diff options
author | Christoph Lameter <clameter@engr.sgi.com> | 2005-09-09 16:03:32 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@g5.osdl.org> | 2005-09-09 16:57:48 -0400 |
commit | e498be7dafd72fd68848c1eef1575aa7c5d658df (patch) | |
tree | e09df3a70db15aa55555297155e04aee3d72de62 /mm | |
parent | bd65a68574b787304a0cd90f22cfd44540ce3695 (diff) |
[PATCH] Numa-aware slab allocator V5
The NUMA API change that introduced kmalloc_node was accepted for
2.6.12-rc3. Now it is possible to do slab allocations on a node to
localize memory structures. This API was used by the pageset localization
patch and the block layer localization patch now in mm. The existing
kmalloc_node is slow since it simply searches through all pages of the slab
to find a page that is on the node requested. The two patches do a one
time allocation of slab structures at initialization and therefore the
speed of kmalloc node does not matter.
This patch allows kmalloc_node to be as fast as kmalloc by introducing node
specific page lists for partial, free and full slabs. Slab allocation
improves in a NUMA system so that we are seeing a performance gain in AIM7
of about 5% with this patch alone.
More NUMA localizations are possible if kmalloc_node operates in an fast
way like kmalloc.
Test run on a 32p systems with 32G Ram.
w/o patch
Tasks jobs/min jti jobs/min/task real cpu
1 485.36 100 485.3640 11.99 1.91 Sat Apr 30 14:01:51 2005
100 26582.63 88 265.8263 21.89 144.96 Sat Apr 30 14:02:14 2005
200 29866.83 81 149.3342 38.97 286.08 Sat Apr 30 14:02:53 2005
300 33127.16 78 110.4239 52.71 426.54 Sat Apr 30 14:03:46 2005
400 34889.47 80 87.2237 66.72 568.90 Sat Apr 30 14:04:53 2005
500 35654.34 76 71.3087 81.62 714.55 Sat Apr 30 14:06:15 2005
600 36460.83 75 60.7681 95.77 853.42 Sat Apr 30 14:07:51 2005
700 35957.00 75 51.3671 113.30 990.67 Sat Apr 30 14:09:45 2005
800 33380.65 73 41.7258 139.48 1140.86 Sat Apr 30 14:12:05 2005
900 35095.01 76 38.9945 149.25 1281.30 Sat Apr 30 14:14:35 2005
1000 36094.37 74 36.0944 161.24 1419.66 Sat Apr 30 14:17:17 2005
w/patch
Tasks jobs/min jti jobs/min/task real cpu
1 484.27 100 484.2736 12.02 1.93 Sat Apr 30 15:59:45 2005
100 28262.03 90 282.6203 20.59 143.57 Sat Apr 30 16:00:06 2005
200 32246.45 82 161.2322 36.10 282.89 Sat Apr 30 16:00:42 2005
300 37945.80 83 126.4860 46.01 418.75 Sat Apr 30 16:01:28 2005
400 40000.69 81 100.0017 58.20 561.48 Sat Apr 30 16:02:27 2005
500 40976.10 78 81.9522 71.02 696.95 Sat Apr 30 16:03:38 2005
600 41121.54 78 68.5359 84.92 834.86 Sat Apr 30 16:05:04 2005
700 44052.77 78 62.9325 92.48 971.53 Sat Apr 30 16:06:37 2005
800 41066.89 79 51.3336 113.38 1111.15 Sat Apr 30 16:08:31 2005
900 38918.77 79 43.2431 134.59 1252.57 Sat Apr 30 16:10:46 2005
1000 41842.21 76 41.8422 139.09 1392.33 Sat Apr 30 16:13:05 2005
These are measurement taken directly after boot and show a greater
improvement than 5%. However, the performance improvements become less
over time if the AIM7 runs are repeated and settle down at around 5%.
Links to earlier discussions:
http://marc.theaimsgroup.com/?t=111094594500003&r=1&w=2
http://marc.theaimsgroup.com/?t=111603406600002&r=1&w=2
Changelog V4-V5:
- alloc_arraycache and alloc_aliencache take node parameter instead of cpu
- fix initialization so that nodes without cpus are properly handled.
- simplify code in kmem_cache_init
- patch against Andrews temp mm3 release
- Add Shai to credits
- fallback to __cache_alloc from __cache_alloc_node if the node's cache
is not available yet.
Changelog V3-V4:
- Patch against 2.6.12-rc5-mm1
- Cleanup patch integrated
- More and better use of for_each_node and for_each_cpu
- GCC 2.95 fix (do not use [] use [0])
- Correct determination of INDEX_AC
- Remove hack to cause an error on platforms that have no CONFIG_NUMA but nodes.
- Remove list3_data and list3_data_ptr macros for better readability
Changelog V2-V3:
- Made to patch against 2.6.12-rc4-mm1
- Revised bootstrap mechanism so that larger size kmem_list3 structs can be
supported. Do a generic solution so that the right slab can be found
for the internal structs.
- use for_each_online_node
Changelog V1-V2:
- Batching for freeing of wrong-node objects (alien caches)
- Locking changes and NUMA #ifdefs as requested by Manfred
Signed-off-by: Alok N Kataria <alokk@calsoftinc.com>
Signed-off-by: Shobhit Dayal <shobhit@calsoftinc.com>
Signed-off-by: Shai Fultheim <Shai@Scalex86.org>
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Manfred Spraul <manfred@colorfullife.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Diffstat (limited to 'mm')
-rw-r--r-- | mm/slab.c | 1132 |
1 files changed, 812 insertions, 320 deletions
@@ -75,6 +75,15 @@ | |||
75 | * | 75 | * |
76 | * At present, each engine can be growing a cache. This should be blocked. | 76 | * At present, each engine can be growing a cache. This should be blocked. |
77 | * | 77 | * |
78 | * 15 March 2005. NUMA slab allocator. | ||
79 | * Shai Fultheim <shai@scalex86.org>. | ||
80 | * Shobhit Dayal <shobhit@calsoftinc.com> | ||
81 | * Alok N Kataria <alokk@calsoftinc.com> | ||
82 | * Christoph Lameter <christoph@lameter.com> | ||
83 | * | ||
84 | * Modified the slab allocator to be node aware on NUMA systems. | ||
85 | * Each node has its own list of partial, free and full slabs. | ||
86 | * All object allocations for a node occur from node specific slab lists. | ||
78 | */ | 87 | */ |
79 | 88 | ||
80 | #include <linux/config.h> | 89 | #include <linux/config.h> |
@@ -93,6 +102,7 @@ | |||
93 | #include <linux/module.h> | 102 | #include <linux/module.h> |
94 | #include <linux/rcupdate.h> | 103 | #include <linux/rcupdate.h> |
95 | #include <linux/string.h> | 104 | #include <linux/string.h> |
105 | #include <linux/nodemask.h> | ||
96 | 106 | ||
97 | #include <asm/uaccess.h> | 107 | #include <asm/uaccess.h> |
98 | #include <asm/cacheflush.h> | 108 | #include <asm/cacheflush.h> |
@@ -212,6 +222,7 @@ struct slab { | |||
212 | void *s_mem; /* including colour offset */ | 222 | void *s_mem; /* including colour offset */ |
213 | unsigned int inuse; /* num of objs active in slab */ | 223 | unsigned int inuse; /* num of objs active in slab */ |
214 | kmem_bufctl_t free; | 224 | kmem_bufctl_t free; |
225 | unsigned short nodeid; | ||
215 | }; | 226 | }; |
216 | 227 | ||
217 | /* | 228 | /* |
@@ -239,7 +250,6 @@ struct slab_rcu { | |||
239 | /* | 250 | /* |
240 | * struct array_cache | 251 | * struct array_cache |
241 | * | 252 | * |
242 | * Per cpu structures | ||
243 | * Purpose: | 253 | * Purpose: |
244 | * - LIFO ordering, to hand out cache-warm objects from _alloc | 254 | * - LIFO ordering, to hand out cache-warm objects from _alloc |
245 | * - reduce the number of linked list operations | 255 | * - reduce the number of linked list operations |
@@ -254,6 +264,13 @@ struct array_cache { | |||
254 | unsigned int limit; | 264 | unsigned int limit; |
255 | unsigned int batchcount; | 265 | unsigned int batchcount; |
256 | unsigned int touched; | 266 | unsigned int touched; |
267 | spinlock_t lock; | ||
268 | void *entry[0]; /* | ||
269 | * Must have this definition in here for the proper | ||
270 | * alignment of array_cache. Also simplifies accessing | ||
271 | * the entries. | ||
272 | * [0] is for gcc 2.95. It should really be []. | ||
273 | */ | ||
257 | }; | 274 | }; |
258 | 275 | ||
259 | /* bootstrap: The caches do not work without cpuarrays anymore, | 276 | /* bootstrap: The caches do not work without cpuarrays anymore, |
@@ -266,34 +283,83 @@ struct arraycache_init { | |||
266 | }; | 283 | }; |
267 | 284 | ||
268 | /* | 285 | /* |
269 | * The slab lists of all objects. | 286 | * The slab lists for all objects. |
270 | * Hopefully reduce the internal fragmentation | ||
271 | * NUMA: The spinlock could be moved from the kmem_cache_t | ||
272 | * into this structure, too. Figure out what causes | ||
273 | * fewer cross-node spinlock operations. | ||
274 | */ | 287 | */ |
275 | struct kmem_list3 { | 288 | struct kmem_list3 { |
276 | struct list_head slabs_partial; /* partial list first, better asm code */ | 289 | struct list_head slabs_partial; /* partial list first, better asm code */ |
277 | struct list_head slabs_full; | 290 | struct list_head slabs_full; |
278 | struct list_head slabs_free; | 291 | struct list_head slabs_free; |
279 | unsigned long free_objects; | 292 | unsigned long free_objects; |
280 | int free_touched; | ||
281 | unsigned long next_reap; | 293 | unsigned long next_reap; |
282 | struct array_cache *shared; | 294 | int free_touched; |
295 | unsigned int free_limit; | ||
296 | spinlock_t list_lock; | ||
297 | struct array_cache *shared; /* shared per node */ | ||
298 | struct array_cache **alien; /* on other nodes */ | ||
283 | }; | 299 | }; |
284 | 300 | ||
285 | #define LIST3_INIT(parent) \ | 301 | /* |
286 | { \ | 302 | * Need this for bootstrapping a per node allocator. |
287 | .slabs_full = LIST_HEAD_INIT(parent.slabs_full), \ | 303 | */ |
288 | .slabs_partial = LIST_HEAD_INIT(parent.slabs_partial), \ | 304 | #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1) |
289 | .slabs_free = LIST_HEAD_INIT(parent.slabs_free) \ | 305 | struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS]; |
306 | #define CACHE_CACHE 0 | ||
307 | #define SIZE_AC 1 | ||
308 | #define SIZE_L3 (1 + MAX_NUMNODES) | ||
309 | |||
310 | /* | ||
311 | * This function may be completely optimized away if | ||
312 | * a constant is passed to it. Mostly the same as | ||
313 | * what is in linux/slab.h except it returns an | ||
314 | * index. | ||
315 | */ | ||
316 | static inline int index_of(const size_t size) | ||
317 | { | ||
318 | if (__builtin_constant_p(size)) { | ||
319 | int i = 0; | ||
320 | |||
321 | #define CACHE(x) \ | ||
322 | if (size <=x) \ | ||
323 | return i; \ | ||
324 | else \ | ||
325 | i++; | ||
326 | #include "linux/kmalloc_sizes.h" | ||
327 | #undef CACHE | ||
328 | { | ||
329 | extern void __bad_size(void); | ||
330 | __bad_size(); | ||
331 | } | ||
290 | } | 332 | } |
291 | #define list3_data(cachep) \ | 333 | return 0; |
292 | (&(cachep)->lists) | 334 | } |
335 | |||
336 | #define INDEX_AC index_of(sizeof(struct arraycache_init)) | ||
337 | #define INDEX_L3 index_of(sizeof(struct kmem_list3)) | ||
338 | |||
339 | static inline void kmem_list3_init(struct kmem_list3 *parent) | ||
340 | { | ||
341 | INIT_LIST_HEAD(&parent->slabs_full); | ||
342 | INIT_LIST_HEAD(&parent->slabs_partial); | ||
343 | INIT_LIST_HEAD(&parent->slabs_free); | ||
344 | parent->shared = NULL; | ||
345 | parent->alien = NULL; | ||
346 | spin_lock_init(&parent->list_lock); | ||
347 | parent->free_objects = 0; | ||
348 | parent->free_touched = 0; | ||
349 | } | ||
293 | 350 | ||
294 | /* NUMA: per-node */ | 351 | #define MAKE_LIST(cachep, listp, slab, nodeid) \ |
295 | #define list3_data_ptr(cachep, ptr) \ | 352 | do { \ |
296 | list3_data(cachep) | 353 | INIT_LIST_HEAD(listp); \ |
354 | list_splice(&(cachep->nodelists[nodeid]->slab), listp); \ | ||
355 | } while (0) | ||
356 | |||
357 | #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ | ||
358 | do { \ | ||
359 | MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ | ||
360 | MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ | ||
361 | MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ | ||
362 | } while (0) | ||
297 | 363 | ||
298 | /* | 364 | /* |
299 | * kmem_cache_t | 365 | * kmem_cache_t |
@@ -306,13 +372,12 @@ struct kmem_cache_s { | |||
