diff options
author | Christoph Lameter <clameter@sgi.com> | 2006-03-22 03:09:12 -0500 |
---|---|---|
committer | Linus Torvalds <torvalds@g5.osdl.org> | 2006-03-22 10:54:06 -0500 |
commit | b20a35035f983f4ac7e29c4a68f30e43510007e0 (patch) | |
tree | fdf090ddddbcc275349f62f71adc98649e2c683b /mm | |
parent | 442295c94bf650221af3ef20fc68fa3e93876818 (diff) |
[PATCH] page migration reorg
Centralize the page migration functions in anticipation of additional
tinkering. Creates a new file mm/migrate.c
1. Extract buffer_migrate_page() from fs/buffer.c
2. Extract central migration code from vmscan.c
3. Extract some components from mempolicy.c
4. Export pageout() and remove_from_swap() from vmscan.c
5. Make it possible to configure NUMA systems without page migration
and non-NUMA systems with page migration.
I had to so some #ifdeffing in mempolicy.c that may need a cleanup.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Diffstat (limited to 'mm')
-rw-r--r-- | mm/Kconfig | 6 | ||||
-rw-r--r-- | mm/Makefile | 2 | ||||
-rw-r--r-- | mm/mempolicy.c | 113 | ||||
-rw-r--r-- | mm/migrate.c | 655 | ||||
-rw-r--r-- | mm/swap_state.c | 1 | ||||
-rw-r--r-- | mm/vmscan.c | 491 |
6 files changed, 689 insertions, 579 deletions
diff --git a/mm/Kconfig b/mm/Kconfig index a9cb80ae6409..bd80460360db 100644 --- a/mm/Kconfig +++ b/mm/Kconfig | |||
@@ -137,5 +137,11 @@ config SPLIT_PTLOCK_CPUS | |||
137 | # support for page migration | 137 | # support for page migration |
138 | # | 138 | # |
139 | config MIGRATION | 139 | config MIGRATION |
140 | bool "Page migration" | ||
140 | def_bool y if NUMA || SPARSEMEM || DISCONTIGMEM | 141 | def_bool y if NUMA || SPARSEMEM || DISCONTIGMEM |
141 | depends on SWAP | 142 | depends on SWAP |
143 | help | ||
144 | Allows the migration of the physical location of pages of processes | ||
145 | while the virtual addresses are not changed. This is useful for | ||
146 | example on NUMA systems to put pages nearer to the processors accessing | ||
147 | the page. | ||
diff --git a/mm/Makefile b/mm/Makefile index 9aa03fa1dcc3..f10c753dce6d 100644 --- a/mm/Makefile +++ b/mm/Makefile | |||
@@ -22,3 +22,5 @@ obj-$(CONFIG_SLOB) += slob.o | |||
22 | obj-$(CONFIG_SLAB) += slab.o | 22 | obj-$(CONFIG_SLAB) += slab.o |
23 | obj-$(CONFIG_MEMORY_HOTPLUG) += memory_hotplug.o | 23 | obj-$(CONFIG_MEMORY_HOTPLUG) += memory_hotplug.o |
24 | obj-$(CONFIG_FS_XIP) += filemap_xip.o | 24 | obj-$(CONFIG_FS_XIP) += filemap_xip.o |
25 | obj-$(CONFIG_MIGRATION) += migrate.o | ||
26 | |||
diff --git a/mm/mempolicy.c b/mm/mempolicy.c index 96195dcb62e1..e93cc740c22b 100644 --- a/mm/mempolicy.c +++ b/mm/mempolicy.c | |||
@@ -86,6 +86,7 @@ | |||
86 | #include <linux/swap.h> | 86 | #include <linux/swap.h> |
87 | #include <linux/seq_file.h> | 87 | #include <linux/seq_file.h> |
88 | #include <linux/proc_fs.h> | 88 | #include <linux/proc_fs.h> |
89 | #include <linux/migrate.h> | ||
89 | 90 | ||
90 | #include <asm/tlbflush.h> | 91 | #include <asm/tlbflush.h> |
91 | #include <asm/uaccess.h> | 92 | #include <asm/uaccess.h> |
@@ -95,9 +96,6 @@ | |||
95 | #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ | 96 | #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */ |
96 | #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */ | 97 | #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */ |
97 | 98 | ||
98 | /* The number of pages to migrate per call to migrate_pages() */ | ||
99 | #define MIGRATE_CHUNK_SIZE 256 | ||
100 | |||
101 | static struct kmem_cache *policy_cache; | 99 | static struct kmem_cache *policy_cache; |
102 | static struct kmem_cache *sn_cache; | 100 | static struct kmem_cache *sn_cache; |
103 | 101 | ||
@@ -331,17 +329,10 @@ check_range(struct mm_struct *mm, unsigned long start, unsigned long end, | |||
331 | struct vm_area_struct *first, *vma, *prev; | 329 | struct vm_area_struct *first, *vma, *prev; |
332 | 330 | ||
333 | if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { | 331 | if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) { |
334 | /* Must have swap device for migration */ | ||
335 | if (nr_swap_pages <= 0) | ||
336 | return ERR_PTR(-ENODEV); | ||
337 | 332 | ||
338 | /* | 333 | err = migrate_prep(); |
339 | * Clear the LRU lists so pages can be isolated. | 334 | if (err) |
340 | * Note that pages may be moved off the LRU after we have | 335 | return ERR_PTR(err); |
341 | * drained them. Those pages will fail to migrate like other | ||
342 | * pages that may be busy. | ||
343 | */ | ||
344 | lru_add_drain_all(); | ||
345 | } | 336 | } |
346 | 337 | ||
347 | first = find_vma(mm, start); | 338 | first = find_vma(mm, start); |
@@ -550,92 +541,18 @@ long do_get_mempolicy(int *policy, nodemask_t *nmask, | |||
550 | return err; | 541 | return err; |
551 | } | 542 | } |
552 | 543 | ||
544 | #ifdef CONFIG_MIGRATION | ||
553 | /* | 545 | /* |
554 | * page migration | 546 | * page migration |
555 | */ | 547 | */ |
556 | |||
557 | static void migrate_page_add(struct page *page, struct list_head *pagelist, | 548 | static void migrate_page_add(struct page *page, struct list_head *pagelist, |
558 | unsigned long flags) | 549 | unsigned long flags) |
559 | { | 550 | { |
560 | /* | 551 | /* |
561 | * Avoid migrating a page that is shared with others. | 552 | * Avoid migrating a page that is shared with others. |
562 | */ | 553 | */ |
563 | if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) { | 554 | if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) |
564 | if (isolate_lru_page(page)) | 555 | isolate_lru_page(page, pagelist); |
565 | list_add_tail(&page->lru, pagelist); | ||
566 | } | ||
567 | } | ||
568 | |||
569 | /* | ||
570 | * Migrate the list 'pagelist' of pages to a certain destination. | ||
571 | * | ||
572 | * Specify destination with either non-NULL vma or dest_node >= 0 | ||
573 | * Return the number of pages not migrated or error code | ||
574 | */ | ||
575 | static int migrate_pages_to(struct list_head *pagelist, | ||
576 | struct vm_area_struct *vma, int dest) | ||
577 | { | ||
578 | LIST_HEAD(newlist); | ||
579 | LIST_HEAD(moved); | ||
580 | LIST_HEAD(failed); | ||
581 | int err = 0; | ||
582 | unsigned long offset = 0; | ||
