aboutsummaryrefslogtreecommitdiffstats
path: root/mm
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2010-10-21 21:52:11 -0400
committerLinus Torvalds <torvalds@linux-foundation.org>2010-10-21 21:52:11 -0400
commit3044100e58c84e133791c8b60a2f5bef69d732e4 (patch)
treef9ed0d1f3df89c31dd81ccaf0cf3478f57b08440 /mm
parentb5153163ed580e00c67bdfecb02b2e3843817b3e (diff)
parent67e87f0a1c5cbc750f81ebf6a128e8ff6f4376cc (diff)
Merge branch 'core-memblock-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'core-memblock-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (74 commits) x86-64: Only set max_pfn_mapped to 512 MiB if we enter via head_64.S xen: Cope with unmapped pages when initializing kernel pagetable memblock, bootmem: Round pfn properly for memory and reserved regions memblock: Annotate memblock functions with __init_memblock memblock: Allow memblock_init to be called early memblock/arm: Fix memblock_region_is_memory() typo x86, memblock: Remove __memblock_x86_find_in_range_size() memblock: Fix wraparound in find_region() x86-32, memblock: Make add_highpages honor early reserved ranges x86, memblock: Fix crashkernel allocation arm, memblock: Fix the sparsemem build memblock: Fix section mismatch warnings powerpc, memblock: Fix memblock API change fallout memblock, microblaze: Fix memblock API change fallout x86: Remove old bootmem code x86, memblock: Use memblock_memory_size()/memblock_free_memory_size() to get correct dma_reserve x86: Remove not used early_res code x86, memblock: Replace e820_/_early string with memblock_ x86: Use memblock to replace early_res x86, memblock: Use memblock_debug to control debug message print out ... Fix up trivial conflicts in arch/x86/kernel/setup.c and kernel/Makefile
Diffstat (limited to 'mm')
-rw-r--r--mm/bootmem.c13
-rw-r--r--mm/memblock.c837
-rw-r--r--mm/page_alloc.c86
-rw-r--r--mm/sparse-vmemmap.c11
4 files changed, 631 insertions, 316 deletions
diff --git a/mm/bootmem.c b/mm/bootmem.c
index 142c84a54993..13b0caa9793c 100644
--- a/mm/bootmem.c
+++ b/mm/bootmem.c
@@ -15,6 +15,7 @@
15#include <linux/module.h> 15#include <linux/module.h>
16#include <linux/kmemleak.h> 16#include <linux/kmemleak.h>
17#include <linux/range.h> 17#include <linux/range.h>
18#include <linux/memblock.h>
18 19
19#include <asm/bug.h> 20#include <asm/bug.h>
20#include <asm/io.h> 21#include <asm/io.h>
@@ -434,7 +435,8 @@ void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
434 unsigned long size) 435 unsigned long size)
435{ 436{
436#ifdef CONFIG_NO_BOOTMEM 437#ifdef CONFIG_NO_BOOTMEM
437 free_early(physaddr, physaddr + size); 438 kmemleak_free_part(__va(physaddr), size);
439 memblock_x86_free_range(physaddr, physaddr + size);
438#else 440#else
439 unsigned long start, end; 441 unsigned long start, end;
440 442
@@ -459,7 +461,8 @@ void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
459void __init free_bootmem(unsigned long addr, unsigned long size) 461void __init free_bootmem(unsigned long addr, unsigned long size)
460{ 462{
461#ifdef CONFIG_NO_BOOTMEM 463#ifdef CONFIG_NO_BOOTMEM
462 free_early(addr, addr + size); 464 kmemleak_free_part(__va(addr), size);
465 memblock_x86_free_range(addr, addr + size);
463#else 466#else
464 unsigned long start, end; 467 unsigned long start, end;
465 468
@@ -526,6 +529,12 @@ int __init reserve_bootmem(unsigned long addr, unsigned long size,
526} 529}
527 530
528#ifndef CONFIG_NO_BOOTMEM 531#ifndef CONFIG_NO_BOOTMEM
532int __weak __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
533 int flags)
534{
535 return reserve_bootmem(phys, len, flags);
536}
537
529static unsigned long __init align_idx(struct bootmem_data *bdata, 538static unsigned long __init align_idx(struct bootmem_data *bdata,
530 unsigned long idx, unsigned long step) 539 unsigned long idx, unsigned long step)
531{ 540{
diff --git a/mm/memblock.c b/mm/memblock.c
index 43840b305ecb..400dc62697d7 100644
--- a/mm/memblock.c
+++ b/mm/memblock.c
@@ -11,237 +11,423 @@
11 */ 11 */
12 12
13#include <linux/kernel.h> 13#include <linux/kernel.h>
14#include <linux/slab.h>
14#include <linux/init.h> 15#include <linux/init.h>
15#include <linux/bitops.h> 16#include <linux/bitops.h>
17#include <linux/poison.h>
18#include <linux/pfn.h>
19#include <linux/debugfs.h>
20#include <linux/seq_file.h>
16#include <linux/memblock.h> 21#include <linux/memblock.h>
17 22
18#define MEMBLOCK_ALLOC_ANYWHERE 0 23struct memblock memblock __initdata_memblock;
19 24
20struct memblock memblock; 25int memblock_debug __initdata_memblock;
26int memblock_can_resize __initdata_memblock;
27static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS + 1] __initdata_memblock;
28static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS + 1] __initdata_memblock;
21 29
22static int memblock_debug; 30/* inline so we don't get a warning when pr_debug is compiled out */
31static inline const char *memblock_type_name(struct memblock_type *type)
32{
33 if (type == &memblock.memory)
34 return "memory";
35 else if (type == &memblock.reserved)
36 return "reserved";
37 else
38 return "unknown";
39}
23 40
24static int __init early_memblock(char *p) 41/*
42 * Address comparison utilities
43 */
44
45static phys_addr_t __init_memblock memblock_align_down(phys_addr_t addr, phys_addr_t size)
25{ 46{
26 if (p && strstr(p, "debug")) 47 return addr & ~(size - 1);
27 memblock_debug = 1; 48}
49
50static phys_addr_t __init_memblock memblock_align_up(phys_addr_t addr, phys_addr_t size)
51{
52 return (addr + (size - 1)) & ~(size - 1);
53}
54
55static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
56 phys_addr_t base2, phys_addr_t size2)
57{
58 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
59}
60
61static long __init_memblock memblock_addrs_adjacent(phys_addr_t base1, phys_addr_t size1,
62 phys_addr_t base2, phys_addr_t size2)
63{
64 if (base2 == base1 + size1)
65 return 1;
66 else if (base1 == base2 + size2)
67 return -1;
68
28 return 0; 69 return 0;
29} 70}
30early_param("memblock", early_memblock);
31 71
32static void memblock_dump(struct memblock_region *region, char *name) 72static long __init_memblock memblock_regions_adjacent(struct memblock_type *type,
73 unsigned long r1, unsigned long r2)
33{ 74{
34 unsigned long long base, size; 75 phys_addr_t base1 = type->regions[r1].base;
35 int i; 76 phys_addr_t size1 = type->regions[r1].size;
77 phys_addr_t base2 = type->regions[r2].base;
78 phys_addr_t size2 = type->regions[r2].size;
36 79
37 pr_info(" %s.cnt = 0x%lx\n", name, region->cnt); 80 return memblock_addrs_adjacent(base1, size1, base2, size2);
81}
38 82
39 for (i = 0; i < region->cnt; i++) { 83long __init_memblock memblock_overlaps_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
40 base = region->region[i].base; 84{
41 size = region->region[i].size; 85 unsigned long i;
42 86
43 pr_info(" %s[0x%x]\t0x%016llx - 0x%016llx, 0x%llx bytes\n", 87 for (i = 0; i < type->cnt; i++) {
44 name, i, base, base + size - 1, size); 88 phys_addr_t rgnbase = type->regions[i].base;
89 phys_addr_t rgnsize = type->regions[i].size;
90 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
91 break;
45 } 92 }
93
94 return (i < type->cnt) ? i : -1;
46} 95}
47 96
48void memblock_dump_all(void) 97/*
98 * Find, allocate, deallocate or reserve unreserved regions. All allocations
99 * are top-down.
