aboutsummaryrefslogtreecommitdiffstats
path: root/mm
diff options
context:
space:
mode:
authorChristoph Lameter <cl@linux.com>2011-06-01 13:25:50 -0400
committerPekka Enberg <penberg@kernel.org>2011-07-02 06:26:54 -0400
commit5cc6eee8a8c1aefe9c86fe7345a2aa1c4ca70dc6 (patch)
tree3d69b8a7a44094ea336efbc59698d0949f5f6ec7 /mm
parentb789ef518b2a7231b0668c813f677cee528a9d3f (diff)
slub: explicit list_lock taking
The allocator fastpath rework does change the usage of the list_lock. Remove the list_lock processing from the functions that hide them from the critical sections and move them into those critical sections. This in turn simplifies the support functions (no __ variant needed anymore) and simplifies the lock handling on bootstrap. Inline add_partial since it becomes pretty simple. Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Pekka Enberg <penberg@kernel.org>
Diffstat (limited to 'mm')
-rw-r--r--mm/slub.c89
1 files changed, 49 insertions, 40 deletions
diff --git a/mm/slub.c b/mm/slub.c
index be6715dd0ee8..e39be0928a22 100644
--- a/mm/slub.c
+++ b/mm/slub.c
@@ -916,26 +916,27 @@ static inline void slab_free_hook(struct kmem_cache *s, void *x)
916 916
917/* 917/*
918 * Tracking of fully allocated slabs for debugging purposes. 918 * Tracking of fully allocated slabs for debugging purposes.
919 *
920 * list_lock must be held.
919 */ 921 */
920static void add_full(struct kmem_cache_node *n, struct page *page) 922static void add_full(struct kmem_cache *s,
923 struct kmem_cache_node *n, struct page *page)
921{ 924{
922 spin_lock(&n->list_lock); 925 if (!(s->flags & SLAB_STORE_USER))
926 return;
927
923 list_add(&page->lru, &n->full); 928 list_add(&page->lru, &n->full);
924 spin_unlock(&n->list_lock);
925} 929}
926 930
931/*
932 * list_lock must be held.
933 */
927static void remove_full(struct kmem_cache *s, struct page *page) 934static void remove_full(struct kmem_cache *s, struct page *page)
928{ 935{
929 struct kmem_cache_node *n;
930
931 if (!(s->flags & SLAB_STORE_USER)) 936 if (!(s->flags & SLAB_STORE_USER))
932 return; 937 return;
933 938
934 n = get_node(s, page_to_nid(page));
935
936 spin_lock(&n->list_lock);
937 list_del(&page->lru); 939 list_del(&page->lru);
938 spin_unlock(&n->list_lock);
939} 940}
940 941
941/* Tracking of the number of slabs for debugging purposes */ 942/* Tracking of the number of slabs for debugging purposes */
@@ -1060,8 +1061,13 @@ static noinline int free_debug_processing(struct kmem_cache *s,
1060 } 1061 }
1061 1062
1062 /* Special debug activities for freeing objects */ 1063 /* Special debug activities for freeing objects */
1063 if (!page->frozen && !page->freelist) 1064 if (!page->frozen && !page->freelist) {
1065 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1066
1067 spin_lock(&n->list_lock);
1064 remove_full(s, page); 1068 remove_full(s, page);
1069 spin_unlock(&n->list_lock);
1070 }
1065 if (s->flags & SLAB_STORE_USER) 1071 if (s->flags & SLAB_STORE_USER)
1066 set_track(s, object, TRACK_FREE, addr); 1072 set_track(s, object, TRACK_FREE, addr);
1067 trace(s, page, object, 0); 1073 trace(s, page, object, 0);
@@ -1170,7 +1176,8 @@ static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1170 { return 1; } 1176 { return 1; }
1171static inline int check_object(struct kmem_cache *s, struct page *page, 1177static inline int check_object(struct kmem_cache *s, struct page *page,
1172 void *object, u8 val) { return 1; } 1178 void *object, u8 val) { return 1; }
1173static inline void add_full(struct kmem_cache_node *n, struct page *page) {} 1179static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1180 struct page *page) {}
1174static inline unsigned long kmem_cache_flags(unsigned long objsize, 1181static inline unsigned long kmem_cache_flags(unsigned long objsize,
1175 unsigned long flags, const char *name, 1182 unsigned long flags, const char *name,
1176 void (*ctor)(void *)) 1183 void (*ctor)(void *))
@@ -1420,38 +1427,33 @@ static __always_inline int slab_trylock(struct page *page)
1420} 1427}
1421 1428
1422/* 1429/*
1423 * Management of partially allocated slabs 1430 * Management of partially allocated slabs.
