diff options
author | Ingo Molnar <mingo@elte.hu> | 2010-08-31 03:45:21 -0400 |
---|---|---|
committer | Ingo Molnar <mingo@elte.hu> | 2010-08-31 03:45:46 -0400 |
commit | daab7fc734a53fdeaf844b7c03053118ad1769da (patch) | |
tree | 575deb3cdcc6dda562acaed6f7c29bc81ae01cf2 /mm | |
parent | 774ea0bcb27f57b6fd521b3b6c43237782fed4b9 (diff) | |
parent | 2bfc96a127bc1cc94d26bfaa40159966064f9c8c (diff) |
Merge commit 'v2.6.36-rc3' into x86/memblock
Conflicts:
arch/x86/kernel/trampoline.c
mm/memblock.c
Merge reason: Resolve the conflicts, update to latest upstream.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'mm')
-rw-r--r-- | mm/backing-dev.c | 449 | ||||
-rw-r--r-- | mm/filemap.c | 2 | ||||
-rw-r--r-- | mm/highmem.c | 7 | ||||
-rw-r--r-- | mm/hugetlb.c | 110 | ||||
-rw-r--r-- | mm/hwpoison-inject.c | 15 | ||||
-rw-r--r-- | mm/init-mm.c | 6 | ||||
-rw-r--r-- | mm/kmemleak.c | 100 | ||||
-rw-r--r-- | mm/ksm.c | 71 | ||||
-rw-r--r-- | mm/memcontrol.c | 462 | ||||
-rw-r--r-- | mm/memory-failure.c | 153 | ||||
-rw-r--r-- | mm/memory.c | 58 | ||||
-rw-r--r-- | mm/mempolicy.c | 82 | ||||
-rw-r--r-- | mm/migrate.c | 10 | ||||
-rw-r--r-- | mm/mlock.c | 19 | ||||
-rw-r--r-- | mm/mmap.c | 74 | ||||
-rw-r--r-- | mm/nommu.c | 12 | ||||
-rw-r--r-- | mm/oom_kill.c | 687 | ||||
-rw-r--r-- | mm/page-writeback.c | 282 | ||||
-rw-r--r-- | mm/page_alloc.c | 33 | ||||
-rw-r--r-- | mm/page_io.c | 2 | ||||
-rw-r--r-- | mm/percpu.c | 85 | ||||
-rw-r--r-- | mm/rmap.c | 203 | ||||
-rw-r--r-- | mm/shmem.c | 139 | ||||
-rw-r--r-- | mm/slab.c | 9 | ||||
-rw-r--r-- | mm/slob.c | 14 | ||||
-rw-r--r-- | mm/slub.c | 87 | ||||
-rw-r--r-- | mm/swapfile.c | 100 | ||||
-rw-r--r-- | mm/truncate.c | 38 | ||||
-rw-r--r-- | mm/util.c | 11 | ||||
-rw-r--r-- | mm/vmalloc.c | 13 | ||||
-rw-r--r-- | mm/vmscan.c | 548 | ||||
-rw-r--r-- | mm/vmstat.c | 8 |
32 files changed, 2369 insertions, 1520 deletions
diff --git a/mm/backing-dev.c b/mm/backing-dev.c index 123bcef13e51..eaa4a5bbe063 100644 --- a/mm/backing-dev.c +++ b/mm/backing-dev.c | |||
@@ -10,6 +10,7 @@ | |||
10 | #include <linux/module.h> | 10 | #include <linux/module.h> |
11 | #include <linux/writeback.h> | 11 | #include <linux/writeback.h> |
12 | #include <linux/device.h> | 12 | #include <linux/device.h> |
13 | #include <trace/events/writeback.h> | ||
13 | 14 | ||
14 | static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0); | 15 | static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0); |
15 | 16 | ||
@@ -49,8 +50,6 @@ static struct timer_list sync_supers_timer; | |||
49 | static int bdi_sync_supers(void *); | 50 | static int bdi_sync_supers(void *); |
50 | static void sync_supers_timer_fn(unsigned long); | 51 | static void sync_supers_timer_fn(unsigned long); |
51 | 52 | ||
52 | static void bdi_add_default_flusher_task(struct backing_dev_info *bdi); | ||
53 | |||
54 | #ifdef CONFIG_DEBUG_FS | 53 | #ifdef CONFIG_DEBUG_FS |
55 | #include <linux/debugfs.h> | 54 | #include <linux/debugfs.h> |
56 | #include <linux/seq_file.h> | 55 | #include <linux/seq_file.h> |
@@ -65,31 +64,25 @@ static void bdi_debug_init(void) | |||
65 | static int bdi_debug_stats_show(struct seq_file *m, void *v) | 64 | static int bdi_debug_stats_show(struct seq_file *m, void *v) |
66 | { | 65 | { |
67 | struct backing_dev_info *bdi = m->private; | 66 | struct backing_dev_info *bdi = m->private; |
68 | struct bdi_writeback *wb; | 67 | struct bdi_writeback *wb = &bdi->wb; |
69 | unsigned long background_thresh; | 68 | unsigned long background_thresh; |
70 | unsigned long dirty_thresh; | 69 | unsigned long dirty_thresh; |
71 | unsigned long bdi_thresh; | 70 | unsigned long bdi_thresh; |
72 | unsigned long nr_dirty, nr_io, nr_more_io, nr_wb; | 71 | unsigned long nr_dirty, nr_io, nr_more_io, nr_wb; |
73 | struct inode *inode; | 72 | struct inode *inode; |
74 | 73 | ||
75 | /* | ||
76 | * inode lock is enough here, the bdi->wb_list is protected by | ||
77 | * RCU on the reader side | ||
78 | */ | ||
79 | nr_wb = nr_dirty = nr_io = nr_more_io = 0; | 74 | nr_wb = nr_dirty = nr_io = nr_more_io = 0; |
80 | spin_lock(&inode_lock); | 75 | spin_lock(&inode_lock); |
81 | list_for_each_entry(wb, &bdi->wb_list, list) { | 76 | list_for_each_entry(inode, &wb->b_dirty, i_list) |
82 | nr_wb++; | 77 | nr_dirty++; |
83 | list_for_each_entry(inode, &wb->b_dirty, i_list) | 78 | list_for_each_entry(inode, &wb->b_io, i_list) |
84 | nr_dirty++; | 79 | nr_io++; |
85 | list_for_each_entry(inode, &wb->b_io, i_list) | 80 | list_for_each_entry(inode, &wb->b_more_io, i_list) |
86 | nr_io++; | 81 | nr_more_io++; |
87 | list_for_each_entry(inode, &wb->b_more_io, i_list) | ||
88 | nr_more_io++; | ||
89 | } | ||
90 | spin_unlock(&inode_lock); | 82 | spin_unlock(&inode_lock); |
91 | 83 | ||
92 | get_dirty_limits(&background_thresh, &dirty_thresh, &bdi_thresh, bdi); | 84 | global_dirty_limits(&background_thresh, &dirty_thresh); |
85 | bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh); | ||
93 | 86 | ||
94 | #define K(x) ((x) << (PAGE_SHIFT - 10)) | 87 | #define K(x) ((x) << (PAGE_SHIFT - 10)) |
95 | seq_printf(m, | 88 | seq_printf(m, |
@@ -98,19 +91,16 @@ static int bdi_debug_stats_show(struct seq_file *m, void *v) | |||
98 | "BdiDirtyThresh: %8lu kB\n" | 91 | "BdiDirtyThresh: %8lu kB\n" |
99 | "DirtyThresh: %8lu kB\n" | 92 | "DirtyThresh: %8lu kB\n" |
100 | "BackgroundThresh: %8lu kB\n" | 93 | "BackgroundThresh: %8lu kB\n" |
101 | "WritebackThreads: %8lu\n" | ||
102 | "b_dirty: %8lu\n" | 94 | "b_dirty: %8lu\n" |
103 | "b_io: %8lu\n" | 95 | "b_io: %8lu\n" |
104 | "b_more_io: %8lu\n" | 96 | "b_more_io: %8lu\n" |
105 | "bdi_list: %8u\n" | 97 | "bdi_list: %8u\n" |
106 | "state: %8lx\n" | 98 | "state: %8lx\n", |
107 | "wb_list: %8u\n", | ||
108 | (unsigned long) K(bdi_stat(bdi, BDI_WRITEBACK)), | 99 | (unsigned long) K(bdi_stat(bdi, BDI_WRITEBACK)), |
109 | (unsigned long) K(bdi_stat(bdi, BDI_RECLAIMABLE)), | 100 | (unsigned long) K(bdi_stat(bdi, BDI_RECLAIMABLE)), |
110 | K(bdi_thresh), K(dirty_thresh), | 101 | K(bdi_thresh), K(dirty_thresh), |
111 | K(background_thresh), nr_wb, nr_dirty, nr_io, nr_more_io, | 102 | K(background_thresh), nr_dirty, nr_io, nr_more_io, |
112 | !list_empty(&bdi->bdi_list), bdi->state, | 103 | !list_empty(&bdi->bdi_list), bdi->state); |
113 | !list_empty(&bdi->wb_list)); | ||
114 | #undef K | 104 | #undef K |
115 | 105 | ||
116 | return 0; | 106 | return 0; |
@@ -247,7 +237,6 @@ static int __init default_bdi_init(void) | |||
247 | sync_supers_tsk = kthread_run(bdi_sync_supers, NULL, "sync_supers"); | 237 | sync_supers_tsk = kthread_run(bdi_sync_supers, NULL, "sync_supers"); |
248 | BUG_ON(IS_ERR(sync_supers_tsk)); | 238 | BUG_ON(IS_ERR(sync_supers_tsk)); |
249 | 239 | ||
250 | init_timer(&sync_supers_timer); | ||
251 | setup_timer(&sync_supers_timer, sync_supers_timer_fn, 0); | 240 | setup_timer(&sync_supers_timer, sync_supers_timer_fn, 0); |
252 | bdi_arm_supers_timer(); | 241 | bdi_arm_supers_timer(); |
253 | 242 | ||
@@ -259,77 +248,6 @@ static int __init default_bdi_init(void) | |||
259 | } | 248 | } |
260 | subsys_initcall(default_bdi_init); | 249 | subsys_initcall(default_bdi_init); |
261 | 250 | ||
262 | static void bdi_wb_init(struct bdi_writeback *wb, struct backing_dev_info *bdi) | ||
263 | { | ||
264 | memset(wb, 0, sizeof(*wb)); | ||
265 | |||
266 | wb->bdi = bdi; | ||
267 | wb->last_old_flush = jiffies; | ||
268 | INIT_LIST_HEAD(&wb->b_dirty); | ||
269 | INIT_LIST_HEAD(&wb->b_io); | ||
270 | INIT_LIST_HEAD(&wb->b_more_io); | ||
271 | } | ||
272 | |||
273 | static void bdi_task_init(struct backing_dev_info *bdi, | ||
274 | struct bdi_writeback *wb) | ||
275 | { | ||
276 | struct task_struct *tsk = current; | ||
277 | |||
278 | spin_lock(&bdi->wb_lock); | ||
279 | list_add_tail_rcu(&wb->list, &bdi->wb_list); | ||
280 | spin_unlock(&bdi->wb_lock); | ||
281 | |||
282 | tsk->flags |= PF_FLUSHER | PF_SWAPWRITE; | ||
283 | set_freezable(); | ||
284 | |||
285 | /* | ||
286 | * Our parent may run at a different priority, just set us to normal | ||
287 | */ | ||
288 | set_user_nice(tsk, 0); | ||
289 | } | ||
290 | |||
291 | static int bdi_start_fn(void *ptr) | ||
292 | { | ||
293 | struct bdi_writeback *wb = ptr; | ||
294 | struct backing_dev_info *bdi = wb->bdi; | ||
295 | int ret; | ||
296 | |||
297 | /* | ||
298 | * Add us to the active bdi_list | ||
299 | */ | ||
300 | spin_lock_bh(&bdi_lock); | ||
301 | list_add_rcu(&bdi->bdi_list, &bdi_list); | ||
302 | spin_unlock_bh(&bdi_lock); | ||
303 | |||
304 | bdi_task_init(bdi, wb); | ||
305 | |||
306 | /* | ||
307 | * Clear pending bit and wakeup anybody waiting to tear us down | ||
308 | */ | ||
309 | clear_bit(BDI_pending, &bdi->state); | ||
310 | smp_mb__after_clear_bit(); | ||
311 | wake_up_bit(&bdi->state, BDI_pending); | ||
312 | |||
313 | ret = bdi_writeback_task(wb); | ||
314 | |||
315 | /* | ||
316 | * Remove us from the list | ||
317 | */ | ||
318 | spin_lock(&bdi->wb_lock); | ||
319 | list_del_rcu(&wb->list); | ||
320 | spin_unlock(&bdi->wb_lock); | ||
321 | |||
322 | /* | ||
323 | * Flush any work that raced with us exiting. No new work | ||
324 | * will be added, since this bdi isn't discoverable anymore. | ||
325 | */ | ||
326 | if (!list_empty(&bdi->work_list)) | ||
327 | wb_do_writeback(wb, 1); | ||
328 | |||
329 | wb->task = NULL; | ||
330 | return ret; | ||
331 | } | ||
332 | |||
333 | int bdi_has_dirty_io(struct backing_dev_info *bdi) | 251 | int bdi_has_dirty_io(struct backing_dev_info *bdi) |
334 | { | 252 | { |
335 | return wb_has_dirty_io(&bdi->wb); | 253 | return wb_has_dirty_io(&bdi->wb); |
@@ -348,10 +266,10 @@ static void bdi_flush_io(struct backing_dev_info *bdi) | |||
348 | } | 266 | } |
349 | 267 | ||
350 | /* | 268 | /* |
351 | * kupdated() used to do this. We cannot do it from the bdi_forker_task() | 269 | * kupdated() used to do this. We cannot do it from the bdi_forker_thread() |
352 | * or we risk deadlocking on ->s_umount. The longer term solution would be | 270 | * or we risk deadlocking on ->s_umount. The longer term solution would be |
353 | * to implement sync_supers_bdi() or similar and simply do it from the | 271 | * to implement sync_supers_bdi() or similar and simply do it from the |
354 | * bdi writeback tasks individually. | 272 | * bdi writeback thread individually. |
355 | */ | 273 | */ |
356 | static int bdi_sync_supers(void *unused) | 274 | static int bdi_sync_supers(void *unused) |
357 | { | 275 | { |
@@ -387,144 +305,198 @@ static void sync_supers_timer_fn(unsigned long unused) | |||
387 | bdi_arm_supers_timer(); | 305 | bdi_arm_supers_timer(); |
388 | } | 306 | } |
389 | 307 | ||
390 | static int bdi_forker_task(void *ptr) | 308 | static void wakeup_timer_fn(unsigned long data) |
309 | { | ||
310 | struct backing_dev_info *bdi = (struct backing_dev_info *)data; | ||
311 | |||
312 | spin_lock_bh(&bdi->wb_lock); | ||
313 | if (bdi->wb.task) { | ||
314 | trace_writeback_wake_thread(bdi); | ||
315 | wake_up_process(bdi->wb.task); | ||
316 | } else { | ||
317 | /* | ||
318 | * When bdi tasks are inactive for long time, they are killed. | ||
319 | * In this case we have to wake-up the forker thread which | ||
320 | * should create and run the bdi thread. | ||
321 | */ | ||
322 | trace_writeback_wake_forker_thread(bdi); | ||
323 | wake_up_process(default_backing_dev_info.wb.task); | ||
324 | } | ||
325 | spin_unlock_bh(&bdi->wb_lock); | ||
326 | } | ||
327 | |||
328 | /* | ||
329 | * This function is used when the first inode for this bdi is marked dirty. It | ||
330 | * wakes-up the corresponding bdi thread which should then take care of the | ||
331 | * periodic background write-out of dirty inodes. Since the write-out would | ||
332 | * starts only 'dirty_writeback_interval' centisecs from now anyway, we just | ||
333 | * set up a timer which wakes the bdi thread up later. | ||
334 | * | ||
335 | * Note, we wouldn't bother setting up the timer, but this function is on the | ||
336 | * fast-path (used by '__mark_inode_dirty()'), so we save few context switches | ||
337 | * by delaying the wake-up. | ||
338 | */ | ||
339 | void bdi_wakeup_thread_delayed(struct backing_dev_info *bdi) | ||
340 | { | ||
341 | unsigned long timeout; | ||
342 | |||
343 | timeout = msecs_to_jiffies(dirty_writeback_interval * 10); | ||
344 | mod_timer(&bdi->wb.wakeup_timer, jiffies + timeout); | ||
345 | } | ||
346 | |||
347 | /* | ||
348 | * Calculate the longest interval (jiffies) bdi threads are allowed to be | ||
349 | * inactive. | ||
350 | */ | ||
351 | static unsigned long bdi_longest_inactive(void) | ||
352 | { | ||
353 | unsigned long interval; | ||
354 | |||
355 | interval = msecs_to_jiffies(dirty_writeback_interval * 10); | ||
356 | return max(5UL * 60 * HZ, interval); | ||
357 | } | ||
358 | |||
359 | static int bdi_forker_thread(void *ptr) | ||
391 | { | 360 | { |
392 | struct bdi_writeback *me = ptr; | 361 | struct bdi_writeback *me = ptr; |
393 | 362 | ||
394 | bdi_task_init(me->bdi, me); | 363 | current->flags |= PF_FLUSHER | PF_SWAPWRITE; |
364 | set_freezable(); | ||
365 | |||
366 | /* | ||
367 | * Our parent may run at a different priority, just set us to normal | ||
368 | */ | ||
369 | set_user_nice(current, 0); | ||
395 | 370 | ||
396 | for (;;) { | 371 | for (;;) { |
397 | struct backing_dev_info *bdi, *tmp; | 372 | struct task_struct *task = NULL; |
398 | struct bdi_writeback *wb; | 373 | struct backing_dev_info *bdi; |
374 | enum { | ||
375 | NO_ACTION, /* Nothing to do */ | ||
376 | FORK_THREAD, /* Fork bdi thread */ | ||
377 | KILL_THREAD, /* Kill inactive bdi thread */ | ||
378 | } action = NO_ACTION; | ||
399 | 379 | ||
400 | /* | 380 | /* |
401 | * Temporary measure, we want to make sure we don't see | 381 | * Temporary measure, we want to make sure we don't see |
402 | * dirty data on the default backing_dev_info | 382 | * dirty data on the default backing_dev_info |
403 | */ | 383 | */ |
404 | if (wb_has_dirty_io(me) || !list_empty(&me->bdi->work_list)) | 384 | if (wb_has_dirty_io(me) || !list_empty(&me->bdi->work_list)) { |
385 | del_timer(&me->wakeup_timer); | ||
405 | wb_do_writeback(me, 0); | 386 | wb_do_writeback(me, 0); |
387 | } | ||
406 | 388 | ||
407 | spin_lock_bh(&bdi_lock); | 389 | spin_lock_bh(&bdi_lock); |
390 | set_current_state(TASK_INTERRUPTIBLE); | ||
408 | 391 | ||
409 | /* | 392 | list_for_each_entry(bdi, &bdi_list, bdi_list) { |
410 | * Check if any existing bdi's have dirty data without | 393 | bool have_dirty_io; |
411 | * a thread registered. If so, set that up. | 394 | |
412 | */ | 395 | if (!bdi_cap_writeback_dirty(bdi) || |
413 | list_for_each_entry_safe(bdi, tmp, &bdi_list, bdi_list) { | 396 | bdi_cap_flush_forker(bdi)) |
414 | if (bdi->wb.task) | ||
415 | continue; | ||
416 | if (list_empty(&bdi->work_list) && | ||
417 | !bdi_has_dirty_io(bdi)) | ||
418 | continue; | 397 | continue; |
419 | 398 | ||
420 | bdi_add_default_flusher_task(bdi); | 399 | WARN(!test_bit(BDI_registered, &bdi->state), |
421 | } | 400 | "bdi %p/%s is not registered!\n", bdi, bdi->name); |
422 | 401 | ||
423 | set_current_state(TASK_INTERRUPTIBLE); | 402 | have_dirty_io = !list_empty(&bdi->work_list) || |
403 | wb_has_dirty_io(&bdi->wb); | ||
424 | 404 | ||
425 | if (list_empty(&bdi_pending_list)) { | 405 | /* |
426 | unsigned long wait; | 406 | * If the bdi has work to do, but the thread does not |
407 | * exist - create it. | ||
408 | */ | ||
409 | if (!bdi->wb.task && have_dirty_io) { | ||
410 | /* | ||
411 | * Set the pending bit - if someone will try to | ||
412 | * unregister this bdi - it'll wait on this bit. | ||
413 | */ | ||
414 | set_bit(BDI_pending, &bdi->state); | ||
415 | action = FORK_THREAD; | ||
416 | break; | ||
417 | } | ||
418 | |||
419 | spin_lock(&bdi->wb_lock); | ||
420 | |||
421 | /* | ||
422 | * If there is no work to do and the bdi thread was | ||
423 | * inactive long enough - kill it. The wb_lock is taken | ||
424 | * to make sure no-one adds more work to this bdi and | ||
425 | * wakes the bdi thread up. | ||
426 | */ | ||
427 | if (bdi->wb.task && !have_dirty_io && | ||
428 | time_after(jiffies, bdi->wb.last_active + | ||
429 | bdi_longest_inactive())) { | ||
430 | task = bdi->wb.task; | ||
431 | bdi->wb.task = NULL; | ||
432 | spin_unlock(&bdi->wb_lock); | ||
433 | set_bit(BDI_pending, &bdi->state); | ||
434 | action = KILL_THREAD; | ||
435 | break; | ||
436 | } | ||
437 | spin_unlock(&bdi->wb_lock); | ||
438 | } | ||
439 | spin_unlock_bh(&bdi_lock); | ||
427 | 440 | ||
428 | spin_unlock_bh(&bdi_lock); | 441 | /* Keep working if default bdi still has things to do */ |
429 | wait = msecs_to_jiffies(dirty_writeback_interval * 10); | 442 | if (!list_empty(&me->bdi->work_list)) |
430 | if (wait) | 443 | __set_current_state(TASK_RUNNING); |
431 | schedule_timeout(wait); | 444 | |
445 | switch (action) { | ||
446 | case FORK_THREAD: | ||
447 | __set_current_state(TASK_RUNNING); | ||
448 | task = kthread_run(bdi_writeback_thread, &bdi->wb, "flush-%s", | ||
449 | dev_name(bdi->dev)); | ||
450 | if (IS_ERR(task)) { | ||
451 | /* | ||
452 | * If thread creation fails, force writeout of | ||
453 | * the bdi from the thread. | ||
454 | */ | ||
455 | bdi_flush_io(bdi); | ||
456 | } else { | ||
457 | /* | ||
458 | * The spinlock makes sure we do not lose | ||
459 | * wake-ups when racing with 'bdi_queue_work()'. | ||
460 | */ | ||
461 | spin_lock_bh(&bdi->wb_lock); | ||
462 | bdi->wb.task = task; | ||
463 | spin_unlock_bh(&bdi->wb_lock); | ||
464 | } | ||
465 | break; | ||
466 | |||
467 | case KILL_THREAD: | ||
468 | __set_current_state(TASK_RUNNING); | ||
469 | kthread_stop(task); | ||
470 | break; | ||
471 | |||
472 | case NO_ACTION: | ||
473 | if (!wb_has_dirty_io(me) || !dirty_writeback_interval) | ||
474 | /* | ||
475 | * There are no dirty data. The only thing we | ||
476 | * should now care about is checking for | ||
477 | * inactive bdi threads and killing them. Thus, | ||
478 | * let's sleep for longer time, save energy and | ||
479 | * be friendly for battery-driven devices. | ||
480 | */ | ||
481 | schedule_timeout(bdi_longest_inactive()); | ||
432 | else | 482 | else |
433 | schedule(); | 483 | schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10)); |
434 | try_to_freeze(); | 484 | try_to_freeze(); |
485 | /* Back to the main loop */ | ||
435 | continue; | 486 | continue; |
436 | } | 487 | } |
437 | 488 | ||
438 | __set_current_state(TASK_RUNNING); | ||
439 | |||
440 | /* | ||
441 | * This is our real job - check for pending entries in | ||
442 | * bdi_pending_list, and create the tasks that got added | ||
443 | */ | ||
444 | bdi = list_entry(bdi_pending_list.next, struct backing_dev_info, | ||
445 | bdi_list); | ||
446 | list_del_init(&bdi->bdi_list); | ||
447 | spin_unlock_bh(&bdi_lock); | ||
448 | |||
449 | wb = &bdi->wb; | ||
450 | wb->task = kthread_run(bdi_start_fn, wb, "flush-%s", | ||
451 | dev_name(bdi->dev)); | ||
452 | /* | 489 | /* |
453 | * If task creation fails, then readd the bdi to | 490 | * Clear pending bit and wakeup anybody waiting to tear us down. |
454 | * the pending list and force writeout of the bdi | ||
455 | * from this forker thread. That will free some memory | ||
456 | * and we can try again. | ||
457 | */ | 491 | */ |
458 | if (IS_ERR(wb->task)) { | 492 | clear_bit(BDI_pending, &bdi->state); |
459 | wb->task = NULL; | 493 | smp_mb__after_clear_bit(); |
460 | 494 | wake_up_bit(&bdi->state, BDI_pending); | |
461 | /* | ||
462 | * Add this 'bdi' to the back, so we get | ||
463 | * a chance to flush other bdi's to free | ||
464 | * memory. | ||
465 | */ | ||
466 | spin_lock_bh(&bdi_lock); | ||
467 | list_add_tail(&bdi->bdi_list, &bdi_pending_list); | ||
468 | spin_unlock_bh(&bdi_lock); | ||
469 | |||
470 | bdi_flush_io(bdi); | ||
471 | } | ||
472 | } | 495 | } |
473 | 496 | ||
474 | return 0; | 497 | return 0; |
475 | } | 498 | } |
476 | 499 | ||
477 | static void bdi_add_to_pending(struct rcu_head *head) | ||
478 | { | ||
479 | struct backing_dev_info *bdi; | ||
480 | |||
481 | bdi = container_of(head, struct backing_dev_info, rcu_head); | ||
482 | INIT_LIST_HEAD(&bdi->bdi_list); | ||
483 | |||
484 | spin_lock(&bdi_lock); | ||
485 | list_add_tail(&bdi->bdi_list, &bdi_pending_list); | ||
486 | spin_unlock(&bdi_lock); | ||
487 | |||
488 | /* | ||
489 | * We are now on the pending list, wake up bdi_forker_task() | ||
490 | * to finish the job and add us back to the active bdi_list | ||
491 | */ | ||
492 | wake_up_process(default_backing_dev_info.wb.task); | ||
493 | } | ||
494 | |||
495 | /* | ||
496 | * Add the default flusher task that gets created for any bdi | ||
497 | * that has dirty data pending writeout | ||
498 | */ | ||
499 | void static bdi_add_default_flusher_task(struct backing_dev_info *bdi) | ||
500 | { | ||
501 | if (!bdi_cap_writeback_dirty(bdi)) | ||
502 | return; | ||
503 | |||
504 | if (WARN_ON(!test_bit(BDI_registered, &bdi->state))) { | ||
505 | printk(KERN_ERR "bdi %p/%s is not registered!\n", | ||
506 | bdi, bdi->name); | ||
507 | return; | ||
508 | } | ||
509 | |||
510 | /* | ||
511 | * Check with the helper whether to proceed adding a task. Will only | ||
512 | * abort if we two or more simultanous calls to | ||
513 | * bdi_add_default_flusher_task() occured, further additions will block | ||
514 | * waiting for previous additions to finish. | ||
515 | */ | ||
516 | if (!test_and_set_bit(BDI_pending, &bdi->state)) { | ||
517 | list_del_rcu(&bdi->bdi_list); | ||
518 | |||
519 | /* | ||
520 | * We must wait for the current RCU period to end before | ||
521 | * moving to the pending list. So schedule that operation | ||
522 | * from an RCU callback. | ||
523 | */ | ||
524 | call_rcu(&bdi->rcu_head, bdi_add_to_pending); | ||
525 | } | ||
526 | } | ||
527 | |||
528 | /* | 500 | /* |
529 | * Remove bdi from bdi_list, and ensure that it is no longer visible | 501 | * Remove bdi from bdi_list, and ensure that it is no longer visible |
530 | */ | 502 | */ |
@@ -541,23 +513,16 @@ int bdi_register(struct backing_dev_info *bdi, struct device *parent, | |||
541 | const char *fmt, ...) | 513 | const char *fmt, ...) |
542 | { | 514 | { |
543 | va_list args; | 515 | va_list args; |
544 | int ret = 0; | ||
545 | struct device *dev; | 516 | struct device *dev; |
546 | 517 | ||
547 | if (bdi->dev) /* The driver needs to use separate queues per device */ | 518 | if (bdi->dev) /* The driver needs to use separate queues per device */ |
548 | goto exit; | 519 | return 0; |
549 | 520 | ||
550 | va_start(args, fmt); | 521 | va_start(args, fmt); |
551 | dev = device_create_vargs(bdi_class, parent, MKDEV(0, 0), bdi, fmt, args); | 522 | dev = device_create_vargs(bdi_class, parent, MKDEV(0, 0), bdi, fmt, args); |
552 | va_end(args); | 523 | va_end(args); |
553 | if (IS_ERR(dev)) { | 524 | if (IS_ERR(dev)) |
554 | ret = PTR_ERR(dev); | 525 | return PTR_ERR(dev); |
555 | goto exit; | ||
556 | } | ||
557 | |||
558 | spin_lock_bh(&bdi_lock); | ||
559 | list_add_tail_rcu(&bdi->bdi_list, &bdi_list); | ||
560 | spin_unlock_bh(&bdi_lock); | ||
561 | 526 | ||
562 | bdi->dev = dev; | 527 | bdi->dev = dev; |
563 | 528 | ||
@@ -569,21 +534,21 @@ int bdi_register(struct backing_dev_info *bdi, struct device *parent, | |||
569 | if (bdi_cap_flush_forker(bdi)) { | 534 | if (bdi_cap_flush_forker(bdi)) { |
570 | struct bdi_writeback *wb = &bdi->wb; | 535 | struct bdi_writeback *wb = &bdi->wb; |
571 | 536 | ||
572 | wb->task = kthread_run(bdi_forker_task, wb, "bdi-%s", | 537 | wb->task = kthread_run(bdi_forker_thread, wb, "bdi-%s", |
573 | dev_name(dev)); | 538 | dev_name(dev)); |
574 | if (IS_ERR(wb->task)) { | 539 | if (IS_ERR(wb->task)) |
575 | wb->task = NULL; | 540 | return PTR_ERR(wb->task); |
576 | ret = -ENOMEM; | ||
577 | |||
578 | bdi_remove_from_list(bdi); | ||
579 | goto exit; | ||
580 | } | ||
581 | } | 541 | } |
582 | 542 | ||
583 | bdi_debug_register(bdi, dev_name(dev)); | 543 | bdi_debug_register(bdi, dev_name(dev)); |
584 | set_bit(BDI_registered, &bdi->state); | 544 | set_bit(BDI_registered, &bdi->state); |
585 | exit: | 545 | |
586 | return ret; | 546 | spin_lock_bh(&bdi_lock); |
547 | list_add_tail_rcu(&bdi->bdi_list, &bdi_list); | ||
548 | spin_unlock_bh(&bdi_lock); | ||
549 | |||
550 | trace_writeback_bdi_register(bdi); | ||
551 | return 0; | ||
587 | } | 552 | } |
588 | EXPORT_SYMBOL(bdi_register); | 553 | EXPORT_SYMBOL(bdi_register); |
589 | 554 | ||
@@ -598,31 +563,29 @@ EXPORT_SYMBOL(bdi_register_dev); | |||
598 | */ | 563 | */ |
599 | static void bdi_wb_shutdown(struct backing_dev_info *bdi) | 564 | static void bdi_wb_shutdown(struct backing_dev_info *bdi) |
600 | { | 565 | { |
601 | struct bdi_writeback *wb; | ||
602 | |||
603 | if (!bdi_cap_writeback_dirty(bdi)) | 566 | if (!bdi_cap_writeback_dirty(bdi)) |
604 | return; | 567 | return; |
605 | 568 | ||
606 | /* | 569 | /* |
607 | * If setup is pending, wait for that to complete first | 570 | * Make sure nobody finds us on the bdi_list anymore |
608 | */ | 571 | */ |
609 | wait_on_bit(&bdi->state, BDI_pending, bdi_sched_wait, | 572 | bdi_remove_from_list(bdi); |
610 | TASK_UNINTERRUPTIBLE); | ||
611 | 573 | ||
612 | /* | 574 | /* |
613 | * Make sure nobody finds us on the bdi_list anymore | 575 | * If setup is pending, wait for that to complete first |
614 | */ | 576 | */ |
615 | bdi_remove_from_list(bdi); | 577 | wait_on_bit(&bdi->state, BDI_pending, bdi_sched_wait, |
578 | TASK_UNINTERRUPTIBLE); | ||
616 | 579 | ||
617 | /* | 580 | /* |
618 | * Finally, kill the kernel threads. We don't need to be RCU | 581 | * Finally, kill the kernel thread. We don't need to be RCU |
619 | * safe anymore, since the bdi is gone from visibility. Force | 582 | * safe anymore, since the bdi is gone from visibility. Force |
620 | * unfreeze of the thread before calling kthread_stop(), otherwise | 583 | * unfreeze of the thread before calling kthread_stop(), otherwise |
621 | * it would never exet if it is currently stuck in the refrigerator. | 584 | * it would never exet if it is currently stuck in the refrigerator. |
622 | */ | 585 | */ |
623 | list_for_each_entry(wb, &bdi->wb_list, list) { | 586 | if (bdi->wb.task) { |
624 | thaw_process(wb->task); | 587 | thaw_process(bdi->wb.task); |
625 | kthread_stop(wb->task); | 588 | kthread_stop(bdi->wb.task); |
626 | } | 589 | } |
627 | } | 590 | } |
628 | 591 | ||
@@ -644,7 +607,9 @@ static void bdi_prune_sb(struct backing_dev_info *bdi) | |||
644 | void bdi_unregister(struct backing_dev_info *bdi) | 607 | void bdi_unregister(struct backing_dev_info *bdi) |
645 | { | 608 | { |
646 | if (bdi->dev) { | 609 | if (bdi->dev) { |
610 | trace_writeback_bdi_unregister(bdi); | ||
647 | bdi_prune_sb(bdi); | 611 | bdi_prune_sb(bdi); |
612 | del_timer_sync(&bdi->wb.wakeup_timer); | ||
648 | 613 | ||
649 | if (!bdi_cap_flush_forker(bdi)) | 614 | if (!bdi_cap_flush_forker(bdi)) |
650 | bdi_wb_shutdown(bdi); | 615 | bdi_wb_shutdown(bdi); |
@@ -655,6 +620,18 @@ void bdi_unregister(struct backing_dev_info *bdi) | |||
655 | } | 620 | } |
656 | EXPORT_SYMBOL(bdi_unregister); | 621 | EXPORT_SYMBOL(bdi_unregister); |
657 | 622 | ||
623 | static void bdi_wb_init(struct bdi_writeback *wb, struct backing_dev_info *bdi) | ||
624 | { | ||
625 | memset(wb, 0, sizeof(*wb)); | ||
626 | |||
627 | wb->bdi = bdi; | ||
628 | wb->last_old_flush = jiffies; | ||
629 | INIT_LIST_HEAD(&wb->b_dirty); | ||
630 | INIT_LIST_HEAD(&wb->b_io); | ||
631 | INIT_LIST_HEAD(&wb->b_more_io); | ||
632 | setup_timer(&wb->wakeup_timer, wakeup_timer_fn, (unsigned long)bdi); | ||
633 | } | ||
634 | |||
658 | int bdi_init(struct backing_dev_info *bdi) | 635 | int bdi_init(struct backing_dev_info *bdi) |
659 | { | 636 | { |
660 | int i, err; | 637 | int i, err; |
@@ -665,9 +642,7 @@ int bdi_init(struct backing_dev_info *bdi) | |||
665 | bdi->max_ratio = 100; | 642 | bdi->max_ratio = 100; |
666 | bdi->max_prop_frac = PROP_FRAC_BASE; | 643 | bdi->max_prop_frac = PROP_FRAC_BASE; |
667 | spin_lock_init(&bdi->wb_lock); | 644 | spin_lock_init(&bdi->wb_lock); |
668 | INIT_RCU_HEAD(&bdi->rcu_head); | ||
669 | INIT_LIST_HEAD(&bdi->bdi_list); | 645 | INIT_LIST_HEAD(&bdi->bdi_list); |
670 | INIT_LIST_HEAD(&bdi->wb_list); | ||
671 | INIT_LIST_HEAD(&bdi->work_list); | 646 | INIT_LIST_HEAD(&bdi->work_list); |
672 | 647 | ||
673 | bdi_wb_init(&bdi->wb, bdi); | 648 | bdi_wb_init(&bdi->wb, bdi); |
diff --git a/mm/filemap.c b/mm/filemap.c index 20e5642e9f9f..3d4df44e4221 100644 --- a/mm/filemap.c +++ b/mm/filemap.c | |||
@@ -2238,14 +2238,12 @@ static ssize_t generic_perform_write(struct file *file, | |||
2238 | 2238 | ||
2239 | do { | 2239 | do { |
2240 | struct page *page; | 2240 | struct page *page; |
2241 | pgoff_t index; /* Pagecache index for current page */ | ||
2242 | unsigned long offset; /* Offset into pagecache page */ | 2241 | unsigned long offset; /* Offset into pagecache page */ |
2243 | unsigned long bytes; /* Bytes to write to page */ | 2242 | unsigned long bytes; /* Bytes to write to page */ |
2244 | size_t copied; /* Bytes copied from user */ | 2243 | size_t copied; /* Bytes copied from user */ |
2245 | void *fsdata; | 2244 | void *fsdata; |
2246 | 2245 | ||
2247 | offset = (pos & (PAGE_CACHE_SIZE - 1)); | 2246 | offset = (pos & (PAGE_CACHE_SIZE - 1)); |
2248 | index = pos >> PAGE_CACHE_SHIFT; | ||
2249 | bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, | 2247 | bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, |
2250 | iov_iter_count(i)); | 2248 | iov_iter_count(i)); |
2251 | 2249 | ||
diff --git a/mm/highmem.c b/mm/highmem.c index 66baa20f78f5..7a0aa1be4993 100644 --- a/mm/highmem.c +++ b/mm/highmem.c | |||
@@ -26,6 +26,7 @@ | |||
26 | #include <linux/init.h> | 26 | #include <linux/init.h> |
27 | #include <linux/hash.h> | 27 | #include <linux/hash.h> |
28 | #include <linux/highmem.h> | 28 | #include <linux/highmem.h> |
29 | #include <linux/kgdb.h> | ||
29 | #include <asm/tlbflush.h> | 30 | #include <asm/tlbflush.h> |
30 | 31 | ||
31 | /* | 32 | /* |
@@ -470,6 +471,12 @@ void debug_kmap_atomic(enum km_type type) | |||
470 | warn_count--; | 471 | warn_count--; |
471 | } | 472 | } |
472 | } | 473 | } |
474 | #ifdef CONFIG_KGDB_KDB | ||
475 | if (unlikely(type == KM_KDB && atomic_read(&kgdb_active) == -1)) { | ||
476 | WARN_ON(1); | ||
477 | warn_count--; | ||
478 | } | ||
479 | #endif /* CONFIG_KGDB_KDB */ | ||
473 | } | 480 | } |
474 | 481 | ||
475 | #endif | 482 | #endif |
diff --git a/mm/hugetlb.c b/mm/hugetlb.c index 54d42b009dbe..cc5be788a39f 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c | |||
@@ -18,6 +18,9 @@ | |||
18 | #include <linux/bootmem.h> | 18 | #include <linux/bootmem.h> |
19 | #include <linux/sysfs.h> | 19 | #include <linux/sysfs.h> |
20 | #include <linux/slab.h> | 20 | #include <linux/slab.h> |
21 | #include <linux/rmap.h> | ||
22 | #include <linux/swap.h> | ||
23 | #include <linux/swapops.h> | ||
21 | 24 | ||
22 | #include <asm/page.h> | 25 | #include <asm/page.h> |
23 | #include <asm/pgtable.h> | 26 | #include <asm/pgtable.h> |
@@ -220,6 +223,12 @@ static pgoff_t vma_hugecache_offset(struct hstate *h, | |||
220 | (vma->vm_pgoff >> huge_page_order(h)); | 223 | (vma->vm_pgoff >> huge_page_order(h)); |
221 | } | 224 | } |
222 | 225 | ||
226 | pgoff_t linear_hugepage_index(struct vm_area_struct *vma, | ||
227 | unsigned long address) | ||
228 | { | ||
229 | return vma_hugecache_offset(hstate_vma(vma), vma, address); | ||
230 | } | ||
231 | |||
223 | /* | 232 | /* |
224 | * Return the size of the pages allocated when backing a VMA. In the majority | 233 | * Return the size of the pages allocated when backing a VMA. In the majority |
225 | * cases this will be same size as used by the page table entries. | 234 | * cases this will be same size as used by the page table entries. |
@@ -552,6 +561,7 @@ static void free_huge_page(struct page *page) | |||
552 | set_page_private(page, 0); | 561 | set_page_private(page, 0); |
553 | page->mapping = NULL; | 562 | page->mapping = NULL; |
554 | BUG_ON(page_count(page)); | 563 | BUG_ON(page_count(page)); |
564 | BUG_ON(page_mapcount(page)); | ||
555 | INIT_LIST_HEAD(&page->lru); | 565 | INIT_LIST_HEAD(&page->lru); |
556 | 566 | ||
557 | spin_lock(&hugetlb_lock); | 567 | spin_lock(&hugetlb_lock); |
@@ -605,6 +615,8 @@ int PageHuge(struct page *page) | |||
605 | return dtor == free_huge_page; | 615 | return dtor == free_huge_page; |
606 | } | 616 | } |
607 | 617 | ||
618 | EXPORT_SYMBOL_GPL(PageHuge); | ||
619 | |||
608 | static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) | 620 | static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) |
609 | { | 621 | { |
610 | struct page *page; | 622 | struct page *page; |
@@ -2129,6 +2141,7 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, | |||
2129 | entry = huge_ptep_get(src_pte); | 2141 | entry = huge_ptep_get(src_pte); |
2130 | ptepage = pte_page(entry); | 2142 | ptepage = pte_page(entry); |
2131 | get_page(ptepage); | 2143 | get_page(ptepage); |
2144 | page_dup_rmap(ptepage); | ||
2132 | set_huge_pte_at(dst, addr, dst_pte, entry); | 2145 | set_huge_pte_at(dst, addr, dst_pte, entry); |
2133 | } | 2146 | } |
2134 | spin_unlock(&src->page_table_lock); | 2147 | spin_unlock(&src->page_table_lock); |
@@ -2140,6 +2153,19 @@ nomem: | |||
2140 | return -ENOMEM; | 2153 | return -ENOMEM; |
2141 | } | 2154 | } |
2142 | 2155 | ||
2156 | static int is_hugetlb_entry_hwpoisoned(pte_t pte) | ||
2157 | { | ||
2158 | swp_entry_t swp; | ||
2159 | |||
2160 | if (huge_pte_none(pte) || pte_present(pte)) | ||
2161 | return 0; | ||
2162 | swp = pte_to_swp_entry(pte); | ||
2163 | if (non_swap_entry(swp) && is_hwpoison_entry(swp)) { | ||
2164 | return 1; | ||
2165 | } else | ||
2166 | return 0; | ||
2167 | } | ||
2168 | |||
2143 | void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | 2169 | void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, |
2144 | unsigned long end, struct page *ref_page) | 2170 | unsigned long end, struct page *ref_page) |
2145 | { | 2171 | { |
@@ -2198,6 +2224,12 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | |||
2198 | if (huge_pte_none(pte)) | 2224 | if (huge_pte_none(pte)) |
2199 | continue; | 2225 | continue; |
2200 | 2226 | ||
2227 | /* | ||
2228 | * HWPoisoned hugepage is already unmapped and dropped reference | ||
2229 | */ | ||
2230 | if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) | ||
2231 | continue; | ||
2232 | |||
2201 | page = pte_page(pte); | 2233 | page = pte_page(pte); |
2202 | if (pte_dirty(pte)) | 2234 | if (pte_dirty(pte)) |
2203 | set_page_dirty(page); | 2235 | set_page_dirty(page); |
@@ -2207,6 +2239,7 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, | |||
2207 | flush_tlb_range(vma, start, end); | 2239 | flush_tlb_range(vma, start, end); |
2208 | mmu_notifier_invalidate_range_end(mm, start, end); | 2240 | mmu_notifier_invalidate_range_end(mm, start, end); |
2209 | list_for_each_entry_safe(page, tmp, &page_list, lru) { | 2241 | list_for_each_entry_safe(page, tmp, &page_list, lru) { |
2242 | page_remove_rmap(page); | ||
2210 | list_del(&page->lru); | 2243 | list_del(&page->lru); |
2211 | put_page(page); | 2244 | put_page(page); |
2212 | } | 2245 | } |
@@ -2272,6 +2305,9 @@ static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, | |||
2272 | return 1; | 2305 | return 1; |
2273 | } | 2306 | } |
2274 | 2307 | ||
2308 | /* | ||
2309 | * Hugetlb_cow() should be called with page lock of the original hugepage held. | ||
2310 | */ | ||
2275 | static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, | 2311 | static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, |
2276 | unsigned long address, pte_t *ptep, pte_t pte, | 2312 | unsigned long address, pte_t *ptep, pte_t pte, |
2277 | struct page *pagecache_page) | 2313 | struct page *pagecache_page) |
@@ -2286,8 +2322,13 @@ static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, | |||
2286 | retry_avoidcopy: | 2322 | retry_avoidcopy: |
2287 | /* If no-one else is actually using this page, avoid the copy | 2323 | /* If no-one else is actually using this page, avoid the copy |
2288 | * and just make the page writable */ | 2324 | * and just make the page writable */ |
2289 | avoidcopy = (page_count(old_page) == 1); | 2325 | avoidcopy = (page_mapcount(old_page) == 1); |
2290 | if (avoidcopy) { | 2326 | if (avoidcopy) { |
2327 | if (!trylock_page(old_page)) { | ||
2328 | if (PageAnon(old_page)) | ||
2329 | page_move_anon_rmap(old_page, vma, address); | ||
2330 | } else | ||
2331 | unlock_page(old_page); | ||
2291 | set_huge_ptep_writable(vma, address, ptep); | 2332 | set_huge_ptep_writable(vma, address, ptep); |
2292 | return 0; | 2333 | return 0; |
2293 | } | 2334 | } |
@@ -2338,6 +2379,13 @@ retry_avoidcopy: | |||
2338 | return -PTR_ERR(new_page); | 2379 | return -PTR_ERR(new_page); |
2339 | } | 2380 | } |
2340 | 2381 | ||
2382 | /* | ||
2383 | * When the original hugepage is shared one, it does not have | ||
2384 | * anon_vma prepared. | ||
2385 | */ | ||
2386 | if (unlikely(anon_vma_prepare(vma))) | ||
2387 | return VM_FAULT_OOM; | ||
2388 | |||
2341 | copy_huge_page(new_page, old_page, address, vma); | 2389 | copy_huge_page(new_page, old_page, address, vma); |
2342 | __SetPageUptodate(new_page); | 2390 | __SetPageUptodate(new_page); |
2343 | 2391 | ||
@@ -2349,11 +2397,19 @@ retry_avoidcopy: | |||
2349 | ptep = huge_pte_offset(mm, address & huge_page_mask(h)); | 2397 | ptep = huge_pte_offset(mm, address & huge_page_mask(h)); |
2350 | if (likely(pte_same(huge_ptep_get(ptep), pte))) { | 2398 | if (likely(pte_same(huge_ptep_get(ptep), pte))) { |
2351 | /* Break COW */ | 2399 | /* Break COW */ |
2400 | mmu_notifier_invalidate_range_start(mm, | ||
2401 | address & huge_page_mask(h), | ||
2402 | (address & huge_page_mask(h)) + huge_page_size(h)); | ||
2352 | huge_ptep_clear_flush(vma, address, ptep); | 2403 | huge_ptep_clear_flush(vma, address, ptep); |
2353 | set_huge_pte_at(mm, address, ptep, | 2404 | set_huge_pte_at(mm, address, ptep, |
2354 | make_huge_pte(vma, new_page, 1)); | 2405 | make_huge_pte(vma, new_page, 1)); |
2406 | page_remove_rmap(old_page); | ||
2407 | hugepage_add_anon_rmap(new_page, vma, address); | ||
2355 | /* Make the old page be freed below */ | 2408 | /* Make the old page be freed below */ |
2356 | new_page = old_page; | 2409 | new_page = old_page; |
2410 | mmu_notifier_invalidate_range_end(mm, | ||
2411 | address & huge_page_mask(h), | ||
2412 | (address & huge_page_mask(h)) + huge_page_size(h)); | ||
2357 | } | 2413 | } |
2358 | page_cache_release(new_page); | 2414 | page_cache_release(new_page); |
2359 | page_cache_release(old_page); | 2415 | page_cache_release(old_page); |
@@ -2452,10 +2508,29 @@ retry: | |||
2452 | spin_lock(&inode->i_lock); | 2508 | spin_lock(&inode->i_lock); |
2453 | inode->i_blocks += blocks_per_huge_page(h); | 2509 | inode->i_blocks += blocks_per_huge_page(h); |
2454 | spin_unlock(&inode->i_lock); | 2510 | spin_unlock(&inode->i_lock); |
2511 | page_dup_rmap(page); | ||
2455 | } else { | 2512 | } else { |
2456 | lock_page(page); | 2513 | lock_page(page); |
2457 | page->mapping = HUGETLB_POISON; | 2514 | if (unlikely(anon_vma_prepare(vma))) { |
2515 | ret = VM_FAULT_OOM; | ||
2516 | goto backout_unlocked; | ||
2517 | } | ||
2518 | hugepage_add_new_anon_rmap(page, vma, address); | ||
2458 | } | 2519 | } |
2520 | } else { | ||
2521 | page_dup_rmap(page); | ||
2522 | } | ||
2523 | |||
2524 | /* | ||
2525 | * Since memory error handler replaces pte into hwpoison swap entry | ||
2526 | * at the time of error handling, a process which reserved but not have | ||
2527 | * the mapping to the error hugepage does not have hwpoison swap entry. | ||
2528 | * So we need to block accesses from such a process by checking | ||
2529 | * PG_hwpoison bit here. | ||
2530 | */ | ||
2531 | if (unlikely(PageHWPoison(page))) { | ||
2532 | ret = VM_FAULT_HWPOISON; | ||
2533 | goto backout_unlocked; | ||
2459 | } | 2534 | } |
2460 | 2535 | ||
2461 | /* | 2536 | /* |
@@ -2507,10 +2582,18 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, | |||
2507 | pte_t *ptep; | 2582 | pte_t *ptep; |
2508 | pte_t entry; | 2583 | pte_t entry; |
2509 | int ret; | 2584 | int ret; |
2585 | struct page *page = NULL; | ||
2510 | struct page *pagecache_page = NULL; | 2586 | struct page *pagecache_page = NULL; |
2511 | static DEFINE_MUTEX(hugetlb_instantiation_mutex); | 2587 | static DEFINE_MUTEX(hugetlb_instantiation_mutex); |
2512 | struct hstate *h = hstate_vma(vma); | 2588 | struct hstate *h = hstate_vma(vma); |
2513 | 2589 | ||
2590 | ptep = huge_pte_offset(mm, address); | ||
2591 | if (ptep) { | ||
2592 | entry = huge_ptep_get(ptep); | ||
2593 | if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) | ||
2594 | return VM_FAULT_HWPOISON; | ||
2595 | } | ||
2596 | |||
2514 | ptep = huge_pte_alloc(mm, address, huge_page_size(h)); | 2597 | ptep = huge_pte_alloc(mm, address, huge_page_size(h)); |
2515 | if (!ptep) | 2598 | if (!ptep) |
2516 | return VM_FAULT_OOM; | 2599 | return VM_FAULT_OOM; |
@@ -2548,6 +2631,11 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, | |||
2548 | vma, address); | 2631 | vma, address); |
2549 | } | 2632 | } |
2550 | 2633 | ||
2634 | if (!pagecache_page) { | ||
2635 | page = pte_page(entry); | ||
2636 | lock_page(page); | ||
2637 | } | ||
2638 | |||
2551 | spin_lock(&mm->page_table_lock); | 2639 | spin_lock(&mm->page_table_lock); |
2552 | /* Check for a racing update before calling hugetlb_cow */ | 2640 | /* Check for a racing update before calling hugetlb_cow */ |
2553 | if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) | 2641 | if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) |
@@ -2573,6 +2661,8 @@ out_page_table_lock: | |||
2573 | if (pagecache_page) { | 2661 | if (pagecache_page) { |
2574 | unlock_page(pagecache_page); | 2662 | unlock_page(pagecache_page); |
2575 | put_page(pagecache_page); | 2663 | put_page(pagecache_page); |
2664 | } else { | ||
2665 | unlock_page(page); | ||
2576 | } | 2666 | } |
2577 | 2667 | ||
2578 | out_mutex: | 2668 | out_mutex: |
@@ -2785,3 +2875,19 @@ void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) | |||
2785 | hugetlb_put_quota(inode->i_mapping, (chg - freed)); | 2875 | hugetlb_put_quota(inode->i_mapping, (chg - freed)); |
2786 | hugetlb_acct_memory(h, -(chg - freed)); | 2876 | hugetlb_acct_memory(h, -(chg - freed)); |
2787 | } | 2877 | } |
2878 | |||
2879 | /* | ||
2880 | * This function is called from memory failure code. | ||
2881 | * Assume the caller holds page lock of the head page. | ||
2882 | */ | ||
2883 | void __isolate_hwpoisoned_huge_page(struct page *hpage) | ||
2884 | { | ||
2885 | struct hstate *h = page_hstate(hpage); | ||
2886 | int nid = page_to_nid(hpage); | ||
2887 | |||
2888 | spin_lock(&hugetlb_lock); | ||
2889 | list_del(&hpage->lru); | ||
2890 | h->free_huge_pages--; | ||
2891 | h->free_huge_pages_node[nid]--; | ||
2892 | spin_unlock(&hugetlb_lock); | ||
2893 | } | ||
diff --git a/mm/hwpoison-inject.c b/mm/hwpoison-inject.c index 10ea71905c1f..0948f1072d6b 100644 --- a/mm/hwpoison-inject.c +++ b/mm/hwpoison-inject.c | |||
@@ -5,6 +5,7 @@ | |||
5 | #include <linux/mm.h> | 5 | #include <linux/mm.h> |