100 */
101
102static phys_addr_t __init_memblock memblock_find_region(phys_addr_t start, phys_addr_t end,
103 phys_addr_t size, phys_addr_t align)
49{ 104{
50 if (!memblock_debug) 105 phys_addr_t base, res_base;
51 return; 106 long j;
52 107
53 pr_info("MEMBLOCK configuration:\n"); 108 /* In case, huge size is requested */
54 pr_info(" rmo_size = 0x%llx\n", (unsigned long long)memblock.rmo_size); 109 if (end < size)
55 pr_info(" memory.size = 0x%llx\n", (unsigned long long)memblock.memory.size); 110 return MEMBLOCK_ERROR;
56 111
57 memblock_dump(&memblock.memory, "memory"); 112 base = memblock_align_down((end - size), align);
58 memblock_dump(&memblock.reserved, "reserved"); 113
114 /* Prevent allocations returning 0 as it's also used to
115 * indicate an allocation failure
116 */
117 if (start == 0)
118 start = PAGE_SIZE;
119
120 while (start <= base) {
121 j = memblock_overlaps_region(&memblock.reserved, base, size);
122 if (j < 0)
123 return base;
124 res_base = memblock.reserved.regions[j].base;
125 if (res_base < size)
126 break;
127 base = memblock_align_down(res_base - size, align);
128 }
129
130 return MEMBLOCK_ERROR;
59} 131}
60 132
61static unsigned long memblock_addrs_overlap(u64 base1, u64 size1, u64 base2, 133static phys_addr_t __init_memblock memblock_find_base(phys_addr_t size,
62 u64 size2) 134 phys_addr_t align, phys_addr_t start, phys_addr_t end)
63{ 135{
64 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 136 long i;
137
138 BUG_ON(0 == size);
139
140 size = memblock_align_up(size, align);
141
142 /* Pump up max_addr */
143 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
144 end = memblock.current_limit;
145
146 /* We do a top-down search, this tends to limit memory
147 * fragmentation by keeping early boot allocs near the
148 * top of memory
149 */
150 for (i = memblock.memory.cnt - 1; i >= 0; i--) {
151 phys_addr_t memblockbase = memblock.memory.regions[i].base;
152 phys_addr_t memblocksize = memblock.memory.regions[i].size;
153 phys_addr_t bottom, top, found;
154
155 if (memblocksize < size)
156 continue;
157 if ((memblockbase + memblocksize) <= start)
158 break;
159 bottom = max(memblockbase, start);
160 top = min(memblockbase + memblocksize, end);
161 if (bottom >= top)
162 continue;
163 found = memblock_find_region(bottom, top, size, align);
164 if (found != MEMBLOCK_ERROR)
165 return found;
166 }
167 return MEMBLOCK_ERROR;
65} 168}
66 169
67static long memblock_addrs_adjacent(u64 base1, u64 size1, u64 base2, u64 size2) 170/*
171 * Find a free area with specified alignment in a specific range.
