aboutsummaryrefslogtreecommitdiffstats
path: root/mm/vmalloc.c
diff options
context:
space:
mode:
authorIngo Molnar <mingo@elte.hu>2008-10-28 11:26:12 -0400
committerIngo Molnar <mingo@elte.hu>2008-10-28 11:26:12 -0400
commit7a9787e1eba95a166265e6a260cf30af04ef0a99 (patch)
treee730a4565e0318140d2fbd2f0415d18a339d7336 /mm/vmalloc.c
parent41b9eb264c8407655db57b60b4457fe1b2ec9977 (diff)
parent0173a3265b228da319ceb9c1ec6a5682fd1b2d92 (diff)
Merge commit 'v2.6.28-rc2' into x86/pci-ioapic-boot-irq-quirks
Diffstat (limited to 'mm/vmalloc.c')
-rw-r--r--mm/vmalloc.c1056
1 files changed, 917 insertions, 139 deletions
diff --git a/mm/vmalloc.c b/mm/vmalloc.c
index 6e45b0f3d125..036536945dd9 100644
--- a/mm/vmalloc.c
+++ b/mm/vmalloc.c
@@ -8,26 +8,28 @@
8 * Numa awareness, Christoph Lameter, SGI, June 2005 8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */ 9 */
10 10
11#include <linux/vmalloc.h>
11#include <linux/mm.h> 12#include <linux/mm.h>
12#include <linux/module.h> 13#include <linux/module.h>
13#include <linux/highmem.h> 14#include <linux/highmem.h>
14#include <linux/slab.h> 15#include <linux/slab.h>
15#include <linux/spinlock.h> 16#include <linux/spinlock.h>
16#include <linux/interrupt.h> 17#include <linux/interrupt.h>
18#include <linux/proc_fs.h>
17#include <linux/seq_file.h> 19#include <linux/seq_file.h>
18#include <linux/debugobjects.h> 20#include <linux/debugobjects.h>
19#include <linux/vmalloc.h>
20#include <linux/kallsyms.h> 21#include <linux/kallsyms.h>
22#include <linux/list.h>
23#include <linux/rbtree.h>
24#include <linux/radix-tree.h>
25#include <linux/rcupdate.h>
21 26
27#include <asm/atomic.h>
22#include <asm/uaccess.h> 28#include <asm/uaccess.h>
23#include <asm/tlbflush.h> 29#include <asm/tlbflush.h>
24 30
25 31
26DEFINE_RWLOCK(vmlist_lock); 32/*** Page table manipulation functions ***/
27struct vm_struct *vmlist;
28
29static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
30 int node, void *caller);
31 33
32static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 34static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
33{ 35{
@@ -40,8 +42,7 @@ static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
40 } while (pte++, addr += PAGE_SIZE, addr != end); 42 } while (pte++, addr += PAGE_SIZE, addr != end);
41} 43}
42 44
43static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr, 45static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
44 unsigned long end)
45{ 46{
46 pmd_t *pmd; 47 pmd_t *pmd;
47 unsigned long next; 48 unsigned long next;
@@ -55,8 +56,7 @@ static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr,
55 } while (pmd++, addr = next, addr != end); 56 } while (pmd++, addr = next, addr != end);
56} 57}
57 58
58static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr, 59static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
59 unsigned long end)
60{ 60{
61 pud_t *pud; 61 pud_t *pud;
62 unsigned long next; 62 unsigned long next;
@@ -70,12 +70,10 @@ static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr,
70 } while (pud++, addr = next, addr != end); 70 } while (pud++, addr = next, addr != end);
71} 71}
72 72
73void unmap_kernel_range(unsigned long addr, unsigned long size) 73static void vunmap_page_range(unsigned long addr, unsigned long end)
74{ 74{
75 pgd_t *pgd; 75 pgd_t *pgd;
76 unsigned long next; 76 unsigned long next;
77 unsigned long start = addr;
78 unsigned long end = addr + size;
79 77
80 BUG_ON(addr >= end); 78 BUG_ON(addr >= end);
81 pgd = pgd_offset_k(addr); 79 pgd = pgd_offset_k(addr);
@@ -86,35 +84,36 @@ void unmap_kernel_range(unsigned long addr, unsigned long size)
86 continue; 84 continue;
87 vunmap_pud_range(pgd, addr, next); 85 vunmap_pud_range(pgd, addr, next);
88 } while (pgd++, addr = next, addr != end); 86 } while (pgd++, addr = next, addr != end);
89 flush_tlb_kernel_range(start, end);
90}
91
92static void unmap_vm_area(struct vm_struct *area)
93{
94 unmap_kernel_range((unsigned long)area->addr, area->size);
95} 87}
96 88
97static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 89static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
98 unsigned long end, pgprot_t prot, struct page ***pages) 90 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
99{ 91{
100 pte_t *pte; 92 pte_t *pte;
101 93
94 /*
95 * nr is a running index into the array which helps higher level
96 * callers keep track of where we're up to.