306 | struct array_cache *array[NR_CPUS]; | 372 | struct array_cache *array[NR_CPUS]; |
307 | unsigned int batchcount; | 373 | unsigned int batchcount; |
308 | unsigned int limit; | 374 | unsigned int limit; |
309 | /* 2) touched by every alloc & free from the backend */ | 375 | unsigned int shared; |
310 | struct kmem_list3 lists; | ||
311 | /* NUMA: kmem_3list_t *nodelists[MAX_NUMNODES] */ | ||
312 | unsigned int objsize; | 376 | unsigned int objsize; |
377 | /* 2) touched by every alloc & free from the backend */ | ||
378 | struct kmem_list3 *nodelists[MAX_NUMNODES]; | ||
313 | unsigned int flags; /* constant flags */ | 379 | unsigned int flags; /* constant flags */ |
314 | unsigned int num; /* # of objs per slab */ | 380 | unsigned int num; /* # of objs per slab */ |
315 | unsigned int free_limit; /* upper limit of objects in the lists */ | ||
316 | spinlock_t spinlock; | 381 | spinlock_t spinlock; |
317 | 382 | ||
318 | /* 3) cache_grow/shrink */ | 383 | /* 3) cache_grow/shrink */ |
@@ -349,6 +414,7 @@ struct kmem_cache_s { | |||
349 | unsigned long errors; | 414 | unsigned long errors; |
350 | unsigned long max_freeable; | 415 | unsigned long max_freeable; |
351 | unsigned long node_allocs; | 416 | unsigned long node_allocs; |
417 | unsigned long node_frees; | ||
352 | atomic_t allochit; | 418 | atomic_t allochit; |
353 | atomic_t allocmiss; | 419 | atomic_t allocmiss; |
354 | atomic_t freehit; | 420 | atomic_t freehit; |
@@ -384,6 +450,7 @@ struct kmem_cache_s { | |||
384 | } while (0) | 450 | } while (0) |
385 | #define STATS_INC_ERR(x) ((x)->errors++) | 451 | #define STATS_INC_ERR(x) ((x)->errors++) |
386 | #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) | 452 | #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) |
453 | #define STATS_INC_NODEFREES(x) ((x)->node_frees++) | ||
387 | #define STATS_SET_FREEABLE(x, i) \ | 454 | #define STATS_SET_FREEABLE(x, i) \ |
388 | do { if ((x)->max_freeable < i) \ | 455 | do { if ((x)->max_freeable < i) \ |
389 | (x)->max_freeable = i; \ | 456 | (x)->max_freeable = i; \ |
@@ -402,6 +469,7 @@ struct kmem_cache_s { | |||
402 | #define STATS_SET_HIGH(x) do { } while (0) | 469 | #define STATS_SET_HIGH(x) do { } while (0) |
403 | #define STATS_INC_ERR(x) do { } while (0) | 470 | #define STATS_INC_ERR(x) do { } while (0) |
404 | #define STATS_INC_NODEALLOCS(x) do { } while (0) | 471 | #define STATS_INC_NODEALLOCS(x) do { } while (0) |
472 | #define STATS_INC_NODEFREES(x) do { } while (0) | ||
405 | #define STATS_SET_FREEABLE(x, i) \ | 473 | #define STATS_SET_FREEABLE(x, i) \ |
406 | do { } while (0) | 474 | do { } while (0) |
407 | 475 | ||
@@ -534,9 +602,9 @@ static struct arraycache_init initarray_generic = | |||
534 | 602 | ||
535 | /* internal cache of cache description objs */ | 603 | /* internal cache of cache description objs */ |
536 | static kmem_cache_t cache_cache = { | 604 | static kmem_cache_t cache_cache = { |
537 | .lists = LIST3_INIT(cache_cache.lists), | ||
538 | .batchcount = 1, | 605 | .batchcount = 1, |
539 | .limit = BOOT_CPUCACHE_ENTRIES, | 606 | .limit = BOOT_CPUCACHE_ENTRIES, |
607 | .shared = 1, | ||
540 | .objsize = sizeof(kmem_cache_t), | 608 | .objsize = sizeof(kmem_cache_t), |
541 | .flags = SLAB_NO_REAP, | 609 | .flags = SLAB_NO_REAP, |
542 | .spinlock = SPIN_LOCK_UNLOCKED, | 610 | .spinlock = SPIN_LOCK_UNLOCKED, |
@@ -557,7 +625,6 @@ static struct list_head cache_chain; | |||
557 | * SLAB_RECLAIM_ACCOUNT turns this on per-slab | 625 | * SLAB_RECLAIM_ACCOUNT turns this on per-slab |
558 | */ | 626 | */ |
559 | atomic_t slab_reclaim_pages; | 627 | atomic_t slab_reclaim_pages; |
560 | EXPORT_SYMBOL(slab_reclaim_pages); | ||
561 | 628 | ||
562 | /* | 629 | /* |
563 | * chicken and egg problem: delay the per-cpu array allocation | 630 | * chicken and egg problem: delay the per-cpu array allocation |
@@ -565,7 +632,8 @@ EXPORT_SYMBOL(slab_reclaim_pages); | |||
565 | */ | 632 | */ |
566 | static enum { | 633 | static enum { |
567 | NONE, | 634 | NONE, |
568 | PARTIAL, | 635 | PARTIAL_AC, |
636 | PARTIAL_L3, | ||
569 | FULL | 637 | FULL |
570 | } g_cpucache_up; | 638 | } g_cpucache_up; |
571 | 639 | ||
@@ -574,11 +642,7 @@ static DEFINE_PER_CPU(struct work_struct, reap_work); | |||
574 | static void free_block(kmem_cache_t* cachep, void** objpp, int len); | 642 | static void free_block(kmem_cache_t* cachep, void** objpp, int len); |
575 | static void enable_cpucache (kmem_cache_t *cachep); | 643 | static void enable_cpucache (kmem_cache_t *cachep); |
576 | static void cache_reap (void *unused); | 644 | static void cache_reap (void *unused); |
577 | 645 | static int __node_shrink(kmem_cache_t *cachep, int node); | |
578 | static inline void **ac_entry(struct array_cache *ac) | ||
579 | { | ||
580 | return (void**)(ac+1); | ||
581 | } | ||
582 | 646 | ||
583 | static inline struct array_cache *ac_data(kmem_cache_t *cachep) | 647 | static inline struct array_cache *ac_data(kmem_cache_t *cachep) |
584 | { | 648 | { |
@@ -676,48 +740,160 @@ static void __devinit start_cpu_timer(int cpu) | |||
676 | } | 740 | } |
677 | } | 741 | } |
678 | 742 | ||
679 | static struct array_cache *alloc_arraycache(int cpu, int entries, | 743 | static struct array_cache *alloc_arraycache(int node, int entries, |
680 | int batchcount) | 744 | int batchcount) |
681 | { | 745 | { |
682 | int memsize = sizeof(void*)*entries+sizeof(struct array_cache); | 746 | int memsize = sizeof(void*)*entries+sizeof(struct array_cache); |
683 | struct array_cache *nc = NULL; | 747 | struct array_cache *nc = NULL; |
684 | 748 | ||
685 | if (cpu == -1) | 749 | nc = kmalloc_node(memsize, GFP_KERNEL, node); |
686 | nc = kmalloc(memsize, GFP_KERNEL); | ||
687 | else | ||
688 | nc = kmalloc_node(memsize, GFP_KERNEL, cpu_to_node(cpu)); | ||
689 | |||
690 | if (nc) { | 750 | if (nc) { |
691 | nc->avail = 0; | 751 | nc->avail = 0; |
692 | nc->limit = entries; | 752 | nc->limit = entries; |
693 | nc->batchcount = batchcount; | 753 | nc->batchcount = batchcount; |
694 | nc->touched = 0; | 754 | nc->touched = 0; |
755 | spin_lock_init(&nc->lock); | ||
695 | } | 756 | } |
696 | return nc; | 757 | return nc; |
697 | } | 758 | } |
698 | 759 | ||
760 | #ifdef CONFIG_NUMA | ||
761 | static inline struct array_cache **alloc_alien_cache(int node, int limit) | ||
762 | { | ||
763 | struct array_cache **ac_ptr; | ||
764 | int memsize = sizeof(void*)*MAX_NUMNODES; | ||
765 | int i; | ||
766 | |||
767 | if (limit > 1) | ||
768 | limit = 12; | ||
769 | ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node); | ||
770 | if (ac_ptr) { | ||
771 | for_each_node(i) { | ||
772 | if (i == node || !node_online(i)) { | ||
773 | ac_ptr[i] = NULL; | ||
774 | continue; | ||
775 | } | ||
776 | ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d); | ||
777 | if (!ac_ptr[i]) { | ||
778 | for (i--; i <=0; i--) | ||
779 | kfree(ac_ptr[i]); | ||
780 | kfree(ac_ptr); | ||
781 | return NULL; | ||
782 | } | ||
783 | } | ||
784 | } | ||
785 | return ac_ptr; | ||
786 | } | ||
787 | |||
788 | static inline void free_alien_cache(struct array_cache **ac_ptr) | ||
789 | { | ||
790 | int i; | ||
791 | |||
792 | if (!ac_ptr) | ||
793 | return; | ||
794 | |||
795 | for_each_node(i) | ||
796 | kfree(ac_ptr[i]); | ||
797 | |||
798 | kfree(ac_ptr); | ||
799 | } | ||
800 | |||
801 | static inline void __drain_alien_cache(kmem_cache_t *cachep, struct array_cache *ac, int node) | ||
802 | { | ||
803 | struct kmem_list3 *rl3 = cachep->nodelists[node]; | ||
804 | |||
805 | if (ac->avail) { | ||
806 | spin_lock(&rl3->list_lock); | ||
807 | free_block(cachep, ac->entry, ac->avail); | ||
808 | ac->avail = 0; | ||
809 | spin_unlock(&rl3->list_lock); | ||
810 | } | ||
811 | } | ||
812 | |||
813 | static void drain_alien_cache(kmem_cache_t *cachep, struct kmem_list3 *l3) | ||
814 | { | ||
815 | int i=0; | ||
816 | struct array_cache *ac; | ||
817 | unsigned long flags; | ||
818 | |||
819 | for_each_online_node(i) { | ||
820 | ac = l3->alien[i]; | ||
821 | if (ac) { | ||
822 | spin_lock_irqsave(&ac->lock, flags); | ||
823 | __drain_alien_cache(cachep, ac, i); | ||
824 | spin_unlock_irqrestore(&ac->lock, flags); | ||
825 | } | ||
826 | } | ||
827 | } | ||
828 | #else | ||
829 | #define alloc_alien_cache(node, limit) do { } while (0) | ||
830 | #define free_alien_cache(ac_ptr) do { } while (0) | ||
831 | #define drain_alien_cache(cachep, l3) do { } while (0) | ||
832 | #endif | ||
833 | |||
699 | static int __devinit cpuup_callback(struct notifier_block *nfb, | 834 | static int __devinit cpuup_callback(struct notifier_block *nfb, |
700 | unsigned long action, void *hcpu) | 835 | unsigned long action, void *hcpu) |
701 | { | 836 | { |
702 | long cpu = (long)hcpu; | 837 | long cpu = (long)hcpu; |
703 | kmem_cache_t* cachep; | 838 | kmem_cache_t* cachep; |
839 | struct kmem_list3 *l3 = NULL; | ||
840 | int node = cpu_to_node(cpu); | ||
841 | int memsize = sizeof(struct kmem_list3); | ||
842 | struct array_cache *nc = NULL; | ||
704 | 843 | ||
705 | switch (action) { | 844 | switch (action) { |
706 | case CPU_UP_PREPARE: | 845 | case CPU_UP_PREPARE: |
707 | down(&cache_chain_sem); | 846 | down(&cache_chain_sem); |
847 | /* we need to do this right in the beginning since | ||
848 | * alloc_arraycache's are going to use this list. | ||
849 | * kmalloc_node allows us to add the slab to the right | ||
850 | * kmem_list3 and not this cpu's kmem_list3 | ||
851 | */ | ||
852 | |||
708 | list_for_each_entry(cachep, &cache_chain, next) { | 853 | list_for_each_entry(cachep, &cache_chain, next) { |
709 | struct array_cache *nc; | 854 | /* setup the size64 kmemlist for cpu before we can |
855 | * begin anything. Make sure some other cpu on this | ||
856 | * node has not already allocated this | ||
857 | */ | ||
858 | if (!cachep->nodelists[node]) { | ||
859 | if (!(l3 = kmalloc_node(memsize, | ||
860 | GFP_KERNEL, node))) | ||
861 | goto bad; | ||
862 | kmem_list3_init(l3); | ||
863 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + | ||
864 | ((unsigned long)cachep)%REAPTIMEOUT_LIST3; | ||
865 | |||
866 | cachep->nodelists[node] = l3; | ||
867 | } | ||
868 | |||
869 | spin_lock_irq(&cachep->nodelists[node]->list_lock); | ||
870 | cachep->nodelists[node]->free_limit = | ||
871 | (1 + nr_cpus_node(node)) * | ||
872 | cachep->batchcount + cachep->num; | ||
873 | spin_unlock_irq(&cachep->nodelists[node]->list_lock); | ||
874 | } | ||
710 | 875 | ||
711 | nc = alloc_arraycache(cpu, cachep->limit, cachep->batchcount); | 876 | /* Now we can go ahead with allocating the shared array's |
877 | & array cache's */ | ||
878 | list_for_each_entry(cachep, &cache_chain, next) { | ||
879 | nc = alloc_arraycache(node, cachep->limit, | ||
880 | cachep->batchcount); | ||
712 | if (!nc) | 881 | if (!nc) |
713 | goto bad; | 882 | goto bad; |
714 | |||
715 | spin_lock_irq(&cachep->spinlock); | ||
716 | cachep->array[cpu] = nc; | 883 | cachep->array[cpu] = nc; |
717 | cachep->free_limit = (1+num_online_cpus())*cachep->batchcount | ||
718 | + cachep->num; | ||
719 | spin_unlock_irq(&cachep->spinlock); | ||
720 | 884 | ||
885 | l3 = cachep->nodelists[node]; | ||
886 | BUG_ON(!l3); | ||
887 | if (!l3->shared) { | ||
888 | if (!(nc = alloc_arraycache(node, | ||
889 | cachep->shared*cachep->batchcount, | ||
890 | 0xbaadf00d))) | ||
891 | goto bad; | ||
892 | |||
893 | /* we are serialised from CPU_DEAD or | ||
894 | CPU_UP_CANCELLED by the cpucontrol lock */ | ||
895 | l3->shared = nc; | ||
