diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2013-05-07 11:42:20 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2013-05-07 11:42:20 -0400 |
commit | 0f47c9423c0fe468d0b5b153f9b9d6e8e20707eb (patch) | |
tree | 9eaec7fb4dc5fbfae07d168d0493a0a0a67c7d47 /mm/slab.c | |
parent | b9e306e07ed58fc354bbd58124b281dd7dc697b7 (diff) | |
parent | 69df2ac1288b456a95aceadafbf88cd891a577c8 (diff) |
Merge branch 'slab/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux
Pull slab changes from Pekka Enberg:
"The bulk of the changes are more slab unification from Christoph.
There's also few fixes from Aaron, Glauber, and Joonsoo thrown into
the mix."
* 'slab/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux: (24 commits)
mm, slab_common: Fix bootstrap creation of kmalloc caches
slab: Return NULL for oversized allocations
mm: slab: Verify the nodeid passed to ____cache_alloc_node
slub: tid must be retrieved from the percpu area of the current processor
slub: Do not dereference NULL pointer in node_match
slub: add 'likely' macro to inc_slabs_node()
slub: correct to calculate num of acquired objects in get_partial_node()
slub: correctly bootstrap boot caches
mm/sl[au]b: correct allocation type check in kmalloc_slab()
slab: Fixup CONFIG_PAGE_ALLOC/DEBUG_SLAB_LEAK sections
slab: Handle ARCH_DMA_MINALIGN correctly
slab: Common definition for kmem_cache_node
slab: Rename list3/l3 to node
slab: Common Kmalloc cache determination
stat: Use size_t for sizes instead of unsigned
slab: Common function to create the kmalloc array
slab: Common definition for the array of kmalloc caches
slab: Common constants for kmalloc boundaries
slab: Rename nodelists to node
slab: Common name for the per node structures
...
Diffstat (limited to 'mm/slab.c')
-rw-r--r-- | mm/slab.c | 790 |
1 files changed, 334 insertions, 456 deletions
@@ -286,68 +286,27 @@ struct arraycache_init { | |||
286 | }; | 286 | }; |
287 | 287 | ||
288 | /* | 288 | /* |
289 | * The slab lists for all objects. | ||
290 | */ | ||
291 | struct kmem_list3 { | ||
292 | struct list_head slabs_partial; /* partial list first, better asm code */ | ||
293 | struct list_head slabs_full; | ||
294 | struct list_head slabs_free; | ||
295 | unsigned long free_objects; | ||
296 | unsigned int free_limit; | ||
297 | unsigned int colour_next; /* Per-node cache coloring */ | ||
298 | spinlock_t list_lock; | ||
299 | struct array_cache *shared; /* shared per node */ | ||
300 | struct array_cache **alien; /* on other nodes */ | ||
301 | unsigned long next_reap; /* updated without locking */ | ||
302 | int free_touched; /* updated without locking */ | ||
303 | }; | ||
304 | |||
305 | /* | ||
306 | * Need this for bootstrapping a per node allocator. | 289 | * Need this for bootstrapping a per node allocator. |
307 | */ | 290 | */ |
308 | #define NUM_INIT_LISTS (3 * MAX_NUMNODES) | 291 | #define NUM_INIT_LISTS (3 * MAX_NUMNODES) |
309 | static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS]; | 292 | static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS]; |
310 | #define CACHE_CACHE 0 | 293 | #define CACHE_CACHE 0 |
311 | #define SIZE_AC MAX_NUMNODES | 294 | #define SIZE_AC MAX_NUMNODES |
312 | #define SIZE_L3 (2 * MAX_NUMNODES) | 295 | #define SIZE_NODE (2 * MAX_NUMNODES) |
313 | 296 | ||
314 | static int drain_freelist(struct kmem_cache *cache, | 297 | static int drain_freelist(struct kmem_cache *cache, |
315 | struct kmem_list3 *l3, int tofree); | 298 | struct kmem_cache_node *n, int tofree); |
316 | static void free_block(struct kmem_cache *cachep, void **objpp, int len, | 299 | static void free_block(struct kmem_cache *cachep, void **objpp, int len, |
317 | int node); | 300 | int node); |
318 | static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); | 301 | static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); |
319 | static void cache_reap(struct work_struct *unused); | 302 | static void cache_reap(struct work_struct *unused); |
320 | 303 | ||
321 | /* | ||
322 | * This function must be completely optimized away if a constant is passed to | ||
323 | * it. Mostly the same as what is in linux/slab.h except it returns an index. | ||
324 | */ | ||
325 | static __always_inline int index_of(const size_t size) | ||
326 | { | ||
327 | extern void __bad_size(void); | ||
328 | |||
329 | if (__builtin_constant_p(size)) { | ||
330 | int i = 0; | ||
331 | |||
332 | #define CACHE(x) \ | ||
333 | if (size <=x) \ | ||
334 | return i; \ | ||
335 | else \ | ||
336 | i++; | ||
337 | #include <linux/kmalloc_sizes.h> | ||
338 | #undef CACHE | ||
339 | __bad_size(); | ||
340 | } else | ||
341 | __bad_size(); | ||
342 | return 0; | ||
343 | } | ||
344 | |||
345 | static int slab_early_init = 1; | 304 | static int slab_early_init = 1; |
346 | 305 | ||
347 | #define INDEX_AC index_of(sizeof(struct arraycache_init)) | 306 | #define INDEX_AC kmalloc_index(sizeof(struct arraycache_init)) |
348 | #define INDEX_L3 index_of(sizeof(struct kmem_list3)) | 307 | #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node)) |
349 | 308 | ||
350 | static void kmem_list3_init(struct kmem_list3 *parent) | 309 | static void kmem_cache_node_init(struct kmem_cache_node *parent) |
351 | { | 310 | { |
352 | INIT_LIST_HEAD(&parent->slabs_full); | 311 | INIT_LIST_HEAD(&parent->slabs_full); |
353 | INIT_LIST_HEAD(&parent->slabs_partial); | 312 | INIT_LIST_HEAD(&parent->slabs_partial); |
@@ -363,7 +322,7 @@ static void kmem_list3_init(struct kmem_list3 *parent) | |||
363 | #define MAKE_LIST(cachep, listp, slab, nodeid) \ | 322 | #define MAKE_LIST(cachep, listp, slab, nodeid) \ |
364 | do { \ | 323 | do { \ |
365 | INIT_LIST_HEAD(listp); \ | 324 | INIT_LIST_HEAD(listp); \ |
366 | list_splice(&(cachep->nodelists[nodeid]->slab), listp); \ | 325 | list_splice(&(cachep->node[nodeid]->slab), listp); \ |
367 | } while (0) | 326 | } while (0) |
368 | 327 | ||
369 | #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ | 328 | #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ |
@@ -524,30 +483,6 @@ static inline unsigned int obj_to_index(const struct kmem_cache *cache, | |||
524 | return reciprocal_divide(offset, cache->reciprocal_buffer_size); | 483 | return reciprocal_divide(offset, cache->reciprocal_buffer_size); |
525 | } | 484 | } |
526 | 485 | ||
527 | /* | ||
528 | * These are the default caches for kmalloc. Custom caches can have other sizes. | ||
529 | */ | ||
