aboutsummaryrefslogtreecommitdiffstats
path: root/mm/swap_state.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /mm/swap_state.c
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'mm/swap_state.c')
-rw-r--r--mm/swap_state.c382
1 files changed, 382 insertions, 0 deletions
diff --git a/mm/swap_state.c b/mm/swap_state.c
new file mode 100644
index 000000000000..a063a902ed03
--- /dev/null
+++ b/mm/swap_state.c
@@ -0,0 +1,382 @@
1/*
2 * linux/mm/swap_state.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 *
7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
8 */
9#include <linux/module.h>
10#include <linux/mm.h>
11#include <linux/kernel_stat.h>
12#include <linux/swap.h>
13#include <linux/init.h>
14#include <linux/pagemap.h>
15#include <linux/buffer_head.h>
16#include <linux/backing-dev.h>
17
18#include <asm/pgtable.h>
19
20/*
21 * swapper_space is a fiction, retained to simplify the path through
22 * vmscan's shrink_list, to make sync_page look nicer, and to allow
23 * future use of radix_tree tags in the swap cache.
24 */
25static struct address_space_operations swap_aops = {
26 .writepage = swap_writepage,
27 .sync_page = block_sync_page,
28 .set_page_dirty = __set_page_dirty_nobuffers,
29};
30
31static struct backing_dev_info swap_backing_dev_info = {
32 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
33 .unplug_io_fn = swap_unplug_io_fn,
34};
35
36struct address_space swapper_space = {
37 .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
38 .tree_lock = RW_LOCK_UNLOCKED,
39 .a_ops = &swap_aops,
40 .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
41 .backing_dev_info = &swap_backing_dev_info,
42};
43EXPORT_SYMBOL(swapper_space);
44
45#define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
46
47static struct {
48 unsigned long add_total;
49 unsigned long del_total;
50 unsigned long find_success;
51 unsigned long find_total;
52 unsigned long noent_race;
53 unsigned long exist_race;
54} swap_cache_info;
55
56void show_swap_cache_info(void)
57{
58 printk("Swap cache: add %lu, delete %lu, find %lu/%lu, race %lu+%lu\n",
59 swap_cache_info.add_total, swap_cache_info.del_total,
60 swap_cache_info.find_success, swap_cache_info.find_total,
61 swap_cache_info.noent_race, swap_cache_info.exist_race);
62 printk("Free swap = %lukB\n", nr_swap_pages << (PAGE_SHIFT - 10));
63 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
64}
65
66/*
67 * __add_to_swap_cache resembles add_to_page_cache on swapper_space,
68 * but sets SwapCache flag and private instead of mapping and index.
69 */
70static int __add_to_swap_cache(struct page *page,
71 swp_entry_t entry, int gfp_mask)
72{
73 int error;
74
75 BUG_ON(PageSwapCache(page));
76 BUG_ON(PagePrivate(page));
77 error = radix_tree_preload(gfp_mask);
78 if (!error) {
79 write_lock_irq(&swapper_space.tree_lock);
80 error = radix_tree_insert(&swapper_space.page_tree,
81 entry.val, page);
82 if (!error) {
83 page_cache_get(page);
84 SetPageLocked(page);
85 SetPageSwapCache(page);
86 page->private = entry.val;
87 total_swapcache_pages++;
88 pagecache_acct(1);
89 }
90 write_unlock_irq(&swapper_space.tree_lock);
91 radix_tree_preload_end();
92 }
93 return error;
94}
95
96static int add_to_swap_cache(struct page *page, swp_entry_t entry)
97{
98 int error;
99
100 if (!swap_duplicate(entry)) {
101 INC_CACHE_INFO(noent_race);
102 return -ENOENT;
103 }
104 error = __add_to_swap_cache(page, entry, GFP_KERNEL);
105 /*
106 * Anon pages are already on the LRU, we don't run lru_cache_add here.
107 */
108 if (error) {
109 swap_free(entry);
110 if (error == -EEXIST)
111 INC_CACHE_INFO(exist_race);
112 return error;
113 }
114 INC_CACHE_INFO(add_total);
115 return 0;
116}
117
118/*
119 * This must be called only on pages that have
120 * been verified to be in the swap cache.