97 */
98
102 pte = pte_alloc_kernel(pmd, addr); 99 pte = pte_alloc_kernel(pmd, addr);
103 if (!pte) 100 if (!pte)
104 return -ENOMEM; 101 return -ENOMEM;
105 do { 102 do {
106 struct page *page = **pages; 103 struct page *page = pages[*nr];
107 WARN_ON(!pte_none(*pte)); 104
108 if (!page) 105 if (WARN_ON(!pte_none(*pte)))
106 return -EBUSY;
107 if (WARN_ON(!page))
109 return -ENOMEM; 108 return -ENOMEM;
110 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 109 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
111 (*pages)++; 110 (*nr)++;
112 } while (pte++, addr += PAGE_SIZE, addr != end); 111 } while (pte++, addr += PAGE_SIZE, addr != end);
113 return 0; 112 return 0;
114} 113}
115 114
116static inline int vmap_pmd_range(pud_t *pud, unsigned long addr, 115static int vmap_pmd_range(pud_t *pud, unsigned long addr,
117 unsigned long end, pgprot_t prot, struct page ***pages) 116 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
118{ 117{
119 pmd_t *pmd; 118 pmd_t *pmd;
120 unsigned long next; 119 unsigned long next;
@@ -124,14 +123,14 @@ static inline int vmap_pmd_range(pud_t *pud, unsigned long addr,
124 return -ENOMEM; 123 return -ENOMEM;
125 do { 124 do {
126 next = pmd_addr_end(addr, end); 125 next = pmd_addr_end(addr, end);
127 if (vmap_pte_range(pmd, addr, next, prot, pages)) 126 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
128 return -ENOMEM; 127 return -ENOMEM;
129 } while (pmd++, addr = next, addr != end); 128 } while (pmd++, addr = next, addr != end);
130 return 0; 129 return 0;
131} 130}
132 131
133static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr, 132static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
134 unsigned long end, pgprot_t prot, struct page ***pages) 133 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
135{ 134{
136 pud_t *pud; 135 pud_t *pud;
137 unsigned long next; 136 unsigned long next;
@@ -141,50 +140,78 @@ static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr,
141 return -ENOMEM; 140 return -ENOMEM;
142 do { 141 do {
143 next = pud_addr_end(addr, end); 142 next = pud_addr_end(addr, end);
144 if (vmap_pmd_range(pud, addr, next, prot, pages)) 143 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
145 return -ENOMEM; 144 return -ENOMEM;
146 } while (pud++, addr = next, addr != end); 145 } while (pud++, addr = next, addr != end);
147 return 0; 146 return 0;
148} 147}
149 148
150int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) 149/*
150 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
151 * will have pfns corresponding to the "pages" array.
152 *
153 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
154 */
155static int vmap_page_range(unsigned long addr, unsigned long end,
156 pgprot_t prot, struct page **pages)
151{ 157{
152 pgd_t *pgd; 158 pgd_t *pgd;
153 unsigned long next; 159 unsigned long next;
154 unsigned long addr = (unsigned long) area->addr; 160 int err = 0;
155 unsigned long end = addr + area->size - PAGE_SIZE; 161 int nr = 0;
156 int err;
157 162
158 BUG_ON(addr >= end); 163 BUG_ON(addr >= end);
159 pgd = pgd_offset_k(addr); 164 pgd = pgd_offset_k(addr);
160 do { 165 do {
161 next = pgd_addr_end(addr, end); 166 next = pgd_addr_end(addr, end);
162 err = vmap_pud_range(pgd, addr, next, prot, pages); 167 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
163 if (err) 168 if (err)
164 break; 169 break;
165 } while (pgd++, addr = next, addr != end); 170 } while (pgd++, addr = next, addr != end);
166 flush_cache_vmap((unsigned long) area->addr, end); 171 flush_cache_vmap(addr, end);
167 return err; 172
173 if (unlikely(err))
174 return err;
175 return nr;
176}
177
178static inline int is_vmalloc_or_module_addr(const void *x)
179{
180 /*
181 * x86-64 and sparc64 put modules in a special place,
182 * and fall back on vmalloc() if that fails. Others
183 * just put it in the vmalloc space.
184 */
185#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
186 unsigned long addr = (unsigned long)x;
187 if (addr >= MODULES_VADDR && addr < MODULES_END)
188 return 1;
189#endif
190 return is_vmalloc_addr(x);
168} 191}
169EXPORT_SYMBOL_GPL(map_vm_area);
170 192
171/* 193/*
172 * Map a vmalloc()-space virtual address to the physical page. 194 * Walk a vmap address to the struct page it maps.
173 */ 195 */
174struct page *vmalloc_to_page(const void *vmalloc_addr) 196struct page *vmalloc_to_page(const void *vmalloc_addr)
175{ 197{
176 unsigned long addr = (unsigned long) vmalloc_addr; 198 unsigned long addr = (unsigned long) vmalloc_addr;
177 struct page *page = NULL; 199 struct page *page = NULL;
178 pgd_t *pgd = pgd_offset_k(addr); 200 pgd_t *pgd = pgd_offset_k(addr);
179 pud_t *pud; 201
180 pmd_t *pmd; 202 /*
181 pte_t *ptep, pte; 203 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
204 * architectures that do not vmalloc module space
205 */
206 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
182 207
183 if (!pgd_none(*pgd)) { 208 if (!pgd_none(*pgd)) {
184 pud = pud_offset(pgd, addr); 209 pud_t *pud = pud_offset(pgd, addr);
185 if (!pud_none(*pud)) { 210 if (!pud_none(*pud)) {
186 pmd = pmd_offset(pud, addr); 211 pmd_t *pmd = pmd_offset(pud, addr);
187 if (!pmd_none(*pmd)) { 212 if (!pmd_none(*pmd)) {
213 pte_t *ptep, pte;
214
188 ptep = pte_offset_map(pmd, addr); 215 ptep = pte_offset_map(pmd, addr);
189 pte = *ptep; 216 pte = *ptep;
