diff options
author | John W. Linville <linville@tuxdriver.com> | 2014-12-05 14:12:24 -0500 |
---|---|---|
committer | John W. Linville <linville@tuxdriver.com> | 2014-12-05 14:12:24 -0500 |
commit | f700076a9d1024a8184a7b6642edebd53a46a481 (patch) | |
tree | 4383ac2a2e624a0757f658b406ac335d89c829c9 /net/bluetooth/ecc.c | |
parent | 7be6ff65ce7df4fc6bfd87d261a723a5558fee72 (diff) | |
parent | 5a34bd5f5d8119def4feb1d2b4e3906b71059416 (diff) |
Merge branch 'for-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/bluetooth/bluetooth-next
Diffstat (limited to 'net/bluetooth/ecc.c')
-rw-r--r-- | net/bluetooth/ecc.c | 816 |
1 files changed, 816 insertions, 0 deletions
diff --git a/net/bluetooth/ecc.c b/net/bluetooth/ecc.c new file mode 100644 index 000000000000..e1709f8467ac --- /dev/null +++ b/net/bluetooth/ecc.c | |||
@@ -0,0 +1,816 @@ | |||
1 | /* | ||
2 | * Copyright (c) 2013, Kenneth MacKay | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * Redistribution and use in source and binary forms, with or without | ||
6 | * modification, are permitted provided that the following conditions are | ||
7 | * met: | ||
8 | * * Redistributions of source code must retain the above copyright | ||
9 | * notice, this list of conditions and the following disclaimer. | ||
10 | * * Redistributions in binary form must reproduce the above copyright | ||
11 | * notice, this list of conditions and the following disclaimer in the | ||
12 | * documentation and/or other materials provided with the distribution. | ||
13 | * | ||
14 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | ||
15 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | ||
16 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | ||
17 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | ||
18 | * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
19 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | ||
20 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | ||
21 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | ||
22 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | ||
23 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | ||
24 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
25 | */ | ||
26 | |||
27 | #include <linux/random.h> | ||
28 | |||
29 | #include "ecc.h" | ||
30 | |||
31 | /* 256-bit curve */ | ||
32 | #define ECC_BYTES 32 | ||
33 | |||
34 | #define MAX_TRIES 16 | ||
35 | |||
36 | /* Number of u64's needed */ | ||
37 | #define NUM_ECC_DIGITS (ECC_BYTES / 8) | ||
38 | |||
39 | struct ecc_point { | ||
40 | u64 x[NUM_ECC_DIGITS]; | ||
41 | u64 y[NUM_ECC_DIGITS]; | ||
42 | }; | ||
43 | |||
44 | typedef struct { | ||
45 | u64 m_low; | ||
46 | u64 m_high; | ||
47 | } uint128_t; | ||
48 | |||
49 | #define CURVE_P_32 { 0xFFFFFFFFFFFFFFFFull, 0x00000000FFFFFFFFull, \ | ||
50 | 0x0000000000000000ull, 0xFFFFFFFF00000001ull } | ||
51 | |||
52 | #define CURVE_G_32 { \ | ||
53 | { 0xF4A13945D898C296ull, 0x77037D812DEB33A0ull, \ | ||
54 | 0xF8BCE6E563A440F2ull, 0x6B17D1F2E12C4247ull }, \ | ||
55 | { 0xCBB6406837BF51F5ull, 0x2BCE33576B315ECEull, \ | ||
56 | 0x8EE7EB4A7C0F9E16ull, 0x4FE342E2FE1A7F9Bull } \ | ||
57 | } | ||
58 | |||
59 | #define CURVE_N_32 { 0xF3B9CAC2FC632551ull, 0xBCE6FAADA7179E84ull, \ | ||
60 | 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFF00000000ull } | ||
61 | |||
62 | static u64 curve_p[NUM_ECC_DIGITS] = CURVE_P_32; | ||
63 | static struct ecc_point curve_g = CURVE_G_32; | ||
64 | static u64 curve_n[NUM_ECC_DIGITS] = CURVE_N_32; | ||
65 | |||
66 | static void vli_clear(u64 *vli) | ||
67 | { | ||
68 | int i; | ||
