diff options
author | Jiri Kosina <jkosina@suse.cz> | 2010-10-30 16:16:56 -0400 |
---|---|---|
committer | Jiri Kosina <jkosina@suse.cz> | 2010-10-30 16:16:56 -0400 |
commit | f1e095f1d206b81b44160f41278ce5c78641e9b7 (patch) | |
tree | bd293d46d2d3e4cdf435a22ddb2877c6ba1b8acc /mm | |
parent | b0438a1b71955c425c304a2a483765ef24841766 (diff) | |
parent | 1792f17b7210280a3d7ff29da9614ba779cfcedb (diff) |
Merge branch 'master' into for-next
Diffstat (limited to 'mm')
-rw-r--r-- | mm/backing-dev.c | 74 | ||||
-rw-r--r-- | mm/dmapool.c | 2 | ||||
-rw-r--r-- | mm/filemap.c | 42 | ||||
-rw-r--r-- | mm/highmem.c | 66 | ||||
-rw-r--r-- | mm/hugetlb.c | 238 | ||||
-rw-r--r-- | mm/internal.h | 2 | ||||
-rw-r--r-- | mm/maccess.c | 2 | ||||
-rw-r--r-- | mm/memcontrol.c | 406 | ||||
-rw-r--r-- | mm/memory-failure.c | 176 | ||||
-rw-r--r-- | mm/memory.c | 35 | ||||
-rw-r--r-- | mm/memory_hotplug.c | 48 | ||||
-rw-r--r-- | mm/mempolicy.c | 17 | ||||
-rw-r--r-- | mm/migrate.c | 249 | ||||
-rw-r--r-- | mm/mmap.c | 2 | ||||
-rw-r--r-- | mm/mremap.c | 4 | ||||
-rw-r--r-- | mm/nommu.c | 51 | ||||
-rw-r--r-- | mm/oom_kill.c | 33 | ||||
-rw-r--r-- | mm/page-writeback.c | 31 | ||||
-rw-r--r-- | mm/page_alloc.c | 99 | ||||
-rw-r--r-- | mm/page_isolation.c | 3 | ||||
-rw-r--r-- | mm/rmap.c | 37 | ||||
-rw-r--r-- | mm/shmem.c | 17 | ||||
-rw-r--r-- | mm/slab.c | 2 | ||||
-rw-r--r-- | mm/swap.c | 1 | ||||
-rw-r--r-- | mm/swapfile.c | 49 | ||||
-rw-r--r-- | mm/vmalloc.c | 56 | ||||
-rw-r--r-- | mm/vmscan.c | 218 | ||||
-rw-r--r-- | mm/vmstat.c | 44 |
28 files changed, 1450 insertions, 554 deletions
diff --git a/mm/backing-dev.c b/mm/backing-dev.c index 65d420499a61..027100d30227 100644 --- a/mm/backing-dev.c +++ b/mm/backing-dev.c | |||
@@ -74,11 +74,11 @@ static int bdi_debug_stats_show(struct seq_file *m, void *v) | |||
74 | 74 | ||
75 | nr_wb = nr_dirty = nr_io = nr_more_io = 0; | 75 | nr_wb = nr_dirty = nr_io = nr_more_io = 0; |
76 | spin_lock(&inode_lock); | 76 | spin_lock(&inode_lock); |
77 | list_for_each_entry(inode, &wb->b_dirty, i_list) | 77 | list_for_each_entry(inode, &wb->b_dirty, i_wb_list) |
78 | nr_dirty++; | 78 | nr_dirty++; |
79 | list_for_each_entry(inode, &wb->b_io, i_list) | 79 | list_for_each_entry(inode, &wb->b_io, i_wb_list) |
80 | nr_io++; | 80 | nr_io++; |
81 | list_for_each_entry(inode, &wb->b_more_io, i_list) | 81 | list_for_each_entry(inode, &wb->b_more_io, i_wb_list) |
82 | nr_more_io++; | 82 | nr_more_io++; |
83 | spin_unlock(&inode_lock); | 83 | spin_unlock(&inode_lock); |
84 | 84 | ||
@@ -362,7 +362,7 @@ static int bdi_forker_thread(void *ptr) | |||
362 | { | 362 | { |
363 | struct bdi_writeback *me = ptr; | 363 | struct bdi_writeback *me = ptr; |
364 | 364 | ||
365 | current->flags |= PF_FLUSHER | PF_SWAPWRITE; | 365 | current->flags |= PF_SWAPWRITE; |
366 | set_freezable(); | 366 | set_freezable(); |
367 | 367 | ||
368 | /* | 368 | /* |
@@ -729,6 +729,7 @@ static wait_queue_head_t congestion_wqh[2] = { | |||
729 | __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]), | 729 | __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]), |
730 | __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1]) | 730 | __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1]) |
731 | }; | 731 | }; |
732 | static atomic_t nr_bdi_congested[2]; | ||
732 | 733 | ||
733 | void clear_bdi_congested(struct backing_dev_info *bdi, int sync) | 734 | void clear_bdi_congested(struct backing_dev_info *bdi, int sync) |
734 | { | 735 | { |
@@ -736,7 +737,8 @@ void clear_bdi_congested(struct backing_dev_info *bdi, int sync) | |||
736 | wait_queue_head_t *wqh = &congestion_wqh[sync]; | 737 | wait_queue_head_t *wqh = &congestion_wqh[sync]; |
737 | 738 | ||
738 | bit = sync ? BDI_sync_congested : BDI_async_congested; | 739 | bit = sync ? BDI_sync_congested : BDI_async_congested; |
739 | clear_bit(bit, &bdi->state); | 740 | if (test_and_clear_bit(bit, &bdi->state)) |
741 | atomic_dec(&nr_bdi_congested[sync]); | ||
740 | smp_mb__after_clear_bit(); | 742 | smp_mb__after_clear_bit(); |
741 | if (waitqueue_active(wqh)) | 743 | if (waitqueue_active(wqh)) |
742 | wake_up(wqh); | 744 | wake_up(wqh); |
@@ -748,7 +750,8 @@ void set_bdi_congested(struct backing_dev_info *bdi, int sync) | |||
748 | enum bdi_state bit; | 750 | enum bdi_state bit; |
749 | 751 | ||
750 | bit = sync ? BDI_sync_congested : BDI_async_congested; | 752 | bit = sync ? BDI_sync_congested : BDI_async_congested; |
751 | set_bit(bit, &bdi->state); | 753 | if (!test_and_set_bit(bit, &bdi->state)) |
754 | atomic_inc(&nr_bdi_congested[sync]); | ||
752 | } | 755 | } |
753 | EXPORT_SYMBOL(set_bdi_congested); | 756 | EXPORT_SYMBOL(set_bdi_congested); |
754 | 757 | ||
@@ -764,13 +767,72 @@ EXPORT_SYMBOL(set_bdi_congested); | |||
764 | long congestion_wait(int sync, long timeout) | 767 | long congestion_wait(int sync, long timeout) |
765 | { | 768 | { |
766 | long ret; | 769 | long ret; |
770 | unsigned long start = jiffies; | ||
767 | DEFINE_WAIT(wait); | 771 | DEFINE_WAIT(wait); |
768 | wait_queue_head_t *wqh = &congestion_wqh[sync]; | 772 | wait_queue_head_t *wqh = &congestion_wqh[sync]; |
769 | 773 | ||
770 | prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); | 774 | prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); |
771 | ret = io_schedule_timeout(timeout); | 775 | ret = io_schedule_timeout(timeout); |
772 | finish_wait(wqh, &wait); | 776 | finish_wait(wqh, &wait); |
777 | |||
778 | trace_writeback_congestion_wait(jiffies_to_usecs(timeout), | ||
779 | jiffies_to_usecs(jiffies - start)); | ||
780 | |||
773 | return ret; | 781 | return ret; |
774 | } | 782 | } |
775 | EXPORT_SYMBOL(congestion_wait); | 783 | EXPORT_SYMBOL(congestion_wait); |
776 | 784 | ||
785 | /** | ||
786 | * wait_iff_congested - Conditionally wait for a backing_dev to become uncongested or a zone to complete writes | ||
787 | * @zone: A zone to check if it is heavily congested | ||
788 | * @sync: SYNC or ASYNC IO | ||
789 | * @timeout: timeout in jiffies | ||
790 | * | ||
791 | * In the event of a congested backing_dev (any backing_dev) and the given | ||
792 | * @zone has experienced recent congestion, this waits for up to @timeout | ||
793 | * jiffies for either a BDI to exit congestion of the given @sync queue | ||
794 | * or a write to complete. | ||
795 | * | ||
796 | * In the absense of zone congestion, cond_resched() is called to yield | ||
797 | * the processor if necessary but otherwise does not sleep. | ||
798 | * | ||
799 | * The return value is 0 if the sleep is for the full timeout. Otherwise, | ||
800 | * it is the number of jiffies that were still remaining when the function | ||
801 | * returned. return_value == timeout implies the function did not sleep. | ||
802 | */ | ||
803 | long wait_iff_congested(struct zone *zone, int sync, long timeout) | ||
804 | { | ||
805 | long ret; | ||
806 | unsigned long start = jiffies; | ||
807 | DEFINE_WAIT(wait); | ||
808 | wait_queue_head_t *wqh = &congestion_wqh[sync]; | ||
809 | |||
810 | /* | ||
811 | * If there is no congestion, or heavy congestion is not being | ||
812 | * encountered in the current zone, yield if necessary instead | ||
813 | * of sleeping on the congestion queue | ||
814 | */ | ||
815 | if (atomic_read(&nr_bdi_congested[sync]) == 0 || | ||
816 | !zone_is_reclaim_congested(zone)) { | ||
817 | cond_resched(); | ||
818 | |||
819 | /* In case we scheduled, work out time remaining */ | ||
820 | ret = timeout - (jiffies - start); | ||
821 | if (ret < 0) | ||
822 | ret = 0; | ||
823 | |||
824 | goto out; | ||
825 | } | ||
826 | |||
827 | /* Sleep until uncongested or a write happens */ | ||
828 | prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); | ||
829 | ret = io_schedule_timeout(timeout); | ||
830 | finish_wait(wqh, &wait); | ||
831 | |||
832 | out: | ||
833 | trace_writeback_wait_iff_congested(jiffies_to_usecs(timeout), | ||
834 | jiffies_to_usecs(jiffies - start)); | ||
835 | |||
836 | return ret; | ||
837 | } | ||
838 | EXPORT_SYMBOL(wait_iff_congested); | ||
diff --git a/mm/dmapool.c b/mm/dmapool.c index 3df063706f53..4df2de77e069 100644 --- a/mm/dmapool.c +++ b/mm/dmapool.c | |||
@@ -311,6 +311,8 @@ void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags, | |||
311 | size_t offset; | 311 | size_t offset; |
312 | void *retval; | 312 | void *retval; |
313 | 313 | ||
314 | might_sleep_if(mem_flags & __GFP_WAIT); | ||
315 | |||
314 | spin_lock_irqsave(&pool->lock, flags); | 316 | spin_lock_irqsave(&pool->lock, flags); |
315 | restart: | 317 | restart: |
316 | list_for_each_entry(page, &pool->page_list, page_list) { | 318 | list_for_each_entry(page, &pool->page_list, page_list) { |
diff --git a/mm/filemap.c b/mm/filemap.c index 3d4df44e4221..75572b5f2374 100644 --- a/mm/filemap.c +++ b/mm/filemap.c | |||
@@ -612,6 +612,19 @@ void __lock_page_nosync(struct page *page) | |||
612 | TASK_UNINTERRUPTIBLE); | 612 | TASK_UNINTERRUPTIBLE); |
613 | } | 613 | } |
614 | 614 | ||
615 | int __lock_page_or_retry(struct page *page, struct mm_struct *mm, | ||
616 | unsigned int flags) | ||
617 | { | ||
618 | if (!(flags & FAULT_FLAG_ALLOW_RETRY)) { | ||
619 | __lock_page(page); | ||
620 | return 1; | ||
621 | } else { | ||
622 | up_read(&mm->mmap_sem); | ||
623 | wait_on_page_locked(page); | ||
624 | return 0; | ||
625 | } | ||
626 | } | ||
627 | |||
615 | /** | 628 | /** |
616 | * find_get_page - find and get a page reference | 629 | * find_get_page - find and get a page reference |
617 | * @mapping: the address_space to search | 630 | * @mapping: the address_space to search |
@@ -1539,25 +1552,28 @@ int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | |||
1539 | * waiting for the lock. | 1552 | * waiting for the lock. |
1540 | */ | 1553 | */ |
1541 | do_async_mmap_readahead(vma, ra, file, page, offset); | 1554 | do_async_mmap_readahead(vma, ra, file, page, offset); |
1542 | lock_page(page); | ||
1543 | |||
1544 | /* Did it get truncated? */ | ||
1545 | if (unlikely(page->mapping != mapping)) { | ||
1546 | unlock_page(page); | ||
1547 | put_page(page); | ||
1548 | goto no_cached_page; | ||
1549 | } | ||
1550 | } else { | 1555 | } else { |
1551 | /* No page in the page cache at all */ | 1556 | /* No page in the page cache at all */ |
1552 | do_sync_mmap_readahead(vma, ra, file, offset); | 1557 | do_sync_mmap_readahead(vma, ra, file, offset); |
1553 | count_vm_event(PGMAJFAULT); | 1558 | count_vm_event(PGMAJFAULT); |
1554 | ret = VM_FAULT_MAJOR; | 1559 | ret = VM_FAULT_MAJOR; |
1555 | retry_find: | 1560 | retry_find: |
1556 | page = find_lock_page(mapping, offset); | 1561 | page = find_get_page(mapping, offset); |
1557 | if (!page) | 1562 | if (!page) |
1558 | goto no_cached_page; | 1563 | goto no_cached_page; |
1559 | } | 1564 | } |
1560 | 1565 | ||
1566 | if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) | ||
1567 | return ret | VM_FAULT_RETRY; | ||
1568 | |||
1569 | /* Did it get truncated? */ | ||
1570 | if (unlikely(page->mapping != mapping)) { | ||
1571 | unlock_page(page); | ||
1572 | put_page(page); | ||
1573 | goto retry_find; | ||
1574 | } | ||
1575 | VM_BUG_ON(page->index != offset); | ||
1576 | |||
1561 | /* | 1577 | /* |
1562 | * We have a locked page in the page cache, now we need to check | 1578 | * We have a locked page in the page cache, now we need to check |
1563 | * that it's up-to-date. If not, it is going to be due to an error. | 1579 | * that it's up-to-date. If not, it is going to be due to an error. |
@@ -2177,12 +2193,12 @@ generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, | |||
2177 | } | 2193 | } |
2178 | 2194 | ||
2179 | if (written > 0) { | 2195 | if (written > 0) { |
2180 | loff_t end = pos + written; | 2196 | pos += written; |
2181 | if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { | 2197 | if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { |
2182 | i_size_write(inode, end); | 2198 | i_size_write(inode, pos); |
2183 | mark_inode_dirty(inode); | 2199 | mark_inode_dirty(inode); |
2184 | } | 2200 | } |
2185 | *ppos = end; | 2201 | *ppos = pos; |
2186 | } | 2202 | } |
2187 | out: | 2203 | out: |
2188 | return written; | 2204 | return written; |
diff --git a/mm/highmem.c b/mm/highmem.c index 7a0aa1be4993..693394daa2ed 100644 --- a/mm/highmem.c +++ b/mm/highmem.c | |||
@@ -29,6 +29,11 @@ | |||
29 | #include <linux/kgdb.h> | 29 | #include <linux/kgdb.h> |
30 | #include <asm/tlbflush.h> | 30 | #include <asm/tlbflush.h> |
31 | 31 | ||
32 | |||
33 | #if defined(CONFIG_HIGHMEM) || defined(CONFIG_X86_32) | ||
34 | DEFINE_PER_CPU(int, __kmap_atomic_idx); | ||
35 | #endif | ||
36 | |||
32 | /* | 37 | /* |
33 | * Virtual_count is not a pure "count". | 38 | * Virtual_count is not a pure "count". |
34 | * 0 means that it is not mapped, and has not been mapped | 39 | * 0 means that it is not mapped, and has not been mapped |
@@ -42,6 +47,9 @@ | |||
42 | unsigned long totalhigh_pages __read_mostly; | 47 | unsigned long totalhigh_pages __read_mostly; |
43 | EXPORT_SYMBOL(totalhigh_pages); | 48 | EXPORT_SYMBOL(totalhigh_pages); |
44 | 49 | ||
50 | |||
51 | EXPORT_PER_CPU_SYMBOL(__kmap_atomic_idx); | ||
52 | |||
45 | unsigned int nr_free_highpages (void) | 53 | unsigned int nr_free_highpages (void) |
46 | { | 54 | { |
47 | pg_data_t *pgdat; | 55 | pg_data_t *pgdat; |
@@ -422,61 +430,3 @@ void __init page_address_init(void) | |||
422 | } | 430 | } |
423 | 431 | ||
424 | #endif /* defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) */ | 432 | #endif /* defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) */ |
425 | |||
426 | #ifdef CONFIG_DEBUG_HIGHMEM | ||
427 | |||
428 | void debug_kmap_atomic(enum km_type type) | ||
429 | { | ||
430 | static int warn_count = 10; | ||
431 | |||
432 | if (unlikely(warn_count < 0)) | ||
433 | return; | ||
434 | |||
435 | if (unlikely(in_interrupt())) { | ||
436 | if (in_nmi()) { | ||
437 | if (type != KM_NMI && type != KM_NMI_PTE) { | ||
438 | WARN_ON(1); | ||
439 | warn_count--; | ||
440 | } | ||
441 | } else if (in_irq()) { | ||
442 | if (type != KM_IRQ0 && type != KM_IRQ1 && | ||
443 | type != KM_BIO_SRC_IRQ && type != KM_BIO_DST_IRQ && | ||
444 | type != KM_BOUNCE_READ && type != KM_IRQ_PTE) { | ||
445 | WARN_ON(1); | ||
446 | warn_count--; | ||
447 | } | ||
448 | } else if (!irqs_disabled()) { /* softirq */ | ||
449 | if (type != KM_IRQ0 && type != KM_IRQ1 && | ||
450 | type != KM_SOFTIRQ0 && type != KM_SOFTIRQ1 && | ||
451 | type != KM_SKB_SUNRPC_DATA && | ||
452 | type != KM_SKB_DATA_SOFTIRQ && | ||
453 | type != KM_BOUNCE_READ) { | ||
454 | WARN_ON(1); | ||
455 | warn_count--; | ||
456 | } | ||
457 | } | ||
458 | } | ||
459 | |||
460 | if (type == KM_IRQ0 || type == KM_IRQ1 || type == KM_BOUNCE_READ || | ||
461 | type == KM_BIO_SRC_IRQ || type == KM_BIO_DST_IRQ || | ||
462 | type == KM_IRQ_PTE || type == KM_NMI || | ||
463 | type == KM_NMI_PTE ) { | ||
464 | if (!irqs_disabled()) { | ||
465 | WARN_ON(1); | ||
466 | warn_count--; | ||
467 | } | ||
468 | } else if (type == KM_SOFTIRQ0 || type == KM_SOFTIRQ1) { | ||
469 | if (irq_count() == 0 && !irqs_disabled()) { | ||
470 | WARN_ON(1); | ||
471 | warn_count--; | ||
472 | } | ||
473 | } | ||
474 | #ifdef CONFIG_KGDB_KDB | ||
475 | if (unlikely(type == KM_KDB && atomic_read(&kgdb_active) == -1)) { | ||
476 | WARN_ON(1); | ||
477 | warn_count--; | ||
478 | } | ||
479 | #endif /* CONFIG_KGDB_KDB */ | ||
480 | } | ||
481 | |||
482 | #endif | ||
diff --git a/mm/hugetlb.c b/mm/hugetlb.c index c03273807182..c4a3558589ab 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c | |||
@@ -423,14 +423,14 @@ static void clear_huge_page(struct page *page, | |||
423 | } | 423 | } |
424 | } | 424 | } |
425 | 425 | ||
426 | static void copy_gigantic_page(struct page *dst, struct page *src, | 426 | static void copy_user_gigantic_page(struct page *dst, struct page *src, |
427 | unsigned long addr, struct vm_area_struct *vma) | 427 | unsigned long addr, struct vm_area_struct *vma) |
428 | { | 428 | { |
429 | int i; | 429 | int i; |
430 | struct hstate *h = hstate_vma(vma); | 430 | struct hstate *h = hstate_vma(vma); |
431 | struct page *dst_base = dst; | 431 | struct page *dst_base = dst; |
432 | struct page *src_base = src; | 432 | struct page *src_base = src; |
433 | might_sleep(); | 433 | |
434 | for (i = 0; i < pages_per_huge_page(h); ) { | 434 | for (i = 0; i < pages_per_huge_page(h); ) { |
435 | cond_resched(); | 435 | cond_resched(); |
436 | copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); | 436 | copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); |
@@ -440,14 +440,15 @@ static void copy_gigantic_page(struct page *dst, struct page *src, | |||
440 | src = mem_map_next(src, src_base, i); | 440 | src = mem_map_next(src, src_base, i); |
441 | } | 441 | } |
442 | } | 442 | } |
443 | static void copy_huge_page(struct page *dst, struct page *src, | 443 | |
444 | static void copy_user_huge_page(struct page *dst, struct page *src, | ||
444 | unsigned long addr, struct vm_area_struct *vma) | 445 | unsigned long addr, struct vm_area_struct *vma) |
445 | { | 446 | { |
446 | int i; | 447 | int i; |
447 | struct hstate *h = hstate_vma(vma); | 448 | struct hstate *h = hstate_vma(vma); |
448 | 449 | ||
449 | if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) { | 450 | if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) { |
450 | copy_gigantic_page(dst, src, addr, vma); | 451 | copy_user_gigantic_page(dst, src, addr, vma); |
451 | return; | 452 | return; |
452 | } | 453 | } |
453 | 454 | ||
@@ -458,6 +459,40 @@ static void copy_huge_page(struct page *dst, struct page *src, | |||
458 | } | 459 | } |
459 | } | 460 | } |
460 | 461 | ||
462 | static void copy_gigantic_page(struct page *dst, struct page *src) | ||
463 | { | ||
464 | int i; | ||
465 | struct hstate *h = page_hstate(src); | ||
466 | struct page *dst_base = dst; | ||
467 | struct page *src_base = src; | ||
468 | |||
469 | for (i = 0; i < pages_per_huge_page(h); ) { | ||
470 | cond_resched(); | ||
471 | copy_highpage(dst, src); | ||
472 | |||
473 | i++; | ||
474 | dst = mem_map_next(dst, dst_base, i); | ||
475 | src = mem_map_next(src, src_base, i); | ||
476 | } | ||
477 | } | ||
478 | |||
479 | void copy_huge_page(struct page *dst, struct page *src) | ||
480 | { | ||
481 | int i; | ||
482 | struct hstate *h = page_hstate(src); | ||
483 | |||
484 | if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) { | ||
485 | copy_gigantic_page(dst, src); | ||
486 | return; | ||
487 | } | ||
488 | |||
489 | might_sleep(); | ||
490 | for (i = 0; i < pages_per_huge_page(h); i++) { | ||
491 | cond_resched(); | ||
492 | copy_highpage(dst + i, src + i); | ||
493 | } | ||
494 | } | ||
495 | |||
461 | static void enqueue_huge_page(struct hstate *h, struct page *page) | 496 | static void enqueue_huge_page(struct hstate *h, struct page *page) |
462 | { | 497 | { |
463 | int nid = page_to_nid(page); | 498 | int nid = page_to_nid(page); |
@@ -466,11 +501,24 @@ static void enqueue_huge_page(struct hstate *h, struct page *page) | |||
466 | h->free_huge_pages_node[nid]++; | 501 | h->free_huge_pages_node[nid]++; |
467 | } | 502 | } |
468 | 503 | ||
504 | static struct page *dequeue_huge_page_node(struct hstate *h, int nid) | ||
505 | { | ||
506 | struct page *page; | ||
507 | |||
508 | if (list_empty(&h->hugepage_freelists[nid])) | ||
509 | return NULL; | ||
510 | page = list_entry(h->hugepage_freelists[nid].next, struct page, lru); | ||
511 | list_del(&page->lru); | ||
512 | set_page_refcounted(page); | ||
513 | h->free_huge_pages--; | ||
514 | h->free_huge_pages_node[nid]--; | ||
515 | return page; | ||
516 | } | ||
517 | |||
469 | static struct page *dequeue_huge_page_vma(struct hstate *h, | 518 | static struct page *dequeue_huge_page_vma(struct hstate *h, |
470 | struct vm_area_struct *vma, | 519 | struct vm_area_struct *vma, |
471 | unsigned long address, int avoid_reserve) | 520 | unsigned long address, int avoid_reserve) |
472 | { | 521 | { |
473 | int nid; | ||
474 | struct page *page = NULL; | 522 | struct page *page = NULL; |
475 | struct mempolicy *mpol; | 523 | struct mempolicy *mpol; |
476 | nodemask_t *nodemask; | 524 | nodemask_t *nodemask; |
@@ -496,19 +544,13 @@ static struct page *dequeue_huge_page_vma(struct hstate *h, | |||
496 | 544 | ||
497 | for_each_zone_zonelist_nodemask(zone, z, zonelist, | 545 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
498 | MAX_NR_ZONES - 1, nodemask) { | 546 | MAX_NR_ZONES - 1, nodemask) { |
499 | nid = zone_to_nid(zone); | 547 | if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) { |
500 | if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) && | 548 | page = dequeue_huge_page_node(h, zone_to_nid(zone)); |
501 | !list_empty(&h->hugepage_freelists[nid])) { | 549 | if (page) { |
502 | page = list_entry(h->hugepage_freelists[nid].next, | 550 | if (!avoid_reserve) |
503 | struct page, lru); | 551 | decrement_hugepage_resv_vma(h, vma); |
504 | list_del(&page->lru); | 552 | break; |
505 | h->free_huge_pages--; | 553 | } |
506 | h->free_huge_pages_node[nid]--; | ||
507 | |||
508 | if (!avoid_reserve) | ||
509 | decrement_hugepage_resv_vma(h, vma); | ||
510 | |||
511 | break; | ||
512 | } | 554 | } |
513 | } | 555 | } |
514 | err: | 556 | err: |
@@ -770,11 +812,10 @@ static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, | |||
770 | return ret; | 812 | return ret; |
771 | } | 813 | } |
772 | 814 | ||
773 | static struct page *alloc_buddy_huge_page(struct hstate *h, | 815 | static struct page *alloc_buddy_huge_page(struct hstate *h, int nid) |
774 | struct vm_area_struct *vma, unsigned long address) | ||
775 | { | 816 | { |
776 | struct page *page; | 817 | struct page *page; |
777 | unsigned int nid; | 818 | unsigned int r_nid; |
778 | 819 | ||
779 | if (h->order >= MAX_ORDER) | 820 | if (h->order >= MAX_ORDER) |
780 | return NULL; | 821 | return NULL; |
@@ -812,9 +853,14 @@ static struct page *alloc_buddy_huge_page(struct hstate *h, | |||
812 | } | 853 | } |
813 | spin_unlock(&hugetlb_lock); | 854 | spin_unlock(&hugetlb_lock); |
814 | 855 | ||
815 | page = alloc_pages(htlb_alloc_mask|__GFP_COMP| | 856 | if (nid == NUMA_NO_NODE) |
816 | __GFP_REPEAT|__GFP_NOWARN, | 857 | page = alloc_pages(htlb_alloc_mask|__GFP_COMP| |
817 | huge_page_order(h)); | 858 | __GFP_REPEAT|__GFP_NOWARN, |
859 | huge_page_order(h)); | ||
860 | else | ||
861 | page = alloc_pages_exact_node(nid, | ||
862 | htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| | ||
863 | __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h)); | ||
818 | 864 | ||
819 | if (page && arch_prepare_hugepage(page)) { | 865 | if (page && arch_prepare_hugepage(page)) { |
820 | __free_pages(page, huge_page_order(h)); | 866 | __free_pages(page, huge_page_order(h)); |
@@ -823,19 +869,13 @@ static struct page *alloc_buddy_huge_page(struct hstate *h, | |||
823 | 869 | ||
824 | spin_lock(&hugetlb_lock); | 870 | spin_lock(&hugetlb_lock); |
825 | if (page) { | 871 | if (page) { |
826 | /* | 872 | r_nid = page_to_nid(page); |
827 | * This page is now managed by the hugetlb allocator and has | ||