121 */
122void __delete_from_swap_cache(struct page *page)
123{
124 BUG_ON(!PageLocked(page));
125 BUG_ON(!PageSwapCache(page));
126 BUG_ON(PageWriteback(page));
127
128 radix_tree_delete(&swapper_space.page_tree, page->private);
129 page->private = 0;
130 ClearPageSwapCache(page);
131 total_swapcache_pages--;
132 pagecache_acct(-1);
133 INC_CACHE_INFO(del_total);
134}
135
136/**
137 * add_to_swap - allocate swap space for a page
138 * @page: page we want to move to swap
139 *
140 * Allocate swap space for the page and add the page to the
141 * swap cache. Caller needs to hold the page lock.
142 */
143int add_to_swap(struct page * page)
144{
145 swp_entry_t entry;
146 int pf_flags;
147 int err;
148
149 if (!PageLocked(page))
150 BUG();
151
152 for (;;) {
153 entry = get_swap_page();
154 if (!entry.val)
155 return 0;
156
157 /* Radix-tree node allocations are performing
158 * GFP_ATOMIC allocations under PF_MEMALLOC.
159 * They can completely exhaust the page allocator.
160 *
161 * So PF_MEMALLOC is dropped here. This causes the slab
162 * allocations to fail earlier, so radix-tree nodes will
163 * then be allocated from the mempool reserves.
164 *
165 * We're still using __GFP_HIGH for radix-tree node
166 * allocations, so some of the emergency pools are available,
167 * just not all of them.
168 */
169
170 pf_flags = current->flags;
171 current->flags &= ~PF_MEMALLOC;
172
173 /*
174 * Add it to the swap cache and mark it dirty
175 */
176 err = __add_to_swap_cache(page, entry, GFP_ATOMIC|__GFP_NOWARN);
177
178 if (pf_flags & PF_MEMALLOC)
179 current->flags |= PF_MEMALLOC;
180
181 switch (err) {
182 case 0: /* Success */
183 SetPageUptodate(page);
184 SetPageDirty(page);
185 INC_CACHE_INFO(add_total);
186 return 1;
187 case -EEXIST:
188 /* Raced with "speculative" read_swap_cache_async */
189 INC_CACHE_INFO(exist_race);
190 swap_free(entry);
191 continue;
192 default:
193 /* -ENOMEM radix-tree allocation failure */
194 swap_free(entry);
195 return 0;
196 }
197 }
198}
199
200/*
201 * This must be called only on pages that have
202 * been verified to be in the swap cache and locked.
203 * It will never put the page into the free list,
204 * the caller has a reference on the page.
205 */
206void delete_from_swap_cache(struct page *page)
207{
208 swp_entry_t entry;
209
210 BUG_ON(!PageSwapCache(page));
211 BUG_ON(!PageLocked(page));
212 BUG_ON(PageWriteback(page));
213 BUG_ON(PagePrivate(page));
214
215 entry.val = page->private;
216
217 write_lock_irq(&swapper_space.tree_lock);
218 __delete_from_swap_cache(page);
219 write_unlock_irq(&swapper_space.tree_lock);
220
221 swap_free(entry);
222 page_cache_release(page);
223}
224
225/*
226 * Strange swizzling function only for use by shmem_writepage
227 */
228int move_to_swap_cache(struct page *page, swp_entry_t entry)
229{
230 int err = __add_to_swap_cache(page, entry, GFP_ATOMIC);
231 if (!err) {
232 remove_from_page_cache(page);
233 page_cache_release(page); /* pagecache ref */
234 if (!swap_duplicate(entry))
235 BUG();
236 SetPageDirty(page);
237 INC_CACHE_INFO(add_total);
238 } else if (err == -EEXIST)
239 INC_CACHE_INFO(exist_race);
240 return err;
241}
242
243/*
244 * Strange swizzling function for shmem_getpage (and shmem_unuse)
245 */
246int move_from_swap_cache(struct page *page, unsigned long index,
247 struct address_space *mapping)
248{
249 int err = add_to_page_cache(page, mapping, index, GFP_ATOMIC);
250 if (!err) {
251 delete_from_swap_cache(page);
252 /* shift page from clean_pages to dirty_pages list */
253 ClearPageDirty(page);
254 set_page_dirty(page);
255 }
256 return err;
257}
258
259/*
260 * If we are the only user, then try to free up the swap cache.