896 | } | ||
721 | } | 897 | } |
722 | up(&cache_chain_sem); | 898 | up(&cache_chain_sem); |
723 | break; | 899 | break; |
@@ -732,13 +908,51 @@ static int __devinit cpuup_callback(struct notifier_block *nfb, | |||
732 | 908 | ||
733 | list_for_each_entry(cachep, &cache_chain, next) { | 909 | list_for_each_entry(cachep, &cache_chain, next) { |
734 | struct array_cache *nc; | 910 | struct array_cache *nc; |
911 | cpumask_t mask; | ||
735 | 912 | ||
913 | mask = node_to_cpumask(node); | ||
736 | spin_lock_irq(&cachep->spinlock); | 914 | spin_lock_irq(&cachep->spinlock); |
737 | /* cpu is dead; no one can alloc from it. */ | 915 | /* cpu is dead; no one can alloc from it. */ |
738 | nc = cachep->array[cpu]; | 916 | nc = cachep->array[cpu]; |
739 | cachep->array[cpu] = NULL; | 917 | cachep->array[cpu] = NULL; |
740 | cachep->free_limit -= cachep->batchcount; | 918 | l3 = cachep->nodelists[node]; |
741 | free_block(cachep, ac_entry(nc), nc->avail); | 919 | |
920 | if (!l3) | ||
921 | goto unlock_cache; | ||
922 | |||
923 | spin_lock(&l3->list_lock); | ||
924 | |||
925 | /* Free limit for this kmem_list3 */ | ||
926 | l3->free_limit -= cachep->batchcount; | ||
927 | if (nc) | ||
928 | free_block(cachep, nc->entry, nc->avail); | ||
929 | |||
930 | if (!cpus_empty(mask)) { | ||
931 | spin_unlock(&l3->list_lock); | ||
932 | goto unlock_cache; | ||
933 | } | ||
934 | |||
935 | if (l3->shared) { | ||
936 | free_block(cachep, l3->shared->entry, | ||
937 | l3->shared->avail); | ||
938 | kfree(l3->shared); | ||
939 | l3->shared = NULL; | ||
940 | } | ||
941 | if (l3->alien) { | ||
942 | drain_alien_cache(cachep, l3); | ||
943 | free_alien_cache(l3->alien); | ||
944 | l3->alien = NULL; | ||
945 | } | ||
946 | |||
947 | /* free slabs belonging to this node */ | ||
948 | if (__node_shrink(cachep, node)) { | ||
949 | cachep->nodelists[node] = NULL; | ||
950 | spin_unlock(&l3->list_lock); | ||
951 | kfree(l3); | ||
952 | } else { | ||
953 | spin_unlock(&l3->list_lock); | ||
954 | } | ||
955 | unlock_cache: | ||
742 | spin_unlock_irq(&cachep->spinlock); | 956 | spin_unlock_irq(&cachep->spinlock); |
743 | kfree(nc); | 957 | kfree(nc); |
744 | } | 958 | } |
@@ -754,6 +968,25 @@ bad: | |||
754 | 968 | ||
755 | static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 }; | 969 | static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 }; |
756 | 970 | ||
971 | /* | ||
972 | * swap the static kmem_list3 with kmalloced memory | ||
973 | */ | ||
974 | static void init_list(kmem_cache_t *cachep, struct kmem_list3 *list, | ||
975 | int nodeid) | ||
976 | { | ||
977 | struct kmem_list3 *ptr; | ||
978 | |||
979 | BUG_ON(cachep->nodelists[nodeid] != list); | ||
980 | ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid); | ||
981 | BUG_ON(!ptr); | ||
982 | |||
983 | local_irq_disable(); | ||
984 | memcpy(ptr, list, sizeof(struct kmem_list3)); | ||
985 | MAKE_ALL_LISTS(cachep, ptr, nodeid); | ||
986 | cachep->nodelists[nodeid] = ptr; | ||
987 | local_irq_enable(); | ||
988 | } | ||
989 | |||
757 | /* Initialisation. | 990 | /* Initialisation. |
758 | * Called after the gfp() functions have been enabled, and before smp_init(). | 991 | * Called after the gfp() functions have been enabled, and before smp_init(). |
759 | */ | 992 | */ |
@@ -762,6 +995,13 @@ void __init kmem_cache_init(void) | |||
762 | size_t left_over; | 995 | size_t left_over; |
763 | struct cache_sizes *sizes; | 996 | struct cache_sizes *sizes; |
764 | struct cache_names *names; | 997 | struct cache_names *names; |
998 | int i; | ||
999 | |||
1000 | for (i = 0; i < NUM_INIT_LISTS; i++) { | ||
1001 | kmem_list3_init(&initkmem_list3[i]); | ||
1002 | if (i < MAX_NUMNODES) | ||
1003 | cache_cache.nodelists[i] = NULL; | ||
1004 | } | ||
765 | 1005 | ||
766 | /* | 1006 | /* |
767 | * Fragmentation resistance on low memory - only use bigger | 1007 | * Fragmentation resistance on low memory - only use bigger |
@@ -770,21 +1010,24 @@ void __init kmem_cache_init(void) | |||
770 | if (num_physpages > (32 << 20) >> PAGE_SHIFT) | 1010 | if (num_physpages > (32 << 20) >> PAGE_SHIFT) |
771 | slab_break_gfp_order = BREAK_GFP_ORDER_HI; | 1011 | slab_break_gfp_order = BREAK_GFP_ORDER_HI; |
772 | 1012 | ||
773 | |||
774 | /* Bootstrap is tricky, because several objects are allocated | 1013 | /* Bootstrap is tricky, because several objects are allocated |
775 | * from caches that do not exist yet: | 1014 | * from caches that do not exist yet: |
776 | * 1) initialize the cache_cache cache: it contains the kmem_cache_t | 1015 | * 1) initialize the cache_cache cache: it contains the kmem_cache_t |
777 | * structures of all caches, except cache_cache itself: cache_cache | 1016 | * structures of all caches, except cache_cache itself: cache_cache |
778 | * is statically allocated. | 1017 | * is statically allocated. |
779 | * Initially an __init data area is used for the head array, it's | 1018 | * Initially an __init data area is used for the head array and the |
780 | * replaced with a kmalloc allocated array at the end of the bootstrap. | 1019 | * kmem_list3 structures, it's replaced with a kmalloc allocated |
1020 | * array at the end of the bootstrap. | ||
781 | * 2) Create the first kmalloc cache. | 1021 | * 2) Create the first kmalloc cache. |
782 | * The kmem_cache_t for the new cache is allocated normally. An __init | 1022 | * The kmem_cache_t for the new cache is allocated normally. |
783 | * data area is used for the head array. | 1023 | * An __init data area is used for the head array. |
784 | * 3) Create the remaining kmalloc caches, with minimally sized head arrays. | 1024 | * 3) Create the remaining kmalloc caches, with minimally sized |
1025 | * head arrays. | ||
785 | * 4) Replace the __init data head arrays for cache_cache and the first | 1026 | * 4) Replace the __init data head arrays for cache_cache and the first |
786 | * kmalloc cache with kmalloc allocated arrays. | 1027 | * kmalloc cache with kmalloc allocated arrays. |
787 | * 5) Resize the head arrays of the kmalloc caches to their final sizes. | 1028 | * 5) Replace the __init data for kmem_list3 for cache_cache and |
1029 | * the other cache's with kmalloc allocated memory. | ||
1030 | * 6) Resize the head arrays of the kmalloc caches to their final sizes. | ||
788 | */ | 1031 | */ |
789 | 1032 | ||
790 | /* 1) create the cache_cache */ | 1033 | /* 1) create the cache_cache */ |
@@ -793,6 +1036,7 @@ void __init kmem_cache_init(void) | |||
793 | list_add(&cache_cache.next, &cache_chain); | 1036 | list_add(&cache_cache.next, &cache_chain); |
794 | cache_cache.colour_off = cache_line_size(); | 1037 | cache_cache.colour_off = cache_line_size(); |
795 | cache_cache.array[smp_processor_id()] = &initarray_cache.cache; | 1038 | cache_cache.array[smp_processor_id()] = &initarray_cache.cache; |
1039 | cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE]; | ||
796 | 1040 | ||
797 | cache_cache.objsize = ALIGN(cache_cache.objsize, cache_line_size()); | 1041 | cache_cache.objsize = ALIGN(cache_cache.objsize, cache_line_size()); |
798 | 1042 | ||
@@ -810,15 +1054,33 @@ void __init kmem_cache_init(void) | |||
810 | sizes = malloc_sizes; | 1054 | sizes = malloc_sizes; |
811 | names = cache_names; | 1055 | names = cache_names; |
812 | 1056 | ||
1057 | /* Initialize the caches that provide memory for the array cache | ||
1058 | * and the kmem_list3 structures first. | ||
1059 | * Without this, further allocations will bug | ||
1060 | */ | ||
1061 | |||
1062 | sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name, | ||
1063 | sizes[INDEX_AC].cs_size, ARCH_KMALLOC_MINALIGN, | ||
1064 | (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL); | ||
1065 | |||
1066 | if (INDEX_AC != INDEX_L3) | ||
1067 | sizes[INDEX_L3].cs_cachep = | ||
1068 | kmem_cache_create(names[INDEX_L3].name, | ||
1069 | sizes[INDEX_L3].cs_size, ARCH_KMALLOC_MINALIGN, | ||
1070 | (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL); | ||
1071 | |||
813 | while (sizes->cs_size != ULONG_MAX) { | 1072 | while (sizes->cs_size != ULONG_MAX) { |
814 | /* For performance, all the general caches are L1 aligned. | 1073 | /* |
1074 | * For performance, all the general caches are L1 aligned. | ||
815 | * This should be particularly beneficial on SMP boxes, as it | 1075 | * This should be particularly beneficial on SMP boxes, as it |
816 | * eliminates "false sharing". | 1076 | * eliminates "false sharing". |
817 | * Note for systems short on memory removing the alignment will | 1077 | * Note for systems short on memory removing the alignment will |
818 | * allow tighter packing of the smaller caches. */ | 1078 | * allow tighter packing of the smaller caches. |
819 | sizes->cs_cachep = kmem_cache_create(names->name, | 1079 | */ |
820 | sizes->cs_size, ARCH_KMALLOC_MINALIGN, | 1080 | if(!sizes->cs_cachep) |
821 | (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL); | 1081 | sizes->cs_cachep = kmem_cache_create(names->name, |
1082 | sizes->cs_size, ARCH_KMALLOC_MINALIGN, | ||
1083 | (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL, NULL); | ||
822 | 1084 | ||
823 | /* Inc off-slab bufctl limit until the ceiling is hit. */ | 1085 | /* Inc off-slab bufctl limit until the ceiling is hit. */ |
824 | if (!(OFF_SLAB(sizes->cs_cachep))) { | 1086 | if (!(OFF_SLAB(sizes->cs_cachep))) { |
@@ -837,24 +1099,47 @@ void __init kmem_cache_init(void) | |||
837 | /* 4) Replace the bootstrap head arrays */ | 1099 | /* 4) Replace the bootstrap head arrays */ |
838 | { | 1100 | { |
839 | void * ptr; | 1101 | void * ptr; |
840 | 1102 | ||
841 | ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); | 1103 | ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); |
1104 | |||
842 | local_irq_disable(); | 1105 | local_irq_disable(); |
843 | BUG_ON(ac_data(&cache_cache) != &initarray_cache.cache); | 1106 | BUG_ON(ac_data(&cache_cache) != &initarray_cache.cache); |
844 | memcpy(ptr, ac_data(&cache_cache), sizeof(struct arraycache_init)); | 1107 | memcpy(ptr, ac_data(&cache_cache), |
1108 | sizeof(struct arraycache_init)); | ||
845 | cache_cache.array[smp_processor_id()] = ptr; | 1109 | cache_cache.array[smp_processor_id()] = ptr; |
846 | local_irq_enable(); | 1110 | local_irq_enable(); |
847 | 1111 | ||
848 | ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); | 1112 | ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL); |
1113 | |||
849 | local_irq_disable(); | 1114 | local_irq_disable(); |
850 | BUG_ON(ac_data(malloc_sizes[0].cs_cachep) != &initarray_generic.cache); | 1115 | BUG_ON(ac_data(malloc_sizes[INDEX_AC].cs_cachep) |
851 | memcpy(ptr, ac_data(malloc_sizes[0].cs_cachep), | 1116 | != &initarray_generic.cache); |
1117 | memcpy(ptr, ac_data(malloc_sizes[INDEX_AC].cs_cachep), | ||
852 | sizeof(struct arraycache_init)); | 1118 | sizeof(struct arraycache_init)); |
853 | malloc_sizes[0].cs_cachep->array[smp_processor_id()] = ptr; | 1119 | malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] = |
1120 | ptr; | ||
854 | local_irq_enable(); | 1121 | local_irq_enable(); |
855 | } | 1122 | } |
1123 | /* 5) Replace the bootstrap kmem_list3's */ | ||
1124 | { | ||
1125 | int node; | ||
1126 | /* Replace the static kmem_list3 structures for the boot cpu */ | ||
1127 | init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], | ||
1128 | numa_node_id()); | ||
1129 | |||
1130 | for_each_online_node(node) { | ||
1131 | init_list(malloc_sizes[INDEX_AC].cs_cachep, | ||