583 | int nr_pages; | ||
584 | struct page *page; | ||
585 | struct list_head *p; | ||
586 | |||
587 | redo: | ||
588 | nr_pages = 0; | ||
589 | list_for_each(p, pagelist) { | ||
590 | if (vma) { | ||
591 | /* | ||
592 | * The address passed to alloc_page_vma is used to | ||
593 | * generate the proper interleave behavior. We fake | ||
594 | * the address here by an increasing offset in order | ||
595 | * to get the proper distribution of pages. | ||
596 | * | ||
597 | * No decision has been made as to which page | ||
598 | * a certain old page is moved to so we cannot | ||
599 | * specify the correct address. | ||
600 | */ | ||
601 | page = alloc_page_vma(GFP_HIGHUSER, vma, | ||
602 | offset + vma->vm_start); | ||
603 | offset += PAGE_SIZE; | ||
604 | } | ||
605 | else | ||
606 | page = alloc_pages_node(dest, GFP_HIGHUSER, 0); | ||
607 | |||
608 | if (!page) { | ||
609 | err = -ENOMEM; | ||
610 | goto out; | ||
611 | } | ||
612 | list_add_tail(&page->lru, &newlist); | ||
613 | nr_pages++; | ||
614 | if (nr_pages > MIGRATE_CHUNK_SIZE) | ||
615 | break; | ||
616 | } | ||
617 | err = migrate_pages(pagelist, &newlist, &moved, &failed); | ||
618 | |||
619 | putback_lru_pages(&moved); /* Call release pages instead ?? */ | ||
620 | |||
621 | if (err >= 0 && list_empty(&newlist) && !list_empty(pagelist)) | ||
622 | goto redo; | ||
623 | out: | ||
624 | /* Return leftover allocated pages */ | ||
625 | while (!list_empty(&newlist)) { | ||
626 | page = list_entry(newlist.next, struct page, lru); | ||
627 | list_del(&page->lru); | ||
628 | __free_page(page); | ||
629 | } | ||
630 | list_splice(&failed, pagelist); | ||
631 | if (err < 0) | ||
632 | return err; | ||
633 | |||
634 | /* Calculate number of leftover pages */ | ||
635 | nr_pages = 0; | ||
636 | list_for_each(p, pagelist) | ||
637 | nr_pages++; | ||
638 | return nr_pages; | ||
639 | } | 556 | } |
640 | 557 | ||
641 | /* | 558 | /* |
@@ -742,8 +659,23 @@ int do_migrate_pages(struct mm_struct *mm, | |||
742 | if (err < 0) | 659 | if (err < 0) |
743 | return err; | 660 | return err; |
744 | return busy; | 661 | return busy; |
662 | |||
745 | } | 663 | } |
746 | 664 | ||
665 | #else | ||
666 | |||
667 | static void migrate_page_add(struct page *page, struct list_head *pagelist, | ||
668 | unsigned long flags) | ||
669 | { | ||
670 | } | ||
671 | |||
672 | int do_migrate_pages(struct mm_struct *mm, | ||
673 | const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags) | ||
674 | { | ||
675 | return -ENOSYS; | ||
676 | } | ||
677 | #endif | ||
678 | |||
747 | long do_mbind(unsigned long start, unsigned long len, | 679 | long do_mbind(unsigned long start, unsigned long len, |
748 | unsigned long mode, nodemask_t *nmask, unsigned long flags) | 680 | unsigned long mode, nodemask_t *nmask, unsigned long flags) |
749 | { | 681 | { |
@@ -808,6 +740,7 @@ long do_mbind(unsigned long start, unsigned long len, | |||
808 | if (!err && nr_failed && (flags & MPOL_MF_STRICT)) | 740 | if (!err && nr_failed && (flags & MPOL_MF_STRICT)) |
809 | err = -EIO; | 741 | err = -EIO; |
810 | } | 742 | } |
743 | |||
811 | if (!list_empty(&pagelist)) | 744 | if (!list_empty(&pagelist)) |
812 | putback_lru_pages(&pagelist); | 745 | putback_lru_pages(&pagelist); |
813 | 746 | ||
diff --git a/mm/migrate.c b/mm/migrate.c new file mode 100644 index 000000000000..09f6e4aa87fc --- /dev/null +++ b/mm/migrate.c | |||
@@ -0,0 +1,655 @@ | |||
1 | /* | ||
2 | * Memory Migration functionality - linux/mm/migration.c | ||
3 | * | ||
4 | * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter | ||
5 | * | ||
6 | * Page migration was first developed in the context of the memory hotplug | ||
7 | * project. The main authors of the migration code are: | ||
8 | * | ||
9 | * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> | ||
10 | * Hirokazu Takahashi <taka@valinux.co.jp> | ||
11 | * Dave Hansen <haveblue@us.ibm.com> | ||
12 | * Christoph Lameter <clameter@sgi.com> | ||
13 | */ | ||
14 | |||
15 | #include <linux/migrate.h> | ||
16 | #include <linux/module.h> | ||
17 | #include <linux/swap.h> | ||
18 | #include <linux/pagemap.h> | ||
19 | #include <linux/buffer_head.h> /* for try_to_release_page(), | ||
20 | buffer_heads_over_limit */ | ||
21 | #include <linux/mm_inline.h> | ||
22 | #include <linux/pagevec.h> | ||
23 | #include <linux/rmap.h> | ||
24 | #include <linux/topology.h> | ||
25 | #include <linux/cpu.h> | ||
26 | #include <linux/cpuset.h> | ||
27 | #include <linux/swapops.h> | ||
28 | |||
29 | #include "internal.h" | ||
30 | |||
31 | #include "internal.h" | ||
32 | |||
33 | /* The maximum number of pages to take off the LRU for migration */ | ||
34 | #define MIGRATE_CHUNK_SIZE 256 | ||
35 | |||
36 | #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) | ||
37 | |||
38 | /* | ||
39 | * Isolate one page from the LRU lists. If successful put it onto | ||
40 | * the indicated list with elevated page count. | ||
41 | * | ||
42 | * Result: | ||
43 | * -EBUSY: page not on LRU list | ||
44 | * 0: page removed from LRU list and added to the specified list. | ||
45 | */ | ||
46 | int isolate_lru_page(struct page *page, struct list_head *pagelist) | ||
47 | { | ||
48 | int ret = -EBUSY; | ||
49 | |||
50 | if (PageLRU(page)) { | ||
51 | struct zone *zone = page_zone(page); | ||
52 | |||
53 | spin_lock_irq(&zone->lru_lock); | ||
54 | if (PageLRU(page)) { | ||
55 | ret = 0; | ||
56 | get_page(page); | ||
57 | ClearPageLRU(page); | ||
58 | if (PageActive(page)) | ||
59 | del_page_from_active_list(zone, page); | ||
60 | else | ||
61 | del_page_from_inactive_list(zone, page); | ||
62 | list_add_tail(&page->lru, pagelist); | ||
63 | } | ||
64 | spin_unlock_irq(&zone->lru_lock); | ||
65 | } | ||
66 | return ret; | ||
67 | } | ||
68 | |||
69 | /* | ||
70 | * migrate_prep() needs to be called after we have compiled the list of pages | ||
71 | * to be migrated using isolate_lru_page() but before we begin a series of calls | ||
72 | * to migrate_pages(). | ||
73 | */ | ||
74 | int migrate_prep(void) | ||
75 | { | ||
76 | /* Must have swap device for migration */ | ||
77 | if (nr_swap_pages <= 0) | ||
78 | return -ENODEV; | ||