6 | #include <linux/swap.h> | 6 | #include <linux/swap.h> |
7 | #include <linux/pagemap.h> | 7 | #include <linux/pagemap.h> |
8 | #include <linux/hugetlb.h> | ||
8 | #include "internal.h" | 9 | #include "internal.h" |
9 | 10 | ||
10 | static struct dentry *hwpoison_dir; | 11 | static struct dentry *hwpoison_dir; |
@@ -13,6 +14,7 @@ static int hwpoison_inject(void *data, u64 val) | |||
13 | { | 14 | { |
14 | unsigned long pfn = val; | 15 | unsigned long pfn = val; |
15 | struct page *p; | 16 | struct page *p; |
17 | struct page *hpage; | ||
16 | int err; | 18 | int err; |
17 | 19 | ||
18 | if (!capable(CAP_SYS_ADMIN)) | 20 | if (!capable(CAP_SYS_ADMIN)) |
@@ -24,18 +26,19 @@ static int hwpoison_inject(void *data, u64 val) | |||
24 | return -ENXIO; | 26 | return -ENXIO; |
25 | 27 | ||
26 | p = pfn_to_page(pfn); | 28 | p = pfn_to_page(pfn); |
29 | hpage = compound_head(p); | ||
27 | /* | 30 | /* |
28 | * This implies unable to support free buddy pages. | 31 | * This implies unable to support free buddy pages. |
29 | */ | 32 | */ |
30 | if (!get_page_unless_zero(p)) | 33 | if (!get_page_unless_zero(hpage)) |
31 | return 0; | 34 | return 0; |
32 | 35 | ||
33 | if (!PageLRU(p)) | 36 | if (!PageLRU(p) && !PageHuge(p)) |
34 | shake_page(p, 0); | 37 | shake_page(p, 0); |
35 | /* | 38 | /* |
36 | * This implies unable to support non-LRU pages. | 39 | * This implies unable to support non-LRU pages. |
37 | */ | 40 | */ |
38 | if (!PageLRU(p)) | 41 | if (!PageLRU(p) && !PageHuge(p)) |
39 | return 0; | 42 | return 0; |
40 | 43 | ||
41 | /* | 44 | /* |
@@ -44,9 +47,9 @@ static int hwpoison_inject(void *data, u64 val) | |||
44 | * We temporarily take page lock for try_get_mem_cgroup_from_page(). | 47 | * We temporarily take page lock for try_get_mem_cgroup_from_page(). |
45 | * __memory_failure() will redo the check reliably inside page lock. | 48 | * __memory_failure() will redo the check reliably inside page lock. |
46 | */ | 49 | */ |
47 | lock_page(p); | 50 | lock_page(hpage); |
48 | err = hwpoison_filter(p); | 51 | err = hwpoison_filter(hpage); |
49 | unlock_page(p); | 52 | unlock_page(hpage); |
50 | if (err) | 53 | if (err) |
51 | return 0; | 54 | return 0; |
52 | 55 | ||
diff --git a/mm/init-mm.c b/mm/init-mm.c index 57aba0da9668..1d29cdfe8ebb 100644 --- a/mm/init-mm.c +++ b/mm/init-mm.c | |||
@@ -7,6 +7,11 @@ | |||
7 | 7 | ||
8 | #include <asm/atomic.h> | 8 | #include <asm/atomic.h> |
9 | #include <asm/pgtable.h> | 9 | #include <asm/pgtable.h> |
10 | #include <asm/mmu.h> | ||
11 | |||
12 | #ifndef INIT_MM_CONTEXT | ||
13 | #define INIT_MM_CONTEXT(name) | ||
14 | #endif | ||
10 | 15 | ||
11 | struct mm_struct init_mm = { | 16 | struct mm_struct init_mm = { |
12 | .mm_rb = RB_ROOT, | 17 | .mm_rb = RB_ROOT, |
@@ -17,4 +22,5 @@ struct mm_struct init_mm = { | |||
17 | .page_table_lock = __SPIN_LOCK_UNLOCKED(init_mm.page_table_lock), | 22 | .page_table_lock = __SPIN_LOCK_UNLOCKED(init_mm.page_table_lock), |
18 | .mmlist = LIST_HEAD_INIT(init_mm.mmlist), | 23 | .mmlist = LIST_HEAD_INIT(init_mm.mmlist), |
19 | .cpu_vm_mask = CPU_MASK_ALL, | 24 | .cpu_vm_mask = CPU_MASK_ALL, |
25 | INIT_MM_CONTEXT(init_mm) | ||
20 | }; | 26 | }; |
diff --git a/mm/kmemleak.c b/mm/kmemleak.c index 2c0d032ac898..bd9bc214091b 100644 --- a/mm/kmemleak.c +++ b/mm/kmemleak.c | |||
@@ -211,6 +211,9 @@ static signed long jiffies_scan_wait; | |||
211 | static int kmemleak_stack_scan = 1; | 211 | static int kmemleak_stack_scan = 1; |
212 | /* protects the memory scanning, parameters and debug/kmemleak file access */ | 212 | /* protects the memory scanning, parameters and debug/kmemleak file access */ |
213 | static DEFINE_MUTEX(scan_mutex); | 213 | static DEFINE_MUTEX(scan_mutex); |
214 | /* setting kmemleak=on, will set this var, skipping the disable */ | ||
215 | static int kmemleak_skip_disable; | ||
216 | |||
214 | 217 | ||
215 | /* | 218 | /* |
216 | * Early object allocation/freeing logging. Kmemleak is initialized after the | 219 | * Early object allocation/freeing logging. Kmemleak is initialized after the |
@@ -398,7 +401,9 @@ static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) | |||
398 | object = prio_tree_entry(node, struct kmemleak_object, | 401 | object = prio_tree_entry(node, struct kmemleak_object, |
399 | tree_node); | 402 | tree_node); |
400 | if (!alias && object->pointer != ptr) { | 403 | if (!alias && object->pointer != ptr) { |
401 | kmemleak_warn("Found object by alias"); | 404 | pr_warning("Found object by alias at 0x%08lx\n", ptr); |
405 | dump_stack(); | ||
406 | dump_object_info(object); | ||
402 | object = NULL; | 407 | object = NULL; |
403 | } | 408 | } |
404 | } else | 409 | } else |
@@ -695,7 +700,7 @@ static void paint_ptr(unsigned long ptr, int color) | |||
695 | } | 700 | } |
696 | 701 | ||
697 | /* | 702 | /* |
698 | * Make a object permanently as gray-colored so that it can no longer be | 703 | * Mark an object permanently as gray-colored so that it can no longer be |
699 | * reported as a leak. This is used in general to mark a false positive. | 704 | * reported as a leak. This is used in general to mark a false positive. |
700 | */ | 705 | */ |
701 | static void make_gray_object(unsigned long ptr) | 706 | static void make_gray_object(unsigned long ptr) |
@@ -838,10 +843,19 @@ out: | |||
838 | rcu_read_unlock(); | 843 | rcu_read_unlock(); |
839 | } | 844 | } |
840 | 845 | ||
841 | /* | 846 | /** |
842 | * Memory allocation function callback. This function is called from the | 847 | * kmemleak_alloc - register a newly allocated object |
843 | * kernel allocators when a new block is allocated (kmem_cache_alloc, kmalloc, | 848 | * @ptr: pointer to beginning of the object |
844 | * vmalloc etc.). | 849 | * @size: size of the object |
850 | * @min_count: minimum number of references to this object. If during memory | ||
851 | * scanning a number of references less than @min_count is found, | ||
852 | * the object is reported as a memory leak. If @min_count is 0, | ||
853 | * the object is never reported as a leak. If @min_count is -1, | ||
854 | * the object is ignored (not scanned and not reported as a leak) | ||
855 | * @gfp: kmalloc() flags used for kmemleak internal memory allocations | ||
856 | * | ||
857 | * This function is called from the kernel allocators when a new object | ||
858 | * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.). | ||
845 | */ | 859 | */ |
846 | void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, | 860 | void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, |
847 | gfp_t gfp) | 861 | gfp_t gfp) |
@@ -855,9 +869,12 @@ void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, | |||
855 | } | 869 | } |
856 | EXPORT_SYMBOL_GPL(kmemleak_alloc); | 870 | EXPORT_SYMBOL_GPL(kmemleak_alloc); |
857 | 871 | ||
858 | /* | 872 | /** |
859 | * Memory freeing function callback. This function is called from the kernel | 873 | * kmemleak_free - unregister a previously registered object |
860 | * allocators when a block is freed (kmem_cache_free, kfree, vfree etc.). | 874 | * @ptr: pointer to beginning of the object |
875 | * | ||
876 | * This function is called from the kernel allocators when an object (memory | ||
877 | * block) is freed (kmem_cache_free, kfree, vfree etc.). | ||
861 | */ | 878 | */ |
862 | void __ref kmemleak_free(const void *ptr) | 879 | void __ref kmemleak_free(const void *ptr) |
863 | { | 880 | { |
@@ -870,9 +887,14 @@ void __ref kmemleak_free(const void *ptr) | |||
870 | } | 887 | } |
871 | EXPORT_SYMBOL_GPL(kmemleak_free); | 888 | EXPORT_SYMBOL_GPL(kmemleak_free); |
872 | 889 | ||
873 | /* | 890 | /** |
874 | * Partial memory freeing function callback. This function is usually called | 891 | * kmemleak_free_part - partially unregister a previously registered object |
875 | * from bootmem allocator when (part of) a memory block is freed. | 892 | * @ptr: pointer to the beginning or inside the object. This also |
893 | * represents the start of the range to be freed | ||
894 | * @size: size to be unregistered | ||
895 | * | ||
896 | * This function is called when only a part of a memory block is freed | ||
897 | * (usually from the bootmem allocator). | ||
876 | */ | 898 | */ |
877 | void __ref kmemleak_free_part(const void *ptr, size_t size) | 899 | void __ref kmemleak_free_part(const void *ptr, size_t size) |
878 | { | 900 | { |
@@ -885,9 +907,12 @@ void __ref kmemleak_free_part(const void *ptr, size_t size) | |||
885 | } | 907 | } |
886 | EXPORT_SYMBOL_GPL(kmemleak_free_part); | 908 | EXPORT_SYMBOL_GPL(kmemleak_free_part); |
887 | 909 | ||
888 | /* | 910 | /** |
889 | * Mark an already allocated memory block as a false positive. This will cause | 911 | * kmemleak_not_leak - mark an allocated object as false positive |
890 | * the block to no longer be reported as leak and always be scanned. | 912 | * @ptr: pointer to beginning of the object |
913 | * | ||
914 | * Calling this function on an object will cause the memory block to no longer | ||
915 | * be reported as leak and always be scanned. | ||
891 | */ | 916 | */ |
892 | void __ref kmemleak_not_leak(const void *ptr) | 917 | void __ref kmemleak_not_leak(const void *ptr) |
893 | { | 918 | { |
@@ -900,10 +925,14 @@ void __ref kmemleak_not_leak(const void *ptr) | |||
900 | } | 925 | } |
901 | EXPORT_SYMBOL(kmemleak_not_leak); | 926 | EXPORT_SYMBOL(kmemleak_not_leak); |
902 | 927 | ||
903 | /* | 928 | /** |
904 | * Ignore a memory block. This is usually done when it is known that the | 929 | * kmemleak_ignore - ignore an allocated object |
905 | * corresponding block is not a leak and does not contain any references to | 930 | * @ptr: pointer to beginning of the object |
906 | * other allocated memory blocks. | 931 | * |
932 | * Calling this function on an object will cause the memory block to be | ||
933 | * ignored (not scanned and not reported as a leak). This is usually done when | ||
934 | * it is known that the corresponding block is not a leak and does not contain | ||
935 | * any references to other allocated memory blocks. | ||
907 | */ | 936 | */ |
908 | void __ref kmemleak_ignore(const void *ptr) | 937 | void __ref kmemleak_ignore(const void *ptr) |
909 | { | 938 | { |
@@ -916,8 +945,16 @@ void __ref kmemleak_ignore(const void *ptr) | |||
916 | } | 945 | } |
917 | EXPORT_SYMBOL(kmemleak_ignore); | 946 | EXPORT_SYMBOL(kmemleak_ignore); |
918 | 947 | ||
919 | /* | 948 | /** |
920 | * Limit the range to be scanned in an allocated memory block. | 949 | * kmemleak_scan_area - limit the range to be scanned in an allocated object |
950 | * @ptr: pointer to beginning or inside the object. This also | ||
951 | * represents the start of the scan area | ||
952 | * @size: size of the scan area | ||
953 | * @gfp: kmalloc() flags used for kmemleak internal memory allocations | ||
954 | * | ||
955 | * This function is used when it is known that only certain parts of an object | ||
956 | * contain references to other objects. Kmemleak will only scan these areas | ||
957 | * reducing the number false negatives. | ||
921 | */ | 958 | */ |
922 | void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) | 959 | void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) |
923 | { | 960 | { |
@@ -930,8 +967,14 @@ void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) | |||
930 | } | 967 | } |
931 | EXPORT_SYMBOL(kmemleak_scan_area); | 968 | EXPORT_SYMBOL(kmemleak_scan_area); |
932 | 969 | ||
933 | /* | 970 | /** |
934 | * Inform kmemleak not to scan the given memory block. | 971 | * kmemleak_no_scan - do not scan an allocated object |
972 | * @ptr: pointer to beginning of the object | ||
973 | * | ||
974 | * This function notifies kmemleak not to scan the given memory block. Useful | ||
975 | * in situations where it is known that the given object does not contain any | ||
976 | * references to other objects. Kmemleak will not scan such objects reducing | ||
977 | * the number of false negatives. | ||
935 | */ | 978 | */ |
936 | void __ref kmemleak_no_scan(const void *ptr) | 979 | void __ref kmemleak_no_scan(const void *ptr) |
937 | { | 980 | { |
@@ -1602,7 +1645,9 @@ static int kmemleak_boot_config(char *str) | |||
1602 | return -EINVAL; | 1645 | return -EINVAL; |
1603 | if (strcmp(str, "off") == 0) | 1646 | if (strcmp(str, "off") == 0) |
1604 | kmemleak_disable(); | 1647 | kmemleak_disable(); |
1605 | else if (strcmp(str, "on") != 0) | 1648 | else if (strcmp(str, "on") == 0) |
1649 | kmemleak_skip_disable = 1; | ||
1650 | else | ||
1606 | return -EINVAL; | 1651 | return -EINVAL; |
1607 | return 0; | 1652 | return 0; |
1608 | } | 1653 | } |
@@ -1616,6 +1661,13 @@ void __init kmemleak_init(void) | |||
1616 | int i; | 1661 | int i; |
1617 | unsigned long flags; | 1662 | unsigned long flags; |
1618 | 1663 | ||
1664 | #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF | ||
1665 | if (!kmemleak_skip_disable) { | ||
1666 | kmemleak_disable(); | ||
1667 | return; | ||
1668 | } | ||
1669 | #endif | ||
1670 | |||
1619 | jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); | 1671 | jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); |
1620 | jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); | 1672 | jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); |
1621 | 1673 | ||
@@ -33,6 +33,7 @@ | |||
33 | #include <linux/mmu_notifier.h> | 33 | #include <linux/mmu_notifier.h> |
34 | #include <linux/swap.h> | 34 | #include <linux/swap.h> |
35 | #include <linux/ksm.h> | 35 | #include <linux/ksm.h> |
36 | #include <linux/hash.h> | ||
36 | 37 | ||
37 | #include <asm/tlbflush.h> | 38 | #include <asm/tlbflush.h> |
38 | #include "internal.h" | 39 | #include "internal.h" |
@@ -153,8 +154,9 @@ struct rmap_item { | |||
153 | static struct rb_root root_stable_tree = RB_ROOT; | 154 | static struct rb_root root_stable_tree = RB_ROOT; |
154 | static struct rb_root root_unstable_tree = RB_ROOT; | 155 | static struct rb_root root_unstable_tree = RB_ROOT; |
155 | 156 | ||
156 | #define MM_SLOTS_HASH_HEADS 1024 | 157 | #define MM_SLOTS_HASH_SHIFT 10 |
157 | static struct hlist_head *mm_slots_hash; | 158 | #define MM_SLOTS_HASH_HEADS (1 << MM_SLOTS_HASH_SHIFT) |
159 | static struct hlist_head mm_slots_hash[MM_SLOTS_HASH_HEADS]; | ||
158 | 160 | ||
159 | static struct mm_slot ksm_mm_head = { | 161 | static struct mm_slot ksm_mm_head = { |
160 | .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), | 162 | .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), |
@@ -269,28 +271,13 @@ static inline void free_mm_slot(struct mm_slot *mm_slot) | |||
269 | kmem_cache_free(mm_slot_cache, mm_slot); | 271 | kmem_cache_free(mm_slot_cache, mm_slot); |
270 | } | 272 | } |
271 | 273 | ||
272 | static int __init mm_slots_hash_init(void) | ||
273 | { | ||
274 | mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head), | ||
275 | GFP_KERNEL); | ||
276 | if (!mm_slots_hash) | ||
277 | return -ENOMEM; | ||
278 | return 0; | ||
279 | } | ||
280 | |||
281 | static void __init mm_slots_hash_free(void) | ||
282 | { | ||
283 | kfree(mm_slots_hash); | ||
284 | } | ||
285 | |||
286 | static struct mm_slot *get_mm_slot(struct mm_struct *mm) | 274 | static struct mm_slot *get_mm_slot(struct mm_struct *mm) |
287 | { | 275 | { |
288 | struct mm_slot *mm_slot; | 276 | struct mm_slot *mm_slot; |
289 | struct hlist_head *bucket; | 277 | struct hlist_head *bucket; |
290 | struct hlist_node *node; | 278 | struct hlist_node *node; |
291 | 279 | ||
292 | bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct)) | 280 | bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)]; |
293 | % MM_SLOTS_HASH_HEADS]; | ||
294 | hlist_for_each_entry(mm_slot, node, bucket, link) { | 281 | hlist_for_each_entry(mm_slot, node, bucket, link) { |
295 | if (mm == mm_slot->mm) | 282 | if (mm == mm_slot->mm) |
296 | return mm_slot; | 283 | return mm_slot; |
@@ -303,8 +290,7 @@ static void insert_to_mm_slots_hash(struct mm_struct *mm, | |||
303 | { | 290 | { |
304 | struct hlist_head *bucket; | 291 | struct hlist_head *bucket; |
305 | 292 | ||
306 | bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct)) | 293 | bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)]; |
307 | % MM_SLOTS_HASH_HEADS]; | ||
308 | mm_slot->mm = mm; | 294 | mm_slot->mm = mm; |
309 | hlist_add_head(&mm_slot->link, bucket); | 295 | hlist_add_head(&mm_slot->link, bucket); |
310 | } | 296 | } |
@@ -318,19 +304,14 @@ static void hold_anon_vma(struct rmap_item *rmap_item, | |||
318 | struct anon_vma *anon_vma) | 304 | struct anon_vma *anon_vma) |
319 | { | 305 | { |
320 | rmap_item->anon_vma = anon_vma; | 306 | rmap_item->anon_vma = anon_vma; |
321 | atomic_inc(&anon_vma->external_refcount); | 307 | get_anon_vma(anon_vma); |
322 | } | 308 | } |
323 | 309 | ||
324 | static void drop_anon_vma(struct rmap_item *rmap_item) | 310 | static void ksm_drop_anon_vma(struct rmap_item *rmap_item) |
325 | { | 311 | { |
326 | struct anon_vma *anon_vma = rmap_item->anon_vma; | 312 | struct anon_vma *anon_vma = rmap_item->anon_vma; |
327 | 313 | ||
328 | if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->lock)) { | 314 | drop_anon_vma(anon_vma); |
329 | int empty = list_empty(&anon_vma->head); | ||
330 | spin_unlock(&anon_vma->lock); | ||
331 | if (empty) | ||
332 | anon_vma_free(anon_vma); | ||
333 | } | ||
334 | } | 315 | } |
335 | 316 | ||
336 | /* | 317 | /* |
@@ -415,7 +396,7 @@ static void break_cow(struct rmap_item *rmap_item) | |||
415 | * It is not an accident that whenever we want to break COW | 396 | * It is not an accident that whenever we want to break COW |
416 | * to undo, we also need to drop a reference to the anon_vma. | 397 | * to undo, we also need to drop a reference to the anon_vma. |
417 | */ | 398 | */ |
418 | drop_anon_vma(rmap_item); | 399 | ksm_drop_anon_vma(rmap_item); |
419 | 400 | ||
420 | down_read(&mm->mmap_sem); | 401 | down_read(&mm->mmap_sem); |
421 | if (ksm_test_exit(mm)) | 402 | if (ksm_test_exit(mm)) |
@@ -470,7 +451,7 @@ static void remove_node_from_stable_tree(struct stable_node *stable_node) | |||
470 | ksm_pages_sharing--; | 451 | ksm_pages_sharing--; |
471 | else | 452 | else |
472 | ksm_pages_shared--; | 453 | ksm_pages_shared--; |
473 | drop_anon_vma(rmap_item); | 454 | ksm_drop_anon_vma(rmap_item); |
474 | rmap_item->address &= PAGE_MASK; | 455 | rmap_item->address &= PAGE_MASK; |
475 | cond_resched(); | 456 | cond_resched(); |
476 | } | 457 | } |
@@ -558,7 +539,7 @@ static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) | |||
558 | else | 539 | else |
559 | ksm_pages_shared--; | 540 | ksm_pages_shared--; |
560 | 541 | ||
561 | drop_anon_vma(rmap_item); | 542 | ksm_drop_anon_vma(rmap_item); |
562 | rmap_item->address &= PAGE_MASK; | 543 | rmap_item->address &= PAGE_MASK; |
563 | 544 | ||
564 | } else if (rmap_item->address & UNSTABLE_FLAG) { | 545 | } else if (rmap_item->address & UNSTABLE_FLAG) { |
@@ -1566,7 +1547,7 @@ again: | |||
1566 | struct anon_vma_chain *vmac; | 1547 | struct anon_vma_chain *vmac; |
1567 | struct vm_area_struct *vma; | 1548 | struct vm_area_struct *vma; |
1568 | 1549 | ||
1569 | spin_lock(&anon_vma->lock); | 1550 | anon_vma_lock(anon_vma); |
1570 | list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) { | 1551 | list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) { |
1571 | vma = vmac->vma; | 1552 | vma = vmac->vma; |
1572 | if (rmap_item->address < vma->vm_start || | 1553 | if (rmap_item->address < vma->vm_start || |
@@ -1589,7 +1570,7 @@ again: | |||
1589 | if (!search_new_forks || !mapcount) | 1570 | if (!search_new_forks || !mapcount) |
1590 | break; | 1571 | break; |
1591 | } | 1572 | } |
1592 | spin_unlock(&anon_vma->lock); | 1573 | anon_vma_unlock(anon_vma); |
1593 | if (!mapcount) | 1574 | if (!mapcount) |
1594 | goto out; | 1575 | goto out; |
1595 | } | 1576 | } |
@@ -1619,7 +1600,7 @@ again: | |||
1619 | struct anon_vma_chain *vmac; | 1600 | struct anon_vma_chain *vmac; |
1620 | struct vm_area_struct *vma; | 1601 | struct vm_area_struct *vma; |
1621 | 1602 | ||
1622 | spin_lock(&anon_vma->lock); | 1603 | anon_vma_lock(anon_vma); |
1623 | list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) { | 1604 | list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) { |
1624 | vma = vmac->vma; | 1605 | vma = vmac->vma; |
1625 | if (rmap_item->address < vma->vm_start || | 1606 | if (rmap_item->address < vma->vm_start || |
@@ -1637,11 +1618,11 @@ again: | |||
1637 | ret = try_to_unmap_one(page, vma, | 1618 | ret = try_to_unmap_one(page, vma, |
1638 | rmap_item->address, flags); | 1619 | rmap_item->address, flags); |
1639 | if (ret != SWAP_AGAIN || !page_mapped(page)) { | 1620 | if (ret != SWAP_AGAIN || !page_mapped(page)) { |
1640 | spin_unlock(&anon_vma->lock); | 1621 | anon_vma_unlock(anon_vma); |
1641 | goto out; | 1622 | goto out; |
1642 | } | 1623 | } |
1643 | } | 1624 | } |
1644 | spin_unlock(&anon_vma->lock); | 1625 | anon_vma_unlock(anon_vma); |
1645 | } | 1626 | } |
1646 | if (!search_new_forks++) | 1627 | if (!search_new_forks++) |
1647 | goto again; | 1628 | goto again; |
@@ -1671,7 +1652,7 @@ again: | |||
1671 | struct anon_vma_chain *vmac; | 1652 | struct anon_vma_chain *vmac; |
1672 | struct vm_area_struct *vma; | 1653 | struct vm_area_struct *vma; |
1673 | 1654 | ||
1674 | spin_lock(&anon_vma->lock); | 1655 | anon_vma_lock(anon_vma); |
1675 | list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) { | 1656 | list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) { |
1676 | vma = vmac->vma; | 1657 | vma = vmac->vma; |
1677 | if (rmap_item->address < vma->vm_start || | 1658 | if (rmap_item->address < vma->vm_start || |
@@ -1688,11 +1669,11 @@ again: | |||
1688 | 1669 | ||
1689 | ret = rmap_one(page, vma, rmap_item->address, arg); | 1670 | ret = rmap_one(page, vma, rmap_item->address, arg); |
1690 | if (ret != SWAP_AGAIN) { | 1671 | if (ret != SWAP_AGAIN) { |
1691 | spin_unlock(&anon_vma->lock); | 1672 | anon_vma_unlock(anon_vma); |
1692 | goto out; | 1673 | goto out; |
1693 | } | 1674 | } |
1694 | } | 1675 | } |
1695 | spin_unlock(&anon_vma->lock); | 1676 | anon_vma_unlock(anon_vma); |
1696 | } | 1677 | } |
1697 | if (!search_new_forks++) | 1678 | if (!search_new_forks++) |
1698 | goto again; | 1679 | goto again; |
@@ -1943,15 +1924,11 @@ static int __init ksm_init(void) | |||
1943 | if (err) | 1924 | if (err) |
1944 | goto out; | 1925 | goto out; |
1945 | 1926 | ||
1946 | err = mm_slots_hash_init(); | ||
1947 | if (err) | ||
1948 | goto out_free1; | ||
1949 | |||
1950 | ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); | 1927 | ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); |
1951 | if (IS_ERR(ksm_thread)) { | 1928 | if (IS_ERR(ksm_thread)) { |
1952 | printk(KERN_ERR "ksm: creating kthread failed\n"); | 1929 | printk(KERN_ERR "ksm: creating kthread failed\n"); |
1953 | err = PTR_ERR(ksm_thread); | 1930 | err = PTR_ERR(ksm_thread); |
1954 | goto out_free2; | 1931 | goto out_free; |
1955 | } | 1932 | } |
1956 | 1933 | ||
1957 | #ifdef CONFIG_SYSFS | 1934 | #ifdef CONFIG_SYSFS |
@@ -1959,7 +1936,7 @@ static int __init ksm_init(void) | |||
1959 | if (err) { | 1936 | if (err) { |
1960 | printk(KERN_ERR "ksm: register sysfs failed\n"); | 1937 | printk(KERN_ERR "ksm: register sysfs failed\n"); |
1961 | kthread_stop(ksm_thread); | 1938 | kthread_stop(ksm_thread); |
1962 | goto out_free2; | 1939 | goto out_free; |
1963 | } | 1940 | } |
1964 | #else | 1941 | #else |
1965 | ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ | 1942 | ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ |
@@ -1975,9 +1952,7 @@ static int __init ksm_init(void) | |||
1975 | #endif | 1952 | #endif |
1976 | return 0; | 1953 | return 0; |
1977 | 1954 | ||
1978 | out_free2: | 1955 | out_free: |
1979 | mm_slots_hash_free(); | ||
1980 | out_free1: | ||
1981 | ksm_slab_free(); | 1956 | ksm_slab_free(); |
1982 | out: | 1957 | out: |
1983 | return err; | 1958 | return err; |
diff --git a/mm/memcontrol.c b/mm/memcontrol.c index 20a8193a7af8..3eed583895a6 100644 --- a/mm/memcontrol.c +++ b/mm/memcontrol.c | |||
@@ -47,10 +47,13 @@ | |||
47 | #include <linux/mm_inline.h> | 47 | #include <linux/mm_inline.h> |
48 | #include <linux/page_cgroup.h> | 48 | #include <linux/page_cgroup.h> |
49 | #include <linux/cpu.h> | 49 | #include <linux/cpu.h> |
50 | #include <linux/oom.h> | ||
50 | #include "internal.h" | 51 | #include "internal.h" |
51 | 52 | ||
52 | #include <asm/uaccess.h> | 53 | #include <asm/uaccess.h> |
53 | 54 | ||
55 | #include <trace/events/vmscan.h> | ||
56 | |||
54 | struct cgroup_subsys mem_cgroup_subsys __read_mostly; | 57 | struct cgroup_subsys mem_cgroup_subsys __read_mostly; |
55 | #define MEM_CGROUP_RECLAIM_RETRIES 5 | 58 | #define MEM_CGROUP_RECLAIM_RETRIES 5 |
56 | struct mem_cgroup *root_mem_cgroup __read_mostly; | 59 | struct mem_cgroup *root_mem_cgroup __read_mostly; |
@@ -211,8 +214,6 @@ struct mem_cgroup { | |||
211 | */ | 214 | */ |
212 | spinlock_t reclaim_param_lock; | 215 | spinlock_t reclaim_param_lock; |
213 | 216 | ||
214 | int prev_priority; /* for recording reclaim priority */ | ||
215 | |||
216 | /* | 217 | /* |
217 | * While reclaiming in a hierarchy, we cache the last child we | 218 | * While reclaiming in a hierarchy, we cache the last child we |
218 | * reclaimed from. | 219 | * reclaimed from. |
@@ -268,6 +269,7 @@ enum move_type { | |||
268 | 269 | ||
269 | /* "mc" and its members are protected by cgroup_mutex */ | 270 | /* "mc" and its members are protected by cgroup_mutex */ |
270 | static struct move_charge_struct { | 271 | static struct move_charge_struct { |
272 | spinlock_t lock; /* for from, to, moving_task */ | ||
271 | struct mem_cgroup *from; | 273 | struct mem_cgroup *from; |
272 | struct mem_cgroup *to; | 274 | struct mem_cgroup *to; |
273 | unsigned long precharge; | 275 | unsigned long precharge; |
@@ -276,6 +278,7 @@ static struct move_charge_struct { | |||
276 | struct task_struct *moving_task; /* a task moving charges */ | 278 | struct task_struct *moving_task; /* a task moving charges */ |
277 | wait_queue_head_t waitq; /* a waitq for other context */ | 279 | wait_queue_head_t waitq; /* a waitq for other context */ |
278 | } mc = { | 280 | } mc = { |
281 | .lock = __SPIN_LOCK_UNLOCKED(mc.lock), | ||
279 | .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), | 282 | .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), |
280 | }; | 283 | }; |
281 | 284 | ||
@@ -836,12 +839,13 @@ int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) | |||
836 | { | 839 | { |
837 | int ret; | 840 | int ret; |
838 | struct mem_cgroup *curr = NULL; | 841 | struct mem_cgroup *curr = NULL; |
842 | struct task_struct *p; | ||
839 | 843 | ||
840 | task_lock(task); | 844 | p = find_lock_task_mm(task); |
841 | rcu_read_lock(); | 845 | if (!p) |
842 | curr = try_get_mem_cgroup_from_mm(task->mm); | 846 | return 0; |
843 | rcu_read_unlock(); | 847 | curr = try_get_mem_cgroup_from_mm(p->mm); |
844 | task_unlock(task); | 848 | task_unlock(p); |
845 | if (!curr) | 849 | if (!curr) |
846 | return 0; | 850 | return 0; |
847 | /* | 851 | /* |
@@ -858,35 +862,6 @@ int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) | |||
858 | return ret; | 862 | return ret; |
859 | } | 863 | } |
860 | 864 | ||
861 | /* | ||
862 | * prev_priority control...this will be used in memory reclaim path. | ||
863 | */ | ||
864 | int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem) | ||
865 | { | ||
866 | int prev_priority; | ||
867 | |||
868 | spin_lock(&mem->reclaim_param_lock); | ||
869 | prev_priority = mem->prev_priority; | ||
870 | spin_unlock(&mem->reclaim_param_lock); | ||
871 | |||
872 | return prev_priority; | ||
873 | } | ||
874 | |||
875 | void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority) | ||
876 | { | ||
877 | spin_lock(&mem->reclaim_param_lock); | ||
878 | if (priority < mem->prev_priority) | ||
879 | mem->prev_priority = priority; | ||
880 | spin_unlock(&mem->reclaim_param_lock); | ||
881 | } | ||
882 | |||
883 | void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority) | ||
884 | { | ||
885 | spin_lock(&mem->reclaim_param_lock); | ||
886 | mem->prev_priority = priority; | ||
887 | spin_unlock(&mem->reclaim_param_lock); | ||
888 | } | ||
889 | |||
890 | static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages) | 865 | static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages) |
891 | { | 866 | { |
892 | unsigned long active; | 867 | unsigned long active; |
@@ -944,7 +919,7 @@ unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg, | |||
944 | struct zone *zone, | 919 | struct zone *zone, |
945 | enum lru_list lru) | 920 | enum lru_list lru) |
946 | { | 921 | { |
947 | int nid = zone->zone_pgdat->node_id; | 922 | int nid = zone_to_nid(zone); |
948 | int zid = zone_idx(zone); | 923 | int zid = zone_idx(zone); |
949 | struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); | 924 | struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); |
950 | 925 | ||
@@ -954,7 +929,7 @@ unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg, | |||
954 | struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg, | 929 | struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg, |
955 | struct zone *zone) | 930 | struct zone *zone) |
956 | { | 931 | { |
957 | int nid = zone->zone_pgdat->node_id; | 932 | int nid = zone_to_nid(zone); |
958 | int zid = zone_idx(zone); | 933 | int zid = zone_idx(zone); |
959 | struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); | 934 | struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); |
960 | 935 | ||
@@ -999,7 +974,7 @@ unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, | |||
999 | LIST_HEAD(pc_list); | 974 | LIST_HEAD(pc_list); |
1000 | struct list_head *src; | 975 | struct list_head *src; |
1001 | struct page_cgroup *pc, *tmp; | 976 | struct page_cgroup *pc, *tmp; |
1002 | int nid = z->zone_pgdat->node_id; | 977 | int nid = zone_to_nid(z); |
1003 | int zid = zone_idx(z); | 978 | int zid = zone_idx(z); |
1004 | struct mem_cgroup_per_zone *mz; | 979 | struct mem_cgroup_per_zone *mz; |
1005 | int lru = LRU_FILE * file + active; | 980 | int lru = LRU_FILE * file + active; |
@@ -1038,6 +1013,10 @@ unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, | |||
1038 | } | 1013 | } |
1039 | 1014 | ||
1040 | *scanned = scan; | 1015 | *scanned = scan; |
1016 | |||
1017 | trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken, | ||
1018 | 0, 0, 0, mode); | ||
1019 | |||
1041 | return nr_taken; | 1020 | return nr_taken; |
1042 | } | 1021 | } |
1043 | 1022 | ||
@@ -1072,6 +1051,47 @@ static unsigned int get_swappiness(struct mem_cgroup *memcg) | |||
1072 | return swappiness; | 1051 | return swappiness; |
1073 | } | 1052 | } |
1074 | 1053 | ||
1054 | /* A routine for testing mem is not under move_account */ | ||
1055 | |||
1056 | static bool mem_cgroup_under_move(struct mem_cgroup *mem) | ||
1057 | { | ||
1058 | struct mem_cgroup *from; | ||
1059 | struct mem_cgroup *to; | ||
1060 | bool ret = false; | ||
1061 | /* | ||
1062 | * Unlike task_move routines, we access mc.to, mc.from not under | ||
1063 | * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. | ||
1064 | */ | ||
1065 | spin_lock(&mc.lock); | ||
1066 | from = mc.from; | ||
1067 | to = mc.to; | ||
1068 | if (!from) | ||
1069 | goto unlock; | ||
1070 | if (from == mem || to == mem | ||
1071 | || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css)) | ||
1072 | || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css))) | ||
1073 | ret = true; | ||
1074 | unlock: | ||
1075 | spin_unlock(&mc.lock); | ||
1076 | return ret; | ||
1077 | } | ||
1078 | |||
1079 | static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem) | ||
1080 | { | ||
1081 | if (mc.moving_task && current != mc.moving_task) { | ||
1082 | if (mem_cgroup_under_move(mem)) { | ||
1083 | DEFINE_WAIT(wait); | ||
1084 | prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); | ||
1085 | /* moving charge context might have finished. */ | ||
1086 | if (mc.moving_task) | ||
1087 | schedule(); | ||
1088 | finish_wait(&mc.waitq, &wait); | ||
1089 | return true; | ||
1090 | } | ||
1091 | } | ||
1092 | return false; | ||
1093 | } | ||
1094 | |||
1075 | static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data) | 1095 | static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data) |
1076 | { | 1096 | { |
1077 | int *val = data; | 1097 | int *val = data; |
@@ -1158,6 +1178,24 @@ static int mem_cgroup_count_children(struct mem_cgroup *mem) | |||
1158 | } | 1178 | } |
1159 | 1179 | ||
1160 | /* | 1180 | /* |
1181 | * Return the memory (and swap, if configured) limit for a memcg. | ||
1182 | */ | ||
1183 | u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) | ||
1184 | { | ||
1185 | u64 limit; | ||
1186 | u64 memsw; | ||
1187 | |||
1188 | limit = res_counter_read_u64(&memcg->res, RES_LIMIT) + | ||
1189 | total_swap_pages; | ||
1190 | memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | ||
1191 | /* | ||
1192 | * If memsw is finite and limits the amount of swap space available | ||
1193 | * to this memcg, return that limit. | ||
1194 | */ | ||
1195 | return min(limit, memsw); | ||
1196 | } | ||
1197 | |||
1198 | /* | ||
1161 | * Visit the first child (need not be the first child as per the ordering | 1199 | * Visit the first child (need not be the first child as per the ordering |
1162 | * of the cgroup list, since we track last_scanned_child) of @mem and use | 1200 | * of the cgroup list, since we track last_scanned_child) of @mem and use |
1163 | * that to reclaim free pages from. | 1201 | * that to reclaim free pages from. |
@@ -1262,8 +1300,7 @@ static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem, | |||
1262 | /* we use swappiness of local cgroup */ | 1300 | /* we use swappiness of local cgroup */ |
1263 | if (check_soft) | 1301 | if (check_soft) |
1264 | ret = mem_cgroup_shrink_node_zone(victim, gfp_mask, | 1302 | ret = mem_cgroup_shrink_node_zone(victim, gfp_mask, |
1265 | noswap, get_swappiness(victim), zone, | 1303 | noswap, get_swappiness(victim), zone); |
1266 | zone->zone_pgdat->node_id); | ||
1267 | else | 1304 | else |
1268 | ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, | 1305 | ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, |
1269 | noswap, get_swappiness(victim)); | 1306 | noswap, get_swappiness(victim)); |
@@ -1370,7 +1407,7 @@ static void memcg_wakeup_oom(struct mem_cgroup *mem) | |||
1370 | 1407 | ||
1371 | static void memcg_oom_recover(struct mem_cgroup *mem) | 1408 | static void memcg_oom_recover(struct mem_cgroup *mem) |
1372 | { | 1409 | { |
1373 | if (atomic_read(&mem->oom_lock)) | 1410 | if (mem && atomic_read(&mem->oom_lock)) |
1374 | memcg_wakeup_oom(mem); | 1411 | memcg_wakeup_oom(mem); |
1375 | } | 1412 | } |
1376 | 1413 | ||
@@ -1582,16 +1619,83 @@ static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb, | |||
1582 | return NOTIFY_OK; | 1619 | return NOTIFY_OK; |
1583 | } | 1620 | } |
1584 | 1621 | ||
1622 | |||
1623 | /* See __mem_cgroup_try_charge() for details */ | ||
1624 | enum { | ||
1625 | CHARGE_OK, /* success */ | ||
1626 | CHARGE_RETRY, /* need to retry but retry is not bad */ | ||
1627 | CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ | ||
1628 | CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ | ||
1629 | CHARGE_OOM_DIE, /* the current is killed because of OOM */ | ||
1630 | }; | ||
1631 | |||
1632 | static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask, | ||
1633 | int csize, bool oom_check) | ||
1634 | { | ||
1635 | struct mem_cgroup *mem_over_limit; | ||
1636 | struct res_counter *fail_res; | ||
1637 | unsigned long flags = 0; | ||
1638 | int ret; | ||
1639 | |||
1640 | ret = res_counter_charge(&mem->res, csize, &fail_res); | ||
1641 | |||
1642 | if (likely(!ret)) { | ||
1643 | if (!do_swap_account) | ||
1644 | return CHARGE_OK; | ||
1645 | ret = res_counter_charge(&mem->memsw, csize, &fail_res); | ||
1646 | if (likely(!ret)) | ||
1647 | return CHARGE_OK; | ||
1648 | |||
1649 | mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); | ||
1650 | flags |= MEM_CGROUP_RECLAIM_NOSWAP; | ||
1651 | } else | ||
1652 | mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); | ||
1653 | |||
1654 | if (csize > PAGE_SIZE) /* change csize and retry */ | ||
1655 | return CHARGE_RETRY; | ||
1656 | |||
1657 | if (!(gfp_mask & __GFP_WAIT)) | ||
1658 | return CHARGE_WOULDBLOCK; | ||
1659 | |||
1660 | ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL, | ||
1661 | gfp_mask, flags); | ||
1662 | /* | ||
1663 | * try_to_free_mem_cgroup_pages() might not give us a full | ||
1664 | * picture of reclaim. Some pages are reclaimed and might be | ||
1665 | * moved to swap cache or just unmapped from the cgroup. | ||
1666 | * Check the limit again to see if the reclaim reduced the | ||
1667 | * current usage of the cgroup before giving up | ||
1668 | */ | ||
1669 | if (ret || mem_cgroup_check_under_limit(mem_over_limit)) | ||
1670 | return CHARGE_RETRY; | ||
1671 | |||
1672 | /* | ||
1673 | * At task move, charge accounts can be doubly counted. So, it's | ||
1674 | * better to wait until the end of task_move if something is going on. | ||
1675 | */ | ||
1676 | if (mem_cgroup_wait_acct_move(mem_over_limit)) | ||
1677 | return CHARGE_RETRY; | ||
1678 | |||
1679 | /* If we don't need to call oom-killer at el, return immediately */ | ||
1680 | if (!oom_check) | ||
1681 | return CHARGE_NOMEM; | ||
1682 | /* check OOM */ | ||
1683 | if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask)) | ||
1684 | return CHARGE_OOM_DIE; | ||
1685 | |||
1686 | return CHARGE_RETRY; | ||
1687 | } | ||
1688 | |||
1585 | /* | 1689 | /* |
1586 | * Unlike exported interface, "oom" parameter is added. if oom==true, | 1690 | * Unlike exported interface, "oom" parameter is added. if oom==true, |
1587 | * oom-killer can be invoked. | 1691 | * oom-killer can be invoked. |
1588 | */ | 1692 | */ |
1589 | static int __mem_cgroup_try_charge(struct mm_struct *mm, | 1693 | static int __mem_cgroup_try_charge(struct mm_struct *mm, |
1590 | gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom) | 1694 | gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom) |
1591 | { | 1695 | { |
1592 | struct mem_cgroup *mem, *mem_over_limit; | 1696 | int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; |
1593 | int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | 1697 | struct mem_cgroup *mem = NULL; |
1594 | struct res_counter *fail_res; | 1698 | int ret; |
1595 | int csize = CHARGE_SIZE; | 1699 | int csize = CHARGE_SIZE; |
1596 | 1700 | ||
1597 | /* | 1701 | /* |
@@ -1609,126 +1713,108 @@ static int __mem_cgroup_try_charge(struct mm_struct *mm, | |||
1609 | * thread group leader migrates. It's possible that mm is not | 1713 | * thread group leader migrates. It's possible that mm is not |
1610 | * set, if so charge the init_mm (happens for pagecache usage). | 1714 | * set, if so charge the init_mm (happens for pagecache usage). |
1611 | */ | 1715 | */ |
1612 | mem = *memcg; | 1716 | if (!*memcg && !mm) |
1613 | if (likely(!mem)) { | 1717 | goto bypass; |
1614 | mem = try_get_mem_cgroup_from_mm(mm); | 1718 | again: |
1615 | *memcg = mem; | 1719 | if (*memcg) { /* css should be a valid one */ |
1616 | } else { | 1720 | mem = *memcg; |
1617 | css_get(&mem->css); | 1721 | VM_BUG_ON(css_is_removed(&mem->css)); |
1618 | } | 1722 | if (mem_cgroup_is_root(mem)) |
1619 | if (unlikely(!mem)) | 1723 | goto done; |
1620 | return 0; | ||
1621 | |||
1622 | VM_BUG_ON(css_is_removed(&mem->css)); | ||
1623 | if (mem_cgroup_is_root(mem)) | ||
1624 | goto done; | ||
1625 | |||
1626 | while (1) { | ||
1627 | int ret = 0; | ||
1628 | unsigned long flags = 0; | ||
1629 | |||
1630 | if (consume_stock(mem)) | 1724 | if (consume_stock(mem)) |
1631 | goto done; | 1725 | goto done; |
1726 | css_get(&mem->css); | ||
1727 | } else { | ||
1728 | struct task_struct *p; | ||
1632 | 1729 | ||
1633 | ret = res_counter_charge(&mem->res, csize, &fail_res); | 1730 | rcu_read_lock(); |
1634 | if (likely(!ret)) { | 1731 | p = rcu_dereference(mm->owner); |
1635 | if (!do_swap_account) | 1732 | VM_BUG_ON(!p); |
1636 | break; | ||
1637 | ret = res_counter_charge(&mem->memsw, csize, &fail_res); | ||
1638 | if (likely(!ret)) | ||
1639 | break; | ||
1640 | /* mem+swap counter fails */ | ||
1641 | res_counter_uncharge(&mem->res, csize); | ||
1642 | flags |= MEM_CGROUP_RECLAIM_NOSWAP; | ||
1643 | mem_over_limit = mem_cgroup_from_res_counter(fail_res, | ||
1644 | memsw); | ||
1645 | } else | ||
1646 | /* mem counter fails */ | ||
1647 | mem_over_limit = mem_cgroup_from_res_counter(fail_res, | ||
1648 | res); | ||
1649 | |||
1650 | /* reduce request size and retry */ | ||
1651 | if (csize > PAGE_SIZE) { | ||
1652 | csize = PAGE_SIZE; | ||
1653 | continue; | ||
1654 | } | ||
1655 | if (!(gfp_mask & __GFP_WAIT)) | ||
1656 | goto nomem; | ||
1657 | |||
1658 | ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL, | ||
1659 | gfp_mask, flags); | ||
1660 | if (ret) | ||
1661 | continue; | ||
1662 | |||
1663 | /* | 1733 | /* |
1664 | * try_to_free_mem_cgroup_pages() might not give us a full | 1734 | * because we don't have task_lock(), "p" can exit while |
1665 | * picture of reclaim. Some pages are reclaimed and might be | 1735 | * we're here. In that case, "mem" can point to root |
1666 | * moved to swap cache or just unmapped from the cgroup. | 1736 | * cgroup but never be NULL. (and task_struct itself is freed |
1667 | * Check the limit again to see if the reclaim reduced the | 1737 | * by RCU, cgroup itself is RCU safe.) Then, we have small |
1668 | * current usage of the cgroup before giving up | 1738 | * risk here to get wrong cgroup. But such kind of mis-account |
1669 | * | 1739 | * by race always happens because we don't have cgroup_mutex(). |
1740 | * It's overkill and we allow that small race, here. | ||
1670 | */ | 1741 | */ |
1671 | if (mem_cgroup_check_under_limit(mem_over_limit)) | 1742 | mem = mem_cgroup_from_task(p); |
1672 | continue; | 1743 | VM_BUG_ON(!mem); |
1673 | 1744 | if (mem_cgroup_is_root(mem)) { | |
1674 | /* try to avoid oom while someone is moving charge */ | 1745 | rcu_read_unlock(); |
1675 | if (mc.moving_task && current != mc.moving_task) { | 1746 | goto done; |
1676 | struct mem_cgroup *from, *to; | 1747 | } |
1677 | bool do_continue = false; | 1748 | if (consume_stock(mem)) { |
1678 | /* | 1749 | /* |
1679 | * There is a small race that "from" or "to" can be | 1750 | * It seems dagerous to access memcg without css_get(). |
1680 | * freed by rmdir, so we use css_tryget(). | 1751 | * But considering how consume_stok works, it's not |
1752 | * necessary. If consume_stock success, some charges | ||
1753 | * from this memcg are cached on this cpu. So, we | ||
1754 | * don't need to call css_get()/css_tryget() before | ||
1755 | * calling consume_stock(). | ||
1681 | */ | 1756 | */ |
1682 | from = mc.from; | 1757 | rcu_read_unlock(); |
1683 | to = mc.to; | 1758 | goto done; |
1684 | if (from && css_tryget(&from->css)) { | 1759 | } |