1132 | &initkmem_list3[SIZE_AC+node], node); | ||
1133 | |||
1134 | if (INDEX_AC != INDEX_L3) { | ||
1135 | init_list(malloc_sizes[INDEX_L3].cs_cachep, | ||
1136 | &initkmem_list3[SIZE_L3+node], | ||
1137 | node); | ||
1138 | } | ||
1139 | } | ||
1140 | } | ||
856 | 1141 | ||
857 | /* 5) resize the head arrays to their final sizes */ | 1142 | /* 6) resize the head arrays to their final sizes */ |
858 | { | 1143 | { |
859 | kmem_cache_t *cachep; | 1144 | kmem_cache_t *cachep; |
860 | down(&cache_chain_sem); | 1145 | down(&cache_chain_sem); |
@@ -870,7 +1155,6 @@ void __init kmem_cache_init(void) | |||
870 | * that initializes ac_data for all new cpus | 1155 | * that initializes ac_data for all new cpus |
871 | */ | 1156 | */ |
872 | register_cpu_notifier(&cpucache_notifier); | 1157 | register_cpu_notifier(&cpucache_notifier); |
873 | |||
874 | 1158 | ||
875 | /* The reap timers are started later, with a module init call: | 1159 | /* The reap timers are started later, with a module init call: |
876 | * That part of the kernel is not yet operational. | 1160 | * That part of the kernel is not yet operational. |
@@ -885,10 +1169,8 @@ static int __init cpucache_init(void) | |||
885 | * Register the timers that return unneeded | 1169 | * Register the timers that return unneeded |
886 | * pages to gfp. | 1170 | * pages to gfp. |
887 | */ | 1171 | */ |
888 | for (cpu = 0; cpu < NR_CPUS; cpu++) { | 1172 | for_each_online_cpu(cpu) |
889 | if (cpu_online(cpu)) | 1173 | start_cpu_timer(cpu); |
890 | start_cpu_timer(cpu); | ||
891 | } | ||
892 | 1174 | ||
893 | return 0; | 1175 | return 0; |
894 | } | 1176 | } |
@@ -1167,6 +1449,20 @@ static void slab_destroy (kmem_cache_t *cachep, struct slab *slabp) | |||
1167 | } | 1449 | } |
1168 | } | 1450 | } |
1169 | 1451 | ||
1452 | /* For setting up all the kmem_list3s for cache whose objsize is same | ||
1453 | as size of kmem_list3. */ | ||
1454 | static inline void set_up_list3s(kmem_cache_t *cachep, int index) | ||
1455 | { | ||
1456 | int node; | ||
1457 | |||
1458 | for_each_online_node(node) { | ||
1459 | cachep->nodelists[node] = &initkmem_list3[index+node]; | ||
1460 | cachep->nodelists[node]->next_reap = jiffies + | ||
1461 | REAPTIMEOUT_LIST3 + | ||
1462 | ((unsigned long)cachep)%REAPTIMEOUT_LIST3; | ||
1463 | } | ||
1464 | } | ||
1465 | |||
1170 | /** | 1466 | /** |
1171 | * kmem_cache_create - Create a cache. | 1467 | * kmem_cache_create - Create a cache. |
1172 | * @name: A string which is used in /proc/slabinfo to identify this cache. | 1468 | * @name: A string which is used in /proc/slabinfo to identify this cache. |
@@ -1320,7 +1616,7 @@ kmem_cache_create (const char *name, size_t size, size_t align, | |||
1320 | size += BYTES_PER_WORD; | 1616 | size += BYTES_PER_WORD; |
1321 | } | 1617 | } |
1322 | #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) | 1618 | #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) |
1323 | if (size > 128 && cachep->reallen > cache_line_size() && size < PAGE_SIZE) { | 1619 | if (size >= malloc_sizes[INDEX_L3+1].cs_size && cachep->reallen > cache_line_size() && size < PAGE_SIZE) { |
1324 | cachep->dbghead += PAGE_SIZE - size; | 1620 | cachep->dbghead += PAGE_SIZE - size; |
1325 | size = PAGE_SIZE; | 1621 | size = PAGE_SIZE; |
1326 | } | 1622 | } |
@@ -1422,10 +1718,6 @@ next: | |||
1422 | cachep->gfpflags |= GFP_DMA; | 1718 | cachep->gfpflags |= GFP_DMA; |
1423 | spin_lock_init(&cachep->spinlock); | 1719 | spin_lock_init(&cachep->spinlock); |
1424 | cachep->objsize = size; | 1720 | cachep->objsize = size; |
1425 | /* NUMA */ | ||
1426 | INIT_LIST_HEAD(&cachep->lists.slabs_full); | ||
1427 | INIT_LIST_HEAD(&cachep->lists.slabs_partial); | ||
1428 | INIT_LIST_HEAD(&cachep->lists.slabs_free); | ||
1429 | 1721 | ||
1430 | if (flags & CFLGS_OFF_SLAB) | 1722 | if (flags & CFLGS_OFF_SLAB) |
1431 | cachep->slabp_cache = kmem_find_general_cachep(slab_size,0); | 1723 | cachep->slabp_cache = kmem_find_general_cachep(slab_size,0); |
@@ -1444,11 +1736,43 @@ next: | |||
1444 | * the cache that's used by kmalloc(24), otherwise | 1736 | * the cache that's used by kmalloc(24), otherwise |
1445 | * the creation of further caches will BUG(). | 1737 | * the creation of further caches will BUG(). |
1446 | */ | 1738 | */ |
1447 | cachep->array[smp_processor_id()] = &initarray_generic.cache; | 1739 | cachep->array[smp_processor_id()] = |
1448 | g_cpucache_up = PARTIAL; | 1740 | &initarray_generic.cache; |
1741 | |||
1742 | /* If the cache that's used by | ||
1743 | * kmalloc(sizeof(kmem_list3)) is the first cache, | ||
1744 | * then we need to set up all its list3s, otherwise | ||
1745 | * the creation of further caches will BUG(). | ||
1746 | */ | ||
1747 | set_up_list3s(cachep, SIZE_AC); | ||
1748 | if (INDEX_AC == INDEX_L3) | ||
1749 | g_cpucache_up = PARTIAL_L3; | ||
1750 | else | ||
1751 | g_cpucache_up = PARTIAL_AC; | ||
1449 | } else { | 1752 | } else { |
1450 | cachep->array[smp_processor_id()] = kmalloc(sizeof(struct arraycache_init),GFP_KERNEL); | 1753 | cachep->array[smp_processor_id()] = |
1754 | kmalloc(sizeof(struct arraycache_init), | ||
1755 | GFP_KERNEL); | ||
1756 | |||
1757 | if (g_cpucache_up == PARTIAL_AC) { | ||
1758 | set_up_list3s(cachep, SIZE_L3); | ||
1759 | g_cpucache_up = PARTIAL_L3; | ||
1760 | } else { | ||
1761 | int node; | ||
1762 | for_each_online_node(node) { | ||
1763 | |||
1764 | cachep->nodelists[node] = | ||
1765 | kmalloc_node(sizeof(struct kmem_list3), | ||
1766 | GFP_KERNEL, node); | ||
1767 | BUG_ON(!cachep->nodelists[node]); | ||
1768 | kmem_list3_init(cachep->nodelists[node]); | ||
1769 | } | ||
1770 | } | ||
1451 | } | 1771 | } |
1772 | cachep->nodelists[numa_node_id()]->next_reap = | ||
1773 | jiffies + REAPTIMEOUT_LIST3 + | ||
1774 | ((unsigned long)cachep)%REAPTIMEOUT_LIST3; | ||
1775 | |||
1452 | BUG_ON(!ac_data(cachep)); | 1776 | BUG_ON(!ac_data(cachep)); |
1453 | ac_data(cachep)->avail = 0; | 1777 | ac_data(cachep)->avail = 0; |
1454 | ac_data(cachep)->limit = BOOT_CPUCACHE_ENTRIES; | 1778 | ac_data(cachep)->limit = BOOT_CPUCACHE_ENTRIES; |
@@ -1456,13 +1780,8 @@ next: | |||
1456 | ac_data(cachep)->touched = 0; | 1780 | ac_data(cachep)->touched = 0; |
1457 | cachep->batchcount = 1; | 1781 | cachep->batchcount = 1; |
1458 | cachep->limit = BOOT_CPUCACHE_ENTRIES; | 1782 | cachep->limit = BOOT_CPUCACHE_ENTRIES; |
1459 | cachep->free_limit = (1+num_online_cpus())*cachep->batchcount | ||
1460 | + cachep->num; | ||
1461 | } | 1783 | } |
1462 | 1784 | ||
1463 | cachep->lists.next_reap = jiffies + REAPTIMEOUT_LIST3 + | ||
1464 | ((unsigned long)cachep)%REAPTIMEOUT_LIST3; | ||
1465 | |||
1466 | /* Need the semaphore to access the chain. */ | 1785 | /* Need the semaphore to access the chain. */ |
1467 | down(&cache_chain_sem); | 1786 | down(&cache_chain_sem); |
1468 | { | 1787 | { |
@@ -1519,13 +1838,23 @@ static void check_spinlock_acquired(kmem_cache_t *cachep) | |||
1519 | { | 1838 | { |
1520 | #ifdef CONFIG_SMP | 1839 | #ifdef CONFIG_SMP |
1521 | check_irq_off(); | 1840 | check_irq_off(); |
1522 | BUG_ON(spin_trylock(&cachep->spinlock)); | 1841 | assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock); |
1523 | #endif | 1842 | #endif |
1524 | } | 1843 | } |
1844 | |||
1845 | static inline void check_spinlock_acquired_node(kmem_cache_t *cachep, int node) | ||
1846 | { | ||
1847 | #ifdef CONFIG_SMP | ||
1848 | check_irq_off(); | ||
1849 | assert_spin_locked(&cachep->nodelists[node]->list_lock); | ||
1850 | #endif | ||
1851 | } | ||
1852 | |||
1525 | #else | 1853 | #else |
1526 | #define check_irq_off() do { } while(0) | 1854 | #define check_irq_off() do { } while(0) |
1527 | #define check_irq_on() do { } while(0) | 1855 | #define check_irq_on() do { } while(0) |
1528 | #define check_spinlock_acquired(x) do { } while(0) | 1856 | #define check_spinlock_acquired(x) do { } while(0) |
1857 | #define check_spinlock_acquired_node(x, y) do { } while(0) | ||
1529 | #endif | 1858 | #endif |
1530 | 1859 | ||
1531 | /* | 1860 | /* |
@@ -1547,7 +1876,7 @@ static void smp_call_function_all_cpus(void (*func) (void *arg), void *arg) | |||
1547 | } | 1876 | } |
1548 | 1877 | ||
1549 | static void drain_array_locked(kmem_cache_t* cachep, | 1878 | static void drain_array_locked(kmem_cache_t* cachep, |
1550 | struct array_cache *ac, int force); | 1879 | struct array_cache *ac, int force, int node); |
1551 | 1880 | ||
1552 | static void do_drain(void *arg) | 1881 | static void do_drain(void *arg) |
1553 | { | 1882 | { |
@@ -1556,59 +1885,82 @@ static void do_drain(void *arg) | |||
1556 | 1885 | ||
1557 | check_irq_off(); | 1886 | check_irq_off(); |
1558 | ac = ac_data(cachep); | 1887 | ac = ac_data(cachep); |
1559 | spin_lock(&cachep->spinlock); | 1888 | spin_lock(&cachep->nodelists[numa_node_id()]->list_lock); |
1560 | free_block(cachep, &ac_entry(ac)[0], ac->avail); | 1889 | free_block(cachep, ac->entry, ac->avail); |
1561 | spin_unlock(&cachep->spinlock); | 1890 | spin_unlock(&cachep->nodelists[numa_node_id()]->list_lock); |
1562 | ac->avail = 0; | 1891 | ac->avail = 0; |
1563 | } | 1892 | } |
1564 | 1893 | ||
1565 | static void drain_cpu_caches(kmem_cache_t *cachep) | 1894 | static void drain_cpu_caches(kmem_cache_t *cachep) |
1566 | { | 1895 | { |
1896 | struct kmem_list3 *l3; | ||
1897 | int node; | ||
1898 | |||
1567 | smp_call_function_all_cpus(do_drain, cachep); | 1899 | smp_call_function_all_cpus(do_drain, cachep); |
1568 | check_irq_on(); | 1900 | check_irq_on(); |
1569 | spin_lock_irq(&cachep->spinlock); | 1901 | spin_lock_irq(&cachep->spinlock); |
1570 | if (cachep->lists.shared) | 1902 | for_each_online_node(node) { |
1571 | drain_array_locked(cachep, cachep->lists.shared, 1); | 1903 | l3 = cachep->nodelists[node]; |
1904 | if (l3) { | ||
1905 | spin_lock(&l3->list_lock); | ||
1906 | drain_array_locked(cachep, l3->shared, 1, node); | ||
1907 | spin_unlock(&l3->list_lock); | ||
1908 | if (l3->alien) | ||
1909 | drain_alien_cache(cachep, l3); | ||
1910 | } | ||
1911 | } | ||
1572 | spin_unlock_irq(&cachep->spinlock); | 1912 | spin_unlock_irq(&cachep->spinlock); |
1573 | } | 1913 | } |
1574 | 1914 | ||
1575 | 1915 | static int __node_shrink(kmem_cache_t *cachep, int node) | |
1576 | /* NUMA shrink all list3s */ | ||
1577 | static int __cache_shrink(kmem_cache_t *cachep) | ||
1578 | { | 1916 | { |
1579 | struct slab *slabp; | 1917 | struct slab *slabp; |
1918 | struct kmem_list3 *l3 = cachep->nodelists[node]; | ||
1580 | int ret; | 1919 | int ret; |
1581 | 1920 | ||
1582 | drain_cpu_caches(cachep); | 1921 | for (;;) { |
1583 | |||
1584 | check_irq_on(); | ||
1585 | spin_lock_irq(&cachep->spinlock); | ||
1586 | |||
1587 | for(;;) { | ||
1588 | struct list_head *p; | 1922 | struct list_head *p; |
1589 | 1923 | ||
1590 | p = cachep->lists.slabs_free.prev; | 1924 | p = l3->slabs_free.prev; |
1591 | if (p == &cachep->lists.slabs_free) | 1925 | if (p == &l3->slabs_free) |
1592 | break; | 1926 | break; |
1593 | 1927 | ||
1594 | slabp = list_entry(cachep->lists.slabs_free.prev, struct slab, list); | 1928 | slabp = list_entry(l3->slabs_free.prev, struct slab, list); |
1595 | #if DEBUG | 1929 | #if DEBUG |
1596 | if (slabp->inuse) | 1930 | if (slabp->inuse) |
1597 | BUG(); | 1931 | BUG(); |
1598 | #endif | 1932 | #endif |
1599 | list_del(&slabp->list); | 1933 | list_del(&slabp->list); |
1600 | 1934 | ||
1601 | cachep->lists.free_objects -= cachep->num; | 1935 | l3->free_objects -= cachep->num; |