69 | |||
70 | for (i = 0; i < NUM_ECC_DIGITS; i++) | ||
71 | vli[i] = 0; | ||
72 | } | ||
73 | |||
74 | /* Returns true if vli == 0, false otherwise. */ | ||
75 | static bool vli_is_zero(const u64 *vli) | ||
76 | { | ||
77 | int i; | ||
78 | |||
79 | for (i = 0; i < NUM_ECC_DIGITS; i++) { | ||
80 | if (vli[i]) | ||
81 | return false; | ||
82 | } | ||
83 | |||
84 | return true; | ||
85 | } | ||
86 | |||
87 | /* Returns nonzero if bit bit of vli is set. */ | ||
88 | static u64 vli_test_bit(const u64 *vli, unsigned int bit) | ||
89 | { | ||
90 | return (vli[bit / 64] & ((u64) 1 << (bit % 64))); | ||
91 | } | ||
92 | |||
93 | /* Counts the number of 64-bit "digits" in vli. */ | ||
94 | static unsigned int vli_num_digits(const u64 *vli) | ||
95 | { | ||
96 | int i; | ||
97 | |||
98 | /* Search from the end until we find a non-zero digit. | ||
99 | * We do it in reverse because we expect that most digits will | ||
100 | * be nonzero. | ||
101 | */ | ||
102 | for (i = NUM_ECC_DIGITS - 1; i >= 0 && vli[i] == 0; i--); | ||
103 | |||
104 | return (i + 1); | ||
105 | } | ||
106 | |||
107 | /* Counts the number of bits required for vli. */ | ||
108 | static unsigned int vli_num_bits(const u64 *vli) | ||
109 | { | ||
110 | unsigned int i, num_digits; | ||
111 | u64 digit; | ||
112 | |||
113 | num_digits = vli_num_digits(vli); | ||
114 | if (num_digits == 0) | ||
115 | return 0; | ||
116 | |||
117 | digit = vli[num_digits - 1]; | ||
118 | for (i = 0; digit; i++) | ||
119 | digit >>= 1; | ||
120 | |||
121 | return ((num_digits - 1) * 64 + i); | ||
122 | } | ||
123 | |||
124 | /* Sets dest = src. */ | ||
125 | static void vli_set(u64 *dest, const u64 *src) | ||
126 | { | ||
127 | int i; | ||
128 | |||
129 | for (i = 0; i < NUM_ECC_DIGITS; i++) | ||
130 | dest[i] = src[i]; | ||
131 | } | ||
132 | |||
133 | /* Returns sign of left - right. */ | ||
134 | static int vli_cmp(const u64 *left, const u64 *right) | ||
135 | { | ||
136 | int i; | ||
137 | |||
138 | for (i = NUM_ECC_DIGITS - 1; i >= 0; i--) { | ||
139 | if (left[i] > right[i]) | ||
140 | return 1; | ||
141 | else if (left[i] < right[i]) | ||
142 | return -1; | ||
143 | } | ||
144 | |||
145 | return 0; | ||
146 | } | ||
147 | |||
148 | /* Computes result = in << c, returning carry. Can modify in place | ||
149 | * (if result == in). 0 < shift < 64. | ||
150 | */ | ||
151 | static u64 vli_lshift(u64 *result, const u64 *in, | ||
152 | unsigned int shift) | ||
153 | { | ||
154 | u64 carry = 0; | ||
155 | int i; | ||
156 | |||
157 | for (i = 0; i < NUM_ECC_DIGITS; i++) { | ||
158 | u64 temp = in[i]; | ||
159 | |||
160 | result[i] = (temp << shift) | carry; | ||
161 | carry = temp >> (64 - shift); | ||
162 | } | ||
163 | |||
164 | return carry; | ||
165 | } | ||
166 | |||
167 | /* Computes vli = vli >> 1. */ | ||
168 | static void vli_rshift1(u64 *vli) | ||
169 | { | ||
170 | u64 *end = vli; | ||
171 | u64 carry = 0; | ||
172 | |||
173 | vli += NUM_ECC_DIGITS; | ||
174 | |||
175 | while (vli-- > end) { | ||
176 | u64 temp = *vli; | ||
177 | *vli = (temp >> 1) | carry; | ||
178 | carry = temp << 63; | ||
179 | } | ||
180 | } | ||
181 | |||
182 | /* Computes result = left + right, returning carry. Can modify in place. */ | ||
183 | static u64 vli_add(u64 *result, const u64 *left, | ||
184 | const u64 *right) | ||
185 | { | ||
186 | u64 carry = 0; | ||
187 | int i; | ||
188 | |||
189 | for (i = 0; i < NUM_ECC_DIGITS; i++) { | ||
190 | u64 sum; | ||
191 | |||
192 | sum = left[i] + right[i] + carry; | ||
193 | if (sum != left[i]) | ||
194 | carry = (sum < left[i]); | ||
195 | |||