261 *
262 * Its ok to check for PageSwapCache without the page lock
263 * here because we are going to recheck again inside
264 * exclusive_swap_page() _with_ the lock.
265 * - Marcelo
266 */
267static inline void free_swap_cache(struct page *page)
268{
269 if (PageSwapCache(page) && !TestSetPageLocked(page)) {
270 remove_exclusive_swap_page(page);
271 unlock_page(page);
272 }
273}
274
275/*
276 * Perform a free_page(), also freeing any swap cache associated with
277 * this page if it is the last user of the page. Can not do a lock_page,
278 * as we are holding the page_table_lock spinlock.
279 */
280void free_page_and_swap_cache(struct page *page)
281{
282 free_swap_cache(page);
283 page_cache_release(page);
284}
285
286/*
287 * Passed an array of pages, drop them all from swapcache and then release
288 * them. They are removed from the LRU and freed if this is their last use.
289 */
290void free_pages_and_swap_cache(struct page **pages, int nr)
291{
292 int chunk = 16;
293 struct page **pagep = pages;
294
295 lru_add_drain();
296 while (nr) {
297 int todo = min(chunk, nr);
298 int i;
299
300 for (i = 0; i < todo; i++)
301 free_swap_cache(pagep[i]);
302 release_pages(pagep, todo, 0);
303 pagep += todo;
304 nr -= todo;
305 }
306}
307
308/*
309 * Lookup a swap entry in the swap cache. A found page will be returned
310 * unlocked and with its refcount incremented - we rely on the kernel
311 * lock getting page table operations atomic even if we drop the page
312 * lock before returning.
313 */
314struct page * lookup_swap_cache(swp_entry_t entry)
315{
316 struct page *page;
317
318 page = find_get_page(&swapper_space, entry.val);
319
320 if (page)
321 INC_CACHE_INFO(find_success);
322
323 INC_CACHE_INFO(find_total);
324 return page;
325}
326
327/*
328 * Locate a page of swap in physical memory, reserving swap cache space
329 * and reading the disk if it is not already cached.
330 * A failure return means that either the page allocation failed or that
331 * the swap entry is no longer in use.
332 */
333struct page *read_swap_cache_async(swp_entry_t entry,
334 struct vm_area_struct *vma, unsigned long addr)
335{
336 struct page *found_page, *new_page = NULL;
337 int err;
338
339 do {
340 /*
341 * First check the swap cache. Since this is normally
342 * called after lookup_swap_cache() failed, re-calling
343 * that would confuse statistics.
344 */
345 found_page = find_get_page(&swapper_space, entry.val);
346 if (found_page)
347 break;
348
349 /*
350 * Get a new page to read into from swap.
351 */
352 if (!new_page) {
353 new_page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
354 if (!new_page)
355 break; /* Out of memory */
356 }
357
358 /*
359 * Associate the page with swap entry in the swap cache.
360 * May fail (-ENOENT) if swap entry has been freed since
361 * our caller observed it. May fail (-EEXIST) if there
362 * is already a page associated with this entry in the
363 * swap cache: added by a racing read_swap_cache_async,
364 * or by try_to_swap_out (or shmem_writepage) re-using
365 * the just freed swap entry for an existing page.
366 * May fail (-ENOMEM) if radix-tree node allocation failed.
367 */
368 err = add_to_swap_cache(new_page, entry);
369 if (!err) {
370 /*
371 * Initiate read into locked page and return.
372 */
373 lru_cache_add_active(new_page);
374 swap_readpage(NULL, new_page);
375 return new_page;
376 }
377 } while (err != -ENOENT && err != -ENOMEM);
378
379 if (new_page)
380 page_cache_release(new_page);
381 return found_page;
382}