190 if (pte_present(pte)) 217 if (pte_present(pte))
@@ -206,13 +233,751 @@ unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
206} 233}
207EXPORT_SYMBOL(vmalloc_to_pfn); 234EXPORT_SYMBOL(vmalloc_to_pfn);
208 235
209static struct vm_struct * 236
210__get_vm_area_node(unsigned long size, unsigned long flags, unsigned long start, 237/*** Global kva allocator ***/
211 unsigned long end, int node, gfp_t gfp_mask, void *caller) 238
239#define VM_LAZY_FREE 0x01
240#define VM_LAZY_FREEING 0x02
241#define VM_VM_AREA 0x04
242
243struct vmap_area {
244 unsigned long va_start;
245 unsigned long va_end;
246 unsigned long flags;
247 struct rb_node rb_node; /* address sorted rbtree */
248 struct list_head list; /* address sorted list */
249 struct list_head purge_list; /* "lazy purge" list */
250 void *private;
251 struct rcu_head rcu_head;
252};
253
254static DEFINE_SPINLOCK(vmap_area_lock);
255static struct rb_root vmap_area_root = RB_ROOT;
256static LIST_HEAD(vmap_area_list);
257
258static struct vmap_area *__find_vmap_area(unsigned long addr)
212{ 259{
213 struct vm_struct **p, *tmp, *area; 260 struct rb_node *n = vmap_area_root.rb_node;
214 unsigned long align = 1; 261
262 while (n) {
263 struct vmap_area *va;
264
265 va = rb_entry(n, struct vmap_area, rb_node);
266 if (addr < va->va_start)
267 n = n->rb_left;
268 else if (addr > va->va_start)
269 n = n->rb_right;
270 else
271 return va;
272 }
273
274 return NULL;
275}
276
277static void __insert_vmap_area(struct vmap_area *va)
278{
279 struct rb_node **p = &vmap_area_root.rb_node;
280 struct rb_node *parent = NULL;
281 struct rb_node *tmp;
282
283 while (*p) {
284 struct vmap_area *tmp;
285
286 parent = *p;
287 tmp = rb_entry(parent, struct vmap_area, rb_node);
288 if (va->va_start < tmp->va_end)
289 p = &(*p)->rb_left;
290 else if (va->va_end > tmp->va_start)
291 p = &(*p)->rb_right;
292 else
293 BUG();
294 }
295
296 rb_link_node(&va->rb_node, parent, p);
297 rb_insert_color(&va->rb_node, &vmap_area_root);
298
299 /* address-sort this list so it is usable like the vmlist */
300 tmp = rb_prev(&va->rb_node);
301 if (tmp) {
302 struct vmap_area *prev;
303 prev = rb_entry(tmp, struct vmap_area, rb_node);
304 list_add_rcu(&va->list, &prev->list);
305 } else
306 list_add_rcu(&va->list, &vmap_area_list);
307}
308
309static void purge_vmap_area_lazy(void);
310
311/*
312 * Allocate a region of KVA of the specified size and alignment, within the
313 * vstart and vend.
314 */
315static struct vmap_area *alloc_vmap_area(unsigned long size,
316 unsigned long align,
317 unsigned long vstart, unsigned long vend,
318 int node, gfp_t gfp_mask)
319{
320 struct vmap_area *va;
321 struct rb_node *n;
322 unsigned long addr;
323 int purged = 0;
324
325 BUG_ON(size & ~PAGE_MASK);
326
327 addr = ALIGN(vstart, align);
328
329 va = kmalloc_node(sizeof(struct vmap_area),
330 gfp_mask & GFP_RECLAIM_MASK, node);
331 if (unlikely(!va))
332 return ERR_PTR(-ENOMEM);
333
334retry:
335 spin_lock(&vmap_area_lock);
336 /* XXX: could have a last_hole cache */
337 n = vmap_area_root.rb_node;
338 if (n) {
339 struct vmap_area *first = NULL;
340
341 do {
342 struct vmap_area *tmp;
343 tmp = rb_entry(n, struct vmap_area, rb_node);
344 if (tmp->va_end >= addr) {
345 if (!first && tmp->va_start < addr + size)
346 first = tmp;
347 n = n->rb_left;
348 } else {
349 first = tmp;
350 n = n->rb_right;
351 }
352 } while (n);
353
354 if (!first)
355 goto found;
356
357 if (first->va_end < addr) {
358 n = rb_next(&first->rb_node);
359 if (n)
360 first = rb_entry(n, struct vmap_area, rb_node);
361 else
362 goto found;
363 }
364
365 while (addr + size >= first->va_start && addr + size <= vend) {
366 addr = ALIGN(first->va_end + PAGE_SIZE, align);
367
368 n = rb_next(&first->rb_node);
369 if (n)
370 first = rb_entry(n, struct vmap_area, rb_node);
371 else
372 goto found;
373 }
374 }
375found:
376 if (addr + size > vend) {
377 spin_unlock(&vmap_area_lock);
378 if (!purged) {
379 purge_vmap_area_lazy();
380 purged = 1;
381 goto retry;
382 }
383 if (printk_ratelimit())
384 printk(KERN_WARNING "vmap allocation failed: "
385 "use vmalloc=<size> to increase size.\n");
386 return ERR_PTR(-EBUSY);
387 }
388
389 BUG_ON(addr & (align-1));
390
391 va->va_start = addr;
392 va->va_end = addr + size;
393 va->flags = 0;
394 __insert_vmap_area(va);
395 spin_unlock(&vmap_area_lock);
396
397 return va;
398}
399
400static void rcu_free_va(struct rcu_head *head)
401{
402 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
403
404 kfree(va);
405}
406
407static void __free_vmap_area(struct vmap_area *va)
408{
409 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
410 rb_erase(&va->rb_node, &vmap_area_root);
411 RB_CLEAR_NODE(&va->rb_node);
412 list_del_rcu(&va->list);
413
414 call_rcu(&va->rcu_head, rcu_free_va);
415}
416
417/*
418 * Free a region of KVA allocated by alloc_vmap_area
419 */
420static void free_vmap_area(struct vmap_area *va)
421{
422 spin_lock(&vmap_area_lock);
423 __free_vmap_area(va);
424 spin_unlock(&vmap_area_lock);
425}
426
427/*
428 * Clear the pagetable entries of a given vmap_area
429 */
430static void unmap_vmap_area(struct vmap_area *va)
431{
432 vunmap_page_range(va->va_start, va->va_end);
433}
434
435/*
436 * lazy_max_pages is the maximum amount of virtual address space we gather up
437 * before attempting to purge with a TLB flush.