79 | |||
80 | /* | ||
81 | * Clear the LRU lists so pages can be isolated. | ||
82 | * Note that pages may be moved off the LRU after we have | ||
83 | * drained them. Those pages will fail to migrate like other | ||
84 | * pages that may be busy. | ||
85 | */ | ||
86 | lru_add_drain_all(); | ||
87 | |||
88 | return 0; | ||
89 | } | ||
90 | |||
91 | static inline void move_to_lru(struct page *page) | ||
92 | { | ||
93 | list_del(&page->lru); | ||
94 | if (PageActive(page)) { | ||
95 | /* | ||
96 | * lru_cache_add_active checks that | ||
97 | * the PG_active bit is off. | ||
98 | */ | ||
99 | ClearPageActive(page); | ||
100 | lru_cache_add_active(page); | ||
101 | } else { | ||
102 | lru_cache_add(page); | ||
103 | } | ||
104 | put_page(page); | ||
105 | } | ||
106 | |||
107 | /* | ||
108 | * Add isolated pages on the list back to the LRU. | ||
109 | * | ||
110 | * returns the number of pages put back. | ||
111 | */ | ||
112 | int putback_lru_pages(struct list_head *l) | ||
113 | { | ||
114 | struct page *page; | ||
115 | struct page *page2; | ||
116 | int count = 0; | ||
117 | |||
118 | list_for_each_entry_safe(page, page2, l, lru) { | ||
119 | move_to_lru(page); | ||
120 | count++; | ||
121 | } | ||
122 | return count; | ||
123 | } | ||
124 | |||
125 | /* | ||
126 | * Non migratable page | ||
127 | */ | ||
128 | int fail_migrate_page(struct page *newpage, struct page *page) | ||
129 | { | ||
130 | return -EIO; | ||
131 | } | ||
132 | EXPORT_SYMBOL(fail_migrate_page); | ||
133 | |||
134 | /* | ||
135 | * swapout a single page | ||
136 | * page is locked upon entry, unlocked on exit | ||
137 | */ | ||
138 | static int swap_page(struct page *page) | ||
139 | { | ||
140 | struct address_space *mapping = page_mapping(page); | ||
141 | |||
142 | if (page_mapped(page) && mapping) | ||
143 | if (try_to_unmap(page, 1) != SWAP_SUCCESS) | ||
144 | goto unlock_retry; | ||
145 | |||
146 | if (PageDirty(page)) { | ||
147 | /* Page is dirty, try to write it out here */ | ||
148 | switch(pageout(page, mapping)) { | ||
149 | case PAGE_KEEP: | ||
150 | case PAGE_ACTIVATE: | ||
151 | goto unlock_retry; | ||
152 | |||
153 | case PAGE_SUCCESS: | ||
154 | goto retry; | ||
155 | |||
156 | case PAGE_CLEAN: | ||
157 | ; /* try to free the page below */ | ||
158 | } | ||
159 | } | ||
160 | |||
161 | if (PagePrivate(page)) { | ||
162 | if (!try_to_release_page(page, GFP_KERNEL) || | ||
163 | (!mapping && page_count(page) == 1)) | ||
164 | goto unlock_retry; | ||
165 | } | ||
166 | |||
167 | if (remove_mapping(mapping, page)) { | ||
168 | /* Success */ | ||
169 | unlock_page(page); | ||
170 | return 0; | ||
171 | } | ||
172 | |||
173 | unlock_retry: | ||
174 | unlock_page(page); | ||
175 | |||
176 | retry: | ||
177 | return -EAGAIN; | ||
178 | } | ||
179 | EXPORT_SYMBOL(swap_page); | ||
180 | |||
181 | /* | ||
182 | * Remove references for a page and establish the new page with the correct | ||
183 | * basic settings to be able to stop accesses to the page. | ||
184 | */ | ||
185 | int migrate_page_remove_references(struct page *newpage, | ||
186 | struct page *page, int nr_refs) | ||
187 | { | ||
188 | struct address_space *mapping = page_mapping(page); | ||
189 | struct page **radix_pointer; | ||
190 | |||
191 | /* | ||
192 | * Avoid doing any of the following work if the page count | ||
193 | * indicates that the page is in use or truncate has removed | ||
194 | * the page. | ||
195 | */ | ||
196 | if (!mapping || page_mapcount(page) + nr_refs != page_count(page)) | ||
197 | return -EAGAIN; | ||
198 | |||
199 | /* | ||
200 | * Establish swap ptes for anonymous pages or destroy pte | ||
201 | * maps for files. | ||
202 | * | ||
203 | * In order to reestablish file backed mappings the fault handlers | ||
204 | * will take the radix tree_lock which may then be used to stop | ||
205 | * processses from accessing this page until the new page is ready. | ||
206 | * | ||
207 | * A process accessing via a swap pte (an anonymous page) will take a | ||
208 | * page_lock on the old page which will block the process until the | ||
209 | * migration attempt is complete. At that time the PageSwapCache bit | ||
210 | * will be examined. If the page was migrated then the PageSwapCache | ||
211 | * bit will be clear and the operation to retrieve the page will be | ||
212 | * retried which will find the new page in the radix tree. Then a new | ||
213 | * direct mapping may be generated based on the radix tree contents. | ||
214 | * | ||
215 | * If the page was not migrated then the PageSwapCache bit | ||
216 | * is still set and the operation may continue. | ||
217 | */ | ||
218 | if (try_to_unmap(page, 1) == SWAP_FAIL) | ||
219 | /* A vma has VM_LOCKED set -> permanent failure */ | ||
220 | return -EPERM; | ||
221 | |||
222 | /* | ||
223 | * Give up if we were unable to remove all mappings. | ||
224 | */ | ||
225 | if (page_mapcount(page)) | ||
226 | return -EAGAIN; | ||
227 | |||
228 | write_lock_irq(&mapping->tree_lock); | ||
229 | |||
230 | radix_pointer = (struct page **)radix_tree_lookup_slot( | ||
231 | &mapping->page_tree, | ||
232 | page_index(page)); | ||
233 | |||
234 | if (!page_mapping(page) || page_count(page) != nr_refs || | ||
235 | *radix_pointer != page) { | ||
236 | write_unlock_irq(&mapping->tree_lock); | ||
237 | return 1; | ||
238 | } | ||
239 | |||
240 | /* | ||
241 | * Now we know that no one else is looking at the page. | ||
242 | * | ||
243 | * Certain minimal information about a page must be available | ||
244 | * in order for other subsystems to properly handle the page if they | ||
245 | * find it through the radix tree update before we are finished | ||
246 | * copying the page. | ||
247 | */ | ||
248 | get_page(newpage); | ||
249 | newpage->index = page->index; | ||
250 | newpage->mapping = page->mapping; | ||
251 | if (PageSwapCache(page)) { | ||
252 | SetPageSwapCache(newpage); | ||
253 | set_page_private(newpage, page_private(page)); | ||
254 | } | ||
255 | |||
256 | *radix_pointer = newpage; | ||
257 | __put_page(page); | ||
258 | write_unlock_irq(&mapping->tree_lock); | ||
259 | |||
260 | return 0; | ||
261 | } | ||
262 | EXPORT_SYMBOL(migrate_page_remove_references); | ||