530 | struct cache_sizes malloc_sizes[] = { | ||
531 | #define CACHE(x) { .cs_size = (x) }, | ||
532 | #include <linux/kmalloc_sizes.h> | ||
533 | CACHE(ULONG_MAX) | ||
534 | #undef CACHE | ||
535 | }; | ||
536 | EXPORT_SYMBOL(malloc_sizes); | ||
537 | |||
538 | /* Must match cache_sizes above. Out of line to keep cache footprint low. */ | ||
539 | struct cache_names { | ||
540 | char *name; | ||
541 | char *name_dma; | ||
542 | }; | ||
543 | |||
544 | static struct cache_names __initdata cache_names[] = { | ||
545 | #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" }, | ||
546 | #include <linux/kmalloc_sizes.h> | ||
547 | {NULL,} | ||
548 | #undef CACHE | ||
549 | }; | ||
550 | |||
551 | static struct arraycache_init initarray_generic = | 486 | static struct arraycache_init initarray_generic = |
552 | { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; | 487 | { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; |
553 | 488 | ||
@@ -586,15 +521,15 @@ static void slab_set_lock_classes(struct kmem_cache *cachep, | |||
586 | int q) | 521 | int q) |
587 | { | 522 | { |
588 | struct array_cache **alc; | 523 | struct array_cache **alc; |
589 | struct kmem_list3 *l3; | 524 | struct kmem_cache_node *n; |
590 | int r; | 525 | int r; |
591 | 526 | ||
592 | l3 = cachep->nodelists[q]; | 527 | n = cachep->node[q]; |
593 | if (!l3) | 528 | if (!n) |
594 | return; | 529 | return; |
595 | 530 | ||
596 | lockdep_set_class(&l3->list_lock, l3_key); | 531 | lockdep_set_class(&n->list_lock, l3_key); |
597 | alc = l3->alien; | 532 | alc = n->alien; |
598 | /* | 533 | /* |
599 | * FIXME: This check for BAD_ALIEN_MAGIC | 534 | * FIXME: This check for BAD_ALIEN_MAGIC |
600 | * should go away when common slab code is taught to | 535 | * should go away when common slab code is taught to |
@@ -625,28 +560,30 @@ static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep) | |||
625 | 560 | ||
626 | static void init_node_lock_keys(int q) | 561 | static void init_node_lock_keys(int q) |
627 | { | 562 | { |
628 | struct cache_sizes *s = malloc_sizes; | 563 | int i; |
629 | 564 | ||
630 | if (slab_state < UP) | 565 | if (slab_state < UP) |
631 | return; | 566 | return; |
632 | 567 | ||
633 | for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) { | 568 | for (i = 1; i < PAGE_SHIFT + MAX_ORDER; i++) { |
634 | struct kmem_list3 *l3; | 569 | struct kmem_cache_node *n; |
570 | struct kmem_cache *cache = kmalloc_caches[i]; | ||
571 | |||
572 | if (!cache) | ||
573 | continue; | ||
635 | 574 | ||
636 | l3 = s->cs_cachep->nodelists[q]; | 575 | n = cache->node[q]; |
637 | if (!l3 || OFF_SLAB(s->cs_cachep)) | 576 | if (!n || OFF_SLAB(cache)) |
638 | continue; | 577 | continue; |
639 | 578 | ||
640 | slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key, | 579 | slab_set_lock_classes(cache, &on_slab_l3_key, |
641 | &on_slab_alc_key, q); | 580 | &on_slab_alc_key, q); |
642 | } | 581 | } |
643 | } | 582 | } |
644 | 583 | ||
645 | static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q) | 584 | static void on_slab_lock_classes_node(struct kmem_cache *cachep, int q) |
646 | { | 585 | { |
647 | struct kmem_list3 *l3; | 586 | if (!cachep->node[q]) |
648 | l3 = cachep->nodelists[q]; | ||
649 | if (!l3) | ||
650 | return; | 587 | return; |
651 | 588 | ||
652 | slab_set_lock_classes(cachep, &on_slab_l3_key, | 589 | slab_set_lock_classes(cachep, &on_slab_l3_key, |
@@ -702,41 +639,6 @@ static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) | |||
702 | return cachep->array[smp_processor_id()]; | 639 | return cachep->array[smp_processor_id()]; |
703 | } | 640 | } |
704 | 641 | ||
705 | static inline struct kmem_cache *__find_general_cachep(size_t size, | ||
706 | gfp_t gfpflags) | ||
707 | { | ||
708 | struct cache_sizes *csizep = malloc_sizes; | ||
709 | |||
710 | #if DEBUG | ||
711 | /* This happens if someone tries to call | ||
712 | * kmem_cache_create(), or __kmalloc(), before | ||
713 | * the generic caches are initialized. | ||
714 | */ | ||
715 | BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL); | ||
716 | #endif | ||
717 | if (!size) | ||
718 | return ZERO_SIZE_PTR; | ||
719 | |||
720 | while (size > csizep->cs_size) | ||
721 | csizep++; | ||
722 | |||
723 | /* | ||
724 | * Really subtle: The last entry with cs->cs_size==ULONG_MAX | ||
725 | * has cs_{dma,}cachep==NULL. Thus no special case | ||
726 | * for large kmalloc calls required. | ||
727 | */ | ||
728 | #ifdef CONFIG_ZONE_DMA | ||
729 | if (unlikely(gfpflags & GFP_DMA)) | ||
730 | return csizep->cs_dmacachep; | ||
731 | #endif | ||
732 | return csizep->cs_cachep; | ||
733 | } | ||
734 | |||
735 | static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags) | ||
736 | { | ||
737 | return __find_general_cachep(size, gfpflags); | ||
738 | } | ||
739 | |||
740 | static size_t slab_mgmt_size(size_t nr_objs, size_t align) | 642 | static size_t slab_mgmt_size(size_t nr_objs, size_t align) |
741 | { | 643 | { |
742 | return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align); | 644 | return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align); |
@@ -938,29 +840,29 @@ static inline bool is_slab_pfmemalloc(struct slab *slabp) | |||
938 | static void recheck_pfmemalloc_active(struct kmem_cache *cachep, | 840 | static void recheck_pfmemalloc_active(struct kmem_cache *cachep, |
939 | struct array_cache *ac) | 841 | struct array_cache *ac) |
940 | { | 842 | { |
941 | struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()]; | 843 | struct kmem_cache_node *n = cachep->node[numa_mem_id()]; |
942 | struct slab *slabp; | 844 | struct slab *slabp; |
943 | unsigned long flags; | 845 | unsigned long flags; |
944 | 846 | ||
945 | if (!pfmemalloc_active) | 847 | if (!pfmemalloc_active) |
946 | return; | 848 | return; |
947 | 849 | ||
948 | spin_lock_irqsave(&l3->list_lock, flags); | 850 | spin_lock_irqsave(&n->list_lock, flags); |
949 | list_for_each_entry(slabp, &l3->slabs_full, list) | 851 | list_for_each_entry(slabp, &n->slabs_full, list) |
950 | if (is_slab_pfmemalloc(slabp)) | 852 | if (is_slab_pfmemalloc(slabp)) |
951 | goto out; | 853 | goto out; |
952 | 854 | ||
953 | list_for_each_entry(slabp, &l3->slabs_partial, list) | 855 | list_for_each_entry(slabp, &n->slabs_partial, list) |
954 | if (is_slab_pfmemalloc(slabp)) | 856 | if (is_slab_pfmemalloc(slabp)) |
955 | goto out; | 857 | goto out; |
956 | 858 | ||