1602 | spin_unlock_irq(&cachep->spinlock); | 1936 | spin_unlock_irq(&l3->list_lock); |
1603 | slab_destroy(cachep, slabp); | 1937 | slab_destroy(cachep, slabp); |
1604 | spin_lock_irq(&cachep->spinlock); | 1938 | spin_lock_irq(&l3->list_lock); |
1605 | } | 1939 | } |
1606 | ret = !list_empty(&cachep->lists.slabs_full) || | 1940 | ret = !list_empty(&l3->slabs_full) || |
1607 | !list_empty(&cachep->lists.slabs_partial); | 1941 | !list_empty(&l3->slabs_partial); |
1608 | spin_unlock_irq(&cachep->spinlock); | ||
1609 | return ret; | 1942 | return ret; |
1610 | } | 1943 | } |
1611 | 1944 | ||
1945 | static int __cache_shrink(kmem_cache_t *cachep) | ||
1946 | { | ||
1947 | int ret = 0, i = 0; | ||
1948 | struct kmem_list3 *l3; | ||
1949 | |||
1950 | drain_cpu_caches(cachep); | ||
1951 | |||
1952 | check_irq_on(); | ||
1953 | for_each_online_node(i) { | ||
1954 | l3 = cachep->nodelists[i]; | ||
1955 | if (l3) { | ||
1956 | spin_lock_irq(&l3->list_lock); | ||
1957 | ret += __node_shrink(cachep, i); | ||
1958 | spin_unlock_irq(&l3->list_lock); | ||
1959 | } | ||
1960 | } | ||
1961 | return (ret ? 1 : 0); | ||
1962 | } | ||
1963 | |||
1612 | /** | 1964 | /** |
1613 | * kmem_cache_shrink - Shrink a cache. | 1965 | * kmem_cache_shrink - Shrink a cache. |
1614 | * @cachep: The cache to shrink. | 1966 | * @cachep: The cache to shrink. |
@@ -1645,6 +1997,7 @@ EXPORT_SYMBOL(kmem_cache_shrink); | |||
1645 | int kmem_cache_destroy(kmem_cache_t * cachep) | 1997 | int kmem_cache_destroy(kmem_cache_t * cachep) |
1646 | { | 1998 | { |
1647 | int i; | 1999 | int i; |
2000 | struct kmem_list3 *l3; | ||
1648 | 2001 | ||
1649 | if (!cachep || in_interrupt()) | 2002 | if (!cachep || in_interrupt()) |
1650 | BUG(); | 2003 | BUG(); |
@@ -1672,15 +2025,17 @@ int kmem_cache_destroy(kmem_cache_t * cachep) | |||
1672 | if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) | 2025 | if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) |
1673 | synchronize_rcu(); | 2026 | synchronize_rcu(); |
1674 | 2027 | ||
1675 | /* no cpu_online check required here since we clear the percpu | 2028 | for_each_online_cpu(i) |
1676 | * array on cpu offline and set this to NULL. | ||
1677 | */ | ||
1678 | for (i = 0; i < NR_CPUS; i++) | ||
1679 | kfree(cachep->array[i]); | 2029 | kfree(cachep->array[i]); |
1680 | 2030 | ||
1681 | /* NUMA: free the list3 structures */ | 2031 | /* NUMA: free the list3 structures */ |
1682 | kfree(cachep->lists.shared); | 2032 | for_each_online_node(i) { |
1683 | cachep->lists.shared = NULL; | 2033 | if ((l3 = cachep->nodelists[i])) { |
2034 | kfree(l3->shared); | ||
2035 | free_alien_cache(l3->alien); | ||
2036 | kfree(l3); | ||
2037 | } | ||
2038 | } | ||
1684 | kmem_cache_free(&cache_cache, cachep); | 2039 | kmem_cache_free(&cache_cache, cachep); |
1685 | 2040 | ||
1686 | unlock_cpu_hotplug(); | 2041 | unlock_cpu_hotplug(); |
@@ -1690,8 +2045,8 @@ int kmem_cache_destroy(kmem_cache_t * cachep) | |||
1690 | EXPORT_SYMBOL(kmem_cache_destroy); | 2045 | EXPORT_SYMBOL(kmem_cache_destroy); |
1691 | 2046 | ||
1692 | /* Get the memory for a slab management obj. */ | 2047 | /* Get the memory for a slab management obj. */ |
1693 | static struct slab* alloc_slabmgmt(kmem_cache_t *cachep, | 2048 | static struct slab* alloc_slabmgmt(kmem_cache_t *cachep, void *objp, |
1694 | void *objp, int colour_off, unsigned int __nocast local_flags) | 2049 | int colour_off, unsigned int __nocast local_flags) |
1695 | { | 2050 | { |
1696 | struct slab *slabp; | 2051 | struct slab *slabp; |
1697 | 2052 | ||
@@ -1722,7 +2077,7 @@ static void cache_init_objs(kmem_cache_t *cachep, | |||
1722 | int i; | 2077 | int i; |
1723 | 2078 | ||
1724 | for (i = 0; i < cachep->num; i++) { | 2079 | for (i = 0; i < cachep->num; i++) { |
1725 | void* objp = slabp->s_mem+cachep->objsize*i; | 2080 | void *objp = slabp->s_mem+cachep->objsize*i; |
1726 | #if DEBUG | 2081 | #if DEBUG |
1727 | /* need to poison the objs? */ | 2082 | /* need to poison the objs? */ |
1728 | if (cachep->flags & SLAB_POISON) | 2083 | if (cachep->flags & SLAB_POISON) |
@@ -1799,6 +2154,7 @@ static int cache_grow(kmem_cache_t *cachep, unsigned int __nocast flags, int nod | |||
1799 | size_t offset; | 2154 | size_t offset; |
1800 | unsigned int local_flags; | 2155 | unsigned int local_flags; |
1801 | unsigned long ctor_flags; | 2156 | unsigned long ctor_flags; |
2157 | struct kmem_list3 *l3; | ||
1802 | 2158 | ||
1803 | /* Be lazy and only check for valid flags here, | 2159 | /* Be lazy and only check for valid flags here, |
1804 | * keeping it out of the critical path in kmem_cache_alloc(). | 2160 | * keeping it out of the critical path in kmem_cache_alloc(). |
@@ -1830,6 +2186,7 @@ static int cache_grow(kmem_cache_t *cachep, unsigned int __nocast flags, int nod | |||
1830 | 2186 | ||
1831 | spin_unlock(&cachep->spinlock); | 2187 | spin_unlock(&cachep->spinlock); |
1832 | 2188 | ||
2189 | check_irq_off(); | ||
1833 | if (local_flags & __GFP_WAIT) | 2190 | if (local_flags & __GFP_WAIT) |
1834 | local_irq_enable(); | 2191 | local_irq_enable(); |
1835 | 2192 | ||
@@ -1841,8 +2198,9 @@ static int cache_grow(kmem_cache_t *cachep, unsigned int __nocast flags, int nod | |||
1841 | */ | 2198 | */ |
1842 | kmem_flagcheck(cachep, flags); | 2199 | kmem_flagcheck(cachep, flags); |
1843 | 2200 | ||
1844 | 2201 | /* Get mem for the objs. | |
1845 | /* Get mem for the objs. */ | 2202 | * Attempt to allocate a physical page from 'nodeid', |
2203 | */ | ||
1846 | if (!(objp = kmem_getpages(cachep, flags, nodeid))) | 2204 | if (!(objp = kmem_getpages(cachep, flags, nodeid))) |
1847 | goto failed; | 2205 | goto failed; |
1848 | 2206 | ||
@@ -1850,6 +2208,7 @@ static int cache_grow(kmem_cache_t *cachep, unsigned int __nocast flags, int nod | |||
1850 | if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags))) | 2208 | if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags))) |
1851 | goto opps1; | 2209 | goto opps1; |
1852 | 2210 | ||
2211 | slabp->nodeid = nodeid; | ||
1853 | set_slab_attr(cachep, slabp, objp); | 2212 | set_slab_attr(cachep, slabp, objp); |
1854 | 2213 | ||
1855 | cache_init_objs(cachep, slabp, ctor_flags); | 2214 | cache_init_objs(cachep, slabp, ctor_flags); |
@@ -1857,13 +2216,14 @@ static int cache_grow(kmem_cache_t *cachep, unsigned int __nocast flags, int nod | |||
1857 | if (local_flags & __GFP_WAIT) | 2216 | if (local_flags & __GFP_WAIT) |
1858 | local_irq_disable(); | 2217 | local_irq_disable(); |
1859 | check_irq_off(); | 2218 | check_irq_off(); |
1860 | spin_lock(&cachep->spinlock); | 2219 | l3 = cachep->nodelists[nodeid]; |
2220 | spin_lock(&l3->list_lock); | ||
1861 | 2221 | ||
1862 | /* Make slab active. */ | 2222 | /* Make slab active. */ |
1863 | list_add_tail(&slabp->list, &(list3_data(cachep)->slabs_free)); | 2223 | list_add_tail(&slabp->list, &(l3->slabs_free)); |
1864 | STATS_INC_GROWN(cachep); | 2224 | STATS_INC_GROWN(cachep); |
1865 | list3_data(cachep)->free_objects += cachep->num; | 2225 | l3->free_objects += cachep->num; |
1866 | spin_unlock(&cachep->spinlock); | 2226 | spin_unlock(&l3->list_lock); |
1867 | return 1; | 2227 | return 1; |
1868 | opps1: | 2228 | opps1: |
1869 | kmem_freepages(cachep, objp); | 2229 | kmem_freepages(cachep, objp); |
@@ -1969,7 +2329,6 @@ static void check_slabp(kmem_cache_t *cachep, struct slab *slabp) | |||
1969 | kmem_bufctl_t i; | 2329 | kmem_bufctl_t i; |
1970 | int entries = 0; | 2330 | int entries = 0; |
1971 | 2331 | ||
1972 | check_spinlock_acquired(cachep); | ||
1973 | /* Check slab's freelist to see if this obj is there. */ | 2332 | /* Check slab's freelist to see if this obj is there. */ |
1974 | for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) { | 2333 | for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) { |
1975 | entries++; | 2334 | entries++; |
@@ -2012,10 +2371,11 @@ retry: | |||
2012 | */ | 2371 | */ |
2013 | batchcount = BATCHREFILL_LIMIT; | 2372 | batchcount = BATCHREFILL_LIMIT; |
2014 | } | 2373 | } |
2015 | l3 = list3_data(cachep); | 2374 | l3 = cachep->nodelists[numa_node_id()]; |
2375 | |||
2376 | BUG_ON(ac->avail > 0 || !l3); | ||
2377 | spin_lock(&l3->list_lock); | ||
2016 | 2378 | ||
2017 | BUG_ON(ac->avail > 0); | ||
2018 | spin_lock(&cachep->spinlock); | ||
2019 | if (l3->shared) { | 2379 | if (l3->shared) { |
2020 | struct array_cache *shared_array = l3->shared; | 2380 | struct array_cache *shared_array = l3->shared; |
2021 | if (shared_array->avail) { | 2381 | if (shared_array->avail) { |
@@ -2023,8 +2383,9 @@ retry: | |||
2023 | batchcount = shared_array->avail; | 2383 | batchcount = shared_array->avail; |
2024 | shared_array->avail -= batchcount; | 2384 | shared_array->avail -= batchcount; |
2025 | ac->avail = batchcount; | 2385 | ac->avail = batchcount; |
2026 | memcpy(ac_entry(ac), &ac_entry(shared_array)[shared_array->avail], | 2386 | memcpy(ac->entry, |
2027 | sizeof(void*)*batchcount); | 2387 | &(shared_array->entry[shared_array->avail]), |
2388 | sizeof(void*)*batchcount); | ||
2028 | shared_array->touched = 1; | 2389 | shared_array->touched = 1; |
2029 | goto alloc_done; | 2390 | goto alloc_done; |
2030 | } | 2391 | } |
@@ -2051,7 +2412,8 @@ retry: | |||
2051 | STATS_SET_HIGH(cachep); | 2412 | STATS_SET_HIGH(cachep); |
2052 | 2413 | ||
2053 | /* get obj pointer */ | 2414 | /* get obj pointer */ |
2054 | ac_entry(ac)[ac->avail++] = slabp->s_mem + slabp->free*cachep->objsize; | 2415 | ac->entry[ac->avail++] = slabp->s_mem + |
2416 | slabp->free*cachep->objsize; | ||
2055 | 2417 | ||
2056 | slabp->inuse++; | 2418 | slabp->inuse++; |
2057 | next = slab_bufctl(slabp)[slabp->free]; | 2419 | next = slab_bufctl(slabp)[slabp->free]; |
@@ -2073,12 +2435,12 @@ retry: | |||
2073 | must_grow: | 2435 | must_grow: |
2074 | l3->free_objects -= ac->avail; | 2436 | l3->free_objects -= ac->avail; |
2075 | alloc_done: | 2437 | alloc_done: |
2076 | spin_unlock(&cachep->spinlock); | 2438 | spin_unlock(&l3->list_lock); |
2077 | 2439 | ||
2078 | if (unlikely(!ac->avail)) { | 2440 | if (unlikely(!ac->avail)) { |
2079 | int x; | 2441 | int x; |
2080 | x = cache_grow(cachep, flags, -1); | 2442 | x = cache_grow(cachep, flags, numa_node_id()); |
2081 | 2443 | ||
2082 | // cache_grow can reenable interrupts, then ac could change. | 2444 | // cache_grow can reenable interrupts, then ac could change. |
2083 | ac = ac_data(cachep); | 2445 | ac = ac_data(cachep); |
2084 | if (!x && ac->avail == 0) // no objects in sight? abort | 2446 | if (!x && ac->avail == 0) // no objects in sight? abort |
@@ -2088,7 +2450,7 @@ alloc_done: | |||
2088 | goto retry; | 2450 | goto retry; |
2089 | } | 2451 | } |
2090 | ac->touched = 1; | 2452 | ac->touched = 1; |
2091 | return ac_entry(ac)[--ac->avail]; | 2453 | return ac->entry[--ac->avail]; |
2092 | } | 2454 | } |
2093 | 2455 | ||
2094 | static inline void | 2456 | static inline void |
@@ -2160,7 +2522,7 @@ static inline void *__cache_alloc(kmem_cache_t *cachep, unsigned int __nocast fl | |||
2160 | if (likely(ac->avail)) { | 2522 | if (likely(ac->avail)) { |
2161 | STATS_INC_ALLOCHIT(cachep); | 2523 | STATS_INC_ALLOCHIT(cachep); |
2162 | ac->touched = 1; | 2524 | ac->touched = 1; |
2163 | objp = ac_entry(ac)[--ac->avail]; | 2525 | objp = ac->entry[--ac->avail]; |
2164 | } else { | 2526 | } else { |
2165 | STATS_INC_ALLOCMISS(cachep); | 2527 | STATS_INC_ALLOCMISS(cachep); |
2166 | objp = cache_alloc_refill(cachep, flags); | 2528 | objp = cache_alloc_refill(cachep, flags); |