1431 *
1432 * list_lock must be held.
1424 */ 1433 */
1425static void add_partial(struct kmem_cache_node *n, 1434static inline void add_partial(struct kmem_cache_node *n,
1426 struct page *page, int tail) 1435 struct page *page, int tail)
1427{ 1436{
1428 spin_lock(&n->list_lock);
1429 n->nr_partial++; 1437 n->nr_partial++;
1430 if (tail) 1438 if (tail)
1431 list_add_tail(&page->lru, &n->partial); 1439 list_add_tail(&page->lru, &n->partial);
1432 else 1440 else
1433 list_add(&page->lru, &n->partial); 1441 list_add(&page->lru, &n->partial);
1434 spin_unlock(&n->list_lock);
1435} 1442}
1436 1443
1437static inline void __remove_partial(struct kmem_cache_node *n, 1444/*
1445 * list_lock must be held.
1446 */
1447static inline void remove_partial(struct kmem_cache_node *n,
1438 struct page *page) 1448 struct page *page)
1439{ 1449{
1440 list_del(&page->lru); 1450 list_del(&page->lru);
1441 n->nr_partial--; 1451 n->nr_partial--;
1442} 1452}
1443 1453
1444static void remove_partial(struct kmem_cache *s, struct page *page)
1445{
1446 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1447
1448 spin_lock(&n->list_lock);
1449 __remove_partial(n, page);
1450 spin_unlock(&n->list_lock);
1451}
1452
1453/* 1454/*
1454 * Lock slab and remove from the partial list. 1455 * Lock slab, remove from the partial list and put the object into the
1456 * per cpu freelist.
1455 * 1457 *
1456 * Must hold list_lock. 1458 * Must hold list_lock.
1457 */ 1459 */
@@ -1459,7 +1461,7 @@ static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1459 struct page *page) 1461 struct page *page)
1460{ 1462{
1461 if (slab_trylock(page)) { 1463 if (slab_trylock(page)) {
1462 __remove_partial(n, page); 1464 remove_partial(n, page);
1463 return 1; 1465 return 1;
1464 } 1466 }
1465 return 0; 1467 return 0;
@@ -1576,12 +1578,17 @@ static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1576 if (page->inuse) { 1578 if (page->inuse) {
1577 1579
1578 if (page->freelist) { 1580 if (page->freelist) {
1581 spin_lock(&n->list_lock);
1579 add_partial(n, page, tail); 1582 add_partial(n, page, tail);
1583 spin_unlock(&n->list_lock);
1580 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD); 1584 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1581 } else { 1585 } else {
1582 stat(s, DEACTIVATE_FULL); 1586 stat(s, DEACTIVATE_FULL);
1583 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER)) 1587 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER)) {
1584 add_full(n, page); 1588 spin_lock(&n->list_lock);
1589 add_full(s, n, page);
1590 spin_unlock(&n->list_lock);
1591 }
1585 } 1592 }
1586 slab_unlock(page); 1593 slab_unlock(page);
1587 } else { 1594 } else {
@@ -1597,7 +1604,9 @@ static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1597 * kmem_cache_shrink can reclaim any empty slabs from 1604 * kmem_cache_shrink can reclaim any empty slabs from
1598 * the partial list. 1605 * the partial list.