828 | * no users -- drop the buddy allocator's reference. | ||
829 | */ | ||
830 | put_page_testzero(page); | ||
831 | VM_BUG_ON(page_count(page)); | ||
832 | nid = page_to_nid(page); | ||
833 | set_compound_page_dtor(page, free_huge_page); | 873 | set_compound_page_dtor(page, free_huge_page); |
834 | /* | 874 | /* |
835 | * We incremented the global counters already | 875 | * We incremented the global counters already |
836 | */ | 876 | */ |
837 | h->nr_huge_pages_node[nid]++; | 877 | h->nr_huge_pages_node[r_nid]++; |
838 | h->surplus_huge_pages_node[nid]++; | 878 | h->surplus_huge_pages_node[r_nid]++; |
839 | __count_vm_event(HTLB_BUDDY_PGALLOC); | 879 | __count_vm_event(HTLB_BUDDY_PGALLOC); |
840 | } else { | 880 | } else { |
841 | h->nr_huge_pages--; | 881 | h->nr_huge_pages--; |
@@ -848,6 +888,25 @@ static struct page *alloc_buddy_huge_page(struct hstate *h, | |||
848 | } | 888 | } |
849 | 889 | ||
850 | /* | 890 | /* |
891 | * This allocation function is useful in the context where vma is irrelevant. | ||
892 | * E.g. soft-offlining uses this function because it only cares physical | ||
893 | * address of error page. | ||
894 | */ | ||
895 | struct page *alloc_huge_page_node(struct hstate *h, int nid) | ||
896 | { | ||
897 | struct page *page; | ||
898 | |||
899 | spin_lock(&hugetlb_lock); | ||
900 | page = dequeue_huge_page_node(h, nid); | ||
901 | spin_unlock(&hugetlb_lock); | ||
902 | |||
903 | if (!page) | ||
904 | page = alloc_buddy_huge_page(h, nid); | ||
905 | |||
906 | return page; | ||
907 | } | ||
908 | |||
909 | /* | ||
851 | * Increase the hugetlb pool such that it can accomodate a reservation | 910 | * Increase the hugetlb pool such that it can accomodate a reservation |
852 | * of size 'delta'. | 911 | * of size 'delta'. |
853 | */ | 912 | */ |
@@ -871,17 +930,14 @@ static int gather_surplus_pages(struct hstate *h, int delta) | |||
871 | retry: | 930 | retry: |
872 | spin_unlock(&hugetlb_lock); | 931 | spin_unlock(&hugetlb_lock); |
873 | for (i = 0; i < needed; i++) { | 932 | for (i = 0; i < needed; i++) { |
874 | page = alloc_buddy_huge_page(h, NULL, 0); | 933 | page = alloc_buddy_huge_page(h, NUMA_NO_NODE); |
875 | if (!page) { | 934 | if (!page) |
876 | /* | 935 | /* |
877 | * We were not able to allocate enough pages to | 936 | * We were not able to allocate enough pages to |
878 | * satisfy the entire reservation so we free what | 937 | * satisfy the entire reservation so we free what |
879 | * we've allocated so far. | 938 | * we've allocated so far. |
880 | */ | 939 | */ |
881 | spin_lock(&hugetlb_lock); | ||
882 | needed = 0; | ||
883 | goto free; | 940 | goto free; |
884 | } | ||
885 | 941 | ||
886 | list_add(&page->lru, &surplus_list); | 942 | list_add(&page->lru, &surplus_list); |
887 | } | 943 | } |
@@ -908,31 +964,31 @@ retry: | |||
908 | needed += allocated; | 964 | needed += allocated; |
909 | h->resv_huge_pages += delta; | 965 | h->resv_huge_pages += delta; |
910 | ret = 0; | 966 | ret = 0; |
911 | free: | 967 | |
968 | spin_unlock(&hugetlb_lock); | ||
912 | /* Free the needed pages to the hugetlb pool */ | 969 | /* Free the needed pages to the hugetlb pool */ |
913 | list_for_each_entry_safe(page, tmp, &surplus_list, lru) { | 970 | list_for_each_entry_safe(page, tmp, &surplus_list, lru) { |
914 | if ((--needed) < 0) | 971 | if ((--needed) < 0) |
915 | break; | 972 | break; |
916 | list_del(&page->lru); | 973 | list_del(&page->lru); |
974 | /* | ||
975 | * This page is now managed by the hugetlb allocator and has | ||
976 | * no users -- drop the buddy allocator's reference. | ||
977 | */ | ||
978 | put_page_testzero(page); | ||
979 | VM_BUG_ON(page_count(page)); | ||
917 | enqueue_huge_page(h, page); | 980 | enqueue_huge_page(h, page); |
918 | } | 981 | } |
919 | 982 | ||
920 | /* Free unnecessary surplus pages to the buddy allocator */ | 983 | /* Free unnecessary surplus pages to the buddy allocator */ |
984 | free: | ||
921 | if (!list_empty(&surplus_list)) { | 985 | if (!list_empty(&surplus_list)) { |
922 | spin_unlock(&hugetlb_lock); | ||
923 | list_for_each_entry_safe(page, tmp, &surplus_list, lru) { | 986 | list_for_each_entry_safe(page, tmp, &surplus_list, lru) { |
924 | list_del(&page->lru); | 987 | list_del(&page->lru); |
925 | /* | 988 | put_page(page); |
926 | * The page has a reference count of zero already, so | ||
927 | * call free_huge_page directly instead of using | ||
928 | * put_page. This must be done with hugetlb_lock | ||
929 | * unlocked which is safe because free_huge_page takes | ||
930 | * hugetlb_lock before deciding how to free the page. | ||
931 | */ | ||
932 | free_huge_page(page); | ||
933 | } | 989 | } |
934 | spin_lock(&hugetlb_lock); | ||
935 | } | 990 | } |
991 | spin_lock(&hugetlb_lock); | ||
936 | 992 | ||
937 | return ret; | 993 | return ret; |
938 | } | 994 | } |
@@ -1052,14 +1108,13 @@ static struct page *alloc_huge_page(struct vm_area_struct *vma, | |||
1052 | spin_unlock(&hugetlb_lock); | 1108 | spin_unlock(&hugetlb_lock); |
1053 | 1109 | ||
1054 | if (!page) { | 1110 | if (!page) { |
1055 | page = alloc_buddy_huge_page(h, vma, addr); | 1111 | page = alloc_buddy_huge_page(h, NUMA_NO_NODE); |
1056 | if (!page) { | 1112 | if (!page) { |
1057 | hugetlb_put_quota(inode->i_mapping, chg); | 1113 | hugetlb_put_quota(inode->i_mapping, chg); |
1058 | return ERR_PTR(-VM_FAULT_SIGBUS); | 1114 | return ERR_PTR(-VM_FAULT_SIGBUS); |
1059 | } | 1115 | } |
1060 | } | 1116 | } |
1061 | 1117 | ||
1062 | set_page_refcounted(page); | ||
1063 | set_page_private(page, (unsigned long) mapping); | 1118 | set_page_private(page, (unsigned long) mapping); |
1064 | 1119 | ||
1065 | vma_commit_reservation(h, vma, addr); | 1120 | vma_commit_reservation(h, vma, addr); |
@@ -2153,6 +2208,19 @@ nomem: | |||
2153 | return -ENOMEM; | 2208 | return -ENOMEM; |
2154 | } | 2209 | } |
2155 | 2210 | ||
2211 | static int is_hugetlb_entry_migration(pte_t pte) | ||
2212 | { | ||
2213 | swp_entry_t swp; | ||
2214 | |||
2215 | if (huge_pte_none(pte) || pte_present(pte)) | ||
2216 | return 0; | ||
2217 | swp = pte_to_swp_entry(pte); | ||
2218 | if (non_swap_entry(swp) && is_migration_entry(swp)) { | ||
2219 | return 1; | ||
2220 | } else | ||
2221 | return 0; | ||
2222 | } | ||
2223 | |||
2156 | static int is_hugetlb_entry_hwpoisoned(pte_t pte) | 2224 | static int is_hugetlb_entry_hwpoisoned(pte_t pte) |
2157 | { | 2225 | { |
2158 | swp_entry_t swp; | 2226 | swp_entry_t swp; |
@@ -2380,10 +2448,13 @@ retry_avoidcopy: | |||
2380 | * When the original hugepage is shared one, it does not have | 2448 | * When the original hugepage is shared one, it does not have |
2381 | * anon_vma prepared. | 2449 | * anon_vma prepared. |
2382 | */ | 2450 | */ |
2383 | if (unlikely(anon_vma_prepare(vma))) | 2451 | if (unlikely(anon_vma_prepare(vma))) { |
2452 | /* Caller expects lock to be held */ | ||
2453 | spin_lock(&mm->page_table_lock); | ||
2384 | return VM_FAULT_OOM; | 2454 | return VM_FAULT_OOM; |
2455 | } | ||
2385 | 2456 | ||
2386 | copy_huge_page(new_page, old_page, address, vma); | 2457 | copy_user_huge_page(new_page, old_page, address, vma); |
2387 | __SetPageUptodate(new_page); | 2458 | __SetPageUptodate(new_page); |
2388 | 2459 | ||
2389 | /* | 2460 | /* |
@@ -2515,22 +2586,20 @@ retry: | |||
2515 | hugepage_add_new_anon_rmap(page, vma, address); | 2586 | hugepage_add_new_anon_rmap(page, vma, address); |
2516 | } | 2587 | } |
2517 | } else { | 2588 | } else { |
2589 | /* | ||
2590 | * If memory error occurs between mmap() and fault, some process | ||
2591 | * don't have hwpoisoned swap entry for errored virtual address. | ||
2592 | * So we need to block hugepage fault by PG_hwpoison bit check. | ||
2593 | */ | ||
2594 | if (unlikely(PageHWPoison(page))) { | ||
2595 | ret = VM_FAULT_HWPOISON | | ||
2596 | VM_FAULT_SET_HINDEX(h - hstates); | ||
2597 | goto backout_unlocked; | ||
2598 | } | ||
2518 | page_dup_rmap(page); | 2599 | page_dup_rmap(page); |
2519 | } | 2600 | } |
2520 | 2601 | ||
2521 | /* | 2602 | /* |
2522 | * Since memory error handler replaces pte into hwpoison swap entry | ||
2523 | * at the time of error handling, a process which reserved but not have | ||
2524 | * the mapping to the error hugepage does not have hwpoison swap entry. | ||
2525 | * So we need to block accesses from such a process by checking | ||
2526 | * PG_hwpoison bit here. | ||
2527 | */ | ||
2528 | if (unlikely(PageHWPoison(page))) { | ||
2529 | ret = VM_FAULT_HWPOISON; | ||
2530 | goto backout_unlocked; | ||
2531 | } | ||
2532 | |||
2533 | /* | ||
2534 | * If we are going to COW a private mapping later, we examine the | 2603 | * If we are going to COW a private mapping later, we examine the |
2535 | * pending reservations for this page now. This will ensure that | 2604 | * pending reservations for this page now. This will ensure that |
2536 | * any allocations necessary to record that reservation occur outside | 2605 | * any allocations necessary to record that reservation occur outside |
@@ -2587,8 +2656,12 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, | |||
2587 | ptep = huge_pte_offset(mm, address); | 2656 | ptep = huge_pte_offset(mm, address); |
2588 | if (ptep) { | 2657 | if (ptep) { |
2589 | entry = huge_ptep_get(ptep); | 2658 | entry = huge_ptep_get(ptep); |
2590 | if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) | 2659 | if (unlikely(is_hugetlb_entry_migration(entry))) { |
2591 | return VM_FAULT_HWPOISON; | 2660 | migration_entry_wait(mm, (pmd_t *)ptep, address); |
2661 | return 0; | ||
2662 | } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) | ||
2663 | return VM_FAULT_HWPOISON_LARGE | | ||
2664 | VM_FAULT_SET_HINDEX(h - hstates); | ||
2592 | } | 2665 | } |
2593 | 2666 | ||
2594 | ptep = huge_pte_alloc(mm, address, huge_page_size(h)); | 2667 | ptep = huge_pte_alloc(mm, address, huge_page_size(h)); |
@@ -2878,18 +2951,41 @@ void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) | |||
2878 | hugetlb_acct_memory(h, -(chg - freed)); | 2951 | hugetlb_acct_memory(h, -(chg - freed)); |
2879 | } | 2952 | } |
2880 | 2953 | ||
2954 | #ifdef CONFIG_MEMORY_FAILURE | ||
2955 | |||
2956 | /* Should be called in hugetlb_lock */ | ||
2957 | static int is_hugepage_on_freelist(struct page *hpage) | ||
2958 | { | ||
2959 | struct page *page; | ||
2960 | struct page *tmp; | ||
2961 | struct hstate *h = page_hstate(hpage); | ||
2962 | int nid = page_to_nid(hpage); | ||
2963 | |||
2964 | list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru) | ||
2965 | if (page == hpage) | ||
2966 | return 1; | ||
2967 | return 0; | ||
2968 | } | ||
2969 | |||
2881 | /* | 2970 | /* |
2882 | * This function is called from memory failure code. | 2971 | * This function is called from memory failure code. |
2883 | * Assume the caller holds page lock of the head page. | 2972 | * Assume the caller holds page lock of the head page. |
2884 | */ | 2973 | */ |
2885 | void __isolate_hwpoisoned_huge_page(struct page *hpage) | 2974 | int dequeue_hwpoisoned_huge_page(struct page *hpage) |
2886 | { | 2975 | { |
2887 | struct hstate *h = page_hstate(hpage); | 2976 | struct hstate *h = page_hstate(hpage); |
2888 | int nid = page_to_nid(hpage); | 2977 | int nid = page_to_nid(hpage); |
2978 | int ret = -EBUSY; | ||
2889 | 2979 | ||
2890 | spin_lock(&hugetlb_lock); | 2980 | spin_lock(&hugetlb_lock); |
2891 | list_del(&hpage->lru); | 2981 | if (is_hugepage_on_freelist(hpage)) { |
2892 | h->free_huge_pages--; | 2982 | list_del(&hpage->lru); |
2893 | h->free_huge_pages_node[nid]--; | 2983 | set_page_refcounted(hpage); |
2984 | h->free_huge_pages--; | ||
2985 | h->free_huge_pages_node[nid]--; | ||
2986 | ret = 0; | ||
2987 | } | ||
2894 | spin_unlock(&hugetlb_lock); | 2988 | spin_unlock(&hugetlb_lock); |
2989 | return ret; | ||
2895 | } | 2990 | } |
2991 | #endif | ||
diff --git a/mm/internal.h b/mm/internal.h index 6a697bb97fc5..dedb0aff673f 100644 --- a/mm/internal.h +++ b/mm/internal.h | |||
@@ -62,7 +62,7 @@ extern bool is_free_buddy_page(struct page *page); | |||
62 | */ | 62 | */ |
63 | static inline unsigned long page_order(struct page *page) | 63 | static inline unsigned long page_order(struct page *page) |
64 | { | 64 | { |
65 | VM_BUG_ON(!PageBuddy(page)); | 65 | /* PageBuddy() must be checked by the caller */ |
66 | return page_private(page); | 66 | return page_private(page); |
67 | } | 67 | } |
68 | 68 | ||
diff --git a/mm/maccess.c b/mm/maccess.c index 4e348dbaecd7..e2b6f5634e0d 100644 --- a/mm/maccess.c +++ b/mm/maccess.c | |||
@@ -1,9 +1,9 @@ | |||
1 | /* | 1 | /* |
2 | * Access kernel memory without faulting. | 2 | * Access kernel memory without faulting. |
3 | */ | 3 | */ |
4 | #include <linux/uaccess.h> | ||
5 | #include <linux/module.h> | 4 | #include <linux/module.h> |
6 | #include <linux/mm.h> | 5 | #include <linux/mm.h> |
6 | #include <linux/uaccess.h> | ||
7 | 7 | ||
8 | /** | 8 | /** |
9 | * probe_kernel_read(): safely attempt to read from a location | 9 | * probe_kernel_read(): safely attempt to read from a location |
diff --git a/mm/memcontrol.c b/mm/memcontrol.c index 9be3cf8a5da4..9a99cfaf0a19 100644 --- a/mm/memcontrol.c +++ b/mm/memcontrol.c | |||
@@ -89,7 +89,10 @@ enum mem_cgroup_stat_index { | |||
89 | MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */ | 89 | MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */ |
90 | MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */ | 90 | MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */ |
91 | MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */ | 91 | MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */ |
92 | MEM_CGROUP_EVENTS, /* incremented at every pagein/pageout */ | 92 | MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */ |
93 | /* incremented at every pagein/pageout */ | ||
94 | MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA, | ||
95 | MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */ | ||
93 | 96 | ||
94 | MEM_CGROUP_STAT_NSTATS, | 97 | MEM_CGROUP_STAT_NSTATS, |
95 | }; | 98 | }; |
@@ -254,6 +257,12 @@ struct mem_cgroup { | |||
254 | * percpu counter. | 257 | * percpu counter. |
255 | */ | 258 | */ |
256 | struct mem_cgroup_stat_cpu *stat; | 259 | struct mem_cgroup_stat_cpu *stat; |
260 | /* | ||
261 | * used when a cpu is offlined or other synchronizations | ||
262 | * See mem_cgroup_read_stat(). | ||
263 | */ | ||
264 | struct mem_cgroup_stat_cpu nocpu_base; | ||
265 | spinlock_t pcp_counter_lock; | ||
257 | }; | 266 | }; |
258 | 267 | ||
259 | /* Stuffs for move charges at task migration. */ | 268 | /* Stuffs for move charges at task migration. */ |
@@ -530,14 +539,40 @@ mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) | |||
530 | return mz; | 539 | return mz; |
531 | } | 540 | } |
532 | 541 | ||
542 | /* | ||
543 | * Implementation Note: reading percpu statistics for memcg. | ||
544 | * | ||
545 | * Both of vmstat[] and percpu_counter has threshold and do periodic | ||
546 | * synchronization to implement "quick" read. There are trade-off between | ||
547 | * reading cost and precision of value. Then, we may have a chance to implement | ||
548 | * a periodic synchronizion of counter in memcg's counter. | ||
549 | * | ||
550 | * But this _read() function is used for user interface now. The user accounts | ||
551 | * memory usage by memory cgroup and he _always_ requires exact value because | ||
552 | * he accounts memory. Even if we provide quick-and-fuzzy read, we always | ||
553 | * have to visit all online cpus and make sum. So, for now, unnecessary | ||
554 | * synchronization is not implemented. (just implemented for cpu hotplug) | ||
555 | * | ||
556 | * If there are kernel internal actions which can make use of some not-exact | ||
557 | * value, and reading all cpu value can be performance bottleneck in some | ||
558 | * common workload, threashold and synchonization as vmstat[] should be | ||
559 | * implemented. | ||
560 | */ | ||
533 | static s64 mem_cgroup_read_stat(struct mem_cgroup *mem, | 561 | static s64 mem_cgroup_read_stat(struct mem_cgroup *mem, |
534 | enum mem_cgroup_stat_index idx) | 562 | enum mem_cgroup_stat_index idx) |
535 | { | 563 | { |
536 | int cpu; | 564 | int cpu; |
537 | s64 val = 0; | 565 | s64 val = 0; |
538 | 566 | ||
539 | for_each_possible_cpu(cpu) | 567 | get_online_cpus(); |
568 | for_each_online_cpu(cpu) | ||
540 | val += per_cpu(mem->stat->count[idx], cpu); | 569 | val += per_cpu(mem->stat->count[idx], cpu); |
570 | #ifdef CONFIG_HOTPLUG_CPU | ||
571 | spin_lock(&mem->pcp_counter_lock); | ||
572 | val += mem->nocpu_base.count[idx]; | ||
573 | spin_unlock(&mem->pcp_counter_lock); | ||
574 | #endif | ||
575 | put_online_cpus(); | ||
541 | return val; | 576 | return val; |
542 | } | 577 | } |
543 | 578 | ||
@@ -659,40 +694,83 @@ static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) | |||
659 | return mem; | 694 | return mem; |
660 | } | 695 | } |
661 | 696 | ||
662 | /* | 697 | /* The caller has to guarantee "mem" exists before calling this */ |
663 | * Call callback function against all cgroup under hierarchy tree. | 698 | static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem) |
664 | */ | ||
665 | static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data, | ||
666 | int (*func)(struct mem_cgroup *, void *)) | ||
667 | { | 699 | { |
668 | int found, ret, nextid; | ||
669 | struct cgroup_subsys_state *css; | 700 | struct cgroup_subsys_state *css; |
670 | struct mem_cgroup *mem; | 701 | int found; |
671 | |||
672 | if (!root->use_hierarchy) | ||
673 | return (*func)(root, data); | ||
674 | 702 | ||
675 | nextid = 1; | 703 | if (!mem) /* ROOT cgroup has the smallest ID */ |
676 | do { | 704 | return root_mem_cgroup; /*css_put/get against root is ignored*/ |
677 | ret = 0; | 705 | if (!mem->use_hierarchy) { |
706 | if (css_tryget(&mem->css)) | ||
707 | return mem; | ||
708 | return NULL; | ||
709 | } | ||
710 | rcu_read_lock(); | ||
711 | /* | ||
712 | * searching a memory cgroup which has the smallest ID under given | ||
713 | * ROOT cgroup. (ID >= 1) | ||
714 | */ | ||
715 | css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found); | ||
716 | if (css && css_tryget(css)) | ||
717 | mem = container_of(css, struct mem_cgroup, css); | ||
718 | else | ||
678 | mem = NULL; | 719 | mem = NULL; |
720 | rcu_read_unlock(); | ||
721 | return mem; | ||
722 | } | ||
723 | |||
724 | static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter, | ||
725 | struct mem_cgroup *root, | ||
726 | bool cond) | ||
727 | { | ||
728 | int nextid = css_id(&iter->css) + 1; | ||
729 | int found; | ||
730 | int hierarchy_used; | ||
731 | struct cgroup_subsys_state *css; | ||
732 | |||
733 | hierarchy_used = iter->use_hierarchy; | ||
679 | 734 | ||
735 | css_put(&iter->css); | ||
736 | /* If no ROOT, walk all, ignore hierarchy */ | ||
737 | if (!cond || (root && !hierarchy_used)) | ||
738 | return NULL; | ||
739 | |||
740 | if (!root) | ||
741 | root = root_mem_cgroup; | ||
742 | |||
743 | do { | ||
744 | iter = NULL; | ||
680 | rcu_read_lock(); | 745 | rcu_read_lock(); |
681 | css = css_get_next(&mem_cgroup_subsys, nextid, &root->css, | 746 | |
682 | &found); | 747 | css = css_get_next(&mem_cgroup_subsys, nextid, |
748 | &root->css, &found); | ||
683 | if (css && css_tryget(css)) | 749 | if (css && css_tryget(css)) |
684 | mem = container_of(css, struct mem_cgroup, css); | 750 | iter = container_of(css, struct mem_cgroup, css); |
685 | rcu_read_unlock(); | 751 | rcu_read_unlock(); |
686 | 752 | /* If css is NULL, no more cgroups will be found */ | |
687 | if (mem) { | ||
688 | ret = (*func)(mem, data); | ||
689 | css_put(&mem->css); | ||
690 | } | ||
691 | nextid = found + 1; | 753 | nextid = found + 1; |
692 | } while (!ret && css); | 754 | } while (css && !iter); |
693 | 755 | ||
694 | return ret; | 756 | return iter; |
695 | } | 757 | } |
758 | /* | ||
759 | * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please | ||
760 | * be careful that "break" loop is not allowed. We have reference count. | ||
761 | * Instead of that modify "cond" to be false and "continue" to exit the loop. | ||
762 | */ | ||
763 | #define for_each_mem_cgroup_tree_cond(iter, root, cond) \ | ||
764 | for (iter = mem_cgroup_start_loop(root);\ | ||
765 | iter != NULL;\ | ||
766 | iter = mem_cgroup_get_next(iter, root, cond)) | ||
767 | |||
768 | #define for_each_mem_cgroup_tree(iter, root) \ | ||
769 | for_each_mem_cgroup_tree_cond(iter, root, true) | ||
770 | |||
771 | #define for_each_mem_cgroup_all(iter) \ | ||
772 | for_each_mem_cgroup_tree_cond(iter, NULL, true) | ||
773 | |||
696 | 774 | ||
697 | static inline bool mem_cgroup_is_root(struct mem_cgroup *mem) | 775 | static inline bool mem_cgroup_is_root(struct mem_cgroup *mem) |
698 | { | 776 | { |
@@ -1051,7 +1129,52 @@ static unsigned int get_swappiness(struct mem_cgroup *memcg) | |||
1051 | return swappiness; | 1129 | return swappiness; |
1052 | } | 1130 | } |
1053 | 1131 | ||
1054 | /* A routine for testing mem is not under move_account */ | 1132 | static void mem_cgroup_start_move(struct mem_cgroup *mem) |
1133 | { | ||
1134 | int cpu; | ||
1135 | |||
1136 | get_online_cpus(); | ||
1137 | spin_lock(&mem->pcp_counter_lock); | ||
1138 | for_each_online_cpu(cpu) | ||
1139 | per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1; | ||
1140 | mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1; | ||
1141 | spin_unlock(&mem->pcp_counter_lock); | ||
1142 | put_online_cpus(); | ||
1143 | |||
1144 | synchronize_rcu(); | ||
1145 | } | ||
1146 | |||
1147 | static void mem_cgroup_end_move(struct mem_cgroup *mem) | ||
1148 | { | ||
1149 | int cpu; | ||
1150 | |||
1151 | if (!mem) | ||
1152 | return; | ||
1153 | get_online_cpus(); | ||
1154 | spin_lock(&mem->pcp_counter_lock); | ||
1155 | for_each_online_cpu(cpu) | ||
1156 | per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1; | ||
1157 | mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1; | ||
1158 | spin_unlock(&mem->pcp_counter_lock); | ||
1159 | put_online_cpus(); | ||
1160 | } | ||
1161 | /* | ||
1162 | * 2 routines for checking "mem" is under move_account() or not. | ||
1163 | * | ||
1164 | * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used | ||
1165 | * for avoiding race in accounting. If true, | ||
1166 | * pc->mem_cgroup may be overwritten. | ||
1167 | * | ||
1168 | * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or | ||
1169 | * under hierarchy of moving cgroups. This is for | ||
1170 | * waiting at hith-memory prressure caused by "move". | ||
1171 | */ | ||
1172 | |||
1173 | static bool mem_cgroup_stealed(struct mem_cgroup *mem) | ||
1174 | { | ||
1175 | VM_BUG_ON(!rcu_read_lock_held()); | ||
1176 | return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0; | ||
1177 | } | ||
1055 | 1178 | ||
1056 | static bool mem_cgroup_under_move(struct mem_cgroup *mem) | 1179 | static bool mem_cgroup_under_move(struct mem_cgroup *mem) |
1057 | { | 1180 | { |
@@ -1092,13 +1215,6 @@ static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem) | |||
1092 | return false; | 1215 | return false; |