957 | list_for_each_entry(slabp, &l3->slabs_free, list) | 859 | list_for_each_entry(slabp, &n->slabs_free, list) |
958 | if (is_slab_pfmemalloc(slabp)) | 860 | if (is_slab_pfmemalloc(slabp)) |
959 | goto out; | 861 | goto out; |
960 | 862 | ||
961 | pfmemalloc_active = false; | 863 | pfmemalloc_active = false; |
962 | out: | 864 | out: |
963 | spin_unlock_irqrestore(&l3->list_lock, flags); | 865 | spin_unlock_irqrestore(&n->list_lock, flags); |
964 | } | 866 | } |
965 | 867 | ||
966 | static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac, | 868 | static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac, |
@@ -971,7 +873,7 @@ static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac, | |||
971 | 873 | ||
972 | /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */ | 874 | /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */ |
973 | if (unlikely(is_obj_pfmemalloc(objp))) { | 875 | if (unlikely(is_obj_pfmemalloc(objp))) { |
974 | struct kmem_list3 *l3; | 876 | struct kmem_cache_node *n; |
975 | 877 | ||
976 | if (gfp_pfmemalloc_allowed(flags)) { | 878 | if (gfp_pfmemalloc_allowed(flags)) { |
977 | clear_obj_pfmemalloc(&objp); | 879 | clear_obj_pfmemalloc(&objp); |
@@ -993,8 +895,8 @@ static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac, | |||
993 | * If there are empty slabs on the slabs_free list and we are | 895 | * If there are empty slabs on the slabs_free list and we are |
994 | * being forced to refill the cache, mark this one !pfmemalloc. | 896 | * being forced to refill the cache, mark this one !pfmemalloc. |
995 | */ | 897 | */ |
996 | l3 = cachep->nodelists[numa_mem_id()]; | 898 | n = cachep->node[numa_mem_id()]; |
997 | if (!list_empty(&l3->slabs_free) && force_refill) { | 899 | if (!list_empty(&n->slabs_free) && force_refill) { |
998 | struct slab *slabp = virt_to_slab(objp); | 900 | struct slab *slabp = virt_to_slab(objp); |
999 | ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem)); | 901 | ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem)); |
1000 | clear_obj_pfmemalloc(&objp); | 902 | clear_obj_pfmemalloc(&objp); |
@@ -1071,7 +973,7 @@ static int transfer_objects(struct array_cache *to, | |||
1071 | #ifndef CONFIG_NUMA | 973 | #ifndef CONFIG_NUMA |
1072 | 974 | ||
1073 | #define drain_alien_cache(cachep, alien) do { } while (0) | 975 | #define drain_alien_cache(cachep, alien) do { } while (0) |
1074 | #define reap_alien(cachep, l3) do { } while (0) | 976 | #define reap_alien(cachep, n) do { } while (0) |
1075 | 977 | ||
1076 | static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) | 978 | static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) |
1077 | { | 979 | { |
@@ -1143,33 +1045,33 @@ static void free_alien_cache(struct array_cache **ac_ptr) | |||
1143 | static void __drain_alien_cache(struct kmem_cache *cachep, | 1045 | static void __drain_alien_cache(struct kmem_cache *cachep, |
1144 | struct array_cache *ac, int node) | 1046 | struct array_cache *ac, int node) |
1145 | { | 1047 | { |
1146 | struct kmem_list3 *rl3 = cachep->nodelists[node]; | 1048 | struct kmem_cache_node *n = cachep->node[node]; |
1147 | 1049 | ||
1148 | if (ac->avail) { | 1050 | if (ac->avail) { |
1149 | spin_lock(&rl3->list_lock); | 1051 | spin_lock(&n->list_lock); |
1150 | /* | 1052 | /* |
1151 | * Stuff objects into the remote nodes shared array first. | 1053 | * Stuff objects into the remote nodes shared array first. |
1152 | * That way we could avoid the overhead of putting the objects | 1054 | * That way we could avoid the overhead of putting the objects |
1153 | * into the free lists and getting them back later. | 1055 | * into the free lists and getting them back later. |
1154 | */ | 1056 | */ |
1155 | if (rl3->shared) | 1057 | if (n->shared) |
1156 | transfer_objects(rl3->shared, ac, ac->limit); | 1058 | transfer_objects(n->shared, ac, ac->limit); |
1157 | 1059 | ||
1158 | free_block(cachep, ac->entry, ac->avail, node); | 1060 | free_block(cachep, ac->entry, ac->avail, node); |
1159 | ac->avail = 0; | 1061 | ac->avail = 0; |
1160 | spin_unlock(&rl3->list_lock); | 1062 | spin_unlock(&n->list_lock); |
1161 | } | 1063 | } |
1162 | } | 1064 | } |
1163 | 1065 | ||
1164 | /* | 1066 | /* |
1165 | * Called from cache_reap() to regularly drain alien caches round robin. | 1067 | * Called from cache_reap() to regularly drain alien caches round robin. |
1166 | */ | 1068 | */ |
1167 | static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3) | 1069 | static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n) |
1168 | { | 1070 | { |
1169 | int node = __this_cpu_read(slab_reap_node); | 1071 | int node = __this_cpu_read(slab_reap_node); |
1170 | 1072 | ||
1171 | if (l3->alien) { | 1073 | if (n->alien) { |
1172 | struct array_cache *ac = l3->alien[node]; | 1074 | struct array_cache *ac = n->alien[node]; |
1173 | 1075 | ||
1174 | if (ac && ac->avail && spin_trylock_irq(&ac->lock)) { | 1076 | if (ac && ac->avail && spin_trylock_irq(&ac->lock)) { |
1175 | __drain_alien_cache(cachep, ac, node); | 1077 | __drain_alien_cache(cachep, ac, node); |
@@ -1199,7 +1101,7 @@ static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) | |||
1199 | { | 1101 | { |
1200 | struct slab *slabp = virt_to_slab(objp); | 1102 | struct slab *slabp = virt_to_slab(objp); |
1201 | int nodeid = slabp->nodeid; | 1103 | int nodeid = slabp->nodeid; |
1202 | struct kmem_list3 *l3; | 1104 | struct kmem_cache_node *n; |
1203 | struct array_cache *alien = NULL; | 1105 | struct array_cache *alien = NULL; |
1204 | int node; | 1106 | int node; |
1205 | 1107 | ||
@@ -1212,10 +1114,10 @@ static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) | |||
1212 | if (likely(slabp->nodeid == node)) | 1114 | if (likely(slabp->nodeid == node)) |
1213 | return 0; | 1115 | return 0; |
1214 | 1116 | ||
1215 | l3 = cachep->nodelists[node]; | 1117 | n = cachep->node[node]; |
1216 | STATS_INC_NODEFREES(cachep); | 1118 | STATS_INC_NODEFREES(cachep); |
1217 | if (l3->alien && l3->alien[nodeid]) { | 1119 | if (n->alien && n->alien[nodeid]) { |
1218 | alien = l3->alien[nodeid]; | 1120 | alien = n->alien[nodeid]; |
1219 | spin_lock(&alien->lock); | 1121 | spin_lock(&alien->lock); |
1220 | if (unlikely(alien->avail == alien->limit)) { | 1122 | if (unlikely(alien->avail == alien->limit)) { |
1221 | STATS_INC_ACOVERFLOW(cachep); | 1123 | STATS_INC_ACOVERFLOW(cachep); |