196 | result[i] = sum; | ||
197 | } | ||
198 | |||
199 | return carry; | ||
200 | } | ||
201 | |||
202 | /* Computes result = left - right, returning borrow. Can modify in place. */ | ||
203 | static u64 vli_sub(u64 *result, const u64 *left, const u64 *right) | ||
204 | { | ||
205 | u64 borrow = 0; | ||
206 | int i; | ||
207 | |||
208 | for (i = 0; i < NUM_ECC_DIGITS; i++) { | ||
209 | u64 diff; | ||
210 | |||
211 | diff = left[i] - right[i] - borrow; | ||
212 | if (diff != left[i]) | ||
213 | borrow = (diff > left[i]); | ||
214 | |||
215 | result[i] = diff; | ||
216 | } | ||
217 | |||
218 | return borrow; | ||
219 | } | ||
220 | |||
221 | static uint128_t mul_64_64(u64 left, u64 right) | ||
222 | { | ||
223 | u64 a0 = left & 0xffffffffull; | ||
224 | u64 a1 = left >> 32; | ||
225 | u64 b0 = right & 0xffffffffull; | ||
226 | u64 b1 = right >> 32; | ||
227 | u64 m0 = a0 * b0; | ||
228 | u64 m1 = a0 * b1; | ||
229 | u64 m2 = a1 * b0; | ||
230 | u64 m3 = a1 * b1; | ||
231 | uint128_t result; | ||
232 | |||
233 | m2 += (m0 >> 32); | ||
234 | m2 += m1; | ||
235 | |||
236 | /* Overflow */ | ||
237 | if (m2 < m1) | ||
238 | m3 += 0x100000000ull; | ||
239 | |||
240 | result.m_low = (m0 & 0xffffffffull) | (m2 << 32); | ||
241 | result.m_high = m3 + (m2 >> 32); | ||
242 | |||
243 | return result; | ||
244 | } | ||
245 | |||
246 | static uint128_t add_128_128(uint128_t a, uint128_t b) | ||
247 | { | ||
248 | uint128_t result; | ||
249 | |||
250 | result.m_low = a.m_low + b.m_low; | ||
251 | result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low); | ||
252 | |||
253 | return result; | ||
254 | } | ||
255 | |||
256 | static void vli_mult(u64 *result, const u64 *left, const u64 *right) | ||
257 | { | ||
258 | uint128_t r01 = { 0, 0 }; | ||
259 | u64 r2 = 0; | ||
260 | unsigned int i, k; | ||
261 | |||
262 | /* Compute each digit of result in sequence, maintaining the | ||
263 | * carries. | ||
264 | */ | ||
265 | for (k = 0; k < NUM_ECC_DIGITS * 2 - 1; k++) { | ||
266 | unsigned int min; | ||
267 | |||
268 | if (k < NUM_ECC_DIGITS) | ||
269 | min = 0; | ||
270 | else | ||
271 | min = (k + 1) - NUM_ECC_DIGITS; | ||
272 | |||
273 | for (i = min; i <= k && i < NUM_ECC_DIGITS; i++) { | ||
274 | uint128_t product; | ||
275 | |||
276 | product = mul_64_64(left[i], right[k - i]); | ||
277 | |||
278 | r01 = add_128_128(r01, product); | ||
279 | r2 += (r01.m_high < product.m_high); | ||
280 | } | ||
281 | |||
282 | result[k] = r01.m_low; | ||
283 | r01.m_low = r01.m_high; | ||
284 | r01.m_high = r2; | ||
285 | r2 = 0; | ||
286 | } | ||
287 | |||
288 | result[NUM_ECC_DIGITS * 2 - 1] = r01.m_low; | ||
289 | } | ||
290 | |||
291 | static void vli_square(u64 *result, const u64 *left) | ||
292 | { | ||
293 | uint128_t r01 = { 0, 0 }; | ||
294 | u64 r2 = 0; | ||
295 | int i, k; | ||
296 | |||
297 | for (k = 0; k < NUM_ECC_DIGITS * 2 - 1; k++) { | ||
298 | unsigned int min; | ||
299 | |||
300 | if (k < NUM_ECC_DIGITS) | ||
301 | min = 0; | ||
302 | else | ||
303 | min = (k + 1) - NUM_ECC_DIGITS; | ||
304 | |||
305 | for (i = min; i <= k && i <= k - i; i++) { | ||
306 | uint128_t product; | ||
307 | |||
308 | product = mul_64_64(left[i], left[k - i]); | ||
309 | |||
310 | if (i < k - i) { | ||
311 | r2 += product.m_high >> 63; | ||
312 | product.m_high = (product.m_high << 1) | | ||
313 | (product.m_low >> 63); | ||
314 | product.m_low <<= 1; | ||
315 | } | ||
316 | |||
317 | r01 = add_128_128(r01, product); | ||
318 | r2 += (r01.m_high < product.m_high); | ||
319 | } | ||
320 | |||
321 | result[k] = r01.m_low; | ||
322 | r01.m_low = r01.m_high; | ||