@@ -2172,33 +2534,104 @@ static inline void *__cache_alloc(kmem_cache_t *cachep, unsigned int __nocast fl | |||
2172 | return objp; | 2534 | return objp; |
2173 | } | 2535 | } |
2174 | 2536 | ||
2175 | /* | 2537 | #ifdef CONFIG_NUMA |
2176 | * NUMA: different approach needed if the spinlock is moved into | 2538 | /* |
2177 | * the l3 structure | 2539 | * A interface to enable slab creation on nodeid |
2178 | */ | 2540 | */ |
2541 | static void *__cache_alloc_node(kmem_cache_t *cachep, int flags, int nodeid) | ||
2542 | { | ||
2543 | struct list_head *entry; | ||
2544 | struct slab *slabp; | ||
2545 | struct kmem_list3 *l3; | ||
2546 | void *obj; | ||
2547 | kmem_bufctl_t next; | ||
2548 | int x; | ||
2549 | |||
2550 | l3 = cachep->nodelists[nodeid]; | ||
2551 | BUG_ON(!l3); | ||
2552 | |||
2553 | retry: | ||
2554 | spin_lock(&l3->list_lock); | ||
2555 | entry = l3->slabs_partial.next; | ||
2556 | if (entry == &l3->slabs_partial) { | ||
2557 | l3->free_touched = 1; | ||
2558 | entry = l3->slabs_free.next; | ||
2559 | if (entry == &l3->slabs_free) | ||
2560 | goto must_grow; | ||
2561 | } | ||
2562 | |||
2563 | slabp = list_entry(entry, struct slab, list); | ||
2564 | check_spinlock_acquired_node(cachep, nodeid); | ||
2565 | check_slabp(cachep, slabp); | ||
2566 | |||
2567 | STATS_INC_NODEALLOCS(cachep); | ||
2568 | STATS_INC_ACTIVE(cachep); | ||
2569 | STATS_SET_HIGH(cachep); | ||
2570 | |||
2571 | BUG_ON(slabp->inuse == cachep->num); | ||
2572 | |||
2573 | /* get obj pointer */ | ||
2574 | obj = slabp->s_mem + slabp->free*cachep->objsize; | ||
2575 | slabp->inuse++; | ||
2576 | next = slab_bufctl(slabp)[slabp->free]; | ||
2577 | #if DEBUG | ||
2578 | slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; | ||
2579 | #endif | ||
2580 | slabp->free = next; | ||
2581 | check_slabp(cachep, slabp); | ||
2582 | l3->free_objects--; | ||
2583 | /* move slabp to correct slabp list: */ | ||
2584 | list_del(&slabp->list); | ||
2585 | |||
2586 | if (slabp->free == BUFCTL_END) { | ||
2587 | list_add(&slabp->list, &l3->slabs_full); | ||
2588 | } else { | ||
2589 | list_add(&slabp->list, &l3->slabs_partial); | ||
2590 | } | ||
2591 | |||
2592 | spin_unlock(&l3->list_lock); | ||
2593 | goto done; | ||
2594 | |||
2595 | must_grow: | ||
2596 | spin_unlock(&l3->list_lock); | ||
2597 | x = cache_grow(cachep, flags, nodeid); | ||
2179 | 2598 | ||
2599 | if (!x) | ||
2600 | return NULL; | ||
2601 | |||
2602 | goto retry; | ||
2603 | done: | ||
2604 | return obj; | ||
2605 | } | ||
2606 | #endif | ||
2607 | |||
2608 | /* | ||
2609 | * Caller needs to acquire correct kmem_list's list_lock | ||
2610 | */ | ||
2180 | static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects) | 2611 | static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects) |
2181 | { | 2612 | { |
2182 | int i; | 2613 | int i; |
2183 | 2614 | struct kmem_list3 *l3; | |
2184 | check_spinlock_acquired(cachep); | ||
2185 | |||
2186 | /* NUMA: move add into loop */ | ||
2187 | cachep->lists.free_objects += nr_objects; | ||
2188 | 2615 | ||
2189 | for (i = 0; i < nr_objects; i++) { | 2616 | for (i = 0; i < nr_objects; i++) { |
2190 | void *objp = objpp[i]; | 2617 | void *objp = objpp[i]; |
2191 | struct slab *slabp; | 2618 | struct slab *slabp; |
2192 | unsigned int objnr; | 2619 | unsigned int objnr; |
2620 | int nodeid = 0; | ||
2193 | 2621 | ||
2194 | slabp = GET_PAGE_SLAB(virt_to_page(objp)); | 2622 | slabp = GET_PAGE_SLAB(virt_to_page(objp)); |
2623 | nodeid = slabp->nodeid; | ||
2624 | l3 = cachep->nodelists[nodeid]; | ||
2195 | list_del(&slabp->list); | 2625 | list_del(&slabp->list); |
2196 | objnr = (objp - slabp->s_mem) / cachep->objsize; | 2626 | objnr = (objp - slabp->s_mem) / cachep->objsize; |
2627 | check_spinlock_acquired_node(cachep, nodeid); | ||
2197 | check_slabp(cachep, slabp); | 2628 | check_slabp(cachep, slabp); |
2629 | |||
2630 | |||
2198 | #if DEBUG | 2631 | #if DEBUG |
2199 | if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) { | 2632 | if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) { |
2200 | printk(KERN_ERR "slab: double free detected in cache '%s', objp %p.\n", | 2633 | printk(KERN_ERR "slab: double free detected in cache " |
2201 | cachep->name, objp); | 2634 | "'%s', objp %p\n", cachep->name, objp); |
2202 | BUG(); | 2635 | BUG(); |
2203 | } | 2636 | } |
2204 | #endif | 2637 | #endif |
@@ -2206,24 +2639,23 @@ static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects) | |||
2206 | slabp->free = objnr; | 2639 | slabp->free = objnr; |
2207 | STATS_DEC_ACTIVE(cachep); | 2640 | STATS_DEC_ACTIVE(cachep); |
2208 | slabp->inuse--; | 2641 | slabp->inuse--; |
2642 | l3->free_objects++; | ||
2209 | check_slabp(cachep, slabp); | 2643 | check_slabp(cachep, slabp); |
2210 | 2644 | ||
2211 | /* fixup slab chains */ | 2645 | /* fixup slab chains */ |
2212 | if (slabp->inuse == 0) { | 2646 | if (slabp->inuse == 0) { |
2213 | if (cachep->lists.free_objects > cachep->free_limit) { | 2647 | if (l3->free_objects > l3->free_limit) { |
2214 | cachep->lists.free_objects -= cachep->num; | 2648 | l3->free_objects -= cachep->num; |
2215 | slab_destroy(cachep, slabp); | 2649 | slab_destroy(cachep, slabp); |
2216 | } else { | 2650 | } else { |
2217 | list_add(&slabp->list, | 2651 | list_add(&slabp->list, &l3->slabs_free); |
2218 | &list3_data_ptr(cachep, objp)->slabs_free); | ||
2219 | } | 2652 | } |
2220 | } else { | 2653 | } else { |
2221 | /* Unconditionally move a slab to the end of the | 2654 | /* Unconditionally move a slab to the end of the |
2222 | * partial list on free - maximum time for the | 2655 | * partial list on free - maximum time for the |
2223 | * other objects to be freed, too. | 2656 | * other objects to be freed, too. |
2224 | */ | 2657 | */ |
2225 | list_add_tail(&slabp->list, | 2658 | list_add_tail(&slabp->list, &l3->slabs_partial); |
2226 | &list3_data_ptr(cachep, objp)->slabs_partial); | ||
2227 | } | 2659 | } |
2228 | } | 2660 | } |
2229 | } | 2661 | } |
@@ -2231,36 +2663,38 @@ static void free_block(kmem_cache_t *cachep, void **objpp, int nr_objects) | |||
2231 | static void cache_flusharray(kmem_cache_t *cachep, struct array_cache *ac) | 2663 | static void cache_flusharray(kmem_cache_t *cachep, struct array_cache *ac) |
2232 | { | 2664 | { |
2233 | int batchcount; | 2665 | int batchcount; |
2666 | struct kmem_list3 *l3; | ||
2234 | 2667 | ||
2235 | batchcount = ac->batchcount; | 2668 | batchcount = ac->batchcount; |
2236 | #if DEBUG | 2669 | #if DEBUG |
2237 | BUG_ON(!batchcount || batchcount > ac->avail); | 2670 | BUG_ON(!batchcount || batchcount > ac->avail); |
2238 | #endif | 2671 | #endif |
2239 | check_irq_off(); | 2672 | check_irq_off(); |
2240 | spin_lock(&cachep->spinlock); | 2673 | l3 = cachep->nodelists[numa_node_id()]; |
2241 | if (cachep->lists.shared) { | 2674 | spin_lock(&l3->list_lock); |
2242 | struct array_cache *shared_array = cachep->lists.shared; | 2675 | if (l3->shared) { |
2676 | struct array_cache *shared_array = l3->shared; | ||
2243 | int max = shared_array->limit-shared_array->avail; | 2677 | int max = shared_array->limit-shared_array->avail; |
2244 | if (max) { | 2678 | if (max) { |
2245 | if (batchcount > max) | 2679 | if (batchcount > max) |
2246 | batchcount = max; | 2680 | batchcount = max; |
2247 | memcpy(&ac_entry(shared_array)[shared_array->avail], | 2681 | memcpy(&(shared_array->entry[shared_array->avail]), |
2248 | &ac_entry(ac)[0], | 2682 | ac->entry, |
2249 | sizeof(void*)*batchcount); | 2683 | sizeof(void*)*batchcount); |
2250 | shared_array->avail += batchcount; | 2684 | shared_array->avail += batchcount; |
2251 | goto free_done; | 2685 | goto free_done; |
2252 | } | 2686 | } |
2253 | } | 2687 | } |
2254 | 2688 | ||
2255 | free_block(cachep, &ac_entry(ac)[0], batchcount); | 2689 | free_block(cachep, ac->entry, batchcount); |
2256 | free_done: | 2690 | free_done: |
2257 | #if STATS | 2691 | #if STATS |
2258 | { | 2692 | { |
2259 | int i = 0; | 2693 | int i = 0; |
2260 | struct list_head *p; | 2694 | struct list_head *p; |
2261 | 2695 | ||
2262 | p = list3_data(cachep)->slabs_free.next; | 2696 | p = l3->slabs_free.next; |
2263 | while (p != &(list3_data(cachep)->slabs_free)) { | 2697 | while (p != &(l3->slabs_free)) { |
2264 | struct slab *slabp; | 2698 | struct slab *slabp; |
2265 | 2699 | ||
2266 | slabp = list_entry(p, struct slab, list); | 2700 | slabp = list_entry(p, struct slab, list); |
@@ -2272,12 +2706,13 @@ free_done: | |||
2272 | STATS_SET_FREEABLE(cachep, i); | 2706 | STATS_SET_FREEABLE(cachep, i); |
2273 | } | 2707 | } |
2274 | #endif | 2708 | #endif |
2275 | spin_unlock(&cachep->spinlock); | 2709 | spin_unlock(&l3->list_lock); |
2276 | ac->avail -= batchcount; | 2710 | ac->avail -= batchcount; |
2277 | memmove(&ac_entry(ac)[0], &ac_entry(ac)[batchcount], | 2711 | memmove(ac->entry, &(ac->entry[batchcount]), |
2278 | sizeof(void*)*ac->avail); | 2712 | sizeof(void*)*ac->avail); |
2279 | } | 2713 | } |
2280 | 2714 | ||
2715 | |||
2281 | /* | 2716 | /* |
2282 | * __cache_free | 2717 | * __cache_free |
2283 | * Release an obj back to its cache. If the obj has a constructed | 2718 | * Release an obj back to its cache. If the obj has a constructed |
@@ -2292,14 +2727,46 @@ static inline void __cache_free(kmem_cache_t *cachep, void *objp) | |||
2292 | check_irq_off(); | 2727 | check_irq_off(); |
2293 | objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0)); | 2728 | objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0)); |
2294 | 2729 | ||
2730 | /* Make sure we are not freeing a object from another | ||
2731 | * node to the array cache on this cpu. | ||
2732 | */ | ||
2733 | #ifdef CONFIG_NUMA | ||
2734 | { | ||
2735 | struct slab *slabp; | ||
2736 | slabp = GET_PAGE_SLAB(virt_to_page(objp)); | ||
2737 | if (unlikely(slabp->nodeid != numa_node_id())) { | ||
2738 | struct array_cache *alien = NULL; | ||
2739 | int nodeid = slabp->nodeid; | ||
2740 | struct kmem_list3 *l3 = cachep->nodelists[numa_node_id()]; | ||
2741 | |||
2742 | STATS_INC_NODEFREES(cachep); | ||
2743 | if (l3->alien && l3->alien[nodeid]) { | ||
2744 | alien = l3->alien[nodeid]; | ||
2745 | spin_lock(&alien->lock); | ||
2746 | if (unlikely(alien->avail == alien->limit)) | ||
2747 | __drain_alien_cache(cachep, | ||
2748 | alien, nodeid); | ||
2749 | alien->entry[alien->avail++] = objp; | ||
2750 | spin_unlock(&alien->lock); | ||
2751 | } else { | ||
2752 | spin_lock(&(cachep->nodelists[nodeid])-> | ||
2753 | list_lock); | ||
2754 | free_block(cachep, &objp, 1); | ||
2755 | spin_unlock(&(cachep->nodelists[nodeid])-> | ||
2756 | list_lock); | ||
2757 | } | ||
2758 | return; | ||
2759 | } | ||
2760 | } | ||
2761 | #endif | ||
2295 | if (likely(ac->avail < ac->limit)) { | 2762 | if (likely(ac->avail < ac->limit)) { |
2296 | STATS_INC_FREEHIT(cachep); | 2763 | STATS_INC_FREEHIT(cachep); |
2297 | ac_entry(ac)[ac->avail++] = objp; | 2764 | ac->entry[ac->avail++] = objp; |
2298 | return; | 2765 | return; |
2299 | } else { | 2766 | } else { |
2300 | STATS_INC_FREEMISS(cachep); | 2767 | STATS_INC_FREEMISS(cachep); |
2301 | cache_flusharray(cachep, ac); | 2768 | cache_flusharray(cachep, ac); |
2302 | ac_entry(ac)[ac->avail++] = objp; | 2769 | ac->entry[ac->avail++] = objp; |
2303 | } | 2770 | } |
2304 | } | 2771 | } |
2305 | 2772 | ||
@@ -2369,81 +2836,30 @@ out: | |||
2369 | * Identical to kmem_cache_alloc, except that this function is slow | 2836 | * Identical to kmem_cache_alloc, except that this function is slow |