1093 | } | 1216 | } |
1094 | 1217 | ||
1095 | static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data) | ||
1096 | { | ||
1097 | int *val = data; | ||
1098 | (*val)++; | ||
1099 | return 0; | ||
1100 | } | ||
1101 | |||
1102 | /** | 1218 | /** |
1103 | * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode. | 1219 | * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode. |
1104 | * @memcg: The memory cgroup that went over limit | 1220 | * @memcg: The memory cgroup that went over limit |
@@ -1173,7 +1289,10 @@ done: | |||
1173 | static int mem_cgroup_count_children(struct mem_cgroup *mem) | 1289 | static int mem_cgroup_count_children(struct mem_cgroup *mem) |
1174 | { | 1290 | { |
1175 | int num = 0; | 1291 | int num = 0; |
1176 | mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb); | 1292 | struct mem_cgroup *iter; |
1293 | |||
1294 | for_each_mem_cgroup_tree(iter, mem) | ||
1295 | num++; | ||
1177 | return num; | 1296 | return num; |
1178 | } | 1297 | } |
1179 | 1298 | ||
@@ -1322,49 +1441,39 @@ static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem, | |||
1322 | return total; | 1441 | return total; |
1323 | } | 1442 | } |
1324 | 1443 | ||
1325 | static int mem_cgroup_oom_lock_cb(struct mem_cgroup *mem, void *data) | ||
1326 | { | ||
1327 | int *val = (int *)data; | ||
1328 | int x; | ||
1329 | /* | ||
1330 | * Logically, we can stop scanning immediately when we find | ||
1331 | * a memcg is already locked. But condidering unlock ops and | ||
1332 | * creation/removal of memcg, scan-all is simple operation. | ||
1333 | */ | ||
1334 | x = atomic_inc_return(&mem->oom_lock); | ||
1335 | *val = max(x, *val); | ||
1336 | return 0; | ||
1337 | } | ||
1338 | /* | 1444 | /* |
1339 | * Check OOM-Killer is already running under our hierarchy. | 1445 | * Check OOM-Killer is already running under our hierarchy. |
1340 | * If someone is running, return false. | 1446 | * If someone is running, return false. |
1341 | */ | 1447 | */ |
1342 | static bool mem_cgroup_oom_lock(struct mem_cgroup *mem) | 1448 | static bool mem_cgroup_oom_lock(struct mem_cgroup *mem) |
1343 | { | 1449 | { |
1344 | int lock_count = 0; | 1450 | int x, lock_count = 0; |
1451 | struct mem_cgroup *iter; | ||
1345 | 1452 | ||
1346 | mem_cgroup_walk_tree(mem, &lock_count, mem_cgroup_oom_lock_cb); | 1453 | for_each_mem_cgroup_tree(iter, mem) { |
1454 | x = atomic_inc_return(&iter->oom_lock); | ||
1455 | lock_count = max(x, lock_count); | ||
1456 | } | ||
1347 | 1457 | ||
1348 | if (lock_count == 1) | 1458 | if (lock_count == 1) |
1349 | return true; | 1459 | return true; |
1350 | return false; | 1460 | return false; |
1351 | } | 1461 | } |
1352 | 1462 | ||
1353 | static int mem_cgroup_oom_unlock_cb(struct mem_cgroup *mem, void *data) | 1463 | static int mem_cgroup_oom_unlock(struct mem_cgroup *mem) |
1354 | { | 1464 | { |
1465 | struct mem_cgroup *iter; | ||
1466 | |||
1355 | /* | 1467 | /* |
1356 | * When a new child is created while the hierarchy is under oom, | 1468 | * When a new child is created while the hierarchy is under oom, |
1357 | * mem_cgroup_oom_lock() may not be called. We have to use | 1469 | * mem_cgroup_oom_lock() may not be called. We have to use |
1358 | * atomic_add_unless() here. | 1470 | * atomic_add_unless() here. |
1359 | */ | 1471 | */ |
1360 | atomic_add_unless(&mem->oom_lock, -1, 0); | 1472 | for_each_mem_cgroup_tree(iter, mem) |
1473 | atomic_add_unless(&iter->oom_lock, -1, 0); | ||
1361 | return 0; | 1474 | return 0; |
1362 | } | 1475 | } |
1363 | 1476 | ||
1364 | static void mem_cgroup_oom_unlock(struct mem_cgroup *mem) | ||
1365 | { | ||
1366 | mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_unlock_cb); | ||
1367 | } | ||
1368 | 1477 | ||
1369 | static DEFINE_MUTEX(memcg_oom_mutex); | 1478 | static DEFINE_MUTEX(memcg_oom_mutex); |
1370 | static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); | 1479 | static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); |
@@ -1462,34 +1571,73 @@ bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask) | |||
1462 | /* | 1571 | /* |
1463 | * Currently used to update mapped file statistics, but the routine can be | 1572 | * Currently used to update mapped file statistics, but the routine can be |
1464 | * generalized to update other statistics as well. | 1573 | * generalized to update other statistics as well. |
1574 | * | ||
1575 | * Notes: Race condition | ||
1576 | * | ||
1577 | * We usually use page_cgroup_lock() for accessing page_cgroup member but | ||
1578 | * it tends to be costly. But considering some conditions, we doesn't need | ||
1579 | * to do so _always_. | ||
1580 | * | ||
1581 | * Considering "charge", lock_page_cgroup() is not required because all | ||
1582 | * file-stat operations happen after a page is attached to radix-tree. There | ||
1583 | * are no race with "charge". | ||
1584 | * | ||
1585 | * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup | ||
1586 | * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even | ||
1587 | * if there are race with "uncharge". Statistics itself is properly handled | ||
1588 | * by flags. | ||
1589 | * | ||
1590 | * Considering "move", this is an only case we see a race. To make the race | ||
1591 | * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are | ||
1592 | * possibility of race condition. If there is, we take a lock. | ||
1465 | */ | 1593 | */ |
1466 | void mem_cgroup_update_file_mapped(struct page *page, int val) | 1594 | |
1595 | static void mem_cgroup_update_file_stat(struct page *page, int idx, int val) | ||
1467 | { | 1596 | { |
1468 | struct mem_cgroup *mem; | 1597 | struct mem_cgroup *mem; |
1469 | struct page_cgroup *pc; | 1598 | struct page_cgroup *pc = lookup_page_cgroup(page); |
1599 | bool need_unlock = false; | ||
1470 | 1600 | ||
1471 | pc = lookup_page_cgroup(page); | ||
1472 | if (unlikely(!pc)) | 1601 | if (unlikely(!pc)) |
1473 | return; | 1602 | return; |
1474 | 1603 | ||
1475 | lock_page_cgroup(pc); | 1604 | rcu_read_lock(); |
1476 | mem = pc->mem_cgroup; | 1605 | mem = pc->mem_cgroup; |
1477 | if (!mem || !PageCgroupUsed(pc)) | 1606 | if (unlikely(!mem || !PageCgroupUsed(pc))) |
1478 | goto done; | 1607 | goto out; |
1608 | /* pc->mem_cgroup is unstable ? */ | ||
1609 | if (unlikely(mem_cgroup_stealed(mem))) { | ||
1610 | /* take a lock against to access pc->mem_cgroup */ | ||
1611 | lock_page_cgroup(pc); | ||
1612 | need_unlock = true; | ||
1613 | mem = pc->mem_cgroup; | ||
1614 | if (!mem || !PageCgroupUsed(pc)) | ||
1615 | goto out; | ||
1616 | } | ||
1479 | 1617 | ||
1480 | /* | 1618 | this_cpu_add(mem->stat->count[idx], val); |
1481 | * Preemption is already disabled. We can use __this_cpu_xxx | 1619 | |
1482 | */ | 1620 | switch (idx) { |
1483 | if (val > 0) { | 1621 | case MEM_CGROUP_STAT_FILE_MAPPED: |
1484 | __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); | 1622 | if (val > 0) |
1485 | SetPageCgroupFileMapped(pc); | 1623 | SetPageCgroupFileMapped(pc); |
1486 | } else { | 1624 | else if (!page_mapped(page)) |
1487 | __this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); | 1625 | ClearPageCgroupFileMapped(pc); |
1488 | ClearPageCgroupFileMapped(pc); | 1626 | break; |
1627 | default: | ||
1628 | BUG(); | ||
1489 | } | 1629 | } |
1490 | 1630 | ||
1491 | done: | 1631 | out: |
1492 | unlock_page_cgroup(pc); | 1632 | if (unlikely(need_unlock)) |
1633 | unlock_page_cgroup(pc); | ||
1634 | rcu_read_unlock(); | ||
1635 | return; | ||
1636 | } | ||
1637 | |||
1638 | void mem_cgroup_update_file_mapped(struct page *page, int val) | ||
1639 | { | ||
1640 | mem_cgroup_update_file_stat(page, MEM_CGROUP_STAT_FILE_MAPPED, val); | ||
1493 | } | 1641 | } |
1494 | 1642 | ||
1495 | /* | 1643 | /* |
@@ -1605,15 +1753,55 @@ static void drain_all_stock_sync(void) | |||
1605 | atomic_dec(&memcg_drain_count); | 1753 | atomic_dec(&memcg_drain_count); |
1606 | } | 1754 | } |
1607 | 1755 | ||
1608 | static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb, | 1756 | /* |
1757 | * This function drains percpu counter value from DEAD cpu and | ||
1758 | * move it to local cpu. Note that this function can be preempted. | ||
1759 | */ | ||
1760 | static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu) | ||
1761 | { | ||
1762 | int i; | ||
1763 | |||
1764 | spin_lock(&mem->pcp_counter_lock); | ||
1765 | for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) { | ||
1766 | s64 x = per_cpu(mem->stat->count[i], cpu); | ||
1767 | |||
1768 | per_cpu(mem->stat->count[i], cpu) = 0; | ||
1769 | mem->nocpu_base.count[i] += x; | ||
1770 | } | ||
1771 | /* need to clear ON_MOVE value, works as a kind of lock. */ | ||
1772 | per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0; | ||
1773 | spin_unlock(&mem->pcp_counter_lock); | ||
1774 | } | ||
1775 | |||
1776 | static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu) | ||
1777 | { | ||
1778 | int idx = MEM_CGROUP_ON_MOVE; | ||
1779 | |||
1780 | spin_lock(&mem->pcp_counter_lock); | ||
1781 | per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx]; | ||
1782 | spin_unlock(&mem->pcp_counter_lock); | ||
1783 | } | ||
1784 | |||
1785 | static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb, | ||
1609 | unsigned long action, | 1786 | unsigned long action, |
1610 | void *hcpu) | 1787 | void *hcpu) |
1611 | { | 1788 | { |
1612 | int cpu = (unsigned long)hcpu; | 1789 | int cpu = (unsigned long)hcpu; |
1613 | struct memcg_stock_pcp *stock; | 1790 | struct memcg_stock_pcp *stock; |
1791 | struct mem_cgroup *iter; | ||
1792 | |||
1793 | if ((action == CPU_ONLINE)) { | ||
1794 | for_each_mem_cgroup_all(iter) | ||
1795 | synchronize_mem_cgroup_on_move(iter, cpu); | ||
1796 | return NOTIFY_OK; | ||
1797 | } | ||
1614 | 1798 | ||
1615 | if (action != CPU_DEAD) | 1799 | if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN) |
1616 | return NOTIFY_OK; | 1800 | return NOTIFY_OK; |
1801 | |||
1802 | for_each_mem_cgroup_all(iter) | ||
1803 | mem_cgroup_drain_pcp_counter(iter, cpu); | ||
1804 | |||
1617 | stock = &per_cpu(memcg_stock, cpu); | 1805 | stock = &per_cpu(memcg_stock, cpu); |
1618 | drain_stock(stock); | 1806 | drain_stock(stock); |
1619 | return NOTIFY_OK; | 1807 | return NOTIFY_OK; |
@@ -3038,6 +3226,7 @@ move_account: | |||
3038 | lru_add_drain_all(); | 3226 | lru_add_drain_all(); |
3039 | drain_all_stock_sync(); | 3227 | drain_all_stock_sync(); |
3040 | ret = 0; | 3228 | ret = 0; |
3229 | mem_cgroup_start_move(mem); | ||
3041 | for_each_node_state(node, N_HIGH_MEMORY) { | 3230 | for_each_node_state(node, N_HIGH_MEMORY) { |
3042 | for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) { | 3231 | for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) { |
3043 | enum lru_list l; | 3232 | enum lru_list l; |
@@ -3051,6 +3240,7 @@ move_account: | |||
3051 | if (ret) | 3240 | if (ret) |
3052 | break; | 3241 | break; |
3053 | } | 3242 | } |
3243 | mem_cgroup_end_move(mem); | ||
3054 | memcg_oom_recover(mem); | 3244 | memcg_oom_recover(mem); |
3055 | /* it seems parent cgroup doesn't have enough mem */ | 3245 | /* it seems parent cgroup doesn't have enough mem */ |
3056 | if (ret == -ENOMEM) | 3246 | if (ret == -ENOMEM) |
@@ -3137,33 +3327,25 @@ static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, | |||
3137 | return retval; | 3327 | return retval; |
3138 | } | 3328 | } |
3139 | 3329 | ||
3140 | struct mem_cgroup_idx_data { | ||
3141 | s64 val; | ||
3142 | enum mem_cgroup_stat_index idx; | ||
3143 | }; | ||
3144 | 3330 | ||
3145 | static int | 3331 | static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem, |
3146 | mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data) | 3332 | enum mem_cgroup_stat_index idx) |
3147 | { | 3333 | { |
3148 | struct mem_cgroup_idx_data *d = data; | 3334 | struct mem_cgroup *iter; |
3149 | d->val += mem_cgroup_read_stat(mem, d->idx); | 3335 | s64 val = 0; |
3150 | return 0; | ||
3151 | } | ||
3152 | 3336 | ||
3153 | static void | 3337 | /* each per cpu's value can be minus.Then, use s64 */ |
3154 | mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem, | 3338 | for_each_mem_cgroup_tree(iter, mem) |
3155 | enum mem_cgroup_stat_index idx, s64 *val) | 3339 | val += mem_cgroup_read_stat(iter, idx); |
3156 | { | 3340 | |
3157 | struct mem_cgroup_idx_data d; | 3341 | if (val < 0) /* race ? */ |
3158 | d.idx = idx; | 3342 | val = 0; |
3159 | d.val = 0; | 3343 | return val; |
3160 | mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat); | ||
3161 | *val = d.val; | ||
3162 | } | 3344 | } |
3163 | 3345 | ||
3164 | static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap) | 3346 | static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap) |
3165 | { | 3347 | { |
3166 | u64 idx_val, val; | 3348 | u64 val; |
3167 | 3349 | ||
3168 | if (!mem_cgroup_is_root(mem)) { | 3350 | if (!mem_cgroup_is_root(mem)) { |
3169 | if (!swap) | 3351 | if (!swap) |
@@ -3172,16 +3354,12 @@ static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap) | |||
3172 | return res_counter_read_u64(&mem->memsw, RES_USAGE); | 3354 | return res_counter_read_u64(&mem->memsw, RES_USAGE); |
3173 | } | 3355 | } |
3174 | 3356 | ||
3175 | mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE, &idx_val); | 3357 | val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE); |
3176 | val = idx_val; | 3358 | val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS); |
3177 | mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS, &idx_val); | ||
3178 | val += idx_val; | ||
3179 | 3359 | ||
3180 | if (swap) { | 3360 | if (swap) |
3181 | mem_cgroup_get_recursive_idx_stat(mem, | 3361 | val += mem_cgroup_get_recursive_idx_stat(mem, |
3182 | MEM_CGROUP_STAT_SWAPOUT, &idx_val); | 3362 | MEM_CGROUP_STAT_SWAPOUT); |
3183 | val += idx_val; | ||
3184 | } | ||
3185 | 3363 | ||
3186 | return val << PAGE_SHIFT; | 3364 | return val << PAGE_SHIFT; |
3187 | } | 3365 | } |
@@ -3389,9 +3567,9 @@ struct { | |||
3389 | }; | 3567 | }; |
3390 | 3568 | ||
3391 | 3569 | ||
3392 | static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data) | 3570 | static void |
3571 | mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s) | ||
3393 | { | 3572 | { |
3394 | struct mcs_total_stat *s = data; | ||
3395 | s64 val; | 3573 | s64 val; |
3396 | 3574 | ||
3397 | /* per cpu stat */ | 3575 | /* per cpu stat */ |
@@ -3421,13 +3599,15 @@ static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data) | |||
3421 | s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE; | 3599 | s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE; |
3422 | val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE); | 3600 | val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE); |
3423 | s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE; | 3601 | s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE; |
3424 | return 0; | ||
3425 | } | 3602 | } |
3426 | 3603 | ||
3427 | static void | 3604 | static void |
3428 | mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s) | 3605 | mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s) |
3429 | { | 3606 | { |
3430 | mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat); | 3607 | struct mem_cgroup *iter; |
3608 | |||
3609 | for_each_mem_cgroup_tree(iter, mem) | ||
3610 | mem_cgroup_get_local_stat(iter, s); | ||
3431 | } | 3611 | } |
3432 | 3612 | ||
3433 | static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft, | 3613 | static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft, |
@@ -3604,7 +3784,7 @@ static int compare_thresholds(const void *a, const void *b) | |||
3604 | return _a->threshold - _b->threshold; | 3784 | return _a->threshold - _b->threshold; |
3605 | } | 3785 | } |
3606 | 3786 | ||
3607 | static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem, void *data) | 3787 | static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem) |
3608 | { | 3788 | { |
3609 | struct mem_cgroup_eventfd_list *ev; | 3789 | struct mem_cgroup_eventfd_list *ev; |
3610 | 3790 | ||
@@ -3615,7 +3795,10 @@ static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem, void *data) | |||
3615 | 3795 | ||
3616 | static void mem_cgroup_oom_notify(struct mem_cgroup *mem) | 3796 | static void mem_cgroup_oom_notify(struct mem_cgroup *mem) |
3617 | { | 3797 | { |
3618 | mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_notify_cb); | 3798 | struct mem_cgroup *iter; |
3799 | |||
3800 | for_each_mem_cgroup_tree(iter, mem) | ||
3801 | mem_cgroup_oom_notify_cb(iter); | ||
3619 | } | 3802 | } |
3620 | 3803 | ||
3621 | static int mem_cgroup_usage_register_event(struct cgroup *cgrp, | 3804 | static int mem_cgroup_usage_register_event(struct cgroup *cgrp, |
@@ -4032,6 +4215,7 @@ static struct mem_cgroup *mem_cgroup_alloc(void) | |||
4032 | vfree(mem); | 4215 | vfree(mem); |
4033 | mem = NULL; | 4216 | mem = NULL; |
4034 | } | 4217 | } |
4218 | spin_lock_init(&mem->pcp_counter_lock); | ||
4035 | return mem; | 4219 | return mem; |
4036 | } | 4220 | } |
4037 | 4221 | ||
@@ -4158,7 +4342,7 @@ mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) | |||
4158 | &per_cpu(memcg_stock, cpu); | 4342 | &per_cpu(memcg_stock, cpu); |
4159 | INIT_WORK(&stock->work, drain_local_stock); | 4343 | INIT_WORK(&stock->work, drain_local_stock); |
4160 | } | 4344 | } |
4161 | hotcpu_notifier(memcg_stock_cpu_callback, 0); | 4345 | hotcpu_notifier(memcg_cpu_hotplug_callback, 0); |
4162 | } else { | 4346 | } else { |
4163 | parent = mem_cgroup_from_cont(cont->parent); | 4347 | parent = mem_cgroup_from_cont(cont->parent); |
4164 | mem->use_hierarchy = parent->use_hierarchy; | 4348 | mem->use_hierarchy = parent->use_hierarchy; |
@@ -4513,6 +4697,7 @@ static void mem_cgroup_clear_mc(void) | |||
4513 | mc.to = NULL; | 4697 | mc.to = NULL; |
4514 | mc.moving_task = NULL; | 4698 | mc.moving_task = NULL; |
4515 | spin_unlock(&mc.lock); | 4699 | spin_unlock(&mc.lock); |
4700 | mem_cgroup_end_move(from); | ||
4516 | memcg_oom_recover(from); | 4701 | memcg_oom_recover(from); |
4517 | memcg_oom_recover(to); | 4702 | memcg_oom_recover(to); |
4518 | wake_up_all(&mc.waitq); | 4703 | wake_up_all(&mc.waitq); |
@@ -4543,6 +4728,7 @@ static int mem_cgroup_can_attach(struct cgroup_subsys *ss, | |||
4543 | VM_BUG_ON(mc.moved_charge); | 4728 | VM_BUG_ON(mc.moved_charge); |
4544 | VM_BUG_ON(mc.moved_swap); | 4729 | VM_BUG_ON(mc.moved_swap); |
4545 | VM_BUG_ON(mc.moving_task); | 4730 | VM_BUG_ON(mc.moving_task); |
4731 | mem_cgroup_start_move(from); | ||
4546 | spin_lock(&mc.lock); | 4732 | spin_lock(&mc.lock); |
4547 | mc.from = from; | 4733 | mc.from = from; |
4548 | mc.to = mem; | 4734 | mc.to = mem; |
diff --git a/mm/memory-failure.c b/mm/memory-failure.c index 757f6b0accfe..124324134ff6 100644 --- a/mm/memory-failure.c +++ b/mm/memory-failure.c | |||
@@ -7,21 +7,26 @@ | |||
7 | * Free Software Foundation. | 7 | * Free Software Foundation. |
8 | * | 8 | * |
9 | * High level machine check handler. Handles pages reported by the | 9 | * High level machine check handler. Handles pages reported by the |
10 | * hardware as being corrupted usually due to a 2bit ECC memory or cache | 10 | * hardware as being corrupted usually due to a multi-bit ECC memory or cache |
11 | * failure. | 11 | * failure. |
12 | * | ||
13 | * In addition there is a "soft offline" entry point that allows stop using | ||
14 | * not-yet-corrupted-by-suspicious pages without killing anything. | ||
12 | * | 15 | * |
13 | * Handles page cache pages in various states. The tricky part | 16 | * Handles page cache pages in various states. The tricky part |
14 | * here is that we can access any page asynchronous to other VM | 17 | * here is that we can access any page asynchronously in respect to |
15 | * users, because memory failures could happen anytime and anywhere, | 18 | * other VM users, because memory failures could happen anytime and |
16 | * possibly violating some of their assumptions. This is why this code | 19 | * anywhere. This could violate some of their assumptions. This is why |
17 | * has to be extremely careful. Generally it tries to use normal locking | 20 | * this code has to be extremely careful. Generally it tries to use |
18 | * rules, as in get the standard locks, even if that means the | 21 | * normal locking rules, as in get the standard locks, even if that means |
19 | * error handling takes potentially a long time. | 22 | * the error handling takes potentially a long time. |
20 | * | 23 | * |
21 | * The operation to map back from RMAP chains to processes has to walk | 24 | * There are several operations here with exponential complexity because |
22 | * the complete process list and has non linear complexity with the number | 25 | * of unsuitable VM data structures. For example the operation to map back |
23 | * mappings. In short it can be quite slow. But since memory corruptions | 26 | * from RMAP chains to processes has to walk the complete process list and |
24 | * are rare we hope to get away with this. | 27 | * has non linear complexity with the number. But since memory corruptions |
28 | * are rare we hope to get away with this. This avoids impacting the core | ||
29 | * VM. | ||
25 | */ | 30 | */ |
26 | 31 | ||
27 | /* | 32 | /* |
@@ -30,7 +35,6 @@ | |||
30 | * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages | 35 | * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages |
31 | * - pass bad pages to kdump next kernel | 36 | * - pass bad pages to kdump next kernel |
32 | */ | 37 | */ |
33 | #define DEBUG 1 /* remove me in 2.6.34 */ | ||
34 | #include <linux/kernel.h> | 38 | #include <linux/kernel.h> |
35 | #include <linux/mm.h> | 39 | #include <linux/mm.h> |
36 | #include <linux/page-flags.h> | 40 | #include <linux/page-flags.h> |
@@ -78,7 +82,7 @@ static int hwpoison_filter_dev(struct page *p) | |||
78 | return 0; | 82 | return 0; |
79 | 83 | ||
80 | /* | 84 | /* |
81 | * page_mapping() does not accept slab page | 85 | * page_mapping() does not accept slab pages. |
82 | */ | 86 | */ |
83 | if (PageSlab(p)) | 87 | if (PageSlab(p)) |
84 | return -EINVAL; | 88 | return -EINVAL; |
@@ -268,7 +272,7 @@ struct to_kill { | |||
268 | struct list_head nd; | 272 | struct list_head nd; |
269 | struct task_struct *tsk; | 273 | struct task_struct *tsk; |
270 | unsigned long addr; | 274 | unsigned long addr; |
271 | unsigned addr_valid:1; | 275 | char addr_valid; |
272 | }; | 276 | }; |
273 | 277 | ||
274 | /* | 278 | /* |
@@ -309,7 +313,7 @@ static void add_to_kill(struct task_struct *tsk, struct page *p, | |||
309 | * a SIGKILL because the error is not contained anymore. | 313 | * a SIGKILL because the error is not contained anymore. |
310 | */ | 314 | */ |
311 | if (tk->addr == -EFAULT) { | 315 | if (tk->addr == -EFAULT) { |
312 | pr_debug("MCE: Unable to find user space address %lx in %s\n", | 316 | pr_info("MCE: Unable to find user space address %lx in %s\n", |
313 | page_to_pfn(p), tsk->comm); | 317 | page_to_pfn(p), tsk->comm); |
314 | tk->addr_valid = 0; | 318 | tk->addr_valid = 0; |
315 | } | 319 | } |
@@ -577,7 +581,7 @@ static int me_pagecache_clean(struct page *p, unsigned long pfn) | |||