1685 | if (mem_over_limit->use_hierarchy) | 1760 | /* after here, we may be blocked. we need to get refcnt */ |
1686 | do_continue = css_is_ancestor( | 1761 | if (!css_tryget(&mem->css)) { |
1687 | &from->css, | 1762 | rcu_read_unlock(); |
1688 | &mem_over_limit->css); | 1763 | goto again; |
1689 | else | 1764 | } |
1690 | do_continue = (from == mem_over_limit); | 1765 | rcu_read_unlock(); |
1691 | css_put(&from->css); | 1766 | } |
1692 | } | 1767 | |
1693 | if (!do_continue && to && css_tryget(&to->css)) { | 1768 | do { |
1694 | if (mem_over_limit->use_hierarchy) | 1769 | bool oom_check; |
1695 | do_continue = css_is_ancestor( | 1770 | |
1696 | &to->css, | 1771 | /* If killed, bypass charge */ |
1697 | &mem_over_limit->css); | 1772 | if (fatal_signal_pending(current)) { |
1698 | else | 1773 | css_put(&mem->css); |
1699 | do_continue = (to == mem_over_limit); | 1774 | goto bypass; |
1700 | css_put(&to->css); | 1775 | } |
1701 | } | 1776 | |
1702 | if (do_continue) { | 1777 | oom_check = false; |
1703 | DEFINE_WAIT(wait); | 1778 | if (oom && !nr_oom_retries) { |
1704 | prepare_to_wait(&mc.waitq, &wait, | 1779 | oom_check = true; |
1705 | TASK_INTERRUPTIBLE); | 1780 | nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; |
1706 | /* moving charge context might have finished. */ | ||
1707 | if (mc.moving_task) | ||
1708 | schedule(); | ||
1709 | finish_wait(&mc.waitq, &wait); | ||
1710 | continue; | ||
1711 | } | ||
1712 | } | 1781 | } |
1713 | 1782 | ||
1714 | if (!nr_retries--) { | 1783 | ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check); |
1715 | if (!oom) | 1784 | |
1785 | switch (ret) { | ||
1786 | case CHARGE_OK: | ||
1787 | break; | ||
1788 | case CHARGE_RETRY: /* not in OOM situation but retry */ | ||
1789 | csize = PAGE_SIZE; | ||
1790 | css_put(&mem->css); | ||
1791 | mem = NULL; | ||
1792 | goto again; | ||
1793 | case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ | ||
1794 | css_put(&mem->css); | ||
1795 | goto nomem; | ||
1796 | case CHARGE_NOMEM: /* OOM routine works */ | ||
1797 | if (!oom) { | ||
1798 | css_put(&mem->css); | ||
1716 | goto nomem; | 1799 | goto nomem; |
1717 | if (mem_cgroup_handle_oom(mem_over_limit, gfp_mask)) { | ||
1718 | nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | ||
1719 | continue; | ||
1720 | } | 1800 | } |
1721 | /* When we reach here, current task is dying .*/ | 1801 | /* If oom, we never return -ENOMEM */ |
1802 | nr_oom_retries--; | ||
1803 | break; | ||
1804 | case CHARGE_OOM_DIE: /* Killed by OOM Killer */ | ||
1722 | css_put(&mem->css); | 1805 | css_put(&mem->css); |
1723 | goto bypass; | 1806 | goto bypass; |
1724 | } | 1807 | } |
1725 | } | 1808 | } while (ret != CHARGE_OK); |
1809 | |||
1726 | if (csize > PAGE_SIZE) | 1810 | if (csize > PAGE_SIZE) |
1727 | refill_stock(mem, csize - PAGE_SIZE); | 1811 | refill_stock(mem, csize - PAGE_SIZE); |
1812 | css_put(&mem->css); | ||
1728 | done: | 1813 | done: |
1814 | *memcg = mem; | ||
1729 | return 0; | 1815 | return 0; |
1730 | nomem: | 1816 | nomem: |
1731 | css_put(&mem->css); | 1817 | *memcg = NULL; |
1732 | return -ENOMEM; | 1818 | return -ENOMEM; |
1733 | bypass: | 1819 | bypass: |
1734 | *memcg = NULL; | 1820 | *memcg = NULL; |
@@ -1747,11 +1833,7 @@ static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem, | |||
1747 | res_counter_uncharge(&mem->res, PAGE_SIZE * count); | 1833 | res_counter_uncharge(&mem->res, PAGE_SIZE * count); |
1748 | if (do_swap_account) | 1834 | if (do_swap_account) |
1749 | res_counter_uncharge(&mem->memsw, PAGE_SIZE * count); | 1835 | res_counter_uncharge(&mem->memsw, PAGE_SIZE * count); |
1750 | VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags)); | ||
1751 | WARN_ON_ONCE(count > INT_MAX); | ||
1752 | __css_put(&mem->css, (int)count); | ||
1753 | } | 1836 | } |
1754 | /* we don't need css_put for root */ | ||
1755 | } | 1837 | } |
1756 | 1838 | ||
1757 | static void mem_cgroup_cancel_charge(struct mem_cgroup *mem) | 1839 | static void mem_cgroup_cancel_charge(struct mem_cgroup *mem) |
@@ -1979,10 +2061,9 @@ out: | |||
1979 | * < 0 if the cgroup is over its limit | 2061 | * < 0 if the cgroup is over its limit |
1980 | */ | 2062 | */ |
1981 | static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, | 2063 | static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, |
1982 | gfp_t gfp_mask, enum charge_type ctype, | 2064 | gfp_t gfp_mask, enum charge_type ctype) |
1983 | struct mem_cgroup *memcg) | ||
1984 | { | 2065 | { |
1985 | struct mem_cgroup *mem; | 2066 | struct mem_cgroup *mem = NULL; |
1986 | struct page_cgroup *pc; | 2067 | struct page_cgroup *pc; |
1987 | int ret; | 2068 | int ret; |
1988 | 2069 | ||
@@ -1992,7 +2073,6 @@ static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, | |||
1992 | return 0; | 2073 | return 0; |
1993 | prefetchw(pc); | 2074 | prefetchw(pc); |
1994 | 2075 | ||
1995 | mem = memcg; | ||
1996 | ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true); | 2076 | ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true); |
1997 | if (ret || !mem) | 2077 | if (ret || !mem) |
1998 | return ret; | 2078 | return ret; |
@@ -2020,7 +2100,7 @@ int mem_cgroup_newpage_charge(struct page *page, | |||
2020 | if (unlikely(!mm)) | 2100 | if (unlikely(!mm)) |
2021 | mm = &init_mm; | 2101 | mm = &init_mm; |
2022 | return mem_cgroup_charge_common(page, mm, gfp_mask, | 2102 | return mem_cgroup_charge_common(page, mm, gfp_mask, |
2023 | MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL); | 2103 | MEM_CGROUP_CHARGE_TYPE_MAPPED); |
2024 | } | 2104 | } |
2025 | 2105 | ||
2026 | static void | 2106 | static void |
@@ -2030,7 +2110,6 @@ __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr, | |||
2030 | int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, | 2110 | int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, |
2031 | gfp_t gfp_mask) | 2111 | gfp_t gfp_mask) |
2032 | { | 2112 | { |
2033 | struct mem_cgroup *mem = NULL; | ||
2034 | int ret; | 2113 | int ret; |
2035 | 2114 | ||
2036 | if (mem_cgroup_disabled()) | 2115 | if (mem_cgroup_disabled()) |
@@ -2051,7 +2130,6 @@ int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, | |||
2051 | if (!(gfp_mask & __GFP_WAIT)) { | 2130 | if (!(gfp_mask & __GFP_WAIT)) { |
2052 | struct page_cgroup *pc; | 2131 | struct page_cgroup *pc; |
2053 | 2132 | ||
2054 | |||
2055 | pc = lookup_page_cgroup(page); | 2133 | pc = lookup_page_cgroup(page); |
2056 | if (!pc) | 2134 | if (!pc) |
2057 | return 0; | 2135 | return 0; |
@@ -2063,22 +2141,24 @@ int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, | |||
2063 | unlock_page_cgroup(pc); | 2141 | unlock_page_cgroup(pc); |
2064 | } | 2142 | } |
2065 | 2143 | ||
2066 | if (unlikely(!mm && !mem)) | 2144 | if (unlikely(!mm)) |
2067 | mm = &init_mm; | 2145 | mm = &init_mm; |
2068 | 2146 | ||
2069 | if (page_is_file_cache(page)) | 2147 | if (page_is_file_cache(page)) |
2070 | return mem_cgroup_charge_common(page, mm, gfp_mask, | 2148 | return mem_cgroup_charge_common(page, mm, gfp_mask, |
2071 | MEM_CGROUP_CHARGE_TYPE_CACHE, NULL); | 2149 | MEM_CGROUP_CHARGE_TYPE_CACHE); |
2072 | 2150 | ||
2073 | /* shmem */ | 2151 | /* shmem */ |
2074 | if (PageSwapCache(page)) { | 2152 | if (PageSwapCache(page)) { |
2153 | struct mem_cgroup *mem = NULL; | ||
2154 | |||
2075 | ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem); | 2155 | ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem); |
2076 | if (!ret) | 2156 | if (!ret) |
2077 | __mem_cgroup_commit_charge_swapin(page, mem, | 2157 | __mem_cgroup_commit_charge_swapin(page, mem, |
2078 | MEM_CGROUP_CHARGE_TYPE_SHMEM); | 2158 | MEM_CGROUP_CHARGE_TYPE_SHMEM); |
2079 | } else | 2159 | } else |
2080 | ret = mem_cgroup_charge_common(page, mm, gfp_mask, | 2160 | ret = mem_cgroup_charge_common(page, mm, gfp_mask, |
2081 | MEM_CGROUP_CHARGE_TYPE_SHMEM, mem); | 2161 | MEM_CGROUP_CHARGE_TYPE_SHMEM); |
2082 | 2162 | ||
2083 | return ret; | 2163 | return ret; |
2084 | } | 2164 | } |
@@ -2114,7 +2194,6 @@ int mem_cgroup_try_charge_swapin(struct mm_struct *mm, | |||
2114 | goto charge_cur_mm; | 2194 | goto charge_cur_mm; |
2115 | *ptr = mem; | 2195 | *ptr = mem; |
2116 | ret = __mem_cgroup_try_charge(NULL, mask, ptr, true); | 2196 | ret = __mem_cgroup_try_charge(NULL, mask, ptr, true); |
2117 | /* drop extra refcnt from tryget */ | ||
2118 | css_put(&mem->css); | 2197 | css_put(&mem->css); |
2119 | return ret; | 2198 | return ret; |
2120 | charge_cur_mm: | 2199 | charge_cur_mm: |
@@ -2245,7 +2324,6 @@ __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) | |||
2245 | { | 2324 | { |
2246 | struct page_cgroup *pc; | 2325 | struct page_cgroup *pc; |
2247 | struct mem_cgroup *mem = NULL; | 2326 | struct mem_cgroup *mem = NULL; |
2248 | struct mem_cgroup_per_zone *mz; | ||
2249 | 2327 | ||
2250 | if (mem_cgroup_disabled()) | 2328 | if (mem_cgroup_disabled()) |
2251 | return NULL; | 2329 | return NULL; |
@@ -2285,10 +2363,6 @@ __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) | |||
2285 | break; | 2363 | break; |
2286 | } | 2364 | } |
2287 | 2365 | ||
2288 | if (!mem_cgroup_is_root(mem)) | ||
2289 | __do_uncharge(mem, ctype); | ||
2290 | if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) | ||
2291 | mem_cgroup_swap_statistics(mem, true); | ||
2292 | mem_cgroup_charge_statistics(mem, pc, false); | 2366 | mem_cgroup_charge_statistics(mem, pc, false); |
2293 | 2367 | ||
2294 | ClearPageCgroupUsed(pc); | 2368 | ClearPageCgroupUsed(pc); |
@@ -2299,13 +2373,18 @@ __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) | |||
2299 | * special functions. | 2373 | * special functions. |
2300 | */ | 2374 | */ |
2301 | 2375 | ||
2302 | mz = page_cgroup_zoneinfo(pc); | ||
2303 | unlock_page_cgroup(pc); | 2376 | unlock_page_cgroup(pc); |
2304 | 2377 | /* | |
2378 | * even after unlock, we have mem->res.usage here and this memcg | ||
2379 | * will never be freed. | ||
2380 | */ | ||
2305 | memcg_check_events(mem, page); | 2381 | memcg_check_events(mem, page); |
2306 | /* at swapout, this memcg will be accessed to record to swap */ | 2382 | if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { |
2307 | if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT) | 2383 | mem_cgroup_swap_statistics(mem, true); |
2308 | css_put(&mem->css); | 2384 | mem_cgroup_get(mem); |
2385 | } | ||
2386 | if (!mem_cgroup_is_root(mem)) | ||
2387 | __do_uncharge(mem, ctype); | ||
2309 | 2388 | ||
2310 | return mem; | 2389 | return mem; |
2311 | 2390 | ||
@@ -2392,13 +2471,12 @@ mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) | |||
2392 | 2471 | ||
2393 | memcg = __mem_cgroup_uncharge_common(page, ctype); | 2472 | memcg = __mem_cgroup_uncharge_common(page, ctype); |
2394 | 2473 | ||
2395 | /* record memcg information */ | 2474 | /* |
2396 | if (do_swap_account && swapout && memcg) { | 2475 | * record memcg information, if swapout && memcg != NULL, |
2476 | * mem_cgroup_get() was called in uncharge(). | ||
2477 | */ | ||
2478 | if (do_swap_account && swapout && memcg) | ||
2397 | swap_cgroup_record(ent, css_id(&memcg->css)); | 2479 | swap_cgroup_record(ent, css_id(&memcg->css)); |
2398 | mem_cgroup_get(memcg); | ||
2399 | } | ||
2400 | if (swapout && memcg) | ||
2401 | css_put(&memcg->css); | ||
2402 | } | 2480 | } |
2403 | #endif | 2481 | #endif |
2404 | 2482 | ||
@@ -2476,7 +2554,6 @@ static int mem_cgroup_move_swap_account(swp_entry_t entry, | |||
2476 | */ | 2554 | */ |
2477 | if (!mem_cgroup_is_root(to)) | 2555 | if (!mem_cgroup_is_root(to)) |
2478 | res_counter_uncharge(&to->res, PAGE_SIZE); | 2556 | res_counter_uncharge(&to->res, PAGE_SIZE); |
2479 | css_put(&to->css); | ||
2480 | } | 2557 | } |
2481 | return 0; | 2558 | return 0; |
2482 | } | 2559 | } |
@@ -2611,11 +2688,8 @@ void mem_cgroup_end_migration(struct mem_cgroup *mem, | |||
2611 | ClearPageCgroupMigration(pc); | 2688 | ClearPageCgroupMigration(pc); |
2612 | unlock_page_cgroup(pc); | 2689 | unlock_page_cgroup(pc); |
2613 | 2690 | ||
2614 | if (unused != oldpage) | ||
2615 | pc = lookup_page_cgroup(unused); | ||
2616 | __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE); | 2691 | __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE); |
2617 | 2692 | ||
2618 | pc = lookup_page_cgroup(used); | ||
2619 | /* | 2693 | /* |
2620 | * If a page is a file cache, radix-tree replacement is very atomic | 2694 | * If a page is a file cache, radix-tree replacement is very atomic |
2621 | * and we can skip this check. When it was an Anon page, its mapcount | 2695 | * and we can skip this check. When it was an Anon page, its mapcount |
@@ -2791,8 +2865,7 @@ static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, | |||
2791 | } | 2865 | } |
2792 | 2866 | ||
2793 | unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, | 2867 | unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, |
2794 | gfp_t gfp_mask, int nid, | 2868 | gfp_t gfp_mask) |
2795 | int zid) | ||
2796 | { | 2869 | { |
2797 | unsigned long nr_reclaimed = 0; | 2870 | unsigned long nr_reclaimed = 0; |
2798 | struct mem_cgroup_per_zone *mz, *next_mz = NULL; | 2871 | struct mem_cgroup_per_zone *mz, *next_mz = NULL; |
@@ -2804,7 +2877,7 @@ unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, | |||
2804 | if (order > 0) | 2877 | if (order > 0) |
2805 | return 0; | 2878 | return 0; |
2806 | 2879 | ||
2807 | mctz = soft_limit_tree_node_zone(nid, zid); | 2880 | mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); |
2808 | /* | 2881 | /* |
2809 | * This loop can run a while, specially if mem_cgroup's continuously | 2882 | * This loop can run a while, specially if mem_cgroup's continuously |
2810 | * keep exceeding their soft limit and putting the system under | 2883 | * keep exceeding their soft limit and putting the system under |
@@ -3759,8 +3832,6 @@ static int mem_cgroup_oom_control_read(struct cgroup *cgrp, | |||
3759 | return 0; | 3832 | return 0; |
3760 | } | 3833 | } |
3761 | 3834 | ||
3762 | /* | ||
3763 | */ | ||
3764 | static int mem_cgroup_oom_control_write(struct cgroup *cgrp, | 3835 | static int mem_cgroup_oom_control_write(struct cgroup *cgrp, |
3765 | struct cftype *cft, u64 val) | 3836 | struct cftype *cft, u64 val) |
3766 | { | 3837 | { |
@@ -4180,9 +4251,6 @@ static int mem_cgroup_do_precharge(unsigned long count) | |||
4180 | goto one_by_one; | 4251 | goto one_by_one; |
4181 | } | 4252 | } |
4182 | mc.precharge += count; | 4253 | mc.precharge += count; |
4183 | VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags)); | ||
4184 | WARN_ON_ONCE(count > INT_MAX); | ||
4185 | __css_get(&mem->css, (int)count); | ||
4186 | return ret; | 4254 | return ret; |
4187 | } | 4255 | } |
4188 | one_by_one: | 4256 | one_by_one: |
@@ -4400,11 +4468,13 @@ static int mem_cgroup_precharge_mc(struct mm_struct *mm) | |||
4400 | 4468 | ||
4401 | static void mem_cgroup_clear_mc(void) | 4469 | static void mem_cgroup_clear_mc(void) |
4402 | { | 4470 | { |
4471 | struct mem_cgroup *from = mc.from; | ||
4472 | struct mem_cgroup *to = mc.to; | ||
4473 | |||
4403 | /* we must uncharge all the leftover precharges from mc.to */ | 4474 | /* we must uncharge all the leftover precharges from mc.to */ |
4404 | if (mc.precharge) { | 4475 | if (mc.precharge) { |
4405 | __mem_cgroup_cancel_charge(mc.to, mc.precharge); | 4476 | __mem_cgroup_cancel_charge(mc.to, mc.precharge); |
4406 | mc.precharge = 0; | 4477 | mc.precharge = 0; |
4407 | memcg_oom_recover(mc.to); | ||
4408 | } | 4478 | } |
4409 | /* | 4479 | /* |
4410 | * we didn't uncharge from mc.from at mem_cgroup_move_account(), so | 4480 | * we didn't uncharge from mc.from at mem_cgroup_move_account(), so |
@@ -4413,11 +4483,9 @@ static void mem_cgroup_clear_mc(void) | |||
4413 | if (mc.moved_charge) { | 4483 | if (mc.moved_charge) { |
4414 | __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); | 4484 | __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); |
4415 | mc.moved_charge = 0; | 4485 | mc.moved_charge = 0; |
4416 | memcg_oom_recover(mc.from); | ||
4417 | } | 4486 | } |
4418 | /* we must fixup refcnts and charges */ | 4487 | /* we must fixup refcnts and charges */ |
4419 | if (mc.moved_swap) { | 4488 | if (mc.moved_swap) { |
4420 | WARN_ON_ONCE(mc.moved_swap > INT_MAX); | ||
4421 | /* uncharge swap account from the old cgroup */ | 4489 | /* uncharge swap account from the old cgroup */ |
4422 | if (!mem_cgroup_is_root(mc.from)) | 4490 | if (!mem_cgroup_is_root(mc.from)) |
4423 | res_counter_uncharge(&mc.from->memsw, | 4491 | res_counter_uncharge(&mc.from->memsw, |
@@ -4431,16 +4499,18 @@ static void mem_cgroup_clear_mc(void) | |||
4431 | */ | 4499 | */ |
4432 | res_counter_uncharge(&mc.to->res, | 4500 | res_counter_uncharge(&mc.to->res, |
4433 | PAGE_SIZE * mc.moved_swap); | 4501 | PAGE_SIZE * mc.moved_swap); |
4434 | VM_BUG_ON(test_bit(CSS_ROOT, &mc.to->css.flags)); | ||
4435 | __css_put(&mc.to->css, mc.moved_swap); | ||
4436 | } | 4502 | } |
4437 | /* we've already done mem_cgroup_get(mc.to) */ | 4503 | /* we've already done mem_cgroup_get(mc.to) */ |
4438 | 4504 | ||
4439 | mc.moved_swap = 0; | 4505 | mc.moved_swap = 0; |
4440 | } | 4506 | } |
4507 | spin_lock(&mc.lock); | ||
4441 | mc.from = NULL; | 4508 | mc.from = NULL; |
4442 | mc.to = NULL; | 4509 | mc.to = NULL; |
4443 | mc.moving_task = NULL; | 4510 | mc.moving_task = NULL; |
4511 | spin_unlock(&mc.lock); | ||
4512 | memcg_oom_recover(from); | ||
4513 | memcg_oom_recover(to); | ||
4444 | wake_up_all(&mc.waitq); | 4514 | wake_up_all(&mc.waitq); |
4445 | } | 4515 | } |
4446 | 4516 | ||
@@ -4469,12 +4539,14 @@ static int mem_cgroup_can_attach(struct cgroup_subsys *ss, | |||
4469 | VM_BUG_ON(mc.moved_charge); | 4539 | VM_BUG_ON(mc.moved_charge); |
4470 | VM_BUG_ON(mc.moved_swap); | 4540 | VM_BUG_ON(mc.moved_swap); |
4471 | VM_BUG_ON(mc.moving_task); | 4541 | VM_BUG_ON(mc.moving_task); |
4542 | spin_lock(&mc.lock); | ||
4472 | mc.from = from; | 4543 | mc.from = from; |
4473 | mc.to = mem; | 4544 | mc.to = mem; |
4474 | mc.precharge = 0; | 4545 | mc.precharge = 0; |
4475 | mc.moved_charge = 0; | 4546 | mc.moved_charge = 0; |
4476 | mc.moved_swap = 0; | 4547 | mc.moved_swap = 0; |
4477 | mc.moving_task = current; | 4548 | mc.moving_task = current; |
4549 | spin_unlock(&mc.lock); | ||
4478 | 4550 | ||
4479 | ret = mem_cgroup_precharge_mc(mm); | 4551 | ret = mem_cgroup_precharge_mc(mm); |
4480 | if (ret) | 4552 | if (ret) |
diff --git a/mm/memory-failure.c b/mm/memory-failure.c index 620b0b461593..9c26eeca1342 100644 --- a/mm/memory-failure.c +++ b/mm/memory-failure.c | |||
@@ -45,6 +45,8 @@ | |||
45 | #include <linux/page-isolation.h> | 45 | #include <linux/page-isolation.h> |
46 | #include <linux/suspend.h> | 46 | #include <linux/suspend.h> |
47 | #include <linux/slab.h> | 47 | #include <linux/slab.h> |
48 | #include <linux/swapops.h> | ||
49 | #include <linux/hugetlb.h> | ||
48 | #include "internal.h" | 50 | #include "internal.h" |
49 | 51 | ||
50 | int sysctl_memory_failure_early_kill __read_mostly = 0; | 52 | int sysctl_memory_failure_early_kill __read_mostly = 0; |
@@ -689,17 +691,29 @@ static int me_swapcache_clean(struct page *p, unsigned long pfn) | |||
689 | /* | 691 | /* |
690 | * Huge pages. Needs work. | 692 | * Huge pages. Needs work. |
691 | * Issues: | 693 | * Issues: |
692 | * No rmap support so we cannot find the original mapper. In theory could walk | 694 | * - Error on hugepage is contained in hugepage unit (not in raw page unit.) |
693 | * all MMs and look for the mappings, but that would be non atomic and racy. | 695 | * To narrow down kill region to one page, we need to break up pmd. |
694 | * Need rmap for hugepages for this. Alternatively we could employ a heuristic, | 696 | * - To support soft-offlining for hugepage, we need to support hugepage |
695 | * like just walking the current process and hoping it has it mapped (that | 697 | * migration. |
696 | * should be usually true for the common "shared database cache" case) | ||
697 | * Should handle free huge pages and dequeue them too, but this needs to | ||
698 | * handle huge page accounting correctly. | ||
699 | */ | 698 | */ |
700 | static int me_huge_page(struct page *p, unsigned long pfn) | 699 | static int me_huge_page(struct page *p, unsigned long pfn) |
701 | { | 700 | { |
702 | return FAILED; | 701 | struct page *hpage = compound_head(p); |
702 | /* | ||
703 | * We can safely recover from error on free or reserved (i.e. | ||
704 | * not in-use) hugepage by dequeuing it from freelist. | ||
705 | * To check whether a hugepage is in-use or not, we can't use | ||
706 | * page->lru because it can be used in other hugepage operations, | ||
707 | * such as __unmap_hugepage_range() and gather_surplus_pages(). | ||
708 | * So instead we use page_mapping() and PageAnon(). | ||
709 | * We assume that this function is called with page lock held, | ||
710 | * so there is no race between isolation and mapping/unmapping. | ||
711 | */ | ||
712 | if (!(page_mapping(hpage) || PageAnon(hpage))) { | ||
713 | __isolate_hwpoisoned_huge_page(hpage); | ||
714 | return RECOVERED; | ||
715 | } | ||
716 | return DELAYED; | ||
703 | } | 717 | } |
704 | 718 | ||
705 | /* | 719 | /* |
@@ -837,6 +851,7 @@ static int hwpoison_user_mappings(struct page *p, unsigned long pfn, | |||
837 | int ret; | 851 | int ret; |
838 | int i; | 852 | int i; |
839 | int kill = 1; | 853 | int kill = 1; |
854 | struct page *hpage = compound_head(p); | ||
840 | 855 | ||
841 | if (PageReserved(p) || PageSlab(p)) | 856 | if (PageReserved(p) || PageSlab(p)) |
842 | return SWAP_SUCCESS; | 857 | return SWAP_SUCCESS; |
@@ -845,10 +860,10 @@ static int hwpoison_user_mappings(struct page *p, unsigned long pfn, | |||
845 | * This check implies we don't kill processes if their pages | 860 | * This check implies we don't kill processes if their pages |
846 | * are in the swap cache early. Those are always late kills. | 861 | * are in the swap cache early. Those are always late kills. |
847 | */ | 862 | */ |
848 | if (!page_mapped(p)) | 863 | if (!page_mapped(hpage)) |
849 | return SWAP_SUCCESS; | 864 | return SWAP_SUCCESS; |
850 | 865 | ||
851 | if (PageCompound(p) || PageKsm(p)) | 866 | if (PageKsm(p)) |
852 | return SWAP_FAIL; | 867 | return SWAP_FAIL; |
853 | 868 | ||
854 | if (PageSwapCache(p)) { | 869 | if (PageSwapCache(p)) { |
@@ -863,10 +878,11 @@ static int hwpoison_user_mappings(struct page *p, unsigned long pfn, | |||
863 | * XXX: the dirty test could be racy: set_page_dirty() may not always | 878 | * XXX: the dirty test could be racy: set_page_dirty() may not always |
864 | * be called inside page lock (it's recommended but not enforced). | 879 | * be called inside page lock (it's recommended but not enforced). |
865 | */ | 880 | */ |
866 | mapping = page_mapping(p); | 881 | mapping = page_mapping(hpage); |
867 | if (!PageDirty(p) && mapping && mapping_cap_writeback_dirty(mapping)) { | 882 | if (!PageDirty(hpage) && mapping && |
868 | if (page_mkclean(p)) { | 883 | mapping_cap_writeback_dirty(mapping)) { |
869 | SetPageDirty(p); | 884 | if (page_mkclean(hpage)) { |
885 | SetPageDirty(hpage); | ||
870 | } else { | 886 | } else { |
871 | kill = 0; | 887 | kill = 0; |
872 | ttu |= TTU_IGNORE_HWPOISON; | 888 | ttu |= TTU_IGNORE_HWPOISON; |
@@ -885,14 +901,14 @@ static int hwpoison_user_mappings(struct page *p, unsigned long pfn, | |||
885 | * there's nothing that can be done. | 901 | * there's nothing that can be done. |
886 | */ | 902 | */ |
887 | if (kill) | 903 | if (kill) |
888 | collect_procs(p, &tokill); | 904 | collect_procs(hpage, &tokill); |
889 | 905 | ||
890 | /* | 906 | /* |
891 | * try_to_unmap can fail temporarily due to races. | 907 | * try_to_unmap can fail temporarily due to races. |
892 | * Try a few times (RED-PEN better strategy?) | 908 | * Try a few times (RED-PEN better strategy?) |
893 | */ | 909 | */ |
894 | for (i = 0; i < N_UNMAP_TRIES; i++) { | 910 | for (i = 0; i < N_UNMAP_TRIES; i++) { |
895 | ret = try_to_unmap(p, ttu); | 911 | ret = try_to_unmap(hpage, ttu); |
896 | if (ret == SWAP_SUCCESS) | 912 | if (ret == SWAP_SUCCESS) |
897 | break; | 913 | break; |
898 | pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn, ret); | 914 | pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn, ret); |
@@ -900,7 +916,7 @@ static int hwpoison_user_mappings(struct page *p, unsigned long pfn, | |||
900 | 916 | ||
901 | if (ret != SWAP_SUCCESS) | 917 | if (ret != SWAP_SUCCESS) |
902 | printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n", | 918 | printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n", |
903 | pfn, page_mapcount(p)); | 919 | pfn, page_mapcount(hpage)); |
904 | 920 | ||
905 | /* | 921 | /* |
906 | * Now that the dirty bit has been propagated to the | 922 | * Now that the dirty bit has been propagated to the |
@@ -911,17 +927,35 @@ static int hwpoison_user_mappings(struct page *p, unsigned long pfn, | |||
911 | * use a more force-full uncatchable kill to prevent | 927 | * use a more force-full uncatchable kill to prevent |
912 | * any accesses to the poisoned memory. | 928 | * any accesses to the poisoned memory. |
913 | */ | 929 | */ |
914 | kill_procs_ao(&tokill, !!PageDirty(p), trapno, | 930 | kill_procs_ao(&tokill, !!PageDirty(hpage), trapno, |
915 | ret != SWAP_SUCCESS, pfn); | 931 | ret != SWAP_SUCCESS, pfn); |
916 | 932 | ||
917 | return ret; | 933 | return ret; |
918 | } | 934 | } |
919 | 935 | ||
936 | static void set_page_hwpoison_huge_page(struct page *hpage) | ||
937 | { | ||
938 | int i; | ||
939 | int nr_pages = 1 << compound_order(hpage); | ||
940 | for (i = 0; i < nr_pages; i++) | ||
941 | SetPageHWPoison(hpage + i); | ||
942 | } | ||
943 | |||
944 | static void clear_page_hwpoison_huge_page(struct page *hpage) | ||
945 | { | ||
946 | int i; | ||
947 | int nr_pages = 1 << compound_order(hpage); | ||
948 | for (i = 0; i < nr_pages; i++) | ||
949 | ClearPageHWPoison(hpage + i); | ||
950 | } | ||
951 | |||
920 | int __memory_failure(unsigned long pfn, int trapno, int flags) | 952 | int __memory_failure(unsigned long pfn, int trapno, int flags) |
921 | { | 953 | { |
922 | struct page_state *ps; | 954 | struct page_state *ps; |
923 | struct page *p; | 955 | struct page *p; |
956 | struct page *hpage; | ||
924 | int res; | 957 | int res; |
958 | unsigned int nr_pages; | ||
925 | 959 | ||
926 | if (!sysctl_memory_failure_recovery) | 960 | if (!sysctl_memory_failure_recovery) |
927 | panic("Memory failure from trap %d on page %lx", trapno, pfn); | 961 | panic("Memory failure from trap %d on page %lx", trapno, pfn); |
@@ -934,12 +968,14 @@ int __memory_failure(unsigned long pfn, int trapno, int flags) | |||
934 | } | 968 | } |
935 | 969 | ||
936 | p = pfn_to_page(pfn); | 970 | p = pfn_to_page(pfn); |
971 | hpage = compound_head(p); | ||
937 | if (TestSetPageHWPoison(p)) { | 972 | if (TestSetPageHWPoison(p)) { |
938 | printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn); | 973 | printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn); |
939 | return 0; | 974 | return 0; |
940 | } | 975 | } |
941 | 976 | ||
942 | atomic_long_add(1, &mce_bad_pages); | 977 | nr_pages = 1 << compound_order(hpage); |
978 | atomic_long_add(nr_pages, &mce_bad_pages); | ||
943 | 979 | ||
944 | /* | 980 | /* |
945 | * We need/can do nothing about count=0 pages. | 981 | * We need/can do nothing about count=0 pages. |
@@ -953,7 +989,7 @@ int __memory_failure(unsigned long pfn, int trapno, int flags) | |||
953 | * that may make page_freeze_refs()/page_unfreeze_refs() mismatch. | 989 | * that may make page_freeze_refs()/page_unfreeze_refs() mismatch. |
954 | */ | 990 | */ |
955 | if (!(flags & MF_COUNT_INCREASED) && | 991 | if (!(flags & MF_COUNT_INCREASED) && |
956 | !get_page_unless_zero(compound_head(p))) { | 992 | !get_page_unless_zero(hpage)) { |
957 | if (is_free_buddy_page(p)) { | 993 | if (is_free_buddy_page(p)) { |
958 | action_result(pfn, "free buddy", DELAYED); | 994 | action_result(pfn, "free buddy", DELAYED); |
959 | return 0; | 995 | return 0; |
@@ -971,9 +1007,9 @@ int __memory_failure(unsigned long pfn, int trapno, int flags) | |||
971 | * The check (unnecessarily) ignores LRU pages being isolated and | 1007 | * The check (unnecessarily) ignores LRU pages being isolated and |
972 | * walked by the page reclaim code, however that's not a big loss. | 1008 | * walked by the page reclaim code, however that's not a big loss. |
973 | */ | 1009 | */ |
974 | if (!PageLRU(p)) | 1010 | if (!PageLRU(p) && !PageHuge(p)) |
975 | shake_page(p, 0); | 1011 | shake_page(p, 0); |
976 | if (!PageLRU(p)) { | 1012 | if (!PageLRU(p) && !PageHuge(p)) { |
977 | /* | 1013 | /* |
978 | * shake_page could have turned it free. | 1014 | * shake_page could have turned it free. |
979 | */ | 1015 | */ |
@@ -991,7 +1027,7 @@ int __memory_failure(unsigned long pfn, int trapno, int flags) | |||
991 | * It's very difficult to mess with pages currently under IO | 1027 | * It's very difficult to mess with pages currently under IO |
992 | * and in many cases impossible, so we just avoid it here. | 1028 | * and in many cases impossible, so we just avoid it here. |
993 | */ | 1029 | */ |
994 | lock_page_nosync(p); | 1030 | lock_page_nosync(hpage); |
995 | 1031 | ||
996 | /* | 1032 | /* |
997 | * unpoison always clear PG_hwpoison inside page lock | 1033 | * unpoison always clear PG_hwpoison inside page lock |
@@ -1003,12 +1039,32 @@ int __memory_failure(unsigned long pfn, int trapno, int flags) | |||
1003 | } | 1039 | } |
1004 | if (hwpoison_filter(p)) { | 1040 | if (hwpoison_filter(p)) { |
1005 | if (TestClearPageHWPoison(p)) | 1041 | if (TestClearPageHWPoison(p)) |
1006 | atomic_long_dec(&mce_bad_pages); | 1042 | atomic_long_sub(nr_pages, &mce_bad_pages); |
1007 | unlock_page(p); | 1043 | unlock_page(hpage); |
1008 | put_page(p); | 1044 | put_page(hpage); |
1009 | return 0; | 1045 | return 0; |
1010 | } | 1046 | } |
1011 | 1047 | ||
1048 | /* | ||
1049 | * For error on the tail page, we should set PG_hwpoison | ||
1050 | * on the head page to show that the hugepage is hwpoisoned | ||
1051 | */ | ||
1052 | if (PageTail(p) && TestSetPageHWPoison(hpage)) { | ||
1053 | action_result(pfn, "hugepage already hardware poisoned", | ||
1054 | IGNORED); | ||
1055 | unlock_page(hpage); | ||
1056 | put_page(hpage); | ||
1057 | return 0; | ||
1058 | } | ||
1059 | /* | ||
1060 | * Set PG_hwpoison on all pages in an error hugepage, | ||
1061 | * because containment is done in hugepage unit for now. | ||
1062 | * Since we have done TestSetPageHWPoison() for the head page with | ||
1063 | * page lock held, we can safely set PG_hwpoison bits on tail pages. | ||
1064 | */ | ||
1065 | if (PageHuge(p)) | ||
1066 | set_page_hwpoison_huge_page(hpage); | ||
1067 | |||
1012 | wait_on_page_writeback(p); | 1068 | wait_on_page_writeback(p); |
1013 | 1069 | ||
1014 | /* | 1070 | /* |
@@ -1038,7 +1094,7 @@ int __memory_failure(unsigned long pfn, int trapno, int flags) | |||
1038 | } | 1094 | } |
1039 | } | 1095 | } |
1040 | out: | 1096 | out: |
1041 | unlock_page(p); | 1097 | unlock_page(hpage); |
1042 | return res; | 1098 | return res; |
1043 | } | 1099 | } |
1044 | EXPORT_SYMBOL_GPL(__memory_failure); | 1100 | EXPORT_SYMBOL_GPL(__memory_failure); |
@@ -1082,6 +1138,7 @@ int unpoison_memory(unsigned long pfn) | |||
1082 | struct page *page; | 1138 | struct page *page; |
1083 | struct page *p; | 1139 | struct page *p; |
1084 | int freeit = 0; | 1140 | int freeit = 0; |
1141 | unsigned int nr_pages; | ||
1085 | 1142 | ||
1086 | if (!pfn_valid(pfn)) | 1143 | if (!pfn_valid(pfn)) |
1087 | return -ENXIO; | 1144 | return -ENXIO; |
@@ -1094,9 +1151,11 @@ int unpoison_memory(unsigned long pfn) | |||
1094 | return 0; | 1151 | return 0; |
1095 | } | 1152 | } |
1096 | 1153 | ||
1154 | nr_pages = 1 << compound_order(page); | ||
1155 | |||
1097 | if (!get_page_unless_zero(page)) { | 1156 | if (!get_page_unless_zero(page)) { |
1098 | if (TestClearPageHWPoison(p)) | 1157 | if (TestClearPageHWPoison(p)) |
1099 | atomic_long_dec(&mce_bad_pages); | 1158 | atomic_long_sub(nr_pages, &mce_bad_pages); |
1100 | pr_debug("MCE: Software-unpoisoned free page %#lx\n", pfn); | 1159 | pr_debug("MCE: Software-unpoisoned free page %#lx\n", pfn); |
1101 | return 0; | 1160 | return 0; |
1102 | } | 1161 | } |
@@ -1108,11 +1167,13 @@ int unpoison_memory(unsigned long pfn) | |||
1108 | * the PG_hwpoison page will be caught and isolated on the entrance to | 1167 | * the PG_hwpoison page will be caught and isolated on the entrance to |
1109 | * the free buddy page pool. | 1168 | * the free buddy page pool. |
1110 | */ | 1169 | */ |
1111 | if (TestClearPageHWPoison(p)) { | 1170 | if (TestClearPageHWPoison(page)) { |
1112 | pr_debug("MCE: Software-unpoisoned page %#lx\n", pfn); | 1171 | pr_debug("MCE: Software-unpoisoned page %#lx\n", pfn); |
1113 | atomic_long_dec(&mce_bad_pages); | 1172 | atomic_long_sub(nr_pages, &mce_bad_pages); |
1114 | freeit = 1; | 1173 | freeit = 1; |
1115 | } | 1174 | } |
1175 | if (PageHuge(p)) | ||
1176 | clear_page_hwpoison_huge_page(page); | ||
1116 | unlock_page(page); | 1177 | unlock_page(page); |
1117 | 1178 | ||
1118 | put_page(page); | 1179 | put_page(page); |
@@ -1296,3 +1357,35 @@ done: | |||
1296 | /* keep elevated page count for bad page */ | 1357 | /* keep elevated page count for bad page */ |
1297 | return ret; | 1358 | return ret; |
1298 | } | 1359 | } |
1360 | |||
1361 | /* | ||
1362 | * The caller must hold current->mm->mmap_sem in read mode. | ||
1363 | */ | ||
1364 | int is_hwpoison_address(unsigned long addr) | ||
1365 | { | ||
1366 | pgd_t *pgdp; | ||
1367 | pud_t pud, *pudp; | ||
1368 | pmd_t pmd, *pmdp; | ||
1369 | pte_t pte, *ptep; | ||
1370 | swp_entry_t entry; | ||
1371 | |||
1372 | pgdp = pgd_offset(current->mm, addr); | ||
1373 | if (!pgd_present(*pgdp)) | ||
1374 | return 0; | ||
1375 | pudp = pud_offset(pgdp, addr); | ||
1376 | pud = *pudp; | ||
1377 | if (!pud_present(pud) || pud_large(pud)) | ||
1378 | return 0; | ||
1379 | pmdp = pmd_offset(pudp, addr); | ||
1380 | pmd = *pmdp; | ||
1381 | if (!pmd_present(pmd) || pmd_large(pmd)) | ||
1382 | return 0; | ||
1383 | ptep = pte_offset_map(pmdp, addr); | ||
1384 | pte = *ptep; | ||
1385 | pte_unmap(ptep); | ||
1386 | if (!is_swap_pte(pte)) | ||
1387 | return 0; | ||
1388 | entry = pte_to_swp_entry(pte); | ||
1389 | return is_hwpoison_entry(entry); | ||
1390 | } | ||
1391 | EXPORT_SYMBOL_GPL(is_hwpoison_address); | ||
diff --git a/mm/memory.c b/mm/memory.c index bde42c6d3633..6b2ab1051851 100644 --- a/mm/memory.c +++ b/mm/memory.c | |||
@@ -307,7 +307,6 @@ void free_pgd_range(struct mmu_gather *tlb, | |||
307 | { | 307 | { |
308 | pgd_t *pgd; | 308 | pgd_t *pgd; |
309 | unsigned long next; | 309 | unsigned long next; |
310 | unsigned long start; | ||
311 | 310 | ||
312 | /* | 311 | /* |
313 | * The next few lines have given us lots of grief... | 312 | * The next few lines have given us lots of grief... |
@@ -351,7 +350,6 @@ void free_pgd_range(struct mmu_gather *tlb, | |||
351 | if (addr > end - 1) | 350 | if (addr > end - 1) |
352 | return; | 351 | return; |
353 | 352 | ||
354 | start = addr; | ||
355 | pgd = pgd_offset(tlb->mm, addr); | 353 | pgd = pgd_offset(tlb->mm, addr); |
356 | do { | 354 | do { |
357 | next = pgd_addr_end(addr, end); | 355 | next = pgd_addr_end(addr, end); |
@@ -2008,11 +2006,10 @@ int apply_to_page_range(struct mm_struct *mm, unsigned long addr, | |||
2008 | { | 2006 | { |
2009 | pgd_t *pgd; | 2007 | pgd_t *pgd; |
2010 | unsigned long next; | 2008 | unsigned long next; |
2011 | unsigned long start = addr, end = addr + size; | 2009 | unsigned long end = addr + size; |
2012 | int err; | 2010 | int err; |
2013 | 2011 | ||
2014 | BUG_ON(addr >= end); | 2012 | BUG_ON(addr >= end); |
2015 | mmu_notifier_invalidate_range_start(mm, start, end); | ||
2016 | pgd = pgd_offset(mm, addr); | 2013 | pgd = pgd_offset(mm, addr); |
2017 | do { | 2014 | do { |
2018 | next = pgd_addr_end(addr, end); | 2015 | next = pgd_addr_end(addr, end); |
@@ -2020,7 +2017,7 @@ int apply_to_page_range(struct mm_struct *mm, unsigned long addr, | |||
2020 | if (err) | 2017 | if (err) |
2021 | break; | 2018 | break; |
2022 | } while (pgd++, addr = next, addr != end); | 2019 | } while (pgd++, addr = next, addr != end); |
2023 | mmu_notifier_invalidate_range_end(mm, start, end); | 2020 | |
2024 | return err; | 2021 | return err; |
2025 | } | 2022 | } |
2026 | EXPORT_SYMBOL_GPL(apply_to_page_range); | 2023 | EXPORT_SYMBOL_GPL(apply_to_page_range); |
@@ -2630,6 +2627,7 @@ static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, | |||
2630 | swp_entry_t entry; | 2627 | swp_entry_t entry; |
2631 | pte_t pte; | 2628 | pte_t pte; |
2632 | struct mem_cgroup *ptr = NULL; | 2629 | struct mem_cgroup *ptr = NULL; |
2630 | int exclusive = 0; | ||
2633 | int ret = 0; | 2631 | int ret = 0; |
2634 | 2632 | ||
2635 | if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) | 2633 | if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) |
@@ -2724,10 +2722,12 @@ static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, | |||
2724 | if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { | 2722 | if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { |
2725 | pte = maybe_mkwrite(pte_mkdirty(pte), vma); | 2723 | pte = maybe_mkwrite(pte_mkdirty(pte), vma); |
2726 | flags &= ~FAULT_FLAG_WRITE; | 2724 | flags &= ~FAULT_FLAG_WRITE; |
2725 | ret |= VM_FAULT_WRITE; | ||
2726 | exclusive = 1; | ||
2727 | } | 2727 | } |
2728 | flush_icache_page(vma, page); | 2728 | flush_icache_page(vma, page); |
2729 | set_pte_at(mm, address, page_table, pte); | 2729 | set_pte_at(mm, address, page_table, pte); |
2730 | page_add_anon_rmap(page, vma, address); | 2730 | do_page_add_anon_rmap(page, vma, address, exclusive); |
2731 | /* It's better to call commit-charge after rmap is established */ | 2731 | /* It's better to call commit-charge after rmap is established */ |
2732 | mem_cgroup_commit_charge_swapin(page, ptr); | 2732 | mem_cgroup_commit_charge_swapin(page, ptr); |
2733 | 2733 | ||
@@ -2760,6 +2760,40 @@ out_release: | |||
2760 | } | 2760 | } |
2761 | 2761 | ||
2762 | /* | 2762 | /* |
2763 | * This is like a special single-page "expand_{down|up}wards()", | ||
2764 | * except we must first make sure that 'address{-|+}PAGE_SIZE' | ||
2765 | * doesn't hit another vma. | ||
2766 | */ | ||
2767 | static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) | ||
2768 | { | ||
2769 | address &= PAGE_MASK; | ||
2770 | if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { | ||
2771 | struct vm_area_struct *prev = vma->vm_prev; | ||
2772 | |||
2773 | /* | ||
2774 | * Is there a mapping abutting this one below? | ||
2775 | * | ||
2776 | * That's only ok if it's the same stack mapping | ||
2777 | * that has gotten split.. | ||
2778 | */ | ||
2779 | if (prev && prev->vm_end == address) | ||
2780 | return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; | ||
2781 | |||
2782 | expand_stack(vma, address - PAGE_SIZE); | ||
2783 | } | ||
2784 | if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { | ||
2785 | struct vm_area_struct *next = vma->vm_next; | ||
2786 | |||
2787 | /* As VM_GROWSDOWN but s/below/above/ */ | ||
2788 | if (next && next->vm_start == address + PAGE_SIZE) | ||
2789 | return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; | ||
2790 | |||
2791 | expand_upwards(vma, address + PAGE_SIZE); | ||
2792 | } | ||
2793 | return 0; | ||
2794 | } | ||
2795 | |||
2796 | /* | ||
2763 | * We enter with non-exclusive mmap_sem (to exclude vma changes, | 2797 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2764 | * but allow concurrent faults), and pte mapped but not yet locked. | 2798 | * but allow concurrent faults), and pte mapped but not yet locked. |
2765 | * We return with mmap_sem still held, but pte unmapped and unlocked. | 2799 | * We return with mmap_sem still held, but pte unmapped and unlocked. |
@@ -2772,19 +2806,23 @@ static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, | |||
2772 | spinlock_t *ptl; | 2806 | spinlock_t *ptl; |
2773 | pte_t entry; | 2807 | pte_t entry; |
2774 | 2808 | ||
2809 | pte_unmap(page_table); | ||
2810 | |||
2811 | /* Check if we need to add a guard page to the stack */ | ||
2812 | if (check_stack_guard_page(vma, address) < 0) | ||
2813 | return VM_FAULT_SIGBUS; | ||
2814 | |||
2815 | /* Use the zero-page for reads */ | ||
2775 | if (!(flags & FAULT_FLAG_WRITE)) { | 2816 | if (!(flags & FAULT_FLAG_WRITE)) { |
2776 | entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), | 2817 | entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), |
2777 | vma->vm_page_prot)); | 2818 | vma->vm_page_prot)); |
2778 | ptl = pte_lockptr(mm, pmd); | 2819 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
2779 | spin_lock(ptl); | ||
2780 | if (!pte_none(*page_table)) | 2820 | if (!pte_none(*page_table)) |
2781 | goto unlock; | 2821 | goto unlock; |
2782 | goto setpte; | 2822 | goto setpte; |
2783 | } | 2823 | } |
2784 | 2824 | ||
2785 | /* Allocate our own private page. */ | 2825 | /* Allocate our own private page. */ |
2786 | pte_unmap(page_table); | ||
2787 | |||
2788 | if (unlikely(anon_vma_prepare(vma))) | 2826 | if (unlikely(anon_vma_prepare(vma))) |
2789 | goto oom; | 2827 | goto oom; |
2790 | page = alloc_zeroed_user_highpage_movable(vma, address); | 2828 | page = alloc_zeroed_user_highpage_movable(vma, address); |
diff --git a/mm/mempolicy.c b/mm/mempolicy.c index 5bc0a96beb51..f969da5dd8a2 100644 --- a/mm/mempolicy.c +++ b/mm/mempolicy.c | |||
@@ -1275,33 +1275,42 @@ SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, | |||
1275 | const unsigned long __user *, new_nodes) | 1275 | const unsigned long __user *, new_nodes) |
1276 | { | 1276 | { |
1277 | const struct cred *cred = current_cred(), *tcred; | 1277 | const struct cred *cred = current_cred(), *tcred; |
1278 | struct mm_struct *mm; | 1278 | struct mm_struct *mm = NULL; |
1279 | struct task_struct *task; | 1279 | struct task_struct *task; |
1280 | nodemask_t old; | ||
1281 | nodemask_t new; | ||
1282 | nodemask_t task_nodes; | 1280 | nodemask_t task_nodes; |
1283 | int err; | 1281 | int err; |
1282 | nodemask_t *old; | ||
1283 | nodemask_t *new; | ||
1284 | NODEMASK_SCRATCH(scratch); | ||
1285 | |||
1286 | if (!scratch) | ||
1287 | return -ENOMEM; | ||
1288 | |||
1289 | old = &scratch->mask1; | ||
1290 | new = &scratch->mask2; | ||
1284 | 1291 | ||
1285 | err = get_nodes(&old, old_nodes, maxnode); | 1292 | err = get_nodes(old, old_nodes, maxnode); |
1286 | if (err) | 1293 | if (err) |
1287 | return err; | 1294 | goto out; |
1288 | 1295 | ||
1289 | err = get_nodes(&new, new_nodes, maxnode); | 1296 | err = get_nodes(new, new_nodes, maxnode); |
1290 | if (err) | 1297 | if (err) |
1291 | return err; | 1298 | goto out; |
1292 | 1299 | ||
1293 | /* Find the mm_struct */ | 1300 | /* Find the mm_struct */ |
1294 | read_lock(&tasklist_lock); | 1301 | read_lock(&tasklist_lock); |
1295 | task = pid ? find_task_by_vpid(pid) : current; | 1302 | task = pid ? find_task_by_vpid(pid) : current; |
1296 | if (!task) { | 1303 | if (!task) { |