@@ -1224,28 +1126,28 @@ static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) | |||
1224 | ac_put_obj(cachep, alien, objp); | 1126 | ac_put_obj(cachep, alien, objp); |
1225 | spin_unlock(&alien->lock); | 1127 | spin_unlock(&alien->lock); |
1226 | } else { | 1128 | } else { |
1227 | spin_lock(&(cachep->nodelists[nodeid])->list_lock); | 1129 | spin_lock(&(cachep->node[nodeid])->list_lock); |
1228 | free_block(cachep, &objp, 1, nodeid); | 1130 | free_block(cachep, &objp, 1, nodeid); |
1229 | spin_unlock(&(cachep->nodelists[nodeid])->list_lock); | 1131 | spin_unlock(&(cachep->node[nodeid])->list_lock); |
1230 | } | 1132 | } |
1231 | return 1; | 1133 | return 1; |
1232 | } | 1134 | } |
1233 | #endif | 1135 | #endif |
1234 | 1136 | ||
1235 | /* | 1137 | /* |
1236 | * Allocates and initializes nodelists for a node on each slab cache, used for | 1138 | * Allocates and initializes node for a node on each slab cache, used for |
1237 | * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3 | 1139 | * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node |
1238 | * will be allocated off-node since memory is not yet online for the new node. | 1140 | * will be allocated off-node since memory is not yet online for the new node. |
1239 | * When hotplugging memory or a cpu, existing nodelists are not replaced if | 1141 | * When hotplugging memory or a cpu, existing node are not replaced if |
1240 | * already in use. | 1142 | * already in use. |
1241 | * | 1143 | * |
1242 | * Must hold slab_mutex. | 1144 | * Must hold slab_mutex. |
1243 | */ | 1145 | */ |
1244 | static int init_cache_nodelists_node(int node) | 1146 | static int init_cache_node_node(int node) |
1245 | { | 1147 | { |
1246 | struct kmem_cache *cachep; | 1148 | struct kmem_cache *cachep; |
1247 | struct kmem_list3 *l3; | 1149 | struct kmem_cache_node *n; |
1248 | const int memsize = sizeof(struct kmem_list3); | 1150 | const int memsize = sizeof(struct kmem_cache_node); |
1249 | 1151 | ||
1250 | list_for_each_entry(cachep, &slab_caches, list) { | 1152 | list_for_each_entry(cachep, &slab_caches, list) { |
1251 | /* | 1153 | /* |
@@ -1253,12 +1155,12 @@ static int init_cache_nodelists_node(int node) | |||
1253 | * begin anything. Make sure some other cpu on this | 1155 | * begin anything. Make sure some other cpu on this |
1254 | * node has not already allocated this | 1156 | * node has not already allocated this |
1255 | */ | 1157 | */ |
1256 | if (!cachep->nodelists[node]) { | 1158 | if (!cachep->node[node]) { |
1257 | l3 = kmalloc_node(memsize, GFP_KERNEL, node); | 1159 | n = kmalloc_node(memsize, GFP_KERNEL, node); |
1258 | if (!l3) | 1160 | if (!n) |
1259 | return -ENOMEM; | 1161 | return -ENOMEM; |
1260 | kmem_list3_init(l3); | 1162 | kmem_cache_node_init(n); |
1261 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + | 1163 | n->next_reap = jiffies + REAPTIMEOUT_LIST3 + |
1262 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; | 1164 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; |
1263 | 1165 | ||
1264 | /* | 1166 | /* |
@@ -1266,14 +1168,14 @@ static int init_cache_nodelists_node(int node) | |||
1266 | * go. slab_mutex is sufficient | 1168 | * go. slab_mutex is sufficient |
1267 | * protection here. | 1169 | * protection here. |
1268 | */ | 1170 | */ |
1269 | cachep->nodelists[node] = l3; | 1171 | cachep->node[node] = n; |
1270 | } | 1172 | } |
1271 | 1173 | ||
1272 | spin_lock_irq(&cachep->nodelists[node]->list_lock); | 1174 | spin_lock_irq(&cachep->node[node]->list_lock); |
1273 | cachep->nodelists[node]->free_limit = | 1175 | cachep->node[node]->free_limit = |
1274 | (1 + nr_cpus_node(node)) * | 1176 | (1 + nr_cpus_node(node)) * |
1275 | cachep->batchcount + cachep->num; | 1177 | cachep->batchcount + cachep->num; |
1276 | spin_unlock_irq(&cachep->nodelists[node]->list_lock); | 1178 | spin_unlock_irq(&cachep->node[node]->list_lock); |
1277 | } | 1179 | } |
1278 | return 0; | 1180 | return 0; |
1279 | } | 1181 | } |
@@ -1281,7 +1183,7 @@ static int init_cache_nodelists_node(int node) | |||
1281 | static void __cpuinit cpuup_canceled(long cpu) | 1183 | static void __cpuinit cpuup_canceled(long cpu) |
1282 | { | 1184 | { |
1283 | struct kmem_cache *cachep; | 1185 | struct kmem_cache *cachep; |
1284 | struct kmem_list3 *l3 = NULL; | 1186 | struct kmem_cache_node *n = NULL; |
1285 | int node = cpu_to_mem(cpu); | 1187 | int node = cpu_to_mem(cpu); |
1286 | const struct cpumask *mask = cpumask_of_node(node); | 1188 | const struct cpumask *mask = cpumask_of_node(node); |
1287 | 1189 | ||
@@ -1293,34 +1195,34 @@ static void __cpuinit cpuup_canceled(long cpu) | |||
1293 | /* cpu is dead; no one can alloc from it. */ | 1195 | /* cpu is dead; no one can alloc from it. */ |
1294 | nc = cachep->array[cpu]; | 1196 | nc = cachep->array[cpu]; |
1295 | cachep->array[cpu] = NULL; | 1197 | cachep->array[cpu] = NULL; |
1296 | l3 = cachep->nodelists[node]; | 1198 | n = cachep->node[node]; |
1297 | 1199 | ||
1298 | if (!l3) | 1200 | if (!n) |
1299 | goto free_array_cache; | 1201 | goto free_array_cache; |
1300 | 1202 | ||
1301 | spin_lock_irq(&l3->list_lock); | 1203 | spin_lock_irq(&n->list_lock); |
1302 | 1204 | ||
1303 | /* Free limit for this kmem_list3 */ | 1205 | /* Free limit for this kmem_cache_node */ |
1304 | l3->free_limit -= cachep->batchcount; | 1206 | n->free_limit -= cachep->batchcount; |
1305 | if (nc) | 1207 | if (nc) |
1306 | free_block(cachep, nc->entry, nc->avail, node); | 1208 | free_block(cachep, nc->entry, nc->avail, node); |
1307 | 1209 | ||
1308 | if (!cpumask_empty(mask)) { | 1210 | if (!cpumask_empty(mask)) { |
1309 | spin_unlock_irq(&l3->list_lock); | 1211 | spin_unlock_irq(&n->list_lock); |
1310 | goto free_array_cache; | 1212 | goto free_array_cache; |
1311 | } | 1213 | } |
1312 | 1214 | ||
1313 | shared = l3->shared; | 1215 | shared = n->shared; |
1314 | if (shared) { | 1216 | if (shared) { |
1315 | free_block(cachep, shared->entry, | 1217 | free_block(cachep, shared->entry, |
1316 | shared->avail, node); | 1218 | shared->avail, node); |
1317 | l3->shared = NULL; | 1219 | n->shared = NULL; |
1318 | } | 1220 | } |
1319 | 1221 | ||
1320 | alien = l3->alien; | 1222 | alien = n->alien; |
1321 | l3->alien = NULL; | 1223 | n->alien = NULL; |
1322 | 1224 | ||
1323 | spin_unlock_irq(&l3->list_lock); | 1225 | spin_unlock_irq(&n->list_lock); |
1324 | 1226 | ||
1325 | kfree(shared); | 1227 | kfree(shared); |
1326 | if (alien) { | 1228 | if (alien) { |