172 */
173u64 __init_memblock memblock_find_in_range(u64 start, u64 end, u64 size, u64 align)
68{ 174{
69 if (base2 == base1 + size1) 175 return memblock_find_base(size, align, start, end);
70 return 1; 176}
71 else if (base1 == base2 + size2)
72 return -1;
73 177
74 return 0; 178/*
179 * Free memblock.reserved.regions
180 */
181int __init_memblock memblock_free_reserved_regions(void)
182{
183 if (memblock.reserved.regions == memblock_reserved_init_regions)
184 return 0;
185
186 return memblock_free(__pa(memblock.reserved.regions),
187 sizeof(struct memblock_region) * memblock.reserved.max);
75} 188}
76 189
77static long memblock_regions_adjacent(struct memblock_region *rgn, 190/*
78 unsigned long r1, unsigned long r2) 191 * Reserve memblock.reserved.regions
192 */
193int __init_memblock memblock_reserve_reserved_regions(void)
79{ 194{
80 u64 base1 = rgn->region[r1].base; 195 if (memblock.reserved.regions == memblock_reserved_init_regions)
81 u64 size1 = rgn->region[r1].size; 196 return 0;
82 u64 base2 = rgn->region[r2].base;
83 u64 size2 = rgn->region[r2].size;
84 197
85 return memblock_addrs_adjacent(base1, size1, base2, size2); 198 return memblock_reserve(__pa(memblock.reserved.regions),
199 sizeof(struct memblock_region) * memblock.reserved.max);
86} 200}
87 201
88static void memblock_remove_region(struct memblock_region *rgn, unsigned long r) 202static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
89{ 203{
90 unsigned long i; 204 unsigned long i;
91 205
92 for (i = r; i < rgn->cnt - 1; i++) { 206 for (i = r; i < type->cnt - 1; i++) {
93 rgn->region[i].base = rgn->region[i + 1].base; 207 type->regions[i].base = type->regions[i + 1].base;
94 rgn->region[i].size = rgn->region[i + 1].size; 208 type->regions[i].size = type->regions[i + 1].size;
95 } 209 }
96 rgn->cnt--; 210 type->cnt--;
97} 211}
98 212
99/* Assumption: base addr of region 1 < base addr of region 2 */ 213/* Assumption: base addr of region 1 < base addr of region 2 */
100static void memblock_coalesce_regions(struct memblock_region *rgn, 214static void __init_memblock memblock_coalesce_regions(struct memblock_type *type,
101 unsigned long r1, unsigned long r2) 215 unsigned long r1, unsigned long r2)
102{ 216{
103 rgn->region[r1].size += rgn->region[r2].size; 217 type->regions[r1].size += type->regions[r2].size;
104 memblock_remove_region(rgn, r2); 218 memblock_remove_region(type, r2);
105} 219}
106 220
107void __init memblock_init(void) 221/* Defined below but needed now */
222static long memblock_add_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size);
223
224static int __init_memblock memblock_double_array(struct memblock_type *type)
108{ 225{
109 /* Create a dummy zero size MEMBLOCK which will get coalesced away later. 226 struct memblock_region *new_array, *old_array;
110 * This simplifies the memblock_add() code below... 227 phys_addr_t old_size, new_size, addr;
228 int use_slab = slab_is_available();
229
230 /* We don't allow resizing until we know about the reserved regions
231 * of memory that aren't suitable for allocation
111 */ 232 */
112 memblock.memory.region[0].base = 0; 233 if (!memblock_can_resize)
113 memblock.memory.region[0].size = 0; 234 return -1;
114 memblock.memory.cnt = 1;
115 235
116 /* Ditto. */ 236 /* Calculate new doubled size */
117 memblock.reserved.region[0].base = 0; 237 old_size = type->max * sizeof(struct memblock_region);
118 memblock.reserved.region[0].size = 0; 238 new_size = old_size << 1;
119 memblock.reserved.cnt = 1; 239
120} 240 /* Try to find some space for it.
241 *
242 * WARNING: We assume that either slab_is_available() and we use it or
243 * we use MEMBLOCK for allocations. That means that this is unsafe to use
244 * when bootmem is currently active (unless bootmem itself is implemented
245 * on top of MEMBLOCK which isn't the case yet)
246 *
247 * This should however not be an issue for now, as we currently only
248 * call into MEMBLOCK while it's still active, or much later when slab is
249 * active for memory hotplug operations
250 */
251 if (use_slab) {
252 new_array = kmalloc(new_size, GFP_KERNEL);
253 addr = new_array == NULL ? MEMBLOCK_ERROR : __pa(new_array);
254 } else
255 addr = memblock_find_base(new_size, sizeof(phys_addr_t), 0, MEMBLOCK_ALLOC_ACCESSIBLE);
256 if (addr == MEMBLOCK_ERROR) {
257 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
258 memblock_type_name(type), type->max, type->max * 2);
259 return -1;
260 }
261 new_array = __va(addr);
121 262
122void __init memblock_analyze(void) 263 memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
123{ 264 memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1);
124 int i;
125 265
126 memblock.memory.size = 0; 266 /* Found space, we now need to move the array over before
267 * we add the reserved region since it may be our reserved
268 * array itself that is full.
269 */
270 memcpy(new_array, type->regions, old_size);
271 memset(new_array + type->max, 0, old_size);
272 old_array = type->regions;
273 type->regions = new_array;
274 type->max <<= 1;
275
276 /* If we use SLAB that's it, we are done */
277 if (use_slab)
278 return 0;
127 279
128 for (i = 0; i < memblock.memory.cnt; i++) 280 /* Add the new reserved region now. Should not fail ! */
129 memblock.memory.size += memblock.memory.region[i].size; 281 BUG_ON(memblock_add_region(&memblock.reserved, addr, new_size) < 0);
282
283 /* If the array wasn't our static init one, then free it. We only do
284 * that before SLAB is available as later on, we don't know whether
285 * to use kfree or free_bootmem_pages(). Shouldn't be a big deal
286 * anyways
287 */
288 if (old_array != memblock_memory_init_regions &&
289 old_array != memblock_reserved_init_regions)
290 memblock_free(__pa(old_array), old_size);
291
292 return 0;
130} 293}
131 294
132static long memblock_add_region(struct memblock_region *rgn, u64 base, u64 size) 295extern int __init_memblock __weak memblock_memory_can_coalesce(phys_addr_t addr1, phys_addr_t size1,
296 phys_addr_t addr2, phys_addr_t size2)
297{
298 return 1;
299}
300
301static long __init_memblock memblock_add_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
133{ 302{
134 unsigned long coalesced = 0; 303 unsigned long coalesced = 0;
135 long adjacent, i; 304 long adjacent, i;
136 305
137 if ((rgn->cnt == 1) && (rgn->region[0].size == 0)) { 306 if ((type->cnt == 1) && (type->regions[0].size == 0)) {
138 rgn->region[0].base = base; 307 type->regions[0].base = base;
139 rgn->region[0].size = size; 308 type->regions[0].size = size;
140 return 0; 309 return 0;
141 } 310 }
142 311
143 /* First try and coalesce this MEMBLOCK with another. */ 312 /* First try and coalesce this MEMBLOCK with another. */
144 for (i = 0; i < rgn->cnt; i++) { 313 for (i = 0; i < type->cnt; i++) {
145 u64 rgnbase = rgn->region[i].base; 314 phys_addr_t rgnbase = type->regions[i].base;
146 u64 rgnsize = rgn->region[i].size; 315 phys_addr_t rgnsize = type->regions[i].size;
147 316
148 if ((rgnbase == base) && (rgnsize == size)) 317 if ((rgnbase == base) && (rgnsize == size))
149 /* Already have this region, so we're done */ 318 /* Already have this region, so we're done */
150 return 0; 319 return 0;
151 320
152 adjacent = memblock_addrs_adjacent(base, size, rgnbase, rgnsize); 321 adjacent = memblock_addrs_adjacent(base, size, rgnbase, rgnsize);
322 /* Check if arch allows coalescing */
323 if (adjacent != 0 && type == &memblock.memory &&
324 !memblock_memory_can_coalesce(base, size, rgnbase, rgnsize))
325 break;
153 if (adjacent > 0) { 326 if (adjacent > 0) {
154 rgn->region[i].base -= size; 327 type->regions[i].base -= size;
155 rgn->region[i].size += size; 328 type->regions[i].size += size;
156 coalesced++; 329 coalesced++;
157 break; 330 break;
158 } else if (adjacent < 0) { 331 } else if (adjacent < 0) {
159 rgn->region[i].size += size; 332 type->regions[i].size += size;
160 coalesced++; 333 coalesced++;
161 break; 334 break;
162 } 335 }
163 } 336 }
164 337
165 if ((i < rgn->cnt - 1) && memblock_regions_adjacent(rgn, i, i+1)) { 338 /* If we plugged a hole, we may want to also coalesce with the
166 memblock_coalesce_regions(rgn, i, i+1); 339 * next region
340 */
341 if ((i < type->cnt - 1) && memblock_regions_adjacent(type, i, i+1) &&
342 ((type != &memblock.memory || memblock_memory_can_coalesce(type->regions[i].base,
343 type->regions[i].size,
344 type->regions[i+1].base,
345 type->regions[i+1].size)))) {
346 memblock_coalesce_regions(type, i, i+1);
167 coalesced++; 347 coalesced++;
168 } 348 }
169 349
170 if (coalesced) 350 if (coalesced)
171 return coalesced; 351 return coalesced;
172 if (rgn->cnt >= MAX_MEMBLOCK_REGIONS) 352
353 /* If we are out of space, we fail. It's too late to resize the array
354 * but then this shouldn't have happened in the first place.