2370 | * and can sleep. And it will allocate memory on the given node, which | 2837 | * and can sleep. And it will allocate memory on the given node, which |
2371 | * can improve the performance for cpu bound structures. | 2838 | * can improve the performance for cpu bound structures. |
2839 | * New and improved: it will now make sure that the object gets | ||
2840 | * put on the correct node list so that there is no false sharing. | ||
2372 | */ | 2841 | */ |
2373 | void *kmem_cache_alloc_node(kmem_cache_t *cachep, int flags, int nodeid) | 2842 | void *kmem_cache_alloc_node(kmem_cache_t *cachep, int flags, int nodeid) |
2374 | { | 2843 | { |
2375 | int loop; | 2844 | unsigned long save_flags; |
2376 | void *objp; | 2845 | void *ptr; |
2377 | struct slab *slabp; | ||
2378 | kmem_bufctl_t next; | ||
2379 | |||
2380 | if (nodeid == -1) | ||
2381 | return kmem_cache_alloc(cachep, flags); | ||
2382 | |||
2383 | for (loop = 0;;loop++) { | ||
2384 | struct list_head *q; | ||
2385 | |||
2386 | objp = NULL; | ||
2387 | check_irq_on(); | ||
2388 | spin_lock_irq(&cachep->spinlock); | ||
2389 | /* walk through all partial and empty slab and find one | ||
2390 | * from the right node */ | ||
2391 | list_for_each(q,&cachep->lists.slabs_partial) { | ||
2392 | slabp = list_entry(q, struct slab, list); | ||
2393 | |||
2394 | if (page_to_nid(virt_to_page(slabp->s_mem)) == nodeid || | ||
2395 | loop > 2) | ||
2396 | goto got_slabp; | ||
2397 | } | ||
2398 | list_for_each(q, &cachep->lists.slabs_free) { | ||
2399 | slabp = list_entry(q, struct slab, list); | ||
2400 | 2846 | ||
2401 | if (page_to_nid(virt_to_page(slabp->s_mem)) == nodeid || | 2847 | if (nodeid == numa_node_id() || nodeid == -1) |
2402 | loop > 2) | 2848 | return __cache_alloc(cachep, flags); |
2403 | goto got_slabp; | ||
2404 | } | ||
2405 | spin_unlock_irq(&cachep->spinlock); | ||
2406 | 2849 | ||
2407 | local_irq_disable(); | 2850 | if (unlikely(!cachep->nodelists[nodeid])) { |
2408 | if (!cache_grow(cachep, flags, nodeid)) { | 2851 | /* Fall back to __cache_alloc if we run into trouble */ |
2409 | local_irq_enable(); | 2852 | printk(KERN_WARNING "slab: not allocating in inactive node %d for cache %s\n", nodeid, cachep->name); |
2410 | return NULL; | 2853 | return __cache_alloc(cachep,flags); |
2411 | } | ||
2412 | local_irq_enable(); | ||
2413 | } | 2854 | } |
2414 | got_slabp: | ||
2415 | /* found one: allocate object */ | ||
2416 | check_slabp(cachep, slabp); | ||
2417 | check_spinlock_acquired(cachep); | ||
2418 | 2855 | ||
2419 | STATS_INC_ALLOCED(cachep); | 2856 | cache_alloc_debugcheck_before(cachep, flags); |
2420 | STATS_INC_ACTIVE(cachep); | 2857 | local_irq_save(save_flags); |
2421 | STATS_SET_HIGH(cachep); | 2858 | ptr = __cache_alloc_node(cachep, flags, nodeid); |
2422 | STATS_INC_NODEALLOCS(cachep); | 2859 | local_irq_restore(save_flags); |
2423 | 2860 | ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, __builtin_return_address(0)); | |
2424 | objp = slabp->s_mem + slabp->free*cachep->objsize; | ||
2425 | |||
2426 | slabp->inuse++; | ||
2427 | next = slab_bufctl(slabp)[slabp->free]; | ||
2428 | #if DEBUG | ||
2429 | slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; | ||
2430 | #endif | ||
2431 | slabp->free = next; | ||
2432 | check_slabp(cachep, slabp); | ||
2433 | |||
2434 | /* move slabp to correct slabp list: */ | ||
2435 | list_del(&slabp->list); | ||
2436 | if (slabp->free == BUFCTL_END) | ||
2437 | list_add(&slabp->list, &cachep->lists.slabs_full); | ||
2438 | else | ||
2439 | list_add(&slabp->list, &cachep->lists.slabs_partial); | ||
2440 | |||
2441 | list3_data(cachep)->free_objects--; | ||
2442 | spin_unlock_irq(&cachep->spinlock); | ||
2443 | 2861 | ||
2444 | objp = cache_alloc_debugcheck_after(cachep, GFP_KERNEL, objp, | 2862 | return ptr; |
2445 | __builtin_return_address(0)); | ||
2446 | return objp; | ||
2447 | } | 2863 | } |
2448 | EXPORT_SYMBOL(kmem_cache_alloc_node); | 2864 | EXPORT_SYMBOL(kmem_cache_alloc_node); |
2449 | 2865 | ||
@@ -2513,11 +2929,18 @@ void *__alloc_percpu(size_t size, size_t align) | |||
2513 | if (!pdata) | 2929 | if (!pdata) |
2514 | return NULL; | 2930 | return NULL; |
2515 | 2931 | ||
2516 | for (i = 0; i < NR_CPUS; i++) { | 2932 | /* |
2517 | if (!cpu_possible(i)) | 2933 | * Cannot use for_each_online_cpu since a cpu may come online |
2518 | continue; | 2934 | * and we have no way of figuring out how to fix the array |
2519 | pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, | 2935 | * that we have allocated then.... |
2520 | cpu_to_node(i)); | 2936 | */ |
2937 | for_each_cpu(i) { | ||
2938 | int node = cpu_to_node(i); | ||
2939 | |||
2940 | if (node_online(node)) | ||
2941 | pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node); | ||
2942 | else | ||
2943 | pdata->ptrs[i] = kmalloc(size, GFP_KERNEL); | ||
2521 | 2944 | ||
2522 | if (!pdata->ptrs[i]) | 2945 | if (!pdata->ptrs[i]) |
2523 | goto unwind_oom; | 2946 | goto unwind_oom; |
@@ -2607,11 +3030,11 @@ free_percpu(const void *objp) | |||
2607 | int i; | 3030 | int i; |
2608 | struct percpu_data *p = (struct percpu_data *) (~(unsigned long) objp); | 3031 | struct percpu_data *p = (struct percpu_data *) (~(unsigned long) objp); |
2609 | 3032 | ||
2610 | for (i = 0; i < NR_CPUS; i++) { | 3033 | /* |
2611 | if (!cpu_possible(i)) | 3034 | * We allocate for all cpus so we cannot use for online cpu here. |
2612 | continue; | 3035 | */ |
3036 | for_each_cpu(i) | ||
2613 | kfree(p->ptrs[i]); | 3037 | kfree(p->ptrs[i]); |
2614 | } | ||
2615 | kfree(p); | 3038 | kfree(p); |
2616 | } | 3039 | } |
2617 | EXPORT_SYMBOL(free_percpu); | 3040 | EXPORT_SYMBOL(free_percpu); |
@@ -2629,6 +3052,64 @@ const char *kmem_cache_name(kmem_cache_t *cachep) | |||
2629 | } | 3052 | } |
2630 | EXPORT_SYMBOL_GPL(kmem_cache_name); | 3053 | EXPORT_SYMBOL_GPL(kmem_cache_name); |
2631 | 3054 | ||
3055 | /* | ||
3056 | * This initializes kmem_list3 for all nodes. | ||
3057 | */ | ||
3058 | static int alloc_kmemlist(kmem_cache_t *cachep) | ||
3059 | { | ||
3060 | int node; | ||
3061 | struct kmem_list3 *l3; | ||
3062 | int err = 0; | ||
3063 | |||
3064 | for_each_online_node(node) { | ||
3065 | struct array_cache *nc = NULL, *new; | ||
3066 | struct array_cache **new_alien = NULL; | ||
3067 | #ifdef CONFIG_NUMA | ||
3068 | if (!(new_alien = alloc_alien_cache(node, cachep->limit))) | ||
3069 | goto fail; | ||
3070 | #endif | ||
3071 | if (!(new = alloc_arraycache(node, (cachep->shared* | ||
3072 | cachep->batchcount), 0xbaadf00d))) | ||
3073 | goto fail; | ||
3074 | if ((l3 = cachep->nodelists[node])) { | ||
3075 | |||
3076 | spin_lock_irq(&l3->list_lock); | ||
3077 | |||
3078 | if ((nc = cachep->nodelists[node]->shared)) | ||
3079 | free_block(cachep, nc->entry, | ||
3080 | nc->avail); | ||
3081 | |||
3082 | l3->shared = new; | ||
3083 | if (!cachep->nodelists[node]->alien) { | ||
3084 | l3->alien = new_alien; | ||
3085 | new_alien = NULL; | ||
3086 | } | ||
3087 | l3->free_limit = (1 + nr_cpus_node(node))* | ||
3088 | cachep->batchcount + cachep->num; | ||
3089 | spin_unlock_irq(&l3->list_lock); | ||
3090 | kfree(nc); | ||
3091 | free_alien_cache(new_alien); | ||
3092 | continue; | ||
3093 | } | ||
3094 | if (!(l3 = kmalloc_node(sizeof(struct kmem_list3), | ||
3095 | GFP_KERNEL, node))) | ||
3096 | goto fail; | ||
3097 | |||
3098 | kmem_list3_init(l3); | ||
3099 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + | ||
3100 | ((unsigned long)cachep)%REAPTIMEOUT_LIST3; | ||
3101 | l3->shared = new; | ||
3102 | l3->alien = new_alien; | ||
3103 | l3->free_limit = (1 + nr_cpus_node(node))* | ||
3104 | cachep->batchcount + cachep->num; | ||
3105 | cachep->nodelists[node] = l3; | ||
3106 | } | ||
3107 | return err; | ||
3108 | fail: | ||
3109 | err = -ENOMEM; | ||
3110 | return err; | ||
3111 | } | ||
3112 | |||
2632 | struct ccupdate_struct { | 3113 | struct ccupdate_struct { |
2633 | kmem_cache_t *cachep; | 3114 | kmem_cache_t *cachep; |
2634 | struct array_cache *new[NR_CPUS]; | 3115 | struct array_cache *new[NR_CPUS]; |
@@ -2641,7 +3122,7 @@ static void do_ccupdate_local(void *info) | |||
2641 | 3122 | ||
2642 | check_irq_off(); | 3123 | check_irq_off(); |
2643 | old = ac_data(new->cachep); | 3124 | old = ac_data(new->cachep); |
2644 | 3125 | ||
2645 | new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()]; | 3126 | new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()]; |
2646 | new->new[smp_processor_id()] = old; | 3127 | new->new[smp_processor_id()] = old; |
2647 | } | 3128 | } |
@@ -2651,54 +3132,43 @@ static int do_tune_cpucache(kmem_cache_t *cachep, int limit, int batchcount, | |||
2651 | int shared) | 3132 | int shared) |
2652 | { | 3133 | { |
2653 | struct ccupdate_struct new; | 3134 | struct ccupdate_struct new; |
2654 | struct array_cache *new_shared; | 3135 | int i, err; |
2655 | int i; | ||
2656 | 3136 | ||
2657 | memset(&new.new,0,sizeof(new.new)); | 3137 | memset(&new.new,0,sizeof(new.new)); |
2658 | for (i = 0; i < NR_CPUS; i++) { | 3138 | for_each_online_cpu(i) { |
2659 | if (cpu_online(i)) { | 3139 | new.new[i] = alloc_arraycache(cpu_to_node(i), limit, batchcount); |
2660 | new.new[i] = alloc_arraycache(i, limit, batchcount); | 3140 | if (!new.new[i]) { |
2661 | if (!new.new[i]) { | 3141 | for (i--; i >= 0; i--) kfree(new.new[i]); |
2662 | for (i--; i >= 0; i--) kfree(new.new[i]); | 3142 | return -ENOMEM; |
2663 | return -ENOMEM; | ||
2664 | } | ||
2665 | } else { | ||
2666 | new.new[i] = NULL; | ||
2667 | } | 3143 | } |
2668 | } | 3144 | } |
2669 | new.cachep = cachep; | 3145 | new.cachep = cachep; |
2670 | 3146 | ||
2671 | smp_call_function_all_cpus(do_ccupdate_local, (void *)&new); | 3147 | smp_call_function_all_cpus(do_ccupdate_local, (void *)&new); |
2672 | 3148 | ||
2673 | check_irq_on(); | 3149 | check_irq_on(); |
2674 | spin_lock_irq(&cachep->spinlock); | 3150 | spin_lock_irq(&cachep->spinlock); |
2675 | cachep->batchcount = batchcount; | 3151 | cachep->batchcount = batchcount; |
2676 | cachep->limit = limit; | 3152 | cachep->limit = limit; |
2677 | cachep->free_limit = (1+num_online_cpus())*cachep->batchcount + cachep->num; | 3153 | cachep->shared = shared; |
2678 | spin_unlock_irq(&cachep->spinlock); | 3154 | spin_unlock_irq(&cachep->spinlock); |
2679 | 3155 | ||
2680 | for (i = 0; i < NR_CPUS; i++) { | 3156 | for_each_online_cpu(i) { |
2681 | struct array_cache *ccold = new.new[i]; | 3157 | struct array_cache *ccold = new.new[i]; |
2682 | if (!ccold) | 3158 | if (!ccold) |
2683 | continue; | 3159 | continue; |
2684 | spin_lock_irq(&cachep->spinlock); | 3160 | spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock); |
2685 | free_block(cachep, ac_entry(ccold), ccold->avail); | 3161 | free_block(cachep, ccold->entry, ccold->avail); |
2686 | spin_unlock_irq(&cachep->spinlock); | 3162 | spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock); |
2687 | kfree(ccold); | 3163 | kfree(ccold); |
2688 | } | 3164 | } |
2689 | new_shared = alloc_arraycache(-1, batchcount*shared, 0xbaadf00d); | ||
2690 | if (new_shared) { | ||
2691 | struct array_cache *old; | ||
2692 | 3165 | ||
2693 | spin_lock_irq(&cachep->spinlock); | 3166 | err = alloc_kmemlist(cachep); |
2694 | old = cachep->lists.shared; | 3167 | if (err) { |
2695 | cachep->lists.shared = new_shared; | 3168 | printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n", |
2696 | if (old) | 3169 | cachep->name, -err); |
