net_ratelimit()) printk(KERN_ERR "ip_frag_create: no memory left !\n")); | ||
381 | return NULL; | ||
382 | } | ||
383 | |||
384 | /* Find the correct entry in the "incomplete datagrams" queue for | ||
385 | * this IP datagram, and create new one, if nothing is found. | ||
386 | */ | ||
387 | static inline struct ipq *ip_find(struct iphdr *iph, u32 user) | ||
388 | { | ||
389 | __u16 id = iph->id; | ||
390 | __u32 saddr = iph->saddr; | ||
391 | __u32 daddr = iph->daddr; | ||
392 | __u8 protocol = iph->protocol; | ||
393 | unsigned int hash = ipqhashfn(id, saddr, daddr, protocol); | ||
394 | struct ipq *qp; | ||
395 | |||
396 | read_lock(&ipfrag_lock); | ||
397 | for(qp = ipq_hash[hash]; qp; qp = qp->next) { | ||
398 | if(qp->id == id && | ||
399 | qp->saddr == saddr && | ||
400 | qp->daddr == daddr && | ||
401 | qp->protocol == protocol && | ||
402 | qp->user == user) { | ||
403 | atomic_inc(&qp->refcnt); | ||
404 | read_unlock(&ipfrag_lock); | ||
405 | return qp; | ||
406 | } | ||
407 | } | ||
408 | read_unlock(&ipfrag_lock); | ||
409 | |||
410 | return ip_frag_create(hash, iph, user); | ||
411 | } | ||
412 | |||
413 | /* Add new segment to existing queue. */ | ||
414 | static void ip_frag_queue(struct ipq *qp, struct sk_buff *skb) | ||
415 | { | ||
416 | struct sk_buff *prev, *next; | ||
417 | int flags, offset; | ||
418 | int ihl, end; | ||
419 | |||
420 | if (qp->last_in & COMPLETE) | ||
421 | goto err; | ||
422 | |||
423 | offset = ntohs(skb->nh.iph->frag_off); | ||
424 | flags = offset & ~IP_OFFSET; | ||
425 | offset &= IP_OFFSET; | ||
426 | offset <<= 3; /* offset is in 8-byte chunks */ | ||
427 | ihl = skb->nh.iph->ihl * 4; | ||
428 | |||
429 | /* Determine the position of this fragment. */ | ||
430 | end = offset + skb->len - ihl; | ||
431 | |||
432 | /* Is this the final fragment? */ | ||
433 | if ((flags & IP_MF) == 0) { | ||
434 | /* If we already have some bits beyond end | ||
435 | * or have different end, the segment is corrrupted. | ||
436 | */ | ||
437 | if (end < qp->len || | ||
438 | ((qp->last_in & LAST_IN) && end != qp->len)) | ||
439 | goto err; | ||
440 | qp->last_in |= LAST_IN; | ||
441 | qp->len = end; | ||
442 | } else { | ||
443 | if (end&7) { | ||
444 | end &= ~7; | ||
445 | if (skb->ip_summed != CHECKSUM_UNNECESSARY) | ||
446 | skb->ip_summed = CHECKSUM_NONE; | ||
447 | } | ||
448 | if (end > qp->len) { | ||
449 | /* Some bits beyond end -> corruption. */ | ||
450 | if (qp->last_in & LAST_IN) | ||
451 | goto err; | ||
452 | qp->len = end; | ||
453 | } | ||
454 | } | ||
455 | if (end == offset) | ||
456 | goto err; | ||
457 | |||
458 | if (pskb_pull(skb, ihl) == NULL) | ||
459 | goto err; | ||
460 | if (pskb_trim(skb, end-offset)) | ||
461 | goto err; | ||
462 | |||
463 | /* Find out which fragments are in front and at the back of us | ||
464 | * in the chain of fragments so far. We must know where to put | ||
465 | * this fragment, right? | ||
466 | */ | ||
467 | prev = NULL; | ||
468 | for(next = qp->fragments; next != NULL; next = next->next) { | ||
469 | if (FRAG_CB(next)->offset >= offset) | ||
470 | break; /* bingo! */ | ||
471 | prev = next; | ||
472 | } | ||
473 | |||
474 | /* We found where to put this one. Check for overlap with | ||
475 | * preceding fragment, and, if needed, align things so that | ||
476 | * any overlaps are eliminated. | ||
477 | */ | ||
478 | if (prev) { | ||
479 | int i = (FRAG_CB(prev)->offset + prev->len) - offset; | ||