355 */
356 if (WARN_ON(type->cnt >= type->max))
173 return -1; 357 return -1;
174 358
175 /* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */ 359 /* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */
176 for (i = rgn->cnt - 1; i >= 0; i--) { 360 for (i = type->cnt - 1; i >= 0; i--) {
177 if (base < rgn->region[i].base) { 361 if (base < type->regions[i].base) {
178 rgn->region[i+1].base = rgn->region[i].base; 362 type->regions[i+1].base = type->regions[i].base;
179 rgn->region[i+1].size = rgn->region[i].size; 363 type->regions[i+1].size = type->regions[i].size;
180 } else { 364 } else {
181 rgn->region[i+1].base = base; 365 type->regions[i+1].base = base;
182 rgn->region[i+1].size = size; 366 type->regions[i+1].size = size;
183 break; 367 break;
184 } 368 }
185 } 369 }
186 370
187 if (base < rgn->region[0].base) { 371 if (base < type->regions[0].base) {
188 rgn->region[0].base = base; 372 type->regions[0].base = base;
189 rgn->region[0].size = size; 373 type->regions[0].size = size;
374 }
375 type->cnt++;
376
377 /* The array is full ? Try to resize it. If that fails, we undo
378 * our allocation and return an error
379 */
380 if (type->cnt == type->max && memblock_double_array(type)) {
381 type->cnt--;
382 return -1;
190 } 383 }
191 rgn->cnt++;
192 384
193 return 0; 385 return 0;
194} 386}
195 387
196long memblock_add(u64 base, u64 size) 388long __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
197{ 389{
198 struct memblock_region *_rgn = &memblock.memory; 390 return memblock_add_region(&memblock.memory, base, size);
199
200 /* On pSeries LPAR systems, the first MEMBLOCK is our RMO region. */
201 if (base == 0)
202 memblock.rmo_size = size;
203
204 return memblock_add_region(_rgn, base, size);
205 391
206} 392}
207 393
208static long __memblock_remove(struct memblock_region *rgn, u64 base, u64 size) 394static long __init_memblock __memblock_remove(struct memblock_type *type, phys_addr_t base, phys_addr_t size)
209{ 395{
210 u64 rgnbegin, rgnend; 396 phys_addr_t rgnbegin, rgnend;
211 u64 end = base + size; 397 phys_addr_t end = base + size;
212 int i; 398 int i;
213 399
214 rgnbegin = rgnend = 0; /* supress gcc warnings */ 400 rgnbegin = rgnend = 0; /* supress gcc warnings */
215 401
216 /* Find the region where (base, size) belongs to */ 402 /* Find the region where (base, size) belongs to */
217 for (i=0; i < rgn->cnt; i++) { 403 for (i=0; i < type->cnt; i++) {
218 rgnbegin = rgn->region[i].base; 404 rgnbegin = type->regions[i].base;
219 rgnend = rgnbegin + rgn->region[i].size; 405 rgnend = rgnbegin + type->regions[i].size;
220 406
221 if ((rgnbegin <= base) && (end <= rgnend)) 407 if ((rgnbegin <= base) && (end <= rgnend))
222 break; 408 break;
223 } 409 }
224 410
225 /* Didn't find the region */ 411 /* Didn't find the region */
226 if (i == rgn->cnt) 412 if (i == type->cnt)
227 return -1; 413 return -1;
228 414
229 /* Check to see if we are removing entire region */ 415 /* Check to see if we are removing entire region */
230 if ((rgnbegin == base) && (rgnend == end)) { 416 if ((rgnbegin == base) && (rgnend == end)) {
231 memblock_remove_region(rgn, i); 417 memblock_remove_region(type, i);
232 return 0; 418 return 0;
233 } 419 }
234 420
235 /* Check to see if region is matching at the front */ 421 /* Check to see if region is matching at the front */
236 if (rgnbegin == base) { 422 if (rgnbegin == base) {
237 rgn->region[i].base = end; 423 type->regions[i].base = end;
238 rgn->region[i].size -= size; 424 type->regions[i].size -= size;
239 return 0; 425 return 0;
240 } 426 }
241 427
242 /* Check to see if the region is matching at the end */ 428 /* Check to see if the region is matching at the end */
243 if (rgnend == end) { 429 if (rgnend == end) {
244 rgn->region[i].size -= size; 430 type->regions[i].size -= size;
245 return 0; 431 return 0;
246 } 432 }
247 433
@@ -249,208 +435,189 @@ static long __memblock_remove(struct memblock_region *rgn, u64 base, u64 size)
249 * We need to split the entry - adjust the current one to the 435 * We need to split the entry - adjust the current one to the
250 * beginging of the hole and add the region after hole. 436 * beginging of the hole and add the region after hole.