438 *
439 * There is a tradeoff here: a larger number will cover more kernel page tables
440 * and take slightly longer to purge, but it will linearly reduce the number of
441 * global TLB flushes that must be performed. It would seem natural to scale
442 * this number up linearly with the number of CPUs (because vmapping activity
443 * could also scale linearly with the number of CPUs), however it is likely
444 * that in practice, workloads might be constrained in other ways that mean
445 * vmap activity will not scale linearly with CPUs. Also, I want to be
446 * conservative and not introduce a big latency on huge systems, so go with
447 * a less aggressive log scale. It will still be an improvement over the old
448 * code, and it will be simple to change the scale factor if we find that it
449 * becomes a problem on bigger systems.
450 */
451static unsigned long lazy_max_pages(void)
452{
453 unsigned int log;
454
455 log = fls(num_online_cpus());
456
457 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
458}
459
460static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
461
462/*
463 * Purges all lazily-freed vmap areas.
464 *
465 * If sync is 0 then don't purge if there is already a purge in progress.
466 * If force_flush is 1, then flush kernel TLBs between *start and *end even
467 * if we found no lazy vmap areas to unmap (callers can use this to optimise
468 * their own TLB flushing).
469 * Returns with *start = min(*start, lowest purged address)
470 * *end = max(*end, highest purged address)
471 */
472static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
473 int sync, int force_flush)
474{
475 static DEFINE_SPINLOCK(purge_lock);
476 LIST_HEAD(valist);
477 struct vmap_area *va;
478 int nr = 0;
479
480 /*
481 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
482 * should not expect such behaviour. This just simplifies locking for
483 * the case that isn't actually used at the moment anyway.
484 */
485 if (!sync && !force_flush) {
486 if (!spin_trylock(&purge_lock))
487 return;
488 } else
489 spin_lock(&purge_lock);
490
491 rcu_read_lock();
492 list_for_each_entry_rcu(va, &vmap_area_list, list) {
493 if (va->flags & VM_LAZY_FREE) {
494 if (va->va_start < *start)
495 *start = va->va_start;
496 if (va->va_end > *end)
497 *end = va->va_end;
498 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
499 unmap_vmap_area(va);
500 list_add_tail(&va->purge_list, &valist);
501 va->flags |= VM_LAZY_FREEING;
502 va->flags &= ~VM_LAZY_FREE;
503 }
504 }
505 rcu_read_unlock();
506
507 if (nr) {
508 BUG_ON(nr > atomic_read(&vmap_lazy_nr));
509 atomic_sub(nr, &vmap_lazy_nr);
510 }
511
512 if (nr || force_flush)
513 flush_tlb_kernel_range(*start, *end);
514
515 if (nr) {
516 spin_lock(&vmap_area_lock);
517 list_for_each_entry(va, &valist, purge_list)
518 __free_vmap_area(va);
519 spin_unlock(&vmap_area_lock);
520 }
521 spin_unlock(&purge_lock);
522}
523
524/*
525 * Kick off a purge of the outstanding lazy areas.
526 */
527static void purge_vmap_area_lazy(void)
528{
529 unsigned long start = ULONG_MAX, end = 0;
530
531 __purge_vmap_area_lazy(&start, &end, 0, 0);
532}
533
534/*
535 * Free and unmap a vmap area
536 */
537static void free_unmap_vmap_area(struct vmap_area *va)
538{
539 va->flags |= VM_LAZY_FREE;
540 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
541 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
542 purge_vmap_area_lazy();
543}
544
545static struct vmap_area *find_vmap_area(unsigned long addr)
546{
547 struct vmap_area *va;
548
549 spin_lock(&vmap_area_lock);
550 va = __find_vmap_area(addr);
551 spin_unlock(&vmap_area_lock);
552
553 return va;
554}
555
556static void free_unmap_vmap_area_addr(unsigned long addr)
557{
558 struct vmap_area *va;
559
560 va = find_vmap_area(addr);
561 BUG_ON(!va);
562 free_unmap_vmap_area(va);
563}
564
565
566/*** Per cpu kva allocator ***/
567
568/*
569 * vmap space is limited especially on 32 bit architectures. Ensure there is
570 * room for at least 16 percpu vmap blocks per CPU.
571 */
572/*
573 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
574 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
575 * instead (we just need a rough idea)
576 */
577#if BITS_PER_LONG == 32
578#define VMALLOC_SPACE (128UL*1024*1024)
579#else
580#define VMALLOC_SPACE (128UL*1024*1024*1024)
581#endif
582
583#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
584#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
585#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
586#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
587#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
588#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
589#define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
590 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
591 VMALLOC_PAGES / NR_CPUS / 16))
592
593#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
594
595struct vmap_block_queue {
596 spinlock_t lock;
597 struct list_head free;
598 struct list_head dirty;
599 unsigned int nr_dirty;
600};
601
602struct vmap_block {
603 spinlock_t lock;
604 struct vmap_area *va;
605 struct vmap_block_queue *vbq;
606 unsigned long free, dirty;
607 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
608 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
609 union {
610 struct {
611 struct list_head free_list;
612 struct list_head dirty_list;
613 };
614 struct rcu_head rcu_head;
615 };
616};
617
618/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
619static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
620
621/*
622 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
623 * in the free path. Could get rid of this if we change the API to return a
624 * "cookie" from alloc, to be passed to free. But no big deal yet.
625 */
626static DEFINE_SPINLOCK(vmap_block_tree_lock);
627static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
628
629/*
630 * We should probably have a fallback mechanism to allocate virtual memory
631 * out of partially filled vmap blocks. However vmap block sizing should be
632 * fairly reasonable according to the vmalloc size, so it shouldn't be a
633 * big problem.