480 | |||
481 | if (i > 0) { | ||
482 | offset += i; | ||
483 | if (end <= offset) | ||
484 | goto err; | ||
485 | if (!pskb_pull(skb, i)) | ||
486 | goto err; | ||
487 | if (skb->ip_summed != CHECKSUM_UNNECESSARY) | ||
488 | skb->ip_summed = CHECKSUM_NONE; | ||
489 | } | ||
490 | } | ||
491 | |||
492 | while (next && FRAG_CB(next)->offset < end) { | ||
493 | int i = end - FRAG_CB(next)->offset; /* overlap is 'i' bytes */ | ||
494 | |||
495 | if (i < next->len) { | ||
496 | /* Eat head of the next overlapped fragment | ||
497 | * and leave the loop. The next ones cannot overlap. | ||
498 | */ | ||
499 | if (!pskb_pull(next, i)) | ||
500 | goto err; | ||
501 | FRAG_CB(next)->offset += i; | ||
502 | qp->meat -= i; | ||
503 | if (next->ip_summed != CHECKSUM_UNNECESSARY) | ||
504 | next->ip_summed = CHECKSUM_NONE; | ||
505 | break; | ||
506 | } else { | ||
507 | struct sk_buff *free_it = next; | ||
508 | |||
509 | /* Old fragmnet is completely overridden with | ||
510 | * new one drop it. | ||
511 | */ | ||
512 | next = next->next; | ||
513 | |||
514 | if (prev) | ||
515 | prev->next = next; | ||
516 | else | ||
517 | qp->fragments = next; | ||
518 | |||
519 | qp->meat -= free_it->len; | ||
520 | frag_kfree_skb(free_it, NULL); | ||
521 | } | ||
522 | } | ||
523 | |||
524 | FRAG_CB(skb)->offset = offset; | ||
525 | |||
526 | /* Insert this fragment in the chain of fragments. */ | ||
527 | skb->next = next; | ||
528 | if (prev) | ||
529 | prev->next = skb; | ||
530 | else | ||
531 | qp->fragments = skb; | ||
532 | |||
533 | if (skb->dev) | ||
534 | qp->iif = skb->dev->ifindex; | ||
535 | skb->dev = NULL; | ||
536 | qp->stamp = skb->stamp; | ||
537 | qp->meat += skb->len; | ||
538 | atomic_add(skb->truesize, &ip_frag_mem); | ||
539 | if (offset == 0) | ||
540 | qp->last_in |= FIRST_IN; | ||
541 | |||
542 | write_lock(&ipfrag_lock); | ||
543 | list_move_tail(&qp->lru_list, &ipq_lru_list); | ||
544 | write_unlock(&ipfrag_lock); | ||
545 | |||
546 | return; | ||
547 | |||
548 | err: | ||
549 | kfree_skb(skb); | ||
550 | } | ||
551 | |||
552 | |||
553 | /* Build a new IP datagram from all its fragments. */ | ||
554 | |||
555 | static struct sk_buff *ip_frag_reasm(struct ipq *qp, struct net_device *dev) | ||
556 | { | ||
557 | struct iphdr *iph; | ||
558 | struct sk_buff *fp, *head = qp->fragments; | ||
559 | int len; | ||
560 | int ihlen; | ||
561 | |||
562 | ipq_kill(qp); | ||
563 | |||
564 | BUG_TRAP(head != NULL); | ||
565 | BUG_TRAP(FRAG_CB(head)->offset == 0); | ||
566 | |||
567 | /* Allocate a new buffer for the datagram. */ | ||
568 | ihlen = head->nh.iph->ihl*4; | ||
569 | len = ihlen + qp->len; | ||
570 | |||
571 | if(len > 65535) | ||
572 | goto out_oversize; | ||
573 | |||
574 | /* Head of list must not be cloned. */ | ||
575 | if (skb_cloned(head) && pskb_expand_head(head, 0, 0, GFP_ATOMIC)) | ||
576 | goto out_nomem; | ||
577 | |||
578 | /* If the first fragment is fragmented itself, we split | ||
579 | * it to two chunks: the first with data and paged part | ||
580 | * and the second, holding only fragments. */ | ||
581 | if (skb_shinfo(head)->frag_list) { | ||
582 | struct sk_buff *clone; | ||
583 | int i, plen = 0; | ||
584 | |||
585 | if ((clone = alloc_skb(0, GFP_ATOMIC)) == NULL) | ||
586 | goto out_nomem; | ||
587 | clone->next = head->next; | ||
588 | head->next = clone; | ||
589 | skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list; | ||
590 | skb_shinfo(head)->frag_list = NULL; | ||