251 */ 437 */
252 rgn->region[i].size = base - rgn->region[i].base; 438 type->regions[i].size = base - type->regions[i].base;
253 return memblock_add_region(rgn, end, rgnend - end); 439 return memblock_add_region(type, end, rgnend - end);
254} 440}
255 441
256long memblock_remove(u64 base, u64 size) 442long __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
257{ 443{
258 return __memblock_remove(&memblock.memory, base, size); 444 return __memblock_remove(&memblock.memory, base, size);
259} 445}
260 446
261long __init memblock_free(u64 base, u64 size) 447long __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
262{ 448{
263 return __memblock_remove(&memblock.reserved, base, size); 449 return __memblock_remove(&memblock.reserved, base, size);
264} 450}
265 451
266long __init memblock_reserve(u64 base, u64 size) 452long __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
267{ 453{
268 struct memblock_region *_rgn = &memblock.reserved; 454 struct memblock_type *_rgn = &memblock.reserved;
269 455
270 BUG_ON(0 == size); 456 BUG_ON(0 == size);
271 457
272 return memblock_add_region(_rgn, base, size); 458 return memblock_add_region(_rgn, base, size);
273} 459}
274 460
275long memblock_overlaps_region(struct memblock_region *rgn, u64 base, u64 size) 461phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
276{ 462{
277 unsigned long i; 463 phys_addr_t found;
278 464
279 for (i = 0; i < rgn->cnt; i++) { 465 /* We align the size to limit fragmentation. Without this, a lot of
280 u64 rgnbase = rgn->region[i].base; 466 * small allocs quickly eat up the whole reserve array on sparc
281 u64 rgnsize = rgn->region[i].size; 467 */
282 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize)) 468 size = memblock_align_up(size, align);
283 break;
284 }
285 469
286 return (i < rgn->cnt) ? i : -1; 470 found = memblock_find_base(size, align, 0, max_addr);
471 if (found != MEMBLOCK_ERROR &&
472 memblock_add_region(&memblock.reserved, found, size) >= 0)
473 return found;
474
475 return 0;
287} 476}
288 477
289static u64 memblock_align_down(u64 addr, u64 size) 478phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
290{ 479{
291 return addr & ~(size - 1); 480 phys_addr_t alloc;
481
482 alloc = __memblock_alloc_base(size, align, max_addr);
483
484 if (alloc == 0)
485 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
486 (unsigned long long) size, (unsigned long long) max_addr);
487
488 return alloc;
292} 489}
293 490
294static u64 memblock_align_up(u64 addr, u64 size) 491phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
295{ 492{
296 return (addr + (size - 1)) & ~(size - 1); 493 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
297} 494}
298 495
299static u64 __init memblock_alloc_nid_unreserved(u64 start, u64 end, 496
300 u64 size, u64 align) 497/*
498 * Additional node-local allocators. Search for node memory is bottom up
499 * and walks memblock regions within that node bottom-up as well, but allocation
500 * within an memblock region is top-down. XXX I plan to fix that at some stage
501 *
502 * WARNING: Only available after early_node_map[] has been populated,
503 * on some architectures, that is after all the calls to add_active_range()
504 * have been done to populate it.
505 */
506
507phys_addr_t __weak __init memblock_nid_range(phys_addr_t start, phys_addr_t end, int *nid)
301{ 508{
302 u64 base, res_base; 509#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
303 long j; 510 /*
511 * This code originates from sparc which really wants use to walk by addresses
512 * and returns the nid. This is not very convenient for early_pfn_map[] users
513 * as the map isn't sorted yet, and it really wants to be walked by nid.
514 *
515 * For now, I implement the inefficient method below which walks the early
516 * map multiple times. Eventually we may want to use an ARCH config option
517 * to implement a completely different method for both case.
518 */
519 unsigned long start_pfn, end_pfn;
520 int i;
304 521
305 base = memblock_align_down((end - size), align); 522 for (i = 0; i < MAX_NUMNODES; i++) {
306 while (start <= base) { 523 get_pfn_range_for_nid(i, &start_pfn, &end_pfn);
307 j = memblock_overlaps_region(&memblock.reserved, base, size); 524 if (start < PFN_PHYS(start_pfn) || start >= PFN_PHYS(end_pfn))
308 if (j < 0) { 525 continue;
309 /* this area isn't reserved, take it */ 526 *nid = i;
310 if (memblock_add_region(&memblock.reserved, base, size) < 0) 527 return min(end, PFN_PHYS(end_pfn));
311 base = ~(u64)0;
312 return base;
313 }
314 res_base = memblock.reserved.region[j].base;
315 if (res_base < size)
316 break;
317 base = memblock_align_down(res_base - size, align);
318 } 528 }
529#endif
530 *nid = 0;
319 531
320 return ~(u64)0; 532 return end;
321} 533}
322 534
323static u64 __init memblock_alloc_nid_region(struct memblock_property *mp, 535static phys_addr_t __init memblock_alloc_nid_region(struct memblock_region *mp,
324 u64 (*nid_range)(u64, u64, int *), 536 phys_addr_t size,
325 u64 size, u64 align, int nid) 537 phys_addr_t align, int nid)
326{ 538{
327 u64 start, end; 539 phys_addr_t start, end;
328 540
329 start = mp->base; 541 start = mp->base;
330 end = start + mp->size; 542 end = start + mp->size;
331 543
332 start = memblock_align_up(start, align); 544 start = memblock_align_up(start, align);
333 while (start < end) { 545 while (start < end) {
334 u64 this_end; 546 phys_addr_t this_end;
335 int this_nid; 547 int this_nid;
336 548
337 this_end = nid_range(start, end, &this_nid); 549 this_end = memblock_nid_range(start, end, &this_nid);
338 if (this_nid == nid) { 550 if (this_nid == nid) {
339 u64 ret = memblock_alloc_nid_unreserved(start, this_end, 551 phys_addr_t ret = memblock_find_region(start, this_end, size, align);