634 */
635
636static unsigned long addr_to_vb_idx(unsigned long addr)
637{
638 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
639 addr /= VMAP_BLOCK_SIZE;
640 return addr;
641}
642
643static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
644{
645 struct vmap_block_queue *vbq;
646 struct vmap_block *vb;
647 struct vmap_area *va;
648 unsigned long vb_idx;
649 int node, err;
650
651 node = numa_node_id();
652
653 vb = kmalloc_node(sizeof(struct vmap_block),
654 gfp_mask & GFP_RECLAIM_MASK, node);
655 if (unlikely(!vb))
656 return ERR_PTR(-ENOMEM);
657
658 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
659 VMALLOC_START, VMALLOC_END,
660 node, gfp_mask);
661 if (unlikely(IS_ERR(va))) {
662 kfree(vb);
663 return ERR_PTR(PTR_ERR(va));
664 }
665
666 err = radix_tree_preload(gfp_mask);
667 if (unlikely(err)) {
668 kfree(vb);
669 free_vmap_area(va);
670 return ERR_PTR(err);
671 }
672
673 spin_lock_init(&vb->lock);
674 vb->va = va;
675 vb->free = VMAP_BBMAP_BITS;
676 vb->dirty = 0;
677 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
678 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
679 INIT_LIST_HEAD(&vb->free_list);
680 INIT_LIST_HEAD(&vb->dirty_list);
681
682 vb_idx = addr_to_vb_idx(va->va_start);
683 spin_lock(&vmap_block_tree_lock);
684 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
685 spin_unlock(&vmap_block_tree_lock);
686 BUG_ON(err);
687 radix_tree_preload_end();
688
689 vbq = &get_cpu_var(vmap_block_queue);
690 vb->vbq = vbq;
691 spin_lock(&vbq->lock);
692 list_add(&vb->free_list, &vbq->free);
693 spin_unlock(&vbq->lock);
694 put_cpu_var(vmap_cpu_blocks);
695
696 return vb;
697}
698
699static void rcu_free_vb(struct rcu_head *head)
700{
701 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
702
703 kfree(vb);
704}
705
706static void free_vmap_block(struct vmap_block *vb)
707{
708 struct vmap_block *tmp;
709 unsigned long vb_idx;
710
711 spin_lock(&vb->vbq->lock);
712 if (!list_empty(&vb->free_list))
713 list_del(&vb->free_list);
714 if (!list_empty(&vb->dirty_list))
715 list_del(&vb->dirty_list);
716 spin_unlock(&vb->vbq->lock);
717
718 vb_idx = addr_to_vb_idx(vb->va->va_start);
719 spin_lock(&vmap_block_tree_lock);
720 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
721 spin_unlock(&vmap_block_tree_lock);
722 BUG_ON(tmp != vb);
723
724 free_unmap_vmap_area(vb->va);
725 call_rcu(&vb->rcu_head, rcu_free_vb);
726}
727
728static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
729{
730 struct vmap_block_queue *vbq;
731 struct vmap_block *vb;
732 unsigned long addr = 0;
733 unsigned int order;
734
735 BUG_ON(size & ~PAGE_MASK);
736 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
737 order = get_order(size);
738
739again:
740 rcu_read_lock();
741 vbq = &get_cpu_var(vmap_block_queue);
742 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
743 int i;
744
745 spin_lock(&vb->lock);
746 i = bitmap_find_free_region(vb->alloc_map,
747 VMAP_BBMAP_BITS, order);
748
749 if (i >= 0) {
750 addr = vb->va->va_start + (i << PAGE_SHIFT);
751 BUG_ON(addr_to_vb_idx(addr) !=
752 addr_to_vb_idx(vb->va->va_start));
753 vb->free -= 1UL << order;
754 if (vb->free == 0) {
755 spin_lock(&vbq->lock);
756 list_del_init(&vb->free_list);
757 spin_unlock(&vbq->lock);
758 }
759 spin_unlock(&vb->lock);
760 break;
761 }
762 spin_unlock(&vb->lock);
763 }
764 put_cpu_var(vmap_cpu_blocks);
765 rcu_read_unlock();
766
767 if (!addr) {
768 vb = new_vmap_block(gfp_mask);
769 if (IS_ERR(vb))
770 return vb;
771 goto again;
772 }
773
774 return (void *)addr;
775}
776
777static void vb_free(const void *addr, unsigned long size)
778{
779 unsigned long offset;
780 unsigned long vb_idx;
781 unsigned int order;
782 struct vmap_block *vb;
783
784 BUG_ON(size & ~PAGE_MASK);
785 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
786 order = get_order(size);
787
788 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
789
790 vb_idx = addr_to_vb_idx((unsigned long)addr);
791 rcu_read_lock();
792 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
793 rcu_read_unlock();
794 BUG_ON(!vb);
795
796 spin_lock(&vb->lock);
797 bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
798 if (!vb->dirty) {
799 spin_lock(&vb->vbq->lock);
800 list_add(&vb->dirty_list, &vb->vbq->dirty);
801 spin_unlock(&vb->vbq->lock);
802 }
803 vb->dirty += 1UL << order;
804 if (vb->dirty == VMAP_BBMAP_BITS) {
805 BUG_ON(vb->free || !list_empty(&vb->free_list));
806 spin_unlock(&vb->lock);
807 free_vmap_block(vb);
808 } else
809 spin_unlock(&vb->lock);
810}
811
812/**
813 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
814 *
815 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
816 * to amortize TLB flushing overheads. What this means is that any page you
817 * have now, may, in a former life, have been mapped into kernel virtual
818 * address by the vmap layer and so there might be some CPUs with TLB entries
819 * still referencing that page (additional to the regular 1:1 kernel mapping).