577 | pfn, err); | 581 | pfn, err); |
578 | } else if (page_has_private(p) && | 582 | } else if (page_has_private(p) && |
579 | !try_to_release_page(p, GFP_NOIO)) { | 583 | !try_to_release_page(p, GFP_NOIO)) { |
580 | pr_debug("MCE %#lx: failed to release buffers\n", pfn); | 584 | pr_info("MCE %#lx: failed to release buffers\n", pfn); |
581 | } else { | 585 | } else { |
582 | ret = RECOVERED; | 586 | ret = RECOVERED; |
583 | } | 587 | } |
@@ -693,11 +697,10 @@ static int me_swapcache_clean(struct page *p, unsigned long pfn) | |||
693 | * Issues: | 697 | * Issues: |
694 | * - Error on hugepage is contained in hugepage unit (not in raw page unit.) | 698 | * - Error on hugepage is contained in hugepage unit (not in raw page unit.) |
695 | * To narrow down kill region to one page, we need to break up pmd. | 699 | * To narrow down kill region to one page, we need to break up pmd. |
696 | * - To support soft-offlining for hugepage, we need to support hugepage | ||
697 | * migration. | ||
698 | */ | 700 | */ |
699 | static int me_huge_page(struct page *p, unsigned long pfn) | 701 | static int me_huge_page(struct page *p, unsigned long pfn) |
700 | { | 702 | { |
703 | int res = 0; | ||
701 | struct page *hpage = compound_head(p); | 704 | struct page *hpage = compound_head(p); |
702 | /* | 705 | /* |
703 | * We can safely recover from error on free or reserved (i.e. | 706 | * We can safely recover from error on free or reserved (i.e. |
@@ -710,8 +713,9 @@ static int me_huge_page(struct page *p, unsigned long pfn) | |||
710 | * so there is no race between isolation and mapping/unmapping. | 713 | * so there is no race between isolation and mapping/unmapping. |
711 | */ | 714 | */ |
712 | if (!(page_mapping(hpage) || PageAnon(hpage))) { | 715 | if (!(page_mapping(hpage) || PageAnon(hpage))) { |
713 | __isolate_hwpoisoned_huge_page(hpage); | 716 | res = dequeue_hwpoisoned_huge_page(hpage); |
714 | return RECOVERED; | 717 | if (!res) |
718 | return RECOVERED; | ||
715 | } | 719 | } |
716 | return DELAYED; | 720 | return DELAYED; |
717 | } | 721 | } |
@@ -836,8 +840,6 @@ static int page_action(struct page_state *ps, struct page *p, | |||
836 | return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY; | 840 | return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY; |
837 | } | 841 | } |
838 | 842 | ||
839 | #define N_UNMAP_TRIES 5 | ||
840 | |||
841 | /* | 843 | /* |
842 | * Do all that is necessary to remove user space mappings. Unmap | 844 | * Do all that is necessary to remove user space mappings. Unmap |
843 | * the pages and send SIGBUS to the processes if the data was dirty. | 845 | * the pages and send SIGBUS to the processes if the data was dirty. |
@@ -849,7 +851,6 @@ static int hwpoison_user_mappings(struct page *p, unsigned long pfn, | |||
849 | struct address_space *mapping; | 851 | struct address_space *mapping; |
850 | LIST_HEAD(tokill); | 852 | LIST_HEAD(tokill); |
851 | int ret; | 853 | int ret; |
852 | int i; | ||
853 | int kill = 1; | 854 | int kill = 1; |
854 | struct page *hpage = compound_head(p); | 855 | struct page *hpage = compound_head(p); |
855 | 856 | ||
@@ -903,17 +904,7 @@ static int hwpoison_user_mappings(struct page *p, unsigned long pfn, | |||
903 | if (kill) | 904 | if (kill) |
904 | collect_procs(hpage, &tokill); | 905 | collect_procs(hpage, &tokill); |
905 | 906 | ||
906 | /* | 907 | ret = try_to_unmap(hpage, ttu); |
907 | * try_to_unmap can fail temporarily due to races. | ||
908 | * Try a few times (RED-PEN better strategy?) | ||
909 | */ | ||
910 | for (i = 0; i < N_UNMAP_TRIES; i++) { | ||
911 | ret = try_to_unmap(hpage, ttu); | ||
912 | if (ret == SWAP_SUCCESS) | ||
913 | break; | ||
914 | pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn, ret); | ||
915 | } | ||
916 | |||
917 | if (ret != SWAP_SUCCESS) | 908 | if (ret != SWAP_SUCCESS) |
918 | printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n", | 909 | printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n", |
919 | pfn, page_mapcount(hpage)); | 910 | pfn, page_mapcount(hpage)); |
@@ -981,7 +972,10 @@ int __memory_failure(unsigned long pfn, int trapno, int flags) | |||
981 | * We need/can do nothing about count=0 pages. | 972 | * We need/can do nothing about count=0 pages. |
982 | * 1) it's a free page, and therefore in safe hand: | 973 | * 1) it's a free page, and therefore in safe hand: |
983 | * prep_new_page() will be the gate keeper. | 974 | * prep_new_page() will be the gate keeper. |
984 | * 2) it's part of a non-compound high order page. | 975 | * 2) it's a free hugepage, which is also safe: |
976 | * an affected hugepage will be dequeued from hugepage freelist, | ||
977 | * so there's no concern about reusing it ever after. | ||
978 | * 3) it's part of a non-compound high order page. | ||
985 | * Implies some kernel user: cannot stop them from | 979 | * Implies some kernel user: cannot stop them from |
986 | * R/W the page; let's pray that the page has been | 980 | * R/W the page; let's pray that the page has been |
987 | * used and will be freed some time later. | 981 | * used and will be freed some time later. |
@@ -993,6 +987,24 @@ int __memory_failure(unsigned long pfn, int trapno, int flags) | |||
993 | if (is_free_buddy_page(p)) { | 987 | if (is_free_buddy_page(p)) { |
994 | action_result(pfn, "free buddy", DELAYED); | 988 | action_result(pfn, "free buddy", DELAYED); |
995 | return 0; | 989 | return 0; |
990 | } else if (PageHuge(hpage)) { | ||
991 | /* | ||
992 | * Check "just unpoisoned", "filter hit", and | ||
993 | * "race with other subpage." | ||
994 | */ | ||
995 | lock_page_nosync(hpage); | ||
996 | if (!PageHWPoison(hpage) | ||
997 | || (hwpoison_filter(p) && TestClearPageHWPoison(p)) | ||
998 | || (p != hpage && TestSetPageHWPoison(hpage))) { | ||
999 | atomic_long_sub(nr_pages, &mce_bad_pages); | ||
1000 | return 0; | ||
1001 | } | ||
1002 | set_page_hwpoison_huge_page(hpage); | ||
1003 | res = dequeue_hwpoisoned_huge_page(hpage); | ||
1004 | action_result(pfn, "free huge", | ||
1005 | res ? IGNORED : DELAYED); | ||
1006 | unlock_page(hpage); | ||
1007 | return res; | ||
996 | } else { | 1008 | } else { |
997 | action_result(pfn, "high order kernel", IGNORED); | 1009 | action_result(pfn, "high order kernel", IGNORED); |
998 | return -EBUSY; | 1010 | return -EBUSY; |
@@ -1147,16 +1159,26 @@ int unpoison_memory(unsigned long pfn) | |||
1147 | page = compound_head(p); | 1159 | page = compound_head(p); |
1148 | 1160 | ||
1149 | if (!PageHWPoison(p)) { | 1161 | if (!PageHWPoison(p)) { |
1150 | pr_debug("MCE: Page was already unpoisoned %#lx\n", pfn); | 1162 | pr_info("MCE: Page was already unpoisoned %#lx\n", pfn); |
1151 | return 0; | 1163 | return 0; |
1152 | } | 1164 | } |
1153 | 1165 | ||
1154 | nr_pages = 1 << compound_order(page); | 1166 | nr_pages = 1 << compound_order(page); |
1155 | 1167 | ||
1156 | if (!get_page_unless_zero(page)) { | 1168 | if (!get_page_unless_zero(page)) { |
1169 | /* | ||
1170 | * Since HWPoisoned hugepage should have non-zero refcount, | ||
1171 | * race between memory failure and unpoison seems to happen. | ||
1172 | * In such case unpoison fails and memory failure runs | ||
1173 | * to the end. | ||
1174 | */ | ||
1175 | if (PageHuge(page)) { | ||
1176 | pr_debug("MCE: Memory failure is now running on free hugepage %#lx\n", pfn); | ||
1177 | return 0; | ||
1178 | } | ||
1157 | if (TestClearPageHWPoison(p)) | 1179 | if (TestClearPageHWPoison(p)) |
1158 | atomic_long_sub(nr_pages, &mce_bad_pages); | 1180 | atomic_long_sub(nr_pages, &mce_bad_pages); |
1159 | pr_debug("MCE: Software-unpoisoned free page %#lx\n", pfn); | 1181 | pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn); |
1160 | return 0; | 1182 | return 0; |
1161 | } | 1183 | } |
1162 | 1184 | ||
@@ -1168,12 +1190,12 @@ int unpoison_memory(unsigned long pfn) | |||
1168 | * the free buddy page pool. | 1190 | * the free buddy page pool. |
1169 | */ | 1191 | */ |
1170 | if (TestClearPageHWPoison(page)) { | 1192 | if (TestClearPageHWPoison(page)) { |
1171 | pr_debug("MCE: Software-unpoisoned page %#lx\n", pfn); | 1193 | pr_info("MCE: Software-unpoisoned page %#lx\n", pfn); |
1172 | atomic_long_sub(nr_pages, &mce_bad_pages); | 1194 | atomic_long_sub(nr_pages, &mce_bad_pages); |
1173 | freeit = 1; | 1195 | freeit = 1; |
1196 | if (PageHuge(page)) | ||
1197 | clear_page_hwpoison_huge_page(page); | ||
1174 | } | 1198 | } |
1175 | if (PageHuge(p)) | ||
1176 | clear_page_hwpoison_huge_page(page); | ||
1177 | unlock_page(page); | 1199 | unlock_page(page); |
1178 | 1200 | ||
1179 | put_page(page); | 1201 | put_page(page); |
@@ -1187,7 +1209,11 @@ EXPORT_SYMBOL(unpoison_memory); | |||
1187 | static struct page *new_page(struct page *p, unsigned long private, int **x) | 1209 | static struct page *new_page(struct page *p, unsigned long private, int **x) |
1188 | { | 1210 | { |
1189 | int nid = page_to_nid(p); | 1211 | int nid = page_to_nid(p); |
1190 | return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0); | 1212 | if (PageHuge(p)) |
1213 | return alloc_huge_page_node(page_hstate(compound_head(p)), | ||
1214 | nid); | ||
1215 | else | ||
1216 | return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0); | ||
1191 | } | 1217 | } |
1192 | 1218 | ||
1193 | /* | 1219 | /* |
@@ -1215,14 +1241,21 @@ static int get_any_page(struct page *p, unsigned long pfn, int flags) | |||
1215 | * was free. | 1241 | * was free. |
1216 | */ | 1242 | */ |
1217 | set_migratetype_isolate(p); | 1243 | set_migratetype_isolate(p); |
1244 | /* | ||
1245 | * When the target page is a free hugepage, just remove it | ||
1246 | * from free hugepage list. | ||
1247 | */ | ||
1218 | if (!get_page_unless_zero(compound_head(p))) { | 1248 | if (!get_page_unless_zero(compound_head(p))) { |
1219 | if (is_free_buddy_page(p)) { | 1249 | if (PageHuge(p)) { |
1220 | pr_debug("get_any_page: %#lx free buddy page\n", pfn); | 1250 | pr_info("get_any_page: %#lx free huge page\n", pfn); |
1251 | ret = dequeue_hwpoisoned_huge_page(compound_head(p)); | ||
1252 | } else if (is_free_buddy_page(p)) { | ||
1253 | pr_info("get_any_page: %#lx free buddy page\n", pfn); | ||
1221 | /* Set hwpoison bit while page is still isolated */ | 1254 | /* Set hwpoison bit while page is still isolated */ |
1222 | SetPageHWPoison(p); | 1255 | SetPageHWPoison(p); |
1223 | ret = 0; | 1256 | ret = 0; |
1224 | } else { | 1257 | } else { |
1225 | pr_debug("get_any_page: %#lx: unknown zero refcount page type %lx\n", | 1258 | pr_info("get_any_page: %#lx: unknown zero refcount page type %lx\n", |
1226 | pfn, p->flags); | 1259 | pfn, p->flags); |
1227 | ret = -EIO; | 1260 | ret = -EIO; |
1228 | } | 1261 | } |
@@ -1235,6 +1268,46 @@ static int get_any_page(struct page *p, unsigned long pfn, int flags) | |||
1235 | return ret; | 1268 | return ret; |
1236 | } | 1269 | } |
1237 | 1270 | ||
1271 | static int soft_offline_huge_page(struct page *page, int flags) | ||
1272 | { | ||
1273 | int ret; | ||
1274 | unsigned long pfn = page_to_pfn(page); | ||
1275 | struct page *hpage = compound_head(page); | ||
1276 | LIST_HEAD(pagelist); | ||
1277 | |||
1278 | ret = get_any_page(page, pfn, flags); | ||
1279 | if (ret < 0) | ||
1280 | return ret; | ||
1281 | if (ret == 0) | ||
1282 | goto done; | ||
1283 | |||
1284 | if (PageHWPoison(hpage)) { | ||
1285 | put_page(hpage); | ||
1286 | pr_debug("soft offline: %#lx hugepage already poisoned\n", pfn); | ||
1287 | return -EBUSY; | ||
1288 | } | ||
1289 | |||
1290 | /* Keep page count to indicate a given hugepage is isolated. */ | ||
1291 | |||
1292 | list_add(&hpage->lru, &pagelist); | ||
1293 | ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0); | ||
1294 | if (ret) { | ||
1295 | putback_lru_pages(&pagelist); | ||
1296 | pr_debug("soft offline: %#lx: migration failed %d, type %lx\n", | ||
1297 | pfn, ret, page->flags); | ||
1298 | if (ret > 0) | ||
1299 | ret = -EIO; | ||
1300 | return ret; | ||
1301 | } | ||
1302 | done: | ||
1303 | if (!PageHWPoison(hpage)) | ||
1304 | atomic_long_add(1 << compound_order(hpage), &mce_bad_pages); | ||
1305 | set_page_hwpoison_huge_page(hpage); | ||
1306 | dequeue_hwpoisoned_huge_page(hpage); | ||
1307 | /* keep elevated page count for bad page */ | ||
1308 | return ret; | ||
1309 | } | ||
1310 | |||
1238 | /** | 1311 | /** |
1239 | * soft_offline_page - Soft offline a page. | 1312 | * soft_offline_page - Soft offline a page. |
1240 | * @page: page to offline | 1313 | * @page: page to offline |
@@ -1262,6 +1335,9 @@ int soft_offline_page(struct page *page, int flags) | |||
1262 | int ret; | 1335 | int ret; |
1263 | unsigned long pfn = page_to_pfn(page); | 1336 | unsigned long pfn = page_to_pfn(page); |
1264 | 1337 | ||
1338 | if (PageHuge(page)) | ||
1339 | return soft_offline_huge_page(page, flags); | ||
1340 | |||
1265 | ret = get_any_page(page, pfn, flags); | 1341 | ret = get_any_page(page, pfn, flags); |
1266 | if (ret < 0) | 1342 | if (ret < 0) |
1267 | return ret; | 1343 | return ret; |
@@ -1288,7 +1364,7 @@ int soft_offline_page(struct page *page, int flags) | |||
1288 | goto done; | 1364 | goto done; |
1289 | } | 1365 | } |
1290 | if (!PageLRU(page)) { | 1366 | if (!PageLRU(page)) { |
1291 | pr_debug("soft_offline: %#lx: unknown non LRU page type %lx\n", | 1367 | pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n", |
1292 | pfn, page->flags); | 1368 | pfn, page->flags); |
1293 | return -EIO; | 1369 | return -EIO; |
1294 | } | 1370 | } |
@@ -1302,7 +1378,7 @@ int soft_offline_page(struct page *page, int flags) | |||
1302 | if (PageHWPoison(page)) { | 1378 | if (PageHWPoison(page)) { |
1303 | unlock_page(page); | 1379 | unlock_page(page); |
1304 | put_page(page); | 1380 | put_page(page); |
1305 | pr_debug("soft offline: %#lx page already poisoned\n", pfn); | 1381 | pr_info("soft offline: %#lx page already poisoned\n", pfn); |
1306 | return -EBUSY; | 1382 | return -EBUSY; |
1307 | } | 1383 | } |
1308 | 1384 | ||
@@ -1323,7 +1399,7 @@ int soft_offline_page(struct page *page, int flags) | |||
1323 | put_page(page); | 1399 | put_page(page); |
1324 | if (ret == 1) { | 1400 | if (ret == 1) { |
1325 | ret = 0; | 1401 | ret = 0; |
1326 | pr_debug("soft_offline: %#lx: invalidated\n", pfn); | 1402 | pr_info("soft_offline: %#lx: invalidated\n", pfn); |
1327 | goto done; | 1403 | goto done; |
1328 | } | 1404 | } |
1329 | 1405 | ||
@@ -1339,13 +1415,13 @@ int soft_offline_page(struct page *page, int flags) | |||
1339 | list_add(&page->lru, &pagelist); | 1415 | list_add(&page->lru, &pagelist); |
1340 | ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0); | 1416 | ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0); |
1341 | if (ret) { | 1417 | if (ret) { |
1342 | pr_debug("soft offline: %#lx: migration failed %d, type %lx\n", | 1418 | pr_info("soft offline: %#lx: migration failed %d, type %lx\n", |
1343 | pfn, ret, page->flags); | 1419 | pfn, ret, page->flags); |
1344 | if (ret > 0) | 1420 | if (ret > 0) |
1345 | ret = -EIO; | 1421 | ret = -EIO; |
1346 | } | 1422 | } |
1347 | } else { | 1423 | } else { |
1348 | pr_debug("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n", | 1424 | pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n", |
1349 | pfn, ret, page_count(page), page->flags); | 1425 | pfn, ret, page_count(page), page->flags); |
1350 | } | 1426 | } |
1351 | if (ret) | 1427 | if (ret) |
diff --git a/mm/memory.c b/mm/memory.c index 98b58fecedef..02e48aa0ed13 100644 --- a/mm/memory.c +++ b/mm/memory.c | |||
@@ -736,7 +736,7 @@ again: | |||
736 | dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); | 736 | dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); |
737 | if (!dst_pte) | 737 | if (!dst_pte) |
738 | return -ENOMEM; | 738 | return -ENOMEM; |
739 | src_pte = pte_offset_map_nested(src_pmd, addr); | 739 | src_pte = pte_offset_map(src_pmd, addr); |
740 | src_ptl = pte_lockptr(src_mm, src_pmd); | 740 | src_ptl = pte_lockptr(src_mm, src_pmd); |
741 | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); | 741 | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); |
742 | orig_src_pte = src_pte; | 742 | orig_src_pte = src_pte; |
@@ -767,7 +767,7 @@ again: | |||
767 | 767 | ||
768 | arch_leave_lazy_mmu_mode(); | 768 | arch_leave_lazy_mmu_mode(); |
769 | spin_unlock(src_ptl); | 769 | spin_unlock(src_ptl); |
770 | pte_unmap_nested(orig_src_pte); | 770 | pte_unmap(orig_src_pte); |
771 | add_mm_rss_vec(dst_mm, rss); | 771 | add_mm_rss_vec(dst_mm, rss); |
772 | pte_unmap_unlock(orig_dst_pte, dst_ptl); | 772 | pte_unmap_unlock(orig_dst_pte, dst_ptl); |
773 | cond_resched(); | 773 | cond_resched(); |
@@ -1450,7 +1450,8 @@ int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | |||
1450 | if (ret & VM_FAULT_OOM) | 1450 | if (ret & VM_FAULT_OOM) |
1451 | return i ? i : -ENOMEM; | 1451 | return i ? i : -ENOMEM; |
1452 | if (ret & | 1452 | if (ret & |
1453 | (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS)) | 1453 | (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE| |
1454 | VM_FAULT_SIGBUS)) | ||
1454 | return i ? i : -EFAULT; | 1455 | return i ? i : -EFAULT; |
1455 | BUG(); | 1456 | BUG(); |
1456 | } | 1457 | } |
@@ -1590,7 +1591,7 @@ struct page *get_dump_page(unsigned long addr) | |||
1590 | } | 1591 | } |
1591 | #endif /* CONFIG_ELF_CORE */ | 1592 | #endif /* CONFIG_ELF_CORE */ |
1592 | 1593 | ||
1593 | pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, | 1594 | pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, |
1594 | spinlock_t **ptl) | 1595 | spinlock_t **ptl) |
1595 | { | 1596 | { |
1596 | pgd_t * pgd = pgd_offset(mm, addr); | 1597 | pgd_t * pgd = pgd_offset(mm, addr); |
@@ -2079,7 +2080,7 @@ static inline void cow_user_page(struct page *dst, struct page *src, unsigned lo | |||
2079 | * zeroes. | 2080 | * zeroes. |
2080 | */ | 2081 | */ |
2081 | if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) | 2082 | if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) |
2082 | memset(kaddr, 0, PAGE_SIZE); | 2083 | clear_page(kaddr); |
2083 | kunmap_atomic(kaddr, KM_USER0); | 2084 | kunmap_atomic(kaddr, KM_USER0); |
2084 | flush_dcache_page(dst); | 2085 | flush_dcache_page(dst); |
2085 | } else | 2086 | } else |
@@ -2107,6 +2108,7 @@ static inline void cow_user_page(struct page *dst, struct page *src, unsigned lo | |||
2107 | static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, | 2108 | static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, |
2108 | unsigned long address, pte_t *page_table, pmd_t *pmd, | 2109 | unsigned long address, pte_t *page_table, pmd_t *pmd, |
2109 | spinlock_t *ptl, pte_t orig_pte) | 2110 | spinlock_t *ptl, pte_t orig_pte) |
2111 | __releases(ptl) | ||
2110 | { | 2112 | { |
2111 | struct page *old_page, *new_page; | 2113 | struct page *old_page, *new_page; |
2112 | pte_t entry; | 2114 | pte_t entry; |
@@ -2626,6 +2628,7 @@ static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, | |||
2626 | struct page *page, *swapcache = NULL; | 2628 | struct page *page, *swapcache = NULL; |
2627 | swp_entry_t entry; | 2629 | swp_entry_t entry; |
2628 | pte_t pte; | 2630 | pte_t pte; |
2631 | int locked; | ||
2629 | struct mem_cgroup *ptr = NULL; | 2632 | struct mem_cgroup *ptr = NULL; |
2630 | int exclusive = 0; | 2633 | int exclusive = 0; |
2631 | int ret = 0; | 2634 | int ret = 0; |
@@ -2676,8 +2679,12 @@ static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, | |||
2676 | goto out_release; | 2679 | goto out_release; |
2677 | } | 2680 | } |
2678 | 2681 | ||
2679 | lock_page(page); | 2682 | locked = lock_page_or_retry(page, mm, flags); |
2680 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); | 2683 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); |
2684 | if (!locked) { | ||
2685 | ret |= VM_FAULT_RETRY; | ||
2686 | goto out_release; | ||
2687 | } | ||
2681 | 2688 | ||
2682 | /* | 2689 | /* |
2683 | * Make sure try_to_free_swap or reuse_swap_page or swapoff did not | 2690 | * Make sure try_to_free_swap or reuse_swap_page or swapoff did not |
@@ -2926,7 +2933,8 @@ static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, | |||
2926 | vmf.page = NULL; | 2933 | vmf.page = NULL; |
2927 | 2934 | ||
2928 | ret = vma->vm_ops->fault(vma, &vmf); | 2935 | ret = vma->vm_ops->fault(vma, &vmf); |
2929 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) | 2936 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | |
2937 | VM_FAULT_RETRY))) | ||
2930 | return ret; | 2938 | return ret; |
2931 | 2939 | ||
2932 | if (unlikely(PageHWPoison(vmf.page))) { | 2940 | if (unlikely(PageHWPoison(vmf.page))) { |
@@ -3343,7 +3351,7 @@ int in_gate_area_no_task(unsigned long addr) | |||
3343 | 3351 | ||
3344 | #endif /* __HAVE_ARCH_GATE_AREA */ | 3352 | #endif /* __HAVE_ARCH_GATE_AREA */ |
3345 | 3353 | ||
3346 | static int follow_pte(struct mm_struct *mm, unsigned long address, | 3354 | static int __follow_pte(struct mm_struct *mm, unsigned long address, |
3347 | pte_t **ptepp, spinlock_t **ptlp) | 3355 | pte_t **ptepp, spinlock_t **ptlp) |
3348 | { | 3356 | { |
3349 | pgd_t *pgd; | 3357 | pgd_t *pgd; |
@@ -3380,6 +3388,17 @@ out: | |||
3380 | return -EINVAL; | 3388 | return -EINVAL; |
3381 | } | 3389 | } |
3382 | 3390 | ||
3391 | static inline int follow_pte(struct mm_struct *mm, unsigned long address, | ||
3392 | pte_t **ptepp, spinlock_t **ptlp) | ||
3393 | { | ||
3394 | int res; | ||
3395 | |||
3396 | /* (void) is needed to make gcc happy */ | ||
3397 | (void) __cond_lock(*ptlp, | ||
3398 | !(res = __follow_pte(mm, address, ptepp, ptlp))); | ||
3399 | return res; | ||
3400 | } | ||
3401 | |||
3383 | /** | 3402 | /** |
3384 | * follow_pfn - look up PFN at a user virtual address | 3403 | * follow_pfn - look up PFN at a user virtual address |
3385 | * @vma: memory mapping | 3404 | * @vma: memory mapping |
diff --git a/mm/memory_hotplug.c b/mm/memory_hotplug.c index d4e940a26945..9260314a221e 100644 --- a/mm/memory_hotplug.c +++ b/mm/memory_hotplug.c | |||
@@ -602,27 +602,14 @@ static struct page *next_active_pageblock(struct page *page) | |||
602 | /* Checks if this range of memory is likely to be hot-removable. */ | 602 | /* Checks if this range of memory is likely to be hot-removable. */ |
603 | int is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages) | 603 | int is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages) |
604 | { | 604 | { |
605 | int type; | ||
606 | struct page *page = pfn_to_page(start_pfn); | 605 | struct page *page = pfn_to_page(start_pfn); |
607 | struct page *end_page = page + nr_pages; | 606 | struct page *end_page = page + nr_pages; |
608 | 607 | ||
609 | /* Check the starting page of each pageblock within the range */ | 608 | /* Check the starting page of each pageblock within the range */ |
610 | for (; page < end_page; page = next_active_pageblock(page)) { | 609 | for (; page < end_page; page = next_active_pageblock(page)) { |
611 | type = get_pageblock_migratetype(page); | 610 | if (!is_pageblock_removable_nolock(page)) |
612 | |||
613 | /* | ||
614 | * A pageblock containing MOVABLE or free pages is considered | ||
615 | * removable | ||
616 | */ | ||