263 | |||
264 | /* | ||
265 | * Copy the page to its new location | ||
266 | */ | ||
267 | void migrate_page_copy(struct page *newpage, struct page *page) | ||
268 | { | ||
269 | copy_highpage(newpage, page); | ||
270 | |||
271 | if (PageError(page)) | ||
272 | SetPageError(newpage); | ||
273 | if (PageReferenced(page)) | ||
274 | SetPageReferenced(newpage); | ||
275 | if (PageUptodate(page)) | ||
276 | SetPageUptodate(newpage); | ||
277 | if (PageActive(page)) | ||
278 | SetPageActive(newpage); | ||
279 | if (PageChecked(page)) | ||
280 | SetPageChecked(newpage); | ||
281 | if (PageMappedToDisk(page)) | ||
282 | SetPageMappedToDisk(newpage); | ||
283 | |||
284 | if (PageDirty(page)) { | ||
285 | clear_page_dirty_for_io(page); | ||
286 | set_page_dirty(newpage); | ||
287 | } | ||
288 | |||
289 | ClearPageSwapCache(page); | ||
290 | ClearPageActive(page); | ||
291 | ClearPagePrivate(page); | ||
292 | set_page_private(page, 0); | ||
293 | page->mapping = NULL; | ||
294 | |||
295 | /* | ||
296 | * If any waiters have accumulated on the new page then | ||
297 | * wake them up. | ||
298 | */ | ||
299 | if (PageWriteback(newpage)) | ||
300 | end_page_writeback(newpage); | ||
301 | } | ||
302 | EXPORT_SYMBOL(migrate_page_copy); | ||
303 | |||
304 | /* | ||
305 | * Common logic to directly migrate a single page suitable for | ||
306 | * pages that do not use PagePrivate. | ||
307 | * | ||
308 | * Pages are locked upon entry and exit. | ||
309 | */ | ||
310 | int migrate_page(struct page *newpage, struct page *page) | ||
311 | { | ||
312 | int rc; | ||
313 | |||
314 | BUG_ON(PageWriteback(page)); /* Writeback must be complete */ | ||
315 | |||
316 | rc = migrate_page_remove_references(newpage, page, 2); | ||
317 | |||
318 | if (rc) | ||
319 | return rc; | ||
320 | |||
321 | migrate_page_copy(newpage, page); | ||
322 | |||
323 | /* | ||
324 | * Remove auxiliary swap entries and replace | ||
325 | * them with real ptes. | ||
326 | * | ||
327 | * Note that a real pte entry will allow processes that are not | ||
328 | * waiting on the page lock to use the new page via the page tables | ||
329 | * before the new page is unlocked. | ||
330 | */ | ||
331 | remove_from_swap(newpage); | ||
332 | return 0; | ||
333 | } | ||
334 | EXPORT_SYMBOL(migrate_page); | ||
335 | |||
336 | /* | ||
337 | * migrate_pages | ||
338 | * | ||
339 | * Two lists are passed to this function. The first list | ||
340 | * contains the pages isolated from the LRU to be migrated. | ||
341 | * The second list contains new pages that the pages isolated | ||
342 | * can be moved to. If the second list is NULL then all | ||
343 | * pages are swapped out. | ||
344 | * | ||
345 | * The function returns after 10 attempts or if no pages | ||
346 | * are movable anymore because to has become empty | ||
347 | * or no retryable pages exist anymore. | ||
348 | * | ||
349 | * Return: Number of pages not migrated when "to" ran empty. | ||
350 | */ | ||
351 | int migrate_pages(struct list_head *from, struct list_head *to, | ||
352 | struct list_head *moved, struct list_head *failed) | ||
353 | { | ||
354 | int retry; | ||
355 | int nr_failed = 0; | ||
356 | int pass = 0; | ||
357 | struct page *page; | ||
358 | struct page *page2; | ||
359 | int swapwrite = current->flags & PF_SWAPWRITE; | ||
360 | int rc; | ||
361 | |||
362 | if (!swapwrite) | ||
363 | current->flags |= PF_SWAPWRITE; | ||
364 | |||
365 | redo: | ||
366 | retry = 0; | ||
367 | |||
368 | list_for_each_entry_safe(page, page2, from, lru) { | ||
369 | struct page *newpage = NULL; | ||
370 | struct address_space *mapping; | ||
371 | |||
372 | cond_resched(); | ||
373 | |||
374 | rc = 0; | ||
375 | if (page_count(page) == 1) | ||
376 | /* page was freed from under us. So we are done. */ | ||
377 | goto next; | ||
378 | |||
379 | if (to && list_empty(to)) | ||
380 | break; | ||
381 | |||
382 | /* | ||
383 | * Skip locked pages during the first two passes to give the | ||
384 | * functions holding the lock time to release the page. Later we | ||
385 | * use lock_page() to have a higher chance of acquiring the | ||
386 | * lock. | ||
387 | */ | ||
388 | rc = -EAGAIN; | ||
389 | if (pass > 2) | ||
390 | lock_page(page); | ||
391 | else | ||
392 | if (TestSetPageLocked(page)) | ||
393 | goto next; | ||
394 | |||
395 | /* | ||
396 | * Only wait on writeback if we have already done a pass where | ||
397 | * we we may have triggered writeouts for lots of pages. | ||
398 | */ | ||
399 | if (pass > 0) { | ||
400 | wait_on_page_writeback(page); | ||
401 | } else { | ||
402 | if (PageWriteback(page)) | ||
403 | goto unlock_page; | ||
404 | } | ||
405 | |||
406 | /* | ||
407 | * Anonymous pages must have swap cache references otherwise | ||
408 | * the information contained in the page maps cannot be | ||
409 | * preserved. | ||
410 | */ | ||
411 | if (PageAnon(page) && !PageSwapCache(page)) { | ||
412 | if (!add_to_swap(page, GFP_KERNEL)) { | ||
413 | rc = -ENOMEM; | ||
414 | goto unlock_page; | ||
415 | } | ||
416 | } | ||
417 | |||
418 | if (!to) { | ||
419 | rc = swap_page(page); | ||
420 | goto next; | ||
421 | } | ||
422 | |||
423 | newpage = lru_to_page(to); | ||
424 | lock_page(newpage); | ||
425 | |||
426 | /* | ||
427 | * Pages are properly locked and writeback is complete. | ||
428 | * Try to migrate the page. | ||
429 | */ | ||
430 | mapping = page_mapping(page); | ||
431 | if (!mapping) | ||
432 | goto unlock_both; | ||
433 | |||
434 | if (mapping->a_ops->migratepage) { | ||
435 | /* | ||
436 | * Most pages have a mapping and most filesystems | ||
437 | * should provide a migration function. Anonymous | ||
438 | * pages are part of swap space which also has its | ||
439 | * own migration function. This is the most common | ||
440 | * path for page migration. | ||
441 | */ | ||
442 | rc = mapping->a_ops->migratepage(newpage, page); | ||
443 | goto unlock_both; | ||
444 | } | ||
445 | |||
446 | /* | ||
447 | * Default handling if a filesystem does not provide | ||
448 | * a migration function. We can only migrate clean | ||
449 | * pages so try to write out any dirty pages first. | ||
450 | */ | ||