1297 | read_unlock(&tasklist_lock); | 1304 | read_unlock(&tasklist_lock); |
1298 | return -ESRCH; | 1305 | err = -ESRCH; |
1306 | goto out; | ||
1299 | } | 1307 | } |
1300 | mm = get_task_mm(task); | 1308 | mm = get_task_mm(task); |
1301 | read_unlock(&tasklist_lock); | 1309 | read_unlock(&tasklist_lock); |
1302 | 1310 | ||
1311 | err = -EINVAL; | ||
1303 | if (!mm) | 1312 | if (!mm) |
1304 | return -EINVAL; | 1313 | goto out; |
1305 | 1314 | ||
1306 | /* | 1315 | /* |
1307 | * Check if this process has the right to modify the specified | 1316 | * Check if this process has the right to modify the specified |
@@ -1322,12 +1331,12 @@ SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, | |||
1322 | 1331 | ||
1323 | task_nodes = cpuset_mems_allowed(task); | 1332 | task_nodes = cpuset_mems_allowed(task); |
1324 | /* Is the user allowed to access the target nodes? */ | 1333 | /* Is the user allowed to access the target nodes? */ |
1325 | if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) { | 1334 | if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) { |
1326 | err = -EPERM; | 1335 | err = -EPERM; |
1327 | goto out; | 1336 | goto out; |
1328 | } | 1337 | } |
1329 | 1338 | ||
1330 | if (!nodes_subset(new, node_states[N_HIGH_MEMORY])) { | 1339 | if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) { |
1331 | err = -EINVAL; | 1340 | err = -EINVAL; |
1332 | goto out; | 1341 | goto out; |
1333 | } | 1342 | } |
@@ -1336,10 +1345,13 @@ SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode, | |||
1336 | if (err) | 1345 | if (err) |
1337 | goto out; | 1346 | goto out; |
1338 | 1347 | ||
1339 | err = do_migrate_pages(mm, &old, &new, | 1348 | err = do_migrate_pages(mm, old, new, |
1340 | capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); | 1349 | capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE); |
1341 | out: | 1350 | out: |
1342 | mmput(mm); | 1351 | if (mm) |
1352 | mmput(mm); | ||
1353 | NODEMASK_SCRATCH_FREE(scratch); | ||
1354 | |||
1343 | return err; | 1355 | return err; |
1344 | } | 1356 | } |
1345 | 1357 | ||
@@ -1712,6 +1724,50 @@ bool init_nodemask_of_mempolicy(nodemask_t *mask) | |||
1712 | } | 1724 | } |
1713 | #endif | 1725 | #endif |
1714 | 1726 | ||
1727 | /* | ||
1728 | * mempolicy_nodemask_intersects | ||
1729 | * | ||
1730 | * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default | ||
1731 | * policy. Otherwise, check for intersection between mask and the policy | ||
1732 | * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local' | ||
1733 | * policy, always return true since it may allocate elsewhere on fallback. | ||
1734 | * | ||
1735 | * Takes task_lock(tsk) to prevent freeing of its mempolicy. | ||
1736 | */ | ||
1737 | bool mempolicy_nodemask_intersects(struct task_struct *tsk, | ||
1738 | const nodemask_t *mask) | ||
1739 | { | ||
1740 | struct mempolicy *mempolicy; | ||
1741 | bool ret = true; | ||
1742 | |||
1743 | if (!mask) | ||
1744 | return ret; | ||
1745 | task_lock(tsk); | ||
1746 | mempolicy = tsk->mempolicy; | ||
1747 | if (!mempolicy) | ||
1748 | goto out; | ||
1749 | |||
1750 | switch (mempolicy->mode) { | ||
1751 | case MPOL_PREFERRED: | ||
1752 | /* | ||
1753 | * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to | ||
1754 | * allocate from, they may fallback to other nodes when oom. | ||
1755 | * Thus, it's possible for tsk to have allocated memory from | ||
1756 | * nodes in mask. | ||
1757 | */ | ||
1758 | break; | ||
1759 | case MPOL_BIND: | ||
1760 | case MPOL_INTERLEAVE: | ||
1761 | ret = nodes_intersects(mempolicy->v.nodes, *mask); | ||
1762 | break; | ||
1763 | default: | ||
1764 | BUG(); | ||
1765 | } | ||
1766 | out: | ||
1767 | task_unlock(tsk); | ||
1768 | return ret; | ||
1769 | } | ||
1770 | |||
1715 | /* Allocate a page in interleaved policy. | 1771 | /* Allocate a page in interleaved policy. |
1716 | Own path because it needs to do special accounting. */ | 1772 | Own path because it needs to do special accounting. */ |
1717 | static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, | 1773 | static struct page *alloc_page_interleave(gfp_t gfp, unsigned order, |
diff --git a/mm/migrate.c b/mm/migrate.c index 4205b1d6049e..38e7cad782f4 100644 --- a/mm/migrate.c +++ b/mm/migrate.c | |||
@@ -639,7 +639,7 @@ static int unmap_and_move(new_page_t get_new_page, unsigned long private, | |||
639 | * exist when the page is remapped later | 639 | * exist when the page is remapped later |
640 | */ | 640 | */ |
641 | anon_vma = page_anon_vma(page); | 641 | anon_vma = page_anon_vma(page); |
642 | atomic_inc(&anon_vma->external_refcount); | 642 | get_anon_vma(anon_vma); |
643 | } | 643 | } |
644 | } | 644 | } |
645 | 645 | ||
@@ -682,12 +682,8 @@ skip_unmap: | |||
682 | rcu_unlock: | 682 | rcu_unlock: |
683 | 683 | ||
684 | /* Drop an anon_vma reference if we took one */ | 684 | /* Drop an anon_vma reference if we took one */ |
685 | if (anon_vma && atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->lock)) { | 685 | if (anon_vma) |
686 | int empty = list_empty(&anon_vma->head); | 686 | drop_anon_vma(anon_vma); |
687 | spin_unlock(&anon_vma->lock); | ||
688 | if (empty) | ||
689 | anon_vma_free(anon_vma); | ||
690 | } | ||
691 | 687 | ||
692 | if (rcu_locked) | 688 | if (rcu_locked) |
693 | rcu_read_unlock(); | 689 | rcu_read_unlock(); |
diff --git a/mm/mlock.c b/mm/mlock.c index 3f82720e0515..cbae7c5b9568 100644 --- a/mm/mlock.c +++ b/mm/mlock.c | |||
@@ -135,6 +135,19 @@ void munlock_vma_page(struct page *page) | |||
135 | } | 135 | } |
136 | } | 136 | } |
137 | 137 | ||
138 | /* Is the vma a continuation of the stack vma above it? */ | ||
139 | static inline int vma_stack_continue(struct vm_area_struct *vma, unsigned long addr) | ||
140 | { | ||
141 | return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); | ||
142 | } | ||
143 | |||
144 | static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr) | ||
145 | { | ||
146 | return (vma->vm_flags & VM_GROWSDOWN) && | ||
147 | (vma->vm_start == addr) && | ||
148 | !vma_stack_continue(vma->vm_prev, addr); | ||
149 | } | ||
150 | |||
138 | /** | 151 | /** |
139 | * __mlock_vma_pages_range() - mlock a range of pages in the vma. | 152 | * __mlock_vma_pages_range() - mlock a range of pages in the vma. |
140 | * @vma: target vma | 153 | * @vma: target vma |
@@ -167,6 +180,12 @@ static long __mlock_vma_pages_range(struct vm_area_struct *vma, | |||
167 | if (vma->vm_flags & VM_WRITE) | 180 | if (vma->vm_flags & VM_WRITE) |
168 | gup_flags |= FOLL_WRITE; | 181 | gup_flags |= FOLL_WRITE; |
169 | 182 | ||
183 | /* We don't try to access the guard page of a stack vma */ | ||
184 | if (stack_guard_page(vma, start)) { | ||
185 | addr += PAGE_SIZE; | ||
186 | nr_pages--; | ||
187 | } | ||
188 | |||
170 | while (nr_pages > 0) { | 189 | while (nr_pages > 0) { |
171 | int i; | 190 | int i; |
172 | 191 | ||
@@ -388,17 +388,23 @@ static inline void | |||
388 | __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, | 388 | __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, |
389 | struct vm_area_struct *prev, struct rb_node *rb_parent) | 389 | struct vm_area_struct *prev, struct rb_node *rb_parent) |
390 | { | 390 | { |
391 | struct vm_area_struct *next; | ||
392 | |||
393 | vma->vm_prev = prev; | ||
391 | if (prev) { | 394 | if (prev) { |
392 | vma->vm_next = prev->vm_next; | 395 | next = prev->vm_next; |
393 | prev->vm_next = vma; | 396 | prev->vm_next = vma; |
394 | } else { | 397 | } else { |
395 | mm->mmap = vma; | 398 | mm->mmap = vma; |
396 | if (rb_parent) | 399 | if (rb_parent) |
397 | vma->vm_next = rb_entry(rb_parent, | 400 | next = rb_entry(rb_parent, |
398 | struct vm_area_struct, vm_rb); | 401 | struct vm_area_struct, vm_rb); |
399 | else | 402 | else |
400 | vma->vm_next = NULL; | 403 | next = NULL; |
401 | } | 404 | } |
405 | vma->vm_next = next; | ||
406 | if (next) | ||
407 | next->vm_prev = vma; | ||
402 | } | 408 | } |
403 | 409 | ||
404 | void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, | 410 | void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma, |
@@ -452,12 +458,10 @@ static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma, | |||
452 | spin_lock(&mapping->i_mmap_lock); | 458 | spin_lock(&mapping->i_mmap_lock); |
453 | vma->vm_truncate_count = mapping->truncate_count; | 459 | vma->vm_truncate_count = mapping->truncate_count; |
454 | } | 460 | } |
455 | anon_vma_lock(vma); | ||
456 | 461 | ||
457 | __vma_link(mm, vma, prev, rb_link, rb_parent); | 462 | __vma_link(mm, vma, prev, rb_link, rb_parent); |
458 | __vma_link_file(vma); | 463 | __vma_link_file(vma); |
459 | 464 | ||
460 | anon_vma_unlock(vma); | ||
461 | if (mapping) | 465 | if (mapping) |
462 | spin_unlock(&mapping->i_mmap_lock); | 466 | spin_unlock(&mapping->i_mmap_lock); |
463 | 467 | ||
@@ -485,7 +489,11 @@ static inline void | |||
485 | __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, | 489 | __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma, |
486 | struct vm_area_struct *prev) | 490 | struct vm_area_struct *prev) |
487 | { | 491 | { |
488 | prev->vm_next = vma->vm_next; | 492 | struct vm_area_struct *next = vma->vm_next; |
493 | |||
494 | prev->vm_next = next; | ||
495 | if (next) | ||
496 | next->vm_prev = prev; | ||
489 | rb_erase(&vma->vm_rb, &mm->mm_rb); | 497 | rb_erase(&vma->vm_rb, &mm->mm_rb); |
490 | if (mm->mmap_cache == vma) | 498 | if (mm->mmap_cache == vma) |
491 | mm->mmap_cache = prev; | 499 | mm->mmap_cache = prev; |
@@ -506,6 +514,7 @@ int vma_adjust(struct vm_area_struct *vma, unsigned long start, | |||
506 | struct vm_area_struct *importer = NULL; | 514 | struct vm_area_struct *importer = NULL; |
507 | struct address_space *mapping = NULL; | 515 | struct address_space *mapping = NULL; |
508 | struct prio_tree_root *root = NULL; | 516 | struct prio_tree_root *root = NULL; |
517 | struct anon_vma *anon_vma = NULL; | ||
509 | struct file *file = vma->vm_file; | 518 | struct file *file = vma->vm_file; |
510 | long adjust_next = 0; | 519 | long adjust_next = 0; |
511 | int remove_next = 0; | 520 | int remove_next = 0; |
@@ -578,6 +587,17 @@ again: remove_next = 1 + (end > next->vm_end); | |||
578 | } | 587 | } |
579 | } | 588 | } |
580 | 589 | ||
590 | /* | ||
591 | * When changing only vma->vm_end, we don't really need anon_vma | ||
592 | * lock. This is a fairly rare case by itself, but the anon_vma | ||
593 | * lock may be shared between many sibling processes. Skipping | ||
594 | * the lock for brk adjustments makes a difference sometimes. | ||
595 | */ | ||
596 | if (vma->anon_vma && (insert || importer || start != vma->vm_start)) { | ||
597 | anon_vma = vma->anon_vma; | ||
598 | anon_vma_lock(anon_vma); | ||
599 | } | ||
600 | |||
581 | if (root) { | 601 | if (root) { |
582 | flush_dcache_mmap_lock(mapping); | 602 | flush_dcache_mmap_lock(mapping); |
583 | vma_prio_tree_remove(vma, root); | 603 | vma_prio_tree_remove(vma, root); |
@@ -617,6 +637,8 @@ again: remove_next = 1 + (end > next->vm_end); | |||
617 | __insert_vm_struct(mm, insert); | 637 | __insert_vm_struct(mm, insert); |
618 | } | 638 | } |
619 | 639 | ||
640 | if (anon_vma) | ||
641 | anon_vma_unlock(anon_vma); | ||
620 | if (mapping) | 642 | if (mapping) |
621 | spin_unlock(&mapping->i_mmap_lock); | 643 | spin_unlock(&mapping->i_mmap_lock); |
622 | 644 | ||
@@ -1694,9 +1716,6 @@ static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, uns | |||
1694 | * PA-RISC uses this for its stack; IA64 for its Register Backing Store. | 1716 | * PA-RISC uses this for its stack; IA64 for its Register Backing Store. |
1695 | * vma is the last one with address > vma->vm_end. Have to extend vma. | 1717 | * vma is the last one with address > vma->vm_end. Have to extend vma. |
1696 | */ | 1718 | */ |
1697 | #ifndef CONFIG_IA64 | ||
1698 | static | ||
1699 | #endif | ||
1700 | int expand_upwards(struct vm_area_struct *vma, unsigned long address) | 1719 | int expand_upwards(struct vm_area_struct *vma, unsigned long address) |
1701 | { | 1720 | { |
1702 | int error; | 1721 | int error; |
@@ -1710,7 +1729,7 @@ int expand_upwards(struct vm_area_struct *vma, unsigned long address) | |||
1710 | */ | 1729 | */ |
1711 | if (unlikely(anon_vma_prepare(vma))) | 1730 | if (unlikely(anon_vma_prepare(vma))) |
1712 | return -ENOMEM; | 1731 | return -ENOMEM; |
1713 | anon_vma_lock(vma); | 1732 | vma_lock_anon_vma(vma); |
1714 | 1733 | ||
1715 | /* | 1734 | /* |
1716 | * vma->vm_start/vm_end cannot change under us because the caller | 1735 | * vma->vm_start/vm_end cannot change under us because the caller |
@@ -1721,7 +1740,7 @@ int expand_upwards(struct vm_area_struct *vma, unsigned long address) | |||
1721 | if (address < PAGE_ALIGN(address+4)) | 1740 | if (address < PAGE_ALIGN(address+4)) |
1722 | address = PAGE_ALIGN(address+4); | 1741 | address = PAGE_ALIGN(address+4); |
1723 | else { | 1742 | else { |
1724 | anon_vma_unlock(vma); | 1743 | vma_unlock_anon_vma(vma); |
1725 | return -ENOMEM; | 1744 | return -ENOMEM; |
1726 | } | 1745 | } |
1727 | error = 0; | 1746 | error = 0; |
@@ -1734,10 +1753,12 @@ int expand_upwards(struct vm_area_struct *vma, unsigned long address) | |||
1734 | grow = (address - vma->vm_end) >> PAGE_SHIFT; | 1753 | grow = (address - vma->vm_end) >> PAGE_SHIFT; |
1735 | 1754 | ||
1736 | error = acct_stack_growth(vma, size, grow); | 1755 | error = acct_stack_growth(vma, size, grow); |
1737 | if (!error) | 1756 | if (!error) { |
1738 | vma->vm_end = address; | 1757 | vma->vm_end = address; |
1758 | perf_event_mmap(vma); | ||
1759 | } | ||
1739 | } | 1760 | } |
1740 | anon_vma_unlock(vma); | 1761 | vma_unlock_anon_vma(vma); |
1741 | return error; | 1762 | return error; |
1742 | } | 1763 | } |
1743 | #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ | 1764 | #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */ |
@@ -1762,7 +1783,7 @@ static int expand_downwards(struct vm_area_struct *vma, | |||
1762 | if (error) | 1783 | if (error) |
1763 | return error; | 1784 | return error; |
1764 | 1785 | ||
1765 | anon_vma_lock(vma); | 1786 | vma_lock_anon_vma(vma); |
1766 | 1787 | ||
1767 | /* | 1788 | /* |
1768 | * vma->vm_start/vm_end cannot change under us because the caller | 1789 | * vma->vm_start/vm_end cannot change under us because the caller |
@@ -1781,9 +1802,10 @@ static int expand_downwards(struct vm_area_struct *vma, | |||
1781 | if (!error) { | 1802 | if (!error) { |
1782 | vma->vm_start = address; | 1803 | vma->vm_start = address; |
1783 | vma->vm_pgoff -= grow; | 1804 | vma->vm_pgoff -= grow; |
1805 | perf_event_mmap(vma); | ||
1784 | } | 1806 | } |
1785 | } | 1807 | } |
1786 | anon_vma_unlock(vma); | 1808 | vma_unlock_anon_vma(vma); |
1787 | return error; | 1809 | return error; |
1788 | } | 1810 | } |
1789 | 1811 | ||
@@ -1900,6 +1922,7 @@ detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, | |||
1900 | unsigned long addr; | 1922 | unsigned long addr; |
1901 | 1923 | ||
1902 | insertion_point = (prev ? &prev->vm_next : &mm->mmap); | 1924 | insertion_point = (prev ? &prev->vm_next : &mm->mmap); |
1925 | vma->vm_prev = NULL; | ||
1903 | do { | 1926 | do { |
1904 | rb_erase(&vma->vm_rb, &mm->mm_rb); | 1927 | rb_erase(&vma->vm_rb, &mm->mm_rb); |
1905 | mm->map_count--; | 1928 | mm->map_count--; |
@@ -1907,6 +1930,8 @@ detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, | |||
1907 | vma = vma->vm_next; | 1930 | vma = vma->vm_next; |
1908 | } while (vma && vma->vm_start < end); | 1931 | } while (vma && vma->vm_start < end); |
1909 | *insertion_point = vma; | 1932 | *insertion_point = vma; |
1933 | if (vma) | ||
1934 | vma->vm_prev = prev; | ||
1910 | tail_vma->vm_next = NULL; | 1935 | tail_vma->vm_next = NULL; |
1911 | if (mm->unmap_area == arch_unmap_area) | 1936 | if (mm->unmap_area == arch_unmap_area) |
1912 | addr = prev ? prev->vm_end : mm->mmap_base; | 1937 | addr = prev ? prev->vm_end : mm->mmap_base; |
@@ -2208,6 +2233,7 @@ unsigned long do_brk(unsigned long addr, unsigned long len) | |||
2208 | vma->vm_page_prot = vm_get_page_prot(flags); | 2233 | vma->vm_page_prot = vm_get_page_prot(flags); |
2209 | vma_link(mm, vma, prev, rb_link, rb_parent); | 2234 | vma_link(mm, vma, prev, rb_link, rb_parent); |
2210 | out: | 2235 | out: |
2236 | perf_event_mmap(vma); | ||
2211 | mm->total_vm += len >> PAGE_SHIFT; | 2237 | mm->total_vm += len >> PAGE_SHIFT; |
2212 | if (flags & VM_LOCKED) { | 2238 | if (flags & VM_LOCKED) { |
2213 | if (!mlock_vma_pages_range(vma, addr, addr + len)) | 2239 | if (!mlock_vma_pages_range(vma, addr, addr + len)) |
@@ -2466,23 +2492,23 @@ static DEFINE_MUTEX(mm_all_locks_mutex); | |||
2466 | 2492 | ||
2467 | static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) | 2493 | static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) |
2468 | { | 2494 | { |
2469 | if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) { | 2495 | if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) { |
2470 | /* | 2496 | /* |
2471 | * The LSB of head.next can't change from under us | 2497 | * The LSB of head.next can't change from under us |
2472 | * because we hold the mm_all_locks_mutex. | 2498 | * because we hold the mm_all_locks_mutex. |
2473 | */ | 2499 | */ |
2474 | spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem); | 2500 | spin_lock_nest_lock(&anon_vma->root->lock, &mm->mmap_sem); |
2475 | /* | 2501 | /* |
2476 | * We can safely modify head.next after taking the | 2502 | * We can safely modify head.next after taking the |
2477 | * anon_vma->lock. If some other vma in this mm shares | 2503 | * anon_vma->root->lock. If some other vma in this mm shares |
2478 | * the same anon_vma we won't take it again. | 2504 | * the same anon_vma we won't take it again. |
2479 | * | 2505 | * |
2480 | * No need of atomic instructions here, head.next | 2506 | * No need of atomic instructions here, head.next |
2481 | * can't change from under us thanks to the | 2507 | * can't change from under us thanks to the |
2482 | * anon_vma->lock. | 2508 | * anon_vma->root->lock. |
2483 | */ | 2509 | */ |
2484 | if (__test_and_set_bit(0, (unsigned long *) | 2510 | if (__test_and_set_bit(0, (unsigned long *) |
2485 | &anon_vma->head.next)) | 2511 | &anon_vma->root->head.next)) |
2486 | BUG(); | 2512 | BUG(); |
2487 | } | 2513 | } |
2488 | } | 2514 | } |
@@ -2573,7 +2599,7 @@ out_unlock: | |||
2573 | 2599 | ||
2574 | static void vm_unlock_anon_vma(struct anon_vma *anon_vma) | 2600 | static void vm_unlock_anon_vma(struct anon_vma *anon_vma) |
2575 | { | 2601 | { |
2576 | if (test_bit(0, (unsigned long *) &anon_vma->head.next)) { | 2602 | if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) { |
2577 | /* | 2603 | /* |
2578 | * The LSB of head.next can't change to 0 from under | 2604 | * The LSB of head.next can't change to 0 from under |
2579 | * us because we hold the mm_all_locks_mutex. | 2605 | * us because we hold the mm_all_locks_mutex. |
@@ -2584,12 +2610,12 @@ static void vm_unlock_anon_vma(struct anon_vma *anon_vma) | |||
2584 | * | 2610 | * |
2585 | * No need of atomic instructions here, head.next | 2611 | * No need of atomic instructions here, head.next |
2586 | * can't change from under us until we release the | 2612 | * can't change from under us until we release the |
2587 | * anon_vma->lock. | 2613 | * anon_vma->root->lock. |
2588 | */ | 2614 | */ |
2589 | if (!__test_and_clear_bit(0, (unsigned long *) | 2615 | if (!__test_and_clear_bit(0, (unsigned long *) |
2590 | &anon_vma->head.next)) | 2616 | &anon_vma->root->head.next)) |
2591 | BUG(); | 2617 | BUG(); |
2592 | spin_unlock(&anon_vma->lock); | 2618 | anon_vma_unlock(anon_vma); |
2593 | } | 2619 | } |
2594 | } | 2620 | } |
2595 | 2621 | ||
diff --git a/mm/nommu.c b/mm/nommu.c index b76f3ee0abe0..88ff091eb07a 100644 --- a/mm/nommu.c +++ b/mm/nommu.c | |||
@@ -36,11 +36,6 @@ | |||
36 | #include <asm/mmu_context.h> | 36 | #include <asm/mmu_context.h> |
37 | #include "internal.h" | 37 | #include "internal.h" |
38 | 38 | ||
39 | static inline __attribute__((format(printf, 1, 2))) | ||
40 | void no_printk(const char *fmt, ...) | ||
41 | { | ||
42 | } | ||
43 | |||
44 | #if 0 | 39 | #if 0 |
45 | #define kenter(FMT, ...) \ | 40 | #define kenter(FMT, ...) \ |
46 | printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__) | 41 | printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__) |
@@ -609,7 +604,7 @@ static void protect_vma(struct vm_area_struct *vma, unsigned long flags) | |||
609 | */ | 604 | */ |
610 | static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) | 605 | static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) |
611 | { | 606 | { |
612 | struct vm_area_struct *pvma, **pp; | 607 | struct vm_area_struct *pvma, **pp, *next; |
613 | struct address_space *mapping; | 608 | struct address_space *mapping; |
614 | struct rb_node **p, *parent; | 609 | struct rb_node **p, *parent; |
615 | 610 | ||
@@ -669,8 +664,11 @@ static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma) | |||
669 | break; | 664 | break; |
670 | } | 665 | } |
671 | 666 | ||
672 | vma->vm_next = *pp; | 667 | next = *pp; |
673 | *pp = vma; | 668 | *pp = vma; |
669 | vma->vm_next = next; | ||
670 | if (next) | ||
671 | next->vm_prev = vma; | ||
674 | } | 672 | } |
675 | 673 | ||
676 | /* | 674 | /* |
diff --git a/mm/oom_kill.c b/mm/oom_kill.c index 709aedfaa014..fc81cb22869e 100644 --- a/mm/oom_kill.c +++ b/mm/oom_kill.c | |||
@@ -4,6 +4,8 @@ | |||
4 | * Copyright (C) 1998,2000 Rik van Riel | 4 | * Copyright (C) 1998,2000 Rik van Riel |
5 | * Thanks go out to Claus Fischer for some serious inspiration and | 5 | * Thanks go out to Claus Fischer for some serious inspiration and |
6 | * for goading me into coding this file... | 6 | * for goading me into coding this file... |
7 | * Copyright (C) 2010 Google, Inc. | ||
8 | * Rewritten by David Rientjes | ||
7 | * | 9 | * |
8 | * The routines in this file are used to kill a process when | 10 | * The routines in this file are used to kill a process when |
9 | * we're seriously out of memory. This gets called from __alloc_pages() | 11 | * we're seriously out of memory. This gets called from __alloc_pages() |
@@ -27,171 +29,188 @@ | |||
27 | #include <linux/module.h> | 29 | #include <linux/module.h> |
28 | #include <linux/notifier.h> | 30 | #include <linux/notifier.h> |
29 | #include <linux/memcontrol.h> | 31 | #include <linux/memcontrol.h> |
32 | #include <linux/mempolicy.h> | ||
30 | #include <linux/security.h> | 33 | #include <linux/security.h> |
31 | 34 | ||
32 | int sysctl_panic_on_oom; | 35 | int sysctl_panic_on_oom; |
33 | int sysctl_oom_kill_allocating_task; | 36 | int sysctl_oom_kill_allocating_task; |
34 | int sysctl_oom_dump_tasks; | 37 | int sysctl_oom_dump_tasks = 1; |
35 | static DEFINE_SPINLOCK(zone_scan_lock); | 38 | static DEFINE_SPINLOCK(zone_scan_lock); |
36 | /* #define DEBUG */ | 39 | |
40 | #ifdef CONFIG_NUMA | ||
41 | /** | ||
42 | * has_intersects_mems_allowed() - check task eligiblity for kill | ||
43 | * @tsk: task struct of which task to consider | ||
44 | * @mask: nodemask passed to page allocator for mempolicy ooms | ||
45 | * | ||
46 | * Task eligibility is determined by whether or not a candidate task, @tsk, | ||
47 | * shares the same mempolicy nodes as current if it is bound by such a policy | ||
48 | * and whether or not it has the same set of allowed cpuset nodes. | ||
49 | */ | ||
50 | static bool has_intersects_mems_allowed(struct task_struct *tsk, | ||
51 | const nodemask_t *mask) | ||
52 | { | ||
53 | struct task_struct *start = tsk; | ||
54 | |||
55 | do { | ||
56 | if (mask) { | ||
57 | /* | ||
58 | * If this is a mempolicy constrained oom, tsk's | ||
59 | * cpuset is irrelevant. Only return true if its | ||
60 | * mempolicy intersects current, otherwise it may be | ||
61 | * needlessly killed. | ||
62 | */ | ||
63 | if (mempolicy_nodemask_intersects(tsk, mask)) | ||
64 | return true; | ||
65 | } else { | ||
66 | /* | ||
67 | * This is not a mempolicy constrained oom, so only | ||
68 | * check the mems of tsk's cpuset. | ||
69 | */ | ||
70 | if (cpuset_mems_allowed_intersects(current, tsk)) | ||
71 | return true; | ||
72 | } | ||
73 | } while_each_thread(start, tsk); | ||
74 | |||
75 | return false; | ||
76 | } | ||
77 | #else | ||
78 | static bool has_intersects_mems_allowed(struct task_struct *tsk, | ||
79 | const nodemask_t *mask) | ||
80 | { | ||
81 | return true; | ||
82 | } | ||
83 | #endif /* CONFIG_NUMA */ | ||
37 | 84 | ||
38 | /* | 85 | /* |
39 | * Is all threads of the target process nodes overlap ours? | 86 | * If this is a system OOM (not a memcg OOM) and the task selected to be |
87 | * killed is not already running at high (RT) priorities, speed up the | ||
88 | * recovery by boosting the dying task to the lowest FIFO priority. | ||
89 | * That helps with the recovery and avoids interfering with RT tasks. | ||
40 | */ | 90 | */ |
41 | static int has_intersects_mems_allowed(struct task_struct *tsk) | 91 | static void boost_dying_task_prio(struct task_struct *p, |
92 | struct mem_cgroup *mem) | ||
42 | { | 93 | { |
43 | struct task_struct *t; | 94 | struct sched_param param = { .sched_priority = 1 }; |
95 | |||
96 | if (mem) | ||
97 | return; | ||
98 | |||
99 | if (!rt_task(p)) | ||
100 | sched_setscheduler_nocheck(p, SCHED_FIFO, ¶m); | ||
101 | } | ||
102 | |||
103 | /* | ||
104 | * The process p may have detached its own ->mm while exiting or through | ||
105 | * use_mm(), but one or more of its subthreads may still have a valid | ||
106 | * pointer. Return p, or any of its subthreads with a valid ->mm, with | ||
107 | * task_lock() held. | ||
108 | */ | ||
109 | struct task_struct *find_lock_task_mm(struct task_struct *p) | ||
110 | { | ||
111 | struct task_struct *t = p; | ||
44 | 112 | ||
45 | t = tsk; | ||
46 | do { | 113 | do { |
47 | if (cpuset_mems_allowed_intersects(current, t)) | 114 | task_lock(t); |
48 | return 1; | 115 | if (likely(t->mm)) |
49 | t = next_thread(t); | 116 | return t; |
50 | } while (t != tsk); | 117 | task_unlock(t); |
118 | } while_each_thread(p, t); | ||
51 | 119 | ||
52 | return 0; | 120 | return NULL; |
121 | } | ||
122 | |||
123 | /* return true if the task is not adequate as candidate victim task. */ | ||
124 | static bool oom_unkillable_task(struct task_struct *p, struct mem_cgroup *mem, | ||
125 | const nodemask_t *nodemask) | ||
126 | { | ||
127 | if (is_global_init(p)) | ||
128 | return true; | ||
129 | if (p->flags & PF_KTHREAD) | ||
130 | return true; | ||
131 | |||
132 | /* When mem_cgroup_out_of_memory() and p is not member of the group */ | ||
133 | if (mem && !task_in_mem_cgroup(p, mem)) | ||
134 | return true; | ||
135 | |||
136 | /* p may not have freeable memory in nodemask */ | ||
137 | if (!has_intersects_mems_allowed(p, nodemask)) | ||
138 | return true; | ||
139 | |||
140 | return false; | ||
53 | } | 141 | } |
54 | 142 | ||
55 | /** | 143 | /** |
56 | * badness - calculate a numeric value for how bad this task has been | 144 | * oom_badness - heuristic function to determine which candidate task to kill |
57 | * @p: task struct of which task we should calculate | 145 | * @p: task struct of which task we should calculate |
58 | * @uptime: current uptime in seconds | 146 | * @totalpages: total present RAM allowed for page allocation |
59 | * | ||
60 | * The formula used is relatively simple and documented inline in the | ||
61 | * function. The main rationale is that we want to select a good task | ||
62 | * to kill when we run out of memory. | ||
63 | * | 147 | * |
64 | * Good in this context means that: | 148 | * The heuristic for determining which task to kill is made to be as simple and |
65 | * 1) we lose the minimum amount of work done | 149 | * predictable as possible. The goal is to return the highest value for the |
66 | * 2) we recover a large amount of memory | 150 | * task consuming the most memory to avoid subsequent oom failures. |
67 | * 3) we don't kill anything innocent of eating tons of memory | ||
68 | * 4) we want to kill the minimum amount of processes (one) | ||
69 | * 5) we try to kill the process the user expects us to kill, this | ||
70 | * algorithm has been meticulously tuned to meet the principle | ||
71 | * of least surprise ... (be careful when you change it) | ||
72 | */ | 151 | */ |
73 | 152 | unsigned int oom_badness(struct task_struct *p, struct mem_cgroup *mem, | |
74 | unsigned long badness(struct task_struct *p, unsigned long uptime) | 153 | const nodemask_t *nodemask, unsigned long totalpages) |
75 | { | 154 | { |
76 | unsigned long points, cpu_time, run_time; | 155 | int points; |
77 | struct mm_struct *mm; | ||
78 | struct task_struct *child; | ||
79 | int oom_adj = p->signal->oom_adj; | ||
80 | struct task_cputime task_time; | ||
81 | unsigned long utime; | ||
82 | unsigned long stime; | ||
83 | 156 | ||
84 | if (oom_adj == OOM_DISABLE) | 157 | if (oom_unkillable_task(p, mem, nodemask)) |
85 | return 0; | 158 | return 0; |
86 | 159 | ||
87 | task_lock(p); | 160 | p = find_lock_task_mm(p); |
88 | mm = p->mm; | 161 | if (!p) |
89 | if (!mm) { | ||
90 | task_unlock(p); | ||
91 | return 0; | 162 | return 0; |
92 | } | ||
93 | |||
94 | /* | ||
95 | * The memory size of the process is the basis for the badness. | ||
96 | */ | ||
97 | points = mm->total_vm; | ||
98 | 163 | ||
99 | /* | 164 | /* |
100 | * After this unlock we can no longer dereference local variable `mm' | 165 | * Shortcut check for OOM_SCORE_ADJ_MIN so the entire heuristic doesn't |
166 | * need to be executed for something that cannot be killed. | ||
101 | */ | 167 | */ |
102 | task_unlock(p); | 168 | if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) { |
103 | 169 | task_unlock(p); | |
104 | /* | 170 | return 0; |
105 | * swapoff can easily use up all memory, so kill those first. | ||
106 | */ | ||
107 | if (p->flags & PF_OOM_ORIGIN) | ||
108 | return ULONG_MAX; | ||
109 | |||
110 | /* | ||
111 | * Processes which fork a lot of child processes are likely | ||
112 | * a good choice. We add half the vmsize of the children if they | ||
113 | * have an own mm. This prevents forking servers to flood the | ||
114 | * machine with an endless amount of children. In case a single | ||
115 | * child is eating the vast majority of memory, adding only half | ||
116 | * to the parents will make the child our kill candidate of choice. | ||
117 | */ | ||
118 | list_for_each_entry(child, &p->children, sibling) { | ||
119 | task_lock(child); | ||
120 | if (child->mm != mm && child->mm) | ||
121 | points += child->mm->total_vm/2 + 1; | ||
122 | task_unlock(child); | ||
123 | } | 171 | } |
124 | 172 | ||
125 | /* | 173 | /* |
126 | * CPU time is in tens of seconds and run time is in thousands | 174 | * When the PF_OOM_ORIGIN bit is set, it indicates the task should have |
127 | * of seconds. There is no particular reason for this other than | 175 | * priority for oom killing. |
128 | * that it turned out to work very well in practice. | ||
129 | */ | ||
130 | thread_group_cputime(p, &task_time); | ||
131 | utime = cputime_to_jiffies(task_time.utime); | ||
132 | stime = cputime_to_jiffies(task_time.stime); | ||
133 | cpu_time = (utime + stime) >> (SHIFT_HZ + 3); | ||
134 | |||
135 | |||
136 | if (uptime >= p->start_time.tv_sec) | ||
137 | run_time = (uptime - p->start_time.tv_sec) >> 10; | ||
138 | else | ||
139 | run_time = 0; | ||
140 | |||
141 | if (cpu_time) | ||
142 | points /= int_sqrt(cpu_time); | ||
143 | if (run_time) | ||
144 | points /= int_sqrt(int_sqrt(run_time)); | ||
145 | |||
146 | /* | ||
147 | * Niced processes are most likely less important, so double | ||
148 | * their badness points. | ||
149 | */ | 176 | */ |
150 | if (task_nice(p) > 0) | 177 | if (p->flags & PF_OOM_ORIGIN) { |
151 | points *= 2; | 178 | task_unlock(p); |
179 | return 1000; | ||
180 | } | ||
152 | 181 | ||
153 | /* | 182 | /* |
154 | * Superuser processes are usually more important, so we make it | 183 | * The memory controller may have a limit of 0 bytes, so avoid a divide |
155 | * less likely that we kill those. | 184 | * by zero, if necessary. |
156 | */ | 185 | */ |
157 | if (has_capability_noaudit(p, CAP_SYS_ADMIN) || | 186 | if (!totalpages) |
158 | has_capability_noaudit(p, CAP_SYS_RESOURCE)) | 187 | totalpages = 1; |
159 | points /= 4; | ||
160 | 188 | ||
161 | /* | 189 | /* |
162 | * We don't want to kill a process with direct hardware access. | 190 | * The baseline for the badness score is the proportion of RAM that each |
163 | * Not only could that mess up the hardware, but usually users | 191 | * task's rss and swap space use. |
164 | * tend to only have this flag set on applications they think | ||
165 | * of as important. | ||
166 | */ | 192 | */ |
167 | if (has_capability_noaudit(p, CAP_SYS_RAWIO)) | 193 | points = (get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS)) * 1000 / |
168 | points /= 4; | 194 | totalpages; |
195 | task_unlock(p); | ||
169 | 196 | ||
170 | /* | 197 | /* |
171 | * If p's nodes don't overlap ours, it may still help to kill p | 198 | * Root processes get 3% bonus, just like the __vm_enough_memory() |
172 | * because p may have allocated or otherwise mapped memory on | 199 | * implementation used by LSMs. |
173 | * this node before. However it will be less likely. | ||
174 | */ | 200 | */ |
175 | if (!has_intersects_mems_allowed(p)) | 201 | if (has_capability_noaudit(p, CAP_SYS_ADMIN)) |
176 | points /= 8; | 202 | points -= 30; |
177 | 203 | ||
178 | /* | 204 | /* |
179 | * Adjust the score by oom_adj. | 205 | * /proc/pid/oom_score_adj ranges from -1000 to +1000 such that it may |
206 | * either completely disable oom killing or always prefer a certain | ||
207 | * task. | ||
180 | */ | 208 | */ |
181 | if (oom_adj) { | 209 | points += p->signal->oom_score_adj; |
182 | if (oom_adj > 0) { | ||
183 | if (!points) | ||
184 | points = 1; | ||
185 | points <<= oom_adj; | ||
186 | } else | ||
187 | points >>= -(oom_adj); | ||
188 | } | ||
189 | 210 | ||
190 | #ifdef DEBUG | 211 | if (points < 0) |
191 | printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n", | 212 | return 0; |
192 | p->pid, p->comm, points); | 213 | return (points < 1000) ? points : 1000; |
193 | #endif | ||
194 | return points; | ||
195 | } | 214 | } |
196 | 215 | ||
197 | /* | 216 | /* |
@@ -199,12 +218,20 @@ unsigned long badness(struct task_struct *p, unsigned long uptime) | |||
199 | */ | 218 | */ |
200 | #ifdef CONFIG_NUMA | 219 | #ifdef CONFIG_NUMA |
201 | static enum oom_constraint constrained_alloc(struct zonelist *zonelist, | 220 | static enum oom_constraint constrained_alloc(struct zonelist *zonelist, |
202 | gfp_t gfp_mask, nodemask_t *nodemask) | 221 | gfp_t gfp_mask, nodemask_t *nodemask, |
222 | unsigned long *totalpages) | ||
203 | { | 223 | { |
204 | struct zone *zone; | 224 | struct zone *zone; |
205 | struct zoneref *z; | 225 | struct zoneref *z; |
206 | enum zone_type high_zoneidx = gfp_zone(gfp_mask); | 226 | enum zone_type high_zoneidx = gfp_zone(gfp_mask); |
227 | bool cpuset_limited = false; | ||
228 | int nid; | ||
229 | |||
230 | /* Default to all available memory */ | ||
231 | *totalpages = totalram_pages + total_swap_pages; | ||
207 | 232 | ||
233 | if (!zonelist) | ||
234 | return CONSTRAINT_NONE; | ||
208 | /* | 235 | /* |
209 | * Reach here only when __GFP_NOFAIL is used. So, we should avoid | 236 | * Reach here only when __GFP_NOFAIL is used. So, we should avoid |
210 | * to kill current.We have to random task kill in this case. | 237 | * to kill current.We have to random task kill in this case. |
@@ -214,26 +241,37 @@ static enum oom_constraint constrained_alloc(struct zonelist *zonelist, | |||
214 | return CONSTRAINT_NONE; | 241 | return CONSTRAINT_NONE; |
215 | 242 | ||
216 | /* | 243 | /* |
217 | * The nodemask here is a nodemask passed to alloc_pages(). Now, | 244 | * This is not a __GFP_THISNODE allocation, so a truncated nodemask in |
218 | * cpuset doesn't use this nodemask for its hardwall/softwall/hierarchy | 245 | * the page allocator means a mempolicy is in effect. Cpuset policy |
219 | * feature. mempolicy is an only user of nodemask here. | 246 | * is enforced in get_page_from_freelist(). |
220 | * check mempolicy's nodemask contains all N_HIGH_MEMORY | ||
221 | */ | 247 | */ |
222 | if (nodemask && !nodes_subset(node_states[N_HIGH_MEMORY], *nodemask)) | 248 | if (nodemask && !nodes_subset(node_states[N_HIGH_MEMORY], *nodemask)) { |
249 | *totalpages = total_swap_pages; | ||
250 | for_each_node_mask(nid, *nodemask) | ||
251 | *totalpages += node_spanned_pages(nid); | ||
223 | return CONSTRAINT_MEMORY_POLICY; | 252 | return CONSTRAINT_MEMORY_POLICY; |
253 | } | ||
224 | 254 | ||
225 | /* Check this allocation failure is caused by cpuset's wall function */ | 255 | /* Check this allocation failure is caused by cpuset's wall function */ |
226 | for_each_zone_zonelist_nodemask(zone, z, zonelist, | 256 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
227 | high_zoneidx, nodemask) | 257 | high_zoneidx, nodemask) |
228 | if (!cpuset_zone_allowed_softwall(zone, gfp_mask)) | 258 | if (!cpuset_zone_allowed_softwall(zone, gfp_mask)) |
229 | return CONSTRAINT_CPUSET; | 259 | cpuset_limited = true; |
230 | 260 | ||
261 | if (cpuset_limited) { | ||
262 | *totalpages = total_swap_pages; | ||
263 | for_each_node_mask(nid, cpuset_current_mems_allowed) | ||
264 | *totalpages += node_spanned_pages(nid); | ||
265 | return CONSTRAINT_CPUSET; | ||
266 | } | ||
231 | return CONSTRAINT_NONE; | 267 | return CONSTRAINT_NONE; |
232 | } | 268 | } |
233 | #else | 269 | #else |
234 | static enum oom_constraint constrained_alloc(struct zonelist *zonelist, | 270 | static enum oom_constraint constrained_alloc(struct zonelist *zonelist, |
235 | gfp_t gfp_mask, nodemask_t *nodemask) | 271 | gfp_t gfp_mask, nodemask_t *nodemask, |
272 | unsigned long *totalpages) | ||
236 | { | 273 | { |
274 | *totalpages = totalram_pages + total_swap_pages; | ||
237 | return CONSTRAINT_NONE; | 275 | return CONSTRAINT_NONE; |
238 | } | 276 | } |
239 | #endif | 277 | #endif |
@@ -244,28 +282,18 @@ static enum oom_constraint constrained_alloc(struct zonelist *zonelist, | |||
244 | * | 282 | * |
245 | * (not docbooked, we don't want this one cluttering up the manual) | 283 | * (not docbooked, we don't want this one cluttering up the manual) |
246 | */ | 284 | */ |
247 | static struct task_struct *select_bad_process(unsigned long *ppoints, | 285 | static struct task_struct *select_bad_process(unsigned int *ppoints, |
248 | struct mem_cgroup *mem) | 286 | unsigned long totalpages, struct mem_cgroup *mem, |
287 | const nodemask_t *nodemask) | ||
249 | { | 288 | { |
250 | struct task_struct *p; | 289 | struct task_struct *p; |
251 | struct task_struct *chosen = NULL; | 290 | struct task_struct *chosen = NULL; |
252 | struct timespec uptime; | ||
253 | *ppoints = 0; | 291 | *ppoints = 0; |
254 | 292 | ||
255 | do_posix_clock_monotonic_gettime(&uptime); | ||
256 | for_each_process(p) { | 293 | for_each_process(p) { |
257 | unsigned long points; | 294 | unsigned int points; |
258 | 295 | ||
259 | /* | 296 | if (oom_unkillable_task(p, mem, nodemask)) |
260 | * skip kernel threads and tasks which have already released | ||
261 | * their mm. | ||
262 | */ | ||
263 | if (!p->mm) | ||
264 | continue; | ||
265 | /* skip the init task */ | ||
266 | if (is_global_init(p)) | ||
267 | continue; | ||
268 | if (mem && !task_in_mem_cgroup(p, mem)) | ||
269 | continue; | 297 | continue; |
270 | 298 | ||
271 | /* | 299 | /* |
@@ -290,19 +318,16 @@ static struct task_struct *select_bad_process(unsigned long *ppoints, | |||
290 | * the process of exiting and releasing its resources. | 318 | * the process of exiting and releasing its resources. |
291 | * Otherwise we could get an easy OOM deadlock. | 319 | * Otherwise we could get an easy OOM deadlock. |
292 | */ | 320 | */ |
293 | if (p->flags & PF_EXITING) { | 321 | if (thread_group_empty(p) && (p->flags & PF_EXITING) && p->mm) { |
294 | if (p != current) | 322 | if (p != current) |
295 | return ERR_PTR(-1UL); | 323 | return ERR_PTR(-1UL); |
296 | 324 | ||
297 | chosen = p; | 325 | chosen = p; |
298 | *ppoints = ULONG_MAX; | 326 | *ppoints = 1000; |
299 | } | 327 | } |
300 | 328 | ||
301 | if (p->signal->oom_adj == OOM_DISABLE) | 329 | points = oom_badness(p, mem, nodemask, totalpages); |
302 | continue; | 330 | if (points > *ppoints) { |
303 | |||
304 | points = badness(p, uptime.tv_sec); | ||
305 | if (points > *ppoints || !chosen) { | ||
306 | chosen = p; | 331 | chosen = p; |
307 | *ppoints = points; | 332 | *ppoints = points; |
308 | } | 333 | } |
@@ -313,11 +338,11 @@ static struct task_struct *select_bad_process(unsigned long *ppoints, | |||
313 | 338 | ||
314 | /** | 339 | /** |
315 | * dump_tasks - dump current memory state of all system tasks | 340 | * dump_tasks - dump current memory state of all system tasks |
316 | * @mem: target memory controller | 341 | * @mem: current's memory controller, if constrained |
317 | * | 342 | * |
318 | * Dumps the current memory state of all system tasks, excluding kernel threads. | 343 | * Dumps the current memory state of all system tasks, excluding kernel threads. |
319 | * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj | 344 | * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj |
320 | * score, and name. | 345 | * value, oom_score_adj value, and name. |
321 | * | 346 | * |
322 | * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are | 347 | * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are |
323 | * shown. | 348 | * shown. |
@@ -326,44 +351,43 @@ static struct task_struct *select_bad_process(unsigned long *ppoints, | |||
326 | */ | 351 | */ |
327 | static void dump_tasks(const struct mem_cgroup *mem) | 352 | static void dump_tasks(const struct mem_cgroup *mem) |
328 | { | 353 | { |
329 | struct task_struct *g, *p; | 354 | struct task_struct *p; |
330 | 355 | struct task_struct *task; | |
331 | printk(KERN_INFO "[ pid ] uid tgid total_vm rss cpu oom_adj " | ||
332 | "name\n"); | ||
333 | do_each_thread(g, p) { | ||
334 | struct mm_struct *mm; | ||
335 | 356 | ||
336 | if (mem && !task_in_mem_cgroup(p, mem)) | 357 | pr_info("[ pid ] uid tgid total_vm rss cpu oom_adj oom_score_adj name\n"); |
358 | for_each_process(p) { | ||
359 | if (p->flags & PF_KTHREAD) | ||
337 | continue; | 360 | continue; |
338 | if (!thread_group_leader(p)) | 361 | if (mem && !task_in_mem_cgroup(p, mem)) |
339 | continue; | 362 | continue; |
340 | 363 | ||
341 | task_lock(p); | 364 | task = find_lock_task_mm(p); |
342 | mm = p->mm; | 365 | if (!task) { |
343 | if (!mm) { | ||
344 | /* | 366 | /* |
345 | * total_vm and rss sizes do not exist for tasks with no | 367 | * This is a kthread or all of p's threads have already |
346 | * mm so there's no need to report them; they can't be | 368 | * detached their mm's. There's no need to report |
347 | * oom killed anyway. | 369 | * them; they can't be oom killed anyway. |
348 | */ | 370 | */ |
349 | task_unlock(p); | ||
350 | continue; | 371 | continue; |
351 | } | 372 | } |