617 | if (type != MIGRATE_MOVABLE && !pageblock_free(page)) | ||
618 | return 0; | ||
619 | |||
620 | /* | ||
621 | * A pageblock starting with a PageReserved page is not | ||
622 | * considered removable. | ||
623 | */ | ||
624 | if (PageReserved(page)) | ||
625 | return 0; | 611 | return 0; |
612 | cond_resched(); | ||
626 | } | 613 | } |
627 | 614 | ||
628 | /* All pageblocks in the memory block are likely to be hot-removable */ | 615 | /* All pageblocks in the memory block are likely to be hot-removable */ |
@@ -659,7 +646,7 @@ static int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn) | |||
659 | * Scanning pfn is much easier than scanning lru list. | 646 | * Scanning pfn is much easier than scanning lru list. |
660 | * Scan pfn from start to end and Find LRU page. | 647 | * Scan pfn from start to end and Find LRU page. |
661 | */ | 648 | */ |
662 | int scan_lru_pages(unsigned long start, unsigned long end) | 649 | static unsigned long scan_lru_pages(unsigned long start, unsigned long end) |
663 | { | 650 | { |
664 | unsigned long pfn; | 651 | unsigned long pfn; |
665 | struct page *page; | 652 | struct page *page; |
@@ -709,29 +696,30 @@ do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) | |||
709 | page_is_file_cache(page)); | 696 | page_is_file_cache(page)); |
710 | 697 | ||
711 | } else { | 698 | } else { |
712 | /* Becasue we don't have big zone->lock. we should | ||
713 | check this again here. */ | ||
714 | if (page_count(page)) | ||
715 | not_managed++; | ||
716 | #ifdef CONFIG_DEBUG_VM | 699 | #ifdef CONFIG_DEBUG_VM |
717 | printk(KERN_ALERT "removing pfn %lx from LRU failed\n", | 700 | printk(KERN_ALERT "removing pfn %lx from LRU failed\n", |
718 | pfn); | 701 | pfn); |
719 | dump_page(page); | 702 | dump_page(page); |
720 | #endif | 703 | #endif |
704 | /* Becasue we don't have big zone->lock. we should | ||
705 | check this again here. */ | ||
706 | if (page_count(page)) { | ||
707 | not_managed++; | ||
708 | ret = -EBUSY; | ||
709 | break; | ||
710 | } | ||
721 | } | 711 | } |
722 | } | 712 | } |
723 | ret = -EBUSY; | 713 | if (!list_empty(&source)) { |
724 | if (not_managed) { | 714 | if (not_managed) { |
725 | if (!list_empty(&source)) | 715 | putback_lru_pages(&source); |
716 | goto out; | ||
717 | } | ||
718 | /* this function returns # of failed pages */ | ||
719 | ret = migrate_pages(&source, hotremove_migrate_alloc, 0, 1); | ||
720 | if (ret) | ||
726 | putback_lru_pages(&source); | 721 | putback_lru_pages(&source); |
727 | goto out; | ||
728 | } | 722 | } |
729 | ret = 0; | ||
730 | if (list_empty(&source)) | ||
731 | goto out; | ||
732 | /* this function returns # of failed pages */ | ||
733 | ret = migrate_pages(&source, hotremove_migrate_alloc, 0, 1); | ||
734 | |||
735 | out: | 723 | out: |
736 | return ret; | 724 | return ret; |
737 | } | 725 | } |
diff --git a/mm/mempolicy.c b/mm/mempolicy.c index f969da5dd8a2..4a57f135b76e 100644 --- a/mm/mempolicy.c +++ b/mm/mempolicy.c | |||
@@ -924,15 +924,21 @@ static int migrate_to_node(struct mm_struct *mm, int source, int dest, | |||
924 | nodemask_t nmask; | 924 | nodemask_t nmask; |
925 | LIST_HEAD(pagelist); | 925 | LIST_HEAD(pagelist); |
926 | int err = 0; | 926 | int err = 0; |
927 | struct vm_area_struct *vma; | ||
927 | 928 | ||
928 | nodes_clear(nmask); | 929 | nodes_clear(nmask); |
929 | node_set(source, nmask); | 930 | node_set(source, nmask); |
930 | 931 | ||
931 | check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, | 932 | vma = check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, |
932 | flags | MPOL_MF_DISCONTIG_OK, &pagelist); | 933 | flags | MPOL_MF_DISCONTIG_OK, &pagelist); |
934 | if (IS_ERR(vma)) | ||
935 | return PTR_ERR(vma); | ||
933 | 936 | ||
934 | if (!list_empty(&pagelist)) | 937 | if (!list_empty(&pagelist)) { |
935 | err = migrate_pages(&pagelist, new_node_page, dest, 0); | 938 | err = migrate_pages(&pagelist, new_node_page, dest, 0); |
939 | if (err) | ||
940 | putback_lru_pages(&pagelist); | ||
941 | } | ||
936 | 942 | ||
937 | return err; | 943 | return err; |
938 | } | 944 | } |
@@ -1147,9 +1153,12 @@ static long do_mbind(unsigned long start, unsigned long len, | |||
1147 | 1153 | ||
1148 | err = mbind_range(mm, start, end, new); | 1154 | err = mbind_range(mm, start, end, new); |
1149 | 1155 | ||
1150 | if (!list_empty(&pagelist)) | 1156 | if (!list_empty(&pagelist)) { |
1151 | nr_failed = migrate_pages(&pagelist, new_vma_page, | 1157 | nr_failed = migrate_pages(&pagelist, new_vma_page, |
1152 | (unsigned long)vma, 0); | 1158 | (unsigned long)vma, 0); |
1159 | if (nr_failed) | ||
1160 | putback_lru_pages(&pagelist); | ||
1161 | } | ||
1153 | 1162 | ||
1154 | if (!err && nr_failed && (flags & MPOL_MF_STRICT)) | 1163 | if (!err && nr_failed && (flags & MPOL_MF_STRICT)) |
1155 | err = -EIO; | 1164 | err = -EIO; |
@@ -1588,7 +1597,7 @@ unsigned slab_node(struct mempolicy *policy) | |||
1588 | (void)first_zones_zonelist(zonelist, highest_zoneidx, | 1597 | (void)first_zones_zonelist(zonelist, highest_zoneidx, |
1589 | &policy->v.nodes, | 1598 | &policy->v.nodes, |
1590 | &zone); | 1599 | &zone); |
1591 | return zone->node; | 1600 | return zone ? zone->node : numa_node_id(); |
1592 | } | 1601 | } |
1593 | 1602 | ||
1594 | default: | 1603 | default: |
diff --git a/mm/migrate.c b/mm/migrate.c index 38e7cad782f4..fe5a3c6a5426 100644 --- a/mm/migrate.c +++ b/mm/migrate.c | |||
@@ -32,6 +32,7 @@ | |||
32 | #include <linux/security.h> | 32 | #include <linux/security.h> |
33 | #include <linux/memcontrol.h> | 33 | #include <linux/memcontrol.h> |
34 | #include <linux/syscalls.h> | 34 | #include <linux/syscalls.h> |
35 | #include <linux/hugetlb.h> | ||
35 | #include <linux/gfp.h> | 36 | #include <linux/gfp.h> |
36 | 37 | ||
37 | #include "internal.h" | 38 | #include "internal.h" |
@@ -95,26 +96,34 @@ static int remove_migration_pte(struct page *new, struct vm_area_struct *vma, | |||
95 | pte_t *ptep, pte; | 96 | pte_t *ptep, pte; |
96 | spinlock_t *ptl; | 97 | spinlock_t *ptl; |
97 | 98 | ||
98 | pgd = pgd_offset(mm, addr); | 99 | if (unlikely(PageHuge(new))) { |
99 | if (!pgd_present(*pgd)) | 100 | ptep = huge_pte_offset(mm, addr); |
100 | goto out; | 101 | if (!ptep) |
102 | goto out; | ||
103 | ptl = &mm->page_table_lock; | ||
104 | } else { | ||
105 | pgd = pgd_offset(mm, addr); | ||
106 | if (!pgd_present(*pgd)) | ||
107 | goto out; | ||
101 | 108 | ||
102 | pud = pud_offset(pgd, addr); | 109 | pud = pud_offset(pgd, addr); |
103 | if (!pud_present(*pud)) | 110 | if (!pud_present(*pud)) |
104 | goto out; | 111 | goto out; |
105 | 112 | ||
106 | pmd = pmd_offset(pud, addr); | 113 | pmd = pmd_offset(pud, addr); |
107 | if (!pmd_present(*pmd)) | 114 | if (!pmd_present(*pmd)) |
108 | goto out; | 115 | goto out; |
109 | 116 | ||
110 | ptep = pte_offset_map(pmd, addr); | 117 | ptep = pte_offset_map(pmd, addr); |
111 | 118 | ||
112 | if (!is_swap_pte(*ptep)) { | 119 | if (!is_swap_pte(*ptep)) { |
113 | pte_unmap(ptep); | 120 | pte_unmap(ptep); |
114 | goto out; | 121 | goto out; |
115 | } | 122 | } |
123 | |||
124 | ptl = pte_lockptr(mm, pmd); | ||
125 | } | ||
116 | 126 | ||
117 | ptl = pte_lockptr(mm, pmd); | ||
118 | spin_lock(ptl); | 127 | spin_lock(ptl); |
119 | pte = *ptep; | 128 | pte = *ptep; |
120 | if (!is_swap_pte(pte)) | 129 | if (!is_swap_pte(pte)) |
@@ -130,10 +139,19 @@ static int remove_migration_pte(struct page *new, struct vm_area_struct *vma, | |||
130 | pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); | 139 | pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); |
131 | if (is_write_migration_entry(entry)) | 140 | if (is_write_migration_entry(entry)) |
132 | pte = pte_mkwrite(pte); | 141 | pte = pte_mkwrite(pte); |
142 | #ifdef CONFIG_HUGETLB_PAGE | ||
143 | if (PageHuge(new)) | ||
144 | pte = pte_mkhuge(pte); | ||
145 | #endif | ||
133 | flush_cache_page(vma, addr, pte_pfn(pte)); | 146 | flush_cache_page(vma, addr, pte_pfn(pte)); |
134 | set_pte_at(mm, addr, ptep, pte); | 147 | set_pte_at(mm, addr, ptep, pte); |
135 | 148 | ||
136 | if (PageAnon(new)) | 149 | if (PageHuge(new)) { |
150 | if (PageAnon(new)) | ||
151 | hugepage_add_anon_rmap(new, vma, addr); | ||
152 | else | ||
153 | page_dup_rmap(new); | ||
154 | } else if (PageAnon(new)) | ||
137 | page_add_anon_rmap(new, vma, addr); | 155 | page_add_anon_rmap(new, vma, addr); |
138 | else | 156 | else |
139 | page_add_file_rmap(new); | 157 | page_add_file_rmap(new); |
@@ -276,11 +294,59 @@ static int migrate_page_move_mapping(struct address_space *mapping, | |||
276 | } | 294 | } |
277 | 295 | ||
278 | /* | 296 | /* |
297 | * The expected number of remaining references is the same as that | ||
298 | * of migrate_page_move_mapping(). | ||
299 | */ | ||
300 | int migrate_huge_page_move_mapping(struct address_space *mapping, | ||
301 | struct page *newpage, struct page *page) | ||
302 | { | ||
303 | int expected_count; | ||
304 | void **pslot; | ||
305 | |||
306 | if (!mapping) { | ||
307 | if (page_count(page) != 1) | ||
308 | return -EAGAIN; | ||
309 | return 0; | ||
310 | } | ||
311 | |||
312 | spin_lock_irq(&mapping->tree_lock); | ||
313 | |||
314 | pslot = radix_tree_lookup_slot(&mapping->page_tree, | ||
315 | page_index(page)); | ||
316 | |||
317 | expected_count = 2 + page_has_private(page); | ||
318 | if (page_count(page) != expected_count || | ||
319 | (struct page *)radix_tree_deref_slot(pslot) != page) { | ||
320 | spin_unlock_irq(&mapping->tree_lock); | ||
321 | return -EAGAIN; | ||
322 | } | ||
323 | |||
324 | if (!page_freeze_refs(page, expected_count)) { | ||
325 | spin_unlock_irq(&mapping->tree_lock); | ||
326 | return -EAGAIN; | ||
327 | } | ||
328 | |||
329 | get_page(newpage); | ||
330 | |||
331 | radix_tree_replace_slot(pslot, newpage); | ||
332 | |||
333 | page_unfreeze_refs(page, expected_count); | ||
334 | |||
335 | __put_page(page); | ||
336 | |||
337 | spin_unlock_irq(&mapping->tree_lock); | ||
338 | return 0; | ||
339 | } | ||
340 | |||
341 | /* | ||
279 | * Copy the page to its new location | 342 | * Copy the page to its new location |
280 | */ | 343 | */ |
281 | static void migrate_page_copy(struct page *newpage, struct page *page) | 344 | void migrate_page_copy(struct page *newpage, struct page *page) |
282 | { | 345 | { |
283 | copy_highpage(newpage, page); | 346 | if (PageHuge(page)) |
347 | copy_huge_page(newpage, page); | ||
348 | else | ||
349 | copy_highpage(newpage, page); | ||
284 | 350 | ||
285 | if (PageError(page)) | 351 | if (PageError(page)) |
286 | SetPageError(newpage); | 352 | SetPageError(newpage); |
@@ -431,7 +497,6 @@ static int writeout(struct address_space *mapping, struct page *page) | |||
431 | .nr_to_write = 1, | 497 | .nr_to_write = 1, |
432 | .range_start = 0, | 498 | .range_start = 0, |
433 | .range_end = LLONG_MAX, | 499 | .range_end = LLONG_MAX, |
434 | .nonblocking = 1, | ||
435 | .for_reclaim = 1 | 500 | .for_reclaim = 1 |
436 | }; | 501 | }; |
437 | int rc; | 502 | int rc; |
@@ -724,6 +789,92 @@ move_newpage: | |||
724 | } | 789 | } |
725 | 790 | ||
726 | /* | 791 | /* |
792 | * Counterpart of unmap_and_move_page() for hugepage migration. | ||
793 | * | ||
794 | * This function doesn't wait the completion of hugepage I/O | ||
795 | * because there is no race between I/O and migration for hugepage. | ||
796 | * Note that currently hugepage I/O occurs only in direct I/O | ||
797 | * where no lock is held and PG_writeback is irrelevant, | ||
798 | * and writeback status of all subpages are counted in the reference | ||
799 | * count of the head page (i.e. if all subpages of a 2MB hugepage are | ||
800 | * under direct I/O, the reference of the head page is 512 and a bit more.) | ||
801 | * This means that when we try to migrate hugepage whose subpages are | ||
802 | * doing direct I/O, some references remain after try_to_unmap() and | ||
803 | * hugepage migration fails without data corruption. | ||
804 | * | ||
805 | * There is also no race when direct I/O is issued on the page under migration, | ||
806 | * because then pte is replaced with migration swap entry and direct I/O code | ||
807 | * will wait in the page fault for migration to complete. | ||
808 | */ | ||
809 | static int unmap_and_move_huge_page(new_page_t get_new_page, | ||
810 | unsigned long private, struct page *hpage, | ||
811 | int force, int offlining) | ||
812 | { | ||
813 | int rc = 0; | ||
814 | int *result = NULL; | ||
815 | struct page *new_hpage = get_new_page(hpage, private, &result); | ||
816 | int rcu_locked = 0; | ||
817 | struct anon_vma *anon_vma = NULL; | ||
818 | |||
819 | if (!new_hpage) | ||
820 | return -ENOMEM; | ||
821 | |||
822 | rc = -EAGAIN; | ||
823 | |||
824 | if (!trylock_page(hpage)) { | ||
825 | if (!force) | ||
826 | goto out; | ||
827 | lock_page(hpage); | ||
828 | } | ||
829 | |||
830 | if (PageAnon(hpage)) { | ||
831 | rcu_read_lock(); | ||
832 | rcu_locked = 1; | ||
833 | |||
834 | if (page_mapped(hpage)) { | ||
835 | anon_vma = page_anon_vma(hpage); | ||
836 | atomic_inc(&anon_vma->external_refcount); | ||
837 | } | ||
838 | } | ||
839 | |||
840 | try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); | ||
841 | |||
842 | if (!page_mapped(hpage)) | ||
843 | rc = move_to_new_page(new_hpage, hpage, 1); | ||
844 | |||
845 | if (rc) | ||
846 | remove_migration_ptes(hpage, hpage); | ||
847 | |||
848 | if (anon_vma && atomic_dec_and_lock(&anon_vma->external_refcount, | ||
849 | &anon_vma->lock)) { | ||
850 | int empty = list_empty(&anon_vma->head); | ||
851 | spin_unlock(&anon_vma->lock); | ||
852 | if (empty) | ||
853 | anon_vma_free(anon_vma); | ||
854 | } | ||
855 | |||
856 | if (rcu_locked) | ||
857 | rcu_read_unlock(); | ||
858 | out: | ||
859 | unlock_page(hpage); | ||
860 | |||
861 | if (rc != -EAGAIN) { | ||
862 | list_del(&hpage->lru); | ||
863 | put_page(hpage); | ||
864 | } | ||
865 | |||
866 | put_page(new_hpage); | ||
867 | |||
868 | if (result) { | ||
869 | if (rc) | ||
870 | *result = rc; | ||
871 | else | ||
872 | *result = page_to_nid(new_hpage); | ||
873 | } | ||
874 | return rc; | ||
875 | } | ||
876 | |||
877 | /* | ||
727 | * migrate_pages | 878 | * migrate_pages |
728 | * | 879 | * |
729 | * The function takes one list of pages to migrate and a function | 880 | * The function takes one list of pages to migrate and a function |
@@ -732,8 +883,9 @@ move_newpage: | |||
732 | * | 883 | * |
733 | * The function returns after 10 attempts or if no pages | 884 | * The function returns after 10 attempts or if no pages |
734 | * are movable anymore because to has become empty | 885 | * are movable anymore because to has become empty |
735 | * or no retryable pages exist anymore. All pages will be | 886 | * or no retryable pages exist anymore. |
736 | * returned to the LRU or freed. | 887 | * Caller should call putback_lru_pages to return pages to the LRU |
888 | * or free list. | ||
737 | * | 889 | * |
738 | * Return: Number of pages not migrated or error code. | 890 | * Return: Number of pages not migrated or error code. |
739 | */ | 891 | */ |
@@ -780,7 +932,51 @@ out: | |||
780 | if (!swapwrite) | 932 | if (!swapwrite) |
781 | current->flags &= ~PF_SWAPWRITE; | 933 | current->flags &= ~PF_SWAPWRITE; |
782 | 934 | ||
783 | putback_lru_pages(from); | 935 | if (rc) |
936 | return rc; | ||
937 | |||
938 | return nr_failed + retry; | ||
939 | } | ||
940 | |||
941 | int migrate_huge_pages(struct list_head *from, | ||
942 | new_page_t get_new_page, unsigned long private, int offlining) | ||
943 | { | ||
944 | int retry = 1; | ||
945 | int nr_failed = 0; | ||
946 | int pass = 0; | ||
947 | struct page *page; | ||
948 | struct page *page2; | ||
949 | int rc; | ||
950 | |||
951 | for (pass = 0; pass < 10 && retry; pass++) { | ||
952 | retry = 0; | ||
953 | |||
954 | list_for_each_entry_safe(page, page2, from, lru) { | ||
955 | cond_resched(); | ||
956 | |||
957 | rc = unmap_and_move_huge_page(get_new_page, | ||
958 | private, page, pass > 2, offlining); | ||
959 | |||
960 | switch(rc) { | ||
961 | case -ENOMEM: | ||
962 | goto out; | ||
963 | case -EAGAIN: | ||
964 | retry++; | ||
965 | break; | ||
966 | case 0: | ||
967 | break; | ||
968 | default: | ||
969 | /* Permanent failure */ | ||
970 | nr_failed++; | ||
971 | break; | ||
972 | } | ||
973 | } | ||
974 | } | ||
975 | rc = 0; | ||
976 | out: | ||
977 | |||
978 | list_for_each_entry_safe(page, page2, from, lru) | ||
979 | put_page(page); | ||
784 | 980 | ||
785 | if (rc) | 981 | if (rc) |
786 | return rc; | 982 | return rc; |
@@ -841,7 +1037,7 @@ static int do_move_page_to_node_array(struct mm_struct *mm, | |||
841 | 1037 | ||
842 | err = -EFAULT; | 1038 | err = -EFAULT; |
843 | vma = find_vma(mm, pp->addr); | 1039 | vma = find_vma(mm, pp->addr); |
844 | if (!vma || !vma_migratable(vma)) | 1040 | if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma)) |
845 | goto set_status; | 1041 | goto set_status; |
846 | 1042 | ||
847 | page = follow_page(vma, pp->addr, FOLL_GET); | 1043 | page = follow_page(vma, pp->addr, FOLL_GET); |
@@ -890,9 +1086,12 @@ set_status: | |||
890 | } | 1086 | } |
891 | 1087 | ||
892 | err = 0; | 1088 | err = 0; |
893 | if (!list_empty(&pagelist)) | 1089 | if (!list_empty(&pagelist)) { |
894 | err = migrate_pages(&pagelist, new_page_node, | 1090 | err = migrate_pages(&pagelist, new_page_node, |
895 | (unsigned long)pm, 0); | 1091 | (unsigned long)pm, 0); |
1092 | if (err) | ||
1093 | putback_lru_pages(&pagelist); | ||
1094 | } | ||
896 | 1095 | ||
897 | up_read(&mm->mmap_sem); | 1096 | up_read(&mm->mmap_sem); |
898 | return err; | 1097 | return err; |
@@ -1005,7 +1204,7 @@ static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, | |||
1005 | int err = -EFAULT; | 1204 | int err = -EFAULT; |
1006 | 1205 | ||
1007 | vma = find_vma(mm, addr); | 1206 | vma = find_vma(mm, addr); |
1008 | if (!vma) | 1207 | if (!vma || addr < vma->vm_start) |
1009 | goto set_status; | 1208 | goto set_status; |
1010 | 1209 | ||
1011 | page = follow_page(vma, addr, 0); | 1210 | page = follow_page(vma, addr, 0); |
@@ -28,6 +28,7 @@ | |||
28 | #include <linux/rmap.h> | 28 | #include <linux/rmap.h> |
29 | #include <linux/mmu_notifier.h> | 29 | #include <linux/mmu_notifier.h> |
30 | #include <linux/perf_event.h> | 30 | #include <linux/perf_event.h> |
31 | #include <linux/audit.h> | ||
31 | 32 | ||
32 | #include <asm/uaccess.h> | 33 | #include <asm/uaccess.h> |
33 | #include <asm/cacheflush.h> | 34 | #include <asm/cacheflush.h> |
@@ -1108,6 +1109,7 @@ SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, | |||
1108 | unsigned long retval = -EBADF; | 1109 | unsigned long retval = -EBADF; |
1109 | 1110 | ||
1110 | if (!(flags & MAP_ANONYMOUS)) { | 1111 | if (!(flags & MAP_ANONYMOUS)) { |
1112 | audit_mmap_fd(fd, flags); | ||
1111 | if (unlikely(flags & MAP_HUGETLB)) | 1113 | if (unlikely(flags & MAP_HUGETLB)) |
1112 | return -EINVAL; | 1114 | return -EINVAL; |
1113 | file = fget(fd); | 1115 | file = fget(fd); |
diff --git a/mm/mremap.c b/mm/mremap.c index cde56ee51ef7..563fbdd6293a 100644 --- a/mm/mremap.c +++ b/mm/mremap.c | |||
@@ -101,7 +101,7 @@ static void move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd, | |||
101 | * pte locks because exclusive mmap_sem prevents deadlock. | 101 | * pte locks because exclusive mmap_sem prevents deadlock. |
102 | */ | 102 | */ |
103 | old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl); | 103 | old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl); |
104 | new_pte = pte_offset_map_nested(new_pmd, new_addr); | 104 | new_pte = pte_offset_map(new_pmd, new_addr); |
105 | new_ptl = pte_lockptr(mm, new_pmd); | 105 | new_ptl = pte_lockptr(mm, new_pmd); |
106 | if (new_ptl != old_ptl) | 106 | if (new_ptl != old_ptl) |
107 | spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); | 107 | spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); |
@@ -119,7 +119,7 @@ static void move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd, | |||
119 | arch_leave_lazy_mmu_mode(); | 119 | arch_leave_lazy_mmu_mode(); |
120 | if (new_ptl != old_ptl) | 120 | if (new_ptl != old_ptl) |
121 | spin_unlock(new_ptl); | 121 | spin_unlock(new_ptl); |
122 | pte_unmap_nested(new_pte - 1); | 122 | pte_unmap(new_pte - 1); |
123 | pte_unmap_unlock(old_pte - 1, old_ptl); | 123 | pte_unmap_unlock(old_pte - 1, old_ptl); |
124 | if (mapping) | 124 | if (mapping) |
125 | spin_unlock(&mapping->i_mmap_lock); | 125 | spin_unlock(&mapping->i_mmap_lock); |
diff --git a/mm/nommu.c b/mm/nommu.c index 88ff091eb07a..3613517c7592 100644 --- a/mm/nommu.c +++ b/mm/nommu.c | |||
@@ -29,6 +29,7 @@ | |||
29 | #include <linux/personality.h> | 29 | #include <linux/personality.h> |
30 | #include <linux/security.h> | 30 | #include <linux/security.h> |
31 | #include <linux/syscalls.h> | 31 | #include <linux/syscalls.h> |
32 | #include <linux/audit.h> | ||
32 | 33 | ||
33 | #include <asm/uaccess.h> | 34 | #include <asm/uaccess.h> |
34 | #include <asm/tlb.h> | 35 | #include <asm/tlb.h> |
@@ -293,11 +294,58 @@ void *vmalloc(unsigned long size) | |||
293 | } | 294 | } |
294 | EXPORT_SYMBOL(vmalloc); | 295 | EXPORT_SYMBOL(vmalloc); |
295 | 296 | ||
297 | /* | ||
298 | * vzalloc - allocate virtually continguos memory with zero fill | ||
299 | * | ||
300 | * @size: allocation size | ||
301 | * | ||
302 | * Allocate enough pages to cover @size from the page level | ||
303 | * allocator and map them into continguos kernel virtual space. | ||
304 | * The memory allocated is set to zero. | ||
305 | * | ||
306 | * For tight control over page level allocator and protection flags | ||
307 | * use __vmalloc() instead. | ||
308 | */ | ||
309 | void *vzalloc(unsigned long size) | ||
310 | { | ||
311 | return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, | ||
312 | PAGE_KERNEL); | ||
313 | } | ||
314 | EXPORT_SYMBOL(vzalloc); | ||
315 | |||
316 | /** | ||
317 | * vmalloc_node - allocate memory on a specific node | ||
318 | * @size: allocation size | ||
319 | * @node: numa node | ||
320 | * | ||
321 | * Allocate enough pages to cover @size from the page level | ||
322 | * allocator and map them into contiguous kernel virtual space. | ||
323 | * | ||
324 | * For tight control over page level allocator and protection flags | ||
325 | * use __vmalloc() instead. | ||
326 | */ | ||
296 | void *vmalloc_node(unsigned long size, int node) | 327 | void *vmalloc_node(unsigned long size, int node) |
297 | { | 328 | { |
298 | return vmalloc(size); | 329 | return vmalloc(size); |
299 | } | 330 | } |
300 | EXPORT_SYMBOL(vmalloc_node); | 331 | |
332 | /** | ||
333 | * vzalloc_node - allocate memory on a specific node with zero fill | ||
334 | * @size: allocation size | ||
335 | * @node: numa node | ||
336 | * | ||
337 | * Allocate enough pages to cover @size from the page level | ||
338 | * allocator and map them into contiguous kernel virtual space. | ||
339 | * The memory allocated is set to zero. | ||
340 | * | ||
341 | * For tight control over page level allocator and protection flags | ||
342 | * use __vmalloc() instead. | ||
343 | */ | ||
344 | void *vzalloc_node(unsigned long size, int node) | ||