@@ -1336,17 +1238,17 @@ free_array_cache: | |||
1336 | * shrink each nodelist to its limit. | 1238 | * shrink each nodelist to its limit. |
1337 | */ | 1239 | */ |
1338 | list_for_each_entry(cachep, &slab_caches, list) { | 1240 | list_for_each_entry(cachep, &slab_caches, list) { |
1339 | l3 = cachep->nodelists[node]; | 1241 | n = cachep->node[node]; |
1340 | if (!l3) | 1242 | if (!n) |
1341 | continue; | 1243 | continue; |
1342 | drain_freelist(cachep, l3, l3->free_objects); | 1244 | drain_freelist(cachep, n, n->free_objects); |
1343 | } | 1245 | } |
1344 | } | 1246 | } |
1345 | 1247 | ||
1346 | static int __cpuinit cpuup_prepare(long cpu) | 1248 | static int __cpuinit cpuup_prepare(long cpu) |
1347 | { | 1249 | { |
1348 | struct kmem_cache *cachep; | 1250 | struct kmem_cache *cachep; |
1349 | struct kmem_list3 *l3 = NULL; | 1251 | struct kmem_cache_node *n = NULL; |
1350 | int node = cpu_to_mem(cpu); | 1252 | int node = cpu_to_mem(cpu); |
1351 | int err; | 1253 | int err; |
1352 | 1254 | ||
@@ -1354,9 +1256,9 @@ static int __cpuinit cpuup_prepare(long cpu) | |||
1354 | * We need to do this right in the beginning since | 1256 | * We need to do this right in the beginning since |
1355 | * alloc_arraycache's are going to use this list. | 1257 | * alloc_arraycache's are going to use this list. |
1356 | * kmalloc_node allows us to add the slab to the right | 1258 | * kmalloc_node allows us to add the slab to the right |
1357 | * kmem_list3 and not this cpu's kmem_list3 | 1259 | * kmem_cache_node and not this cpu's kmem_cache_node |
1358 | */ | 1260 | */ |
1359 | err = init_cache_nodelists_node(node); | 1261 | err = init_cache_node_node(node); |
1360 | if (err < 0) | 1262 | if (err < 0) |
1361 | goto bad; | 1263 | goto bad; |
1362 | 1264 | ||
@@ -1391,25 +1293,25 @@ static int __cpuinit cpuup_prepare(long cpu) | |||
1391 | } | 1293 | } |
1392 | } | 1294 | } |
1393 | cachep->array[cpu] = nc; | 1295 | cachep->array[cpu] = nc; |
1394 | l3 = cachep->nodelists[node]; | 1296 | n = cachep->node[node]; |
1395 | BUG_ON(!l3); | 1297 | BUG_ON(!n); |
1396 | 1298 | ||
1397 | spin_lock_irq(&l3->list_lock); | 1299 | spin_lock_irq(&n->list_lock); |
1398 | if (!l3->shared) { | 1300 | if (!n->shared) { |
1399 | /* | 1301 | /* |
1400 | * We are serialised from CPU_DEAD or | 1302 | * We are serialised from CPU_DEAD or |
1401 | * CPU_UP_CANCELLED by the cpucontrol lock | 1303 | * CPU_UP_CANCELLED by the cpucontrol lock |
1402 | */ | 1304 | */ |
1403 | l3->shared = shared; | 1305 | n->shared = shared; |
1404 | shared = NULL; | 1306 | shared = NULL; |
1405 | } | 1307 | } |
1406 | #ifdef CONFIG_NUMA | 1308 | #ifdef CONFIG_NUMA |
1407 | if (!l3->alien) { | 1309 | if (!n->alien) { |
1408 | l3->alien = alien; | 1310 | n->alien = alien; |
1409 | alien = NULL; | 1311 | alien = NULL; |
1410 | } | 1312 | } |
1411 | #endif | 1313 | #endif |
1412 | spin_unlock_irq(&l3->list_lock); | 1314 | spin_unlock_irq(&n->list_lock); |
1413 | kfree(shared); | 1315 | kfree(shared); |
1414 | free_alien_cache(alien); | 1316 | free_alien_cache(alien); |
1415 | if (cachep->flags & SLAB_DEBUG_OBJECTS) | 1317 | if (cachep->flags & SLAB_DEBUG_OBJECTS) |
@@ -1464,9 +1366,9 @@ static int __cpuinit cpuup_callback(struct notifier_block *nfb, | |||
1464 | case CPU_DEAD_FROZEN: | 1366 | case CPU_DEAD_FROZEN: |
1465 | /* | 1367 | /* |
1466 | * Even if all the cpus of a node are down, we don't free the | 1368 | * Even if all the cpus of a node are down, we don't free the |
1467 | * kmem_list3 of any cache. This to avoid a race between | 1369 | * kmem_cache_node of any cache. This to avoid a race between |
1468 | * cpu_down, and a kmalloc allocation from another cpu for | 1370 | * cpu_down, and a kmalloc allocation from another cpu for |
1469 | * memory from the node of the cpu going down. The list3 | 1371 | * memory from the node of the cpu going down. The node |
1470 | * structure is usually allocated from kmem_cache_create() and | 1372 | * structure is usually allocated from kmem_cache_create() and |
1471 | * gets destroyed at kmem_cache_destroy(). | 1373 | * gets destroyed at kmem_cache_destroy(). |
1472 | */ | 1374 | */ |
@@ -1494,22 +1396,22 @@ static struct notifier_block __cpuinitdata cpucache_notifier = { | |||
1494 | * | 1396 | * |
1495 | * Must hold slab_mutex. | 1397 | * Must hold slab_mutex. |
1496 | */ | 1398 | */ |
1497 | static int __meminit drain_cache_nodelists_node(int node) | 1399 | static int __meminit drain_cache_node_node(int node) |
1498 | { | 1400 | { |
1499 | struct kmem_cache *cachep; | 1401 | struct kmem_cache *cachep; |
1500 | int ret = 0; | 1402 | int ret = 0; |
1501 | 1403 | ||
1502 | list_for_each_entry(cachep, &slab_caches, list) { | 1404 | list_for_each_entry(cachep, &slab_caches, list) { |
1503 | struct kmem_list3 *l3; | 1405 | struct kmem_cache_node *n; |
1504 | 1406 | ||
1505 | l3 = cachep->nodelists[node]; | 1407 | n = cachep->node[node]; |
1506 | if (!l3) | 1408 | if (!n) |
1507 | continue; | 1409 | continue; |
1508 | 1410 | ||
1509 | drain_freelist(cachep, l3, l3->free_objects); | 1411 | drain_freelist(cachep, n, n->free_objects); |
1510 | 1412 | ||
1511 | if (!list_empty(&l3->slabs_full) || | 1413 | if (!list_empty(&n->slabs_full) || |
1512 | !list_empty(&l3->slabs_partial)) { | 1414 | !list_empty(&n->slabs_partial)) { |
1513 | ret = -EBUSY; | 1415 | ret = -EBUSY; |
1514 | break; | 1416 | break; |
1515 | } | 1417 | } |
@@ -1531,12 +1433,12 @@ static int __meminit slab_memory_callback(struct notifier_block *self, | |||
1531 | switch (action) { | 1433 | switch (action) { |
1532 | case MEM_GOING_ONLINE: | 1434 | case MEM_GOING_ONLINE: |
1533 | mutex_lock(&slab_mutex); | 1435 | mutex_lock(&slab_mutex); |
1534 | ret = init_cache_nodelists_node(nid); | 1436 | ret = init_cache_node_node(nid); |
1535 | mutex_unlock(&slab_mutex); | 1437 | mutex_unlock(&slab_mutex); |
1536 | break; | 1438 | break; |
1537 | case MEM_GOING_OFFLINE: | 1439 | case MEM_GOING_OFFLINE: |
1538 | mutex_lock(&slab_mutex); | 1440 | mutex_lock(&slab_mutex); |
1539 | ret = drain_cache_nodelists_node(nid); | 1441 | ret = drain_cache_node_node(nid); |
1540 | mutex_unlock(&slab_mutex); | 1442 | mutex_unlock(&slab_mutex); |
1541 | break; | 1443 | break; |
1542 | case MEM_ONLINE: | 1444 | case MEM_ONLINE: |
@@ -1551,37 +1453,37 @@ out: | |||
1551 | #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ | 1453 | #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ |
1552 | 1454 | ||
1553 | /* | 1455 | /* |
1554 | * swap the static kmem_list3 with kmalloced memory | 1456 | * swap the static kmem_cache_node with kmalloced memory |
1555 | */ | 1457 | */ |
1556 | static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list, | 1458 | static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list, |
1557 | int nodeid) | 1459 | int nodeid) |
1558 | { | 1460 | { |
1559 | struct kmem_list3 *ptr; | 1461 | struct kmem_cache_node *ptr; |
1560 | 1462 | ||
1561 | ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid); | 1463 | ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid); |
1562 | BUG_ON(!ptr); | 1464 | BUG_ON(!ptr); |
1563 | 1465 | ||
1564 | memcpy(ptr, list, sizeof(struct kmem_list3)); | 1466 | memcpy(ptr, list, sizeof(struct kmem_cache_node)); |
1565 | /* | 1467 | /* |
1566 | * Do not assume that spinlocks can be initialized via memcpy: | 1468 | * Do not assume that spinlocks can be initialized via memcpy: |
1567 | */ | 1469 | */ |
1568 | spin_lock_init(&ptr->list_lock); | 1470 | spin_lock_init(&ptr->list_lock); |
1569 | 1471 | ||
1570 | MAKE_ALL_LISTS(cachep, ptr, nodeid); | 1472 | MAKE_ALL_LISTS(cachep, ptr, nodeid); |
1571 | cachep->nodelists[nodeid] = ptr; | 1473 | cachep->node[nodeid] = ptr; |
1572 | } | 1474 | } |
1573 | 1475 | ||
1574 | /* | 1476 | /* |
1575 | * For setting up all the kmem_list3s for cache whose buffer_size is same as | 1477 | * For setting up all the kmem_cache_node for cache whose buffer_size is same as |
1576 | * size of kmem_list3. | 1478 | * size of kmem_cache_node. |
1577 | */ | 1479 | */ |
1578 | static void __init set_up_list3s(struct kmem_cache *cachep, int index) | 1480 | static void __init set_up_node(struct kmem_cache *cachep, int index) |
1579 | { | 1481 | { |
1580 | int node; | 1482 | int node; |
1581 | 1483 | ||
1582 | for_each_online_node(node) { | 1484 | for_each_online_node(node) { |
1583 | cachep->nodelists[node] = &initkmem_list3[index + node]; | 1485 | cachep->node[node] = &init_kmem_cache_node[index + node]; |
1584 | cachep->nodelists[node]->next_reap = jiffies + | 1486 | cachep->node[node]->next_reap = jiffies + |
1585 | REAPTIMEOUT_LIST3 + | 1487 | REAPTIMEOUT_LIST3 + |
1586 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; | 1488 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; |
1587 | } | 1489 | } |
@@ -1589,11 +1491,11 @@ static void __init set_up_list3s(struct kmem_cache *cachep, int index) | |||
1589 | 1491 | ||
1590 | /* | 1492 | /* |
1591 | * The memory after the last cpu cache pointer is used for the | 1493 | * The memory after the last cpu cache pointer is used for the |
1592 | * the nodelists pointer. | 1494 | * the node pointer. |
1593 | */ | 1495 | */ |
1594 | static void setup_nodelists_pointer(struct kmem_cache *cachep) | 1496 | static void setup_node_pointer(struct kmem_cache *cachep) |
1595 | { | 1497 | { |
1596 | cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids]; | 1498 | cachep->node = (struct kmem_cache_node **)&cachep->array[nr_cpu_ids]; |
1597 | } | 1499 | } |
1598 | 1500 | ||
1599 | /* | 1501 | /* |
@@ -1602,20 +1504,18 @@ static void setup_nodelists_pointer(struct kmem_cache *cachep) | |||
1602 | */ | 1504 | */ |
1603 | void __init kmem_cache_init(void) | 1505 | void __init kmem_cache_init(void) |
1604 | { | 1506 | { |
1605 | struct cache_sizes *sizes; | ||
1606 | struct cache_names *names; | ||
1607 | int i; | 1507 | int i; |
1608 | 1508 | ||
1609 | kmem_cache = &kmem_cache_boot; | 1509 | kmem_cache = &kmem_cache_boot; |
1610 | setup_nodelists_pointer(kmem_cache); | 1510 | setup_node_pointer(kmem_cache); |
1611 | 1511 | ||
1612 | if (num_possible_nodes() == 1) | 1512 | if (num_possible_nodes() == 1) |
1613 | use_alien_caches = 0; | 1513 | use_alien_caches = 0; |
1614 | 1514 | ||
1615 | for (i = 0; i < NUM_INIT_LISTS; i++) | 1515 | for (i = 0; i < NUM_INIT_LISTS; i++) |
1616 | kmem_list3_init(&initkmem_list3[i]); | 1516 | kmem_cache_node_init(&init_kmem_cache_node[i]); |
1617 | 1517 | ||
1618 | set_up_list3s(kmem_cache, CACHE_CACHE); | 1518 | set_up_node(kmem_cache, CACHE_CACHE); |
1619 | 1519 | ||
1620 | /* | 1520 | /* |
1621 | * Fragmentation resistance on low memory - only use bigger | 1521 | * Fragmentation resistance on low memory - only use bigger |
@@ -1631,7 +1531,7 @@ void __init kmem_cache_init(void) | |||
1631 | * kmem_cache structures of all caches, except kmem_cache itself: | 1531 | * kmem_cache structures of all caches, except kmem_cache itself: |
1632 | * kmem_cache is statically allocated. | 1532 | * kmem_cache is statically allocated. |
1633 | * Initially an __init data area is used for the head array and the | 1533 | * Initially an __init data area is used for the head array and the |
1634 | * kmem_list3 structures, it's replaced with a kmalloc allocated | 1534 | * kmem_cache_node structures, it's replaced with a kmalloc allocated |
1635 | * array at the end of the bootstrap. | 1535 | * array at the end of the bootstrap. |
1636 | * 2) Create the first kmalloc cache. | 1536 | * 2) Create the first kmalloc cache. |
1637 | * The struct kmem_cache for the new cache is allocated normally. | 1537 | * The struct kmem_cache for the new cache is allocated normally. |
@@ -1640,7 +1540,7 @@ void __init kmem_cache_init(void) | |||
1640 | * head arrays. | 1540 | * head arrays. |
1641 | * 4) Replace the __init data head arrays for kmem_cache and the first | 1541 | * 4) Replace the __init data head arrays for kmem_cache and the first |
1642 | * kmalloc cache with kmalloc allocated arrays. | 1542 | * kmalloc cache with kmalloc allocated arrays. |
1643 | * 5) Replace the __init data for kmem_list3 for kmem_cache and | 1543 | * 5) Replace the __init data for kmem_cache_node for kmem_cache and |
1644 | * the other cache's with kmalloc allocated memory. | 1544 | * the other cache's with kmalloc allocated memory. |
1645 | * 6) Resize the head arrays of the kmalloc caches to their final sizes. | 1545 | * 6) Resize the head arrays of the kmalloc caches to their final sizes. |
1646 | */ | 1546 | */ |
@@ -1652,50 +1552,28 @@ void __init kmem_cache_init(void) | |||
1652 | */ | 1552 | */ |
1653 | create_boot_cache(kmem_cache, "kmem_cache", | 1553 | create_boot_cache(kmem_cache, "kmem_cache", |
1654 | offsetof(struct kmem_cache, array[nr_cpu_ids]) + | 1554 | offsetof(struct kmem_cache, array[nr_cpu_ids]) + |