340 size, align); 552 if (ret != MEMBLOCK_ERROR &&
341 if (ret != ~(u64)0) 553 memblock_add_region(&memblock.reserved, ret, size) >= 0)
342 return ret; 554 return ret;
343 } 555 }
344 start = this_end; 556 start = this_end;
345 } 557 }
346 558
347 return ~(u64)0; 559 return MEMBLOCK_ERROR;
348} 560}
349 561
350u64 __init memblock_alloc_nid(u64 size, u64 align, int nid, 562phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
351 u64 (*nid_range)(u64 start, u64 end, int *nid))
352{ 563{
353 struct memblock_region *mem = &memblock.memory; 564 struct memblock_type *mem = &memblock.memory;
354 int i; 565 int i;
355 566
356 BUG_ON(0 == size); 567 BUG_ON(0 == size);
357 568
569 /* We align the size to limit fragmentation. Without this, a lot of
570 * small allocs quickly eat up the whole reserve array on sparc
571 */
358 size = memblock_align_up(size, align); 572 size = memblock_align_up(size, align);
359 573
574 /* We do a bottom-up search for a region with the right
575 * nid since that's easier considering how memblock_nid_range()
576 * works
577 */
360 for (i = 0; i < mem->cnt; i++) { 578 for (i = 0; i < mem->cnt; i++) {
361 u64 ret = memblock_alloc_nid_region(&mem->region[i], 579 phys_addr_t ret = memblock_alloc_nid_region(&mem->regions[i],
362 nid_range,
363 size, align, nid); 580 size, align, nid);
364 if (ret != ~(u64)0) 581 if (ret != MEMBLOCK_ERROR)
365 return ret; 582 return ret;
366 } 583 }
367 584
368 return memblock_alloc(size, align); 585 return 0;
369}
370
371u64 __init memblock_alloc(u64 size, u64 align)
372{
373 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ANYWHERE);
374} 586}
375 587
376u64 __init memblock_alloc_base(u64 size, u64 align, u64 max_addr) 588phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
377{ 589{
378 u64 alloc; 590 phys_addr_t res = memblock_alloc_nid(size, align, nid);
379
380 alloc = __memblock_alloc_base(size, align, max_addr);
381 591
382 if (alloc == 0) 592 if (res)
383 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n", 593 return res;
384 (unsigned long long) size, (unsigned long long) max_addr); 594 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ANYWHERE);
385
386 return alloc;
387} 595}
388 596
389u64 __init __memblock_alloc_base(u64 size, u64 align, u64 max_addr)
390{
391 long i, j;
392 u64 base = 0;
393 u64 res_base;
394
395 BUG_ON(0 == size);
396 597
397 size = memblock_align_up(size, align); 598/*
398 599 * Remaining API functions
399 /* On some platforms, make sure we allocate lowmem */ 600 */
400 /* Note that MEMBLOCK_REAL_LIMIT may be MEMBLOCK_ALLOC_ANYWHERE */
401 if (max_addr == MEMBLOCK_ALLOC_ANYWHERE)
402 max_addr = MEMBLOCK_REAL_LIMIT;
403
404 for (i = memblock.memory.cnt - 1; i >= 0; i--) {
405 u64 memblockbase = memblock.memory.region[i].base;
406 u64 memblocksize = memblock.memory.region[i].size;
407
408 if (memblocksize < size)
409 continue;
410 if (max_addr == MEMBLOCK_ALLOC_ANYWHERE)
411 base = memblock_align_down(memblockbase + memblocksize - size, align);
412 else if (memblockbase < max_addr) {
413 base = min(memblockbase + memblocksize, max_addr);
414 base = memblock_align_down(base - size, align);
415 } else
416 continue;
417
418 while (base && memblockbase <= base) {
419 j = memblock_overlaps_region(&memblock.reserved, base, size);
420 if (j < 0) {
421 /* this area isn't reserved, take it */
422 if (memblock_add_region(&memblock.reserved, base, size) < 0)
423 return 0;
424 return base;
425 }
426 res_base = memblock.reserved.region[j].base;
427 if (res_base < size)
428 break;
429 base = memblock_align_down(res_base - size, align);
430 }
431 }
432 return 0;
433}
434 601
435/* You must call memblock_analyze() before this. */ 602/* You must call memblock_analyze() before this. */
436u64 __init memblock_phys_mem_size(void) 603phys_addr_t __init memblock_phys_mem_size(void)
437{ 604{
438 return memblock.memory.size; 605 return memblock.memory_size;
439} 606}
440 607
441u64 memblock_end_of_DRAM(void) 608phys_addr_t __init_memblock memblock_end_of_DRAM(void)
442{ 609{
443 int idx = memblock.memory.cnt - 1; 610 int idx = memblock.memory.cnt - 1;
444 611
445 return (memblock.memory.region[idx].base + memblock.memory.region[idx].size); 612 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
446} 613}
447 614
448/* You must call memblock_analyze() after this. */ 615/* You must call memblock_analyze() after this. */
449void __init memblock_enforce_memory_limit(u64 memory_limit) 616void __init memblock_enforce_memory_limit(phys_addr_t memory_limit)
450{ 617{
451 unsigned long i; 618 unsigned long i;
452 u64 limit; 619 phys_addr_t limit;
453 struct memblock_property *p; 620 struct memblock_region *p;
454 621
455 if (!memory_limit) 622 if (!memory_limit)
456 return; 623 return;
@@ -458,24 +625,21 @@ void __init memblock_enforce_memory_limit(u64 memory_limit)
458 /* Truncate the memblock regions to satisfy the memory limit. */ 625 /* Truncate the memblock regions to satisfy the memory limit. */
459 limit = memory_limit; 626 limit = memory_limit;
460 for (i = 0; i < memblock.memory.cnt; i++) { 627 for (i = 0; i < memblock.memory.cnt; i++) {
461 if (limit > memblock.memory.region[i].size) { 628 if (limit > memblock.memory.regions[i].size) {
462 limit -= memblock.memory.region[i].size; 629 limit -= memblock.memory.regions[i].size;
463 continue; 630 continue;
464 } 631 }
465 632
466 memblock.memory.region[i].size = limit; 633 memblock.memory.regions[i].size = limit;
467 memblock.memory.cnt = i + 1; 634 memblock.memory.cnt = i + 1;
468 break; 635 break;
469 } 636 }
470 637
471 if (memblock.memory.region[0].size < memblock.rmo_size)
472 memblock.rmo_size = memblock.memory.region[0].size;
473
474 memory_limit = memblock_end_of_DRAM(); 638 memory_limit = memblock_end_of_DRAM();