323 | r01.m_high = r2; | ||
324 | r2 = 0; | ||
325 | } | ||
326 | |||
327 | result[NUM_ECC_DIGITS * 2 - 1] = r01.m_low; | ||
328 | } | ||
329 | |||
330 | /* Computes result = (left + right) % mod. | ||
331 | * Assumes that left < mod and right < mod, result != mod. | ||
332 | */ | ||
333 | static void vli_mod_add(u64 *result, const u64 *left, const u64 *right, | ||
334 | const u64 *mod) | ||
335 | { | ||
336 | u64 carry; | ||
337 | |||
338 | carry = vli_add(result, left, right); | ||
339 | |||
340 | /* result > mod (result = mod + remainder), so subtract mod to | ||
341 | * get remainder. | ||
342 | */ | ||
343 | if (carry || vli_cmp(result, mod) >= 0) | ||
344 | vli_sub(result, result, mod); | ||
345 | } | ||
346 | |||
347 | /* Computes result = (left - right) % mod. | ||
348 | * Assumes that left < mod and right < mod, result != mod. | ||
349 | */ | ||
350 | static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right, | ||
351 | const u64 *mod) | ||
352 | { | ||
353 | u64 borrow = vli_sub(result, left, right); | ||
354 | |||
355 | /* In this case, p_result == -diff == (max int) - diff. | ||
356 | * Since -x % d == d - x, we can get the correct result from | ||
357 | * result + mod (with overflow). | ||
358 | */ | ||
359 | if (borrow) | ||
360 | vli_add(result, result, mod); | ||
361 | } | ||
362 | |||
363 | /* Computes result = product % curve_p | ||
364 | from http://www.nsa.gov/ia/_files/nist-routines.pdf */ | ||
365 | static void vli_mmod_fast(u64 *result, const u64 *product) | ||
366 | { | ||
367 | u64 tmp[NUM_ECC_DIGITS]; | ||
368 | int carry; | ||
369 | |||
370 | /* t */ | ||
371 | vli_set(result, product); | ||
372 | |||
373 | /* s1 */ | ||
374 | tmp[0] = 0; | ||
375 | tmp[1] = product[5] & 0xffffffff00000000ull; | ||
376 | tmp[2] = product[6]; | ||
377 | tmp[3] = product[7]; | ||
378 | carry = vli_lshift(tmp, tmp, 1); | ||
379 | carry += vli_add(result, result, tmp); | ||
380 | |||
381 | /* s2 */ | ||
382 | tmp[1] = product[6] << 32; | ||
383 | tmp[2] = (product[6] >> 32) | (product[7] << 32); | ||
384 | tmp[3] = product[7] >> 32; | ||
385 | carry += vli_lshift(tmp, tmp, 1); | ||
386 | carry += vli_add(result, result, tmp); | ||
387 | |||
388 | /* s3 */ | ||
389 | tmp[0] = product[4]; | ||
390 | tmp[1] = product[5] & 0xffffffff; | ||
391 | tmp[2] = 0; | ||
392 | tmp[3] = product[7]; | ||
393 | carry += vli_add(result, result, tmp); | ||
394 | |||
395 | /* s4 */ | ||
396 | tmp[0] = (product[4] >> 32) | (product[5] << 32); | ||
397 | tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull); | ||
398 | tmp[2] = product[7]; | ||
399 | tmp[3] = (product[6] >> 32) | (product[4] << 32); | ||
400 | carry += vli_add(result, result, tmp); | ||
401 | |||
402 | /* d1 */ | ||
403 | tmp[0] = (product[5] >> 32) | (product[6] << 32); | ||
404 | tmp[1] = (product[6] >> 32); | ||
405 | tmp[2] = 0; | ||
406 | tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32); | ||
407 | carry -= vli_sub(result, result, tmp); | ||
408 | |||
409 | /* d2 */ | ||
410 | tmp[0] = product[6]; | ||
411 | tmp[1] = product[7]; | ||
412 | tmp[2] = 0; | ||
413 | tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull); | ||
414 | carry -= vli_sub(result, result, tmp); | ||
415 | |||
416 | /* d3 */ | ||
417 | tmp[0] = (product[6] >> 32) | (product[7] << 32); | ||
418 | tmp[1] = (product[7] >> 32) | (product[4] << 32); | ||
419 | tmp[2] = (product[4] >> 32) | (product[5] << 32); | ||
420 | tmp[3] = (product[6] << 32); | ||
421 | carry -= vli_sub(result, result, tmp); | ||
422 | |||
423 | /* d4 */ | ||
424 | tmp[0] = product[7]; | ||