451 | if (PageDirty(page)) { | ||
452 | switch (pageout(page, mapping)) { | ||
453 | case PAGE_KEEP: | ||
454 | case PAGE_ACTIVATE: | ||
455 | goto unlock_both; | ||
456 | |||
457 | case PAGE_SUCCESS: | ||
458 | unlock_page(newpage); | ||
459 | goto next; | ||
460 | |||
461 | case PAGE_CLEAN: | ||
462 | ; /* try to migrate the page below */ | ||
463 | } | ||
464 | } | ||
465 | |||
466 | /* | ||
467 | * Buffers are managed in a filesystem specific way. | ||
468 | * We must have no buffers or drop them. | ||
469 | */ | ||
470 | if (!page_has_buffers(page) || | ||
471 | try_to_release_page(page, GFP_KERNEL)) { | ||
472 | rc = migrate_page(newpage, page); | ||
473 | goto unlock_both; | ||
474 | } | ||
475 | |||
476 | /* | ||
477 | * On early passes with mapped pages simply | ||
478 | * retry. There may be a lock held for some | ||
479 | * buffers that may go away. Later | ||
480 | * swap them out. | ||
481 | */ | ||
482 | if (pass > 4) { | ||
483 | /* | ||
484 | * Persistently unable to drop buffers..... As a | ||
485 | * measure of last resort we fall back to | ||
486 | * swap_page(). | ||
487 | */ | ||
488 | unlock_page(newpage); | ||
489 | newpage = NULL; | ||
490 | rc = swap_page(page); | ||
491 | goto next; | ||
492 | } | ||
493 | |||
494 | unlock_both: | ||
495 | unlock_page(newpage); | ||
496 | |||
497 | unlock_page: | ||
498 | unlock_page(page); | ||
499 | |||
500 | next: | ||
501 | if (rc == -EAGAIN) { | ||
502 | retry++; | ||
503 | } else if (rc) { | ||
504 | /* Permanent failure */ | ||
505 | list_move(&page->lru, failed); | ||
506 | nr_failed++; | ||
507 | } else { | ||
508 | if (newpage) { | ||
509 | /* Successful migration. Return page to LRU */ | ||
510 | move_to_lru(newpage); | ||
511 | } | ||
512 | list_move(&page->lru, moved); | ||
513 | } | ||
514 | } | ||
515 | if (retry && pass++ < 10) | ||
516 | goto redo; | ||
517 | |||
518 | if (!swapwrite) | ||
519 | current->flags &= ~PF_SWAPWRITE; | ||
520 | |||
521 | return nr_failed + retry; | ||
522 | } | ||
523 | |||
524 | /* | ||
525 | * Migration function for pages with buffers. This function can only be used | ||
526 | * if the underlying filesystem guarantees that no other references to "page" | ||
527 | * exist. | ||
528 | */ | ||
529 | int buffer_migrate_page(struct page *newpage, struct page *page) | ||
530 | { | ||
531 | struct address_space *mapping = page->mapping; | ||
532 | struct buffer_head *bh, *head; | ||
533 | int rc; | ||
534 | |||
535 | if (!mapping) | ||
536 | return -EAGAIN; | ||
537 | |||
538 | if (!page_has_buffers(page)) | ||
539 | return migrate_page(newpage, page); | ||
540 | |||
541 | head = page_buffers(page); | ||
542 | |||
543 | rc = migrate_page_remove_references(newpage, page, 3); | ||
544 | |||
545 | if (rc) | ||
546 | return rc; | ||
547 | |||
548 | bh = head; | ||
549 | do { | ||
550 | get_bh(bh); | ||
551 | lock_buffer(bh); | ||
552 | bh = bh->b_this_page; | ||
553 | |||
554 | } while (bh != head); | ||
555 | |||
556 | ClearPagePrivate(page); | ||
557 | set_page_private(newpage, page_private(page)); | ||
558 | set_page_private(page, 0); | ||
559 | put_page(page); | ||
560 | get_page(newpage); | ||
561 | |||
562 | bh = head; | ||
563 | do { | ||
564 | set_bh_page(bh, newpage, bh_offset(bh)); | ||
565 | bh = bh->b_this_page; | ||
566 | |||
567 | } while (bh != head); | ||
568 | |||
569 | SetPagePrivate(newpage); | ||
570 | |||
571 | migrate_page_copy(newpage, page); | ||
572 | |||
573 | bh = head; | ||
574 | do { | ||
575 | unlock_buffer(bh); | ||
576 | put_bh(bh); | ||
577 | bh = bh->b_this_page; | ||
578 | |||
579 | } while (bh != head); | ||
580 | |||
581 | return 0; | ||
582 | } | ||
583 | EXPORT_SYMBOL(buffer_migrate_page); | ||
584 | |||
585 | /* | ||
586 | * Migrate the list 'pagelist' of pages to a certain destination. | ||
587 | * | ||
588 | * Specify destination with either non-NULL vma or dest_node >= 0 | ||
589 | * Return the number of pages not migrated or error code | ||
590 | */ | ||
591 | int migrate_pages_to(struct list_head *pagelist, | ||
592 | struct vm_area_struct *vma, int dest) | ||
593 | { | ||
594 | LIST_HEAD(newlist); | ||
595 | LIST_HEAD(moved); | ||
596 | LIST_HEAD(failed); | ||
597 | int err = 0; | ||
598 | unsigned long offset = 0; | ||
599 | int nr_pages; | ||
600 | struct page *page; | ||
601 | struct list_head *p; | ||
602 | |||
603 | redo: | ||
604 | nr_pages = 0; | ||
605 | list_for_each(p, pagelist) { | ||
606 | if (vma) { | ||
607 | /* | ||
608 | * The address passed to alloc_page_vma is used to | ||
609 | * generate the proper interleave behavior. We fake | ||
610 | * the address here by an increasing offset in order | ||
611 | * to get the proper distribution of pages. | ||
612 | * | ||
613 | * No decision has been made as to which page | ||
614 | * a certain old page is moved to so we cannot | ||
615 | * specify the correct address. | ||
616 | */ | ||
617 | page = alloc_page_vma(GFP_HIGHUSER, vma, | ||
618 | offset + vma->vm_start); | ||
619 | offset += PAGE_SIZE; | ||
620 | } | ||
621 | else | ||
622 | page = alloc_pages_node(dest, GFP_HIGHUSER, 0); | ||
623 | |||
624 | if (!page) { | ||
625 | err = -ENOMEM; | ||
626 | goto out; | ||
627 | } | ||
628 | list_add_tail(&page->lru, &newlist); | ||
629 | nr_pages++; | ||
630 | if (nr_pages > MIGRATE_CHUNK_SIZE) | ||
631 | break; | ||
632 | } | ||
633 | err = migrate_pages(pagelist, &newlist, &moved, &failed); | ||
634 | |||
635 | putback_lru_pages(&moved); /* Call release pages instead ?? */ | ||
636 | |||
637 | if (err >= 0 && list_empty(&newlist) && !list_empty(pagelist)) | ||
638 | goto redo; | ||
639 | out: | ||
640 | /* Return leftover allocated pages */ | ||
641 | while (!list_empty(&newlist)) { | ||
642 | page = list_entry(newlist.next, struct page, lru); | ||
643 | list_del(&page->lru); | ||
644 | __free_page(page); | ||
645 | } | ||
646 | list_splice(&failed, pagelist); | ||
647 | if (err < 0) | ||
648 | return err; | ||
649 | |||
650 | /* Calculate number of leftover pages */ | ||
651 | nr_pages = 0; | ||
652 | list_for_each(p, pagelist) | ||
653 | nr_pages++; | ||
654 | return nr_pages; | ||
655 | } | ||
