diff options
author | Gerrit Renker <gerrit@erg.abdn.ac.uk> | 2006-12-03 11:52:41 -0500 |
---|---|---|
committer | Arnaldo Carvalho de Melo <acme@mandriva.com> | 2006-12-03 11:52:41 -0500 |
commit | 006042d7e1a0aae35c9dd9eb8ec71fa379679adb (patch) | |
tree | e0f7a4f351fbf147bd452ff45061245fd985f27d /net/dccp/ccids | |
parent | 8d0086adac0041de66b5f41b77eec0d8d239e16c (diff) |
[DCCP] tfrc: Identify TFRC table limits and simplify code
This
* adds documentation about the lowest resolution that is possible within
the bounds of the current lookup table
* defines a constant TFRC_SMALLEST_P which defines this resolution
* issues a warning if a given value of p is below resolution
* combines two previously adjacent if-blocks of nearly identical
structure into one
This patch does not change the algorithm as such.
Signed-off-by: Gerrit Renker <gerrit@erg.abdn.ac.uk>
Acked-by: Ian McDonald <ian.mcdonald@jandi.co.nz>
Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
Diffstat (limited to 'net/dccp/ccids')
-rw-r--r-- | net/dccp/ccids/lib/tfrc_equation.c | 27 |
1 files changed, 18 insertions, 9 deletions
diff --git a/net/dccp/ccids/lib/tfrc_equation.c b/net/dccp/ccids/lib/tfrc_equation.c index ef3233d45a61..0a4a3d2feba5 100644 --- a/net/dccp/ccids/lib/tfrc_equation.c +++ b/net/dccp/ccids/lib/tfrc_equation.c | |||
@@ -19,6 +19,7 @@ | |||
19 | 19 | ||
20 | #define TFRC_CALC_X_ARRSIZE 500 | 20 | #define TFRC_CALC_X_ARRSIZE 500 |
21 | #define TFRC_CALC_X_SPLIT 50000 /* 0.05 * 1000000, details below */ | 21 | #define TFRC_CALC_X_SPLIT 50000 /* 0.05 * 1000000, details below */ |
22 | #define TFRC_SMALLEST_P (TFRC_CALC_X_SPLIT/TFRC_CALC_X_ARRSIZE) | ||
22 | 23 | ||
23 | /* | 24 | /* |
24 | TFRC TCP Reno Throughput Equation Lookup Table for f(p) | 25 | TFRC TCP Reno Throughput Equation Lookup Table for f(p) |
@@ -68,7 +69,9 @@ | |||
68 | granularity for the practically more relevant case of small values of p (up to | 69 | granularity for the practically more relevant case of small values of p (up to |
69 | 5%), the second column is used; the first one ranges up to 100%. This split | 70 | 5%), the second column is used; the first one ranges up to 100%. This split |
70 | corresponds to the value of q = TFRC_CALC_X_SPLIT. At the same time this also | 71 | corresponds to the value of q = TFRC_CALC_X_SPLIT. At the same time this also |
71 | determines the smallest resolution. | 72 | determines the smallest resolution possible with this lookup table: |
73 | |||
74 | TFRC_SMALLEST_P = TFRC_CALC_X_SPLIT / TFRC_CALC_X_ARRSIZE | ||
72 | 75 | ||
73 | The entire table is generated by: | 76 | The entire table is generated by: |
74 | for(i=0; i < TFRC_CALC_X_ARRSIZE; i++) { | 77 | for(i=0; i < TFRC_CALC_X_ARRSIZE; i++) { |
@@ -79,7 +82,7 @@ | |||
79 | With the given configuration, we have, with M = TFRC_CALC_X_ARRSIZE-1, | 82 | With the given configuration, we have, with M = TFRC_CALC_X_ARRSIZE-1, |
80 | lookup[0][0] = g(1000000/(M+1)) = 1000000 * f(0.2%) | 83 | lookup[0][0] = g(1000000/(M+1)) = 1000000 * f(0.2%) |
81 | lookup[M][0] = g(1000000) = 1000000 * f(100%) | 84 | lookup[M][0] = g(1000000) = 1000000 * f(100%) |
82 | lookup[0][1] = g(TFRC_CALC_X_SPLIT/(M+1)) = 1000000 * f(0.01%) | 85 | lookup[0][1] = g(TFRC_SMALLEST_P) = 1000000 * f(0.01%) |
83 | lookup[M][1] = g(TFRC_CALC_X_SPLIT) = 1000000 * f(5%) | 86 | lookup[M][1] = g(TFRC_CALC_X_SPLIT) = 1000000 * f(5%) |
84 | 87 | ||
85 | In summary, the two columns represent f(p) for the following ranges: | 88 | In summary, the two columns represent f(p) for the following ranges: |
@@ -616,15 +619,21 @@ u32 tfrc_calc_x(u16 s, u32 R, u32 p) | |||
616 | return ~0U; | 619 | return ~0U; |
617 | } | 620 | } |
618 | 621 | ||
619 | if (p < TFRC_CALC_X_SPLIT) /* 0 <= p < 0.05 */ | 622 | if (p <= TFRC_CALC_X_SPLIT) { /* 0.0000 < p <= 0.05 */ |
620 | index = (p / (TFRC_CALC_X_SPLIT / TFRC_CALC_X_ARRSIZE)) - 1; | 623 | if (p < TFRC_SMALLEST_P) { /* 0.0000 < p < 0.0001 */ |
621 | else /* 0.05 <= p <= 1.00 */ | 624 | DCCP_WARN("Value of p (%d) below resolution. " |
622 | index = (p / (1000000 / TFRC_CALC_X_ARRSIZE)) - 1; | 625 | "Substituting %d\n", p, TFRC_SMALLEST_P); |
626 | index = 0; | ||
627 | } else /* 0.0001 <= p <= 0.05 */ | ||
628 | index = p/TFRC_SMALLEST_P - 1; | ||
629 | |||
630 | f = tfrc_calc_x_lookup[index][1]; | ||
631 | |||
632 | } else { /* 0.05 < p <= 1.00 */ | ||
633 | index = p/(1000000/TFRC_CALC_X_ARRSIZE) - 1; | ||
623 | 634 | ||
624 | if (p >= TFRC_CALC_X_SPLIT) | ||
625 | f = tfrc_calc_x_lookup[index][0]; | 635 | f = tfrc_calc_x_lookup[index][0]; |
626 | else | 636 | } |
627 | f = tfrc_calc_x_lookup[index][1]; | ||
628 | 637 | ||
629 | /* The following computes X = s/(R*f(p)) in bytes per second. Since f(p) | 638 | /* The following computes X = s/(R*f(p)) in bytes per second. Since f(p) |
630 | * and R are both scaled by 1000000, we need to multiply by 1000000^2. | 639 | * and R are both scaled by 1000000, we need to multiply by 1000000^2. |