1655 | nr_node_ids * sizeof(struct kmem_list3 *), | 1555 | nr_node_ids * sizeof(struct kmem_cache_node *), |
1656 | SLAB_HWCACHE_ALIGN); | 1556 | SLAB_HWCACHE_ALIGN); |
1657 | list_add(&kmem_cache->list, &slab_caches); | 1557 | list_add(&kmem_cache->list, &slab_caches); |
1658 | 1558 | ||
1659 | /* 2+3) create the kmalloc caches */ | 1559 | /* 2+3) create the kmalloc caches */ |
1660 | sizes = malloc_sizes; | ||
1661 | names = cache_names; | ||
1662 | 1560 | ||
1663 | /* | 1561 | /* |
1664 | * Initialize the caches that provide memory for the array cache and the | 1562 | * Initialize the caches that provide memory for the array cache and the |
1665 | * kmem_list3 structures first. Without this, further allocations will | 1563 | * kmem_cache_node structures first. Without this, further allocations will |
1666 | * bug. | 1564 | * bug. |
1667 | */ | 1565 | */ |
1668 | 1566 | ||
1669 | sizes[INDEX_AC].cs_cachep = create_kmalloc_cache(names[INDEX_AC].name, | 1567 | kmalloc_caches[INDEX_AC] = create_kmalloc_cache("kmalloc-ac", |
1670 | sizes[INDEX_AC].cs_size, ARCH_KMALLOC_FLAGS); | 1568 | kmalloc_size(INDEX_AC), ARCH_KMALLOC_FLAGS); |
1671 | 1569 | ||
1672 | if (INDEX_AC != INDEX_L3) | 1570 | if (INDEX_AC != INDEX_NODE) |
1673 | sizes[INDEX_L3].cs_cachep = | 1571 | kmalloc_caches[INDEX_NODE] = |
1674 | create_kmalloc_cache(names[INDEX_L3].name, | 1572 | create_kmalloc_cache("kmalloc-node", |
1675 | sizes[INDEX_L3].cs_size, ARCH_KMALLOC_FLAGS); | 1573 | kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS); |
1676 | 1574 | ||
1677 | slab_early_init = 0; | 1575 | slab_early_init = 0; |
1678 | 1576 | ||
1679 | while (sizes->cs_size != ULONG_MAX) { | ||
1680 | /* | ||
1681 | * For performance, all the general caches are L1 aligned. | ||
1682 | * This should be particularly beneficial on SMP boxes, as it | ||
1683 | * eliminates "false sharing". | ||
1684 | * Note for systems short on memory removing the alignment will | ||
1685 | * allow tighter packing of the smaller caches. | ||
1686 | */ | ||
1687 | if (!sizes->cs_cachep) | ||
1688 | sizes->cs_cachep = create_kmalloc_cache(names->name, | ||
1689 | sizes->cs_size, ARCH_KMALLOC_FLAGS); | ||
1690 | |||
1691 | #ifdef CONFIG_ZONE_DMA | ||
1692 | sizes->cs_dmacachep = create_kmalloc_cache( | ||
1693 | names->name_dma, sizes->cs_size, | ||
1694 | SLAB_CACHE_DMA|ARCH_KMALLOC_FLAGS); | ||
1695 | #endif | ||
1696 | sizes++; | ||
1697 | names++; | ||
1698 | } | ||
1699 | /* 4) Replace the bootstrap head arrays */ | 1577 | /* 4) Replace the bootstrap head arrays */ |
1700 | { | 1578 | { |
1701 | struct array_cache *ptr; | 1579 | struct array_cache *ptr; |
@@ -1713,36 +1591,35 @@ void __init kmem_cache_init(void) | |||
1713 | 1591 | ||
1714 | ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); | 1592 | ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); |
1715 | 1593 | ||
1716 | BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep) | 1594 | BUG_ON(cpu_cache_get(kmalloc_caches[INDEX_AC]) |
1717 | != &initarray_generic.cache); | 1595 | != &initarray_generic.cache); |
1718 | memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep), | 1596 | memcpy(ptr, cpu_cache_get(kmalloc_caches[INDEX_AC]), |
1719 | sizeof(struct arraycache_init)); | 1597 | sizeof(struct arraycache_init)); |
1720 | /* | 1598 | /* |
1721 | * Do not assume that spinlocks can be initialized via memcpy: | 1599 | * Do not assume that spinlocks can be initialized via memcpy: |
1722 | */ | 1600 | */ |
1723 | spin_lock_init(&ptr->lock); | 1601 | spin_lock_init(&ptr->lock); |
1724 | 1602 | ||
1725 | malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] = | 1603 | kmalloc_caches[INDEX_AC]->array[smp_processor_id()] = ptr; |
1726 | ptr; | ||
1727 | } | 1604 | } |
1728 | /* 5) Replace the bootstrap kmem_list3's */ | 1605 | /* 5) Replace the bootstrap kmem_cache_node */ |
1729 | { | 1606 | { |
1730 | int nid; | 1607 | int nid; |
1731 | 1608 | ||
1732 | for_each_online_node(nid) { | 1609 | for_each_online_node(nid) { |
1733 | init_list(kmem_cache, &initkmem_list3[CACHE_CACHE + nid], nid); | 1610 | init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid); |
1734 | 1611 | ||
1735 | init_list(malloc_sizes[INDEX_AC].cs_cachep, | 1612 | init_list(kmalloc_caches[INDEX_AC], |
1736 | &initkmem_list3[SIZE_AC + nid], nid); | 1613 | &init_kmem_cache_node[SIZE_AC + nid], nid); |
1737 | 1614 | ||
1738 | if (INDEX_AC != INDEX_L3) { | 1615 | if (INDEX_AC != INDEX_NODE) { |
1739 | init_list(malloc_sizes[INDEX_L3].cs_cachep, | 1616 | init_list(kmalloc_caches[INDEX_NODE], |
1740 | &initkmem_list3[SIZE_L3 + nid], nid); | 1617 | &init_kmem_cache_node[SIZE_NODE + nid], nid); |
1741 | } | 1618 | } |
1742 | } | 1619 | } |
1743 | } | 1620 | } |
1744 | 1621 | ||
1745 | slab_state = UP; | 1622 | create_kmalloc_caches(ARCH_KMALLOC_FLAGS); |
1746 | } | 1623 | } |
1747 | 1624 | ||
1748 | void __init kmem_cache_init_late(void) | 1625 | void __init kmem_cache_init_late(void) |
@@ -1773,7 +1650,7 @@ void __init kmem_cache_init_late(void) | |||
1773 | #ifdef CONFIG_NUMA | 1650 | #ifdef CONFIG_NUMA |
1774 | /* | 1651 | /* |
1775 | * Register a memory hotplug callback that initializes and frees | 1652 | * Register a memory hotplug callback that initializes and frees |
1776 | * nodelists. | 1653 | * node. |
1777 | */ | 1654 | */ |
1778 | hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); | 1655 | hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); |
1779 | #endif | 1656 | #endif |
@@ -1803,7 +1680,7 @@ __initcall(cpucache_init); | |||
1803 | static noinline void | 1680 | static noinline void |
1804 | slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) | 1681 | slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) |
1805 | { | 1682 | { |
1806 | struct kmem_list3 *l3; | 1683 | struct kmem_cache_node *n; |
1807 | struct slab *slabp; | 1684 | struct slab *slabp; |
1808 | unsigned long flags; | 1685 | unsigned long flags; |
1809 | int node; | 1686 | int node; |
@@ -1818,24 +1695,24 @@ slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) | |||
1818 | unsigned long active_objs = 0, num_objs = 0, free_objects = 0; | 1695 | unsigned long active_objs = 0, num_objs = 0, free_objects = 0; |
1819 | unsigned long active_slabs = 0, num_slabs = 0; | 1696 | unsigned long active_slabs = 0, num_slabs = 0; |
1820 | 1697 | ||
1821 | l3 = cachep->nodelists[node]; | 1698 | n = cachep->node[node]; |
1822 | if (!l3) | 1699 | if (!n) |