425 | tmp[1] = product[4] & 0xffffffff00000000ull; | ||
426 | tmp[2] = product[5]; | ||
427 | tmp[3] = product[6] & 0xffffffff00000000ull; | ||
428 | carry -= vli_sub(result, result, tmp); | ||
429 | |||
430 | if (carry < 0) { | ||
431 | do { | ||
432 | carry += vli_add(result, result, curve_p); | ||
433 | } while (carry < 0); | ||
434 | } else { | ||
435 | while (carry || vli_cmp(curve_p, result) != 1) | ||
436 | carry -= vli_sub(result, result, curve_p); | ||
437 | } | ||
438 | } | ||
439 | |||
440 | /* Computes result = (left * right) % curve_p. */ | ||
441 | static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right) | ||
442 | { | ||
443 | u64 product[2 * NUM_ECC_DIGITS]; | ||
444 | |||
445 | vli_mult(product, left, right); | ||
446 | vli_mmod_fast(result, product); | ||
447 | } | ||
448 | |||
449 | /* Computes result = left^2 % curve_p. */ | ||
450 | static void vli_mod_square_fast(u64 *result, const u64 *left) | ||
451 | { | ||
452 | u64 product[2 * NUM_ECC_DIGITS]; | ||
453 | |||
454 | vli_square(product, left); | ||
455 | vli_mmod_fast(result, product); | ||
456 | } | ||
457 | |||
458 | #define EVEN(vli) (!(vli[0] & 1)) | ||
459 | /* Computes result = (1 / p_input) % mod. All VLIs are the same size. | ||
460 | * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide" | ||
461 | * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf | ||
462 | */ | ||
463 | static void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod) | ||
464 | { | ||
465 | u64 a[NUM_ECC_DIGITS], b[NUM_ECC_DIGITS]; | ||
466 | u64 u[NUM_ECC_DIGITS], v[NUM_ECC_DIGITS]; | ||
467 | u64 carry; | ||
468 | int cmp_result; | ||
469 | |||
470 | if (vli_is_zero(input)) { | ||
471 | vli_clear(result); | ||
472 | return; | ||
473 | } | ||
474 | |||
475 | vli_set(a, input); | ||
476 | vli_set(b, mod); | ||
477 | vli_clear(u); | ||
478 | u[0] = 1; | ||
479 | vli_clear(v); | ||
480 | |||
481 | while ((cmp_result = vli_cmp(a, b)) != 0) { | ||
482 | carry = 0; | ||
483 | |||
484 | if (EVEN(a)) { | ||
485 | vli_rshift1(a); | ||
486 | |||
487 | if (!EVEN(u)) | ||
488 | carry = vli_add(u, u, mod); | ||
489 | |||
490 | vli_rshift1(u); | ||
491 | if (carry) | ||
492 | u[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull; | ||
493 | } else if (EVEN(b)) { | ||
494 | vli_rshift1(b); | ||
495 | |||
496 | if (!EVEN(v)) | ||
497 | carry = vli_add(v, v, mod); | ||
498 | |||
499 | vli_rshift1(v); | ||
500 | if (carry) | ||
501 | v[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull; | ||
502 | } else if (cmp_result > 0) { | ||
503 | vli_sub(a, a, b); | ||
504 | vli_rshift1(a); | ||
505 | |||
506 | if (vli_cmp(u, v) < 0) | ||
507 | vli_add(u, u, mod); | ||
508 | |||
509 | vli_sub(u, u, v); | ||
510 | if (!EVEN(u)) | ||
511 | carry = vli_add(u, u, mod); | ||
512 | |||
513 | vli_rshift1(u); | ||
514 | if (carry) | ||
515 | u[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull; | ||
516 | } else { | ||
517 | vli_sub(b, b, a); | ||
518 | vli_rshift1(b); | ||
519 | |||
520 | if (vli_cmp(v, u) < 0) | ||
521 | vli_add(v, v, mod); | ||
522 | |||
523 | vli_sub(v, v, u); | ||
524 | if (!EVEN(v)) | ||
525 | carry = vli_add(v, v, mod); | ||
526 | |||
527 | vli_rshift1(v); | ||
528 | if (carry) | ||
529 | v[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull; | ||
530 | } | ||
531 | } | ||
532 | |||
533 | vli_set(result, u); | ||
534 | } | ||
535 | |||
536 | /* ------ Point operations ------ */ | ||
537 | |||
538 | /* Returns true if p_point is the point at infinity, false otherwise. */ | ||
539 | static bool ecc_point_is_zero(const struct ecc_point *point) | ||