352 | printk(KERN_INFO "[%5d] %5d %5d %8lu %8lu %3d %3d %s\n", | 373 | |
353 | p->pid, __task_cred(p)->uid, p->tgid, mm->total_vm, | 374 | pr_info("[%5d] %5d %5d %8lu %8lu %3u %3d %5d %s\n", |
354 | get_mm_rss(mm), (int)task_cpu(p), p->signal->oom_adj, | 375 | task->pid, task_uid(task), task->tgid, |
355 | p->comm); | 376 | task->mm->total_vm, get_mm_rss(task->mm), |
356 | task_unlock(p); | 377 | task_cpu(task), task->signal->oom_adj, |
357 | } while_each_thread(g, p); | 378 | task->signal->oom_score_adj, task->comm); |
379 | task_unlock(task); | ||
380 | } | ||
358 | } | 381 | } |
359 | 382 | ||
360 | static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order, | 383 | static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order, |
361 | struct mem_cgroup *mem) | 384 | struct mem_cgroup *mem) |
362 | { | 385 | { |
363 | pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, " | ||
364 | "oom_adj=%d\n", | ||
365 | current->comm, gfp_mask, order, current->signal->oom_adj); | ||
366 | task_lock(current); | 386 | task_lock(current); |
387 | pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, " | ||
388 | "oom_adj=%d, oom_score_adj=%d\n", | ||
389 | current->comm, gfp_mask, order, current->signal->oom_adj, | ||
390 | current->signal->oom_score_adj); | ||
367 | cpuset_print_task_mems_allowed(current); | 391 | cpuset_print_task_mems_allowed(current); |
368 | task_unlock(current); | 392 | task_unlock(current); |
369 | dump_stack(); | 393 | dump_stack(); |
@@ -374,72 +398,42 @@ static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order, | |||
374 | } | 398 | } |
375 | 399 | ||
376 | #define K(x) ((x) << (PAGE_SHIFT-10)) | 400 | #define K(x) ((x) << (PAGE_SHIFT-10)) |
377 | 401 | static int oom_kill_task(struct task_struct *p, struct mem_cgroup *mem) | |
378 | /* | ||
379 | * Send SIGKILL to the selected process irrespective of CAP_SYS_RAW_IO | ||
380 | * flag though it's unlikely that we select a process with CAP_SYS_RAW_IO | ||
381 | * set. | ||
382 | */ | ||
383 | static void __oom_kill_task(struct task_struct *p, int verbose) | ||
384 | { | 402 | { |
385 | if (is_global_init(p)) { | 403 | p = find_lock_task_mm(p); |
386 | WARN_ON(1); | 404 | if (!p) |
387 | printk(KERN_WARNING "tried to kill init!\n"); | 405 | return 1; |
388 | return; | ||
389 | } | ||
390 | |||
391 | task_lock(p); | ||
392 | if (!p->mm) { | ||
393 | WARN_ON(1); | ||
394 | printk(KERN_WARNING "tried to kill an mm-less task %d (%s)!\n", | ||
395 | task_pid_nr(p), p->comm); | ||
396 | task_unlock(p); | ||
397 | return; | ||
398 | } | ||
399 | 406 | ||
400 | if (verbose) | 407 | pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB\n", |
401 | printk(KERN_ERR "Killed process %d (%s) " | 408 | task_pid_nr(p), p->comm, K(p->mm->total_vm), |
402 | "vsz:%lukB, anon-rss:%lukB, file-rss:%lukB\n", | 409 | K(get_mm_counter(p->mm, MM_ANONPAGES)), |
403 | task_pid_nr(p), p->comm, | 410 | K(get_mm_counter(p->mm, MM_FILEPAGES))); |
404 | K(p->mm->total_vm), | ||
405 | K(get_mm_counter(p->mm, MM_ANONPAGES)), | ||
406 | K(get_mm_counter(p->mm, MM_FILEPAGES))); | ||
407 | task_unlock(p); | 411 | task_unlock(p); |
408 | 412 | ||
413 | |||
414 | set_tsk_thread_flag(p, TIF_MEMDIE); | ||
415 | force_sig(SIGKILL, p); | ||
416 | |||
409 | /* | 417 | /* |
410 | * We give our sacrificial lamb high priority and access to | 418 | * We give our sacrificial lamb high priority and access to |
411 | * all the memory it needs. That way it should be able to | 419 | * all the memory it needs. That way it should be able to |
412 | * exit() and clear out its resources quickly... | 420 | * exit() and clear out its resources quickly... |
413 | */ | 421 | */ |
414 | p->rt.time_slice = HZ; | 422 | boost_dying_task_prio(p, mem); |
415 | set_tsk_thread_flag(p, TIF_MEMDIE); | ||
416 | |||
417 | force_sig(SIGKILL, p); | ||
418 | } | ||
419 | |||
420 | static int oom_kill_task(struct task_struct *p) | ||
421 | { | ||
422 | /* WARNING: mm may not be dereferenced since we did not obtain its | ||
423 | * value from get_task_mm(p). This is OK since all we need to do is | ||
424 | * compare mm to q->mm below. | ||
425 | * | ||
426 | * Furthermore, even if mm contains a non-NULL value, p->mm may | ||
427 | * change to NULL at any time since we do not hold task_lock(p). | ||
428 | * However, this is of no concern to us. | ||
429 | */ | ||
430 | if (!p->mm || p->signal->oom_adj == OOM_DISABLE) | ||
431 | return 1; | ||
432 | |||
433 | __oom_kill_task(p, 1); | ||
434 | 423 | ||
435 | return 0; | 424 | return 0; |
436 | } | 425 | } |
426 | #undef K | ||
437 | 427 | ||
438 | static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order, | 428 | static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order, |
439 | unsigned long points, struct mem_cgroup *mem, | 429 | unsigned int points, unsigned long totalpages, |
430 | struct mem_cgroup *mem, nodemask_t *nodemask, | ||
440 | const char *message) | 431 | const char *message) |
441 | { | 432 | { |
442 | struct task_struct *c; | 433 | struct task_struct *victim = p; |
434 | struct task_struct *child; | ||
435 | struct task_struct *t = p; | ||
436 | unsigned int victim_points = 0; | ||
443 | 437 | ||
444 | if (printk_ratelimit()) | 438 | if (printk_ratelimit()) |
445 | dump_header(p, gfp_mask, order, mem); | 439 | dump_header(p, gfp_mask, order, mem); |
@@ -449,40 +443,81 @@ static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order, | |||
449 | * its children or threads, just set TIF_MEMDIE so it can die quickly | 443 | * its children or threads, just set TIF_MEMDIE so it can die quickly |
450 | */ | 444 | */ |
451 | if (p->flags & PF_EXITING) { | 445 | if (p->flags & PF_EXITING) { |
452 | __oom_kill_task(p, 0); | 446 | set_tsk_thread_flag(p, TIF_MEMDIE); |
447 | boost_dying_task_prio(p, mem); | ||
453 | return 0; | 448 | return 0; |
454 | } | 449 | } |
455 | 450 | ||
456 | printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n", | 451 | task_lock(p); |
457 | message, task_pid_nr(p), p->comm, points); | 452 | pr_err("%s: Kill process %d (%s) score %d or sacrifice child\n", |
453 | message, task_pid_nr(p), p->comm, points); | ||
454 | task_unlock(p); | ||
458 | 455 | ||
459 | /* Try to kill a child first */ | 456 | /* |
460 | list_for_each_entry(c, &p->children, sibling) { | 457 | * If any of p's children has a different mm and is eligible for kill, |
461 | if (c->mm == p->mm) | 458 | * the one with the highest badness() score is sacrificed for its |
462 | continue; | 459 | * parent. This attempts to lose the minimal amount of work done while |
463 | if (mem && !task_in_mem_cgroup(c, mem)) | 460 | * still freeing memory. |
464 | continue; | 461 | */ |
465 | if (!oom_kill_task(c)) | 462 | do { |
466 | return 0; | 463 | list_for_each_entry(child, &t->children, sibling) { |
464 | unsigned int child_points; | ||
465 | |||
466 | /* | ||
467 | * oom_badness() returns 0 if the thread is unkillable | ||
468 | */ | ||
469 | child_points = oom_badness(child, mem, nodemask, | ||
470 | totalpages); | ||
471 | if (child_points > victim_points) { | ||
472 | victim = child; | ||
473 | victim_points = child_points; | ||
474 | } | ||
475 | } | ||
476 | } while_each_thread(p, t); | ||
477 | |||
478 | return oom_kill_task(victim, mem); | ||
479 | } | ||
480 | |||
481 | /* | ||
482 | * Determines whether the kernel must panic because of the panic_on_oom sysctl. | ||
483 | */ | ||
484 | static void check_panic_on_oom(enum oom_constraint constraint, gfp_t gfp_mask, | ||
485 | int order) | ||
486 | { | ||
487 | if (likely(!sysctl_panic_on_oom)) | ||
488 | return; | ||
489 | if (sysctl_panic_on_oom != 2) { | ||
490 | /* | ||
491 | * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel | ||
492 | * does not panic for cpuset, mempolicy, or memcg allocation | ||
493 | * failures. | ||
494 | */ | ||
495 | if (constraint != CONSTRAINT_NONE) | ||
496 | return; | ||
467 | } | 497 | } |
468 | return oom_kill_task(p); | 498 | read_lock(&tasklist_lock); |
499 | dump_header(NULL, gfp_mask, order, NULL); | ||
500 | read_unlock(&tasklist_lock); | ||
501 | panic("Out of memory: %s panic_on_oom is enabled\n", | ||
502 | sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide"); | ||
469 | } | 503 | } |
470 | 504 | ||
471 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR | 505 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR |
472 | void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask) | 506 | void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask) |
473 | { | 507 | { |
474 | unsigned long points = 0; | 508 | unsigned long limit; |
509 | unsigned int points = 0; | ||
475 | struct task_struct *p; | 510 | struct task_struct *p; |
476 | 511 | ||
477 | if (sysctl_panic_on_oom == 2) | 512 | check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, 0); |
478 | panic("out of memory(memcg). panic_on_oom is selected.\n"); | 513 | limit = mem_cgroup_get_limit(mem) >> PAGE_SHIFT; |
479 | read_lock(&tasklist_lock); | 514 | read_lock(&tasklist_lock); |
480 | retry: | 515 | retry: |
481 | p = select_bad_process(&points, mem); | 516 | p = select_bad_process(&points, limit, mem, NULL); |
482 | if (!p || PTR_ERR(p) == -1UL) | 517 | if (!p || PTR_ERR(p) == -1UL) |
483 | goto out; | 518 | goto out; |
484 | 519 | ||
485 | if (oom_kill_process(p, gfp_mask, 0, points, mem, | 520 | if (oom_kill_process(p, gfp_mask, 0, points, limit, mem, NULL, |
486 | "Memory cgroup out of memory")) | 521 | "Memory cgroup out of memory")) |
487 | goto retry; | 522 | goto retry; |
488 | out: | 523 | out: |
@@ -509,7 +544,7 @@ EXPORT_SYMBOL_GPL(unregister_oom_notifier); | |||
509 | * if a parallel OOM killing is already taking place that includes a zone in | 544 | * if a parallel OOM killing is already taking place that includes a zone in |
510 | * the zonelist. Otherwise, locks all zones in the zonelist and returns 1. | 545 | * the zonelist. Otherwise, locks all zones in the zonelist and returns 1. |
511 | */ | 546 | */ |
512 | int try_set_zone_oom(struct zonelist *zonelist, gfp_t gfp_mask) | 547 | int try_set_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask) |
513 | { | 548 | { |
514 | struct zoneref *z; | 549 | struct zoneref *z; |
515 | struct zone *zone; | 550 | struct zone *zone; |
@@ -526,7 +561,7 @@ int try_set_zone_oom(struct zonelist *zonelist, gfp_t gfp_mask) | |||
526 | for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { | 561 | for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { |
527 | /* | 562 | /* |
528 | * Lock each zone in the zonelist under zone_scan_lock so a | 563 | * Lock each zone in the zonelist under zone_scan_lock so a |
529 | * parallel invocation of try_set_zone_oom() doesn't succeed | 564 | * parallel invocation of try_set_zonelist_oom() doesn't succeed |
530 | * when it shouldn't. | 565 | * when it shouldn't. |
531 | */ | 566 | */ |
532 | zone_set_flag(zone, ZONE_OOM_LOCKED); | 567 | zone_set_flag(zone, ZONE_OOM_LOCKED); |
@@ -555,65 +590,40 @@ void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask) | |||
555 | } | 590 | } |
556 | 591 | ||
557 | /* | 592 | /* |
558 | * Must be called with tasklist_lock held for read. | 593 | * Try to acquire the oom killer lock for all system zones. Returns zero if a |
594 | * parallel oom killing is taking place, otherwise locks all zones and returns | ||
595 | * non-zero. | ||
559 | */ | 596 | */ |
560 | static void __out_of_memory(gfp_t gfp_mask, int order) | 597 | static int try_set_system_oom(void) |
561 | { | 598 | { |
562 | struct task_struct *p; | 599 | struct zone *zone; |
563 | unsigned long points; | 600 | int ret = 1; |
564 | |||
565 | if (sysctl_oom_kill_allocating_task) | ||
566 | if (!oom_kill_process(current, gfp_mask, order, 0, NULL, | ||
567 | "Out of memory (oom_kill_allocating_task)")) | ||
568 | return; | ||
569 | retry: | ||
570 | /* | ||
571 | * Rambo mode: Shoot down a process and hope it solves whatever | ||
572 | * issues we may have. | ||
573 | */ | ||
574 | p = select_bad_process(&points, NULL); | ||
575 | |||
576 | if (PTR_ERR(p) == -1UL) | ||
577 | return; | ||
578 | |||
579 | /* Found nothing?!?! Either we hang forever, or we panic. */ | ||
580 | if (!p) { | ||
581 | read_unlock(&tasklist_lock); | ||
582 | dump_header(NULL, gfp_mask, order, NULL); | ||
583 | panic("Out of memory and no killable processes...\n"); | ||
584 | } | ||
585 | 601 | ||
586 | if (oom_kill_process(p, gfp_mask, order, points, NULL, | 602 | spin_lock(&zone_scan_lock); |
587 | "Out of memory")) | 603 | for_each_populated_zone(zone) |
588 | goto retry; | 604 | if (zone_is_oom_locked(zone)) { |
605 | ret = 0; | ||
606 | goto out; | ||
607 | } | ||
608 | for_each_populated_zone(zone) | ||
609 | zone_set_flag(zone, ZONE_OOM_LOCKED); | ||
610 | out: | ||
611 | spin_unlock(&zone_scan_lock); | ||
612 | return ret; | ||
589 | } | 613 | } |
590 | 614 | ||
591 | /* | 615 | /* |
592 | * pagefault handler calls into here because it is out of memory but | 616 | * Clears ZONE_OOM_LOCKED for all system zones so that failed allocation |
593 | * doesn't know exactly how or why. | 617 | * attempts or page faults may now recall the oom killer, if necessary. |
594 | */ | 618 | */ |
595 | void pagefault_out_of_memory(void) | 619 | static void clear_system_oom(void) |
596 | { | 620 | { |
597 | unsigned long freed = 0; | 621 | struct zone *zone; |
598 | |||
599 | blocking_notifier_call_chain(&oom_notify_list, 0, &freed); | ||
600 | if (freed > 0) | ||
601 | /* Got some memory back in the last second. */ | ||
602 | return; | ||
603 | |||
604 | if (sysctl_panic_on_oom) | ||
605 | panic("out of memory from page fault. panic_on_oom is selected.\n"); | ||
606 | |||
607 | read_lock(&tasklist_lock); | ||
608 | __out_of_memory(0, 0); /* unknown gfp_mask and order */ | ||
609 | read_unlock(&tasklist_lock); | ||
610 | 622 | ||
611 | /* | 623 | spin_lock(&zone_scan_lock); |
612 | * Give "p" a good chance of killing itself before we | 624 | for_each_populated_zone(zone) |
613 | * retry to allocate memory. | 625 | zone_clear_flag(zone, ZONE_OOM_LOCKED); |
614 | */ | 626 | spin_unlock(&zone_scan_lock); |
615 | if (!test_thread_flag(TIF_MEMDIE)) | ||
616 | schedule_timeout_uninterruptible(1); | ||
617 | } | 627 | } |
618 | 628 | ||
619 | /** | 629 | /** |
@@ -621,6 +631,7 @@ void pagefault_out_of_memory(void) | |||
621 | * @zonelist: zonelist pointer | 631 | * @zonelist: zonelist pointer |
622 | * @gfp_mask: memory allocation flags | 632 | * @gfp_mask: memory allocation flags |
623 | * @order: amount of memory being requested as a power of 2 | 633 | * @order: amount of memory being requested as a power of 2 |
634 | * @nodemask: nodemask passed to page allocator | ||
624 | * | 635 | * |
625 | * If we run out of memory, we have the choice between either | 636 | * If we run out of memory, we have the choice between either |
626 | * killing a random task (bad), letting the system crash (worse) | 637 | * killing a random task (bad), letting the system crash (worse) |
@@ -630,49 +641,93 @@ void pagefault_out_of_memory(void) | |||
630 | void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, | 641 | void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, |
631 | int order, nodemask_t *nodemask) | 642 | int order, nodemask_t *nodemask) |
632 | { | 643 | { |
644 | struct task_struct *p; | ||
645 | unsigned long totalpages; | ||
633 | unsigned long freed = 0; | 646 | unsigned long freed = 0; |
634 | enum oom_constraint constraint; | 647 | unsigned int points; |
648 | enum oom_constraint constraint = CONSTRAINT_NONE; | ||
649 | int killed = 0; | ||
635 | 650 | ||
636 | blocking_notifier_call_chain(&oom_notify_list, 0, &freed); | 651 | blocking_notifier_call_chain(&oom_notify_list, 0, &freed); |
637 | if (freed > 0) | 652 | if (freed > 0) |
638 | /* Got some memory back in the last second. */ | 653 | /* Got some memory back in the last second. */ |
639 | return; | 654 | return; |
640 | 655 | ||
641 | if (sysctl_panic_on_oom == 2) { | 656 | /* |
642 | dump_header(NULL, gfp_mask, order, NULL); | 657 | * If current has a pending SIGKILL, then automatically select it. The |
643 | panic("out of memory. Compulsory panic_on_oom is selected.\n"); | 658 | * goal is to allow it to allocate so that it may quickly exit and free |
659 | * its memory. | ||
660 | */ | ||
661 | if (fatal_signal_pending(current)) { | ||
662 | set_thread_flag(TIF_MEMDIE); | ||
663 | boost_dying_task_prio(current, NULL); | ||
664 | return; | ||
644 | } | 665 | } |
645 | 666 | ||
646 | /* | 667 | /* |
647 | * Check if there were limitations on the allocation (only relevant for | 668 | * Check if there were limitations on the allocation (only relevant for |
648 | * NUMA) that may require different handling. | 669 | * NUMA) that may require different handling. |
649 | */ | 670 | */ |
650 | constraint = constrained_alloc(zonelist, gfp_mask, nodemask); | 671 | constraint = constrained_alloc(zonelist, gfp_mask, nodemask, |
672 | &totalpages); | ||
673 | check_panic_on_oom(constraint, gfp_mask, order); | ||
674 | |||
651 | read_lock(&tasklist_lock); | 675 | read_lock(&tasklist_lock); |
676 | if (sysctl_oom_kill_allocating_task && | ||
677 | !oom_unkillable_task(current, NULL, nodemask) && | ||
678 | (current->signal->oom_adj != OOM_DISABLE)) { | ||
679 | /* | ||
680 | * oom_kill_process() needs tasklist_lock held. If it returns | ||
681 | * non-zero, current could not be killed so we must fallback to | ||
682 | * the tasklist scan. | ||
683 | */ | ||
684 | if (!oom_kill_process(current, gfp_mask, order, 0, totalpages, | ||
685 | NULL, nodemask, | ||
686 | "Out of memory (oom_kill_allocating_task)")) | ||
687 | goto out; | ||
688 | } | ||
652 | 689 | ||
653 | switch (constraint) { | 690 | retry: |
654 | case CONSTRAINT_MEMORY_POLICY: | 691 | p = select_bad_process(&points, totalpages, NULL, |
655 | oom_kill_process(current, gfp_mask, order, 0, NULL, | 692 | constraint == CONSTRAINT_MEMORY_POLICY ? nodemask : |
656 | "No available memory (MPOL_BIND)"); | 693 | NULL); |
657 | break; | 694 | if (PTR_ERR(p) == -1UL) |
695 | goto out; | ||
658 | 696 | ||
659 | case CONSTRAINT_NONE: | 697 | /* Found nothing?!?! Either we hang forever, or we panic. */ |
660 | if (sysctl_panic_on_oom) { | 698 | if (!p) { |
661 | dump_header(NULL, gfp_mask, order, NULL); | 699 | dump_header(NULL, gfp_mask, order, NULL); |
662 | panic("out of memory. panic_on_oom is selected\n"); | 700 | read_unlock(&tasklist_lock); |
663 | } | 701 | panic("Out of memory and no killable processes...\n"); |
664 | /* Fall-through */ | ||
665 | case CONSTRAINT_CPUSET: | ||
666 | __out_of_memory(gfp_mask, order); | ||
667 | break; | ||
668 | } | 702 | } |
669 | 703 | ||
704 | if (oom_kill_process(p, gfp_mask, order, points, totalpages, NULL, | ||
705 | nodemask, "Out of memory")) | ||
706 | goto retry; | ||
707 | killed = 1; | ||
708 | out: | ||
670 | read_unlock(&tasklist_lock); | 709 | read_unlock(&tasklist_lock); |
671 | 710 | ||
672 | /* | 711 | /* |
673 | * Give "p" a good chance of killing itself before we | 712 | * Give "p" a good chance of killing itself before we |
674 | * retry to allocate memory unless "p" is current | 713 | * retry to allocate memory unless "p" is current |
675 | */ | 714 | */ |
715 | if (killed && !test_thread_flag(TIF_MEMDIE)) | ||
716 | schedule_timeout_uninterruptible(1); | ||
717 | } | ||
718 | |||
719 | /* | ||
720 | * The pagefault handler calls here because it is out of memory, so kill a | ||
721 | * memory-hogging task. If a populated zone has ZONE_OOM_LOCKED set, a parallel | ||
722 | * oom killing is already in progress so do nothing. If a task is found with | ||
723 | * TIF_MEMDIE set, it has been killed so do nothing and allow it to exit. | ||
724 | */ | ||
725 | void pagefault_out_of_memory(void) | ||
726 | { | ||
727 | if (try_set_system_oom()) { | ||
728 | out_of_memory(NULL, 0, 0, NULL); | ||
729 | clear_system_oom(); | ||
730 | } | ||
676 | if (!test_thread_flag(TIF_MEMDIE)) | 731 | if (!test_thread_flag(TIF_MEMDIE)) |
677 | schedule_timeout_uninterruptible(1); | 732 | schedule_timeout_uninterruptible(1); |
678 | } | 733 | } |
diff --git a/mm/page-writeback.c b/mm/page-writeback.c index 37498ef61548..e3bccac1f025 100644 --- a/mm/page-writeback.c +++ b/mm/page-writeback.c | |||
@@ -34,6 +34,7 @@ | |||
34 | #include <linux/syscalls.h> | 34 | #include <linux/syscalls.h> |
35 | #include <linux/buffer_head.h> | 35 | #include <linux/buffer_head.h> |
36 | #include <linux/pagevec.h> | 36 | #include <linux/pagevec.h> |
37 | #include <trace/events/writeback.h> | ||
37 | 38 | ||
38 | /* | 39 | /* |
39 | * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited | 40 | * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited |
@@ -252,32 +253,6 @@ static void bdi_writeout_fraction(struct backing_dev_info *bdi, | |||
252 | } | 253 | } |
253 | } | 254 | } |
254 | 255 | ||
255 | /* | ||
256 | * Clip the earned share of dirty pages to that which is actually available. | ||
257 | * This avoids exceeding the total dirty_limit when the floating averages | ||
258 | * fluctuate too quickly. | ||
259 | */ | ||
260 | static void clip_bdi_dirty_limit(struct backing_dev_info *bdi, | ||
261 | unsigned long dirty, unsigned long *pbdi_dirty) | ||
262 | { | ||
263 | unsigned long avail_dirty; | ||
264 | |||
265 | avail_dirty = global_page_state(NR_FILE_DIRTY) + | ||
266 | global_page_state(NR_WRITEBACK) + | ||
267 | global_page_state(NR_UNSTABLE_NFS) + | ||
268 | global_page_state(NR_WRITEBACK_TEMP); | ||
269 | |||
270 | if (avail_dirty < dirty) | ||
271 | avail_dirty = dirty - avail_dirty; | ||
272 | else | ||
273 | avail_dirty = 0; | ||
274 | |||
275 | avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) + | ||
276 | bdi_stat(bdi, BDI_WRITEBACK); | ||
277 | |||
278 | *pbdi_dirty = min(*pbdi_dirty, avail_dirty); | ||
279 | } | ||
280 | |||
281 | static inline void task_dirties_fraction(struct task_struct *tsk, | 256 | static inline void task_dirties_fraction(struct task_struct *tsk, |
282 | long *numerator, long *denominator) | 257 | long *numerator, long *denominator) |
283 | { | 258 | { |
@@ -286,16 +261,24 @@ static inline void task_dirties_fraction(struct task_struct *tsk, | |||
286 | } | 261 | } |
287 | 262 | ||
288 | /* | 263 | /* |
289 | * scale the dirty limit | 264 | * task_dirty_limit - scale down dirty throttling threshold for one task |
290 | * | 265 | * |
291 | * task specific dirty limit: | 266 | * task specific dirty limit: |
292 | * | 267 | * |
293 | * dirty -= (dirty/8) * p_{t} | 268 | * dirty -= (dirty/8) * p_{t} |
269 | * | ||
270 | * To protect light/slow dirtying tasks from heavier/fast ones, we start | ||
271 | * throttling individual tasks before reaching the bdi dirty limit. | ||
272 | * Relatively low thresholds will be allocated to heavy dirtiers. So when | ||
273 | * dirty pages grow large, heavy dirtiers will be throttled first, which will | ||
274 | * effectively curb the growth of dirty pages. Light dirtiers with high enough | ||
275 | * dirty threshold may never get throttled. | ||
294 | */ | 276 | */ |
295 | static void task_dirty_limit(struct task_struct *tsk, unsigned long *pdirty) | 277 | static unsigned long task_dirty_limit(struct task_struct *tsk, |
278 | unsigned long bdi_dirty) | ||
296 | { | 279 | { |
297 | long numerator, denominator; | 280 | long numerator, denominator; |
298 | unsigned long dirty = *pdirty; | 281 | unsigned long dirty = bdi_dirty; |
299 | u64 inv = dirty >> 3; | 282 | u64 inv = dirty >> 3; |
300 | 283 | ||
301 | task_dirties_fraction(tsk, &numerator, &denominator); | 284 | task_dirties_fraction(tsk, &numerator, &denominator); |
@@ -303,10 +286,8 @@ static void task_dirty_limit(struct task_struct *tsk, unsigned long *pdirty) | |||
303 | do_div(inv, denominator); | 286 | do_div(inv, denominator); |
304 | 287 | ||
305 | dirty -= inv; | 288 | dirty -= inv; |
306 | if (dirty < *pdirty/2) | ||
307 | dirty = *pdirty/2; | ||
308 | 289 | ||
309 | *pdirty = dirty; | 290 | return max(dirty, bdi_dirty/2); |
310 | } | 291 | } |
311 | 292 | ||
312 | /* | 293 | /* |
@@ -416,9 +397,16 @@ unsigned long determine_dirtyable_memory(void) | |||
416 | return x + 1; /* Ensure that we never return 0 */ | 397 | return x + 1; /* Ensure that we never return 0 */ |
417 | } | 398 | } |
418 | 399 | ||
419 | void | 400 | /* |
420 | get_dirty_limits(unsigned long *pbackground, unsigned long *pdirty, | 401 | * global_dirty_limits - background-writeback and dirty-throttling thresholds |
421 | unsigned long *pbdi_dirty, struct backing_dev_info *bdi) | 402 | * |
403 | * Calculate the dirty thresholds based on sysctl parameters | ||
404 | * - vm.dirty_background_ratio or vm.dirty_background_bytes | ||
405 | * - vm.dirty_ratio or vm.dirty_bytes | ||
406 | * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and | ||
407 | * runtime tasks. | ||
408 | */ | ||
409 | void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) | ||
422 | { | 410 | { |
423 | unsigned long background; | 411 | unsigned long background; |
424 | unsigned long dirty; | 412 | unsigned long dirty; |
@@ -450,27 +438,37 @@ get_dirty_limits(unsigned long *pbackground, unsigned long *pdirty, | |||
450 | } | 438 | } |
451 | *pbackground = background; | 439 | *pbackground = background; |
452 | *pdirty = dirty; | 440 | *pdirty = dirty; |
441 | } | ||
453 | 442 | ||
454 | if (bdi) { | 443 | /* |
455 | u64 bdi_dirty; | 444 | * bdi_dirty_limit - @bdi's share of dirty throttling threshold |
456 | long numerator, denominator; | 445 | * |
446 | * Allocate high/low dirty limits to fast/slow devices, in order to prevent | ||
447 | * - starving fast devices | ||
448 | * - piling up dirty pages (that will take long time to sync) on slow devices | ||
449 | * | ||
450 | * The bdi's share of dirty limit will be adapting to its throughput and | ||
451 | * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. | ||
452 | */ | ||
453 | unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty) | ||
454 | { | ||
455 | u64 bdi_dirty; | ||
456 | long numerator, denominator; | ||
457 | 457 | ||
458 | /* | 458 | /* |
459 | * Calculate this BDI's share of the dirty ratio. | 459 | * Calculate this BDI's share of the dirty ratio. |
460 | */ | 460 | */ |
461 | bdi_writeout_fraction(bdi, &numerator, &denominator); | 461 | bdi_writeout_fraction(bdi, &numerator, &denominator); |
462 | 462 | ||
463 | bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100; | 463 | bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100; |
464 | bdi_dirty *= numerator; | 464 | bdi_dirty *= numerator; |
465 | do_div(bdi_dirty, denominator); | 465 | do_div(bdi_dirty, denominator); |
466 | bdi_dirty += (dirty * bdi->min_ratio) / 100; | 466 | |
467 | if (bdi_dirty > (dirty * bdi->max_ratio) / 100) | 467 | bdi_dirty += (dirty * bdi->min_ratio) / 100; |
468 | bdi_dirty = dirty * bdi->max_ratio / 100; | 468 | if (bdi_dirty > (dirty * bdi->max_ratio) / 100) |
469 | 469 | bdi_dirty = dirty * bdi->max_ratio / 100; | |
470 | *pbdi_dirty = bdi_dirty; | 470 | |
471 | clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty); | 471 | return bdi_dirty; |
472 | task_dirty_limit(current, pbdi_dirty); | ||
473 | } | ||
474 | } | 472 | } |
475 | 473 | ||
476 | /* | 474 | /* |
@@ -490,7 +488,7 @@ static void balance_dirty_pages(struct address_space *mapping, | |||
490 | unsigned long bdi_thresh; | 488 | unsigned long bdi_thresh; |
491 | unsigned long pages_written = 0; | 489 | unsigned long pages_written = 0; |
492 | unsigned long pause = 1; | 490 | unsigned long pause = 1; |
493 | 491 | bool dirty_exceeded = false; | |
494 | struct backing_dev_info *bdi = mapping->backing_dev_info; | 492 | struct backing_dev_info *bdi = mapping->backing_dev_info; |
495 | 493 | ||
496 | for (;;) { | 494 | for (;;) { |
@@ -501,18 +499,11 @@ static void balance_dirty_pages(struct address_space *mapping, | |||
501 | .range_cyclic = 1, | 499 | .range_cyclic = 1, |
502 | }; | 500 | }; |
503 | 501 | ||
504 | get_dirty_limits(&background_thresh, &dirty_thresh, | ||
505 | &bdi_thresh, bdi); | ||
506 | |||
507 | nr_reclaimable = global_page_state(NR_FILE_DIRTY) + | 502 | nr_reclaimable = global_page_state(NR_FILE_DIRTY) + |
508 | global_page_state(NR_UNSTABLE_NFS); | 503 | global_page_state(NR_UNSTABLE_NFS); |
509 | nr_writeback = global_page_state(NR_WRITEBACK); | 504 | nr_writeback = global_page_state(NR_WRITEBACK); |
510 | 505 | ||
511 | bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); | 506 | global_dirty_limits(&background_thresh, &dirty_thresh); |
512 | bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK); | ||
513 | |||
514 | if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh) | ||
515 | break; | ||
516 | 507 | ||
517 | /* | 508 | /* |
518 | * Throttle it only when the background writeback cannot | 509 | * Throttle it only when the background writeback cannot |
@@ -523,24 +514,8 @@ static void balance_dirty_pages(struct address_space *mapping, | |||
523 | (background_thresh + dirty_thresh) / 2) | 514 | (background_thresh + dirty_thresh) / 2) |
524 | break; | 515 | break; |
525 | 516 | ||
526 | if (!bdi->dirty_exceeded) | 517 | bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh); |
527 | bdi->dirty_exceeded = 1; | 518 | bdi_thresh = task_dirty_limit(current, bdi_thresh); |
528 | |||
529 | /* Note: nr_reclaimable denotes nr_dirty + nr_unstable. | ||
530 | * Unstable writes are a feature of certain networked | ||
531 | * filesystems (i.e. NFS) in which data may have been | ||
532 | * written to the server's write cache, but has not yet | ||
533 | * been flushed to permanent storage. | ||
534 | * Only move pages to writeback if this bdi is over its | ||
535 | * threshold otherwise wait until the disk writes catch | ||
536 | * up. | ||
537 | */ | ||
538 | if (bdi_nr_reclaimable > bdi_thresh) { | ||
539 | writeback_inodes_wb(&bdi->wb, &wbc); | ||
540 | pages_written += write_chunk - wbc.nr_to_write; | ||
541 | get_dirty_limits(&background_thresh, &dirty_thresh, | ||
542 | &bdi_thresh, bdi); | ||
543 | } | ||
544 | 519 | ||
545 | /* | 520 | /* |
546 | * In order to avoid the stacked BDI deadlock we need | 521 | * In order to avoid the stacked BDI deadlock we need |
@@ -555,16 +530,45 @@ static void balance_dirty_pages(struct address_space *mapping, | |||
555 | if (bdi_thresh < 2*bdi_stat_error(bdi)) { | 530 | if (bdi_thresh < 2*bdi_stat_error(bdi)) { |
556 | bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE); | 531 | bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE); |
557 | bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK); | 532 | bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK); |
558 | } else if (bdi_nr_reclaimable) { | 533 | } else { |
559 | bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); | 534 | bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); |
560 | bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK); | 535 | bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK); |
561 | } | 536 | } |
562 | 537 | ||
563 | if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh) | 538 | /* |
539 | * The bdi thresh is somehow "soft" limit derived from the | ||
540 | * global "hard" limit. The former helps to prevent heavy IO | ||
541 | * bdi or process from holding back light ones; The latter is | ||
542 | * the last resort safeguard. | ||
543 | */ | ||
544 | dirty_exceeded = | ||
545 | (bdi_nr_reclaimable + bdi_nr_writeback >= bdi_thresh) | ||
546 | || (nr_reclaimable + nr_writeback >= dirty_thresh); | ||
547 | |||
548 | if (!dirty_exceeded) | ||
564 | break; | 549 | break; |
565 | if (pages_written >= write_chunk) | ||
566 | break; /* We've done our duty */ | ||
567 | 550 | ||
551 | if (!bdi->dirty_exceeded) | ||
552 | bdi->dirty_exceeded = 1; | ||
553 | |||
554 | /* Note: nr_reclaimable denotes nr_dirty + nr_unstable. | ||
555 | * Unstable writes are a feature of certain networked | ||
556 | * filesystems (i.e. NFS) in which data may have been | ||
557 | * written to the server's write cache, but has not yet | ||
558 | * been flushed to permanent storage. | ||
559 | * Only move pages to writeback if this bdi is over its | ||
560 | * threshold otherwise wait until the disk writes catch | ||
561 | * up. | ||
562 | */ | ||
563 | trace_wbc_balance_dirty_start(&wbc, bdi); | ||
564 | if (bdi_nr_reclaimable > bdi_thresh) { | ||
565 | writeback_inodes_wb(&bdi->wb, &wbc); | ||
566 | pages_written += write_chunk - wbc.nr_to_write; | ||
567 | trace_wbc_balance_dirty_written(&wbc, bdi); | ||
568 | if (pages_written >= write_chunk) | ||
569 | break; /* We've done our duty */ | ||
570 | } | ||
571 | trace_wbc_balance_dirty_wait(&wbc, bdi); | ||
568 | __set_current_state(TASK_INTERRUPTIBLE); | 572 | __set_current_state(TASK_INTERRUPTIBLE); |
569 | io_schedule_timeout(pause); | 573 | io_schedule_timeout(pause); |
570 | 574 | ||
@@ -577,8 +581,7 @@ static void balance_dirty_pages(struct address_space *mapping, | |||
577 | pause = HZ / 10; | 581 | pause = HZ / 10; |
578 | } | 582 | } |
579 | 583 | ||
580 | if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh && | 584 | if (!dirty_exceeded && bdi->dirty_exceeded) |
581 | bdi->dirty_exceeded) | ||
582 | bdi->dirty_exceeded = 0; | 585 | bdi->dirty_exceeded = 0; |
583 | 586 | ||
584 | if (writeback_in_progress(bdi)) | 587 | if (writeback_in_progress(bdi)) |
@@ -593,9 +596,7 @@ static void balance_dirty_pages(struct address_space *mapping, | |||
593 | * background_thresh, to keep the amount of dirty memory low. | 596 | * background_thresh, to keep the amount of dirty memory low. |
594 | */ | 597 | */ |
595 | if ((laptop_mode && pages_written) || | 598 | if ((laptop_mode && pages_written) || |
596 | (!laptop_mode && ((global_page_state(NR_FILE_DIRTY) | 599 | (!laptop_mode && (nr_reclaimable > background_thresh))) |
597 | + global_page_state(NR_UNSTABLE_NFS)) | ||
598 | > background_thresh))) | ||
599 | bdi_start_background_writeback(bdi); | 600 | bdi_start_background_writeback(bdi); |
600 | } | 601 | } |
601 | 602 | ||
@@ -659,7 +660,7 @@ void throttle_vm_writeout(gfp_t gfp_mask) | |||
659 | unsigned long dirty_thresh; | 660 | unsigned long dirty_thresh; |
660 | 661 | ||
661 | for ( ; ; ) { | 662 | for ( ; ; ) { |
662 | get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL); | 663 | global_dirty_limits(&background_thresh, &dirty_thresh); |
663 | 664 | ||
664 | /* | 665 | /* |
665 | * Boost the allowable dirty threshold a bit for page | 666 | * Boost the allowable dirty threshold a bit for page |
@@ -805,6 +806,42 @@ void __init page_writeback_init(void) | |||
805 | } | 806 | } |
806 | 807 | ||
807 | /** | 808 | /** |
809 | * tag_pages_for_writeback - tag pages to be written by write_cache_pages | ||
810 | * @mapping: address space structure to write | ||
811 | * @start: starting page index | ||
812 | * @end: ending page index (inclusive) | ||
813 | * | ||
814 | * This function scans the page range from @start to @end (inclusive) and tags | ||
815 | * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is | ||
816 | * that write_cache_pages (or whoever calls this function) will then use | ||
817 | * TOWRITE tag to identify pages eligible for writeback. This mechanism is | ||
818 | * used to avoid livelocking of writeback by a process steadily creating new | ||
819 | * dirty pages in the file (thus it is important for this function to be quick | ||
820 | * so that it can tag pages faster than a dirtying process can create them). | ||
821 | */ | ||
822 | /* | ||
823 | * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency. | ||
824 | */ | ||
825 | void tag_pages_for_writeback(struct address_space *mapping, | ||
826 | pgoff_t start, pgoff_t end) | ||
827 | { | ||
828 | #define WRITEBACK_TAG_BATCH 4096 | ||
829 | unsigned long tagged; | ||
830 | |||
831 | do { | ||
832 | spin_lock_irq(&mapping->tree_lock); | ||
833 | tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree, | ||
834 | &start, end, WRITEBACK_TAG_BATCH, | ||
835 | PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE); | ||
836 | spin_unlock_irq(&mapping->tree_lock); | ||
837 | WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH); | ||
838 | cond_resched(); | ||
839 | /* We check 'start' to handle wrapping when end == ~0UL */ | ||
840 | } while (tagged >= WRITEBACK_TAG_BATCH && start); | ||
841 | } | ||
842 | EXPORT_SYMBOL(tag_pages_for_writeback); | ||
843 | |||
844 | /** | ||
808 | * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. | 845 | * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. |
809 | * @mapping: address space structure to write | 846 | * @mapping: address space structure to write |
810 | * @wbc: subtract the number of written pages from *@wbc->nr_to_write | 847 | * @wbc: subtract the number of written pages from *@wbc->nr_to_write |
@@ -818,6 +855,13 @@ void __init page_writeback_init(void) | |||
818 | * the call was made get new I/O started against them. If wbc->sync_mode is | 855 | * the call was made get new I/O started against them. If wbc->sync_mode is |
819 | * WB_SYNC_ALL then we were called for data integrity and we must wait for | 856 | * WB_SYNC_ALL then we were called for data integrity and we must wait for |
820 | * existing IO to complete. | 857 | * existing IO to complete. |
858 | * | ||
859 | * To avoid livelocks (when other process dirties new pages), we first tag | ||
860 | * pages which should be written back with TOWRITE tag and only then start | ||
861 | * writing them. For data-integrity sync we have to be careful so that we do | ||
862 | * not miss some pages (e.g., because some other process has cleared TOWRITE | ||
863 | * tag we set). The rule we follow is that TOWRITE tag can be cleared only | ||
864 | * by the process clearing the DIRTY tag (and submitting the page for IO). | ||
821 | */ | 865 | */ |
822 | int write_cache_pages(struct address_space *mapping, | 866 | int write_cache_pages(struct address_space *mapping, |
823 | struct writeback_control *wbc, writepage_t writepage, | 867 | struct writeback_control *wbc, writepage_t writepage, |
@@ -833,6 +877,7 @@ int write_cache_pages(struct address_space *mapping, | |||
833 | pgoff_t done_index; | 877 | pgoff_t done_index; |
834 | int cycled; | 878 | int cycled; |
835 | int range_whole = 0; | 879 | int range_whole = 0; |
880 | int tag; | ||
836 | 881 | ||
837 | pagevec_init(&pvec, 0); | 882 | pagevec_init(&pvec, 0); |
838 | if (wbc->range_cyclic) { | 883 | if (wbc->range_cyclic) { |
@@ -849,29 +894,19 @@ int write_cache_pages(struct address_space *mapping, | |||
849 | if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) | 894 | if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) |
850 | range_whole = 1; | 895 | range_whole = 1; |
851 | cycled = 1; /* ignore range_cyclic tests */ | 896 | cycled = 1; /* ignore range_cyclic tests */ |
852 | |||
853 | /* | ||
854 | * If this is a data integrity sync, cap the writeback to the | ||
855 | * current end of file. Any extension to the file that occurs | ||
856 | * after this is a new write and we don't need to write those | ||
857 | * pages out to fulfil our data integrity requirements. If we | ||
858 | * try to write them out, we can get stuck in this scan until | ||
859 | * the concurrent writer stops adding dirty pages and extending | ||
860 | * EOF. | ||
861 | */ | ||
862 | if (wbc->sync_mode == WB_SYNC_ALL && | ||
863 | wbc->range_end == LLONG_MAX) { | ||
864 | end = i_size_read(mapping->host) >> PAGE_CACHE_SHIFT; | ||
865 | } | ||
866 | } | 897 | } |
867 | 898 | if (wbc->sync_mode == WB_SYNC_ALL) | |
899 | tag = PAGECACHE_TAG_TOWRITE; | ||
900 | else | ||
901 | tag = PAGECACHE_TAG_DIRTY; | ||
868 | retry: | 902 | retry: |
903 | if (wbc->sync_mode == WB_SYNC_ALL) | ||
904 | tag_pages_for_writeback(mapping, index, end); | ||
869 | done_index = index; | 905 | done_index = index; |
870 | while (!done && (index <= end)) { | 906 | while (!done && (index <= end)) { |
871 | int i; | 907 | int i; |
872 | 908 | ||
873 | nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, | 909 | nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, |
874 | PAGECACHE_TAG_DIRTY, | ||
875 | min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); | 910 | min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); |
876 | if (nr_pages == 0) | 911 | if (nr_pages == 0) |
877 | break; | 912 | break; |
@@ -929,6 +964,7 @@ continue_unlock: | |||
929 | if (!clear_page_dirty_for_io(page)) | 964 | if (!clear_page_dirty_for_io(page)) |
930 | goto continue_unlock; | 965 | goto continue_unlock; |
931 | 966 | ||
967 | trace_wbc_writepage(wbc, mapping->backing_dev_info); | ||
932 | ret = (*writepage)(page, wbc, data); | 968 | ret = (*writepage)(page, wbc, data); |
933 | if (unlikely(ret)) { | 969 | if (unlikely(ret)) { |
934 | if (ret == AOP_WRITEPAGE_ACTIVATE) { | 970 | if (ret == AOP_WRITEPAGE_ACTIVATE) { |
@@ -949,22 +985,16 @@ continue_unlock: | |||
949 | } | 985 | } |
950 | } | 986 | } |
951 | 987 | ||
952 | if (wbc->nr_to_write > 0) { | 988 | /* |
953 | if (--wbc->nr_to_write == 0 && | 989 | * We stop writing back only if we are not doing |
954 | wbc->sync_mode == WB_SYNC_NONE) { | 990 | * integrity sync. In case of integrity sync we have to |
955 | /* | 991 | * keep going until we have written all the pages |
956 | * We stop writing back only if we are | 992 | * we tagged for writeback prior to entering this loop. |
957 | * not doing integrity sync. In case of | 993 | */ |
958 | * integrity sync we have to keep going | 994 | if (--wbc->nr_to_write <= 0 && |
959 | * because someone may be concurrently | 995 | wbc->sync_mode == WB_SYNC_NONE) { |
960 | * dirtying pages, and we might have | 996 | done = 1; |
961 | * synced a lot of newly appeared dirty | 997 | break; |
962 | * pages, but have not synced all of the | ||
963 | * old dirty pages. | ||
964 | */ | ||
965 | done = 1; | ||
966 | break; | ||
967 | } | ||
968 | } | 998 | } |
969 | } | 999 | } |
970 | pagevec_release(&pvec); | 1000 | pagevec_release(&pvec); |
@@ -1096,6 +1126,7 @@ void account_page_dirtied(struct page *page, struct address_space *mapping) | |||
1096 | task_io_account_write(PAGE_CACHE_SIZE); | 1126 | task_io_account_write(PAGE_CACHE_SIZE); |
1097 | } | 1127 | } |
1098 | } | 1128 | } |
1129 | EXPORT_SYMBOL(account_page_dirtied); | ||
1099 | 1130 | ||
1100 | /* | 1131 | /* |
1101 | * For address_spaces which do not use buffers. Just tag the page as dirty in | 1132 | * For address_spaces which do not use buffers. Just tag the page as dirty in |
@@ -1327,6 +1358,9 @@ int test_set_page_writeback(struct page *page) | |||
1327 | radix_tree_tag_clear(&mapping->page_tree, | 1358 | radix_tree_tag_clear(&mapping->page_tree, |
1328 | page_index(page), | 1359 | page_index(page), |
1329 | PAGECACHE_TAG_DIRTY); | 1360 | PAGECACHE_TAG_DIRTY); |
1361 | radix_tree_tag_clear(&mapping->page_tree, | ||
1362 | page_index(page), | ||
1363 | PAGECACHE_TAG_TOWRITE); | ||
1330 | spin_unlock_irqrestore(&mapping->tree_lock, flags); | 1364 | spin_unlock_irqrestore(&mapping->tree_lock, flags); |
1331 | } else { | 1365 | } else { |