345 | { | ||
346 | return vzalloc(size); | ||
347 | } | ||
348 | EXPORT_SYMBOL(vzalloc_node); | ||
301 | 349 | ||
302 | #ifndef PAGE_KERNEL_EXEC | 350 | #ifndef PAGE_KERNEL_EXEC |
303 | # define PAGE_KERNEL_EXEC PAGE_KERNEL | 351 | # define PAGE_KERNEL_EXEC PAGE_KERNEL |
@@ -1411,6 +1459,7 @@ SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len, | |||
1411 | struct file *file = NULL; | 1459 | struct file *file = NULL; |
1412 | unsigned long retval = -EBADF; | 1460 | unsigned long retval = -EBADF; |
1413 | 1461 | ||
1462 | audit_mmap_fd(fd, flags); | ||
1414 | if (!(flags & MAP_ANONYMOUS)) { | 1463 | if (!(flags & MAP_ANONYMOUS)) { |
1415 | file = fget(fd); | 1464 | file = fget(fd); |
1416 | if (!file) | 1465 | if (!file) |
diff --git a/mm/oom_kill.c b/mm/oom_kill.c index 4029583a1024..7dcca55ede7c 100644 --- a/mm/oom_kill.c +++ b/mm/oom_kill.c | |||
@@ -162,10 +162,11 @@ unsigned int oom_badness(struct task_struct *p, struct mem_cgroup *mem, | |||
162 | return 0; | 162 | return 0; |
163 | 163 | ||
164 | /* | 164 | /* |
165 | * Shortcut check for OOM_SCORE_ADJ_MIN so the entire heuristic doesn't | 165 | * Shortcut check for a thread sharing p->mm that is OOM_SCORE_ADJ_MIN |
166 | * need to be executed for something that cannot be killed. | 166 | * so the entire heuristic doesn't need to be executed for something |
167 | * that cannot be killed. | ||
167 | */ | 168 | */ |
168 | if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) { | 169 | if (atomic_read(&p->mm->oom_disable_count)) { |
169 | task_unlock(p); | 170 | task_unlock(p); |
170 | return 0; | 171 | return 0; |
171 | } | 172 | } |
@@ -403,16 +404,40 @@ static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order, | |||
403 | #define K(x) ((x) << (PAGE_SHIFT-10)) | 404 | #define K(x) ((x) << (PAGE_SHIFT-10)) |
404 | static int oom_kill_task(struct task_struct *p, struct mem_cgroup *mem) | 405 | static int oom_kill_task(struct task_struct *p, struct mem_cgroup *mem) |
405 | { | 406 | { |
407 | struct task_struct *q; | ||
408 | struct mm_struct *mm; | ||
409 | |||
406 | p = find_lock_task_mm(p); | 410 | p = find_lock_task_mm(p); |
407 | if (!p) | 411 | if (!p) |
408 | return 1; | 412 | return 1; |
409 | 413 | ||
414 | /* mm cannot be safely dereferenced after task_unlock(p) */ | ||
415 | mm = p->mm; | ||
416 | |||
410 | pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB\n", | 417 | pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB\n", |
411 | task_pid_nr(p), p->comm, K(p->mm->total_vm), | 418 | task_pid_nr(p), p->comm, K(p->mm->total_vm), |
412 | K(get_mm_counter(p->mm, MM_ANONPAGES)), | 419 | K(get_mm_counter(p->mm, MM_ANONPAGES)), |
413 | K(get_mm_counter(p->mm, MM_FILEPAGES))); | 420 | K(get_mm_counter(p->mm, MM_FILEPAGES))); |
414 | task_unlock(p); | 421 | task_unlock(p); |
415 | 422 | ||
423 | /* | ||
424 | * Kill all processes sharing p->mm in other thread groups, if any. | ||
425 | * They don't get access to memory reserves or a higher scheduler | ||
426 | * priority, though, to avoid depletion of all memory or task | ||
427 | * starvation. This prevents mm->mmap_sem livelock when an oom killed | ||
428 | * task cannot exit because it requires the semaphore and its contended | ||
429 | * by another thread trying to allocate memory itself. That thread will | ||
430 | * now get access to memory reserves since it has a pending fatal | ||
431 | * signal. | ||
432 | */ | ||
433 | for_each_process(q) | ||
434 | if (q->mm == mm && !same_thread_group(q, p)) { | ||
435 | task_lock(q); /* Protect ->comm from prctl() */ | ||
436 | pr_err("Kill process %d (%s) sharing same memory\n", | ||
437 | task_pid_nr(q), q->comm); | ||
438 | task_unlock(q); | ||
439 | force_sig(SIGKILL, q); | ||
440 | } | ||
416 | 441 | ||
417 | set_tsk_thread_flag(p, TIF_MEMDIE); | 442 | set_tsk_thread_flag(p, TIF_MEMDIE); |
418 | force_sig(SIGKILL, p); | 443 | force_sig(SIGKILL, p); |
@@ -680,7 +705,7 @@ void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, | |||
680 | read_lock(&tasklist_lock); | 705 | read_lock(&tasklist_lock); |
681 | if (sysctl_oom_kill_allocating_task && | 706 | if (sysctl_oom_kill_allocating_task && |
682 | !oom_unkillable_task(current, NULL, nodemask) && | 707 | !oom_unkillable_task(current, NULL, nodemask) && |
683 | (current->signal->oom_adj != OOM_DISABLE)) { | 708 | current->mm && !atomic_read(¤t->mm->oom_disable_count)) { |
684 | /* | 709 | /* |
685 | * oom_kill_process() needs tasklist_lock held. If it returns | 710 | * oom_kill_process() needs tasklist_lock held. If it returns |
686 | * non-zero, current could not be killed so we must fallback to | 711 | * non-zero, current could not be killed so we must fallback to |
diff --git a/mm/page-writeback.c b/mm/page-writeback.c index e3bccac1f025..b840afa89761 100644 --- a/mm/page-writeback.c +++ b/mm/page-writeback.c | |||
@@ -415,14 +415,8 @@ void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) | |||
415 | 415 | ||
416 | if (vm_dirty_bytes) | 416 | if (vm_dirty_bytes) |
417 | dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE); | 417 | dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE); |
418 | else { | 418 | else |
419 | int dirty_ratio; | 419 | dirty = (vm_dirty_ratio * available_memory) / 100; |
420 | |||
421 | dirty_ratio = vm_dirty_ratio; | ||
422 | if (dirty_ratio < 5) | ||
423 | dirty_ratio = 5; | ||
424 | dirty = (dirty_ratio * available_memory) / 100; | ||
425 | } | ||
426 | 420 | ||
427 | if (dirty_background_bytes) | 421 | if (dirty_background_bytes) |
428 | background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE); | 422 | background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE); |
@@ -510,7 +504,7 @@ static void balance_dirty_pages(struct address_space *mapping, | |||
510 | * catch-up. This avoids (excessively) small writeouts | 504 | * catch-up. This avoids (excessively) small writeouts |
511 | * when the bdi limits are ramping up. | 505 | * when the bdi limits are ramping up. |
512 | */ | 506 | */ |
513 | if (nr_reclaimable + nr_writeback < | 507 | if (nr_reclaimable + nr_writeback <= |
514 | (background_thresh + dirty_thresh) / 2) | 508 | (background_thresh + dirty_thresh) / 2) |
515 | break; | 509 | break; |
516 | 510 | ||
@@ -542,8 +536,8 @@ static void balance_dirty_pages(struct address_space *mapping, | |||
542 | * the last resort safeguard. | 536 | * the last resort safeguard. |
543 | */ | 537 | */ |
544 | dirty_exceeded = | 538 | dirty_exceeded = |
545 | (bdi_nr_reclaimable + bdi_nr_writeback >= bdi_thresh) | 539 | (bdi_nr_reclaimable + bdi_nr_writeback > bdi_thresh) |
546 | || (nr_reclaimable + nr_writeback >= dirty_thresh); | 540 | || (nr_reclaimable + nr_writeback > dirty_thresh); |
547 | 541 | ||
548 | if (!dirty_exceeded) | 542 | if (!dirty_exceeded) |
549 | break; | 543 | break; |
@@ -1121,6 +1115,7 @@ void account_page_dirtied(struct page *page, struct address_space *mapping) | |||
1121 | { | 1115 | { |
1122 | if (mapping_cap_account_dirty(mapping)) { | 1116 | if (mapping_cap_account_dirty(mapping)) { |
1123 | __inc_zone_page_state(page, NR_FILE_DIRTY); | 1117 | __inc_zone_page_state(page, NR_FILE_DIRTY); |
1118 | __inc_zone_page_state(page, NR_DIRTIED); | ||
1124 | __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); | 1119 | __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); |
1125 | task_dirty_inc(current); | 1120 | task_dirty_inc(current); |
1126 | task_io_account_write(PAGE_CACHE_SIZE); | 1121 | task_io_account_write(PAGE_CACHE_SIZE); |
@@ -1129,6 +1124,18 @@ void account_page_dirtied(struct page *page, struct address_space *mapping) | |||
1129 | EXPORT_SYMBOL(account_page_dirtied); | 1124 | EXPORT_SYMBOL(account_page_dirtied); |
1130 | 1125 | ||
1131 | /* | 1126 | /* |
1127 | * Helper function for set_page_writeback family. | ||
1128 | * NOTE: Unlike account_page_dirtied this does not rely on being atomic | ||
1129 | * wrt interrupts. | ||
1130 | */ | ||
1131 | void account_page_writeback(struct page *page) | ||
1132 | { | ||
1133 | inc_zone_page_state(page, NR_WRITEBACK); | ||
1134 | inc_zone_page_state(page, NR_WRITTEN); | ||
1135 | } | ||
1136 | EXPORT_SYMBOL(account_page_writeback); | ||
1137 | |||
1138 | /* | ||
1132 | * For address_spaces which do not use buffers. Just tag the page as dirty in | 1139 | * For address_spaces which do not use buffers. Just tag the page as dirty in |
1133 | * its radix tree. | 1140 | * its radix tree. |
1134 | * | 1141 | * |
@@ -1366,7 +1373,7 @@ int test_set_page_writeback(struct page *page) | |||
1366 | ret = TestSetPageWriteback(page); | 1373 | ret = TestSetPageWriteback(page); |
1367 | } | 1374 | } |
1368 | if (!ret) | 1375 | if (!ret) |
1369 | inc_zone_page_state(page, NR_WRITEBACK); | 1376 | account_page_writeback(page); |
1370 | return ret; | 1377 | return ret; |
1371 | 1378 | ||
1372 | } | 1379 | } |
diff --git a/mm/page_alloc.c b/mm/page_alloc.c index 2a362c52fdf4..07a654486f75 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c | |||
@@ -531,7 +531,7 @@ static inline void __free_one_page(struct page *page, | |||
531 | * so it's less likely to be used soon and more likely to be merged | 531 | * so it's less likely to be used soon and more likely to be merged |
532 | * as a higher order page | 532 | * as a higher order page |
533 | */ | 533 | */ |
534 | if ((order < MAX_ORDER-1) && pfn_valid_within(page_to_pfn(buddy))) { | 534 | if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { |
535 | struct page *higher_page, *higher_buddy; | 535 | struct page *higher_page, *higher_buddy; |
536 | combined_idx = __find_combined_index(page_idx, order); | 536 | combined_idx = __find_combined_index(page_idx, order); |
537 | higher_page = page + combined_idx - page_idx; | 537 | higher_page = page + combined_idx - page_idx; |
@@ -1907,7 +1907,7 @@ __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, | |||
1907 | preferred_zone, migratetype); | 1907 | preferred_zone, migratetype); |
1908 | 1908 | ||
1909 | if (!page && gfp_mask & __GFP_NOFAIL) | 1909 | if (!page && gfp_mask & __GFP_NOFAIL) |
1910 | congestion_wait(BLK_RW_ASYNC, HZ/50); | 1910 | wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); |
1911 | } while (!page && (gfp_mask & __GFP_NOFAIL)); | 1911 | } while (!page && (gfp_mask & __GFP_NOFAIL)); |
1912 | 1912 | ||
1913 | return page; | 1913 | return page; |
@@ -1932,7 +1932,7 @@ gfp_to_alloc_flags(gfp_t gfp_mask) | |||
1932 | const gfp_t wait = gfp_mask & __GFP_WAIT; | 1932 | const gfp_t wait = gfp_mask & __GFP_WAIT; |
1933 | 1933 | ||
1934 | /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ | 1934 | /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ |
1935 | BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH); | 1935 | BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); |
1936 | 1936 | ||
1937 | /* | 1937 | /* |
1938 | * The caller may dip into page reserves a bit more if the caller | 1938 | * The caller may dip into page reserves a bit more if the caller |
@@ -1940,7 +1940,7 @@ gfp_to_alloc_flags(gfp_t gfp_mask) | |||
1940 | * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will | 1940 | * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will |
1941 | * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). | 1941 | * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). |
1942 | */ | 1942 | */ |
1943 | alloc_flags |= (gfp_mask & __GFP_HIGH); | 1943 | alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); |
1944 | 1944 | ||
1945 | if (!wait) { | 1945 | if (!wait) { |
1946 | alloc_flags |= ALLOC_HARDER; | 1946 | alloc_flags |= ALLOC_HARDER; |
@@ -2095,7 +2095,7 @@ rebalance: | |||
2095 | pages_reclaimed += did_some_progress; | 2095 | pages_reclaimed += did_some_progress; |
2096 | if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) { | 2096 | if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) { |
2097 | /* Wait for some write requests to complete then retry */ | 2097 | /* Wait for some write requests to complete then retry */ |
2098 | congestion_wait(BLK_RW_ASYNC, HZ/50); | 2098 | wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); |
2099 | goto rebalance; | 2099 | goto rebalance; |
2100 | } | 2100 | } |
2101 | 2101 | ||
@@ -5297,12 +5297,65 @@ void set_pageblock_flags_group(struct page *page, unsigned long flags, | |||
5297 | * page allocater never alloc memory from ISOLATE block. | 5297 | * page allocater never alloc memory from ISOLATE block. |
5298 | */ | 5298 | */ |
5299 | 5299 | ||
5300 | static int | ||
5301 | __count_immobile_pages(struct zone *zone, struct page *page, int count) | ||
5302 | { | ||
5303 | unsigned long pfn, iter, found; | ||
5304 | /* | ||
5305 | * For avoiding noise data, lru_add_drain_all() should be called | ||
5306 | * If ZONE_MOVABLE, the zone never contains immobile pages | ||
5307 | */ | ||
5308 | if (zone_idx(zone) == ZONE_MOVABLE) | ||
5309 | return true; | ||
5310 | |||
5311 | if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE) | ||
5312 | return true; | ||
5313 | |||
5314 | pfn = page_to_pfn(page); | ||
5315 | for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { | ||
5316 | unsigned long check = pfn + iter; | ||
5317 | |||
5318 | if (!pfn_valid_within(check)) { | ||
5319 | iter++; | ||
5320 | continue; | ||
5321 | } | ||
5322 | page = pfn_to_page(check); | ||
5323 | if (!page_count(page)) { | ||
5324 | if (PageBuddy(page)) | ||
5325 | iter += (1 << page_order(page)) - 1; | ||
5326 | continue; | ||
5327 | } | ||
5328 | if (!PageLRU(page)) | ||
5329 | found++; | ||
5330 | /* | ||
5331 | * If there are RECLAIMABLE pages, we need to check it. | ||
5332 | * But now, memory offline itself doesn't call shrink_slab() | ||
5333 | * and it still to be fixed. | ||
5334 | */ | ||
5335 | /* | ||
5336 | * If the page is not RAM, page_count()should be 0. | ||
5337 | * we don't need more check. This is an _used_ not-movable page. | ||
5338 | * | ||
5339 | * The problematic thing here is PG_reserved pages. PG_reserved | ||
5340 | * is set to both of a memory hole page and a _used_ kernel | ||
5341 | * page at boot. | ||
5342 | */ | ||
5343 | if (found > count) | ||
5344 | return false; | ||
5345 | } | ||
5346 | return true; | ||
5347 | } | ||
5348 | |||
5349 | bool is_pageblock_removable_nolock(struct page *page) | ||
5350 | { | ||
5351 | struct zone *zone = page_zone(page); | ||
5352 | return __count_immobile_pages(zone, page, 0); | ||
5353 | } | ||
5354 | |||
5300 | int set_migratetype_isolate(struct page *page) | 5355 | int set_migratetype_isolate(struct page *page) |
5301 | { | 5356 | { |
5302 | struct zone *zone; | 5357 | struct zone *zone; |
5303 | struct page *curr_page; | 5358 | unsigned long flags, pfn; |
5304 | unsigned long flags, pfn, iter; | ||
5305 | unsigned long immobile = 0; | ||
5306 | struct memory_isolate_notify arg; | 5359 | struct memory_isolate_notify arg; |
5307 | int notifier_ret; | 5360 | int notifier_ret; |
5308 | int ret = -EBUSY; | 5361 | int ret = -EBUSY; |
@@ -5312,11 +5365,6 @@ int set_migratetype_isolate(struct page *page) | |||
5312 | zone_idx = zone_idx(zone); | 5365 | zone_idx = zone_idx(zone); |
5313 | 5366 | ||
5314 | spin_lock_irqsave(&zone->lock, flags); | 5367 | spin_lock_irqsave(&zone->lock, flags); |
5315 | if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE || | ||
5316 | zone_idx == ZONE_MOVABLE) { | ||
5317 | ret = 0; | ||
5318 | goto out; | ||
5319 | } | ||
5320 | 5368 | ||
5321 | pfn = page_to_pfn(page); | 5369 | pfn = page_to_pfn(page); |
5322 | arg.start_pfn = pfn; | 5370 | arg.start_pfn = pfn; |
@@ -5336,23 +5384,20 @@ int set_migratetype_isolate(struct page *page) | |||
5336 | */ | 5384 | */ |
5337 | notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg); | 5385 | notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg); |
5338 | notifier_ret = notifier_to_errno(notifier_ret); | 5386 | notifier_ret = notifier_to_errno(notifier_ret); |
5339 | if (notifier_ret || !arg.pages_found) | 5387 | if (notifier_ret) |
5340 | goto out; | 5388 | goto out; |
5341 | 5389 | /* | |
5342 | for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) { | 5390 | * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself. |
5343 | if (!pfn_valid_within(pfn)) | 5391 | * We just check MOVABLE pages. |
5344 | continue; | 5392 | */ |
5345 | 5393 | if (__count_immobile_pages(zone, page, arg.pages_found)) | |
5346 | curr_page = pfn_to_page(iter); | ||
5347 | if (!page_count(curr_page) || PageLRU(curr_page)) | ||
5348 | continue; | ||
5349 | |||
5350 | immobile++; | ||
5351 | } | ||
5352 | |||
5353 | if (arg.pages_found == immobile) | ||
5354 | ret = 0; | 5394 | ret = 0; |
5355 | 5395 | ||
5396 | /* | ||
5397 | * immobile means "not-on-lru" paes. If immobile is larger than | ||
5398 | * removable-by-driver pages reported by notifier, we'll fail. | ||
5399 | */ | ||
5400 | |||
5356 | out: | 5401 | out: |
5357 | if (!ret) { | 5402 | if (!ret) { |
5358 | set_pageblock_migratetype(page, MIGRATE_ISOLATE); | 5403 | set_pageblock_migratetype(page, MIGRATE_ISOLATE); |
diff --git a/mm/page_isolation.c b/mm/page_isolation.c index 5e0ffd967452..4ae42bb40892 100644 --- a/mm/page_isolation.c +++ b/mm/page_isolation.c | |||
@@ -86,7 +86,7 @@ undo_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn) | |||
86 | * all pages in [start_pfn...end_pfn) must be in the same zone. | 86 | * all pages in [start_pfn...end_pfn) must be in the same zone. |
87 | * zone->lock must be held before call this. | 87 | * zone->lock must be held before call this. |
88 | * | 88 | * |
89 | * Returns 0 if all pages in the range is isolated. | 89 | * Returns 1 if all pages in the range is isolated. |
90 | */ | 90 | */ |
91 | static int | 91 | static int |
92 | __test_page_isolated_in_pageblock(unsigned long pfn, unsigned long end_pfn) | 92 | __test_page_isolated_in_pageblock(unsigned long pfn, unsigned long end_pfn) |
@@ -119,7 +119,6 @@ int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn) | |||
119 | struct zone *zone; | 119 | struct zone *zone; |
120 | int ret; | 120 | int ret; |
121 | 121 | ||
122 | pfn = start_pfn; | ||
123 | /* | 122 | /* |
124 | * Note: pageblock_nr_page != MAX_ORDER. Then, chunks of free page | 123 | * Note: pageblock_nr_page != MAX_ORDER. Then, chunks of free page |
125 | * is not aligned to pageblock_nr_pages. | 124 | * is not aligned to pageblock_nr_pages. |
@@ -80,7 +80,7 @@ static inline struct anon_vma_chain *anon_vma_chain_alloc(void) | |||
80 | return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL); | 80 | return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL); |
81 | } | 81 | } |
82 | 82 | ||
83 | void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) | 83 | static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) |
84 | { | 84 | { |
85 | kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); | 85 | kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); |
86 | } | 86 | } |
@@ -314,7 +314,7 @@ void __init anon_vma_init(void) | |||
314 | * Getting a lock on a stable anon_vma from a page off the LRU is | 314 | * Getting a lock on a stable anon_vma from a page off the LRU is |
315 | * tricky: page_lock_anon_vma rely on RCU to guard against the races. | 315 | * tricky: page_lock_anon_vma rely on RCU to guard against the races. |
316 | */ | 316 | */ |
317 | struct anon_vma *page_lock_anon_vma(struct page *page) | 317 | struct anon_vma *__page_lock_anon_vma(struct page *page) |
318 | { | 318 | { |
319 | struct anon_vma *anon_vma, *root_anon_vma; | 319 | struct anon_vma *anon_vma, *root_anon_vma; |
320 | unsigned long anon_mapping; | 320 | unsigned long anon_mapping; |
@@ -348,6 +348,8 @@ out: | |||
348 | } | 348 | } |
349 | 349 | ||
350 | void page_unlock_anon_vma(struct anon_vma *anon_vma) | 350 | void page_unlock_anon_vma(struct anon_vma *anon_vma) |
351 | __releases(&anon_vma->root->lock) | ||
352 | __releases(RCU) | ||
351 | { | 353 | { |
352 | anon_vma_unlock(anon_vma); | 354 | anon_vma_unlock(anon_vma); |
353 | rcu_read_unlock(); | 355 | rcu_read_unlock(); |
@@ -407,7 +409,7 @@ unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) | |||
407 | * | 409 | * |
408 | * On success returns with pte mapped and locked. | 410 | * On success returns with pte mapped and locked. |
409 | */ | 411 | */ |
410 | pte_t *page_check_address(struct page *page, struct mm_struct *mm, | 412 | pte_t *__page_check_address(struct page *page, struct mm_struct *mm, |
411 | unsigned long address, spinlock_t **ptlp, int sync) | 413 | unsigned long address, spinlock_t **ptlp, int sync) |
412 | { | 414 | { |
413 | pgd_t *pgd; | 415 | pgd_t *pgd; |
@@ -745,7 +747,7 @@ int page_mkclean(struct page *page) | |||
745 | if (mapping) { | 747 | if (mapping) { |
746 | ret = page_mkclean_file(mapping, page); | 748 | ret = page_mkclean_file(mapping, page); |
747 | if (page_test_dirty(page)) { | 749 | if (page_test_dirty(page)) { |
748 | page_clear_dirty(page); | 750 | page_clear_dirty(page, 1); |
749 | ret = 1; | 751 | ret = 1; |
750 | } | 752 | } |
751 | } | 753 | } |
@@ -780,10 +782,10 @@ void page_move_anon_rmap(struct page *page, | |||
780 | } | 782 | } |
781 | 783 | ||
782 | /** | 784 | /** |
783 | * __page_set_anon_rmap - setup new anonymous rmap | 785 | * __page_set_anon_rmap - set up new anonymous rmap |
784 | * @page: the page to add the mapping to | 786 | * @page: Page to add to rmap |
785 | * @vma: the vm area in which the mapping is added | 787 | * @vma: VM area to add page to. |
786 | * @address: the user virtual address mapped | 788 | * @address: User virtual address of the mapping |
787 | * @exclusive: the page is exclusively owned by the current process | 789 | * @exclusive: the page is exclusively owned by the current process |
788 | */ | 790 | */ |
789 | static void __page_set_anon_rmap(struct page *page, | 791 | static void __page_set_anon_rmap(struct page *page, |
@@ -793,25 +795,16 @@ static void __page_set_anon_rmap(struct page *page, | |||
793 | 795 | ||
794 | BUG_ON(!anon_vma); | 796 | BUG_ON(!anon_vma); |
795 | 797 | ||
798 | if (PageAnon(page)) | ||
799 | return; | ||
800 | |||
796 | /* | 801 | /* |
797 | * If the page isn't exclusively mapped into this vma, | 802 | * If the page isn't exclusively mapped into this vma, |
798 | * we must use the _oldest_ possible anon_vma for the | 803 | * we must use the _oldest_ possible anon_vma for the |
799 | * page mapping! | 804 | * page mapping! |
800 | */ | 805 | */ |
801 | if (!exclusive) { | 806 | if (!exclusive) |
802 | if (PageAnon(page)) | ||
803 | return; | ||
804 | anon_vma = anon_vma->root; | 807 | anon_vma = anon_vma->root; |
805 | } else { | ||
806 | /* | ||
807 | * In this case, swapped-out-but-not-discarded swap-cache | ||
808 | * is remapped. So, no need to update page->mapping here. | ||
809 | * We convice anon_vma poitned by page->mapping is not obsolete | ||
810 | * because vma->anon_vma is necessary to be a family of it. | ||
811 | */ | ||
812 | if (PageAnon(page)) | ||
813 | return; | ||
814 | } | ||
815 | 808 | ||
816 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | 809 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; |