540 | { | ||
541 | return (vli_is_zero(point->x) && vli_is_zero(point->y)); | ||
542 | } | ||
543 | |||
544 | /* Point multiplication algorithm using Montgomery's ladder with co-Z | ||
545 | * coordinates. From http://eprint.iacr.org/2011/338.pdf | ||
546 | */ | ||
547 | |||
548 | /* Double in place */ | ||
549 | static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1) | ||
550 | { | ||
551 | /* t1 = x, t2 = y, t3 = z */ | ||
552 | u64 t4[NUM_ECC_DIGITS]; | ||
553 | u64 t5[NUM_ECC_DIGITS]; | ||
554 | |||
555 | if (vli_is_zero(z1)) | ||
556 | return; | ||
557 | |||
558 | vli_mod_square_fast(t4, y1); /* t4 = y1^2 */ | ||
559 | vli_mod_mult_fast(t5, x1, t4); /* t5 = x1*y1^2 = A */ | ||
560 | vli_mod_square_fast(t4, t4); /* t4 = y1^4 */ | ||
561 | vli_mod_mult_fast(y1, y1, z1); /* t2 = y1*z1 = z3 */ | ||
562 | vli_mod_square_fast(z1, z1); /* t3 = z1^2 */ | ||
563 | |||
564 | vli_mod_add(x1, x1, z1, curve_p); /* t1 = x1 + z1^2 */ | ||
565 | vli_mod_add(z1, z1, z1, curve_p); /* t3 = 2*z1^2 */ | ||
566 | vli_mod_sub(z1, x1, z1, curve_p); /* t3 = x1 - z1^2 */ | ||
567 | vli_mod_mult_fast(x1, x1, z1); /* t1 = x1^2 - z1^4 */ | ||
568 | |||
569 | vli_mod_add(z1, x1, x1, curve_p); /* t3 = 2*(x1^2 - z1^4) */ | ||
570 | vli_mod_add(x1, x1, z1, curve_p); /* t1 = 3*(x1^2 - z1^4) */ | ||
571 | if (vli_test_bit(x1, 0)) { | ||
572 | u64 carry = vli_add(x1, x1, curve_p); | ||
573 | vli_rshift1(x1); | ||
574 | x1[NUM_ECC_DIGITS - 1] |= carry << 63; | ||
575 | } else { | ||
576 | vli_rshift1(x1); | ||
577 | } | ||
578 | /* t1 = 3/2*(x1^2 - z1^4) = B */ | ||
579 | |||
580 | vli_mod_square_fast(z1, x1); /* t3 = B^2 */ | ||
581 | vli_mod_sub(z1, z1, t5, curve_p); /* t3 = B^2 - A */ | ||
582 | vli_mod_sub(z1, z1, t5, curve_p); /* t3 = B^2 - 2A = x3 */ | ||
583 | vli_mod_sub(t5, t5, z1, curve_p); /* t5 = A - x3 */ | ||
584 | vli_mod_mult_fast(x1, x1, t5); /* t1 = B * (A - x3) */ | ||
585 | vli_mod_sub(t4, x1, t4, curve_p); /* t4 = B * (A - x3) - y1^4 = y3 */ | ||
586 | |||
587 | vli_set(x1, z1); | ||
588 | vli_set(z1, y1); | ||
589 | vli_set(y1, t4); | ||
590 | } | ||
591 | |||
592 | /* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */ | ||
593 | static void apply_z(u64 *x1, u64 *y1, u64 *z) | ||
594 | { | ||
595 | u64 t1[NUM_ECC_DIGITS]; | ||
596 | |||
597 | vli_mod_square_fast(t1, z); /* z^2 */ | ||
598 | vli_mod_mult_fast(x1, x1, t1); /* x1 * z^2 */ | ||
599 | vli_mod_mult_fast(t1, t1, z); /* z^3 */ | ||
600 | vli_mod_mult_fast(y1, y1, t1); /* y1 * z^3 */ | ||
601 | } | ||
602 | |||
603 | /* P = (x1, y1) => 2P, (x2, y2) => P' */ | ||
604 | static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2, | ||
605 | u64 *p_initial_z) | ||
606 | { | ||
607 | u64 z[NUM_ECC_DIGITS]; | ||
608 | |||
609 | vli_set(x2, x1); | ||
610 | vli_set(y2, y1); | ||
611 | |||
612 | vli_clear(z); | ||
613 | z[0] = 1; | ||
614 | |||
615 | if (p_initial_z) | ||
616 | vli_set(z, p_initial_z); | ||
617 | |||
618 | apply_z(x1, y1, z); | ||
619 | |||
620 | ecc_point_double_jacobian(x1, y1, z); | ||
621 | |||
622 | apply_z(x2, y2, z); | ||
623 | } | ||
624 | |||
625 | /* Input P = (x1, y1, Z), Q = (x2, y2, Z) | ||
626 | * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3) | ||
627 | * or P => P', Q => P + Q | ||
628 | */ | ||
629 | static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2) | ||
630 | { | ||
631 | /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ | ||
632 | u64 t5[NUM_ECC_DIGITS]; | ||
633 | |||
634 | vli_mod_sub(t5, x2, x1, curve_p); /* t5 = x2 - x1 */ | ||
635 | vli_mod_square_fast(t5, t5); /* t5 = (x2 - x1)^2 = A */ | ||