diff --git a/mm/swap_state.c b/mm/swap_state.c index db8a3d3e1636..d7af296833fc 100644 --- a/mm/swap_state.c +++ b/mm/swap_state.c | |||
@@ -15,6 +15,7 @@ | |||
15 | #include <linux/buffer_head.h> | 15 | #include <linux/buffer_head.h> |
16 | #include <linux/backing-dev.h> | 16 | #include <linux/backing-dev.h> |
17 | #include <linux/pagevec.h> | 17 | #include <linux/pagevec.h> |
18 | #include <linux/migrate.h> | ||
18 | 19 | ||
19 | #include <asm/pgtable.h> | 20 | #include <asm/pgtable.h> |
20 | 21 | ||
diff --git a/mm/vmscan.c b/mm/vmscan.c index 548e023c193b..fd572bbdc9f5 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c | |||
@@ -42,18 +42,6 @@ | |||
42 | 42 | ||
43 | #include "internal.h" | 43 | #include "internal.h" |
44 | 44 | ||
45 | /* possible outcome of pageout() */ | ||
46 | typedef enum { | ||
47 | /* failed to write page out, page is locked */ | ||
48 | PAGE_KEEP, | ||
49 | /* move page to the active list, page is locked */ | ||
50 | PAGE_ACTIVATE, | ||
51 | /* page has been sent to the disk successfully, page is unlocked */ | ||
52 | PAGE_SUCCESS, | ||
53 | /* page is clean and locked */ | ||
54 | PAGE_CLEAN, | ||
55 | } pageout_t; | ||
56 | |||
57 | struct scan_control { | 45 | struct scan_control { |
58 | /* Incremented by the number of inactive pages that were scanned */ | 46 | /* Incremented by the number of inactive pages that were scanned */ |
59 | unsigned long nr_scanned; | 47 | unsigned long nr_scanned; |
@@ -304,7 +292,7 @@ static void handle_write_error(struct address_space *mapping, | |||
304 | * pageout is called by shrink_page_list() for each dirty page. | 292 | * pageout is called by shrink_page_list() for each dirty page. |
305 | * Calls ->writepage(). | 293 | * Calls ->writepage(). |
306 | */ | 294 | */ |
307 | static pageout_t pageout(struct page *page, struct address_space *mapping) | 295 | pageout_t pageout(struct page *page, struct address_space *mapping) |
308 | { | 296 | { |
309 | /* | 297 | /* |
310 | * If the page is dirty, only perform writeback if that write | 298 | * If the page is dirty, only perform writeback if that write |
@@ -372,7 +360,7 @@ static pageout_t pageout(struct page *page, struct address_space *mapping) | |||
372 | return PAGE_CLEAN; | 360 | return PAGE_CLEAN; |
373 | } | 361 | } |
374 | 362 | ||
375 | static int remove_mapping(struct address_space *mapping, struct page *page) | 363 | int remove_mapping(struct address_space *mapping, struct page *page) |
376 | { | 364 | { |
377 | if (!mapping) | 365 | if (!mapping) |
378 | return 0; /* truncate got there first */ | 366 | return 0; /* truncate got there first */ |
@@ -570,481 +558,6 @@ keep: | |||
570 | return nr_reclaimed; | 558 | return nr_reclaimed; |
571 | } | 559 | } |
572 | 560 | ||
573 | #ifdef CONFIG_MIGRATION | ||
574 | static inline void move_to_lru(struct page *page) | ||
575 | { | ||
576 | list_del(&page->lru); | ||
577 | if (PageActive(page)) { | ||
578 | /* | ||
579 | * lru_cache_add_active checks that | ||
580 | * the PG_active bit is off. | ||
581 | */ | ||
582 | ClearPageActive(page); | ||
583 | lru_cache_add_active(page); | ||
584 | } else { | ||
585 | lru_cache_add(page); | ||
586 | } | ||
587 | put_page(page); | ||
588 | } | ||
589 | |||
590 | /* | ||
591 | * Add isolated pages on the list back to the LRU. | ||
592 | * | ||
593 | * returns the number of pages put back. | ||
594 | */ | ||
595 | unsigned long putback_lru_pages(struct list_head *l) | ||
596 | { | ||
597 | struct page *page; | ||
598 | struct page *page2; | ||
599 | unsigned long count = 0; | ||
600 | |||
601 | list_for_each_entry_safe(page, page2, l, lru) { | ||
602 | move_to_lru(page); | ||
603 | count++; | ||
604 | } | ||
605 | return count; | ||
606 | } | ||
607 | |||
608 | /* | ||
609 | * Non migratable page | ||
610 | */ | ||
611 | int fail_migrate_page(struct page *newpage, struct page *page) | ||
612 | { | ||
613 | return -EIO; | ||
614 | } | ||
615 | EXPORT_SYMBOL(fail_migrate_page); | ||
616 | |||
617 | /* | ||
618 | * swapout a single page | ||
619 | * page is locked upon entry, unlocked on exit | ||
620 | */ | ||
621 | static int swap_page(struct page *page) | ||
622 | { | ||
623 | struct address_space *mapping = page_mapping(page); | ||
624 | |||
625 | if (page_mapped(page) && mapping) | ||
626 | if (try_to_unmap(page, 1) != SWAP_SUCCESS) | ||
627 | goto unlock_retry; | ||
628 | |||
629 | if (PageDirty(page)) { | ||
630 | /* Page is dirty, try to write it out here */ | ||
631 | switch(pageout(page, mapping)) { | ||
632 | case PAGE_KEEP: | ||
633 | case PAGE_ACTIVATE: | ||
634 | goto unlock_retry; | ||
635 | |||
636 | case PAGE_SUCCESS: | ||
637 | goto retry; | ||
638 | |||
639 | case PAGE_CLEAN: | ||
640 | ; /* try to free the page below */ | ||
641 | } | ||
642 | } | ||
643 | |||
644 | if (PagePrivate(page)) { | ||
645 | if (!try_to_release_page(page, GFP_KERNEL) || | ||
646 | (!mapping && page_count(page) == 1)) | ||
647 | goto unlock_retry; | ||
648 | } | ||
649 | |||
650 | if (remove_mapping(mapping, page)) { | ||
651 | /* Success */ | ||
652 | unlock_page(page); | ||
653 | return 0; | ||
654 | } | ||
655 | |||
656 | unlock_retry: | ||
657 | unlock_page(page); | ||
658 | |||
659 | retry: | ||
660 | return -EAGAIN; | ||
661 | } | ||
662 | EXPORT_SYMBOL(swap_page); | ||
663 | |||
664 | /* | ||
665 | * Page migration was first developed in the context of the memory hotplug | ||
666 | * project. The main authors of the migration code are: | ||
667 | * | ||
668 | * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> | ||
669 | * Hirokazu Takahashi <taka@valinux.co.jp> | ||
670 | * Dave Hansen <haveblue@us.ibm.com> | ||
671 | * Christoph Lameter <clameter@sgi.com> | ||
672 | */ | ||
673 | |||
674 | /* | ||
675 | * Remove references for a page and establish the new page with the correct | ||
676 | * basic settings to be able to stop accesses to the page. | ||
677 | */ | ||
678 | int migrate_page_remove_references(struct page *newpage, | ||
679 | struct page *page, int nr_refs) | ||
680 | { | ||
681 | struct address_space *mapping = page_mapping(page); | ||
682 | struct page **radix_pointer; | ||
683 | |||
684 | /* | ||
685 | * Avoid doing any of the following work if the page count | ||