817 | page->mapping = (struct address_space *) anon_vma; | 810 | page->mapping = (struct address_space *) anon_vma; |
@@ -942,7 +935,7 @@ void page_remove_rmap(struct page *page) | |||
942 | * containing the swap entry, but page not yet written to swap. | 935 | * containing the swap entry, but page not yet written to swap. |
943 | */ | 936 | */ |
944 | if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) { | 937 | if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) { |
945 | page_clear_dirty(page); | 938 | page_clear_dirty(page, 1); |
946 | set_page_dirty(page); | 939 | set_page_dirty(page); |
947 | } | 940 | } |
948 | /* | 941 | /* |
diff --git a/mm/shmem.c b/mm/shmem.c index 080b09a57a8f..47fdeeb9d636 100644 --- a/mm/shmem.c +++ b/mm/shmem.c | |||
@@ -1586,6 +1586,7 @@ static struct inode *shmem_get_inode(struct super_block *sb, const struct inode | |||
1586 | 1586 | ||
1587 | inode = new_inode(sb); | 1587 | inode = new_inode(sb); |
1588 | if (inode) { | 1588 | if (inode) { |
1589 | inode->i_ino = get_next_ino(); | ||
1589 | inode_init_owner(inode, dir, mode); | 1590 | inode_init_owner(inode, dir, mode); |
1590 | inode->i_blocks = 0; | 1591 | inode->i_blocks = 0; |
1591 | inode->i_mapping->backing_dev_info = &shmem_backing_dev_info; | 1592 | inode->i_mapping->backing_dev_info = &shmem_backing_dev_info; |
@@ -1903,7 +1904,7 @@ static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentr | |||
1903 | dir->i_size += BOGO_DIRENT_SIZE; | 1904 | dir->i_size += BOGO_DIRENT_SIZE; |
1904 | inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; | 1905 | inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; |
1905 | inc_nlink(inode); | 1906 | inc_nlink(inode); |
1906 | atomic_inc(&inode->i_count); /* New dentry reference */ | 1907 | ihold(inode); /* New dentry reference */ |
1907 | dget(dentry); /* Extra pinning count for the created dentry */ | 1908 | dget(dentry); /* Extra pinning count for the created dentry */ |
1908 | d_instantiate(dentry, inode); | 1909 | d_instantiate(dentry, inode); |
1909 | out: | 1910 | out: |
@@ -2146,7 +2147,7 @@ static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len, | |||
2146 | if (*len < 3) | 2147 | if (*len < 3) |
2147 | return 255; | 2148 | return 255; |
2148 | 2149 | ||
2149 | if (hlist_unhashed(&inode->i_hash)) { | 2150 | if (inode_unhashed(inode)) { |
2150 | /* Unfortunately insert_inode_hash is not idempotent, | 2151 | /* Unfortunately insert_inode_hash is not idempotent, |
2151 | * so as we hash inodes here rather than at creation | 2152 | * so as we hash inodes here rather than at creation |
2152 | * time, we need a lock to ensure we only try | 2153 | * time, we need a lock to ensure we only try |
@@ -2154,7 +2155,7 @@ static int shmem_encode_fh(struct dentry *dentry, __u32 *fh, int *len, | |||
2154 | */ | 2155 | */ |
2155 | static DEFINE_SPINLOCK(lock); | 2156 | static DEFINE_SPINLOCK(lock); |
2156 | spin_lock(&lock); | 2157 | spin_lock(&lock); |
2157 | if (hlist_unhashed(&inode->i_hash)) | 2158 | if (inode_unhashed(inode)) |
2158 | __insert_inode_hash(inode, | 2159 | __insert_inode_hash(inode, |
2159 | inode->i_ino + inode->i_generation); | 2160 | inode->i_ino + inode->i_generation); |
2160 | spin_unlock(&lock); | 2161 | spin_unlock(&lock); |
@@ -2537,16 +2538,16 @@ static const struct vm_operations_struct shmem_vm_ops = { | |||
2537 | }; | 2538 | }; |
2538 | 2539 | ||
2539 | 2540 | ||
2540 | static int shmem_get_sb(struct file_system_type *fs_type, | 2541 | static struct dentry *shmem_mount(struct file_system_type *fs_type, |
2541 | int flags, const char *dev_name, void *data, struct vfsmount *mnt) | 2542 | int flags, const char *dev_name, void *data) |
2542 | { | 2543 | { |
2543 | return get_sb_nodev(fs_type, flags, data, shmem_fill_super, mnt); | 2544 | return mount_nodev(fs_type, flags, data, shmem_fill_super); |
2544 | } | 2545 | } |
2545 | 2546 | ||
2546 | static struct file_system_type tmpfs_fs_type = { | 2547 | static struct file_system_type tmpfs_fs_type = { |
2547 | .owner = THIS_MODULE, | 2548 | .owner = THIS_MODULE, |
2548 | .name = "tmpfs", | 2549 | .name = "tmpfs", |
2549 | .get_sb = shmem_get_sb, | 2550 | .mount = shmem_mount, |
2550 | .kill_sb = kill_litter_super, | 2551 | .kill_sb = kill_litter_super, |
2551 | }; | 2552 | }; |
2552 | 2553 | ||
@@ -2642,7 +2643,7 @@ out: | |||
2642 | 2643 | ||
2643 | static struct file_system_type tmpfs_fs_type = { | 2644 | static struct file_system_type tmpfs_fs_type = { |
2644 | .name = "tmpfs", | 2645 | .name = "tmpfs", |
2645 | .get_sb = ramfs_get_sb, | 2646 | .mount = ramfs_mount, |
2646 | .kill_sb = kill_litter_super, | 2647 | .kill_sb = kill_litter_super, |
2647 | }; | 2648 | }; |
2648 | 2649 | ||
@@ -901,7 +901,7 @@ static int transfer_objects(struct array_cache *to, | |||
901 | struct array_cache *from, unsigned int max) | 901 | struct array_cache *from, unsigned int max) |
902 | { | 902 | { |
903 | /* Figure out how many entries to transfer */ | 903 | /* Figure out how many entries to transfer */ |
904 | int nr = min(min(from->avail, max), to->limit - to->avail); | 904 | int nr = min3(from->avail, max, to->limit - to->avail); |
905 | 905 | ||
906 | if (!nr) | 906 | if (!nr) |
907 | return 0; | 907 | return 0; |
@@ -378,6 +378,7 @@ void release_pages(struct page **pages, int nr, int cold) | |||
378 | 378 | ||
379 | pagevec_free(&pages_to_free); | 379 | pagevec_free(&pages_to_free); |
380 | } | 380 | } |
381 | EXPORT_SYMBOL(release_pages); | ||
381 | 382 | ||
382 | /* | 383 | /* |
383 | * The pages which we're about to release may be in the deferred lru-addition | 384 | * The pages which we're about to release may be in the deferred lru-addition |
diff --git a/mm/swapfile.c b/mm/swapfile.c index 9fc7bac7db0c..67ddaaf98c74 100644 --- a/mm/swapfile.c +++ b/mm/swapfile.c | |||
@@ -30,6 +30,7 @@ | |||
30 | #include <linux/capability.h> | 30 | #include <linux/capability.h> |
31 | #include <linux/syscalls.h> | 31 | #include <linux/syscalls.h> |
32 | #include <linux/memcontrol.h> | 32 | #include <linux/memcontrol.h> |
33 | #include <linux/poll.h> | ||
33 | 34 | ||
34 | #include <asm/pgtable.h> | 35 | #include <asm/pgtable.h> |
35 | #include <asm/tlbflush.h> | 36 | #include <asm/tlbflush.h> |
@@ -58,6 +59,10 @@ static struct swap_info_struct *swap_info[MAX_SWAPFILES]; | |||
58 | 59 | ||
59 | static DEFINE_MUTEX(swapon_mutex); | 60 | static DEFINE_MUTEX(swapon_mutex); |
60 | 61 | ||
62 | static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); | ||
63 | /* Activity counter to indicate that a swapon or swapoff has occurred */ | ||
64 | static atomic_t proc_poll_event = ATOMIC_INIT(0); | ||
65 | |||
61 | static inline unsigned char swap_count(unsigned char ent) | 66 | static inline unsigned char swap_count(unsigned char ent) |
62 | { | 67 | { |
63 | return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */ | 68 | return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */ |
@@ -1680,6 +1685,8 @@ SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) | |||
1680 | } | 1685 | } |
1681 | filp_close(swap_file, NULL); | 1686 | filp_close(swap_file, NULL); |
1682 | err = 0; | 1687 | err = 0; |
1688 | atomic_inc(&proc_poll_event); | ||
1689 | wake_up_interruptible(&proc_poll_wait); | ||
1683 | 1690 | ||
1684 | out_dput: | 1691 | out_dput: |
1685 | filp_close(victim, NULL); | 1692 | filp_close(victim, NULL); |
@@ -1688,6 +1695,25 @@ out: | |||
1688 | } | 1695 | } |
1689 | 1696 | ||
1690 | #ifdef CONFIG_PROC_FS | 1697 | #ifdef CONFIG_PROC_FS |
1698 | struct proc_swaps { | ||
1699 | struct seq_file seq; | ||
1700 | int event; | ||
1701 | }; | ||
1702 | |||
1703 | static unsigned swaps_poll(struct file *file, poll_table *wait) | ||
1704 | { | ||
1705 | struct proc_swaps *s = file->private_data; | ||
1706 | |||
1707 | poll_wait(file, &proc_poll_wait, wait); | ||
1708 | |||
1709 | if (s->event != atomic_read(&proc_poll_event)) { | ||
1710 | s->event = atomic_read(&proc_poll_event); | ||
1711 | return POLLIN | POLLRDNORM | POLLERR | POLLPRI; | ||
1712 | } | ||
1713 | |||
1714 | return POLLIN | POLLRDNORM; | ||
1715 | } | ||
1716 | |||
1691 | /* iterator */ | 1717 | /* iterator */ |
1692 | static void *swap_start(struct seq_file *swap, loff_t *pos) | 1718 | static void *swap_start(struct seq_file *swap, loff_t *pos) |
1693 | { | 1719 | { |
@@ -1771,7 +1797,24 @@ static const struct seq_operations swaps_op = { | |||
1771 | 1797 | ||
1772 | static int swaps_open(struct inode *inode, struct file *file) | 1798 | static int swaps_open(struct inode *inode, struct file *file) |
1773 | { | 1799 | { |
1774 | return seq_open(file, &swaps_op); | 1800 | struct proc_swaps *s; |
1801 | int ret; | ||
1802 | |||
1803 | s = kmalloc(sizeof(struct proc_swaps), GFP_KERNEL); | ||
1804 | if (!s) | ||
1805 | return -ENOMEM; | ||
1806 | |||
1807 | file->private_data = s; | ||
1808 | |||
1809 | ret = seq_open(file, &swaps_op); | ||
1810 | if (ret) { | ||
1811 | kfree(s); | ||
1812 | return ret; | ||
1813 | } | ||
1814 | |||
1815 | s->seq.private = s; | ||
1816 | s->event = atomic_read(&proc_poll_event); | ||
1817 | return ret; | ||
1775 | } | 1818 | } |
1776 | 1819 | ||
1777 | static const struct file_operations proc_swaps_operations = { | 1820 | static const struct file_operations proc_swaps_operations = { |
@@ -1779,6 +1822,7 @@ static const struct file_operations proc_swaps_operations = { | |||
1779 | .read = seq_read, | 1822 | .read = seq_read, |
1780 | .llseek = seq_lseek, | 1823 | .llseek = seq_lseek, |
1781 | .release = seq_release, | 1824 | .release = seq_release, |
1825 | .poll = swaps_poll, | ||
1782 | }; | 1826 | }; |
1783 | 1827 | ||
1784 | static int __init procswaps_init(void) | 1828 | static int __init procswaps_init(void) |
@@ -2084,6 +2128,9 @@ SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) | |||
2084 | swap_info[prev]->next = type; | 2128 | swap_info[prev]->next = type; |
2085 | spin_unlock(&swap_lock); | 2129 | spin_unlock(&swap_lock); |
2086 | mutex_unlock(&swapon_mutex); | 2130 | mutex_unlock(&swapon_mutex); |
2131 | atomic_inc(&proc_poll_event); | ||
2132 | wake_up_interruptible(&proc_poll_wait); | ||
2133 | |||
2087 | error = 0; | 2134 | error = 0; |
2088 | goto out; | 2135 | goto out; |
2089 | bad_swap: | 2136 | bad_swap: |
diff --git a/mm/vmalloc.c b/mm/vmalloc.c index 9f909622a25e..a3d66b3dc5cb 100644 --- a/mm/vmalloc.c +++ b/mm/vmalloc.c | |||
@@ -293,13 +293,13 @@ static void __insert_vmap_area(struct vmap_area *va) | |||
293 | struct rb_node *tmp; | 293 | struct rb_node *tmp; |
294 | 294 | ||
295 | while (*p) { | 295 | while (*p) { |
296 | struct vmap_area *tmp; | 296 | struct vmap_area *tmp_va; |
297 | 297 | ||
298 | parent = *p; | 298 | parent = *p; |
299 | tmp = rb_entry(parent, struct vmap_area, rb_node); | 299 | tmp_va = rb_entry(parent, struct vmap_area, rb_node); |
300 | if (va->va_start < tmp->va_end) | 300 | if (va->va_start < tmp_va->va_end) |
301 | p = &(*p)->rb_left; | 301 | p = &(*p)->rb_left; |
302 | else if (va->va_end > tmp->va_start) | 302 | else if (va->va_end > tmp_va->va_start) |
303 | p = &(*p)->rb_right; | 303 | p = &(*p)->rb_right; |
304 | else | 304 | else |
305 | BUG(); | 305 | BUG(); |
@@ -1596,6 +1596,13 @@ void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) | |||
1596 | } | 1596 | } |
1597 | EXPORT_SYMBOL(__vmalloc); | 1597 | EXPORT_SYMBOL(__vmalloc); |
1598 | 1598 | ||
1599 | static inline void *__vmalloc_node_flags(unsigned long size, | ||
1600 | int node, gfp_t flags) | ||
1601 | { | ||
1602 | return __vmalloc_node(size, 1, flags, PAGE_KERNEL, | ||
1603 | node, __builtin_return_address(0)); | ||
1604 | } | ||
1605 | |||
1599 | /** | 1606 | /** |
1600 | * vmalloc - allocate virtually contiguous memory | 1607 | * vmalloc - allocate virtually contiguous memory |
1601 | * @size: allocation size | 1608 | * @size: allocation size |
@@ -1607,12 +1614,28 @@ EXPORT_SYMBOL(__vmalloc); | |||
1607 | */ | 1614 | */ |
1608 | void *vmalloc(unsigned long size) | 1615 | void *vmalloc(unsigned long size) |
1609 | { | 1616 | { |
1610 | return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, | 1617 | return __vmalloc_node_flags(size, -1, GFP_KERNEL | __GFP_HIGHMEM); |
1611 | -1, __builtin_return_address(0)); | ||
1612 | } | 1618 | } |
1613 | EXPORT_SYMBOL(vmalloc); | 1619 | EXPORT_SYMBOL(vmalloc); |
1614 | 1620 | ||
1615 | /** | 1621 | /** |
1622 | * vzalloc - allocate virtually contiguous memory with zero fill | ||
1623 | * @size: allocation size | ||
1624 | * Allocate enough pages to cover @size from the page level | ||
1625 | * allocator and map them into contiguous kernel virtual space. | ||
1626 | * The memory allocated is set to zero. | ||
1627 | * | ||
1628 | * For tight control over page level allocator and protection flags | ||
1629 | * use __vmalloc() instead. | ||
1630 | */ | ||
1631 | void *vzalloc(unsigned long size) | ||
1632 | { | ||
1633 | return __vmalloc_node_flags(size, -1, | ||
1634 | GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); | ||
1635 | } | ||
1636 | EXPORT_SYMBOL(vzalloc); | ||
1637 | |||
1638 | /** | ||
1616 | * vmalloc_user - allocate zeroed virtually contiguous memory for userspace | 1639 | * vmalloc_user - allocate zeroed virtually contiguous memory for userspace |
1617 | * @size: allocation size | 1640 | * @size: allocation size |
1618 | * | 1641 | * |
@@ -1653,6 +1676,25 @@ void *vmalloc_node(unsigned long size, int node) | |||
1653 | } | 1676 | } |
1654 | EXPORT_SYMBOL(vmalloc_node); | 1677 | EXPORT_SYMBOL(vmalloc_node); |
1655 | 1678 | ||
1679 | /** | ||
1680 | * vzalloc_node - allocate memory on a specific node with zero fill | ||
1681 | * @size: allocation size | ||
1682 | * @node: numa node | ||
1683 | * | ||
1684 | * Allocate enough pages to cover @size from the page level | ||
1685 | * allocator and map them into contiguous kernel virtual space. | ||
1686 | * The memory allocated is set to zero. | ||
1687 | * | ||
1688 | * For tight control over page level allocator and protection flags | ||
1689 | * use __vmalloc_node() instead. | ||
1690 | */ | ||
1691 | void *vzalloc_node(unsigned long size, int node) | ||
1692 | { | ||
1693 | return __vmalloc_node_flags(size, node, | ||
1694 | GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); | ||
1695 | } | ||
1696 | EXPORT_SYMBOL(vzalloc_node); | ||
1697 | |||
1656 | #ifndef PAGE_KERNEL_EXEC | 1698 | #ifndef PAGE_KERNEL_EXEC |
1657 | # define PAGE_KERNEL_EXEC PAGE_KERNEL | 1699 | # define PAGE_KERNEL_EXEC PAGE_KERNEL |
1658 | #endif | 1700 | #endif |
@@ -2350,6 +2392,7 @@ void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) | |||
2350 | 2392 | ||
2351 | #ifdef CONFIG_PROC_FS | 2393 | #ifdef CONFIG_PROC_FS |
2352 | static void *s_start(struct seq_file *m, loff_t *pos) | 2394 | static void *s_start(struct seq_file *m, loff_t *pos) |
2395 | __acquires(&vmlist_lock) | ||
2353 | { | 2396 | { |
2354 | loff_t n = *pos; | 2397 | loff_t n = *pos; |
2355 | struct vm_struct *v; | 2398 | struct vm_struct *v; |
@@ -2376,6 +2419,7 @@ static void *s_next(struct seq_file *m, void *p, loff_t *pos) | |||
2376 | } | 2419 | } |
2377 | 2420 | ||
2378 | static void s_stop(struct seq_file *m, void *p) | 2421 | static void s_stop(struct seq_file *m, void *p) |
2422 | __releases(&vmlist_lock) | ||
2379 | { | 2423 | { |
2380 | read_unlock(&vmlist_lock); | 2424 | read_unlock(&vmlist_lock); |
2381 | } | 2425 | } |
diff --git a/mm/vmscan.c b/mm/vmscan.c index b94c9464f262..b8a6fdc21312 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c | |||
@@ -51,6 +51,12 @@ | |||
51 | #define CREATE_TRACE_POINTS | 51 | #define CREATE_TRACE_POINTS |
52 | #include <trace/events/vmscan.h> | 52 | #include <trace/events/vmscan.h> |
53 | 53 | ||
54 | enum lumpy_mode { | ||
55 | LUMPY_MODE_NONE, | ||
56 | LUMPY_MODE_ASYNC, | ||
57 | LUMPY_MODE_SYNC, | ||
58 | }; | ||
59 | |||
54 | struct scan_control { | 60 | struct scan_control { |
55 | /* Incremented by the number of inactive pages that were scanned */ | 61 | /* Incremented by the number of inactive pages that were scanned */ |
56 | unsigned long nr_scanned; | 62 | unsigned long nr_scanned; |
@@ -82,7 +88,7 @@ struct scan_control { | |||
82 | * Intend to reclaim enough continuous memory rather than reclaim | 88 | * Intend to reclaim enough continuous memory rather than reclaim |
83 | * enough amount of memory. i.e, mode for high order allocation. | 89 | * enough amount of memory. i.e, mode for high order allocation. |
84 | */ | 90 | */ |
85 | bool lumpy_reclaim_mode; | 91 | enum lumpy_mode lumpy_reclaim_mode; |
86 | 92 | ||
87 | /* Which cgroup do we reclaim from */ | 93 | /* Which cgroup do we reclaim from */ |
88 | struct mem_cgroup *mem_cgroup; | 94 | struct mem_cgroup *mem_cgroup; |
@@ -265,6 +271,36 @@ unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, | |||
265 | return ret; | 271 | return ret; |
266 | } | 272 | } |
267 | 273 | ||
274 | static void set_lumpy_reclaim_mode(int priority, struct scan_control *sc, | ||
275 | bool sync) | ||
276 | { | ||
277 | enum lumpy_mode mode = sync ? LUMPY_MODE_SYNC : LUMPY_MODE_ASYNC; | ||
278 | |||
279 | /* | ||
280 | * Some reclaim have alredy been failed. No worth to try synchronous | ||
281 | * lumpy reclaim. | ||
282 | */ | ||
283 | if (sync && sc->lumpy_reclaim_mode == LUMPY_MODE_NONE) | ||
284 | return; | ||
285 | |||
286 | /* | ||
287 | * If we need a large contiguous chunk of memory, or have | ||
288 | * trouble getting a small set of contiguous pages, we | ||
289 | * will reclaim both active and inactive pages. | ||
290 | */ | ||
291 | if (sc->order > PAGE_ALLOC_COSTLY_ORDER) | ||
292 | sc->lumpy_reclaim_mode = mode; | ||
293 | else if (sc->order && priority < DEF_PRIORITY - 2) | ||
294 | sc->lumpy_reclaim_mode = mode; | ||
295 | else | ||
296 | sc->lumpy_reclaim_mode = LUMPY_MODE_NONE; | ||
297 | } | ||
298 | |||
299 | static void disable_lumpy_reclaim_mode(struct scan_control *sc) | ||
300 | { | ||
301 | sc->lumpy_reclaim_mode = LUMPY_MODE_NONE; | ||
302 | } | ||
303 | |||
268 | static inline int is_page_cache_freeable(struct page *page) | 304 | static inline int is_page_cache_freeable(struct page *page) |
269 | { | 305 | { |
270 | /* | 306 | /* |
@@ -275,7 +311,8 @@ static inline int is_page_cache_freeable(struct page *page) | |||
275 | return page_count(page) - page_has_private(page) == 2; | 311 | return page_count(page) - page_has_private(page) == 2; |
276 | } | 312 | } |
277 | 313 | ||
278 | static int may_write_to_queue(struct backing_dev_info *bdi) | 314 | static int may_write_to_queue(struct backing_dev_info *bdi, |
315 | struct scan_control *sc) | ||
279 | { | 316 | { |
280 | if (current->flags & PF_SWAPWRITE) | 317 | if (current->flags & PF_SWAPWRITE) |
281 | return 1; | 318 | return 1; |
@@ -283,6 +320,10 @@ static int may_write_to_queue(struct backing_dev_info *bdi) | |||
283 | return 1; | 320 | return 1; |
284 | if (bdi == current->backing_dev_info) | 321 | if (bdi == current->backing_dev_info) |
285 | return 1; | 322 | return 1; |
323 | |||
324 | /* lumpy reclaim for hugepage often need a lot of write */ | ||
325 | if (sc->order > PAGE_ALLOC_COSTLY_ORDER) | ||
326 | return 1; | ||
286 | return 0; | 327 | return 0; |
287 | } | 328 | } |
288 | 329 | ||
@@ -307,12 +348,6 @@ static void handle_write_error(struct address_space *mapping, | |||
307 | unlock_page(page); | 348 | unlock_page(page); |
308 | } | 349 | } |
309 | 350 | ||
310 | /* Request for sync pageout. */ | ||
311 | enum pageout_io { | ||
312 | PAGEOUT_IO_ASYNC, | ||
313 | PAGEOUT_IO_SYNC, | ||
314 | }; | ||
315 | |||
316 | /* possible outcome of pageout() */ | 351 | /* possible outcome of pageout() */ |
317 | typedef enum { | 352 | typedef enum { |
318 | /* failed to write page out, page is locked */ | 353 | /* failed to write page out, page is locked */ |
@@ -330,7 +365,7 @@ typedef enum { | |||
330 | * Calls ->writepage(). | 365 | * Calls ->writepage(). |
331 | */ | 366 | */ |
332 | static pageout_t pageout(struct page *page, struct address_space *mapping, | 367 | static pageout_t pageout(struct page *page, struct address_space *mapping, |
333 | enum pageout_io sync_writeback) | 368 | struct scan_control *sc) |
334 | { | 369 | { |
335 | /* | 370 | /* |
336 | * If the page is dirty, only perform writeback if that write | 371 | * If the page is dirty, only perform writeback if that write |
@@ -366,7 +401,7 @@ static pageout_t pageout(struct page *page, struct address_space *mapping, | |||
366 | } | 401 | } |
367 | if (mapping->a_ops->writepage == NULL) | 402 | if (mapping->a_ops->writepage == NULL) |
368 | return PAGE_ACTIVATE; | 403 | return PAGE_ACTIVATE; |
369 | if (!may_write_to_queue(mapping->backing_dev_info)) | 404 | if (!may_write_to_queue(mapping->backing_dev_info, sc)) |
370 | return PAGE_KEEP; | 405 | return PAGE_KEEP; |
371 | 406 | ||
372 | if (clear_page_dirty_for_io(page)) { | 407 | if (clear_page_dirty_for_io(page)) { |
@@ -376,7 +411,6 @@ static pageout_t pageout(struct page *page, struct address_space *mapping, | |||
376 | .nr_to_write = SWAP_CLUSTER_MAX, | 411 | .nr_to_write = SWAP_CLUSTER_MAX, |
377 | .range_start = 0, | 412 | .range_start = 0, |
378 | .range_end = LLONG_MAX, | 413 | .range_end = LLONG_MAX, |
379 | .nonblocking = 1, | ||
380 | .for_reclaim = 1, | 414 | .for_reclaim = 1, |
381 | }; | 415 | }; |
382 | 416 | ||
@@ -394,7 +428,8 @@ static pageout_t pageout(struct page *page, struct address_space *mapping, | |||
394 | * direct reclaiming a large contiguous area and the | 428 | * direct reclaiming a large contiguous area and the |
395 | * first attempt to free a range of pages fails. | 429 | * first attempt to free a range of pages fails. |
396 | */ | 430 | */ |
397 | if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC) | 431 | if (PageWriteback(page) && |
432 | sc->lumpy_reclaim_mode == LUMPY_MODE_SYNC) | ||
398 | wait_on_page_writeback(page); | 433 | wait_on_page_writeback(page); |
399 | 434 | ||
400 | if (!PageWriteback(page)) { | 435 | if (!PageWriteback(page)) { |
@@ -402,7 +437,7 @@ static pageout_t pageout(struct page *page, struct address_space *mapping, | |||
402 | ClearPageReclaim(page); | 437 | ClearPageReclaim(page); |
403 | } | 438 | } |
404 | trace_mm_vmscan_writepage(page, | 439 | trace_mm_vmscan_writepage(page, |
405 | trace_reclaim_flags(page, sync_writeback)); | 440 | trace_reclaim_flags(page, sc->lumpy_reclaim_mode)); |
406 | inc_zone_page_state(page, NR_VMSCAN_WRITE); | 441 | inc_zone_page_state(page, NR_VMSCAN_WRITE); |
407 | return PAGE_SUCCESS; | 442 | return PAGE_SUCCESS; |
408 | } | 443 | } |
@@ -580,7 +615,7 @@ static enum page_references page_check_references(struct page *page, | |||
580 | referenced_page = TestClearPageReferenced(page); | 615 | referenced_page = TestClearPageReferenced(page); |
581 | 616 | ||
582 | /* Lumpy reclaim - ignore references */ | 617 | /* Lumpy reclaim - ignore references */ |
583 | if (sc->lumpy_reclaim_mode) | 618 | if (sc->lumpy_reclaim_mode != LUMPY_MODE_NONE) |
584 | return PAGEREF_RECLAIM; | 619 | return PAGEREF_RECLAIM; |
585 | 620 | ||
586 | /* | 621 | /* |