591 | for (i=0; i<skb_shinfo(head)->nr_frags; i++) | ||
592 | plen += skb_shinfo(head)->frags[i].size; | ||
593 | clone->len = clone->data_len = head->data_len - plen; | ||
594 | head->data_len -= clone->len; | ||
595 | head->len -= clone->len; | ||
596 | clone->csum = 0; | ||
597 | clone->ip_summed = head->ip_summed; | ||
598 | atomic_add(clone->truesize, &ip_frag_mem); | ||
599 | } | ||
600 | |||
601 | skb_shinfo(head)->frag_list = head->next; | ||
602 | skb_push(head, head->data - head->nh.raw); | ||
603 | atomic_sub(head->truesize, &ip_frag_mem); | ||
604 | |||
605 | for (fp=head->next; fp; fp = fp->next) { | ||
606 | head->data_len += fp->len; | ||
607 | head->len += fp->len; | ||
608 | if (head->ip_summed != fp->ip_summed) | ||
609 | head->ip_summed = CHECKSUM_NONE; | ||
610 | else if (head->ip_summed == CHECKSUM_HW) | ||
611 | head->csum = csum_add(head->csum, fp->csum); | ||
612 | head->truesize += fp->truesize; | ||
613 | atomic_sub(fp->truesize, &ip_frag_mem); | ||
614 | } | ||
615 | |||
616 | head->next = NULL; | ||
617 | head->dev = dev; | ||
618 | head->stamp = qp->stamp; | ||
619 | |||
620 | iph = head->nh.iph; | ||
621 | iph->frag_off = 0; | ||
622 | iph->tot_len = htons(len); | ||
623 | IP_INC_STATS_BH(IPSTATS_MIB_REASMOKS); | ||
624 | qp->fragments = NULL; | ||
625 | return head; | ||
626 | |||
627 | out_nomem: | ||
628 | NETDEBUG(if (net_ratelimit()) | ||
629 | printk(KERN_ERR | ||
630 | "IP: queue_glue: no memory for gluing queue %p\n", | ||
631 | qp)); | ||
632 | goto out_fail; | ||
633 | out_oversize: | ||
634 | if (net_ratelimit()) | ||
635 | printk(KERN_INFO | ||
636 | "Oversized IP packet from %d.%d.%d.%d.\n", | ||
637 | NIPQUAD(qp->saddr)); | ||
638 | out_fail: | ||
639 | IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS); | ||
640 | return NULL; | ||
641 | } | ||
642 | |||
643 | /* Process an incoming IP datagram fragment. */ | ||
644 | struct sk_buff *ip_defrag(struct sk_buff *skb, u32 user) | ||
645 | { | ||
646 | struct iphdr *iph = skb->nh.iph; | ||
647 | struct ipq *qp; | ||
648 | struct net_device *dev; | ||
649 | |||
650 | IP_INC_STATS_BH(IPSTATS_MIB_REASMREQDS); | ||
651 | |||
652 | /* Start by cleaning up the memory. */ | ||
653 | if (atomic_read(&ip_frag_mem) > sysctl_ipfrag_high_thresh) | ||
654 | ip_evictor(); | ||
655 | |||
656 | dev = skb->dev; | ||
657 | |||
658 | /* Lookup (or create) queue header */ | ||
659 | if ((qp = ip_find(iph, user)) != NULL) { | ||
660 | struct sk_buff *ret = NULL; | ||
661 | |||
662 | spin_lock(&qp->lock); | ||
663 | |||
664 | ip_frag_queue(qp, skb); | ||
665 | |||
666 | if (qp->last_in == (FIRST_IN|LAST_IN) && | ||
667 | qp->meat == qp->len) | ||
668 | ret = ip_frag_reasm(qp, dev); | ||
669 | |||
670 | spin_unlock(&qp->lock); | ||
671 | ipq_put(qp, NULL); | ||
672 | return ret; | ||
673 | } | ||
674 | |||
675 | IP_INC_STATS_BH(IPSTATS_MIB_REASMFAILS); | ||
676 | kfree_skb(skb); | ||
677 | return NULL; | ||
678 | } | ||
679 | |||
680 | void ipfrag_init(void) | ||
681 | { | ||
682 | ipfrag_hash_rnd = (u32) ((num_physpages ^ (num_physpages>>7)) ^ | ||
683 | (jiffies ^ (jiffies >> 6))); | ||
684 | |||
685 | init_timer(&ipfrag_secret_timer); | ||
686 | ipfrag_secret_timer.function = ipfrag_secret_rebuild; | ||
687 | ipfrag_secret_timer.expires = jiffies + sysctl_ipfrag_secret_interval; | ||
688 | add_timer(&ipfrag_secret_timer); | ||
689 | } | ||
690 | |||
691 | EXPORT_SYMBOL(ip_defrag); | ||