1332 | ret = TestSetPageWriteback(page); | 1366 | ret = TestSetPageWriteback(page); |
diff --git a/mm/page_alloc.c b/mm/page_alloc.c index f2cd7450fa76..768ea486df58 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c | |||
@@ -1739,7 +1739,7 @@ __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, | |||
1739 | struct page *page; | 1739 | struct page *page; |
1740 | 1740 | ||
1741 | /* Acquire the OOM killer lock for the zones in zonelist */ | 1741 | /* Acquire the OOM killer lock for the zones in zonelist */ |
1742 | if (!try_set_zone_oom(zonelist, gfp_mask)) { | 1742 | if (!try_set_zonelist_oom(zonelist, gfp_mask)) { |
1743 | schedule_timeout_uninterruptible(1); | 1743 | schedule_timeout_uninterruptible(1); |
1744 | return NULL; | 1744 | return NULL; |
1745 | } | 1745 | } |
@@ -1760,6 +1760,9 @@ __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, | |||
1760 | /* The OOM killer will not help higher order allocs */ | 1760 | /* The OOM killer will not help higher order allocs */ |
1761 | if (order > PAGE_ALLOC_COSTLY_ORDER) | 1761 | if (order > PAGE_ALLOC_COSTLY_ORDER) |
1762 | goto out; | 1762 | goto out; |
1763 | /* The OOM killer does not needlessly kill tasks for lowmem */ | ||
1764 | if (high_zoneidx < ZONE_NORMAL) | ||
1765 | goto out; | ||
1763 | /* | 1766 | /* |
1764 | * GFP_THISNODE contains __GFP_NORETRY and we never hit this. | 1767 | * GFP_THISNODE contains __GFP_NORETRY and we never hit this. |
1765 | * Sanity check for bare calls of __GFP_THISNODE, not real OOM. | 1768 | * Sanity check for bare calls of __GFP_THISNODE, not real OOM. |
@@ -2053,15 +2056,23 @@ rebalance: | |||
2053 | if (page) | 2056 | if (page) |
2054 | goto got_pg; | 2057 | goto got_pg; |
2055 | 2058 | ||
2056 | /* | 2059 | if (!(gfp_mask & __GFP_NOFAIL)) { |
2057 | * The OOM killer does not trigger for high-order | 2060 | /* |
2058 | * ~__GFP_NOFAIL allocations so if no progress is being | 2061 | * The oom killer is not called for high-order |
2059 | * made, there are no other options and retrying is | 2062 | * allocations that may fail, so if no progress |
2060 | * unlikely to help. | 2063 | * is being made, there are no other options and |
2061 | */ | 2064 | * retrying is unlikely to help. |
2062 | if (order > PAGE_ALLOC_COSTLY_ORDER && | 2065 | */ |
2063 | !(gfp_mask & __GFP_NOFAIL)) | 2066 | if (order > PAGE_ALLOC_COSTLY_ORDER) |
2064 | goto nopage; | 2067 | goto nopage; |
2068 | /* | ||
2069 | * The oom killer is not called for lowmem | ||
2070 | * allocations to prevent needlessly killing | ||
2071 | * innocent tasks. | ||
2072 | */ | ||
2073 | if (high_zoneidx < ZONE_NORMAL) | ||
2074 | goto nopage; | ||
2075 | } | ||
2065 | 2076 | ||
2066 | goto restart; | 2077 | goto restart; |
2067 | } | 2078 | } |
@@ -4105,8 +4116,6 @@ static void __paginginit free_area_init_core(struct pglist_data *pgdat, | |||
4105 | zone_seqlock_init(zone); | 4116 | zone_seqlock_init(zone); |
4106 | zone->zone_pgdat = pgdat; | 4117 | zone->zone_pgdat = pgdat; |
4107 | 4118 | ||
4108 | zone->prev_priority = DEF_PRIORITY; | ||
4109 | |||
4110 | zone_pcp_init(zone); | 4119 | zone_pcp_init(zone); |
4111 | for_each_lru(l) { | 4120 | for_each_lru(l) { |
4112 | INIT_LIST_HEAD(&zone->lru[l].list); | 4121 | INIT_LIST_HEAD(&zone->lru[l].list); |
diff --git a/mm/page_io.c b/mm/page_io.c index 31a3b962230a..2dee975bf469 100644 --- a/mm/page_io.c +++ b/mm/page_io.c | |||
@@ -106,7 +106,7 @@ int swap_writepage(struct page *page, struct writeback_control *wbc) | |||
106 | goto out; | 106 | goto out; |
107 | } | 107 | } |
108 | if (wbc->sync_mode == WB_SYNC_ALL) | 108 | if (wbc->sync_mode == WB_SYNC_ALL) |
109 | rw |= (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG); | 109 | rw |= REQ_SYNC | REQ_UNPLUG; |
110 | count_vm_event(PSWPOUT); | 110 | count_vm_event(PSWPOUT); |
111 | set_page_writeback(page); | 111 | set_page_writeback(page); |
112 | unlock_page(page); | 112 | unlock_page(page); |
diff --git a/mm/percpu.c b/mm/percpu.c index 6470e7710231..e61dc2cc5873 100644 --- a/mm/percpu.c +++ b/mm/percpu.c | |||
@@ -282,6 +282,9 @@ static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk, | |||
282 | */ | 282 | */ |
283 | static void *pcpu_mem_alloc(size_t size) | 283 | static void *pcpu_mem_alloc(size_t size) |
284 | { | 284 | { |
285 | if (WARN_ON_ONCE(!slab_is_available())) | ||
286 | return NULL; | ||
287 | |||
285 | if (size <= PAGE_SIZE) | 288 | if (size <= PAGE_SIZE) |
286 | return kzalloc(size, GFP_KERNEL); | 289 | return kzalloc(size, GFP_KERNEL); |
287 | else { | 290 | else { |
@@ -392,13 +395,6 @@ static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc) | |||
392 | old_size = chunk->map_alloc * sizeof(chunk->map[0]); | 395 | old_size = chunk->map_alloc * sizeof(chunk->map[0]); |
393 | memcpy(new, chunk->map, old_size); | 396 | memcpy(new, chunk->map, old_size); |
394 | 397 | ||
395 | /* | ||
396 | * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is | ||
397 | * one of the first chunks and still using static map. | ||
398 | */ | ||
399 | if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC) | ||
400 | old = chunk->map; | ||
401 | |||
402 | chunk->map_alloc = new_alloc; | 398 | chunk->map_alloc = new_alloc; |
403 | chunk->map = new; | 399 | chunk->map = new; |
404 | new = NULL; | 400 | new = NULL; |
@@ -604,7 +600,7 @@ static struct pcpu_chunk *pcpu_alloc_chunk(void) | |||
604 | { | 600 | { |
605 | struct pcpu_chunk *chunk; | 601 | struct pcpu_chunk *chunk; |
606 | 602 | ||
607 | chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL); | 603 | chunk = pcpu_mem_alloc(pcpu_chunk_struct_size); |
608 | if (!chunk) | 604 | if (!chunk) |
609 | return NULL; | 605 | return NULL; |
610 | 606 | ||
@@ -1013,20 +1009,6 @@ phys_addr_t per_cpu_ptr_to_phys(void *addr) | |||
1013 | return page_to_phys(pcpu_addr_to_page(addr)); | 1009 | return page_to_phys(pcpu_addr_to_page(addr)); |
1014 | } | 1010 | } |
1015 | 1011 | ||
1016 | static inline size_t pcpu_calc_fc_sizes(size_t static_size, | ||
1017 | size_t reserved_size, | ||
1018 | ssize_t *dyn_sizep) | ||
1019 | { | ||
1020 | size_t size_sum; | ||
1021 | |||
1022 | size_sum = PFN_ALIGN(static_size + reserved_size + | ||
1023 | (*dyn_sizep >= 0 ? *dyn_sizep : 0)); | ||
1024 | if (*dyn_sizep != 0) | ||
1025 | *dyn_sizep = size_sum - static_size - reserved_size; | ||
1026 | |||
1027 | return size_sum; | ||
1028 | } | ||
1029 | |||
1030 | /** | 1012 | /** |
1031 | * pcpu_alloc_alloc_info - allocate percpu allocation info | 1013 | * pcpu_alloc_alloc_info - allocate percpu allocation info |
1032 | * @nr_groups: the number of groups | 1014 | * @nr_groups: the number of groups |
@@ -1085,7 +1067,7 @@ void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) | |||
1085 | /** | 1067 | /** |
1086 | * pcpu_build_alloc_info - build alloc_info considering distances between CPUs | 1068 | * pcpu_build_alloc_info - build alloc_info considering distances between CPUs |
1087 | * @reserved_size: the size of reserved percpu area in bytes | 1069 | * @reserved_size: the size of reserved percpu area in bytes |
1088 | * @dyn_size: free size for dynamic allocation in bytes, -1 for auto | 1070 | * @dyn_size: minimum free size for dynamic allocation in bytes |
1089 | * @atom_size: allocation atom size | 1071 | * @atom_size: allocation atom size |
1090 | * @cpu_distance_fn: callback to determine distance between cpus, optional | 1072 | * @cpu_distance_fn: callback to determine distance between cpus, optional |
1091 | * | 1073 | * |
@@ -1103,8 +1085,8 @@ void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) | |||
1103 | * On success, pointer to the new allocation_info is returned. On | 1085 | * On success, pointer to the new allocation_info is returned. On |
1104 | * failure, ERR_PTR value is returned. | 1086 | * failure, ERR_PTR value is returned. |
1105 | */ | 1087 | */ |
1106 | struct pcpu_alloc_info * __init pcpu_build_alloc_info( | 1088 | static struct pcpu_alloc_info * __init pcpu_build_alloc_info( |
1107 | size_t reserved_size, ssize_t dyn_size, | 1089 | size_t reserved_size, size_t dyn_size, |
1108 | size_t atom_size, | 1090 | size_t atom_size, |
1109 | pcpu_fc_cpu_distance_fn_t cpu_distance_fn) | 1091 | pcpu_fc_cpu_distance_fn_t cpu_distance_fn) |
1110 | { | 1092 | { |
@@ -1123,13 +1105,17 @@ struct pcpu_alloc_info * __init pcpu_build_alloc_info( | |||
1123 | memset(group_map, 0, sizeof(group_map)); | 1105 | memset(group_map, 0, sizeof(group_map)); |
1124 | memset(group_cnt, 0, sizeof(group_cnt)); | 1106 | memset(group_cnt, 0, sizeof(group_cnt)); |
1125 | 1107 | ||
1108 | /* calculate size_sum and ensure dyn_size is enough for early alloc */ | ||
1109 | size_sum = PFN_ALIGN(static_size + reserved_size + | ||
1110 | max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); | ||
1111 | dyn_size = size_sum - static_size - reserved_size; | ||
1112 | |||
1126 | /* | 1113 | /* |
1127 | * Determine min_unit_size, alloc_size and max_upa such that | 1114 | * Determine min_unit_size, alloc_size and max_upa such that |
1128 | * alloc_size is multiple of atom_size and is the smallest | 1115 | * alloc_size is multiple of atom_size and is the smallest |
1129 | * which can accomodate 4k aligned segments which are equal to | 1116 | * which can accomodate 4k aligned segments which are equal to |
1130 | * or larger than min_unit_size. | 1117 | * or larger than min_unit_size. |
1131 | */ | 1118 | */ |
1132 | size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size); | ||
1133 | min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); | 1119 | min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); |
1134 | 1120 | ||
1135 | alloc_size = roundup(min_unit_size, atom_size); | 1121 | alloc_size = roundup(min_unit_size, atom_size); |
@@ -1350,7 +1336,8 @@ int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, | |||
1350 | void *base_addr) | 1336 | void *base_addr) |
1351 | { | 1337 | { |
1352 | static char cpus_buf[4096] __initdata; | 1338 | static char cpus_buf[4096] __initdata; |
1353 | static int smap[2], dmap[2]; | 1339 | static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata; |
1340 | static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata; | ||
1354 | size_t dyn_size = ai->dyn_size; | 1341 | size_t dyn_size = ai->dyn_size; |
1355 | size_t size_sum = ai->static_size + ai->reserved_size + dyn_size; | 1342 | size_t size_sum = ai->static_size + ai->reserved_size + dyn_size; |
1356 | struct pcpu_chunk *schunk, *dchunk = NULL; | 1343 | struct pcpu_chunk *schunk, *dchunk = NULL; |
@@ -1373,14 +1360,13 @@ int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, | |||
1373 | } while (0) | 1360 | } while (0) |
1374 | 1361 | ||
1375 | /* sanity checks */ | 1362 | /* sanity checks */ |
1376 | BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC || | ||
1377 | ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC); | ||
1378 | PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); | 1363 | PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); |
1379 | PCPU_SETUP_BUG_ON(!ai->static_size); | 1364 | PCPU_SETUP_BUG_ON(!ai->static_size); |
1380 | PCPU_SETUP_BUG_ON(!base_addr); | 1365 | PCPU_SETUP_BUG_ON(!base_addr); |
1381 | PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); | 1366 | PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); |
1382 | PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK); | 1367 | PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK); |
1383 | PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); | 1368 | PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); |
1369 | PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); | ||
1384 | PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); | 1370 | PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); |
1385 | 1371 | ||
1386 | /* process group information and build config tables accordingly */ | 1372 | /* process group information and build config tables accordingly */ |
@@ -1532,7 +1518,7 @@ early_param("percpu_alloc", percpu_alloc_setup); | |||
1532 | /** | 1518 | /** |
1533 | * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem | 1519 | * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem |
1534 | * @reserved_size: the size of reserved percpu area in bytes | 1520 | * @reserved_size: the size of reserved percpu area in bytes |
1535 | * @dyn_size: free size for dynamic allocation in bytes, -1 for auto | 1521 | * @dyn_size: minimum free size for dynamic allocation in bytes |
1536 | * @atom_size: allocation atom size | 1522 | * @atom_size: allocation atom size |
1537 | * @cpu_distance_fn: callback to determine distance between cpus, optional | 1523 | * @cpu_distance_fn: callback to determine distance between cpus, optional |
1538 | * @alloc_fn: function to allocate percpu page | 1524 | * @alloc_fn: function to allocate percpu page |
@@ -1553,10 +1539,7 @@ early_param("percpu_alloc", percpu_alloc_setup); | |||
1553 | * vmalloc space is not orders of magnitude larger than distances | 1539 | * vmalloc space is not orders of magnitude larger than distances |
1554 | * between node memory addresses (ie. 32bit NUMA machines). | 1540 | * between node memory addresses (ie. 32bit NUMA machines). |
1555 | * | 1541 | * |
1556 | * When @dyn_size is positive, dynamic area might be larger than | 1542 | * @dyn_size specifies the minimum dynamic area size. |
1557 | * specified to fill page alignment. When @dyn_size is auto, | ||
1558 | * @dyn_size is just big enough to fill page alignment after static | ||
1559 | * and reserved areas. | ||
1560 | * | 1543 | * |
1561 | * If the needed size is smaller than the minimum or specified unit | 1544 | * If the needed size is smaller than the minimum or specified unit |
1562 | * size, the leftover is returned using @free_fn. | 1545 | * size, the leftover is returned using @free_fn. |
@@ -1564,7 +1547,7 @@ early_param("percpu_alloc", percpu_alloc_setup); | |||
1564 | * RETURNS: | 1547 | * RETURNS: |
1565 | * 0 on success, -errno on failure. | 1548 | * 0 on success, -errno on failure. |
1566 | */ | 1549 | */ |
1567 | int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size, | 1550 | int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, |
1568 | size_t atom_size, | 1551 | size_t atom_size, |
1569 | pcpu_fc_cpu_distance_fn_t cpu_distance_fn, | 1552 | pcpu_fc_cpu_distance_fn_t cpu_distance_fn, |
1570 | pcpu_fc_alloc_fn_t alloc_fn, | 1553 | pcpu_fc_alloc_fn_t alloc_fn, |
@@ -1695,7 +1678,7 @@ int __init pcpu_page_first_chunk(size_t reserved_size, | |||
1695 | 1678 | ||
1696 | snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); | 1679 | snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); |
1697 | 1680 | ||
1698 | ai = pcpu_build_alloc_info(reserved_size, -1, PAGE_SIZE, NULL); | 1681 | ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); |
1699 | if (IS_ERR(ai)) | 1682 | if (IS_ERR(ai)) |
1700 | return PTR_ERR(ai); | 1683 | return PTR_ERR(ai); |
1701 | BUG_ON(ai->nr_groups != 1); | 1684 | BUG_ON(ai->nr_groups != 1); |
@@ -1821,3 +1804,33 @@ void __init setup_per_cpu_areas(void) | |||
1821 | __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; | 1804 | __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; |
1822 | } | 1805 | } |
1823 | #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ | 1806 | #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ |
1807 | |||
1808 | /* | ||
1809 | * First and reserved chunks are initialized with temporary allocation | ||
1810 | * map in initdata so that they can be used before slab is online. | ||
1811 | * This function is called after slab is brought up and replaces those | ||
1812 | * with properly allocated maps. | ||
1813 | */ | ||
1814 | void __init percpu_init_late(void) | ||
1815 | { | ||
1816 | struct pcpu_chunk *target_chunks[] = | ||
1817 | { pcpu_first_chunk, pcpu_reserved_chunk, NULL }; | ||
1818 | struct pcpu_chunk *chunk; | ||
1819 | unsigned long flags; | ||
1820 | int i; | ||
1821 | |||
1822 | for (i = 0; (chunk = target_chunks[i]); i++) { | ||
1823 | int *map; | ||
1824 | const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]); | ||
1825 | |||
1826 | BUILD_BUG_ON(size > PAGE_SIZE); | ||
1827 | |||
1828 | map = pcpu_mem_alloc(size); | ||
1829 | BUG_ON(!map); | ||
1830 | |||
1831 | spin_lock_irqsave(&pcpu_lock, flags); | ||
1832 | memcpy(map, chunk->map, size); | ||
1833 | chunk->map = map; | ||
1834 | spin_unlock_irqrestore(&pcpu_lock, flags); | ||
1835 | } | ||
1836 | } | ||
@@ -56,6 +56,7 @@ | |||
56 | #include <linux/memcontrol.h> | 56 | #include <linux/memcontrol.h> |
57 | #include <linux/mmu_notifier.h> | 57 | #include <linux/mmu_notifier.h> |
58 | #include <linux/migrate.h> | 58 | #include <linux/migrate.h> |
59 | #include <linux/hugetlb.h> | ||
59 | 60 | ||
60 | #include <asm/tlbflush.h> | 61 | #include <asm/tlbflush.h> |
61 | 62 | ||
@@ -132,9 +133,14 @@ int anon_vma_prepare(struct vm_area_struct *vma) | |||
132 | if (unlikely(!anon_vma)) | 133 | if (unlikely(!anon_vma)) |
133 | goto out_enomem_free_avc; | 134 | goto out_enomem_free_avc; |
134 | allocated = anon_vma; | 135 | allocated = anon_vma; |
136 | /* | ||
137 | * This VMA had no anon_vma yet. This anon_vma is | ||
138 | * the root of any anon_vma tree that might form. | ||
139 | */ | ||
140 | anon_vma->root = anon_vma; | ||
135 | } | 141 | } |
136 | 142 | ||
137 | spin_lock(&anon_vma->lock); | 143 | anon_vma_lock(anon_vma); |
138 | /* page_table_lock to protect against threads */ | 144 | /* page_table_lock to protect against threads */ |
139 | spin_lock(&mm->page_table_lock); | 145 | spin_lock(&mm->page_table_lock); |
140 | if (likely(!vma->anon_vma)) { | 146 | if (likely(!vma->anon_vma)) { |
@@ -142,12 +148,12 @@ int anon_vma_prepare(struct vm_area_struct *vma) | |||
142 | avc->anon_vma = anon_vma; | 148 | avc->anon_vma = anon_vma; |
143 | avc->vma = vma; | 149 | avc->vma = vma; |
144 | list_add(&avc->same_vma, &vma->anon_vma_chain); | 150 | list_add(&avc->same_vma, &vma->anon_vma_chain); |
145 | list_add(&avc->same_anon_vma, &anon_vma->head); | 151 | list_add_tail(&avc->same_anon_vma, &anon_vma->head); |
146 | allocated = NULL; | 152 | allocated = NULL; |
147 | avc = NULL; | 153 | avc = NULL; |
148 | } | 154 | } |
149 | spin_unlock(&mm->page_table_lock); | 155 | spin_unlock(&mm->page_table_lock); |
150 | spin_unlock(&anon_vma->lock); | 156 | anon_vma_unlock(anon_vma); |
151 | 157 | ||
152 | if (unlikely(allocated)) | 158 | if (unlikely(allocated)) |
153 | anon_vma_free(allocated); | 159 | anon_vma_free(allocated); |
@@ -170,9 +176,9 @@ static void anon_vma_chain_link(struct vm_area_struct *vma, | |||
170 | avc->anon_vma = anon_vma; | 176 | avc->anon_vma = anon_vma; |
171 | list_add(&avc->same_vma, &vma->anon_vma_chain); | 177 | list_add(&avc->same_vma, &vma->anon_vma_chain); |
172 | 178 | ||
173 | spin_lock(&anon_vma->lock); | 179 | anon_vma_lock(anon_vma); |
174 | list_add_tail(&avc->same_anon_vma, &anon_vma->head); | 180 | list_add_tail(&avc->same_anon_vma, &anon_vma->head); |
175 | spin_unlock(&anon_vma->lock); | 181 | anon_vma_unlock(anon_vma); |
176 | } | 182 | } |
177 | 183 | ||
178 | /* | 184 | /* |
@@ -224,9 +230,21 @@ int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) | |||
224 | avc = anon_vma_chain_alloc(); | 230 | avc = anon_vma_chain_alloc(); |
225 | if (!avc) | 231 | if (!avc) |
226 | goto out_error_free_anon_vma; | 232 | goto out_error_free_anon_vma; |
227 | anon_vma_chain_link(vma, avc, anon_vma); | 233 | |
234 | /* | ||
235 | * The root anon_vma's spinlock is the lock actually used when we | ||
236 | * lock any of the anon_vmas in this anon_vma tree. | ||
237 | */ | ||
238 | anon_vma->root = pvma->anon_vma->root; | ||
239 | /* | ||
240 | * With KSM refcounts, an anon_vma can stay around longer than the | ||
241 | * process it belongs to. The root anon_vma needs to be pinned | ||
242 | * until this anon_vma is freed, because the lock lives in the root. | ||
243 | */ | ||
244 | get_anon_vma(anon_vma->root); | ||
228 | /* Mark this anon_vma as the one where our new (COWed) pages go. */ | 245 | /* Mark this anon_vma as the one where our new (COWed) pages go. */ |
229 | vma->anon_vma = anon_vma; | 246 | vma->anon_vma = anon_vma; |
247 | anon_vma_chain_link(vma, avc, anon_vma); | ||
230 | 248 | ||
231 | return 0; | 249 | return 0; |
232 | 250 | ||
@@ -246,22 +264,29 @@ static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain) | |||
246 | if (!anon_vma) | 264 | if (!anon_vma) |
247 | return; | 265 | return; |
248 | 266 | ||
249 | spin_lock(&anon_vma->lock); | 267 | anon_vma_lock(anon_vma); |
250 | list_del(&anon_vma_chain->same_anon_vma); | 268 | list_del(&anon_vma_chain->same_anon_vma); |
251 | 269 | ||
252 | /* We must garbage collect the anon_vma if it's empty */ | 270 | /* We must garbage collect the anon_vma if it's empty */ |
253 | empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma); | 271 | empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma); |
254 | spin_unlock(&anon_vma->lock); | 272 | anon_vma_unlock(anon_vma); |
255 | 273 | ||
256 | if (empty) | 274 | if (empty) { |
275 | /* We no longer need the root anon_vma */ | ||
276 | if (anon_vma->root != anon_vma) | ||
277 | drop_anon_vma(anon_vma->root); | ||
257 | anon_vma_free(anon_vma); | 278 | anon_vma_free(anon_vma); |
279 | } | ||
258 | } | 280 | } |
259 | 281 | ||
260 | void unlink_anon_vmas(struct vm_area_struct *vma) | 282 | void unlink_anon_vmas(struct vm_area_struct *vma) |
261 | { | 283 | { |
262 | struct anon_vma_chain *avc, *next; | 284 | struct anon_vma_chain *avc, *next; |
263 | 285 | ||
264 | /* Unlink each anon_vma chained to the VMA. */ | 286 | /* |
287 | * Unlink each anon_vma chained to the VMA. This list is ordered | ||
288 | * from newest to oldest, ensuring the root anon_vma gets freed last. | ||
289 | */ | ||
265 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { | 290 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { |
266 | anon_vma_unlink(avc); | 291 | anon_vma_unlink(avc); |
267 | list_del(&avc->same_vma); | 292 | list_del(&avc->same_vma); |
@@ -291,7 +316,7 @@ void __init anon_vma_init(void) | |||
291 | */ | 316 | */ |
292 | struct anon_vma *page_lock_anon_vma(struct page *page) | 317 | struct anon_vma *page_lock_anon_vma(struct page *page) |
293 | { | 318 | { |
294 | struct anon_vma *anon_vma; | 319 | struct anon_vma *anon_vma, *root_anon_vma; |
295 | unsigned long anon_mapping; | 320 | unsigned long anon_mapping; |
296 | 321 | ||
297 | rcu_read_lock(); | 322 | rcu_read_lock(); |
@@ -302,8 +327,21 @@ struct anon_vma *page_lock_anon_vma(struct page *page) | |||
302 | goto out; | 327 | goto out; |
303 | 328 | ||
304 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | 329 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); |
305 | spin_lock(&anon_vma->lock); | 330 | root_anon_vma = ACCESS_ONCE(anon_vma->root); |
306 | return anon_vma; | 331 | spin_lock(&root_anon_vma->lock); |
332 | |||
333 | /* | ||
334 | * If this page is still mapped, then its anon_vma cannot have been | ||
335 | * freed. But if it has been unmapped, we have no security against | ||
336 | * the anon_vma structure being freed and reused (for another anon_vma: | ||
337 | * SLAB_DESTROY_BY_RCU guarantees that - so the spin_lock above cannot | ||
338 | * corrupt): with anon_vma_prepare() or anon_vma_fork() redirecting | ||
339 | * anon_vma->root before page_unlock_anon_vma() is called to unlock. | ||
340 | */ | ||
341 | if (page_mapped(page)) | ||
342 | return anon_vma; | ||
343 | |||
344 | spin_unlock(&root_anon_vma->lock); | ||
307 | out: | 345 | out: |
308 | rcu_read_unlock(); | 346 | rcu_read_unlock(); |
309 | return NULL; | 347 | return NULL; |
@@ -311,7 +349,7 @@ out: | |||
311 | 349 | ||
312 | void page_unlock_anon_vma(struct anon_vma *anon_vma) | 350 | void page_unlock_anon_vma(struct anon_vma *anon_vma) |
313 | { | 351 | { |
314 | spin_unlock(&anon_vma->lock); | 352 | anon_vma_unlock(anon_vma); |
315 | rcu_read_unlock(); | 353 | rcu_read_unlock(); |
316 | } | 354 | } |
317 | 355 | ||
@@ -326,6 +364,8 @@ vma_address(struct page *page, struct vm_area_struct *vma) | |||
326 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | 364 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); |
327 | unsigned long address; | 365 | unsigned long address; |
328 | 366 | ||
367 | if (unlikely(is_vm_hugetlb_page(vma))) | ||
368 | pgoff = page->index << huge_page_order(page_hstate(page)); | ||
329 | address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); | 369 | address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); |
330 | if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { | 370 | if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { |
331 | /* page should be within @vma mapping range */ | 371 | /* page should be within @vma mapping range */ |
@@ -340,9 +380,10 @@ vma_address(struct page *page, struct vm_area_struct *vma) | |||
340 | */ | 380 | */ |
341 | unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) | 381 | unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) |
342 | { | 382 | { |
343 | if (PageAnon(page)) | 383 | if (PageAnon(page)) { |
344 | ; | 384 | if (vma->anon_vma->root != page_anon_vma(page)->root) |
345 | else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { | 385 | return -EFAULT; |
386 | } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { | ||
346 | if (!vma->vm_file || | 387 | if (!vma->vm_file || |
347 | vma->vm_file->f_mapping != page->mapping) | 388 | vma->vm_file->f_mapping != page->mapping) |
348 | return -EFAULT; | 389 | return -EFAULT; |
@@ -369,6 +410,12 @@ pte_t *page_check_address(struct page *page, struct mm_struct *mm, | |||
369 | pte_t *pte; | 410 | pte_t *pte; |
370 | spinlock_t *ptl; | 411 | spinlock_t *ptl; |
371 | 412 | ||
413 | if (unlikely(PageHuge(page))) { | ||
414 | pte = huge_pte_offset(mm, address); | ||
415 | ptl = &mm->page_table_lock; | ||
416 | goto check; | ||
417 | } | ||
418 | |||
372 | pgd = pgd_offset(mm, address); | 419 | pgd = pgd_offset(mm, address); |
373 | if (!pgd_present(*pgd)) | 420 | if (!pgd_present(*pgd)) |
374 | return NULL; | 421 | return NULL; |
@@ -389,6 +436,7 @@ pte_t *page_check_address(struct page *page, struct mm_struct *mm, | |||
389 | } | 436 | } |
390 | 437 | ||
391 | ptl = pte_lockptr(mm, pmd); | 438 | ptl = pte_lockptr(mm, pmd); |
439 | check: | ||
392 | spin_lock(ptl); | 440 | spin_lock(ptl); |
393 | if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { | 441 | if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { |
394 | *ptlp = ptl; | 442 | *ptlp = ptl; |
@@ -743,14 +791,20 @@ static void __page_set_anon_rmap(struct page *page, | |||
743 | * If the page isn't exclusively mapped into this vma, | 791 | * If the page isn't exclusively mapped into this vma, |
744 | * we must use the _oldest_ possible anon_vma for the | 792 | * we must use the _oldest_ possible anon_vma for the |
745 | * page mapping! | 793 | * page mapping! |
746 | * | ||
747 | * So take the last AVC chain entry in the vma, which is | ||
748 | * the deepest ancestor, and use the anon_vma from that. | ||
749 | */ | 794 | */ |
750 | if (!exclusive) { | 795 | if (!exclusive) { |
751 | struct anon_vma_chain *avc; | 796 | if (PageAnon(page)) |
752 | avc = list_entry(vma->anon_vma_chain.prev, struct anon_vma_chain, same_vma); | 797 | return; |
753 | anon_vma = avc->anon_vma; | 798 | anon_vma = anon_vma->root; |
799 | } else { | ||
800 | /* | ||
801 | * In this case, swapped-out-but-not-discarded swap-cache | ||
802 | * is remapped. So, no need to update page->mapping here. | ||
803 | * We convice anon_vma poitned by page->mapping is not obsolete | ||
804 | * because vma->anon_vma is necessary to be a family of it. | ||
805 | */ | ||
806 | if (PageAnon(page)) | ||
807 | return; | ||
754 | } | 808 | } |
755 | 809 | ||
756 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | 810 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; |
@@ -780,6 +834,7 @@ static void __page_check_anon_rmap(struct page *page, | |||
780 | * are initially only visible via the pagetables, and the pte is locked | 834 | * are initially only visible via the pagetables, and the pte is locked |
781 | * over the call to page_add_new_anon_rmap. | 835 | * over the call to page_add_new_anon_rmap. |
782 | */ | 836 | */ |
837 | BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); | ||
783 | BUG_ON(page->index != linear_page_index(vma, address)); | 838 | BUG_ON(page->index != linear_page_index(vma, address)); |
784 | #endif | 839 | #endif |
785 | } | 840 | } |
@@ -798,6 +853,17 @@ static void __page_check_anon_rmap(struct page *page, | |||
798 | void page_add_anon_rmap(struct page *page, | 853 | void page_add_anon_rmap(struct page *page, |
799 | struct vm_area_struct *vma, unsigned long address) | 854 | struct vm_area_struct *vma, unsigned long address) |
800 | { | 855 | { |
856 | do_page_add_anon_rmap(page, vma, address, 0); | ||
857 | } | ||
858 | |||
859 | /* | ||
860 | * Special version of the above for do_swap_page, which often runs | ||
861 | * into pages that are exclusively owned by the current process. | ||
862 | * Everybody else should continue to use page_add_anon_rmap above. | ||
863 | */ | ||
864 | void do_page_add_anon_rmap(struct page *page, | ||
865 | struct vm_area_struct *vma, unsigned long address, int exclusive) | ||
866 | { | ||
801 | int first = atomic_inc_and_test(&page->_mapcount); | 867 | int first = atomic_inc_and_test(&page->_mapcount); |
802 | if (first) | 868 | if (first) |
803 | __inc_zone_page_state(page, NR_ANON_PAGES); | 869 | __inc_zone_page_state(page, NR_ANON_PAGES); |
@@ -807,7 +873,7 @@ void page_add_anon_rmap(struct page *page, | |||
807 | VM_BUG_ON(!PageLocked(page)); | 873 | VM_BUG_ON(!PageLocked(page)); |
808 | VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); | 874 | VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); |
809 | if (first) | 875 | if (first) |
810 | __page_set_anon_rmap(page, vma, address, 0); | 876 | __page_set_anon_rmap(page, vma, address, exclusive); |
811 | else | 877 | else |
812 | __page_check_anon_rmap(page, vma, address); | 878 | __page_check_anon_rmap(page, vma, address); |
813 | } | 879 | } |
@@ -873,6 +939,12 @@ void page_remove_rmap(struct page *page) | |||
873 | page_clear_dirty(page); | 939 | page_clear_dirty(page); |
874 | set_page_dirty(page); | 940 | set_page_dirty(page); |
875 | } | 941 | } |
942 | /* | ||
943 | * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED | ||
944 | * and not charged by memcg for now. | ||
945 | */ | ||
946 | if (unlikely(PageHuge(page))) | ||
947 | return; | ||
876 | if (PageAnon(page)) { | 948 | if (PageAnon(page)) { |
877 | mem_cgroup_uncharge_page(page); | 949 | mem_cgroup_uncharge_page(page); |
878 | __dec_zone_page_state(page, NR_ANON_PAGES); | 950 | __dec_zone_page_state(page, NR_ANON_PAGES); |
@@ -1368,6 +1440,42 @@ int try_to_munlock(struct page *page) | |||
1368 | return try_to_unmap_file(page, TTU_MUNLOCK); | 1440 | return try_to_unmap_file(page, TTU_MUNLOCK); |
1369 | } | 1441 | } |
1370 | 1442 | ||
1443 | #if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION) | ||
1444 | /* | ||
1445 | * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root | ||
1446 | * if necessary. Be careful to do all the tests under the lock. Once | ||
1447 | * we know we are the last user, nobody else can get a reference and we | ||
1448 | * can do the freeing without the lock. | ||
1449 | */ | ||
1450 | void drop_anon_vma(struct anon_vma *anon_vma) | ||
1451 | { | ||
1452 | BUG_ON(atomic_read(&anon_vma->external_refcount) <= 0); | ||
1453 | if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) { | ||
1454 | struct anon_vma *root = anon_vma->root; | ||
1455 | int empty = list_empty(&anon_vma->head); | ||
1456 | int last_root_user = 0; | ||
1457 | int root_empty = 0; | ||
1458 | |||
1459 | /* | ||
1460 | * The refcount on a non-root anon_vma got dropped. Drop | ||
1461 | * the refcount on the root and check if we need to free it. | ||
1462 | */ | ||
1463 | if (empty && anon_vma != root) { | ||
1464 | BUG_ON(atomic_read(&root->external_refcount) <= 0); | ||
1465 | last_root_user = atomic_dec_and_test(&root->external_refcount); | ||
1466 | root_empty = list_empty(&root->head); | ||
1467 | } | ||
1468 | anon_vma_unlock(anon_vma); | ||
1469 | |||
1470 | if (empty) { | ||
1471 | anon_vma_free(anon_vma); | ||
1472 | if (root_empty && last_root_user) | ||
1473 | anon_vma_free(root); | ||
1474 | } | ||
1475 | } | ||
1476 | } | ||
1477 | #endif | ||
1478 | |||
1371 | #ifdef CONFIG_MIGRATION | 1479 | #ifdef CONFIG_MIGRATION |
1372 | /* | 1480 | /* |
1373 | * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file(): | 1481 | * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file(): |
@@ -1389,7 +1497,7 @@ static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *, | |||
1389 | anon_vma = page_anon_vma(page); | 1497 | anon_vma = page_anon_vma(page); |
1390 | if (!anon_vma) | 1498 | if (!anon_vma) |
1391 | return ret; | 1499 | return ret; |
1392 | spin_lock(&anon_vma->lock); | 1500 | anon_vma_lock(anon_vma); |
1393 | list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { | 1501 | list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { |
1394 | struct vm_area_struct *vma = avc->vma; | 1502 | struct vm_area_struct *vma = avc->vma; |
1395 | unsigned long address = vma_address(page, vma); | 1503 | unsigned long address = vma_address(page, vma); |
@@ -1399,7 +1507,7 @@ static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *, | |||
1399 | if (ret != SWAP_AGAIN) | 1507 | if (ret != SWAP_AGAIN) |
1400 | break; | 1508 | break; |
1401 | } | 1509 | } |
1402 | spin_unlock(&anon_vma->lock); | 1510 | anon_vma_unlock(anon_vma); |
1403 | return ret; | 1511 | return ret; |
1404 | } | 1512 | } |
1405 | 1513 | ||
@@ -1445,3 +1553,46 @@ int rmap_walk(struct page *page, int (*rmap_one)(struct page *, | |||
1445 | return rmap_walk_file(page, rmap_one, arg); | 1553 | return rmap_walk_file(page, rmap_one, arg); |
1446 | } | 1554 | } |
1447 | #endif /* CONFIG_MIGRATION */ | 1555 | #endif /* CONFIG_MIGRATION */ |
1556 | |||
1557 | #ifdef CONFIG_HUGETLB_PAGE | ||
1558 | /* | ||
1559 | * The following three functions are for anonymous (private mapped) hugepages. | ||
1560 | * Unlike common anonymous pages, anonymous hugepages have no accounting code | ||
1561 | * and no lru code, because we handle hugepages differently from common pages. | ||
1562 | */ | ||
1563 | static void __hugepage_set_anon_rmap(struct page *page, | ||
1564 | struct vm_area_struct *vma, unsigned long address, int exclusive) | ||
1565 | { | ||
1566 | struct anon_vma *anon_vma = vma->anon_vma; | ||
1567 | BUG_ON(!anon_vma); | ||
1568 | if (!exclusive) { | ||
1569 | struct anon_vma_chain *avc; | ||
1570 | avc = list_entry(vma->anon_vma_chain.prev, | ||
1571 | struct anon_vma_chain, same_vma); | ||
1572 | anon_vma = avc->anon_vma; | ||
1573 | } | ||
1574 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | ||
1575 | page->mapping = (struct address_space *) anon_vma; | ||
1576 | page->index = linear_page_index(vma, address); | ||
1577 | } | ||
1578 | |||
1579 | void hugepage_add_anon_rmap(struct page *page, | ||
1580 | struct vm_area_struct *vma, unsigned long address) | ||
1581 | { | ||
1582 | struct anon_vma *anon_vma = vma->anon_vma; | ||
1583 | int first; | ||
1584 | BUG_ON(!anon_vma); | ||
1585 | BUG_ON(address < vma->vm_start || address >= vma->vm_end); | ||
1586 | first = atomic_inc_and_test(&page->_mapcount); | ||
1587 | if (first) | ||
1588 | __hugepage_set_anon_rmap(page, vma, address, 0); | ||
1589 | } | ||
1590 | |||
1591 | void hugepage_add_new_anon_rmap(struct page *page, | ||
1592 | struct vm_area_struct *vma, unsigned long address) | ||
1593 | { | ||
1594 | BUG_ON(address < vma->vm_start || address >= vma->vm_end); | ||
1595 | atomic_set(&page->_mapcount, 0); | ||
1596 | __hugepage_set_anon_rmap(page, vma, address, 1); | ||
1597 | } | ||
1598 | #endif /* CONFIG_HUGETLB_PAGE */ | ||
diff --git a/mm/shmem.c b/mm/shmem.c index f65f84062db5..080b09a57a8f 100644 --- a/mm/shmem.c +++ b/mm/shmem.c | |||
@@ -28,6 +28,7 @@ | |||
28 | #include <linux/file.h> | 28 | #include <linux/file.h> |
29 | #include <linux/mm.h> | 29 | #include <linux/mm.h> |
30 | #include <linux/module.h> | 30 | #include <linux/module.h> |
31 | #include <linux/percpu_counter.h> | ||
31 | #include <linux/swap.h> | 32 | #include <linux/swap.h> |
32 | 33 | ||
33 | static struct vfsmount *shm_mnt; | 34 | static struct vfsmount *shm_mnt; |
@@ -233,10 +234,10 @@ static void shmem_free_blocks(struct inode *inode, long pages) | |||
233 | { | 234 | { |
234 | struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); | 235 | struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb); |
235 | if (sbinfo->max_blocks) { | 236 | if (sbinfo->max_blocks) { |
236 | spin_lock(&sbinfo->stat_lock); | 237 | percpu_counter_add(&sbinfo->used_blocks, -pages); |
237 | sbinfo->free_blocks += pages; | 238 | spin_lock(&inode->i_lock); |
238 | inode->i_blocks -= pages*BLOCKS_PER_PAGE; | 239 | inode->i_blocks -= pages*BLOCKS_PER_PAGE; |
239 | spin_unlock(&sbinfo->stat_lock); | 240 | spin_unlock(&inode->i_lock); |
240 | } | 241 | } |
241 | } | 242 | } |
242 | 243 | ||
@@ -416,19 +417,17 @@ static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long | |||
416 | if (sgp == SGP_READ) | 417 | if (sgp == SGP_READ) |
417 | return shmem_swp_map(ZERO_PAGE(0)); | 418 | return shmem_swp_map(ZERO_PAGE(0)); |
418 | /* | 419 | /* |
419 | * Test free_blocks against 1 not 0, since we have 1 data | 420 | * Test used_blocks against 1 less max_blocks, since we have 1 data |
420 | * page (and perhaps indirect index pages) yet to allocate: | 421 | * page (and perhaps indirect index pages) yet to allocate: |
421 | * a waste to allocate index if we cannot allocate data. | 422 | * a waste to allocate index if we cannot allocate data. |
422 | */ | 423 | */ |
423 | if (sbinfo->max_blocks) { | 424 | if (sbinfo->max_blocks) { |
424 | spin_lock(&sbinfo->stat_lock); | 425 | if (percpu_counter_compare(&sbinfo->used_blocks, (sbinfo->max_blocks - 1)) > 0) |
425 | if (sbinfo->free_blocks <= 1) { | ||
426 | spin_unlock(&sbinfo->stat_lock); | ||
427 | return ERR_PTR(-ENOSPC); | 426 | return ERR_PTR(-ENOSPC); |
428 | } | 427 | percpu_counter_inc(&sbinfo->used_blocks); |
429 | sbinfo->free_blocks--; | 428 | spin_lock(&inode->i_lock); |
430 | inode->i_blocks += BLOCKS_PER_PAGE; | 429 | inode->i_blocks += BLOCKS_PER_PAGE; |
431 | spin_unlock(&sbinfo->stat_lock); | 430 | spin_unlock(&inode->i_lock); |
432 | } | 431 | } |
433 | 432 | ||
434 | spin_unlock(&info->lock); | 433 | spin_unlock(&info->lock); |
@@ -767,6 +766,10 @@ static int shmem_notify_change(struct dentry *dentry, struct iattr *attr) | |||
767 | loff_t newsize = attr->ia_size; | 766 | loff_t newsize = attr->ia_size; |
768 | int error; | 767 | int error; |
769 | 768 | ||
769 | error = inode_change_ok(inode, attr); | ||
770 | if (error) | ||
771 | return error; | ||
772 | |||
770 | if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE) | 773 | if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE) |
771 | && newsize != inode->i_size) { | 774 | && newsize != inode->i_size) { |
772 | struct page *page = NULL; | 775 | struct page *page = NULL; |
@@ -801,25 +804,22 @@ static int shmem_notify_change(struct dentry *dentry, struct iattr *attr) | |||
801 | } | 804 | } |
802 | } | 805 | } |
803 | 806 | ||
804 | error = simple_setsize(inode, newsize); | 807 | /* XXX(truncate): truncate_setsize should be called last */ |
808 | truncate_setsize(inode, newsize); | ||
805 | if (page) | 809 | if (page) |
806 | page_cache_release(page); | 810 | page_cache_release(page); |
807 | if (error) | ||
808 | return error; | ||
809 | shmem_truncate_range(inode, newsize, (loff_t)-1); | 811 | shmem_truncate_range(inode, newsize, (loff_t)-1); |
810 | } | 812 | } |
811 | 813 | ||
812 | error = inode_change_ok(inode, attr); | 814 | setattr_copy(inode, attr); |
813 | if (!error) | ||
814 | generic_setattr(inode, attr); | ||
815 | #ifdef CONFIG_TMPFS_POSIX_ACL | 815 | #ifdef CONFIG_TMPFS_POSIX_ACL |
816 | if (!error && (attr->ia_valid & ATTR_MODE)) | 816 | if (attr->ia_valid & ATTR_MODE) |
817 | error = generic_acl_chmod(inode); | 817 | error = generic_acl_chmod(inode); |
818 | #endif | 818 | #endif |
819 | return error; | 819 | return error; |
820 | } | 820 | } |
821 | 821 | ||
822 | static void shmem_delete_inode(struct inode *inode) | 822 | static void shmem_evict_inode(struct inode *inode) |
823 | { | 823 | { |
824 | struct shmem_inode_info *info = SHMEM_I(inode); | 824 | struct shmem_inode_info *info = SHMEM_I(inode); |
825 | 825 | ||
@@ -836,7 +836,7 @@ static void shmem_delete_inode(struct inode *inode) | |||
836 | } | 836 | } |
837 | BUG_ON(inode->i_blocks); | 837 | BUG_ON(inode->i_blocks); |
838 | shmem_free_inode(inode->i_sb); | 838 | shmem_free_inode(inode->i_sb); |
839 | clear_inode(inode); | 839 | end_writeback(inode); |
840 | } | 840 | } |
841 | 841 | ||
842 | static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir) | 842 | static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir) |
@@ -933,7 +933,7 @@ found: | |||
933 | 933 | ||
934 | /* | 934 | /* |
935 | * Move _head_ to start search for next from here. | 935 | * Move _head_ to start search for next from here. |
936 | * But be careful: shmem_delete_inode checks list_empty without taking | 936 | * But be careful: shmem_evict_inode checks list_empty without taking |
937 | * mutex, and there's an instant in list_move_tail when info->swaplist | 937 | * mutex, and there's an instant in list_move_tail when info->swaplist |
938 | * would appear empty, if it were the only one on shmem_swaplist. We | 938 | * would appear empty, if it were the only one on shmem_swaplist. We |
939 | * could avoid doing it if inode NULL; or use this minor optimization. | 939 | * could avoid doing it if inode NULL; or use this minor optimization. |
@@ -1223,6 +1223,7 @@ static int shmem_getpage(struct inode *inode, unsigned long idx, | |||
1223 | struct shmem_sb_info *sbinfo; | 1223 | struct shmem_sb_info *sbinfo; |
1224 | struct page *filepage = *pagep; | 1224 | struct page *filepage = *pagep; |
1225 | struct page *swappage; | 1225 | struct page *swappage; |
1226 | struct page *prealloc_page = NULL; | ||
1226 | swp_entry_t *entry; | 1227 | swp_entry_t *entry; |
1227 | swp_entry_t swap; | 1228 | swp_entry_t swap; |
1228 | gfp_t gfp; | 1229 | gfp_t gfp; |
@@ -1247,7 +1248,6 @@ repeat: | |||
1247 | filepage = find_lock_page(mapping, idx); | 1248 | filepage = find_lock_page(mapping, idx); |
1248 | if (filepage && PageUptodate(filepage)) | 1249 | if (filepage && PageUptodate(filepage)) |
1249 | goto done; | 1250 | goto done; |
1250 | error = 0; | ||
1251 | gfp = mapping_gfp_mask(mapping); | 1251 | gfp = mapping_gfp_mask(mapping); |
1252 | if (!filepage) { | 1252 | if (!filepage) { |
1253 | /* | 1253 | /* |
@@ -1258,7 +1258,19 @@ repeat: | |||
1258 | if (error) | 1258 | if (error) |
1259 | goto failed; | 1259 | goto failed; |