2697 | free_block(cachep, ac_entry(old), old->avail); | 3170 | BUG(); |
2698 | spin_unlock_irq(&cachep->spinlock); | ||
2699 | kfree(old); | ||
2700 | } | 3171 | } |
2701 | |||
2702 | return 0; | 3172 | return 0; |
2703 | } | 3173 | } |
2704 | 3174 | ||
@@ -2756,11 +3226,11 @@ static void enable_cpucache(kmem_cache_t *cachep) | |||
2756 | } | 3226 | } |
2757 | 3227 | ||
2758 | static void drain_array_locked(kmem_cache_t *cachep, | 3228 | static void drain_array_locked(kmem_cache_t *cachep, |
2759 | struct array_cache *ac, int force) | 3229 | struct array_cache *ac, int force, int node) |
2760 | { | 3230 | { |
2761 | int tofree; | 3231 | int tofree; |
2762 | 3232 | ||
2763 | check_spinlock_acquired(cachep); | 3233 | check_spinlock_acquired_node(cachep, node); |
2764 | if (ac->touched && !force) { | 3234 | if (ac->touched && !force) { |
2765 | ac->touched = 0; | 3235 | ac->touched = 0; |
2766 | } else if (ac->avail) { | 3236 | } else if (ac->avail) { |
@@ -2768,9 +3238,9 @@ static void drain_array_locked(kmem_cache_t *cachep, | |||
2768 | if (tofree > ac->avail) { | 3238 | if (tofree > ac->avail) { |
2769 | tofree = (ac->avail+1)/2; | 3239 | tofree = (ac->avail+1)/2; |
2770 | } | 3240 | } |
2771 | free_block(cachep, ac_entry(ac), tofree); | 3241 | free_block(cachep, ac->entry, tofree); |
2772 | ac->avail -= tofree; | 3242 | ac->avail -= tofree; |
2773 | memmove(&ac_entry(ac)[0], &ac_entry(ac)[tofree], | 3243 | memmove(ac->entry, &(ac->entry[tofree]), |
2774 | sizeof(void*)*ac->avail); | 3244 | sizeof(void*)*ac->avail); |
2775 | } | 3245 | } |
2776 | } | 3246 | } |
@@ -2789,6 +3259,7 @@ static void drain_array_locked(kmem_cache_t *cachep, | |||
2789 | static void cache_reap(void *unused) | 3259 | static void cache_reap(void *unused) |
2790 | { | 3260 | { |
2791 | struct list_head *walk; | 3261 | struct list_head *walk; |
3262 | struct kmem_list3 *l3; | ||
2792 | 3263 | ||
2793 | if (down_trylock(&cache_chain_sem)) { | 3264 | if (down_trylock(&cache_chain_sem)) { |
2794 | /* Give up. Setup the next iteration. */ | 3265 | /* Give up. Setup the next iteration. */ |
@@ -2809,27 +3280,32 @@ static void cache_reap(void *unused) | |||
2809 | 3280 | ||
2810 | check_irq_on(); | 3281 | check_irq_on(); |
2811 | 3282 | ||
2812 | spin_lock_irq(&searchp->spinlock); | 3283 | l3 = searchp->nodelists[numa_node_id()]; |
3284 | if (l3->alien) | ||
3285 | drain_alien_cache(searchp, l3); | ||
3286 | spin_lock_irq(&l3->list_lock); | ||
2813 | 3287 | ||
2814 | drain_array_locked(searchp, ac_data(searchp), 0); | 3288 | drain_array_locked(searchp, ac_data(searchp), 0, |
3289 | numa_node_id()); | ||
2815 | 3290 | ||
2816 | if(time_after(searchp->lists.next_reap, jiffies)) | 3291 | if (time_after(l3->next_reap, jiffies)) |
2817 | goto next_unlock; | 3292 | goto next_unlock; |
2818 | 3293 | ||
2819 | searchp->lists.next_reap = jiffies + REAPTIMEOUT_LIST3; | 3294 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3; |
2820 | 3295 | ||
2821 | if (searchp->lists.shared) | 3296 | if (l3->shared) |
2822 | drain_array_locked(searchp, searchp->lists.shared, 0); | 3297 | drain_array_locked(searchp, l3->shared, 0, |
3298 | numa_node_id()); | ||
2823 | 3299 | ||
2824 | if (searchp->lists.free_touched) { | 3300 | if (l3->free_touched) { |
2825 | searchp->lists.free_touched = 0; | 3301 | l3->free_touched = 0; |
2826 | goto next_unlock; | 3302 | goto next_unlock; |
2827 | } | 3303 | } |
2828 | 3304 | ||
2829 | tofree = (searchp->free_limit+5*searchp->num-1)/(5*searchp->num); | 3305 | tofree = (l3->free_limit+5*searchp->num-1)/(5*searchp->num); |
2830 | do { | 3306 | do { |
2831 | p = list3_data(searchp)->slabs_free.next; | 3307 | p = l3->slabs_free.next; |
2832 | if (p == &(list3_data(searchp)->slabs_free)) | 3308 | if (p == &(l3->slabs_free)) |
2833 | break; | 3309 | break; |
2834 | 3310 | ||
2835 | slabp = list_entry(p, struct slab, list); | 3311 | slabp = list_entry(p, struct slab, list); |
@@ -2842,13 +3318,13 @@ static void cache_reap(void *unused) | |||
2842 | * searchp cannot disappear, we hold | 3318 | * searchp cannot disappear, we hold |
2843 | * cache_chain_lock | 3319 | * cache_chain_lock |
2844 | */ | 3320 | */ |
2845 | searchp->lists.free_objects -= searchp->num; | 3321 | l3->free_objects -= searchp->num; |
2846 | spin_unlock_irq(&searchp->spinlock); | 3322 | spin_unlock_irq(&l3->list_lock); |
2847 | slab_destroy(searchp, slabp); | 3323 | slab_destroy(searchp, slabp); |
2848 | spin_lock_irq(&searchp->spinlock); | 3324 | spin_lock_irq(&l3->list_lock); |
2849 | } while(--tofree > 0); | 3325 | } while(--tofree > 0); |
2850 | next_unlock: | 3326 | next_unlock: |
2851 | spin_unlock_irq(&searchp->spinlock); | 3327 | spin_unlock_irq(&l3->list_lock); |
2852 | next: | 3328 | next: |
2853 | cond_resched(); | 3329 | cond_resched(); |
2854 | } | 3330 | } |
@@ -2882,7 +3358,7 @@ static void *s_start(struct seq_file *m, loff_t *pos) | |||
2882 | seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); | 3358 | seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); |
2883 | #if STATS | 3359 | #if STATS |
2884 | seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped>" | 3360 | seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped>" |
2885 | " <error> <maxfreeable> <freelimit> <nodeallocs>"); | 3361 | " <error> <maxfreeable> <nodeallocs> <remotefrees>"); |
2886 | seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); | 3362 | seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); |
2887 | #endif | 3363 | #endif |
2888 | seq_putc(m, '\n'); | 3364 | seq_putc(m, '\n'); |
@@ -2917,39 +3393,53 @@ static int s_show(struct seq_file *m, void *p) | |||
2917 | unsigned long active_objs; | 3393 | unsigned long active_objs; |
2918 | unsigned long num_objs; | 3394 | unsigned long num_objs; |
2919 | unsigned long active_slabs = 0; | 3395 | unsigned long active_slabs = 0; |
2920 | unsigned long num_slabs; | 3396 | unsigned long num_slabs, free_objects = 0, shared_avail = 0; |
2921 | const char *name; | 3397 | const char *name; |
2922 | char *error = NULL; | 3398 | char *error = NULL; |
3399 | int node; | ||
3400 | struct kmem_list3 *l3; | ||
2923 | 3401 | ||
2924 | check_irq_on(); | 3402 | check_irq_on(); |
2925 | spin_lock_irq(&cachep->spinlock); | 3403 | spin_lock_irq(&cachep->spinlock); |
2926 | active_objs = 0; | 3404 | active_objs = 0; |
2927 | num_slabs = 0; | 3405 | num_slabs = 0; |
2928 | list_for_each(q,&cachep->lists.slabs_full) { | 3406 | for_each_online_node(node) { |
2929 | slabp = list_entry(q, struct slab, list); | 3407 | l3 = cachep->nodelists[node]; |
2930 | if (slabp->inuse != cachep->num && !error) | 3408 | if (!l3) |
2931 | error = "slabs_full accounting error"; | 3409 | continue; |
2932 | active_objs += cachep->num; | 3410 | |
2933 | active_slabs++; | 3411 | spin_lock(&l3->list_lock); |
2934 | } | 3412 | |
2935 | list_for_each(q,&cachep->lists.slabs_partial) { | 3413 | list_for_each(q,&l3->slabs_full) { |
2936 | slabp = list_entry(q, struct slab, list); | 3414 | slabp = list_entry(q, struct slab, list); |
2937 | if (slabp->inuse == cachep->num && !error) | 3415 | if (slabp->inuse != cachep->num && !error) |
2938 | error = "slabs_partial inuse accounting error"; | 3416 | error = "slabs_full accounting error"; |
2939 | if (!slabp->inuse && !error) | 3417 | active_objs += cachep->num; |
2940 | error = "slabs_partial/inuse accounting error"; | 3418 | active_slabs++; |
2941 | active_objs += slabp->inuse; | 3419 | } |
2942 | active_slabs++; | 3420 | list_for_each(q,&l3->slabs_partial) { |
2943 | } | 3421 | slabp = list_entry(q, struct slab, list); |
2944 | list_for_each(q,&cachep->lists.slabs_free) { | 3422 | if (slabp->inuse == cachep->num && !error) |
2945 | slabp = list_entry(q, struct slab, list); | 3423 | error = "slabs_partial inuse accounting error"; |
2946 | if (slabp->inuse && !error) | 3424 | if (!slabp->inuse && !error) |
2947 | error = "slabs_free/inuse accounting error"; | 3425 | error = "slabs_partial/inuse accounting error"; |
2948 | num_slabs++; | 3426 | active_objs += slabp->inuse; |
3427 | active_slabs++; | ||
3428 | } | ||
3429 | list_for_each(q,&l3->slabs_free) { | ||
3430 | slabp = list_entry(q, struct slab, list); | ||
3431 | if (slabp->inuse && !error) | ||
3432 | error = "slabs_free/inuse accounting error"; | ||
3433 | num_slabs++; | ||
3434 | } | ||
3435 | free_objects += l3->free_objects; | ||
3436 | shared_avail += l3->shared->avail; | ||
3437 | |||
3438 | spin_unlock(&l3->list_lock); | ||
2949 | } | 3439 | } |
2950 | num_slabs+=active_slabs; | 3440 | num_slabs+=active_slabs; |
2951 | num_objs = num_slabs*cachep->num; | 3441 | num_objs = num_slabs*cachep->num; |
2952 | if (num_objs - active_objs != cachep->lists.free_objects && !error) | 3442 | if (num_objs - active_objs != free_objects && !error) |
2953 | error = "free_objects accounting error"; | 3443 | error = "free_objects accounting error"; |
2954 | 3444 | ||
2955 | name = cachep->name; | 3445 | name = cachep->name; |
@@ -2961,9 +3451,9 @@ static int s_show(struct seq_file *m, void *p) | |||
2961 | cachep->num, (1<<cachep->gfporder)); | 3451 | cachep->num, (1<<cachep->gfporder)); |
2962 | seq_printf(m, " : tunables %4u %4u %4u", | 3452 | seq_printf(m, " : tunables %4u %4u %4u", |
2963 | cachep->limit, cachep->batchcount, | 3453 | cachep->limit, cachep->batchcount, |
2964 | cachep->lists.shared->limit/cachep->batchcount); | 3454 | cachep->shared); |
2965 | seq_printf(m, " : slabdata %6lu %6lu %6u", | 3455 | seq_printf(m, " : slabdata %6lu %6lu %6lu", |
2966 | active_slabs, num_slabs, cachep->lists.shared->avail); | 3456 | active_slabs, num_slabs, shared_avail); |
2967 | #if STATS | 3457 | #if STATS |
2968 | { /* list3 stats */ | 3458 | { /* list3 stats */ |
2969 | unsigned long high = cachep->high_mark; | 3459 | unsigned long high = cachep->high_mark; |
@@ -2972,12 +3462,13 @@ static int s_show(struct seq_file *m, void *p) | |||
2972 | unsigned long reaped = cachep->reaped; | 3462 | unsigned long reaped = cachep->reaped; |
2973 | unsigned long errors = cachep->errors; | 3463 | unsigned long errors = cachep->errors; |
2974 | unsigned long max_freeable = cachep->max_freeable; | 3464 | unsigned long max_freeable = cachep->max_freeable; |
2975 | unsigned long free_limit = cachep->free_limit; | ||
2976 | unsigned long node_allocs = cachep->node_allocs; | 3465 | unsigned long node_allocs = cachep->node_allocs; |
3466 | unsigned long node_frees = cachep->node_frees; | ||
2977 | 3467 | ||
2978 | seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu", | 3468 | seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \ |
2979 | allocs, high, grown, reaped, errors, | 3469 | %4lu %4lu %4lu %4lu", |
2980 | max_freeable, free_limit, node_allocs); | 3470 | allocs, high, grown, reaped, errors, |
3471 | max_freeable, node_allocs, node_frees); | ||
2981 | } | 3472 | } |
2982 | /* cpu stats */ | 3473 | /* cpu stats */ |
2983 | { | 3474 | { |
@@ -3056,9 +3547,10 @@ ssize_t slabinfo_write(struct file *file, const char __user *buffer, | |||
3056 | batchcount < 1 || | 3547 | batchcount < 1 || |
3057 | batchcount > limit || | 3548 | batchcount > limit || |
3058 | shared < 0) { | 3549 | shared < 0) { |
3059 | res = -EINVAL; | 3550 | res = 0; |
3060 | } else { | 3551 | } else { |
3061 | res = do_tune_cpucache(cachep, limit, batchcount, shared); | 3552 | res = do_tune_cpucache(cachep, limit, |
3553 | batchcount, shared); | ||
3062 | } | 3554 | } |
3063 | break; | 3555 | break; |
3064 | } | 3556 | } |