@@ -616,7 +651,7 @@ static enum page_references page_check_references(struct page *page, | |||
616 | } | 651 | } |
617 | 652 | ||
618 | /* Reclaim if clean, defer dirty pages to writeback */ | 653 | /* Reclaim if clean, defer dirty pages to writeback */ |
619 | if (referenced_page) | 654 | if (referenced_page && !PageSwapBacked(page)) |
620 | return PAGEREF_RECLAIM_CLEAN; | 655 | return PAGEREF_RECLAIM_CLEAN; |
621 | 656 | ||
622 | return PAGEREF_RECLAIM; | 657 | return PAGEREF_RECLAIM; |
@@ -644,12 +679,14 @@ static noinline_for_stack void free_page_list(struct list_head *free_pages) | |||
644 | * shrink_page_list() returns the number of reclaimed pages | 679 | * shrink_page_list() returns the number of reclaimed pages |
645 | */ | 680 | */ |
646 | static unsigned long shrink_page_list(struct list_head *page_list, | 681 | static unsigned long shrink_page_list(struct list_head *page_list, |
647 | struct scan_control *sc, | 682 | struct zone *zone, |
648 | enum pageout_io sync_writeback) | 683 | struct scan_control *sc) |
649 | { | 684 | { |
650 | LIST_HEAD(ret_pages); | 685 | LIST_HEAD(ret_pages); |
651 | LIST_HEAD(free_pages); | 686 | LIST_HEAD(free_pages); |
652 | int pgactivate = 0; | 687 | int pgactivate = 0; |
688 | unsigned long nr_dirty = 0; | ||
689 | unsigned long nr_congested = 0; | ||
653 | unsigned long nr_reclaimed = 0; | 690 | unsigned long nr_reclaimed = 0; |
654 | 691 | ||
655 | cond_resched(); | 692 | cond_resched(); |
@@ -669,6 +706,7 @@ static unsigned long shrink_page_list(struct list_head *page_list, | |||
669 | goto keep; | 706 | goto keep; |
670 | 707 | ||
671 | VM_BUG_ON(PageActive(page)); | 708 | VM_BUG_ON(PageActive(page)); |
709 | VM_BUG_ON(page_zone(page) != zone); | ||
672 | 710 | ||
673 | sc->nr_scanned++; | 711 | sc->nr_scanned++; |
674 | 712 | ||
@@ -694,10 +732,13 @@ static unsigned long shrink_page_list(struct list_head *page_list, | |||
694 | * for any page for which writeback has already | 732 | * for any page for which writeback has already |
695 | * started. | 733 | * started. |
696 | */ | 734 | */ |
697 | if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs) | 735 | if (sc->lumpy_reclaim_mode == LUMPY_MODE_SYNC && |
736 | may_enter_fs) | ||
698 | wait_on_page_writeback(page); | 737 | wait_on_page_writeback(page); |
699 | else | 738 | else { |
700 | goto keep_locked; | 739 | unlock_page(page); |
740 | goto keep_lumpy; | ||
741 | } | ||
701 | } | 742 | } |
702 | 743 | ||
703 | references = page_check_references(page, sc); | 744 | references = page_check_references(page, sc); |
@@ -743,6 +784,8 @@ static unsigned long shrink_page_list(struct list_head *page_list, | |||
743 | } | 784 | } |
744 | 785 | ||
745 | if (PageDirty(page)) { | 786 | if (PageDirty(page)) { |
787 | nr_dirty++; | ||
788 | |||
746 | if (references == PAGEREF_RECLAIM_CLEAN) | 789 | if (references == PAGEREF_RECLAIM_CLEAN) |
747 | goto keep_locked; | 790 | goto keep_locked; |
748 | if (!may_enter_fs) | 791 | if (!may_enter_fs) |
@@ -751,14 +794,18 @@ static unsigned long shrink_page_list(struct list_head *page_list, | |||
751 | goto keep_locked; | 794 | goto keep_locked; |
752 | 795 | ||
753 | /* Page is dirty, try to write it out here */ | 796 | /* Page is dirty, try to write it out here */ |
754 | switch (pageout(page, mapping, sync_writeback)) { | 797 | switch (pageout(page, mapping, sc)) { |
755 | case PAGE_KEEP: | 798 | case PAGE_KEEP: |
799 | nr_congested++; | ||
756 | goto keep_locked; | 800 | goto keep_locked; |
757 | case PAGE_ACTIVATE: | 801 | case PAGE_ACTIVATE: |
758 | goto activate_locked; | 802 | goto activate_locked; |
759 | case PAGE_SUCCESS: | 803 | case PAGE_SUCCESS: |
760 | if (PageWriteback(page) || PageDirty(page)) | 804 | if (PageWriteback(page)) |
805 | goto keep_lumpy; | ||
806 | if (PageDirty(page)) | ||
761 | goto keep; | 807 | goto keep; |
808 | |||
762 | /* | 809 | /* |
763 | * A synchronous write - probably a ramdisk. Go | 810 | * A synchronous write - probably a ramdisk. Go |
764 | * ahead and try to reclaim the page. | 811 | * ahead and try to reclaim the page. |
@@ -841,6 +888,7 @@ cull_mlocked: | |||
841 | try_to_free_swap(page); | 888 | try_to_free_swap(page); |
842 | unlock_page(page); | 889 | unlock_page(page); |
843 | putback_lru_page(page); | 890 | putback_lru_page(page); |
891 | disable_lumpy_reclaim_mode(sc); | ||
844 | continue; | 892 | continue; |
845 | 893 | ||
846 | activate_locked: | 894 | activate_locked: |
@@ -853,10 +901,21 @@ activate_locked: | |||
853 | keep_locked: | 901 | keep_locked: |
854 | unlock_page(page); | 902 | unlock_page(page); |
855 | keep: | 903 | keep: |
904 | disable_lumpy_reclaim_mode(sc); | ||
905 | keep_lumpy: | ||
856 | list_add(&page->lru, &ret_pages); | 906 | list_add(&page->lru, &ret_pages); |
857 | VM_BUG_ON(PageLRU(page) || PageUnevictable(page)); | 907 | VM_BUG_ON(PageLRU(page) || PageUnevictable(page)); |
858 | } | 908 | } |
859 | 909 | ||
910 | /* | ||
911 | * Tag a zone as congested if all the dirty pages encountered were | ||
912 | * backed by a congested BDI. In this case, reclaimers should just | ||
913 | * back off and wait for congestion to clear because further reclaim | ||
914 | * will encounter the same problem | ||
915 | */ | ||
916 | if (nr_dirty == nr_congested) | ||
917 | zone_set_flag(zone, ZONE_CONGESTED); | ||
918 | |||
860 | free_page_list(&free_pages); | 919 | free_page_list(&free_pages); |
861 | 920 | ||
862 | list_splice(&ret_pages, page_list); | 921 | list_splice(&ret_pages, page_list); |
@@ -1006,7 +1065,7 @@ static unsigned long isolate_lru_pages(unsigned long nr_to_scan, | |||
1006 | 1065 | ||
1007 | /* Check that we have not crossed a zone boundary. */ | 1066 | /* Check that we have not crossed a zone boundary. */ |
1008 | if (unlikely(page_zone_id(cursor_page) != zone_id)) | 1067 | if (unlikely(page_zone_id(cursor_page) != zone_id)) |
1009 | continue; | 1068 | break; |
1010 | 1069 | ||
1011 | /* | 1070 | /* |
1012 | * If we don't have enough swap space, reclaiming of | 1071 | * If we don't have enough swap space, reclaiming of |
@@ -1014,8 +1073,8 @@ static unsigned long isolate_lru_pages(unsigned long nr_to_scan, | |||
1014 | * pointless. | 1073 | * pointless. |
1015 | */ | 1074 | */ |
1016 | if (nr_swap_pages <= 0 && PageAnon(cursor_page) && | 1075 | if (nr_swap_pages <= 0 && PageAnon(cursor_page) && |
1017 | !PageSwapCache(cursor_page)) | 1076 | !PageSwapCache(cursor_page)) |
1018 | continue; | 1077 | break; |
1019 | 1078 | ||
1020 | if (__isolate_lru_page(cursor_page, mode, file) == 0) { | 1079 | if (__isolate_lru_page(cursor_page, mode, file) == 0) { |
1021 | list_move(&cursor_page->lru, dst); | 1080 | list_move(&cursor_page->lru, dst); |
@@ -1026,11 +1085,16 @@ static unsigned long isolate_lru_pages(unsigned long nr_to_scan, | |||
1026 | nr_lumpy_dirty++; | 1085 | nr_lumpy_dirty++; |
1027 | scan++; | 1086 | scan++; |
1028 | } else { | 1087 | } else { |
1029 | if (mode == ISOLATE_BOTH && | 1088 | /* the page is freed already. */ |
1030 | page_count(cursor_page)) | 1089 | if (!page_count(cursor_page)) |
1031 | nr_lumpy_failed++; | 1090 | continue; |
1091 | break; | ||
1032 | } | 1092 | } |
1033 | } | 1093 | } |
1094 | |||
1095 | /* If we break out of the loop above, lumpy reclaim failed */ | ||
1096 | if (pfn < end_pfn) | ||
1097 | nr_lumpy_failed++; | ||
1034 | } | 1098 | } |
1035 | 1099 | ||
1036 | *scanned = scan; | 1100 | *scanned = scan; |
@@ -1253,7 +1317,7 @@ static inline bool should_reclaim_stall(unsigned long nr_taken, | |||
1253 | return false; | 1317 | return false; |
1254 | 1318 | ||
1255 | /* Only stall on lumpy reclaim */ | 1319 | /* Only stall on lumpy reclaim */ |
1256 | if (!sc->lumpy_reclaim_mode) | 1320 | if (sc->lumpy_reclaim_mode == LUMPY_MODE_NONE) |
1257 | return false; | 1321 | return false; |
1258 | 1322 | ||
1259 | /* If we have relaimed everything on the isolated list, no stall */ | 1323 | /* If we have relaimed everything on the isolated list, no stall */ |
@@ -1286,7 +1350,6 @@ shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone, | |||
1286 | unsigned long nr_scanned; | 1350 | unsigned long nr_scanned; |
1287 | unsigned long nr_reclaimed = 0; | 1351 | unsigned long nr_reclaimed = 0; |
1288 | unsigned long nr_taken; | 1352 | unsigned long nr_taken; |
1289 | unsigned long nr_active; | ||
1290 | unsigned long nr_anon; | 1353 | unsigned long nr_anon; |
1291 | unsigned long nr_file; | 1354 | unsigned long nr_file; |
1292 | 1355 | ||
@@ -1298,15 +1361,15 @@ shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone, | |||
1298 | return SWAP_CLUSTER_MAX; | 1361 | return SWAP_CLUSTER_MAX; |
1299 | } | 1362 | } |
1300 | 1363 | ||
1301 | 1364 | set_lumpy_reclaim_mode(priority, sc, false); | |
1302 | lru_add_drain(); | 1365 | lru_add_drain(); |
1303 | spin_lock_irq(&zone->lru_lock); | 1366 | spin_lock_irq(&zone->lru_lock); |
1304 | 1367 | ||
1305 | if (scanning_global_lru(sc)) { | 1368 | if (scanning_global_lru(sc)) { |
1306 | nr_taken = isolate_pages_global(nr_to_scan, | 1369 | nr_taken = isolate_pages_global(nr_to_scan, |
1307 | &page_list, &nr_scanned, sc->order, | 1370 | &page_list, &nr_scanned, sc->order, |
1308 | sc->lumpy_reclaim_mode ? | 1371 | sc->lumpy_reclaim_mode == LUMPY_MODE_NONE ? |
1309 | ISOLATE_BOTH : ISOLATE_INACTIVE, | 1372 | ISOLATE_INACTIVE : ISOLATE_BOTH, |
1310 | zone, 0, file); | 1373 | zone, 0, file); |
1311 | zone->pages_scanned += nr_scanned; | 1374 | zone->pages_scanned += nr_scanned; |
1312 | if (current_is_kswapd()) | 1375 | if (current_is_kswapd()) |
@@ -1318,8 +1381,8 @@ shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone, | |||
1318 | } else { | 1381 | } else { |
1319 | nr_taken = mem_cgroup_isolate_pages(nr_to_scan, | 1382 | nr_taken = mem_cgroup_isolate_pages(nr_to_scan, |
1320 | &page_list, &nr_scanned, sc->order, | 1383 | &page_list, &nr_scanned, sc->order, |
1321 | sc->lumpy_reclaim_mode ? | 1384 | sc->lumpy_reclaim_mode == LUMPY_MODE_NONE ? |
1322 | ISOLATE_BOTH : ISOLATE_INACTIVE, | 1385 | ISOLATE_INACTIVE : ISOLATE_BOTH, |
1323 | zone, sc->mem_cgroup, | 1386 | zone, sc->mem_cgroup, |
1324 | 0, file); | 1387 | 0, file); |
1325 | /* | 1388 | /* |
@@ -1337,20 +1400,12 @@ shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone, | |||
1337 | 1400 | ||
1338 | spin_unlock_irq(&zone->lru_lock); | 1401 | spin_unlock_irq(&zone->lru_lock); |
1339 | 1402 | ||
1340 | nr_reclaimed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC); | 1403 | nr_reclaimed = shrink_page_list(&page_list, zone, sc); |
1341 | 1404 | ||
1342 | /* Check if we should syncronously wait for writeback */ | 1405 | /* Check if we should syncronously wait for writeback */ |
1343 | if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) { | 1406 | if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) { |
1344 | congestion_wait(BLK_RW_ASYNC, HZ/10); | 1407 | set_lumpy_reclaim_mode(priority, sc, true); |
1345 | 1408 | nr_reclaimed += shrink_page_list(&page_list, zone, sc); | |
1346 | /* | ||
1347 | * The attempt at page out may have made some | ||
1348 | * of the pages active, mark them inactive again. | ||
1349 | */ | ||
1350 | nr_active = clear_active_flags(&page_list, NULL); | ||
1351 | count_vm_events(PGDEACTIVATE, nr_active); | ||
1352 | |||
1353 | nr_reclaimed += shrink_page_list(&page_list, sc, PAGEOUT_IO_SYNC); | ||
1354 | } | 1409 | } |
1355 | 1410 | ||
1356 | local_irq_disable(); | 1411 | local_irq_disable(); |
@@ -1359,6 +1414,12 @@ shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone, | |||
1359 | __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed); | 1414 | __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed); |
1360 | 1415 | ||
1361 | putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list); | 1416 | putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list); |
1417 | |||
1418 | trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id, | ||
1419 | zone_idx(zone), | ||
1420 | nr_scanned, nr_reclaimed, | ||
1421 | priority, | ||
1422 | trace_shrink_flags(file, sc->lumpy_reclaim_mode)); | ||
1362 | return nr_reclaimed; | 1423 | return nr_reclaimed; |
1363 | } | 1424 | } |
1364 | 1425 | ||
@@ -1506,6 +1567,7 @@ static void shrink_active_list(unsigned long nr_pages, struct zone *zone, | |||
1506 | spin_unlock_irq(&zone->lru_lock); | 1567 | spin_unlock_irq(&zone->lru_lock); |
1507 | } | 1568 | } |
1508 | 1569 | ||
1570 | #ifdef CONFIG_SWAP | ||
1509 | static int inactive_anon_is_low_global(struct zone *zone) | 1571 | static int inactive_anon_is_low_global(struct zone *zone) |
1510 | { | 1572 | { |
1511 | unsigned long active, inactive; | 1573 | unsigned long active, inactive; |
@@ -1531,12 +1593,26 @@ static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc) | |||
1531 | { | 1593 | { |
1532 | int low; | 1594 | int low; |
1533 | 1595 | ||
1596 | /* | ||
1597 | * If we don't have swap space, anonymous page deactivation | ||
1598 | * is pointless. | ||
1599 | */ | ||
1600 | if (!total_swap_pages) | ||
1601 | return 0; | ||
1602 | |||
1534 | if (scanning_global_lru(sc)) | 1603 | if (scanning_global_lru(sc)) |
1535 | low = inactive_anon_is_low_global(zone); | 1604 | low = inactive_anon_is_low_global(zone); |
1536 | else | 1605 | else |
1537 | low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup); | 1606 | low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup); |
1538 | return low; | 1607 | return low; |
1539 | } | 1608 | } |
1609 | #else | ||
1610 | static inline int inactive_anon_is_low(struct zone *zone, | ||
1611 | struct scan_control *sc) | ||
1612 | { | ||
1613 | return 0; | ||
1614 | } | ||
1615 | #endif | ||
1540 | 1616 | ||
1541 | static int inactive_file_is_low_global(struct zone *zone) | 1617 | static int inactive_file_is_low_global(struct zone *zone) |
1542 | { | 1618 | { |
@@ -1721,21 +1797,6 @@ out: | |||
1721 | } | 1797 | } |
1722 | } | 1798 | } |
1723 | 1799 | ||
1724 | static void set_lumpy_reclaim_mode(int priority, struct scan_control *sc) | ||
1725 | { | ||
1726 | /* | ||
1727 | * If we need a large contiguous chunk of memory, or have | ||
1728 | * trouble getting a small set of contiguous pages, we | ||
1729 | * will reclaim both active and inactive pages. | ||
1730 | */ | ||
1731 | if (sc->order > PAGE_ALLOC_COSTLY_ORDER) | ||
1732 | sc->lumpy_reclaim_mode = 1; | ||
1733 | else if (sc->order && priority < DEF_PRIORITY - 2) | ||
1734 | sc->lumpy_reclaim_mode = 1; | ||
1735 | else | ||
1736 | sc->lumpy_reclaim_mode = 0; | ||
1737 | } | ||
1738 | |||
1739 | /* | 1800 | /* |
1740 | * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. | 1801 | * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. |
1741 | */ | 1802 | */ |
@@ -1750,8 +1811,6 @@ static void shrink_zone(int priority, struct zone *zone, | |||
1750 | 1811 | ||
1751 | get_scan_count(zone, sc, nr, priority); | 1812 | get_scan_count(zone, sc, nr, priority); |
1752 | 1813 | ||
1753 | set_lumpy_reclaim_mode(priority, sc); | ||
1754 | |||
1755 | while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || | 1814 | while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || |
1756 | nr[LRU_INACTIVE_FILE]) { | 1815 | nr[LRU_INACTIVE_FILE]) { |
1757 | for_each_evictable_lru(l) { | 1816 | for_each_evictable_lru(l) { |
@@ -1782,7 +1841,7 @@ static void shrink_zone(int priority, struct zone *zone, | |||
1782 | * Even if we did not try to evict anon pages at all, we want to | 1841 | * Even if we did not try to evict anon pages at all, we want to |
1783 | * rebalance the anon lru active/inactive ratio. | 1842 | * rebalance the anon lru active/inactive ratio. |
1784 | */ | 1843 | */ |
1785 | if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0) | 1844 | if (inactive_anon_is_low(zone, sc)) |
1786 | shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0); | 1845 | shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0); |
1787 | 1846 | ||
1788 | throttle_vm_writeout(sc->gfp_mask); | 1847 | throttle_vm_writeout(sc->gfp_mask); |
@@ -1937,21 +1996,16 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist, | |||
1937 | 1996 | ||
1938 | /* Take a nap, wait for some writeback to complete */ | 1997 | /* Take a nap, wait for some writeback to complete */ |
1939 | if (!sc->hibernation_mode && sc->nr_scanned && | 1998 | if (!sc->hibernation_mode && sc->nr_scanned && |
1940 | priority < DEF_PRIORITY - 2) | 1999 | priority < DEF_PRIORITY - 2) { |
1941 | congestion_wait(BLK_RW_ASYNC, HZ/10); | 2000 | struct zone *preferred_zone; |
2001 | |||
2002 | first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask), | ||
2003 | NULL, &preferred_zone); | ||
2004 | wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10); | ||
2005 | } | ||
1942 | } | 2006 | } |
1943 | 2007 | ||
1944 | out: | 2008 | out: |
1945 | /* | ||
1946 | * Now that we've scanned all the zones at this priority level, note | ||
1947 | * that level within the zone so that the next thread which performs | ||
1948 | * scanning of this zone will immediately start out at this priority | ||
1949 | * level. This affects only the decision whether or not to bring | ||
1950 | * mapped pages onto the inactive list. | ||
1951 | */ | ||
1952 | if (priority < 0) | ||
1953 | priority = 0; | ||
1954 | |||
1955 | delayacct_freepages_end(); | 2009 | delayacct_freepages_end(); |
1956 | put_mems_allowed(); | 2010 | put_mems_allowed(); |
1957 | 2011 | ||
@@ -2247,6 +2301,15 @@ loop_again: | |||
2247 | if (!zone_watermark_ok(zone, order, | 2301 | if (!zone_watermark_ok(zone, order, |
2248 | min_wmark_pages(zone), end_zone, 0)) | 2302 | min_wmark_pages(zone), end_zone, 0)) |
2249 | has_under_min_watermark_zone = 1; | 2303 | has_under_min_watermark_zone = 1; |
2304 | } else { | ||
2305 | /* | ||
2306 | * If a zone reaches its high watermark, | ||
2307 | * consider it to be no longer congested. It's | ||
2308 | * possible there are dirty pages backed by | ||
2309 | * congested BDIs but as pressure is relieved, | ||
2310 | * spectulatively avoid congestion waits | ||
2311 | */ | ||
2312 | zone_clear_flag(zone, ZONE_CONGESTED); | ||
2250 | } | 2313 | } |
2251 | 2314 | ||
2252 | } | 2315 | } |
@@ -2987,6 +3050,7 @@ int scan_unevictable_handler(struct ctl_table *table, int write, | |||
2987 | return 0; | 3050 | return 0; |
2988 | } | 3051 | } |
2989 | 3052 | ||
3053 | #ifdef CONFIG_NUMA | ||
2990 | /* | 3054 | /* |
2991 | * per node 'scan_unevictable_pages' attribute. On demand re-scan of | 3055 | * per node 'scan_unevictable_pages' attribute. On demand re-scan of |
2992 | * a specified node's per zone unevictable lists for evictable pages. | 3056 | * a specified node's per zone unevictable lists for evictable pages. |
@@ -3033,4 +3097,4 @@ void scan_unevictable_unregister_node(struct node *node) | |||
3033 | { | 3097 | { |
3034 | sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages); | 3098 | sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages); |
3035 | } | 3099 | } |
3036 | 3100 | #endif | |
diff --git a/mm/vmstat.c b/mm/vmstat.c index 355a9e669aaa..cd2e42be7b68 100644 --- a/mm/vmstat.c +++ b/mm/vmstat.c | |||
@@ -17,6 +17,8 @@ | |||
17 | #include <linux/vmstat.h> | 17 | #include <linux/vmstat.h> |
18 | #include <linux/sched.h> | 18 | #include <linux/sched.h> |
19 | #include <linux/math64.h> | 19 | #include <linux/math64.h> |
20 | #include <linux/writeback.h> | ||
21 | #include <linux/compaction.h> | ||
20 | 22 | ||
21 | #ifdef CONFIG_VM_EVENT_COUNTERS | 23 | #ifdef CONFIG_VM_EVENT_COUNTERS |
22 | DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; | 24 | DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; |
@@ -394,6 +396,7 @@ void zone_statistics(struct zone *preferred_zone, struct zone *z) | |||
394 | #endif | 396 | #endif |
395 | 397 | ||
396 | #ifdef CONFIG_COMPACTION | 398 | #ifdef CONFIG_COMPACTION |
399 | |||
397 | struct contig_page_info { | 400 | struct contig_page_info { |
398 | unsigned long free_pages; | 401 | unsigned long free_pages; |
399 | unsigned long free_blocks_total; | 402 | unsigned long free_blocks_total; |
@@ -745,6 +748,11 @@ static const char * const vmstat_text[] = { | |||
745 | "nr_isolated_anon", | 748 | "nr_isolated_anon", |
746 | "nr_isolated_file", | 749 | "nr_isolated_file", |
747 | "nr_shmem", | 750 | "nr_shmem", |
751 | "nr_dirtied", | ||
752 | "nr_written", | ||
753 | "nr_dirty_threshold", | ||
754 | "nr_dirty_background_threshold", | ||
755 | |||
748 | #ifdef CONFIG_NUMA | 756 | #ifdef CONFIG_NUMA |
749 | "numa_hit", | 757 | "numa_hit", |
750 | "numa_miss", | 758 | "numa_miss", |
@@ -904,36 +912,44 @@ static const struct file_operations proc_zoneinfo_file_operations = { | |||
904 | .release = seq_release, | 912 | .release = seq_release, |
905 | }; | 913 | }; |
906 | 914 | ||
915 | enum writeback_stat_item { | ||
916 | NR_DIRTY_THRESHOLD, | ||
917 | NR_DIRTY_BG_THRESHOLD, | ||
918 | NR_VM_WRITEBACK_STAT_ITEMS, | ||
919 | }; | ||
920 | |||
907 | static void *vmstat_start(struct seq_file *m, loff_t *pos) | 921 | static void *vmstat_start(struct seq_file *m, loff_t *pos) |
908 | { | 922 | { |
909 | unsigned long *v; | 923 | unsigned long *v; |
910 | #ifdef CONFIG_VM_EVENT_COUNTERS | 924 | int i, stat_items_size; |
911 | unsigned long *e; | ||
912 | #endif | ||
913 | int i; | ||
914 | 925 | ||
915 | if (*pos >= ARRAY_SIZE(vmstat_text)) | 926 | if (*pos >= ARRAY_SIZE(vmstat_text)) |
916 | return NULL; | 927 | return NULL; |
928 | stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) + | ||
929 | NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long); | ||
917 | 930 | ||
918 | #ifdef CONFIG_VM_EVENT_COUNTERS | 931 | #ifdef CONFIG_VM_EVENT_COUNTERS |
919 | v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) | 932 | stat_items_size += sizeof(struct vm_event_state); |
920 | + sizeof(struct vm_event_state), GFP_KERNEL); | ||
921 | #else | ||
922 | v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long), | ||
923 | GFP_KERNEL); | ||
924 | #endif | 933 | #endif |
934 | |||
935 | v = kmalloc(stat_items_size, GFP_KERNEL); | ||
925 | m->private = v; | 936 | m->private = v; |
926 | if (!v) | 937 | if (!v) |
927 | return ERR_PTR(-ENOMEM); | 938 | return ERR_PTR(-ENOMEM); |
928 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) | 939 | for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) |
929 | v[i] = global_page_state(i); | 940 | v[i] = global_page_state(i); |
941 | v += NR_VM_ZONE_STAT_ITEMS; | ||
942 | |||
943 | global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, | ||
944 | v + NR_DIRTY_THRESHOLD); | ||
945 | v += NR_VM_WRITEBACK_STAT_ITEMS; | ||
946 | |||
930 | #ifdef CONFIG_VM_EVENT_COUNTERS | 947 | #ifdef CONFIG_VM_EVENT_COUNTERS |
931 | e = v + NR_VM_ZONE_STAT_ITEMS; | 948 | all_vm_events(v); |
932 | all_vm_events(e); | 949 | v[PGPGIN] /= 2; /* sectors -> kbytes */ |
933 | e[PGPGIN] /= 2; /* sectors -> kbytes */ | 950 | v[PGPGOUT] /= 2; |
934 | e[PGPGOUT] /= 2; | ||
935 | #endif | 951 | #endif |
936 | return v + *pos; | 952 | return m->private + *pos; |
937 | } | 953 | } |
938 | 954 | ||
939 | static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) | 955 | static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) |