1260 | radix_tree_preload_end(); | 1260 | radix_tree_preload_end(); |
1261 | if (sgp != SGP_READ && !prealloc_page) { | ||
1262 | /* We don't care if this fails */ | ||
1263 | prealloc_page = shmem_alloc_page(gfp, info, idx); | ||
1264 | if (prealloc_page) { | ||
1265 | if (mem_cgroup_cache_charge(prealloc_page, | ||
1266 | current->mm, GFP_KERNEL)) { | ||
1267 | page_cache_release(prealloc_page); | ||
1268 | prealloc_page = NULL; | ||
1269 | } | ||
1270 | } | ||
1271 | } | ||
1261 | } | 1272 | } |
1273 | error = 0; | ||
1262 | 1274 | ||
1263 | spin_lock(&info->lock); | 1275 | spin_lock(&info->lock); |
1264 | shmem_recalc_inode(inode); | 1276 | shmem_recalc_inode(inode); |
@@ -1387,17 +1399,16 @@ repeat: | |||
1387 | shmem_swp_unmap(entry); | 1399 | shmem_swp_unmap(entry); |
1388 | sbinfo = SHMEM_SB(inode->i_sb); | 1400 | sbinfo = SHMEM_SB(inode->i_sb); |
1389 | if (sbinfo->max_blocks) { | 1401 | if (sbinfo->max_blocks) { |
1390 | spin_lock(&sbinfo->stat_lock); | 1402 | if ((percpu_counter_compare(&sbinfo->used_blocks, sbinfo->max_blocks) > 0) || |
1391 | if (sbinfo->free_blocks == 0 || | ||
1392 | shmem_acct_block(info->flags)) { | 1403 | shmem_acct_block(info->flags)) { |
1393 | spin_unlock(&sbinfo->stat_lock); | ||
1394 | spin_unlock(&info->lock); | 1404 | spin_unlock(&info->lock); |
1395 | error = -ENOSPC; | 1405 | error = -ENOSPC; |
1396 | goto failed; | 1406 | goto failed; |
1397 | } | 1407 | } |
1398 | sbinfo->free_blocks--; | 1408 | percpu_counter_inc(&sbinfo->used_blocks); |
1409 | spin_lock(&inode->i_lock); | ||
1399 | inode->i_blocks += BLOCKS_PER_PAGE; | 1410 | inode->i_blocks += BLOCKS_PER_PAGE; |
1400 | spin_unlock(&sbinfo->stat_lock); | 1411 | spin_unlock(&inode->i_lock); |
1401 | } else if (shmem_acct_block(info->flags)) { | 1412 | } else if (shmem_acct_block(info->flags)) { |
1402 | spin_unlock(&info->lock); | 1413 | spin_unlock(&info->lock); |
1403 | error = -ENOSPC; | 1414 | error = -ENOSPC; |
@@ -1407,28 +1418,38 @@ repeat: | |||
1407 | if (!filepage) { | 1418 | if (!filepage) { |
1408 | int ret; | 1419 | int ret; |
1409 | 1420 | ||
1410 | spin_unlock(&info->lock); | 1421 | if (!prealloc_page) { |
1411 | filepage = shmem_alloc_page(gfp, info, idx); | 1422 | spin_unlock(&info->lock); |
1412 | if (!filepage) { | 1423 | filepage = shmem_alloc_page(gfp, info, idx); |
1413 | shmem_unacct_blocks(info->flags, 1); | 1424 | if (!filepage) { |
1414 | shmem_free_blocks(inode, 1); | 1425 | shmem_unacct_blocks(info->flags, 1); |
1415 | error = -ENOMEM; | 1426 | shmem_free_blocks(inode, 1); |
1416 | goto failed; | 1427 | error = -ENOMEM; |
1417 | } | 1428 | goto failed; |
1418 | SetPageSwapBacked(filepage); | 1429 | } |
1430 | SetPageSwapBacked(filepage); | ||
1419 | 1431 | ||
1420 | /* Precharge page while we can wait, compensate after */ | 1432 | /* |
1421 | error = mem_cgroup_cache_charge(filepage, current->mm, | 1433 | * Precharge page while we can wait, compensate |
1422 | GFP_KERNEL); | 1434 | * after |
1423 | if (error) { | 1435 | */ |
1424 | page_cache_release(filepage); | 1436 | error = mem_cgroup_cache_charge(filepage, |
1425 | shmem_unacct_blocks(info->flags, 1); | 1437 | current->mm, GFP_KERNEL); |
1426 | shmem_free_blocks(inode, 1); | 1438 | if (error) { |
1427 | filepage = NULL; | 1439 | page_cache_release(filepage); |
1428 | goto failed; | 1440 | shmem_unacct_blocks(info->flags, 1); |
1441 | shmem_free_blocks(inode, 1); | ||
1442 | filepage = NULL; | ||
1443 | goto failed; | ||
1444 | } | ||
1445 | |||
1446 | spin_lock(&info->lock); | ||
1447 | } else { | ||
1448 | filepage = prealloc_page; | ||
1449 | prealloc_page = NULL; | ||
1450 | SetPageSwapBacked(filepage); | ||
1429 | } | 1451 | } |
1430 | 1452 | ||
1431 | spin_lock(&info->lock); | ||
1432 | entry = shmem_swp_alloc(info, idx, sgp); | 1453 | entry = shmem_swp_alloc(info, idx, sgp); |
1433 | if (IS_ERR(entry)) | 1454 | if (IS_ERR(entry)) |
1434 | error = PTR_ERR(entry); | 1455 | error = PTR_ERR(entry); |
@@ -1469,13 +1490,19 @@ repeat: | |||
1469 | } | 1490 | } |
1470 | done: | 1491 | done: |
1471 | *pagep = filepage; | 1492 | *pagep = filepage; |
1472 | return 0; | 1493 | error = 0; |
1494 | goto out; | ||
1473 | 1495 | ||
1474 | failed: | 1496 | failed: |
1475 | if (*pagep != filepage) { | 1497 | if (*pagep != filepage) { |
1476 | unlock_page(filepage); | 1498 | unlock_page(filepage); |
1477 | page_cache_release(filepage); | 1499 | page_cache_release(filepage); |
1478 | } | 1500 | } |
1501 | out: | ||
1502 | if (prealloc_page) { | ||
1503 | mem_cgroup_uncharge_cache_page(prealloc_page); | ||
1504 | page_cache_release(prealloc_page); | ||
1505 | } | ||
1479 | return error; | 1506 | return error; |
1480 | } | 1507 | } |
1481 | 1508 | ||
@@ -1791,17 +1818,16 @@ static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf) | |||
1791 | buf->f_type = TMPFS_MAGIC; | 1818 | buf->f_type = TMPFS_MAGIC; |
1792 | buf->f_bsize = PAGE_CACHE_SIZE; | 1819 | buf->f_bsize = PAGE_CACHE_SIZE; |
1793 | buf->f_namelen = NAME_MAX; | 1820 | buf->f_namelen = NAME_MAX; |
1794 | spin_lock(&sbinfo->stat_lock); | ||
1795 | if (sbinfo->max_blocks) { | 1821 | if (sbinfo->max_blocks) { |
1796 | buf->f_blocks = sbinfo->max_blocks; | 1822 | buf->f_blocks = sbinfo->max_blocks; |
1797 | buf->f_bavail = buf->f_bfree = sbinfo->free_blocks; | 1823 | buf->f_bavail = buf->f_bfree = |
1824 | sbinfo->max_blocks - percpu_counter_sum(&sbinfo->used_blocks); | ||
1798 | } | 1825 | } |
1799 | if (sbinfo->max_inodes) { | 1826 | if (sbinfo->max_inodes) { |
1800 | buf->f_files = sbinfo->max_inodes; | 1827 | buf->f_files = sbinfo->max_inodes; |
1801 | buf->f_ffree = sbinfo->free_inodes; | 1828 | buf->f_ffree = sbinfo->free_inodes; |
1802 | } | 1829 | } |
1803 | /* else leave those fields 0 like simple_statfs */ | 1830 | /* else leave those fields 0 like simple_statfs */ |
1804 | spin_unlock(&sbinfo->stat_lock); | ||
1805 | return 0; | 1831 | return 0; |
1806 | } | 1832 | } |
1807 | 1833 | ||
@@ -2242,7 +2268,6 @@ static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) | |||
2242 | { | 2268 | { |
2243 | struct shmem_sb_info *sbinfo = SHMEM_SB(sb); | 2269 | struct shmem_sb_info *sbinfo = SHMEM_SB(sb); |
2244 | struct shmem_sb_info config = *sbinfo; | 2270 | struct shmem_sb_info config = *sbinfo; |
2245 | unsigned long blocks; | ||
2246 | unsigned long inodes; | 2271 | unsigned long inodes; |
2247 | int error = -EINVAL; | 2272 | int error = -EINVAL; |
2248 | 2273 | ||
@@ -2250,9 +2275,8 @@ static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) | |||
2250 | return error; | 2275 | return error; |
2251 | 2276 | ||
2252 | spin_lock(&sbinfo->stat_lock); | 2277 | spin_lock(&sbinfo->stat_lock); |
2253 | blocks = sbinfo->max_blocks - sbinfo->free_blocks; | ||
2254 | inodes = sbinfo->max_inodes - sbinfo->free_inodes; | 2278 | inodes = sbinfo->max_inodes - sbinfo->free_inodes; |
2255 | if (config.max_blocks < blocks) | 2279 | if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0) |
2256 | goto out; | 2280 | goto out; |
2257 | if (config.max_inodes < inodes) | 2281 | if (config.max_inodes < inodes) |
2258 | goto out; | 2282 | goto out; |
@@ -2269,7 +2293,6 @@ static int shmem_remount_fs(struct super_block *sb, int *flags, char *data) | |||
2269 | 2293 | ||
2270 | error = 0; | 2294 | error = 0; |
2271 | sbinfo->max_blocks = config.max_blocks; | 2295 | sbinfo->max_blocks = config.max_blocks; |
2272 | sbinfo->free_blocks = config.max_blocks - blocks; | ||
2273 | sbinfo->max_inodes = config.max_inodes; | 2296 | sbinfo->max_inodes = config.max_inodes; |
2274 | sbinfo->free_inodes = config.max_inodes - inodes; | 2297 | sbinfo->free_inodes = config.max_inodes - inodes; |
2275 | 2298 | ||
@@ -2302,7 +2325,10 @@ static int shmem_show_options(struct seq_file *seq, struct vfsmount *vfs) | |||
2302 | 2325 | ||
2303 | static void shmem_put_super(struct super_block *sb) | 2326 | static void shmem_put_super(struct super_block *sb) |
2304 | { | 2327 | { |
2305 | kfree(sb->s_fs_info); | 2328 | struct shmem_sb_info *sbinfo = SHMEM_SB(sb); |
2329 | |||
2330 | percpu_counter_destroy(&sbinfo->used_blocks); | ||
2331 | kfree(sbinfo); | ||
2306 | sb->s_fs_info = NULL; | 2332 | sb->s_fs_info = NULL; |
2307 | } | 2333 | } |
2308 | 2334 | ||
@@ -2344,7 +2370,8 @@ int shmem_fill_super(struct super_block *sb, void *data, int silent) | |||
2344 | #endif | 2370 | #endif |
2345 | 2371 | ||
2346 | spin_lock_init(&sbinfo->stat_lock); | 2372 | spin_lock_init(&sbinfo->stat_lock); |
2347 | sbinfo->free_blocks = sbinfo->max_blocks; | 2373 | if (percpu_counter_init(&sbinfo->used_blocks, 0)) |
2374 | goto failed; | ||
2348 | sbinfo->free_inodes = sbinfo->max_inodes; | 2375 | sbinfo->free_inodes = sbinfo->max_inodes; |
2349 | 2376 | ||
2350 | sb->s_maxbytes = SHMEM_MAX_BYTES; | 2377 | sb->s_maxbytes = SHMEM_MAX_BYTES; |
@@ -2496,7 +2523,7 @@ static const struct super_operations shmem_ops = { | |||
2496 | .remount_fs = shmem_remount_fs, | 2523 | .remount_fs = shmem_remount_fs, |
2497 | .show_options = shmem_show_options, | 2524 | .show_options = shmem_show_options, |
2498 | #endif | 2525 | #endif |
2499 | .delete_inode = shmem_delete_inode, | 2526 | .evict_inode = shmem_evict_inode, |
2500 | .drop_inode = generic_delete_inode, | 2527 | .drop_inode = generic_delete_inode, |
2501 | .put_super = shmem_put_super, | 2528 | .put_super = shmem_put_super, |
2502 | }; | 2529 | }; |
@@ -102,7 +102,6 @@ | |||
102 | #include <linux/cpu.h> | 102 | #include <linux/cpu.h> |
103 | #include <linux/sysctl.h> | 103 | #include <linux/sysctl.h> |
104 | #include <linux/module.h> | 104 | #include <linux/module.h> |
105 | #include <linux/kmemtrace.h> | ||
106 | #include <linux/rcupdate.h> | 105 | #include <linux/rcupdate.h> |
107 | #include <linux/string.h> | 106 | #include <linux/string.h> |
108 | #include <linux/uaccess.h> | 107 | #include <linux/uaccess.h> |
@@ -395,7 +394,7 @@ static void kmem_list3_init(struct kmem_list3 *parent) | |||
395 | #define STATS_DEC_ACTIVE(x) do { } while (0) | 394 | #define STATS_DEC_ACTIVE(x) do { } while (0) |
396 | #define STATS_INC_ALLOCED(x) do { } while (0) | 395 | #define STATS_INC_ALLOCED(x) do { } while (0) |
397 | #define STATS_INC_GROWN(x) do { } while (0) | 396 | #define STATS_INC_GROWN(x) do { } while (0) |
398 | #define STATS_ADD_REAPED(x,y) do { } while (0) | 397 | #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0) |
399 | #define STATS_SET_HIGH(x) do { } while (0) | 398 | #define STATS_SET_HIGH(x) do { } while (0) |
400 | #define STATS_INC_ERR(x) do { } while (0) | 399 | #define STATS_INC_ERR(x) do { } while (0) |
401 | #define STATS_INC_NODEALLOCS(x) do { } while (0) | 400 | #define STATS_INC_NODEALLOCS(x) do { } while (0) |
@@ -861,7 +860,7 @@ static void __cpuinit start_cpu_timer(int cpu) | |||
861 | */ | 860 | */ |
862 | if (keventd_up() && reap_work->work.func == NULL) { | 861 | if (keventd_up() && reap_work->work.func == NULL) { |
863 | init_reap_node(cpu); | 862 | init_reap_node(cpu); |
864 | INIT_DELAYED_WORK(reap_work, cache_reap); | 863 | INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap); |
865 | schedule_delayed_work_on(cpu, reap_work, | 864 | schedule_delayed_work_on(cpu, reap_work, |
866 | __round_jiffies_relative(HZ, cpu)); | 865 | __round_jiffies_relative(HZ, cpu)); |
867 | } | 866 | } |
@@ -2331,8 +2330,8 @@ kmem_cache_create (const char *name, size_t size, size_t align, | |||
2331 | } | 2330 | } |
2332 | #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) | 2331 | #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) |
2333 | if (size >= malloc_sizes[INDEX_L3 + 1].cs_size | 2332 | if (size >= malloc_sizes[INDEX_L3 + 1].cs_size |
2334 | && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) { | 2333 | && cachep->obj_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) { |
2335 | cachep->obj_offset += PAGE_SIZE - size; | 2334 | cachep->obj_offset += PAGE_SIZE - ALIGN(size, align); |
2336 | size = PAGE_SIZE; | 2335 | size = PAGE_SIZE; |
2337 | } | 2336 | } |
2338 | #endif | 2337 | #endif |
@@ -66,8 +66,10 @@ | |||
66 | #include <linux/module.h> | 66 | #include <linux/module.h> |
67 | #include <linux/rcupdate.h> | 67 | #include <linux/rcupdate.h> |
68 | #include <linux/list.h> | 68 | #include <linux/list.h> |
69 | #include <linux/kmemtrace.h> | ||
70 | #include <linux/kmemleak.h> | 69 | #include <linux/kmemleak.h> |
70 | |||
71 | #include <trace/events/kmem.h> | ||
72 | |||
71 | #include <asm/atomic.h> | 73 | #include <asm/atomic.h> |
72 | 74 | ||
73 | /* | 75 | /* |
@@ -394,6 +396,7 @@ static void slob_free(void *block, int size) | |||
394 | slob_t *prev, *next, *b = (slob_t *)block; | 396 | slob_t *prev, *next, *b = (slob_t *)block; |
395 | slobidx_t units; | 397 | slobidx_t units; |
396 | unsigned long flags; | 398 | unsigned long flags; |
399 | struct list_head *slob_list; | ||
397 | 400 | ||
398 | if (unlikely(ZERO_OR_NULL_PTR(block))) | 401 | if (unlikely(ZERO_OR_NULL_PTR(block))) |
399 | return; | 402 | return; |
@@ -422,7 +425,13 @@ static void slob_free(void *block, int size) | |||
422 | set_slob(b, units, | 425 | set_slob(b, units, |
423 | (void *)((unsigned long)(b + | 426 | (void *)((unsigned long)(b + |
424 | SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK)); | 427 | SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK)); |
425 | set_slob_page_free(sp, &free_slob_small); | 428 | if (size < SLOB_BREAK1) |
429 | slob_list = &free_slob_small; | ||
430 | else if (size < SLOB_BREAK2) | ||
431 | slob_list = &free_slob_medium; | ||
432 | else | ||
433 | slob_list = &free_slob_large; | ||
434 | set_slob_page_free(sp, slob_list); | ||
426 | goto out; | 435 | goto out; |
427 | } | 436 | } |
428 | 437 | ||
@@ -639,7 +648,6 @@ void kmem_cache_free(struct kmem_cache *c, void *b) | |||
639 | if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) { | 648 | if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) { |
640 | struct slob_rcu *slob_rcu; | 649 | struct slob_rcu *slob_rcu; |
641 | slob_rcu = b + (c->size - sizeof(struct slob_rcu)); | 650 | slob_rcu = b + (c->size - sizeof(struct slob_rcu)); |
642 | INIT_RCU_HEAD(&slob_rcu->head); | ||
643 | slob_rcu->size = c->size; | 651 | slob_rcu->size = c->size; |
644 | call_rcu(&slob_rcu->head, kmem_rcu_free); | 652 | call_rcu(&slob_rcu->head, kmem_rcu_free); |
645 | } else { | 653 | } else { |
@@ -17,7 +17,6 @@ | |||
17 | #include <linux/slab.h> | 17 | #include <linux/slab.h> |
18 | #include <linux/proc_fs.h> | 18 | #include <linux/proc_fs.h> |
19 | #include <linux/seq_file.h> | 19 | #include <linux/seq_file.h> |
20 | #include <linux/kmemtrace.h> | ||
21 | #include <linux/kmemcheck.h> | 20 | #include <linux/kmemcheck.h> |
22 | #include <linux/cpu.h> | 21 | #include <linux/cpu.h> |
23 | #include <linux/cpuset.h> | 22 | #include <linux/cpuset.h> |
@@ -107,11 +106,17 @@ | |||
107 | * the fast path and disables lockless freelists. | 106 | * the fast path and disables lockless freelists. |
108 | */ | 107 | */ |
109 | 108 | ||
109 | #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ | ||
110 | SLAB_TRACE | SLAB_DEBUG_FREE) | ||
111 | |||
112 | static inline int kmem_cache_debug(struct kmem_cache *s) | ||
113 | { | ||
110 | #ifdef CONFIG_SLUB_DEBUG | 114 | #ifdef CONFIG_SLUB_DEBUG |
111 | #define SLABDEBUG 1 | 115 | return unlikely(s->flags & SLAB_DEBUG_FLAGS); |
112 | #else | 116 | #else |
113 | #define SLABDEBUG 0 | 117 | return 0; |
114 | #endif | 118 | #endif |
119 | } | ||
115 | 120 | ||
116 | /* | 121 | /* |
117 | * Issues still to be resolved: | 122 | * Issues still to be resolved: |
@@ -162,8 +167,8 @@ | |||
162 | #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */ | 167 | #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */ |
163 | 168 | ||
164 | /* Internal SLUB flags */ | 169 | /* Internal SLUB flags */ |
165 | #define __OBJECT_POISON 0x80000000 /* Poison object */ | 170 | #define __OBJECT_POISON 0x80000000UL /* Poison object */ |
166 | #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */ | 171 | #define __SYSFS_ADD_DEFERRED 0x40000000UL /* Not yet visible via sysfs */ |
167 | 172 | ||
168 | static int kmem_size = sizeof(struct kmem_cache); | 173 | static int kmem_size = sizeof(struct kmem_cache); |
169 | 174 | ||
@@ -1073,7 +1078,7 @@ static inline struct page *alloc_slab_page(gfp_t flags, int node, | |||
1073 | 1078 | ||
1074 | flags |= __GFP_NOTRACK; | 1079 | flags |= __GFP_NOTRACK; |
1075 | 1080 | ||
1076 | if (node == -1) | 1081 | if (node == NUMA_NO_NODE) |
1077 | return alloc_pages(flags, order); | 1082 | return alloc_pages(flags, order); |
1078 | else | 1083 | else |
1079 | return alloc_pages_exact_node(node, flags, order); | 1084 | return alloc_pages_exact_node(node, flags, order); |
@@ -1157,9 +1162,6 @@ static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) | |||
1157 | inc_slabs_node(s, page_to_nid(page), page->objects); | 1162 | inc_slabs_node(s, page_to_nid(page), page->objects); |
1158 | page->slab = s; | 1163 | page->slab = s; |
1159 | page->flags |= 1 << PG_slab; | 1164 | page->flags |= 1 << PG_slab; |
1160 | if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON | | ||
1161 | SLAB_STORE_USER | SLAB_TRACE)) | ||
1162 | __SetPageSlubDebug(page); | ||
1163 | 1165 | ||
1164 | start = page_address(page); | 1166 | start = page_address(page); |
1165 | 1167 | ||
@@ -1186,14 +1188,13 @@ static void __free_slab(struct kmem_cache *s, struct page *page) | |||
1186 | int order = compound_order(page); | 1188 | int order = compound_order(page); |
1187 | int pages = 1 << order; | 1189 | int pages = 1 << order; |
1188 | 1190 | ||
1189 | if (unlikely(SLABDEBUG && PageSlubDebug(page))) { | 1191 | if (kmem_cache_debug(s)) { |
1190 | void *p; | 1192 | void *p; |
1191 | 1193 | ||
1192 | slab_pad_check(s, page); | 1194 | slab_pad_check(s, page); |
1193 | for_each_object(p, s, page_address(page), | 1195 | for_each_object(p, s, page_address(page), |
1194 | page->objects) | 1196 | page->objects) |
1195 | check_object(s, page, p, 0); | 1197 | check_object(s, page, p, 0); |
1196 | __ClearPageSlubDebug(page); | ||
1197 | } | 1198 | } |
1198 | 1199 | ||
1199 | kmemcheck_free_shadow(page, compound_order(page)); | 1200 | kmemcheck_free_shadow(page, compound_order(page)); |
@@ -1387,10 +1388,10 @@ static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) | |||
1387 | static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node) | 1388 | static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node) |
1388 | { | 1389 | { |
1389 | struct page *page; | 1390 | struct page *page; |
1390 | int searchnode = (node == -1) ? numa_node_id() : node; | 1391 | int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node; |
1391 | 1392 | ||
1392 | page = get_partial_node(get_node(s, searchnode)); | 1393 | page = get_partial_node(get_node(s, searchnode)); |
1393 | if (page || (flags & __GFP_THISNODE)) | 1394 | if (page || node != -1) |
1394 | return page; | 1395 | return page; |
1395 | 1396 | ||
1396 | return get_any_partial(s, flags); | 1397 | return get_any_partial(s, flags); |
@@ -1415,8 +1416,7 @@ static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail) | |||
1415 | stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD); | 1416 | stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD); |
1416 | } else { | 1417 | } else { |
1417 | stat(s, DEACTIVATE_FULL); | 1418 | stat(s, DEACTIVATE_FULL); |
1418 | if (SLABDEBUG && PageSlubDebug(page) && | 1419 | if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER)) |
1419 | (s->flags & SLAB_STORE_USER)) | ||
1420 | add_full(n, page); | 1420 | add_full(n, page); |
1421 | } | 1421 | } |
1422 | slab_unlock(page); | 1422 | slab_unlock(page); |
@@ -1515,7 +1515,7 @@ static void flush_all(struct kmem_cache *s) | |||
1515 | static inline int node_match(struct kmem_cache_cpu *c, int node) | 1515 | static inline int node_match(struct kmem_cache_cpu *c, int node) |
1516 | { | 1516 | { |
1517 | #ifdef CONFIG_NUMA | 1517 | #ifdef CONFIG_NUMA |
1518 | if (node != -1 && c->node != node) | 1518 | if (node != NUMA_NO_NODE && c->node != node) |
1519 | return 0; | 1519 | return 0; |
1520 | #endif | 1520 | #endif |
1521 | return 1; | 1521 | return 1; |
@@ -1624,7 +1624,7 @@ load_freelist: | |||
1624 | object = c->page->freelist; | 1624 | object = c->page->freelist; |
1625 | if (unlikely(!object)) | 1625 | if (unlikely(!object)) |
1626 | goto another_slab; | 1626 | goto another_slab; |
1627 | if (unlikely(SLABDEBUG && PageSlubDebug(c->page))) | 1627 | if (kmem_cache_debug(s)) |
1628 | goto debug; | 1628 | goto debug; |
1629 | 1629 | ||
1630 | c->freelist = get_freepointer(s, object); | 1630 | c->freelist = get_freepointer(s, object); |
@@ -1727,7 +1727,7 @@ static __always_inline void *slab_alloc(struct kmem_cache *s, | |||
1727 | 1727 | ||
1728 | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) | 1728 | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) |
1729 | { | 1729 | { |
1730 | void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_); | 1730 | void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_); |
1731 | 1731 | ||
1732 | trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags); | 1732 | trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags); |
1733 | 1733 | ||
@@ -1738,7 +1738,7 @@ EXPORT_SYMBOL(kmem_cache_alloc); | |||
1738 | #ifdef CONFIG_TRACING | 1738 | #ifdef CONFIG_TRACING |
1739 | void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags) | 1739 | void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags) |
1740 | { | 1740 | { |
1741 | return slab_alloc(s, gfpflags, -1, _RET_IP_); | 1741 | return slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_); |
1742 | } | 1742 | } |
1743 | EXPORT_SYMBOL(kmem_cache_alloc_notrace); | 1743 | EXPORT_SYMBOL(kmem_cache_alloc_notrace); |
1744 | #endif | 1744 | #endif |
@@ -1783,7 +1783,7 @@ static void __slab_free(struct kmem_cache *s, struct page *page, | |||
1783 | stat(s, FREE_SLOWPATH); | 1783 | stat(s, FREE_SLOWPATH); |
1784 | slab_lock(page); | 1784 | slab_lock(page); |
1785 | 1785 | ||
1786 | if (unlikely(SLABDEBUG && PageSlubDebug(page))) | 1786 | if (kmem_cache_debug(s)) |
1787 | goto debug; | 1787 | goto debug; |
1788 | 1788 | ||
1789 | checks_ok: | 1789 | checks_ok: |
@@ -2490,7 +2490,6 @@ void kmem_cache_destroy(struct kmem_cache *s) | |||
2490 | s->refcount--; | 2490 | s->refcount--; |
2491 | if (!s->refcount) { | 2491 | if (!s->refcount) { |
2492 | list_del(&s->list); | 2492 | list_del(&s->list); |
2493 | up_write(&slub_lock); | ||
2494 | if (kmem_cache_close(s)) { | 2493 | if (kmem_cache_close(s)) { |
2495 | printk(KERN_ERR "SLUB %s: %s called for cache that " | 2494 | printk(KERN_ERR "SLUB %s: %s called for cache that " |
2496 | "still has objects.\n", s->name, __func__); | 2495 | "still has objects.\n", s->name, __func__); |
@@ -2499,8 +2498,8 @@ void kmem_cache_destroy(struct kmem_cache *s) | |||
2499 | if (s->flags & SLAB_DESTROY_BY_RCU) | 2498 | if (s->flags & SLAB_DESTROY_BY_RCU) |
2500 | rcu_barrier(); | 2499 | rcu_barrier(); |
2501 | sysfs_slab_remove(s); | 2500 | sysfs_slab_remove(s); |
2502 | } else | 2501 | } |
2503 | up_write(&slub_lock); | 2502 | up_write(&slub_lock); |
2504 | } | 2503 | } |
2505 | EXPORT_SYMBOL(kmem_cache_destroy); | 2504 | EXPORT_SYMBOL(kmem_cache_destroy); |
2506 | 2505 | ||
@@ -2728,7 +2727,7 @@ void *__kmalloc(size_t size, gfp_t flags) | |||
2728 | if (unlikely(ZERO_OR_NULL_PTR(s))) | 2727 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
2729 | return s; | 2728 | return s; |
2730 | 2729 | ||
2731 | ret = slab_alloc(s, flags, -1, _RET_IP_); | 2730 | ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_); |
2732 | 2731 | ||
2733 | trace_kmalloc(_RET_IP_, ret, size, s->size, flags); | 2732 | trace_kmalloc(_RET_IP_, ret, size, s->size, flags); |
2734 | 2733 | ||
@@ -3118,9 +3117,12 @@ void __init kmem_cache_init(void) | |||
3118 | slab_state = UP; | 3117 | slab_state = UP; |
3119 | 3118 | ||
3120 | /* Provide the correct kmalloc names now that the caches are up */ | 3119 | /* Provide the correct kmalloc names now that the caches are up */ |
3121 | for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) | 3120 | for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) { |
3122 | kmalloc_caches[i]. name = | 3121 | char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i); |
3123 | kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i); | 3122 | |
3123 | BUG_ON(!s); | ||
3124 | kmalloc_caches[i].name = s; | ||
3125 | } | ||
3124 | 3126 | ||
3125 | #ifdef CONFIG_SMP | 3127 | #ifdef CONFIG_SMP |
3126 | register_cpu_notifier(&slab_notifier); | 3128 | register_cpu_notifier(&slab_notifier); |
@@ -3223,14 +3225,12 @@ struct kmem_cache *kmem_cache_create(const char *name, size_t size, | |||
3223 | */ | 3225 | */ |
3224 | s->objsize = max(s->objsize, (int)size); | 3226 | s->objsize = max(s->objsize, (int)size); |
3225 | s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); | 3227 | s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); |
3226 | up_write(&slub_lock); | ||
3227 | 3228 | ||
3228 | if (sysfs_slab_alias(s, name)) { | 3229 | if (sysfs_slab_alias(s, name)) { |
3229 | down_write(&slub_lock); | ||
3230 | s->refcount--; | 3230 | s->refcount--; |
3231 | up_write(&slub_lock); | ||
3232 | goto err; | 3231 | goto err; |
3233 | } | 3232 | } |
3233 | up_write(&slub_lock); | ||
3234 | return s; | 3234 | return s; |
3235 | } | 3235 | } |
3236 | 3236 | ||
@@ -3239,14 +3239,12 @@ struct kmem_cache *kmem_cache_create(const char *name, size_t size, | |||
3239 | if (kmem_cache_open(s, GFP_KERNEL, name, | 3239 | if (kmem_cache_open(s, GFP_KERNEL, name, |
3240 | size, align, flags, ctor)) { | 3240 | size, align, flags, ctor)) { |
3241 | list_add(&s->list, &slab_caches); | 3241 | list_add(&s->list, &slab_caches); |
3242 | up_write(&slub_lock); | ||
3243 | if (sysfs_slab_add(s)) { | 3242 | if (sysfs_slab_add(s)) { |
3244 | down_write(&slub_lock); | ||
3245 | list_del(&s->list); | 3243 | list_del(&s->list); |
3246 | up_write(&slub_lock); | ||
3247 | kfree(s); | 3244 | kfree(s); |
3248 | goto err; | 3245 | goto err; |
3249 | } | 3246 | } |
3247 | up_write(&slub_lock); | ||
3250 | return s; | 3248 | return s; |
3251 | } | 3249 | } |
3252 | kfree(s); | 3250 | kfree(s); |
@@ -3312,7 +3310,7 @@ void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) | |||
3312 | if (unlikely(ZERO_OR_NULL_PTR(s))) | 3310 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
3313 | return s; | 3311 | return s; |
3314 | 3312 | ||
3315 | ret = slab_alloc(s, gfpflags, -1, caller); | 3313 | ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller); |
3316 | 3314 | ||
3317 | /* Honor the call site pointer we recieved. */ | 3315 | /* Honor the call site pointer we recieved. */ |
3318 | trace_kmalloc(caller, ret, size, s->size, gfpflags); | 3316 | trace_kmalloc(caller, ret, size, s->size, gfpflags); |
@@ -3395,16 +3393,6 @@ static void validate_slab_slab(struct kmem_cache *s, struct page *page, | |||
3395 | } else | 3393 | } else |
3396 | printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n", | 3394 | printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n", |
3397 | s->name, page); | 3395 | s->name, page); |
3398 | |||
3399 | if (s->flags & DEBUG_DEFAULT_FLAGS) { | ||
3400 | if (!PageSlubDebug(page)) | ||
3401 | printk(KERN_ERR "SLUB %s: SlubDebug not set " | ||
3402 | "on slab 0x%p\n", s->name, page); | ||
3403 | } else { | ||
3404 | if (PageSlubDebug(page)) | ||
3405 | printk(KERN_ERR "SLUB %s: SlubDebug set on " | ||
3406 | "slab 0x%p\n", s->name, page); | ||
3407 | } | ||
3408 | } | 3396 | } |
3409 | 3397 | ||
3410 | static int validate_slab_node(struct kmem_cache *s, | 3398 | static int validate_slab_node(struct kmem_cache *s, |
@@ -4504,6 +4492,13 @@ static int sysfs_slab_add(struct kmem_cache *s) | |||
4504 | 4492 | ||
4505 | static void sysfs_slab_remove(struct kmem_cache *s) | 4493 | static void sysfs_slab_remove(struct kmem_cache *s) |
4506 | { | 4494 | { |
4495 | if (slab_state < SYSFS) | ||
4496 | /* | ||
4497 | * Sysfs has not been setup yet so no need to remove the | ||
4498 | * cache from sysfs. | ||
4499 | */ | ||
4500 | return; | ||
4501 | |||
4507 | kobject_uevent(&s->kobj, KOBJ_REMOVE); | 4502 | kobject_uevent(&s->kobj, KOBJ_REMOVE); |
4508 | kobject_del(&s->kobj); | 4503 | kobject_del(&s->kobj); |
4509 | kobject_put(&s->kobj); | 4504 | kobject_put(&s->kobj); |
@@ -4549,8 +4544,11 @@ static int __init slab_sysfs_init(void) | |||
4549 | struct kmem_cache *s; | 4544 | struct kmem_cache *s; |
4550 | int err; | 4545 | int err; |
4551 | 4546 | ||
4547 | down_write(&slub_lock); | ||
4548 | |||
4552 | slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); | 4549 | slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); |
4553 | if (!slab_kset) { | 4550 | if (!slab_kset) { |
4551 | up_write(&slub_lock); | ||
4554 | printk(KERN_ERR "Cannot register slab subsystem.\n"); | 4552 | printk(KERN_ERR "Cannot register slab subsystem.\n"); |
4555 | return -ENOSYS; | 4553 | return -ENOSYS; |
4556 | } | 4554 | } |
@@ -4575,6 +4573,7 @@ static int __init slab_sysfs_init(void) | |||
4575 | kfree(al); | 4573 | kfree(al); |
4576 | } | 4574 | } |
4577 | 4575 | ||
4576 | up_write(&slub_lock); | ||
4578 | resiliency_test(); | 4577 | resiliency_test(); |
4579 | return 0; | 4578 | return 0; |
4580 | } | 4579 | } |
diff --git a/mm/swapfile.c b/mm/swapfile.c index 03aa2d55f1a2..1f3f9c59a73a 100644 --- a/mm/swapfile.c +++ b/mm/swapfile.c | |||
@@ -47,6 +47,8 @@ long nr_swap_pages; | |||
47 | long total_swap_pages; | 47 | long total_swap_pages; |
48 | static int least_priority; | 48 | static int least_priority; |
49 | 49 | ||
50 | static bool swap_for_hibernation; | ||
51 | |||
50 | static const char Bad_file[] = "Bad swap file entry "; | 52 | static const char Bad_file[] = "Bad swap file entry "; |
51 | static const char Unused_file[] = "Unused swap file entry "; | 53 | static const char Unused_file[] = "Unused swap file entry "; |
52 | static const char Bad_offset[] = "Bad swap offset entry "; | 54 | static const char Bad_offset[] = "Bad swap offset entry "; |
@@ -318,8 +320,10 @@ checks: | |||
318 | if (offset > si->highest_bit) | 320 | if (offset > si->highest_bit) |
319 | scan_base = offset = si->lowest_bit; | 321 | scan_base = offset = si->lowest_bit; |
320 | 322 | ||
321 | /* reuse swap entry of cache-only swap if not busy. */ | 323 | /* reuse swap entry of cache-only swap if not hibernation. */ |
322 | if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { | 324 | if (vm_swap_full() |
325 | && usage == SWAP_HAS_CACHE | ||
326 | && si->swap_map[offset] == SWAP_HAS_CACHE) { | ||
323 | int swap_was_freed; | 327 | int swap_was_freed; |
324 | spin_unlock(&swap_lock); | 328 | spin_unlock(&swap_lock); |
325 | swap_was_freed = __try_to_reclaim_swap(si, offset); | 329 | swap_was_freed = __try_to_reclaim_swap(si, offset); |
@@ -449,6 +453,8 @@ swp_entry_t get_swap_page(void) | |||
449 | spin_lock(&swap_lock); | 453 | spin_lock(&swap_lock); |
450 | if (nr_swap_pages <= 0) | 454 | if (nr_swap_pages <= 0) |
451 | goto noswap; | 455 | goto noswap; |
456 | if (swap_for_hibernation) | ||
457 | goto noswap; | ||
452 | nr_swap_pages--; | 458 | nr_swap_pages--; |
453 | 459 | ||
454 | for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) { | 460 | for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) { |
@@ -481,28 +487,6 @@ noswap: | |||
481 | return (swp_entry_t) {0}; | 487 | return (swp_entry_t) {0}; |
482 | } | 488 | } |
483 | 489 | ||
484 | /* The only caller of this function is now susupend routine */ | ||
485 | swp_entry_t get_swap_page_of_type(int type) | ||
486 | { | ||
487 | struct swap_info_struct *si; | ||
488 | pgoff_t offset; | ||
489 | |||
490 | spin_lock(&swap_lock); | ||
491 | si = swap_info[type]; | ||
492 | if (si && (si->flags & SWP_WRITEOK)) { | ||
493 | nr_swap_pages--; | ||
494 | /* This is called for allocating swap entry, not cache */ | ||
495 | offset = scan_swap_map(si, 1); | ||
496 | if (offset) { | ||
497 | spin_unlock(&swap_lock); | ||
498 | return swp_entry(type, offset); | ||
499 | } | ||
500 | nr_swap_pages++; | ||
501 | } | ||
502 | spin_unlock(&swap_lock); | ||
503 | return (swp_entry_t) {0}; | ||
504 | } | ||
505 | |||
506 | static struct swap_info_struct *swap_info_get(swp_entry_t entry) | 490 | static struct swap_info_struct *swap_info_get(swp_entry_t entry) |
507 | { | 491 | { |
508 | struct swap_info_struct *p; | 492 | struct swap_info_struct *p; |
@@ -762,6 +746,74 @@ int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep) | |||
762 | #endif | 746 | #endif |
763 | 747 | ||
764 | #ifdef CONFIG_HIBERNATION | 748 | #ifdef CONFIG_HIBERNATION |
749 | |||
750 | static pgoff_t hibernation_offset[MAX_SWAPFILES]; | ||
751 | /* | ||
752 | * Once hibernation starts to use swap, we freeze swap_map[]. Otherwise, | ||
753 | * saved swap_map[] image to the disk will be an incomplete because it's | ||
754 | * changing without synchronization with hibernation snap shot. | ||
755 | * At resume, we just make swap_for_hibernation=false. We can forget | ||
756 | * used maps easily. | ||
757 | */ | ||
758 | void hibernation_freeze_swap(void) | ||
759 | { | ||
760 | int i; | ||
761 | |||
762 | spin_lock(&swap_lock); | ||
763 | |||
764 | printk(KERN_INFO "PM: Freeze Swap\n"); | ||
765 | swap_for_hibernation = true; | ||
766 | for (i = 0; i < MAX_SWAPFILES; i++) | ||
767 | hibernation_offset[i] = 1; | ||
768 | spin_unlock(&swap_lock); | ||
769 | } | ||
770 | |||
771 | void hibernation_thaw_swap(void) | ||
772 | { | ||
773 | spin_lock(&swap_lock); | ||
774 | if (swap_for_hibernation) { | ||
775 | printk(KERN_INFO "PM: Thaw Swap\n"); | ||
776 | swap_for_hibernation = false; | ||
777 | } | ||
778 | spin_unlock(&swap_lock); | ||
779 | } | ||
780 | |||
781 | /* | ||
782 | * Because updateing swap_map[] can make not-saved-status-change, | ||
783 | * we use our own easy allocator. | ||
784 | * Please see kernel/power/swap.c, Used swaps are recorded into | ||
785 | * RB-tree. | ||
786 | */ | ||
787 | swp_entry_t get_swap_for_hibernation(int type) | ||
788 | { | ||
789 | pgoff_t off; | ||
790 | swp_entry_t val = {0}; | ||
791 | struct swap_info_struct *si; | ||
792 | |||
793 | spin_lock(&swap_lock); | ||
794 | |||
795 | si = swap_info[type]; | ||
796 | if (!si || !(si->flags & SWP_WRITEOK)) | ||
797 | goto done; | ||
798 | |||
799 | for (off = hibernation_offset[type]; off < si->max; ++off) { | ||
800 | if (!si->swap_map[off]) | ||
801 | break; | ||
802 | } | ||
803 | if (off < si->max) { | ||
804 | val = swp_entry(type, off); | ||
805 | hibernation_offset[type] = off + 1; | ||
806 | } | ||
807 | done: | ||
808 | spin_unlock(&swap_lock); | ||
809 | return val; | ||
810 | } | ||
811 | |||
812 | void swap_free_for_hibernation(swp_entry_t ent) | ||
813 | { | ||
814 | /* Nothing to do */ | ||
815 | } | ||
816 | |||
765 | /* | 817 | /* |
766 | * Find the swap type that corresponds to given device (if any). | 818 | * Find the swap type that corresponds to given device (if any). |
767 | * | 819 | * |
diff --git a/mm/truncate.c b/mm/truncate.c index 937571b8b233..ba887bff48c5 100644 --- a/mm/truncate.c +++ b/mm/truncate.c | |||
@@ -541,28 +541,48 @@ void truncate_pagecache(struct inode *inode, loff_t old, loff_t new) | |||
541 | EXPORT_SYMBOL(truncate_pagecache); | 541 | EXPORT_SYMBOL(truncate_pagecache); |
542 | 542 | ||
543 | /** | 543 | /** |
544 | * truncate_setsize - update inode and pagecache for a new file size | ||
545 | * @inode: inode | ||
546 | * @newsize: new file size | ||
547 | * | ||
548 | * truncate_setsize updastes i_size update and performs pagecache | ||
549 | * truncation (if necessary) for a file size updates. It will be | ||
550 | * typically be called from the filesystem's setattr function when | ||
551 | * ATTR_SIZE is passed in. | ||
552 | * | ||
553 | * Must be called with inode_mutex held and after all filesystem | ||
554 | * specific block truncation has been performed. | ||
555 | */ | ||
556 | void truncate_setsize(struct inode *inode, loff_t newsize) | ||
557 | { | ||
558 | loff_t oldsize; | ||
559 | |||
560 | oldsize = inode->i_size; | ||
561 | i_size_write(inode, newsize); | ||
562 | |||
563 | truncate_pagecache(inode, oldsize, newsize); | ||
564 | } | ||
565 | EXPORT_SYMBOL(truncate_setsize); | ||
566 | |||
567 | /** | ||
544 | * vmtruncate - unmap mappings "freed" by truncate() syscall | 568 | * vmtruncate - unmap mappings "freed" by truncate() syscall |
545 | * @inode: inode of the file used | 569 | * @inode: inode of the file used |
546 | * @offset: file offset to start truncating | 570 | * @offset: file offset to start truncating |
547 | * | 571 | * |
548 | * NOTE! We have to be ready to update the memory sharing | 572 | * This function is deprecated and truncate_setsize or truncate_pagecache |
549 | * between the file and the memory map for a potential last | 573 | * should be used instead, together with filesystem specific block truncation. |
550 | * incomplete page. Ugly, but necessary. | ||
551 | * | ||
552 | * This function is deprecated and simple_setsize or truncate_pagecache | ||
553 | * should be used instead. | ||
554 | */ | 574 | */ |
555 | int vmtruncate(struct inode *inode, loff_t offset) | 575 | int vmtruncate(struct inode *inode, loff_t offset) |
556 | { | 576 | { |
557 | int error; | 577 | int error; |
558 | 578 | ||
559 | error = simple_setsize(inode, offset); | 579 | error = inode_newsize_ok(inode, offset); |
560 | if (error) | 580 | if (error) |
561 | return error; | 581 | return error; |
562 | 582 | ||
583 | truncate_setsize(inode, offset); | ||
563 | if (inode->i_op->truncate) | 584 | if (inode->i_op->truncate) |
564 | inode->i_op->truncate(inode); | 585 | inode->i_op->truncate(inode); |
565 | 586 | return 0; | |
566 | return error; | ||
567 | } | 587 | } |
568 | EXPORT_SYMBOL(vmtruncate); | 588 | EXPORT_SYMBOL(vmtruncate); |
@@ -225,15 +225,10 @@ char *strndup_user(const char __user *s, long n) | |||
225 | if (length > n) | 225 | if (length > n) |
226 | return ERR_PTR(-EINVAL); | 226 | return ERR_PTR(-EINVAL); |
227 | 227 | ||
228 | p = kmalloc(length, GFP_KERNEL); | 228 | p = memdup_user(s, length); |
229 | 229 | ||
230 | if (!p) | 230 | if (IS_ERR(p)) |
231 | return ERR_PTR(-ENOMEM); | 231 | return p; |
232 | |||
233 | if (copy_from_user(p, s, length)) { | ||
234 | kfree(p); | ||
235 | return ERR_PTR(-EFAULT); | ||
236 | } | ||
237 | 232 | ||
238 | p[length - 1] = '\0'; | 233 | p[length - 1] = '\0'; |
239 | 234 | ||
diff --git a/mm/vmalloc.c b/mm/vmalloc.c index ae007462b7f6..6b8889da69a6 100644 --- a/mm/vmalloc.c +++ b/mm/vmalloc.c | |||
@@ -31,6 +31,7 @@ | |||
31 | #include <asm/tlbflush.h> | 31 | #include <asm/tlbflush.h> |
32 | #include <asm/shmparam.h> | 32 | #include <asm/shmparam.h> |
33 | 33 | ||
34 | bool vmap_lazy_unmap __read_mostly = true; | ||
34 | 35 | ||
35 | /*** Page table manipulation functions ***/ | 36 | /*** Page table manipulation functions ***/ |
36 | 37 | ||
@@ -502,6 +503,9 @@ static unsigned long lazy_max_pages(void) | |||
502 | { | 503 | { |
503 | unsigned int log; | 504 | unsigned int log; |
504 | 505 | ||
506 | if (!vmap_lazy_unmap) | ||
507 | return 0; | ||
508 | |||
505 | log = fls(num_online_cpus()); | 509 | log = fls(num_online_cpus()); |
506 | 510 | ||
507 | return log * (32UL * 1024 * 1024 / PAGE_SIZE); | 511 | return log * (32UL * 1024 * 1024 / PAGE_SIZE); |
@@ -732,7 +736,7 @@ static struct vmap_block *new_vmap_block(gfp_t gfp_mask) | |||
732 | node, gfp_mask); | 736 | node, gfp_mask); |
733 | if (unlikely(IS_ERR(va))) { | 737 | if (unlikely(IS_ERR(va))) { |
734 | kfree(vb); | 738 | kfree(vb); |
735 | return ERR_PTR(PTR_ERR(va)); | 739 | return ERR_CAST(va); |
736 | } | 740 | } |
737 | 741 | ||
738 | err = radix_tree_preload(gfp_mask); | 742 | err = radix_tree_preload(gfp_mask); |
@@ -2403,7 +2407,7 @@ static int s_show(struct seq_file *m, void *p) | |||
2403 | seq_printf(m, " pages=%d", v->nr_pages); | 2407 | seq_printf(m, " pages=%d", v->nr_pages); |
2404 | 2408 | ||
2405 | if (v->phys_addr) | 2409 | if (v->phys_addr) |
2406 | seq_printf(m, " phys=%lx", v->phys_addr); | 2410 | seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr); |
2407 | 2411 | ||
2408 | if (v->flags & VM_IOREMAP) | 2412 | if (v->flags & VM_IOREMAP) |
2409 | seq_printf(m, " ioremap"); | 2413 | seq_printf(m, " ioremap"); |
@@ -2437,8 +2441,11 @@ static int vmalloc_open(struct inode *inode, struct file *file) | |||
2437 | unsigned int *ptr = NULL; | 2441 | unsigned int *ptr = NULL; |
2438 | int ret; | 2442 | int ret; |
2439 | 2443 | ||
2440 | if (NUMA_BUILD) | 2444 | if (NUMA_BUILD) { |
2441 | ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); | 2445 | ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); |
2446 | if (ptr == NULL) | ||
2447 | return -ENOMEM; | ||
2448 | } | ||
2442 | ret = seq_open(file, &vmalloc_op); | 2449 | ret = seq_open(file, &vmalloc_op); |
2443 | if (!ret) { | 2450 | if (!ret) { |
2444 | struct seq_file *m = file->private_data; | 2451 | struct seq_file *m = file->private_data; |
diff --git a/mm/vmscan.c b/mm/vmscan.c index b94fe1b3da43..c391c320dbaf 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c | |||
@@ -48,6 +48,9 @@ | |||
48 | 48 | ||
49 | #include "internal.h" | 49 | #include "internal.h" |
50 | 50 | ||
51 | #define CREATE_TRACE_POINTS | ||
52 | #include <trace/events/vmscan.h> | ||
53 | |||
51 | struct scan_control { | 54 | struct scan_control { |
52 | /* Incremented by the number of inactive pages that were scanned */ | 55 | /* Incremented by the number of inactive pages that were scanned */ |
53 | unsigned long nr_scanned; | 56 | unsigned long nr_scanned; |
@@ -398,6 +401,8 @@ static pageout_t pageout(struct page *page, struct address_space *mapping, | |||
398 | /* synchronous write or broken a_ops? */ | 401 | /* synchronous write or broken a_ops? */ |
399 | ClearPageReclaim(page); | 402 | ClearPageReclaim(page); |
400 | } | 403 | } |
404 | trace_mm_vmscan_writepage(page, | ||
405 | trace_reclaim_flags(page, sync_writeback)); | ||
401 | inc_zone_page_state(page, NR_VMSCAN_WRITE); | 406 | inc_zone_page_state(page, NR_VMSCAN_WRITE); |
402 | return PAGE_SUCCESS; | 407 | return PAGE_SUCCESS; |
403 | } | 408 | } |
@@ -617,6 +622,24 @@ static enum page_references page_check_references(struct page *page, | |||
617 | return PAGEREF_RECLAIM; | 622 | return PAGEREF_RECLAIM; |
618 | } | 623 | } |
619 | 624 | ||
625 | static noinline_for_stack void free_page_list(struct list_head *free_pages) | ||
626 | { | ||
627 | struct pagevec freed_pvec; | ||
628 | struct page *page, *tmp; | ||
629 | |||
630 | pagevec_init(&freed_pvec, 1); | ||
631 | |||
632 | list_for_each_entry_safe(page, tmp, free_pages, lru) { | ||
633 | list_del(&page->lru); | ||
634 | if (!pagevec_add(&freed_pvec, page)) { | ||
635 | __pagevec_free(&freed_pvec); | ||
636 | pagevec_reinit(&freed_pvec); | ||
637 | } | ||
638 | } | ||
639 | |||
640 | pagevec_free(&freed_pvec); | ||
641 | } | ||
642 | |||
620 | /* | 643 | /* |
621 | * shrink_page_list() returns the number of reclaimed pages | 644 | * shrink_page_list() returns the number of reclaimed pages |