636 | vli_mod_mult_fast(x1, x1, t5); /* t1 = x1*A = B */ | ||
637 | vli_mod_mult_fast(x2, x2, t5); /* t3 = x2*A = C */ | ||
638 | vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y2 - y1 */ | ||
639 | vli_mod_square_fast(t5, y2); /* t5 = (y2 - y1)^2 = D */ | ||
640 | |||
641 | vli_mod_sub(t5, t5, x1, curve_p); /* t5 = D - B */ | ||
642 | vli_mod_sub(t5, t5, x2, curve_p); /* t5 = D - B - C = x3 */ | ||
643 | vli_mod_sub(x2, x2, x1, curve_p); /* t3 = C - B */ | ||
644 | vli_mod_mult_fast(y1, y1, x2); /* t2 = y1*(C - B) */ | ||
645 | vli_mod_sub(x2, x1, t5, curve_p); /* t3 = B - x3 */ | ||
646 | vli_mod_mult_fast(y2, y2, x2); /* t4 = (y2 - y1)*(B - x3) */ | ||
647 | vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y3 */ | ||
648 | |||
649 | vli_set(x2, t5); | ||
650 | } | ||
651 | |||
652 | /* Input P = (x1, y1, Z), Q = (x2, y2, Z) | ||
653 | * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3) | ||
654 | * or P => P - Q, Q => P + Q | ||
655 | */ | ||
656 | static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2) | ||
657 | { | ||
658 | /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */ | ||
659 | u64 t5[NUM_ECC_DIGITS]; | ||
660 | u64 t6[NUM_ECC_DIGITS]; | ||
661 | u64 t7[NUM_ECC_DIGITS]; | ||
662 | |||
663 | vli_mod_sub(t5, x2, x1, curve_p); /* t5 = x2 - x1 */ | ||
664 | vli_mod_square_fast(t5, t5); /* t5 = (x2 - x1)^2 = A */ | ||
665 | vli_mod_mult_fast(x1, x1, t5); /* t1 = x1*A = B */ | ||
666 | vli_mod_mult_fast(x2, x2, t5); /* t3 = x2*A = C */ | ||
667 | vli_mod_add(t5, y2, y1, curve_p); /* t4 = y2 + y1 */ | ||
668 | vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y2 - y1 */ | ||
669 | |||
670 | vli_mod_sub(t6, x2, x1, curve_p); /* t6 = C - B */ | ||
671 | vli_mod_mult_fast(y1, y1, t6); /* t2 = y1 * (C - B) */ | ||
672 | vli_mod_add(t6, x1, x2, curve_p); /* t6 = B + C */ | ||
673 | vli_mod_square_fast(x2, y2); /* t3 = (y2 - y1)^2 */ | ||
674 | vli_mod_sub(x2, x2, t6, curve_p); /* t3 = x3 */ | ||
675 | |||
676 | vli_mod_sub(t7, x1, x2, curve_p); /* t7 = B - x3 */ | ||
677 | vli_mod_mult_fast(y2, y2, t7); /* t4 = (y2 - y1)*(B - x3) */ | ||
678 | vli_mod_sub(y2, y2, y1, curve_p); /* t4 = y3 */ | ||
679 | |||
680 | vli_mod_square_fast(t7, t5); /* t7 = (y2 + y1)^2 = F */ | ||
681 | vli_mod_sub(t7, t7, t6, curve_p); /* t7 = x3' */ | ||
682 | vli_mod_sub(t6, t7, x1, curve_p); /* t6 = x3' - B */ | ||
683 | vli_mod_mult_fast(t6, t6, t5); /* t6 = (y2 + y1)*(x3' - B) */ | ||
684 | vli_mod_sub(y1, t6, y1, curve_p); /* t2 = y3' */ | ||
685 | |||
686 | vli_set(x1, t7); | ||
687 | } | ||
688 | |||
689 | static void ecc_point_mult(struct ecc_point *result, | ||
690 | const struct ecc_point *point, u64 *scalar, | ||
691 | u64 *initial_z, int num_bits) | ||
692 | { | ||
693 | /* R0 and R1 */ | ||
694 | u64 rx[2][NUM_ECC_DIGITS]; | ||
695 | u64 ry[2][NUM_ECC_DIGITS]; | ||
696 | u64 z[NUM_ECC_DIGITS]; | ||
697 | int i, nb; | ||
698 | |||
699 | vli_set(rx[1], point->x); | ||
700 | vli_set(ry[1], point->y); | ||
701 | |||
702 | xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z); | ||
703 | |||
704 | for (i = num_bits - 2; i > 0; i--) { | ||
705 | nb = !vli_test_bit(scalar, i); | ||
706 | xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb]); | ||
707 | xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb]); | ||
708 | } | ||
709 | |||
710 | nb = !vli_test_bit(scalar, 0); | ||
711 | xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb]); | ||
712 | |||
713 | /* Find final 1/Z value. */ | ||
714 | vli_mod_sub(z, rx[1], rx[0], curve_p); /* X1 - X0 */ | ||