475 639
476 /* And truncate any reserves above the limit also. */ 640 /* And truncate any reserves above the limit also. */
477 for (i = 0; i < memblock.reserved.cnt; i++) { 641 for (i = 0; i < memblock.reserved.cnt; i++) {
478 p = &memblock.reserved.region[i]; 642 p = &memblock.reserved.regions[i];
479 643
480 if (p->base > memory_limit) 644 if (p->base > memory_limit)
481 p->size = 0; 645 p->size = 0;
@@ -489,53 +653,190 @@ void __init memblock_enforce_memory_limit(u64 memory_limit)
489 } 653 }
490} 654}
491 655
492int __init memblock_is_reserved(u64 addr) 656static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
657{
658 unsigned int left = 0, right = type->cnt;
659
660 do {
661 unsigned int mid = (right + left) / 2;
662
663 if (addr < type->regions[mid].base)
664 right = mid;
665 else if (addr >= (type->regions[mid].base +
666 type->regions[mid].size))
667 left = mid + 1;
668 else
669 return mid;
670 } while (left < right);
671 return -1;
672}
673
674int __init memblock_is_reserved(phys_addr_t addr)
675{
676 return memblock_search(&memblock.reserved, addr) != -1;
677}
678
679int __init_memblock memblock_is_memory(phys_addr_t addr)
680{
681 return memblock_search(&memblock.memory, addr) != -1;
682}
683
684int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
685{
686 int idx = memblock_search(&memblock.reserved, base);
687
688 if (idx == -1)
689 return 0;
690 return memblock.reserved.regions[idx].base <= base &&
691 (memblock.reserved.regions[idx].base +
692 memblock.reserved.regions[idx].size) >= (base + size);
693}
694
695int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
696{
697 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
698}
699
700
701void __init_memblock memblock_set_current_limit(phys_addr_t limit)
493{ 702{
703 memblock.current_limit = limit;
704}
705
706static void __init_memblock memblock_dump(struct memblock_type *region, char *name)
707{
708 unsigned long long base, size;
494 int i; 709 int i;
495 710
496 for (i = 0; i < memblock.reserved.cnt; i++) { 711 pr_info(" %s.cnt = 0x%lx\n", name, region->cnt);
497 u64 upper = memblock.reserved.region[i].base + 712
498 memblock.reserved.region[i].size - 1; 713 for (i = 0; i < region->cnt; i++) {
499 if ((addr >= memblock.reserved.region[i].base) && (addr <= upper)) 714 base = region->regions[i].base;
500 return 1; 715 size = region->regions[i].size;
716
717 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes\n",
718 name, i, base, base + size - 1, size);
501 } 719 }
502 return 0;
503} 720}
504 721
505int memblock_is_region_reserved(u64 base, u64 size) 722void __init_memblock memblock_dump_all(void)
506{ 723{
507 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0; 724 if (!memblock_debug)
725 return;
726
727 pr_info("MEMBLOCK configuration:\n");
728 pr_info(" memory size = 0x%llx\n", (unsigned long long)memblock.memory_size);
729
730 memblock_dump(&memblock.memory, "memory");
731 memblock_dump(&memblock.reserved, "reserved");
508} 732}
509 733
510/* 734void __init memblock_analyze(void)
511 * Given a <base, len>, find which memory regions belong to this range.
512 * Adjust the request and return a contiguous chunk.
513 */
514int memblock_find(struct memblock_property *res)
515{ 735{
516 int i; 736 int i;
517 u64 rstart, rend;
518 737
519 rstart = res->base; 738 /* Check marker in the unused last array entry */
520 rend = rstart + res->size - 1; 739 WARN_ON(memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS].base
740 != (phys_addr_t)RED_INACTIVE);
741 WARN_ON(memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS].base
742 != (phys_addr_t)RED_INACTIVE);
743
744 memblock.memory_size = 0;
745
746 for (i = 0; i < memblock.memory.cnt; i++)
747 memblock.memory_size += memblock.memory.regions[i].size;
748
749 /* We allow resizing from there */
750 memblock_can_resize = 1;
751}
752
753void __init memblock_init(void)
754{
755 static int init_done __initdata = 0;
756
757 if (init_done)
758 return;
759 init_done = 1;
760
761 /* Hookup the initial arrays */
762 memblock.memory.regions = memblock_memory_init_regions;
763 memblock.memory.max = INIT_MEMBLOCK_REGIONS;
764 memblock.reserved.regions = memblock_reserved_init_regions;
765 memblock.reserved.max = INIT_MEMBLOCK_REGIONS;
766
767 /* Write a marker in the unused last array entry */
768 memblock.memory.regions[INIT_MEMBLOCK_REGIONS].base = (phys_addr_t)RED_INACTIVE;
769 memblock.reserved.regions[INIT_MEMBLOCK_REGIONS].base = (phys_addr_t)RED_INACTIVE;
770
771 /* Create a dummy zero size MEMBLOCK which will get coalesced away later.
772 * This simplifies the memblock_add() code below...
773 */
774 memblock.memory.regions[0].base = 0;
775 memblock.memory.regions[0].size = 0;
776 memblock.memory.cnt = 1;
777
778 /* Ditto. */
779 memblock.reserved.regions[0].base = 0;
780 memblock.reserved.regions[0].size = 0;
781 memblock.reserved.cnt = 1;
782
783 memblock.current_limit = MEMBLOCK_ALLOC_ANYWHERE;
784}
785
786static int __init early_memblock(char *p)
787{
788 if (p && strstr(p, "debug"))
789 memblock_debug = 1;
790 return 0;
791}
792early_param("memblock", early_memblock);
793
794#if defined(CONFIG_DEBUG_FS) && !defined(ARCH_DISCARD_MEMBLOCK)
795
796static int memblock_debug_show(struct seq_file *m, void *private)
797{
798 struct memblock_type *type = m->private;
799 struct memblock_region *reg;
800 int i;
801
802 for (i = 0; i < type->cnt; i++) {
803 reg = &type->regions[i];
804 seq_printf(m, "%4d: ", i);
805 if (sizeof(phys_addr_t) == 4)
806 seq_printf(m, "0x%08lx..0x%08lx\n",
807 (unsigned long)reg->base,
808 (unsigned long)(reg->base + reg->size - 1));
809 else
810 seq_printf(m, "0x%016llx..0x%016llx\n",
811 (unsigned long long)reg->base,
812 (unsigned long long)(reg->base + reg->size - 1));