686 | * indicates that the page is in use or truncate has removed | ||
687 | * the page. | ||
688 | */ | ||
689 | if (!mapping || page_mapcount(page) + nr_refs != page_count(page)) | ||
690 | return -EAGAIN; | ||
691 | |||
692 | /* | ||
693 | * Establish swap ptes for anonymous pages or destroy pte | ||
694 | * maps for files. | ||
695 | * | ||
696 | * In order to reestablish file backed mappings the fault handlers | ||
697 | * will take the radix tree_lock which may then be used to stop | ||
698 | * processses from accessing this page until the new page is ready. | ||
699 | * | ||
700 | * A process accessing via a swap pte (an anonymous page) will take a | ||
701 | * page_lock on the old page which will block the process until the | ||
702 | * migration attempt is complete. At that time the PageSwapCache bit | ||
703 | * will be examined. If the page was migrated then the PageSwapCache | ||
704 | * bit will be clear and the operation to retrieve the page will be | ||
705 | * retried which will find the new page in the radix tree. Then a new | ||
706 | * direct mapping may be generated based on the radix tree contents. | ||
707 | * | ||
708 | * If the page was not migrated then the PageSwapCache bit | ||
709 | * is still set and the operation may continue. | ||
710 | */ | ||
711 | if (try_to_unmap(page, 1) == SWAP_FAIL) | ||
712 | /* A vma has VM_LOCKED set -> Permanent failure */ | ||
713 | return -EPERM; | ||
714 | |||
715 | /* | ||
716 | * Give up if we were unable to remove all mappings. | ||
717 | */ | ||
718 | if (page_mapcount(page)) | ||
719 | return -EAGAIN; | ||
720 | |||
721 | write_lock_irq(&mapping->tree_lock); | ||
722 | |||
723 | radix_pointer = (struct page **)radix_tree_lookup_slot( | ||
724 | &mapping->page_tree, | ||
725 | page_index(page)); | ||
726 | |||
727 | if (!page_mapping(page) || page_count(page) != nr_refs || | ||
728 | *radix_pointer != page) { | ||
729 | write_unlock_irq(&mapping->tree_lock); | ||
730 | return -EAGAIN; | ||
731 | } | ||
732 | |||
733 | /* | ||
734 | * Now we know that no one else is looking at the page. | ||
735 | * | ||
736 | * Certain minimal information about a page must be available | ||
737 | * in order for other subsystems to properly handle the page if they | ||
738 | * find it through the radix tree update before we are finished | ||
739 | * copying the page. | ||
740 | */ | ||
741 | get_page(newpage); | ||
742 | newpage->index = page->index; | ||
743 | newpage->mapping = page->mapping; | ||
744 | if (PageSwapCache(page)) { | ||
745 | SetPageSwapCache(newpage); | ||
746 | set_page_private(newpage, page_private(page)); | ||
747 | } | ||
748 | |||
749 | *radix_pointer = newpage; | ||
750 | __put_page(page); | ||
751 | write_unlock_irq(&mapping->tree_lock); | ||
752 | |||
753 | return 0; | ||
754 | } | ||
755 | EXPORT_SYMBOL(migrate_page_remove_references); | ||
756 | |||
757 | /* | ||
758 | * Copy the page to its new location | ||
759 | */ | ||
760 | void migrate_page_copy(struct page *newpage, struct page *page) | ||
761 | { | ||
762 | copy_highpage(newpage, page); | ||
763 | |||
764 | if (PageError(page)) | ||
765 | SetPageError(newpage); | ||
766 | if (PageReferenced(page)) | ||
767 | SetPageReferenced(newpage); | ||
768 | if (PageUptodate(page)) | ||
769 | SetPageUptodate(newpage); | ||
770 | if (PageActive(page)) | ||
771 | SetPageActive(newpage); | ||
772 | if (PageChecked(page)) | ||
773 | SetPageChecked(newpage); | ||
774 | if (PageMappedToDisk(page)) | ||
775 | SetPageMappedToDisk(newpage); | ||
776 | |||
777 | if (PageDirty(page)) { | ||
778 | clear_page_dirty_for_io(page); | ||
779 | set_page_dirty(newpage); | ||
780 | } | ||
781 | |||
782 | ClearPageSwapCache(page); | ||
783 | ClearPageActive(page); | ||
784 | ClearPagePrivate(page); | ||
785 | set_page_private(page, 0); | ||
786 | page->mapping = NULL; | ||
787 | |||
788 | /* | ||
789 | * If any waiters have accumulated on the new page then | ||
790 | * wake them up. | ||
791 | */ | ||
792 | if (PageWriteback(newpage)) | ||
793 | end_page_writeback(newpage); | ||
794 | } | ||
795 | EXPORT_SYMBOL(migrate_page_copy); | ||
796 | |||
797 | /* | ||
798 | * Common logic to directly migrate a single page suitable for | ||
799 | * pages that do not use PagePrivate. | ||
800 | * | ||
801 | * Pages are locked upon entry and exit. | ||
802 | */ | ||
803 | int migrate_page(struct page *newpage, struct page *page) | ||
804 | { | ||
805 | int rc; | ||
806 | |||
807 | BUG_ON(PageWriteback(page)); /* Writeback must be complete */ | ||
808 | |||
809 | rc = migrate_page_remove_references(newpage, page, 2); | ||
810 | |||
811 | if (rc) | ||
812 | return rc; | ||
813 | |||
814 | migrate_page_copy(newpage, page); | ||
815 | |||
816 | /* | ||
817 | * Remove auxiliary swap entries and replace | ||
818 | * them with real ptes. | ||
819 | * | ||
820 | * Note that a real pte entry will allow processes that are not | ||
821 | * waiting on the page lock to use the new page via the page tables | ||
822 | * before the new page is unlocked. | ||
823 | */ | ||
824 | remove_from_swap(newpage); | ||
825 | return 0; | ||
826 | } | ||
827 | EXPORT_SYMBOL(migrate_page); | ||
828 | |||
829 | /* | ||
830 | * migrate_pages | ||
831 | * | ||
832 | * Two lists are passed to this function. The first list | ||
833 | * contains the pages isolated from the LRU to be migrated. | ||
834 | * The second list contains new pages that the pages isolated | ||
835 | * can be moved to. If the second list is NULL then all | ||
836 | * pages are swapped out. | ||
837 | * | ||
838 | * The function returns after 10 attempts or if no pages | ||
839 | * are movable anymore because to has become empty | ||
840 | * or no retryable pages exist anymore. | ||
841 | * | ||
842 | * Return: Number of pages not migrated when "to" ran empty. | ||
843 | */ | ||
844 | unsigned long migrate_pages(struct list_head *from, struct list_head *to, | ||
845 | struct list_head *moved, struct list_head *failed) | ||
846 | { | ||
847 | unsigned long retry; | ||
848 | unsigned long nr_failed = 0; | ||
849 | int pass = 0; | ||
850 | struct page *page; | ||
851 | struct page *page2; | ||
