aboutsummaryrefslogtreecommitdiffstats
path: root/mm/slub.c
diff options
context:
space:
mode:
authorMel Gorman <mgorman@suse.de>2012-03-21 19:34:11 -0400
committerLinus Torvalds <torvalds@linux-foundation.org>2012-03-21 20:54:59 -0400
commitcc9a6c8776615f9c194ccf0b63a0aa5628235545 (patch)
tree0cbbf118e86541f8eb2fc7b717a0e08eaced986d /mm/slub.c
parente845e199362cc5712ba0e7eedc14eed70e144258 (diff)
cpuset: mm: reduce large amounts of memory barrier related damage v3
Commit c0ff7453bb5c ("cpuset,mm: fix no node to alloc memory when changing cpuset's mems") wins a super prize for the largest number of memory barriers entered into fast paths for one commit. [get|put]_mems_allowed is incredibly heavy with pairs of full memory barriers inserted into a number of hot paths. This was detected while investigating at large page allocator slowdown introduced some time after 2.6.32. The largest portion of this overhead was shown by oprofile to be at an mfence introduced by this commit into the page allocator hot path. For extra style points, the commit introduced the use of yield() in an implementation of what looks like a spinning mutex. This patch replaces the full memory barriers on both read and write sides with a sequence counter with just read barriers on the fast path side. This is much cheaper on some architectures, including x86. The main bulk of the patch is the retry logic if the nodemask changes in a manner that can cause a false failure. While updating the nodemask, a check is made to see if a false failure is a risk. If it is, the sequence number gets bumped and parallel allocators will briefly stall while the nodemask update takes place. In a page fault test microbenchmark, oprofile samples from __alloc_pages_nodemask went from 4.53% of all samples to 1.15%. The actual results were 3.3.0-rc3 3.3.0-rc3 rc3-vanilla nobarrier-v2r1 Clients 1 UserTime 0.07 ( 0.00%) 0.08 (-14.19%) Clients 2 UserTime 0.07 ( 0.00%) 0.07 ( 2.72%) Clients 4 UserTime 0.08 ( 0.00%) 0.07 ( 3.29%) Clients 1 SysTime 0.70 ( 0.00%) 0.65 ( 6.65%) Clients 2 SysTime 0.85 ( 0.00%) 0.82 ( 3.65%) Clients 4 SysTime 1.41 ( 0.00%) 1.41 ( 0.32%) Clients 1 WallTime 0.77 ( 0.00%) 0.74 ( 4.19%) Clients 2 WallTime 0.47 ( 0.00%) 0.45 ( 3.73%) Clients 4 WallTime 0.38 ( 0.00%) 0.37 ( 1.58%) Clients 1 Flt/sec/cpu 497620.28 ( 0.00%) 520294.53 ( 4.56%) Clients 2 Flt/sec/cpu 414639.05 ( 0.00%) 429882.01 ( 3.68%) Clients 4 Flt/sec/cpu 257959.16 ( 0.00%) 258761.48 ( 0.31%) Clients 1 Flt/sec 495161.39 ( 0.00%) 517292.87 ( 4.47%) Clients 2 Flt/sec 820325.95 ( 0.00%) 850289.77 ( 3.65%) Clients 4 Flt/sec 1020068.93 ( 0.00%) 1022674.06 ( 0.26%) MMTests Statistics: duration Sys Time Running Test (seconds) 135.68 132.17 User+Sys Time Running Test (seconds) 164.2 160.13 Total Elapsed Time (seconds) 123.46 120.87 The overall improvement is small but the System CPU time is much improved and roughly in correlation to what oprofile reported (these performance figures are without profiling so skew is expected). The actual number of page faults is noticeably improved. For benchmarks like kernel builds, the overall benefit is marginal but the system CPU time is slightly reduced. To test the actual bug the commit fixed I opened two terminals. The first ran within a cpuset and continually ran a small program that faulted 100M of anonymous data. In a second window, the nodemask of the cpuset was continually randomised in a loop. Without the commit, the program would fail every so often (usually within 10 seconds) and obviously with the commit everything worked fine. With this patch applied, it also worked fine so the fix should be functionally equivalent. Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: Miao Xie <miaox@cn.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm/slub.c')
-rw-r--r--mm/slub.c40
1 files changed, 25 insertions, 15 deletions
diff --git a/mm/slub.c b/mm/slub.c
index 4907563ef7ff..f4a6229848fd 100644
--- a/mm/slub.c
+++ b/mm/slub.c
@@ -1581,6 +1581,7 @@ static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
1581 struct zone *zone; 1581 struct zone *zone;
1582 enum zone_type high_zoneidx = gfp_zone(flags); 1582 enum zone_type high_zoneidx = gfp_zone(flags);
1583 void *object; 1583 void *object;
1584 unsigned int cpuset_mems_cookie;
1584 1585
1585 /* 1586 /*
1586 * The defrag ratio allows a configuration of the tradeoffs between 1587 * The defrag ratio allows a configuration of the tradeoffs between
@@ -1604,23 +1605,32 @@ static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
1604 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1605 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1605 return NULL; 1606 return NULL;
1606 1607
1607 get_mems_allowed(); 1608 do {
1608 zonelist = node_zonelist(slab_node(current->mempolicy), flags); 1609 cpuset_mems_cookie = get_mems_allowed();
1609 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1610 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1610 struct kmem_cache_node *n; 1611 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1611 1612 struct kmem_cache_node *n;
1612 n = get_node(s, zone_to_nid(zone)); 1613
1613 1614 n = get_node(s, zone_to_nid(zone));
1614 if (n && cpuset_zone_allowed_hardwall(zone, flags) && 1615
1615 n->nr_partial > s->min_partial) { 1616 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1616 object = get_partial_node(s, n, c); 1617 n->nr_partial > s->min_partial) {
1617 if (object) { 1618 object = get_partial_node(s, n, c);
1618 put_mems_allowed(); 1619 if (object) {
1619 return object; 1620 /*
1621 * Return the object even if
1622 * put_mems_allowed indicated that
1623 * the cpuset mems_allowed was
1624 * updated in parallel. It's a
1625 * harmless race between the alloc
1626 * and the cpuset update.
1627 */
1628 put_mems_allowed(cpuset_mems_cookie);
1629 return object;
1630 }
1620 } 1631 }
1621 } 1632 }
1622 } 1633 } while (!put_mems_allowed(cpuset_mems_cookie));
1623 put_mems_allowed();
1624#endif 1634#endif
1625 return NULL; 1635 return NULL;
1626} 1636}