1599 */ 1606 */
1607 spin_lock(&n->list_lock);
1600 add_partial(n, page, 1); 1608 add_partial(n, page, 1);
1609 spin_unlock(&n->list_lock);
1601 slab_unlock(page); 1610 slab_unlock(page);
1602 } else { 1611 } else {
1603 slab_unlock(page); 1612 slab_unlock(page);
@@ -2099,7 +2108,11 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
2099 * then add it. 2108 * then add it.
2100 */ 2109 */
2101 if (unlikely(!prior)) { 2110 if (unlikely(!prior)) {
2111 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2112
2113 spin_lock(&n->list_lock);
2102 add_partial(get_node(s, page_to_nid(page)), page, 1); 2114 add_partial(get_node(s, page_to_nid(page)), page, 1);
2115 spin_unlock(&n->list_lock);
2103 stat(s, FREE_ADD_PARTIAL); 2116 stat(s, FREE_ADD_PARTIAL);
2104 } 2117 }
2105 2118
@@ -2113,7 +2126,11 @@ slab_empty:
2113 /* 2126 /*
2114 * Slab still on the partial list. 2127 * Slab still on the partial list.
2115 */ 2128 */
2116 remove_partial(s, page); 2129 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2130
2131 spin_lock(&n->list_lock);
2132 remove_partial(n, page);
2133 spin_unlock(&n->list_lock);
2117 stat(s, FREE_REMOVE_PARTIAL); 2134 stat(s, FREE_REMOVE_PARTIAL);
2118 } 2135 }
2119 slab_unlock(page); 2136 slab_unlock(page);
@@ -2391,7 +2408,6 @@ static void early_kmem_cache_node_alloc(int node)
2391{ 2408{
2392 struct page *page; 2409 struct page *page;
2393 struct kmem_cache_node *n; 2410 struct kmem_cache_node *n;
2394 unsigned long flags;
2395 2411
2396 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 2412 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2397 2413
@@ -2418,14 +2434,7 @@ static void early_kmem_cache_node_alloc(int node)
2418 init_kmem_cache_node(n, kmem_cache_node); 2434 init_kmem_cache_node(n, kmem_cache_node);
2419 inc_slabs_node(kmem_cache_node, node, page->objects); 2435 inc_slabs_node(kmem_cache_node, node, page->objects);
2420 2436
2421 /*
2422 * lockdep requires consistent irq usage for each lock
2423 * so even though there cannot be a race this early in
2424 * the boot sequence, we still disable irqs.
2425 */
2426 local_irq_save(flags);
2427 add_partial(n, page, 0); 2437 add_partial(n, page, 0);
2428 local_irq_restore(flags);
2429} 2438}
2430 2439
2431static void free_kmem_cache_nodes(struct kmem_cache *s) 2440static void free_kmem_cache_nodes(struct kmem_cache *s)
@@ -2709,7 +2718,7 @@ static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2709 spin_lock_irqsave(&n->list_lock, flags); 2718 spin_lock_irqsave(&n->list_lock, flags);
2710 list_for_each_entry_safe(page, h, &n->partial, lru) { 2719 list_for_each_entry_safe(page, h, &n->partial, lru) {
2711 if (!page->inuse) { 2720 if (!page->inuse) {
2712 __remove_partial(n, page); 2721 remove_partial(n, page);
2713 discard_slab(s, page); 2722 discard_slab(s, page);
2714 } else { 2723 } else {
2715 list_slab_objects(s, page, 2724 list_slab_objects(s, page,
@@ -3047,7 +3056,7 @@ int kmem_cache_shrink(struct kmem_cache *s)
3047 * may have freed the last object and be 3056 * may have freed the last object and be
3048 * waiting to release the slab. 3057 * waiting to release the slab.
3049 */ 3058 */
3050 __remove_partial(n, page); 3059 remove_partial(n, page);
3051 slab_unlock(page); 3060 slab_unlock(page);
3052 discard_slab(s, page); 3061 discard_slab(s, page);
3053 } else { 3062 } else {