852 | int swapwrite = current->flags & PF_SWAPWRITE; | ||
853 | int rc; | ||
854 | |||
855 | if (!swapwrite) | ||
856 | current->flags |= PF_SWAPWRITE; | ||
857 | |||
858 | redo: | ||
859 | retry = 0; | ||
860 | |||
861 | list_for_each_entry_safe(page, page2, from, lru) { | ||
862 | struct page *newpage = NULL; | ||
863 | struct address_space *mapping; | ||
864 | |||
865 | cond_resched(); | ||
866 | |||
867 | rc = 0; | ||
868 | if (page_count(page) == 1) | ||
869 | /* page was freed from under us. So we are done. */ | ||
870 | goto next; | ||
871 | |||
872 | if (to && list_empty(to)) | ||
873 | break; | ||
874 | |||
875 | /* | ||
876 | * Skip locked pages during the first two passes to give the | ||
877 | * functions holding the lock time to release the page. Later we | ||
878 | * use lock_page() to have a higher chance of acquiring the | ||
879 | * lock. | ||
880 | */ | ||
881 | rc = -EAGAIN; | ||
882 | if (pass > 2) | ||
883 | lock_page(page); | ||
884 | else | ||
885 | if (TestSetPageLocked(page)) | ||
886 | goto next; | ||
887 | |||
888 | /* | ||
889 | * Only wait on writeback if we have already done a pass where | ||
890 | * we we may have triggered writeouts for lots of pages. | ||
891 | */ | ||
892 | if (pass > 0) { | ||
893 | wait_on_page_writeback(page); | ||
894 | } else { | ||
895 | if (PageWriteback(page)) | ||
896 | goto unlock_page; | ||
897 | } | ||
898 | |||
899 | /* | ||
900 | * Anonymous pages must have swap cache references otherwise | ||
901 | * the information contained in the page maps cannot be | ||
902 | * preserved. | ||
903 | */ | ||
904 | if (PageAnon(page) && !PageSwapCache(page)) { | ||
905 | if (!add_to_swap(page, GFP_KERNEL)) { | ||
906 | rc = -ENOMEM; | ||
907 | goto unlock_page; | ||
908 | } | ||
909 | } | ||
910 | |||
911 | if (!to) { | ||
912 | rc = swap_page(page); | ||
913 | goto next; | ||
914 | } | ||
915 | |||
916 | newpage = lru_to_page(to); | ||
917 | lock_page(newpage); | ||
918 | |||
919 | /* | ||
920 | * Pages are properly locked and writeback is complete. | ||
921 | * Try to migrate the page. | ||
922 | */ | ||
923 | mapping = page_mapping(page); | ||
924 | if (!mapping) | ||
925 | goto unlock_both; | ||
926 | |||
927 | if (mapping->a_ops->migratepage) { | ||
928 | /* | ||
929 | * Most pages have a mapping and most filesystems | ||
930 | * should provide a migration function. Anonymous | ||
931 | * pages are part of swap space which also has its | ||
932 | * own migration function. This is the most common | ||
933 | * path for page migration. | ||
934 | */ | ||
935 | rc = mapping->a_ops->migratepage(newpage, page); | ||
936 | goto unlock_both; | ||
937 | } | ||
938 | |||
939 | /* | ||
940 | * Default handling if a filesystem does not provide | ||
941 | * a migration function. We can only migrate clean | ||
942 | * pages so try to write out any dirty pages first. | ||
943 | */ | ||
944 | if (PageDirty(page)) { | ||
945 | switch (pageout(page, mapping)) { | ||
946 | case PAGE_KEEP: | ||
947 | case PAGE_ACTIVATE: | ||
948 | goto unlock_both; | ||
949 | |||
950 | case PAGE_SUCCESS: | ||
951 | unlock_page(newpage); | ||
952 | goto next; | ||
953 | |||
954 | case PAGE_CLEAN: | ||
955 | ; /* try to migrate the page below */ | ||
956 | } | ||
957 | } | ||
958 | |||
959 | /* | ||
960 | * Buffers are managed in a filesystem specific way. | ||
961 | * We must have no buffers or drop them. | ||
962 | */ | ||
963 | if (!page_has_buffers(page) || | ||
964 | try_to_release_page(page, GFP_KERNEL)) { | ||
965 | rc = migrate_page(newpage, page); | ||
966 | goto unlock_both; | ||
967 | } | ||
968 | |||
969 | /* | ||
970 | * On early passes with mapped pages simply | ||
971 | * retry. There may be a lock held for some | ||
972 | * buffers that may go away. Later | ||
973 | * swap them out. | ||
974 | */ | ||
975 | if (pass > 4) { | ||
976 | /* | ||
977 | * Persistently unable to drop buffers..... As a | ||
978 | * measure of last resort we fall back to | ||
979 | * swap_page(). | ||
980 | */ | ||
981 | unlock_page(newpage); | ||
982 | newpage = NULL; | ||
983 | rc = swap_page(page); | ||
984 | goto next; | ||
985 | } | ||
986 | |||
987 | unlock_both: | ||
988 | unlock_page(newpage); | ||
989 | |||
990 | unlock_page: | ||
991 | unlock_page(page); | ||
992 | |||
993 | next: | ||
994 | if (rc == -EAGAIN) { | ||
995 | retry++; | ||
996 | } else if (rc) { | ||
997 | /* Permanent failure */ | ||
998 | list_move(&page->lru, failed); | ||
999 | nr_failed++; | ||
1000 | } else { | ||
1001 | if (newpage) { | ||
1002 | /* Successful migration. Return page to LRU */ | ||
1003 | move_to_lru(newpage); | ||
1004 | } | ||
1005 | list_move(&page->lru, moved); | ||
1006 | } | ||
1007 | } | ||
1008 | if (retry && pass++ < 10) | ||
1009 | goto redo; | ||
1010 | |||
1011 | if (!swapwrite) | ||
1012 | current->flags &= ~PF_SWAPWRITE; | ||
1013 | |||
1014 | return nr_failed + retry; | ||
1015 | } | ||
1016 | |||
1017 | /* | ||
1018 | * Isolate one page from the LRU lists and put it on the | ||
1019 | * indicated list with elevated refcount. | ||
1020 | * | ||
1021 | * Result: | ||
1022 | * 0 = page not on LRU list | ||
1023 | * 1 = page removed from LRU list and added to the specified list. | ||
1024 | */ | ||
1025 | int isolate_lru_page(struct page *page) | ||
1026 | { | ||
1027 | int ret = 0; | ||
1028 | |||
1029 | if (PageLRU(page)) { | ||
1030 | struct zone *zone = page_zone(page); | ||
1031 | spin_lock_irq(&zone->lru_lock); | ||
1032 | if (PageLRU(page)) { | ||
1033 | ret = 1; | ||
1034 | get_page(page); | ||
1035 | ClearPageLRU(page); | ||
1036 | if (PageActive(page)) | ||
1037 | del_page_from_active_list(zone, page); | ||
1038 | else | ||
1039 | del_page_from_inactive_list(zone, page); | ||
1040 | } | ||
1041 | spin_unlock_irq(&zone->lru_lock); | ||
1042 | } | ||
1043 | |||
1044 | return ret; | ||
1045 | } | ||
1046 | #endif | ||
1047 | |||
1048 | /* | 561 | /* |
1049 | * zone->lru_lock is heavily contended. Some of the functions that | 562 | * zone->lru_lock is heavily contended. Some of the functions that |
1050 | * shrink the lists perform better by taking out a batch of pages | 563 | * shrink the lists perform better by taking out a batch of pages |