521 813
522 for (i = 0; i < memblock.memory.cnt; i++) {
523 u64 start = memblock.memory.region[i].base;
524 u64 end = start + memblock.memory.region[i].size - 1;
525
526 if (start > rend)
527 return -1;
528
529 if ((end >= rstart) && (start < rend)) {
530 /* adjust the request */
531 if (rstart < start)
532 rstart = start;
533 if (rend > end)
534 rend = end;
535 res->base = rstart;
536 res->size = rend - rstart + 1;
537 return 0;
538 }
539 } 814 }
540 return -1; 815 return 0;
816}
817
818static int memblock_debug_open(struct inode *inode, struct file *file)
819{
820 return single_open(file, memblock_debug_show, inode->i_private);
541} 821}
822
823static const struct file_operations memblock_debug_fops = {
824 .open = memblock_debug_open,
825 .read = seq_read,
826 .llseek = seq_lseek,
827 .release = single_release,
828};
829
830static int __init memblock_init_debugfs(void)
831{
832 struct dentry *root = debugfs_create_dir("memblock", NULL);
833 if (!root)
834 return -ENXIO;
835 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
836 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
837
838 return 0;
839}
840__initcall(memblock_init_debugfs);
841
842#endif /* CONFIG_DEBUG_FS */
diff --git a/mm/page_alloc.c b/mm/page_alloc.c
index f12ad1836abe..2a362c52fdf4 100644
--- a/mm/page_alloc.c
+++ b/mm/page_alloc.c
@@ -21,6 +21,7 @@
21#include <linux/pagemap.h> 21#include <linux/pagemap.h>
22#include <linux/jiffies.h> 22#include <linux/jiffies.h>
23#include <linux/bootmem.h> 23#include <linux/bootmem.h>
24#include <linux/memblock.h>
24#include <linux/compiler.h> 25#include <linux/compiler.h>
25#include <linux/kernel.h> 26#include <linux/kernel.h>
26#include <linux/kmemcheck.h> 27#include <linux/kmemcheck.h>
@@ -3636,6 +3637,41 @@ void __init free_bootmem_with_active_regions(int nid,
3636 } 3637 }
3637} 3638}
3638 3639
3640#ifdef CONFIG_HAVE_MEMBLOCK
3641u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3642 u64 goal, u64 limit)
3643{
3644 int i;
3645
3646 /* Need to go over early_node_map to find out good range for node */
3647 for_each_active_range_index_in_nid(i, nid) {
3648 u64 addr;
3649 u64 ei_start, ei_last;
3650 u64 final_start, final_end;
3651
3652 ei_last = early_node_map[i].end_pfn;
3653 ei_last <<= PAGE_SHIFT;
3654 ei_start = early_node_map[i].start_pfn;
3655 ei_start <<= PAGE_SHIFT;
3656
3657 final_start = max(ei_start, goal);
3658 final_end = min(ei_last, limit);
3659
3660 if (final_start >= final_end)
3661 continue;
3662
3663 addr = memblock_find_in_range(final_start, final_end, size, align);
3664
3665 if (addr == MEMBLOCK_ERROR)
3666 continue;
3667
3668 return addr;
3669 }
3670
3671 return MEMBLOCK_ERROR;
3672}
3673#endif
3674
3639int __init add_from_early_node_map(struct range *range, int az, 3675int __init add_from_early_node_map(struct range *range, int az,
3640 int nr_range, int nid) 3676 int nr_range, int nid)
3641{ 3677{
@@ -3655,46 +3691,26 @@ int __init add_from_early_node_map(struct range *range, int az,
3655void * __init __alloc_memory_core_early(int nid, u64 size, u64 align, 3691void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3656 u64 goal, u64 limit) 3692 u64 goal, u64 limit)
3657{ 3693{
3658 int i;
3659 void *ptr; 3694 void *ptr;
3695 u64 addr;
3660 3696
3661 if (limit > get_max_mapped()) 3697 if (limit > memblock.current_limit)
3662 limit = get_max_mapped(); 3698 limit = memblock.current_limit;
3663
3664 /* need to go over early_node_map to find out good range for node */
3665 for_each_active_range_index_in_nid(i, nid) {
3666 u64 addr;
3667 u64 ei_start, ei_last;
3668
3669 ei_last = early_node_map[i].end_pfn;
3670 ei_last <<= PAGE_SHIFT;
3671 ei_start = early_node_map[i].start_pfn;
3672 ei_start <<= PAGE_SHIFT;
3673 addr = find_early_area(ei_start, ei_last,
3674 goal, limit, size, align);
3675
3676 if (addr == -1ULL)
3677 continue;
3678 3699
3679#if 0 3700 addr = find_memory_core_early(nid, size, align, goal, limit);
3680 printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n",
3681 nid,
3682 ei_start, ei_last, goal, limit, size,
3683 align, addr);
3684#endif
3685 3701
3686 ptr = phys_to_virt(addr); 3702 if (addr == MEMBLOCK_ERROR)
3687 memset(ptr, 0, size); 3703 return NULL;
3688 reserve_early_without_check(addr, addr + size, "BOOTMEM");
3689 /*
3690 * The min_count is set to 0 so that bootmem allocated blocks
3691 * are never reported as leaks.
3692 */
3693 kmemleak_alloc(ptr, size, 0, 0);
3694 return ptr;
3695 }
3696 3704
3697 return NULL; 3705 ptr = phys_to_virt(addr);
3706 memset(ptr, 0, size);
3707 memblock_x86_reserve_range(addr, addr + size, "BOOTMEM");
3708 /*
3709 * The min_count is set to 0 so that bootmem allocated blocks
3710 * are never reported as leaks.
3711 */
3712 kmemleak_alloc(ptr, size, 0, 0);
3713 return ptr;
3698} 3714}
3699#endif 3715#endif
3700 3716
diff --git a/mm/sparse-vmemmap.c b/mm/sparse-vmemmap.c
index aa33fd67fa41..29d6cbffb283 100644
--- a/mm/sparse-vmemmap.c
+++ b/mm/sparse-vmemmap.c
@@ -220,18 +220,7 @@ void __init sparse_mem_maps_populate_node(struct page **map_map,
220 220
221 if (vmemmap_buf_start) { 221 if (vmemmap_buf_start) {
222 /* need to free left buf */ 222 /* need to free left buf */
223#ifdef CONFIG_NO_BOOTMEM
224 free_early(__pa(vmemmap_buf_start), __pa(vmemmap_buf_end));
225 if (vmemmap_buf_start < vmemmap_buf) {
226 char name[15];
227
228 snprintf(name, sizeof(name), "MEMMAP %d", nodeid);
229 reserve_early_without_check(__pa(vmemmap_buf_start),
230 __pa(vmemmap_buf), name);
231 }
232#else
233 free_bootmem(__pa(vmemmap_buf), vmemmap_buf_end - vmemmap_buf); 223 free_bootmem(__pa(vmemmap_buf), vmemmap_buf_end - vmemmap_buf);
234#endif
235 vmemmap_buf = NULL; 224 vmemmap_buf = NULL;
236 vmemmap_buf_end = NULL; 225 vmemmap_buf_end = NULL;
237 } 226 }