622 | */ | 645 | */ |
@@ -625,13 +648,12 @@ static unsigned long shrink_page_list(struct list_head *page_list, | |||
625 | enum pageout_io sync_writeback) | 648 | enum pageout_io sync_writeback) |
626 | { | 649 | { |
627 | LIST_HEAD(ret_pages); | 650 | LIST_HEAD(ret_pages); |
628 | struct pagevec freed_pvec; | 651 | LIST_HEAD(free_pages); |
629 | int pgactivate = 0; | 652 | int pgactivate = 0; |
630 | unsigned long nr_reclaimed = 0; | 653 | unsigned long nr_reclaimed = 0; |
631 | 654 | ||
632 | cond_resched(); | 655 | cond_resched(); |
633 | 656 | ||
634 | pagevec_init(&freed_pvec, 1); | ||
635 | while (!list_empty(page_list)) { | 657 | while (!list_empty(page_list)) { |
636 | enum page_references references; | 658 | enum page_references references; |
637 | struct address_space *mapping; | 659 | struct address_space *mapping; |
@@ -806,10 +828,12 @@ static unsigned long shrink_page_list(struct list_head *page_list, | |||
806 | __clear_page_locked(page); | 828 | __clear_page_locked(page); |
807 | free_it: | 829 | free_it: |
808 | nr_reclaimed++; | 830 | nr_reclaimed++; |
809 | if (!pagevec_add(&freed_pvec, page)) { | 831 | |
810 | __pagevec_free(&freed_pvec); | 832 | /* |
811 | pagevec_reinit(&freed_pvec); | 833 | * Is there need to periodically free_page_list? It would |
812 | } | 834 | * appear not as the counts should be low |
835 | */ | ||
836 | list_add(&page->lru, &free_pages); | ||
813 | continue; | 837 | continue; |
814 | 838 | ||
815 | cull_mlocked: | 839 | cull_mlocked: |
@@ -832,9 +856,10 @@ keep: | |||
832 | list_add(&page->lru, &ret_pages); | 856 | list_add(&page->lru, &ret_pages); |
833 | VM_BUG_ON(PageLRU(page) || PageUnevictable(page)); | 857 | VM_BUG_ON(PageLRU(page) || PageUnevictable(page)); |
834 | } | 858 | } |
859 | |||
860 | free_page_list(&free_pages); | ||
861 | |||
835 | list_splice(&ret_pages, page_list); | 862 | list_splice(&ret_pages, page_list); |
836 | if (pagevec_count(&freed_pvec)) | ||
837 | __pagevec_free(&freed_pvec); | ||
838 | count_vm_events(PGACTIVATE, pgactivate); | 863 | count_vm_events(PGACTIVATE, pgactivate); |
839 | return nr_reclaimed; | 864 | return nr_reclaimed; |
840 | } | 865 | } |
@@ -916,6 +941,9 @@ static unsigned long isolate_lru_pages(unsigned long nr_to_scan, | |||
916 | unsigned long *scanned, int order, int mode, int file) | 941 | unsigned long *scanned, int order, int mode, int file) |
917 | { | 942 | { |
918 | unsigned long nr_taken = 0; | 943 | unsigned long nr_taken = 0; |
944 | unsigned long nr_lumpy_taken = 0; | ||
945 | unsigned long nr_lumpy_dirty = 0; | ||
946 | unsigned long nr_lumpy_failed = 0; | ||
919 | unsigned long scan; | 947 | unsigned long scan; |
920 | 948 | ||
921 | for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { | 949 | for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { |
@@ -993,12 +1021,25 @@ static unsigned long isolate_lru_pages(unsigned long nr_to_scan, | |||
993 | list_move(&cursor_page->lru, dst); | 1021 | list_move(&cursor_page->lru, dst); |
994 | mem_cgroup_del_lru(cursor_page); | 1022 | mem_cgroup_del_lru(cursor_page); |
995 | nr_taken++; | 1023 | nr_taken++; |
1024 | nr_lumpy_taken++; | ||
1025 | if (PageDirty(cursor_page)) | ||
1026 | nr_lumpy_dirty++; | ||
996 | scan++; | 1027 | scan++; |
1028 | } else { | ||
1029 | if (mode == ISOLATE_BOTH && | ||
1030 | page_count(cursor_page)) | ||
1031 | nr_lumpy_failed++; | ||
997 | } | 1032 | } |
998 | } | 1033 | } |
999 | } | 1034 | } |
1000 | 1035 | ||
1001 | *scanned = scan; | 1036 | *scanned = scan; |
1037 | |||
1038 | trace_mm_vmscan_lru_isolate(order, | ||
1039 | nr_to_scan, scan, | ||
1040 | nr_taken, | ||
1041 | nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed, | ||
1042 | mode); | ||
1002 | return nr_taken; | 1043 | return nr_taken; |
1003 | } | 1044 | } |
1004 | 1045 | ||
@@ -1035,7 +1076,8 @@ static unsigned long clear_active_flags(struct list_head *page_list, | |||
1035 | ClearPageActive(page); | 1076 | ClearPageActive(page); |
1036 | nr_active++; | 1077 | nr_active++; |
1037 | } | 1078 | } |
1038 | count[lru]++; | 1079 | if (count) |
1080 | count[lru]++; | ||
1039 | } | 1081 | } |
1040 | 1082 | ||
1041 | return nr_active; | 1083 | return nr_active; |
@@ -1112,174 +1154,212 @@ static int too_many_isolated(struct zone *zone, int file, | |||
1112 | } | 1154 | } |
1113 | 1155 | ||
1114 | /* | 1156 | /* |
1115 | * shrink_inactive_list() is a helper for shrink_zone(). It returns the number | 1157 | * TODO: Try merging with migrations version of putback_lru_pages |
1116 | * of reclaimed pages | ||
1117 | */ | 1158 | */ |
1118 | static unsigned long shrink_inactive_list(unsigned long max_scan, | 1159 | static noinline_for_stack void |
1119 | struct zone *zone, struct scan_control *sc, | 1160 | putback_lru_pages(struct zone *zone, struct scan_control *sc, |
1120 | int priority, int file) | 1161 | unsigned long nr_anon, unsigned long nr_file, |
1162 | struct list_head *page_list) | ||
1121 | { | 1163 | { |
1122 | LIST_HEAD(page_list); | 1164 | struct page *page; |
1123 | struct pagevec pvec; | 1165 | struct pagevec pvec; |
1124 | unsigned long nr_scanned = 0; | ||
1125 | unsigned long nr_reclaimed = 0; | ||
1126 | struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); | 1166 | struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); |
1127 | 1167 | ||
1128 | while (unlikely(too_many_isolated(zone, file, sc))) { | 1168 | pagevec_init(&pvec, 1); |
1129 | congestion_wait(BLK_RW_ASYNC, HZ/10); | ||
1130 | 1169 | ||
1131 | /* We are about to die and free our memory. Return now. */ | 1170 | /* |
1132 | if (fatal_signal_pending(current)) | 1171 | * Put back any unfreeable pages. |
1133 | return SWAP_CLUSTER_MAX; | 1172 | */ |
1173 | spin_lock(&zone->lru_lock); | ||
1174 | while (!list_empty(page_list)) { | ||
1175 | int lru; | ||
1176 | page = lru_to_page(page_list); | ||
1177 | VM_BUG_ON(PageLRU(page)); | ||
1178 | list_del(&page->lru); | ||
1179 | if (unlikely(!page_evictable(page, NULL))) { | ||
1180 | spin_unlock_irq(&zone->lru_lock); | ||
1181 | putback_lru_page(page); | ||
1182 | spin_lock_irq(&zone->lru_lock); | ||
1183 | continue; | ||
1184 | } | ||
1185 | SetPageLRU(page); | ||
1186 | lru = page_lru(page); | ||
1187 | add_page_to_lru_list(zone, page, lru); | ||
1188 | if (is_active_lru(lru)) { | ||
1189 | int file = is_file_lru(lru); | ||
1190 | reclaim_stat->recent_rotated[file]++; | ||
1191 | } | ||
1192 | if (!pagevec_add(&pvec, page)) { | ||
1193 | spin_unlock_irq(&zone->lru_lock); | ||
1194 | __pagevec_release(&pvec); | ||
1195 | spin_lock_irq(&zone->lru_lock); | ||
1196 | } | ||
1134 | } | 1197 | } |
1198 | __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon); | ||
1199 | __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file); | ||
1200 | |||
1201 | spin_unlock_irq(&zone->lru_lock); | ||
1202 | pagevec_release(&pvec); | ||
1203 | } | ||
1135 | 1204 | ||
1205 | static noinline_for_stack void update_isolated_counts(struct zone *zone, | ||
1206 | struct scan_control *sc, | ||
1207 | unsigned long *nr_anon, | ||
1208 | unsigned long *nr_file, | ||
1209 | struct list_head *isolated_list) | ||
1210 | { | ||
1211 | unsigned long nr_active; | ||
1212 | unsigned int count[NR_LRU_LISTS] = { 0, }; | ||
1213 | struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); | ||
1136 | 1214 | ||
1137 | pagevec_init(&pvec, 1); | 1215 | nr_active = clear_active_flags(isolated_list, count); |
1216 | __count_vm_events(PGDEACTIVATE, nr_active); | ||
1138 | 1217 | ||
1139 | lru_add_drain(); | 1218 | __mod_zone_page_state(zone, NR_ACTIVE_FILE, |
1140 | spin_lock_irq(&zone->lru_lock); | 1219 | -count[LRU_ACTIVE_FILE]); |
1141 | do { | 1220 | __mod_zone_page_state(zone, NR_INACTIVE_FILE, |
1142 | struct page *page; | 1221 | -count[LRU_INACTIVE_FILE]); |
1143 | unsigned long nr_taken; | 1222 | __mod_zone_page_state(zone, NR_ACTIVE_ANON, |
1144 | unsigned long nr_scan; | 1223 | -count[LRU_ACTIVE_ANON]); |
1145 | unsigned long nr_freed; | 1224 | __mod_zone_page_state(zone, NR_INACTIVE_ANON, |
1146 | unsigned long nr_active; | 1225 | -count[LRU_INACTIVE_ANON]); |
1147 | unsigned int count[NR_LRU_LISTS] = { 0, }; | ||
1148 | int mode = sc->lumpy_reclaim_mode ? ISOLATE_BOTH : ISOLATE_INACTIVE; | ||
1149 | unsigned long nr_anon; | ||
1150 | unsigned long nr_file; | ||
1151 | 1226 | ||
1152 | if (scanning_global_lru(sc)) { | 1227 | *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON]; |
1153 | nr_taken = isolate_pages_global(SWAP_CLUSTER_MAX, | 1228 | *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE]; |
1154 | &page_list, &nr_scan, | 1229 | __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon); |
1155 | sc->order, mode, | 1230 | __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file); |
1156 | zone, 0, file); | ||
1157 | zone->pages_scanned += nr_scan; | ||
1158 | if (current_is_kswapd()) | ||
1159 | __count_zone_vm_events(PGSCAN_KSWAPD, zone, | ||
1160 | nr_scan); | ||
1161 | else | ||
1162 | __count_zone_vm_events(PGSCAN_DIRECT, zone, | ||
1163 | nr_scan); | ||
1164 | } else { | ||
1165 | nr_taken = mem_cgroup_isolate_pages(SWAP_CLUSTER_MAX, | ||
1166 | &page_list, &nr_scan, | ||
1167 | sc->order, mode, | ||
1168 | zone, sc->mem_cgroup, | ||
1169 | 0, file); | ||
1170 | /* | ||
1171 | * mem_cgroup_isolate_pages() keeps track of | ||
1172 | * scanned pages on its own. | ||
1173 | */ | ||
1174 | } | ||
1175 | 1231 | ||
1176 | if (nr_taken == 0) | 1232 | reclaim_stat->recent_scanned[0] += *nr_anon; |
1177 | goto done; | 1233 | reclaim_stat->recent_scanned[1] += *nr_file; |
1234 | } | ||
1178 | 1235 | ||
1179 | nr_active = clear_active_flags(&page_list, count); | 1236 | /* |
1180 | __count_vm_events(PGDEACTIVATE, nr_active); | 1237 | * Returns true if the caller should wait to clean dirty/writeback pages. |
1238 | * | ||
1239 | * If we are direct reclaiming for contiguous pages and we do not reclaim | ||
1240 | * everything in the list, try again and wait for writeback IO to complete. | ||
1241 | * This will stall high-order allocations noticeably. Only do that when really | ||
1242 | * need to free the pages under high memory pressure. | ||
1243 | */ | ||
1244 | static inline bool should_reclaim_stall(unsigned long nr_taken, | ||
1245 | unsigned long nr_freed, | ||
1246 | int priority, | ||
1247 | struct scan_control *sc) | ||
1248 | { | ||
1249 | int lumpy_stall_priority; | ||
1181 | 1250 | ||
1182 | __mod_zone_page_state(zone, NR_ACTIVE_FILE, | 1251 | /* kswapd should not stall on sync IO */ |
1183 | -count[LRU_ACTIVE_FILE]); | 1252 | if (current_is_kswapd()) |
1184 | __mod_zone_page_state(zone, NR_INACTIVE_FILE, | 1253 | return false; |
1185 | -count[LRU_INACTIVE_FILE]); | ||
1186 | __mod_zone_page_state(zone, NR_ACTIVE_ANON, | ||
1187 | -count[LRU_ACTIVE_ANON]); | ||
1188 | __mod_zone_page_state(zone, NR_INACTIVE_ANON, | ||
1189 | -count[LRU_INACTIVE_ANON]); | ||
1190 | 1254 | ||
1191 | nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON]; | 1255 | /* Only stall on lumpy reclaim */ |
1192 | nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE]; | 1256 | if (!sc->lumpy_reclaim_mode) |
1193 | __mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon); | 1257 | return false; |
1194 | __mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file); | ||
1195 | 1258 | ||
1196 | reclaim_stat->recent_scanned[0] += nr_anon; | 1259 | /* If we have relaimed everything on the isolated list, no stall */ |
1197 | reclaim_stat->recent_scanned[1] += nr_file; | 1260 | if (nr_freed == nr_taken) |
1261 | return false; | ||
1198 | 1262 | ||
1199 | spin_unlock_irq(&zone->lru_lock); | 1263 | /* |
1264 | * For high-order allocations, there are two stall thresholds. | ||
1265 | * High-cost allocations stall immediately where as lower | ||
1266 | * order allocations such as stacks require the scanning | ||
1267 | * priority to be much higher before stalling. | ||
1268 | */ | ||
1269 | if (sc->order > PAGE_ALLOC_COSTLY_ORDER) | ||
1270 | lumpy_stall_priority = DEF_PRIORITY; | ||
1271 | else | ||
1272 | lumpy_stall_priority = DEF_PRIORITY / 3; | ||
1200 | 1273 | ||
1201 | nr_scanned += nr_scan; | 1274 | return priority <= lumpy_stall_priority; |
1202 | nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC); | 1275 | } |
1203 | 1276 | ||
1277 | /* | ||
1278 | * shrink_inactive_list() is a helper for shrink_zone(). It returns the number | ||
1279 | * of reclaimed pages | ||
1280 | */ | ||
1281 | static noinline_for_stack unsigned long | ||
1282 | shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone, | ||
1283 | struct scan_control *sc, int priority, int file) | ||
1284 | { | ||
1285 | LIST_HEAD(page_list); | ||
1286 | unsigned long nr_scanned; | ||
1287 | unsigned long nr_reclaimed = 0; | ||
1288 | unsigned long nr_taken; | ||
1289 | unsigned long nr_active; | ||
1290 | unsigned long nr_anon; | ||
1291 | unsigned long nr_file; | ||
1292 | |||
1293 | while (unlikely(too_many_isolated(zone, file, sc))) { | ||
1294 | congestion_wait(BLK_RW_ASYNC, HZ/10); | ||
1295 | |||
1296 | /* We are about to die and free our memory. Return now. */ | ||
1297 | if (fatal_signal_pending(current)) | ||
1298 | return SWAP_CLUSTER_MAX; | ||
1299 | } | ||
1300 | |||
1301 | |||
1302 | lru_add_drain(); | ||
1303 | spin_lock_irq(&zone->lru_lock); | ||
1304 | |||
1305 | if (scanning_global_lru(sc)) { | ||
1306 | nr_taken = isolate_pages_global(nr_to_scan, | ||
1307 | &page_list, &nr_scanned, sc->order, | ||
1308 | sc->lumpy_reclaim_mode ? | ||
1309 | ISOLATE_BOTH : ISOLATE_INACTIVE, | ||
1310 | zone, 0, file); | ||
1311 | zone->pages_scanned += nr_scanned; | ||
1312 | if (current_is_kswapd()) | ||
1313 | __count_zone_vm_events(PGSCAN_KSWAPD, zone, | ||
1314 | nr_scanned); | ||
1315 | else | ||
1316 | __count_zone_vm_events(PGSCAN_DIRECT, zone, | ||
1317 | nr_scanned); | ||
1318 | } else { | ||
1319 | nr_taken = mem_cgroup_isolate_pages(nr_to_scan, | ||
1320 | &page_list, &nr_scanned, sc->order, | ||
1321 | sc->lumpy_reclaim_mode ? | ||
1322 | ISOLATE_BOTH : ISOLATE_INACTIVE, | ||
1323 | zone, sc->mem_cgroup, | ||
1324 | 0, file); | ||
1204 | /* | 1325 | /* |
1205 | * If we are direct reclaiming for contiguous pages and we do | 1326 | * mem_cgroup_isolate_pages() keeps track of |
1206 | * not reclaim everything in the list, try again and wait | 1327 | * scanned pages on its own. |
1207 | * for IO to complete. This will stall high-order allocations | ||
1208 | * but that should be acceptable to the caller | ||
1209 | */ | 1328 | */ |
1210 | if (nr_freed < nr_taken && !current_is_kswapd() && | 1329 | } |
1211 | sc->lumpy_reclaim_mode) { | ||
1212 | congestion_wait(BLK_RW_ASYNC, HZ/10); | ||
1213 | 1330 | ||
1214 | /* | 1331 | if (nr_taken == 0) { |
1215 | * The attempt at page out may have made some | 1332 | spin_unlock_irq(&zone->lru_lock); |
1216 | * of the pages active, mark them inactive again. | 1333 | return 0; |
1217 | */ | 1334 | } |
1218 | nr_active = clear_active_flags(&page_list, count); | ||
1219 | count_vm_events(PGDEACTIVATE, nr_active); | ||
1220 | 1335 | ||
1221 | nr_freed += shrink_page_list(&page_list, sc, | 1336 | update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list); |
1222 | PAGEOUT_IO_SYNC); | ||
1223 | } | ||
1224 | 1337 | ||
1225 | nr_reclaimed += nr_freed; | 1338 | spin_unlock_irq(&zone->lru_lock); |
1226 | 1339 | ||
1227 | local_irq_disable(); | 1340 | nr_reclaimed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC); |
1228 | if (current_is_kswapd()) | 1341 | |
1229 | __count_vm_events(KSWAPD_STEAL, nr_freed); | 1342 | /* Check if we should syncronously wait for writeback */ |
1230 | __count_zone_vm_events(PGSTEAL, zone, nr_freed); | 1343 | if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) { |
1344 | congestion_wait(BLK_RW_ASYNC, HZ/10); | ||
1231 | 1345 | ||
1232 | spin_lock(&zone->lru_lock); | ||
1233 | /* | 1346 | /* |
1234 | * Put back any unfreeable pages. | 1347 | * The attempt at page out may have made some |
1348 | * of the pages active, mark them inactive again. | ||
1235 | */ | 1349 | */ |
1236 | while (!list_empty(&page_list)) { | 1350 | nr_active = clear_active_flags(&page_list, NULL); |
1237 | int lru; | 1351 | count_vm_events(PGDEACTIVATE, nr_active); |
1238 | page = lru_to_page(&page_list); | ||
1239 | VM_BUG_ON(PageLRU(page)); | ||
1240 | list_del(&page->lru); | ||
1241 | if (unlikely(!page_evictable(page, NULL))) { | ||
1242 | spin_unlock_irq(&zone->lru_lock); | ||
1243 | putback_lru_page(page); | ||
1244 | spin_lock_irq(&zone->lru_lock); | ||
1245 | continue; | ||
1246 | } | ||
1247 | SetPageLRU(page); | ||
1248 | lru = page_lru(page); | ||
1249 | add_page_to_lru_list(zone, page, lru); | ||
1250 | if (is_active_lru(lru)) { | ||
1251 | int file = is_file_lru(lru); | ||
1252 | reclaim_stat->recent_rotated[file]++; | ||
1253 | } | ||
1254 | if (!pagevec_add(&pvec, page)) { | ||
1255 | spin_unlock_irq(&zone->lru_lock); | ||
1256 | __pagevec_release(&pvec); | ||
1257 | spin_lock_irq(&zone->lru_lock); | ||
1258 | } | ||
1259 | } | ||
1260 | __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon); | ||
1261 | __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file); | ||
1262 | 1352 | ||
1263 | } while (nr_scanned < max_scan); | 1353 | nr_reclaimed += shrink_page_list(&page_list, sc, PAGEOUT_IO_SYNC); |
1354 | } | ||
1264 | 1355 | ||
1265 | done: | 1356 | local_irq_disable(); |
1266 | spin_unlock_irq(&zone->lru_lock); | 1357 | if (current_is_kswapd()) |
1267 | pagevec_release(&pvec); | 1358 | __count_vm_events(KSWAPD_STEAL, nr_reclaimed); |
1268 | return nr_reclaimed; | 1359 | __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed); |
1269 | } | ||
1270 | 1360 | ||
1271 | /* | 1361 | putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list); |
1272 | * We are about to scan this zone at a certain priority level. If that priority | 1362 | return nr_reclaimed; |
1273 | * level is smaller (ie: more urgent) than the previous priority, then note | ||
1274 | * that priority level within the zone. This is done so that when the next | ||
1275 | * process comes in to scan this zone, it will immediately start out at this | ||
1276 | * priority level rather than having to build up its own scanning priority. | ||
1277 | * Here, this priority affects only the reclaim-mapped threshold. | ||
1278 | */ | ||
1279 | static inline void note_zone_scanning_priority(struct zone *zone, int priority) | ||
1280 | { | ||
1281 | if (priority < zone->prev_priority) | ||
1282 | zone->prev_priority = priority; | ||
1283 | } | 1363 | } |
1284 | 1364 | ||
1285 | /* | 1365 | /* |
@@ -1583,6 +1663,13 @@ static void get_scan_count(struct zone *zone, struct scan_control *sc, | |||
1583 | } | 1663 | } |
1584 | 1664 | ||
1585 | /* | 1665 | /* |
1666 | * With swappiness at 100, anonymous and file have the same priority. | ||
1667 | * This scanning priority is essentially the inverse of IO cost. | ||
1668 | */ | ||
1669 | anon_prio = sc->swappiness; | ||
1670 | file_prio = 200 - sc->swappiness; | ||
1671 | |||
1672 | /* | ||
1586 | * OK, so we have swap space and a fair amount of page cache | 1673 | * OK, so we have swap space and a fair amount of page cache |
1587 | * pages. We use the recently rotated / recently scanned | 1674 | * pages. We use the recently rotated / recently scanned |
1588 | * ratios to determine how valuable each cache is. | 1675 | * ratios to determine how valuable each cache is. |
@@ -1593,28 +1680,18 @@ static void get_scan_count(struct zone *zone, struct scan_control *sc, | |||
1593 | * | 1680 | * |
1594 | * anon in [0], file in [1] | 1681 | * anon in [0], file in [1] |
1595 | */ | 1682 | */ |
1683 | spin_lock_irq(&zone->lru_lock); | ||
1596 | if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { | 1684 | if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { |
1597 | spin_lock_irq(&zone->lru_lock); | ||
1598 | reclaim_stat->recent_scanned[0] /= 2; | 1685 | reclaim_stat->recent_scanned[0] /= 2; |
1599 | reclaim_stat->recent_rotated[0] /= 2; | 1686 | reclaim_stat->recent_rotated[0] /= 2; |
1600 | spin_unlock_irq(&zone->lru_lock); | ||
1601 | } | 1687 | } |
1602 | 1688 | ||
1603 | if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { | 1689 | if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { |
1604 | spin_lock_irq(&zone->lru_lock); | ||
1605 | reclaim_stat->recent_scanned[1] /= 2; | 1690 | reclaim_stat->recent_scanned[1] /= 2; |
1606 | reclaim_stat->recent_rotated[1] /= 2; | 1691 | reclaim_stat->recent_rotated[1] /= 2; |
1607 | spin_unlock_irq(&zone->lru_lock); | ||
1608 | } | 1692 | } |
1609 | 1693 | ||
1610 | /* | 1694 | /* |
1611 | * With swappiness at 100, anonymous and file have the same priority. | ||
1612 | * This scanning priority is essentially the inverse of IO cost. | ||
1613 | */ | ||
1614 | anon_prio = sc->swappiness; | ||
1615 | file_prio = 200 - sc->swappiness; | ||
1616 | |||
1617 | /* | ||
1618 | * The amount of pressure on anon vs file pages is inversely | 1695 | * The amount of pressure on anon vs file pages is inversely |
1619 | * proportional to the fraction of recently scanned pages on | 1696 | * proportional to the fraction of recently scanned pages on |
1620 | * each list that were recently referenced and in active use. | 1697 | * each list that were recently referenced and in active use. |
@@ -1624,6 +1701,7 @@ static void get_scan_count(struct zone *zone, struct scan_control *sc, | |||
1624 | 1701 | ||
1625 | fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1); | 1702 | fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1); |
1626 | fp /= reclaim_stat->recent_rotated[1] + 1; | 1703 | fp /= reclaim_stat->recent_rotated[1] + 1; |
1704 | spin_unlock_irq(&zone->lru_lock); | ||
1627 | 1705 | ||
1628 | fraction[0] = ap; | 1706 | fraction[0] = ap; |
1629 | fraction[1] = fp; | 1707 | fraction[1] = fp; |
@@ -1729,13 +1807,12 @@ static void shrink_zone(int priority, struct zone *zone, | |||
1729 | static bool shrink_zones(int priority, struct zonelist *zonelist, | 1807 | static bool shrink_zones(int priority, struct zonelist *zonelist, |
1730 | struct scan_control *sc) | 1808 | struct scan_control *sc) |
1731 | { | 1809 | { |
1732 | enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask); | ||
1733 | struct zoneref *z; | 1810 | struct zoneref *z; |
1734 | struct zone *zone; | 1811 | struct zone *zone; |
1735 | bool all_unreclaimable = true; | 1812 | bool all_unreclaimable = true; |
1736 | 1813 | ||
1737 | for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx, | 1814 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
1738 | sc->nodemask) { | 1815 | gfp_zone(sc->gfp_mask), sc->nodemask) { |
1739 | if (!populated_zone(zone)) | 1816 | if (!populated_zone(zone)) |
1740 | continue; | 1817 | continue; |
1741 | /* | 1818 | /* |
@@ -1745,17 +1822,8 @@ static bool shrink_zones(int priority, struct zonelist *zonelist, | |||
1745 | if (scanning_global_lru(sc)) { | 1822 | if (scanning_global_lru(sc)) { |
1746 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) | 1823 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) |
1747 | continue; | 1824 | continue; |
1748 | note_zone_scanning_priority(zone, priority); | ||
1749 | |||
1750 | if (zone->all_unreclaimable && priority != DEF_PRIORITY) | 1825 | if (zone->all_unreclaimable && priority != DEF_PRIORITY) |
1751 | continue; /* Let kswapd poll it */ | 1826 | continue; /* Let kswapd poll it */ |
1752 | } else { | ||
1753 | /* | ||
1754 | * Ignore cpuset limitation here. We just want to reduce | ||
1755 | * # of used pages by us regardless of memory shortage. | ||
1756 | */ | ||
1757 | mem_cgroup_note_reclaim_priority(sc->mem_cgroup, | ||
1758 | priority); | ||
1759 | } | 1827 | } |
1760 | 1828 | ||
1761 | shrink_zone(priority, zone, sc); | 1829 | shrink_zone(priority, zone, sc); |
@@ -1787,10 +1855,8 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist, | |||
1787 | bool all_unreclaimable; | 1855 | bool all_unreclaimable; |
1788 | unsigned long total_scanned = 0; | 1856 | unsigned long total_scanned = 0; |
1789 | struct reclaim_state *reclaim_state = current->reclaim_state; | 1857 | struct reclaim_state *reclaim_state = current->reclaim_state; |
1790 | unsigned long lru_pages = 0; | ||
1791 | struct zoneref *z; | 1858 | struct zoneref *z; |
1792 | struct zone *zone; | 1859 | struct zone *zone; |
1793 | enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask); | ||
1794 | unsigned long writeback_threshold; | 1860 | unsigned long writeback_threshold; |
1795 | 1861 | ||
1796 | get_mems_allowed(); | 1862 | get_mems_allowed(); |
@@ -1798,18 +1864,6 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist, | |||
1798 | 1864 | ||
1799 | if (scanning_global_lru(sc)) | 1865 | if (scanning_global_lru(sc)) |
1800 | count_vm_event(ALLOCSTALL); | 1866 | count_vm_event(ALLOCSTALL); |
1801 | /* | ||
1802 | * mem_cgroup will not do shrink_slab. | ||
1803 | */ | ||
1804 | if (scanning_global_lru(sc)) { | ||
1805 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { | ||
1806 | |||
1807 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) | ||
1808 | continue; | ||
1809 | |||
1810 | lru_pages += zone_reclaimable_pages(zone); | ||
1811 | } | ||
1812 | } | ||
1813 | 1867 | ||
1814 | for (priority = DEF_PRIORITY; priority >= 0; priority--) { | 1868 | for (priority = DEF_PRIORITY; priority >= 0; priority--) { |
1815 | sc->nr_scanned = 0; | 1869 | sc->nr_scanned = 0; |
@@ -1821,6 +1875,15 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist, | |||
1821 | * over limit cgroups | 1875 | * over limit cgroups |
1822 | */ | 1876 | */ |
1823 | if (scanning_global_lru(sc)) { | 1877 | if (scanning_global_lru(sc)) { |
1878 | unsigned long lru_pages = 0; | ||
1879 | for_each_zone_zonelist(zone, z, zonelist, | ||
1880 | gfp_zone(sc->gfp_mask)) { | ||
1881 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) | ||
1882 | continue; | ||
1883 | |||
1884 | lru_pages += zone_reclaimable_pages(zone); | ||
1885 | } | ||
1886 | |||
1824 | shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages); | 1887 | shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages); |
1825 | if (reclaim_state) { | 1888 | if (reclaim_state) { |
1826 | sc->nr_reclaimed += reclaim_state->reclaimed_slab; | 1889 | sc->nr_reclaimed += reclaim_state->reclaimed_slab; |
@@ -1861,17 +1924,6 @@ out: | |||
1861 | if (priority < 0) | 1924 | if (priority < 0) |
1862 | priority = 0; | 1925 | priority = 0; |
1863 | 1926 | ||
1864 | if (scanning_global_lru(sc)) { | ||
1865 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { | ||
1866 | |||
1867 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) | ||
1868 | continue; | ||
1869 | |||
1870 | zone->prev_priority = priority; | ||
1871 | } | ||
1872 | } else | ||
1873 | mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority); | ||
1874 | |||
1875 | delayacct_freepages_end(); | 1927 | delayacct_freepages_end(); |
1876 | put_mems_allowed(); | 1928 | put_mems_allowed(); |
1877 | 1929 | ||
@@ -1888,6 +1940,7 @@ out: | |||
1888 | unsigned long try_to_free_pages(struct zonelist *zonelist, int order, | 1940 | unsigned long try_to_free_pages(struct zonelist *zonelist, int order, |
1889 | gfp_t gfp_mask, nodemask_t *nodemask) | 1941 | gfp_t gfp_mask, nodemask_t *nodemask) |
1890 | { | 1942 | { |
1943 | unsigned long nr_reclaimed; | ||
1891 | struct scan_control sc = { | 1944 | struct scan_control sc = { |
1892 | .gfp_mask = gfp_mask, | 1945 | .gfp_mask = gfp_mask, |
1893 | .may_writepage = !laptop_mode, | 1946 | .may_writepage = !laptop_mode, |
@@ -1900,7 +1953,15 @@ unsigned long try_to_free_pages(struct zonelist *zonelist, int order, | |||
1900 | .nodemask = nodemask, | 1953 | .nodemask = nodemask, |
1901 | }; | 1954 | }; |
1902 | 1955 | ||
1903 | return do_try_to_free_pages(zonelist, &sc); | 1956 | trace_mm_vmscan_direct_reclaim_begin(order, |
1957 | sc.may_writepage, | ||
1958 | gfp_mask); | ||
1959 | |||
1960 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc); | ||
1961 | |||
1962 | trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); | ||
1963 | |||
1964 | return nr_reclaimed; | ||
1904 | } | 1965 | } |
1905 | 1966 | ||
1906 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR | 1967 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR |
@@ -1908,9 +1969,10 @@ unsigned long try_to_free_pages(struct zonelist *zonelist, int order, | |||
1908 | unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem, | 1969 | unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem, |
1909 | gfp_t gfp_mask, bool noswap, | 1970 | gfp_t gfp_mask, bool noswap, |
1910 | unsigned int swappiness, | 1971 | unsigned int swappiness, |
1911 | struct zone *zone, int nid) | 1972 | struct zone *zone) |
1912 | { | 1973 | { |
1913 | struct scan_control sc = { | 1974 | struct scan_control sc = { |
1975 | .nr_to_reclaim = SWAP_CLUSTER_MAX, | ||
1914 | .may_writepage = !laptop_mode, | 1976 | .may_writepage = !laptop_mode, |
1915 | .may_unmap = 1, | 1977 | .may_unmap = 1, |
1916 | .may_swap = !noswap, | 1978 | .may_swap = !noswap, |
@@ -1918,13 +1980,13 @@ unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem, | |||
1918 | .order = 0, | 1980 | .order = 0, |
1919 | .mem_cgroup = mem, | 1981 | .mem_cgroup = mem, |
1920 | }; | 1982 | }; |
1921 | nodemask_t nm = nodemask_of_node(nid); | ||
1922 | |||
1923 | sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | | 1983 | sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | |
1924 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); | 1984 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); |
1925 | sc.nodemask = &nm; | 1985 | |
1926 | sc.nr_reclaimed = 0; | 1986 | trace_mm_vmscan_memcg_softlimit_reclaim_begin(0, |
1927 | sc.nr_scanned = 0; | 1987 | sc.may_writepage, |
1988 | sc.gfp_mask); | ||
1989 | |||
1928 | /* | 1990 | /* |
1929 | * NOTE: Although we can get the priority field, using it | 1991 | * NOTE: Although we can get the priority field, using it |
1930 | * here is not a good idea, since it limits the pages we can scan. | 1992 | * here is not a good idea, since it limits the pages we can scan. |
@@ -1933,6 +1995,9 @@ unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem, | |||
1933 | * the priority and make it zero. | 1995 | * the priority and make it zero. |
1934 | */ | 1996 | */ |
1935 | shrink_zone(0, zone, &sc); | 1997 | shrink_zone(0, zone, &sc); |
1998 | |||
1999 | trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); | ||
2000 | |||
1936 | return sc.nr_reclaimed; | 2001 | return sc.nr_reclaimed; |
1937 | } | 2002 | } |
1938 | 2003 | ||
@@ -1942,6 +2007,7 @@ unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont, | |||
1942 | unsigned int swappiness) | 2007 | unsigned int swappiness) |
1943 | { | 2008 | { |
1944 | struct zonelist *zonelist; | 2009 | struct zonelist *zonelist; |
2010 | unsigned long nr_reclaimed; | ||
1945 | struct scan_control sc = { | 2011 | struct scan_control sc = { |
1946 | .may_writepage = !laptop_mode, | 2012 | .may_writepage = !laptop_mode, |
1947 | .may_unmap = 1, | 2013 | .may_unmap = 1, |
@@ -1956,7 +2022,16 @@ unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont, | |||
1956 | sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | | 2022 | sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | |
1957 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); | 2023 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); |
1958 | zonelist = NODE_DATA(numa_node_id())->node_zonelists; | 2024 | zonelist = NODE_DATA(numa_node_id())->node_zonelists; |
1959 | return do_try_to_free_pages(zonelist, &sc); | 2025 | |
2026 | trace_mm_vmscan_memcg_reclaim_begin(0, | ||
2027 | sc.may_writepage, | ||
2028 | sc.gfp_mask); | ||
2029 | |||
2030 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc); | ||
2031 | |||
2032 | trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); | ||
2033 | |||
2034 | return nr_reclaimed; | ||
1960 | } | 2035 | } |
1961 | #endif | 2036 | #endif |
1962 | 2037 | ||
@@ -2028,22 +2103,12 @@ static unsigned long balance_pgdat(pg_data_t *pgdat, int order) | |||
2028 | .order = order, | 2103 | .order = order, |
2029 | .mem_cgroup = NULL, | 2104 | .mem_cgroup = NULL, |
2030 | }; | 2105 | }; |
2031 | /* | ||
2032 | * temp_priority is used to remember the scanning priority at which | ||
2033 | * this zone was successfully refilled to | ||
2034 | * free_pages == high_wmark_pages(zone). | ||
2035 | */ | ||
2036 | int temp_priority[MAX_NR_ZONES]; | ||
2037 | |||
2038 | loop_again: | 2106 | loop_again: |
2039 | total_scanned = 0; | 2107 | total_scanned = 0; |
2040 | sc.nr_reclaimed = 0; | 2108 | sc.nr_reclaimed = 0; |
2041 | sc.may_writepage = !laptop_mode; | 2109 | sc.may_writepage = !laptop_mode; |
2042 | count_vm_event(PAGEOUTRUN); | 2110 | count_vm_event(PAGEOUTRUN); |
2043 | 2111 | ||
2044 | for (i = 0; i < pgdat->nr_zones; i++) | ||
2045 | temp_priority[i] = DEF_PRIORITY; | ||
2046 | |||
2047 | for (priority = DEF_PRIORITY; priority >= 0; priority--) { | 2112 | for (priority = DEF_PRIORITY; priority >= 0; priority--) { |
2048 | int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ | 2113 | int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ |
2049 | unsigned long lru_pages = 0; | 2114 | unsigned long lru_pages = 0; |
@@ -2103,7 +2168,6 @@ loop_again: | |||
2103 | for (i = 0; i <= end_zone; i++) { | 2168 | for (i = 0; i <= end_zone; i++) { |
2104 | struct zone *zone = pgdat->node_zones + i; | 2169 | struct zone *zone = pgdat->node_zones + i; |
2105 | int nr_slab; | 2170 | int nr_slab; |
2106 | int nid, zid; | ||
2107 | 2171 | ||
2108 | if (!populated_zone(zone)) | 2172 | if (!populated_zone(zone)) |
2109 | continue; | 2173 | continue; |
@@ -2111,18 +2175,14 @@ loop_again: | |||
2111 | if (zone->all_unreclaimable && priority != DEF_PRIORITY) | 2175 | if (zone->all_unreclaimable && priority != DEF_PRIORITY) |
2112 | continue; | 2176 | continue; |
2113 | 2177 | ||
2114 | temp_priority[i] = priority; | ||
2115 | sc.nr_scanned = 0; | 2178 | sc.nr_scanned = 0; |
2116 | note_zone_scanning_priority(zone, priority); | ||
2117 | 2179 | ||
2118 | nid = pgdat->node_id; | ||
2119 | zid = zone_idx(zone); | ||
2120 | /* | 2180 | /* |
2121 | * Call soft limit reclaim before calling shrink_zone. | 2181 | * Call soft limit reclaim before calling shrink_zone. |
2122 | * For now we ignore the return value | 2182 | * For now we ignore the return value |
2123 | */ | 2183 | */ |
2124 | mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask, | 2184 | mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask); |
2125 | nid, zid); | 2185 | |
2126 | /* | 2186 | /* |
2127 | * We put equal pressure on every zone, unless one | 2187 | * We put equal pressure on every zone, unless one |
2128 | * zone has way too many pages free already. | 2188 | * zone has way too many pages free already. |
@@ -2186,16 +2246,6 @@ loop_again: | |||
2186 | break; | 2246 | break; |
2187 | } | 2247 | } |
2188 | out: | 2248 | out: |
2189 | /* | ||
2190 | * Note within each zone the priority level at which this zone was | ||
2191 | * brought into a happy state. So that the next thread which scans this | ||
2192 | * zone will start out at that priority level. | ||
2193 | */ | ||
2194 | for (i = 0; i < pgdat->nr_zones; i++) { | ||
2195 | struct zone *zone = pgdat->node_zones + i; | ||
2196 | |||
2197 | zone->prev_priority = temp_priority[i]; | ||
2198 | } | ||
2199 | if (!all_zones_ok) { | 2249 | if (!all_zones_ok) { |
2200 | cond_resched(); | 2250 | cond_resched(); |
2201 | 2251 | ||
@@ -2299,9 +2349,10 @@ static int kswapd(void *p) | |||
2299 | * premature sleep. If not, then go fully | 2349 | * premature sleep. If not, then go fully |
2300 | * to sleep until explicitly woken up | 2350 | * to sleep until explicitly woken up |
2301 | */ | 2351 | */ |
2302 | if (!sleeping_prematurely(pgdat, order, remaining)) | 2352 | if (!sleeping_prematurely(pgdat, order, remaining)) { |
2353 | trace_mm_vmscan_kswapd_sleep(pgdat->node_id); | ||
2303 | schedule(); | 2354 | schedule(); |
2304 | else { | 2355 | } else { |
2305 | if (remaining) | 2356 | if (remaining) |
2306 | count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); | 2357 | count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); |
2307 | else | 2358 | else |
@@ -2321,8 +2372,10 @@ static int kswapd(void *p) | |||
2321 | * We can speed up thawing tasks if we don't call balance_pgdat | 2372 | * We can speed up thawing tasks if we don't call balance_pgdat |
2322 | * after returning from the refrigerator | 2373 | * after returning from the refrigerator |
2323 | */ | 2374 | */ |
2324 | if (!ret) | 2375 | if (!ret) { |
2376 | trace_mm_vmscan_kswapd_wake(pgdat->node_id, order); | ||
2325 | balance_pgdat(pgdat, order); | 2377 | balance_pgdat(pgdat, order); |
2378 | } | ||
2326 | } | 2379 | } |
2327 | return 0; | 2380 | return 0; |
2328 | } | 2381 | } |
@@ -2342,6 +2395,7 @@ void wakeup_kswapd(struct zone *zone, int order) | |||
2342 | return; | 2395 | return; |
2343 | if (pgdat->kswapd_max_order < order) | 2396 | if (pgdat->kswapd_max_order < order) |
2344 | pgdat->kswapd_max_order = order; | 2397 | pgdat->kswapd_max_order = order; |
2398 | trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); | ||
2345 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) | 2399 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) |
2346 | return; | 2400 | return; |
2347 | if (!waitqueue_active(&pgdat->kswapd_wait)) | 2401 | if (!waitqueue_active(&pgdat->kswapd_wait)) |
@@ -2590,9 +2644,8 @@ static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) | |||
2590 | .swappiness = vm_swappiness, | 2644 | .swappiness = vm_swappiness, |
2591 | .order = order, | 2645 | .order = order, |
2592 | }; | 2646 | }; |
2593 | unsigned long slab_reclaimable; | 2647 | unsigned long nr_slab_pages0, nr_slab_pages1; |
2594 | 2648 | ||
2595 | disable_swap_token(); | ||
2596 | cond_resched(); | 2649 | cond_resched(); |
2597 | /* | 2650 | /* |
2598 | * We need to be able to allocate from the reserves for RECLAIM_SWAP | 2651 | * We need to be able to allocate from the reserves for RECLAIM_SWAP |
@@ -2611,14 +2664,13 @@ static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) | |||
2611 | */ | 2664 | */ |
2612 | priority = ZONE_RECLAIM_PRIORITY; | 2665 | priority = ZONE_RECLAIM_PRIORITY; |
2613 | do { | 2666 | do { |
2614 | note_zone_scanning_priority(zone, priority); | ||
2615 | shrink_zone(priority, zone, &sc); | 2667 | shrink_zone(priority, zone, &sc); |
2616 | priority--; | 2668 | priority--; |
2617 | } while (priority >= 0 && sc.nr_reclaimed < nr_pages); | 2669 | } while (priority >= 0 && sc.nr_reclaimed < nr_pages); |
2618 | } | 2670 | } |
2619 | 2671 | ||
2620 | slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE); | 2672 | nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); |
2621 | if (slab_reclaimable > zone->min_slab_pages) { | 2673 | if (nr_slab_pages0 > zone->min_slab_pages) { |
2622 | /* | 2674 | /* |
2623 | * shrink_slab() does not currently allow us to determine how | 2675 | * shrink_slab() does not currently allow us to determine how |
2624 | * many pages were freed in this zone. So we take the current | 2676 | * many pages were freed in this zone. So we take the current |
@@ -2629,17 +2681,27 @@ static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) | |||
2629 | * Note that shrink_slab will free memory on all zones and may | 2681 | * Note that shrink_slab will free memory on all zones and may |
2630 | * take a long time. | 2682 | * take a long time. |
2631 | */ | 2683 | */ |
2632 | while (shrink_slab(sc.nr_scanned, gfp_mask, order) && | 2684 | for (;;) { |
2633 | zone_page_state(zone, NR_SLAB_RECLAIMABLE) > | 2685 | unsigned long lru_pages = zone_reclaimable_pages(zone); |
2634 | slab_reclaimable - nr_pages) | 2686 | |
2635 | ; | 2687 | /* No reclaimable slab or very low memory pressure */ |
2688 | if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages)) | ||
2689 | break; | ||
2690 | |||
2691 | /* Freed enough memory */ | ||
2692 | nr_slab_pages1 = zone_page_state(zone, | ||
2693 | NR_SLAB_RECLAIMABLE); | ||
2694 | if (nr_slab_pages1 + nr_pages <= nr_slab_pages0) | ||
2695 | break; | ||
2696 | } | ||
2636 | 2697 | ||
2637 | /* | 2698 | /* |
2638 | * Update nr_reclaimed by the number of slab pages we | 2699 | * Update nr_reclaimed by the number of slab pages we |
2639 | * reclaimed from this zone. | 2700 | * reclaimed from this zone. |
2640 | */ | 2701 | */ |
2641 | sc.nr_reclaimed += slab_reclaimable - | 2702 | nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); |
2642 | zone_page_state(zone, NR_SLAB_RECLAIMABLE); | 2703 | if (nr_slab_pages1 < nr_slab_pages0) |
2704 | sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1; | ||
2643 | } | 2705 | } |
2644 | 2706 | ||
2645 | p->reclaim_state = NULL; | 2707 | p->reclaim_state = NULL; |
diff --git a/mm/vmstat.c b/mm/vmstat.c index 7759941d4e77..f389168f9a83 100644 --- a/mm/vmstat.c +++ b/mm/vmstat.c | |||
@@ -22,14 +22,14 @@ | |||
22 | DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; | 22 | DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; |
23 | EXPORT_PER_CPU_SYMBOL(vm_event_states); | 23 | EXPORT_PER_CPU_SYMBOL(vm_event_states); |
24 | 24 | ||
25 | static void sum_vm_events(unsigned long *ret, const struct cpumask *cpumask) | 25 | static void sum_vm_events(unsigned long *ret) |
26 | { | 26 | { |
27 | int cpu; | 27 | int cpu; |
28 | int i; | 28 | int i; |
29 | 29 | ||
30 | memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); | 30 | memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); |
31 | 31 | ||
32 | for_each_cpu(cpu, cpumask) { | 32 | for_each_online_cpu(cpu) { |
33 | struct vm_event_state *this = &per_cpu(vm_event_states, cpu); | 33 | struct vm_event_state *this = &per_cpu(vm_event_states, cpu); |
34 | 34 | ||
35 | for (i = 0; i < NR_VM_EVENT_ITEMS; i++) | 35 | for (i = 0; i < NR_VM_EVENT_ITEMS; i++) |
@@ -45,7 +45,7 @@ static void sum_vm_events(unsigned long *ret, const struct cpumask *cpumask) | |||
45 | void all_vm_events(unsigned long *ret) | 45 | void all_vm_events(unsigned long *ret) |
46 | { | 46 | { |
47 | get_online_cpus(); | 47 | get_online_cpus(); |
48 | sum_vm_events(ret, cpu_online_mask); | 48 | sum_vm_events(ret); |
49 | put_online_cpus(); | 49 | put_online_cpus(); |
50 | } | 50 | } |
51 | EXPORT_SYMBOL_GPL(all_vm_events); | 51 | EXPORT_SYMBOL_GPL(all_vm_events); |
@@ -853,11 +853,9 @@ static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, | |||
853 | } | 853 | } |
854 | seq_printf(m, | 854 | seq_printf(m, |
855 | "\n all_unreclaimable: %u" | 855 | "\n all_unreclaimable: %u" |
856 | "\n prev_priority: %i" | ||
857 | "\n start_pfn: %lu" | 856 | "\n start_pfn: %lu" |
858 | "\n inactive_ratio: %u", | 857 | "\n inactive_ratio: %u", |
859 | zone->all_unreclaimable, | 858 | zone->all_unreclaimable, |
860 | zone->prev_priority, | ||
861 | zone->zone_start_pfn, | 859 | zone->zone_start_pfn, |
862 | zone->inactive_ratio); | 860 | zone->inactive_ratio); |
863 | seq_putc(m, '\n'); | 861 | seq_putc(m, '\n'); |