820 *
821 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
822 * be sure that none of the pages we have control over will have any aliases
823 * from the vmap layer.
824 */
825void vm_unmap_aliases(void)
826{
827 unsigned long start = ULONG_MAX, end = 0;
828 int cpu;
829 int flush = 0;
830
831 for_each_possible_cpu(cpu) {
832 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
833 struct vmap_block *vb;
834
835 rcu_read_lock();
836 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
837 int i;
838
839 spin_lock(&vb->lock);
840 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
841 while (i < VMAP_BBMAP_BITS) {
842 unsigned long s, e;
843 int j;
844 j = find_next_zero_bit(vb->dirty_map,
845 VMAP_BBMAP_BITS, i);
846
847 s = vb->va->va_start + (i << PAGE_SHIFT);
848 e = vb->va->va_start + (j << PAGE_SHIFT);
849 vunmap_page_range(s, e);
850 flush = 1;
851
852 if (s < start)
853 start = s;
854 if (e > end)
855 end = e;
856
857 i = j;
858 i = find_next_bit(vb->dirty_map,
859 VMAP_BBMAP_BITS, i);
860 }
861 spin_unlock(&vb->lock);
862 }
863 rcu_read_unlock();
864 }
865
866 __purge_vmap_area_lazy(&start, &end, 1, flush);
867}
868EXPORT_SYMBOL_GPL(vm_unmap_aliases);
869
870/**
871 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
872 * @mem: the pointer returned by vm_map_ram
873 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
874 */
875void vm_unmap_ram(const void *mem, unsigned int count)
876{
877 unsigned long size = count << PAGE_SHIFT;
878 unsigned long addr = (unsigned long)mem;
879
880 BUG_ON(!addr);
881 BUG_ON(addr < VMALLOC_START);
882 BUG_ON(addr > VMALLOC_END);
883 BUG_ON(addr & (PAGE_SIZE-1));
884
885 debug_check_no_locks_freed(mem, size);
886
887 if (likely(count <= VMAP_MAX_ALLOC))
888 vb_free(mem, size);
889 else
890 free_unmap_vmap_area_addr(addr);
891}
892EXPORT_SYMBOL(vm_unmap_ram);
893
894/**
895 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
896 * @pages: an array of pointers to the pages to be mapped
897 * @count: number of pages
898 * @node: prefer to allocate data structures on this node
899 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
900 * @returns: a pointer to the address that has been mapped, or NULL on failure
901 */
902void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
903{
904 unsigned long size = count << PAGE_SHIFT;
215 unsigned long addr; 905 unsigned long addr;
906 void *mem;
907
908 if (likely(count <= VMAP_MAX_ALLOC)) {
909 mem = vb_alloc(size, GFP_KERNEL);
910 if (IS_ERR(mem))
911 return NULL;
912 addr = (unsigned long)mem;
913 } else {
914 struct vmap_area *va;
915 va = alloc_vmap_area(size, PAGE_SIZE,
916 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
917 if (IS_ERR(va))
918 return NULL;
919
920 addr = va->va_start;
921 mem = (void *)addr;
922 }
923 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
924 vm_unmap_ram(mem, count);
925 return NULL;
926 }
927 return mem;
928}
929EXPORT_SYMBOL(vm_map_ram);
930
931void __init vmalloc_init(void)
932{
933 int i;
934
935 for_each_possible_cpu(i) {
936 struct vmap_block_queue *vbq;
937
938 vbq = &per_cpu(vmap_block_queue, i);
939 spin_lock_init(&vbq->lock);
940 INIT_LIST_HEAD(&vbq->free);
941 INIT_LIST_HEAD(&vbq->dirty);
942 vbq->nr_dirty = 0;
943 }
944}
945
946void unmap_kernel_range(unsigned long addr, unsigned long size)
947{
948 unsigned long end = addr + size;
949 vunmap_page_range(addr, end);
950 flush_tlb_kernel_range(addr, end);
951}
952
953int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
954{
955 unsigned long addr = (unsigned long)area->addr;
956 unsigned long end = addr + area->size - PAGE_SIZE;
957 int err;
958
959 err = vmap_page_range(addr, end, prot, *pages);
960 if (err > 0) {
961 *pages += err;
962 err = 0;
963 }
964
965 return err;
966}
967EXPORT_SYMBOL_GPL(map_vm_area);
968
969/*** Old vmalloc interfaces ***/
970DEFINE_RWLOCK(vmlist_lock);
971struct vm_struct *vmlist;
972
973static struct vm_struct *__get_vm_area_node(unsigned long size,
974 unsigned long flags, unsigned long start, unsigned long end,
975 int node, gfp_t gfp_mask, void *caller)
976{
977 static struct vmap_area *va;
978 struct vm_struct *area;
979 struct vm_struct *tmp, **p;
980 unsigned long align = 1;
216 981
217 BUG_ON(in_interrupt()); 982 BUG_ON(in_interrupt());
218 if (flags & VM_IOREMAP) { 983 if (flags & VM_IOREMAP) {
@@ -225,13 +990,12 @@ __get_vm_area_node(unsigned long size, unsigned long flags, unsigned long start,
225 990
226 align = 1ul << bit; 991 align = 1ul << bit;
227 } 992 }
228 addr = ALIGN(start, align); 993
229 size = PAGE_ALIGN(size); 994 size = PAGE_ALIGN(size);
230 if (unlikely(!size)) 995 if (unlikely(!size))
231 return NULL; 996 return NULL;
232 997
233 area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 998 area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
234
235 if (unlikely(!area)) 999 if (unlikely(!area))
236 return NULL; 1000 return NULL;
237 1001
@@ -240,48 +1004,32 @@ __get_vm_area_node(unsigned long size, unsigned long flags, unsigned long start,
240 */ 1004 */