715 | vli_mod_mult_fast(z, z, ry[1 - nb]); /* Yb * (X1 - X0) */ | ||
716 | vli_mod_mult_fast(z, z, point->x); /* xP * Yb * (X1 - X0) */ | ||
717 | vli_mod_inv(z, z, curve_p); /* 1 / (xP * Yb * (X1 - X0)) */ | ||
718 | vli_mod_mult_fast(z, z, point->y); /* yP / (xP * Yb * (X1 - X0)) */ | ||
719 | vli_mod_mult_fast(z, z, rx[1 - nb]); /* Xb * yP / (xP * Yb * (X1 - X0)) */ | ||
720 | /* End 1/Z calculation */ | ||
721 | |||
722 | xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb]); | ||
723 | |||
724 | apply_z(rx[0], ry[0], z); | ||
725 | |||
726 | vli_set(result->x, rx[0]); | ||
727 | vli_set(result->y, ry[0]); | ||
728 | } | ||
729 | |||
730 | static void ecc_bytes2native(const u8 bytes[ECC_BYTES], | ||
731 | u64 native[NUM_ECC_DIGITS]) | ||
732 | { | ||
733 | int i; | ||
734 | |||
735 | for (i = 0; i < NUM_ECC_DIGITS; i++) { | ||
736 | const u8 *digit = bytes + 8 * (NUM_ECC_DIGITS - 1 - i); | ||
737 | |||
738 | native[NUM_ECC_DIGITS - 1 - i] = | ||
739 | ((u64) digit[0] << 0) | | ||
740 | ((u64) digit[1] << 8) | | ||
741 | ((u64) digit[2] << 16) | | ||
742 | ((u64) digit[3] << 24) | | ||
743 | ((u64) digit[4] << 32) | | ||
744 | ((u64) digit[5] << 40) | | ||
745 | ((u64) digit[6] << 48) | | ||
746 | ((u64) digit[7] << 56); | ||
747 | } | ||
748 | } | ||
749 | |||
750 | static void ecc_native2bytes(const u64 native[NUM_ECC_DIGITS], | ||
751 | u8 bytes[ECC_BYTES]) | ||
752 | { | ||
753 | int i; | ||
754 | |||
755 | for (i = 0; i < NUM_ECC_DIGITS; i++) { | ||
756 | u8 *digit = bytes + 8 * (NUM_ECC_DIGITS - 1 - i); | ||
757 | |||
758 | digit[0] = native[NUM_ECC_DIGITS - 1 - i] >> 0; | ||
759 | digit[1] = native[NUM_ECC_DIGITS - 1 - i] >> 8; | ||
760 | digit[2] = native[NUM_ECC_DIGITS - 1 - i] >> 16; | ||
761 | digit[3] = native[NUM_ECC_DIGITS - 1 - i] >> 24; | ||
762 | digit[4] = native[NUM_ECC_DIGITS - 1 - i] >> 32; | ||
763 | digit[5] = native[NUM_ECC_DIGITS - 1 - i] >> 40; | ||
764 | digit[6] = native[NUM_ECC_DIGITS - 1 - i] >> 48; | ||
765 | digit[7] = native[NUM_ECC_DIGITS - 1 - i] >> 56; | ||
766 | } | ||
767 | } | ||
768 | |||
769 | bool ecc_make_key(u8 public_key[64], u8 private_key[32]) | ||
770 | { | ||
771 | struct ecc_point pk; | ||
772 | u64 priv[NUM_ECC_DIGITS]; | ||
773 | unsigned int tries = 0; | ||
774 | |||
775 | do { | ||
776 | if (tries++ >= MAX_TRIES) | ||
777 | return false; | ||
778 | |||
779 | get_random_bytes(priv, ECC_BYTES); | ||
780 | |||
781 | if (vli_is_zero(priv)) | ||
782 | continue; | ||
783 | |||
784 | /* Make sure the private key is in the range [1, n-1]. */ | ||
785 | if (vli_cmp(curve_n, priv) != 1) | ||
786 | continue; | ||
787 | |||
788 | ecc_point_mult(&pk, &curve_g, priv, NULL, vli_num_bits(priv)); | ||
789 | } while (ecc_point_is_zero(&pk)); | ||
790 | |||
791 | ecc_native2bytes(priv, private_key); | ||
792 | ecc_native2bytes(pk.x, public_key); | ||
793 | ecc_native2bytes(pk.y, &public_key[32]); | ||
794 | |||
795 | return true; | ||
796 | } | ||
797 | |||
798 | bool ecdh_shared_secret(const u8 public_key[64], const u8 private_key[32], | ||
799 | u8 secret[32]) | ||
800 | { | ||
801 | u64 priv[NUM_ECC_DIGITS]; | ||
802 | u64 rand[NUM_ECC_DIGITS]; | ||
803 | struct ecc_point product, pk; | ||
804 | |||
805 | get_random_bytes(rand, ECC_BYTES); | ||
806 | |||
807 | ecc_bytes2native(public_key, pk.x); | ||
808 | ecc_bytes2native(&public_key[32], pk.y); | ||
809 | ecc_bytes2native(private_key, priv); | ||
810 | |||
811 | ecc_point_mult(&product, &pk, priv, rand, vli_num_bits(priv)); | ||
812 | |||
813 | ecc_native2bytes(product.x, secret); | ||
814 | |||
815 | return !ecc_point_is_zero(&product); | ||
816 | } | ||