241 size += PAGE_SIZE; 1005 size += PAGE_SIZE;
242 1006
243 write_lock(&vmlist_lock); 1007 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
244 for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) { 1008 if (IS_ERR(va)) {
245 if ((unsigned long)tmp->addr < addr) { 1009 kfree(area);
246 if((unsigned long)tmp->addr + tmp->size >= addr) 1010 return NULL;
247 addr = ALIGN(tmp->size +
248 (unsigned long)tmp->addr, align);
249 continue;
250 }
251 if ((size + addr) < addr)
252 goto out;
253 if (size + addr <= (unsigned long)tmp->addr)
254 goto found;
255 addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align);
256 if (addr > end - size)
257 goto out;
258 } 1011 }
259 if ((size + addr) < addr)
260 goto out;
261 if (addr > end - size)
262 goto out;
263
264found:
265 area->next = *p;
266 *p = area;
267 1012
268 area->flags = flags; 1013 area->flags = flags;
269 area->addr = (void *)addr; 1014 area->addr = (void *)va->va_start;
270 area->size = size; 1015 area->size = size;
271 area->pages = NULL; 1016 area->pages = NULL;
272 area->nr_pages = 0; 1017 area->nr_pages = 0;
273 area->phys_addr = 0; 1018 area->phys_addr = 0;
274 area->caller = caller; 1019 area->caller = caller;
1020 va->private = area;
1021 va->flags |= VM_VM_AREA;
1022
1023 write_lock(&vmlist_lock);
1024 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1025 if (tmp->addr >= area->addr)
1026 break;
1027 }
1028 area->next = *p;
1029 *p = area;
275 write_unlock(&vmlist_lock); 1030 write_unlock(&vmlist_lock);
276 1031
277 return area; 1032 return area;
278
279out:
280 write_unlock(&vmlist_lock);
281 kfree(area);
282 if (printk_ratelimit())
283 printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n");
284 return NULL;
285} 1033}
286 1034
287struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 1035struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
@@ -321,39 +1069,15 @@ struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
321 gfp_mask, __builtin_return_address(0)); 1069 gfp_mask, __builtin_return_address(0));
322} 1070}
323 1071
324/* Caller must hold vmlist_lock */ 1072static struct vm_struct *find_vm_area(const void *addr)
325static struct vm_struct *__find_vm_area(const void *addr)
326{ 1073{
327 struct vm_struct *tmp; 1074 struct vmap_area *va;
328 1075
329 for (tmp = vmlist; tmp != NULL; tmp = tmp->next) { 1076 va = find_vmap_area((unsigned long)addr);
330 if (tmp->addr == addr) 1077 if (va && va->flags & VM_VM_AREA)
331 break; 1078 return va->private;
332 }
333 1079
334 return tmp;
335}
336
337/* Caller must hold vmlist_lock */
338static struct vm_struct *__remove_vm_area(const void *addr)
339{
340 struct vm_struct **p, *tmp;
341
342 for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) {
343 if (tmp->addr == addr)
344 goto found;
345 }
346 return NULL; 1080 return NULL;
347
348found:
349 unmap_vm_area(tmp);
350 *p = tmp->next;
351
352 /*
353 * Remove the guard page.
354 */
355 tmp->size -= PAGE_SIZE;
356 return tmp;
357} 1081}
358 1082
359/** 1083/**
@@ -366,11 +1090,24 @@ found:
366 */ 1090 */
367struct vm_struct *remove_vm_area(const void *addr) 1091struct vm_struct *remove_vm_area(const void *addr)
368{ 1092{
369 struct vm_struct *v; 1093 struct vmap_area *va;
370 write_lock(&vmlist_lock); 1094
371 v = __remove_vm_area(addr); 1095 va = find_vmap_area((unsigned long)addr);
372 write_unlock(&vmlist_lock); 1096 if (va && va->flags & VM_VM_AREA) {
373 return v; 1097 struct vm_struct *vm = va->private;
1098 struct vm_struct *tmp, **p;
1099 free_unmap_vmap_area(va);
1100 vm->size -= PAGE_SIZE;
1101
1102 write_lock(&vmlist_lock);
1103 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1104 ;
1105 *p = tmp->next;
1106 write_unlock(&vmlist_lock);
1107
1108 return vm;
1109 }
1110 return NULL;
374} 1111}
375 1112
376static void __vunmap(const void *addr, int deallocate_pages) 1113static void __vunmap(const void *addr, int deallocate_pages)
@@ -381,16 +1118,14 @@ static void __vunmap(const void *addr, int deallocate_pages)
381 return; 1118 return;
382 1119
383 if ((PAGE_SIZE-1) & (unsigned long)addr) { 1120 if ((PAGE_SIZE-1) & (unsigned long)addr) {
384 printk(KERN_ERR "Trying to vfree() bad address (%p)\n", addr); 1121 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
385 WARN_ON(1);
386 return; 1122 return;
387 } 1123 }
388 1124
389 area = remove_vm_area(addr); 1125 area = remove_vm_area(addr);
390 if (unlikely(!area)) { 1126 if (unlikely(!area)) {
391 printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 1127 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
392 addr); 1128 addr);
393 WARN_ON(1);
394 return; 1129 return;
395 } 1130 }
396 1131
@@ -482,6 +1217,8 @@ void *vmap(struct page **pages, unsigned int count,
482} 1217}
483EXPORT_SYMBOL(vmap); 1218EXPORT_SYMBOL(vmap);
484 1219
1220static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1221 int node, void *caller);
485static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 1222static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
486 pgprot_t prot, int node, void *caller) 1223 pgprot_t prot, int node, void *caller)
487{ 1224{
@@ -608,10 +1345,8 @@ void *vmalloc_user(unsigned long size)
608 1345
609 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL); 1346 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL);
610 if (ret) { 1347 if (ret) {
611 write_lock(&vmlist_lock); 1348 area = find_vm_area(ret);
612 area = __find_vm_area(ret);
613 area->flags |= VM_USERMAP; 1349 area->flags |= VM_USERMAP;
614 write_unlock(&vmlist_lock);
615 } 1350 }
616 return ret; 1351 return ret;
617} 1352}
@@ -691,10 +1426,8 @@ void *vmalloc_32_user(unsigned long size)
691 1426
692 ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL); 1427 ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL);
693 if (ret) { 1428 if (ret) {
694 write_lock(&vmlist_lock); 1429 area = find_vm_area(ret);
695 area = __find_vm_area(ret);
696 area->flags |= VM_USERMAP; 1430 area->flags |= VM_USERMAP;
697 write_unlock(&vmlist_lock);
698 } 1431 }
699 return ret; 1432 return ret;
700} 1433}
@@ -795,26 +1528,25 @@ int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
795 struct vm_struct *area; 1528 struct vm_struct *area;
796 unsigned long uaddr = vma->vm_start; 1529 unsigned long uaddr = vma->vm_start;
797 unsigned long usize = vma->vm_end - vma->vm_start; 1530 unsigned long usize = vma->vm_end - vma->vm_start;
798 int ret;
799 1531
800 if ((PAGE_SIZE-1) & (unsigned long)addr) 1532 if ((PAGE_SIZE-1) & (unsigned long)addr)
801 return -EINVAL; 1533 return -EINVAL;
802 1534
803 read_lock(&vmlist_lock); 1535 area = find_vm_area(addr);
804 area = __find_vm_area(addr);
805 if (!area) 1536 if (!area)
806 goto out_einval_locked; 1537 return -EINVAL;
807 1538
808 if (!(area->flags & VM_USERMAP)) 1539 if (!(area->flags & VM_USERMAP))
809 goto out_einval_locked; 1540 return -EINVAL;
810 1541
811 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) 1542 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
812 goto out_einval_locked; 1543 return -EINVAL;
813 read_unlock(&vmlist_lock);
814 1544
815 addr += pgoff << PAGE_SHIFT; 1545 addr += pgoff << PAGE_SHIFT;
816 do { 1546 do {
817 struct page *page = vmalloc_to_page(addr); 1547 struct page *page = vmalloc_to_page(addr);
1548 int ret;
1549
818 ret = vm_insert_page(vma, uaddr, page); 1550 ret = vm_insert_page(vma, uaddr, page);
819 if (ret) 1551 if (ret)
820 return ret; 1552 return ret;
@@ -827,11 +1559,7 @@ int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
827 /* Prevent "things" like memory migration? VM_flags need a cleanup... */ 1559 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
828 vma->vm_flags |= VM_RESERVED; 1560 vma->vm_flags |= VM_RESERVED;
829 1561
830 return ret; 1562 return 0;
831
832out_einval_locked:
833 read_unlock(&vmlist_lock);
834 return -EINVAL;
835} 1563}
836EXPORT_SYMBOL(remap_vmalloc_range); 1564EXPORT_SYMBOL(remap_vmalloc_range);
837 1565
@@ -931,6 +1659,25 @@ static void s_stop(struct seq_file *m, void *p)
931 read_unlock(&vmlist_lock); 1659 read_unlock(&vmlist_lock);
932} 1660}
933 1661
1662static void show_numa_info(struct seq_file *m, struct vm_struct *v)
1663{
1664 if (NUMA_BUILD) {
1665 unsigned int nr, *counters = m->private;
1666
1667 if (!counters)
1668 return;
1669
1670 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
1671
1672 for (nr = 0; nr < v->nr_pages; nr++)
1673 counters[page_to_nid(v->pages[nr])]++;
1674
1675 for_each_node_state(nr, N_HIGH_MEMORY)
1676 if (counters[nr])
1677 seq_printf(m, " N%u=%u", nr, counters[nr]);
1678 }
1679}
1680
934static int s_show(struct seq_file *m, void *p) 1681static int s_show(struct seq_file *m, void *p)
935{ 1682{
936 struct vm_struct *v = p; 1683 struct vm_struct *v = p;
@@ -967,15 +1714,46 @@ static int s_show(struct seq_file *m, void *p)
967 if (v->flags & VM_VPAGES) 1714 if (v->flags & VM_VPAGES)
968 seq_printf(m, " vpages"); 1715 seq_printf(m, " vpages");
969 1716
1717 show_numa_info(m, v);
970 seq_putc(m, '\n'); 1718 seq_putc(m, '\n');
971 return 0; 1719 return 0;
972} 1720}
973 1721
974const struct seq_operations vmalloc_op = { 1722static const struct seq_operations vmalloc_op = {
975 .start = s_start, 1723 .start = s_start,
976 .next = s_next, 1724 .next = s_next,
977 .stop = s_stop, 1725 .stop = s_stop,
978 .show = s_show, 1726 .show = s_show,
979}; 1727};
1728
1729static int vmalloc_open(struct inode *inode, struct file *file)
1730{
1731 unsigned int *ptr = NULL;
1732 int ret;
1733
1734 if (NUMA_BUILD)
1735 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
1736 ret = seq_open(file, &vmalloc_op);
1737 if (!ret) {
1738 struct seq_file *m = file->private_data;
1739 m->private = ptr;
1740 } else
1741 kfree(ptr);
1742 return ret;
1743}
1744
1745static const struct file_operations proc_vmalloc_operations = {
1746 .open = vmalloc_open,
1747 .read = seq_read,
1748 .llseek = seq_lseek,
1749 .release = seq_release_private,
1750};
1751
1752static int __init proc_vmalloc_init(void)
1753{
1754 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
1755 return 0;
1756}
1757module_init(proc_vmalloc_init);
980#endif 1758#endif
981 1759