1823 | continue; | 1700 | continue; |
1824 | 1701 | ||
1825 | spin_lock_irqsave(&l3->list_lock, flags); | 1702 | spin_lock_irqsave(&n->list_lock, flags); |
1826 | list_for_each_entry(slabp, &l3->slabs_full, list) { | 1703 | list_for_each_entry(slabp, &n->slabs_full, list) { |
1827 | active_objs += cachep->num; | 1704 | active_objs += cachep->num; |
1828 | active_slabs++; | 1705 | active_slabs++; |
1829 | } | 1706 | } |
1830 | list_for_each_entry(slabp, &l3->slabs_partial, list) { | 1707 | list_for_each_entry(slabp, &n->slabs_partial, list) { |
1831 | active_objs += slabp->inuse; | 1708 | active_objs += slabp->inuse; |
1832 | active_slabs++; | 1709 | active_slabs++; |
1833 | } | 1710 | } |
1834 | list_for_each_entry(slabp, &l3->slabs_free, list) | 1711 | list_for_each_entry(slabp, &n->slabs_free, list) |
1835 | num_slabs++; | 1712 | num_slabs++; |
1836 | 1713 | ||
1837 | free_objects += l3->free_objects; | 1714 | free_objects += n->free_objects; |
1838 | spin_unlock_irqrestore(&l3->list_lock, flags); | 1715 | spin_unlock_irqrestore(&n->list_lock, flags); |
1839 | 1716 | ||
1840 | num_slabs += active_slabs; | 1717 | num_slabs += active_slabs; |
1841 | num_objs = num_slabs * cachep->num; | 1718 | num_objs = num_slabs * cachep->num; |
@@ -2258,7 +2135,7 @@ static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) | |||
2258 | if (slab_state == DOWN) { | 2135 | if (slab_state == DOWN) { |
2259 | /* | 2136 | /* |
2260 | * Note: Creation of first cache (kmem_cache). | 2137 | * Note: Creation of first cache (kmem_cache). |
2261 | * The setup_list3s is taken care | 2138 | * The setup_node is taken care |
2262 | * of by the caller of __kmem_cache_create | 2139 | * of by the caller of __kmem_cache_create |
2263 | */ | 2140 | */ |
2264 | cachep->array[smp_processor_id()] = &initarray_generic.cache; | 2141 | cachep->array[smp_processor_id()] = &initarray_generic.cache; |
@@ -2272,13 +2149,13 @@ static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) | |||
2272 | cachep->array[smp_processor_id()] = &initarray_generic.cache; | 2149 | cachep->array[smp_processor_id()] = &initarray_generic.cache; |
2273 | 2150 | ||
2274 | /* | 2151 | /* |
2275 | * If the cache that's used by kmalloc(sizeof(kmem_list3)) is | 2152 | * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is |
2276 | * the second cache, then we need to set up all its list3s, | 2153 | * the second cache, then we need to set up all its node/, |
2277 | * otherwise the creation of further caches will BUG(). | 2154 | * otherwise the creation of further caches will BUG(). |
2278 | */ | 2155 | */ |
2279 | set_up_list3s(cachep, SIZE_AC); | 2156 | set_up_node(cachep, SIZE_AC); |
2280 | if (INDEX_AC == INDEX_L3) | 2157 | if (INDEX_AC == INDEX_NODE) |
2281 | slab_state = PARTIAL_L3; | 2158 | slab_state = PARTIAL_NODE; |
2282 | else | 2159 | else |
2283 | slab_state = PARTIAL_ARRAYCACHE; | 2160 | slab_state = PARTIAL_ARRAYCACHE; |
2284 | } else { | 2161 | } else { |
@@ -2287,20 +2164,20 @@ static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) | |||
2287 | kmalloc(sizeof(struct arraycache_init), gfp); | 2164 | kmalloc(sizeof(struct arraycache_init), gfp); |
2288 | 2165 | ||
2289 | if (slab_state == PARTIAL_ARRAYCACHE) { | 2166 | if (slab_state == PARTIAL_ARRAYCACHE) { |
2290 | set_up_list3s(cachep, SIZE_L3); | 2167 | set_up_node(cachep, SIZE_NODE); |
2291 | slab_state = PARTIAL_L3; | 2168 | slab_state = PARTIAL_NODE; |
2292 | } else { | 2169 | } else { |
2293 | int node; | 2170 | int node; |
2294 | for_each_online_node(node) { | 2171 | for_each_online_node(node) { |
2295 | cachep->nodelists[node] = | 2172 | cachep->node[node] = |
2296 | kmalloc_node(sizeof(struct kmem_list3), | 2173 | kmalloc_node(sizeof(struct kmem_cache_node), |
2297 | gfp, node); | 2174 | gfp, node); |
2298 | BUG_ON(!cachep->nodelists[node]); | 2175 | BUG_ON(!cachep->node[node]); |
2299 | kmem_list3_init(cachep->nodelists[node]); | 2176 | kmem_cache_node_init(cachep->node[node]); |
2300 | } | 2177 | } |
2301 | } | 2178 | } |
2302 | } | 2179 | } |
2303 | cachep->nodelists[numa_mem_id()]->next_reap = | 2180 | cachep->node[numa_mem_id()]->next_reap = |
2304 | jiffies + REAPTIMEOUT_LIST3 + | 2181 | jiffies + REAPTIMEOUT_LIST3 + |
2305 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; | 2182 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; |
2306 | 2183 | ||
@@ -2403,7 +2280,7 @@ __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags) | |||
2403 | else | 2280 | else |
2404 | gfp = GFP_NOWAIT; | 2281 | gfp = GFP_NOWAIT; |
2405 | 2282 | ||
2406 | setup_nodelists_pointer(cachep); | 2283 | setup_node_pointer(cachep); |
2407 | #if DEBUG | 2284 | #if DEBUG |
2408 | 2285 | ||
2409 | /* | 2286 | /* |
@@ -2426,7 +2303,7 @@ __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags) | |||
2426 | size += BYTES_PER_WORD; | 2303 | size += BYTES_PER_WORD; |
2427 | } | 2304 | } |
2428 | #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) | 2305 | #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) |
2429 | if (size >= malloc_sizes[INDEX_L3 + 1].cs_size | 2306 | if (size >= kmalloc_size(INDEX_NODE + 1) |
2430 | && cachep->object_size > cache_line_size() | 2307 | && cachep->object_size > cache_line_size() |
2431 | && ALIGN(size, cachep->align) < PAGE_SIZE) { | 2308 | && ALIGN(size, cachep->align) < PAGE_SIZE) { |
2432 | cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align); | 2309 | cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align); |
@@ -2497,7 +2374,7 @@ __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags) | |||
2497 | cachep->reciprocal_buffer_size = reciprocal_value(size); | 2374 | cachep->reciprocal_buffer_size = reciprocal_value(size); |
2498 | 2375 | ||
2499 | if (flags & CFLGS_OFF_SLAB) { | 2376 | if (flags & CFLGS_OFF_SLAB) { |
2500 | cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u); | 2377 | cachep->slabp_cache = kmalloc_slab(slab_size, 0u); |
2501 | /* | 2378 | /* |
2502 | * This is a possibility for one of the malloc_sizes caches. | 2379 | * This is a possibility for one of the malloc_sizes caches. |
2503 | * But since we go off slab only for object size greater than | 2380 | * But since we go off slab only for object size greater than |
@@ -2543,7 +2420,7 @@ static void check_spinlock_acquired(struct kmem_cache *cachep) | |||
2543 | { | 2420 | { |
2544 | #ifdef CONFIG_SMP | 2421 | #ifdef CONFIG_SMP |
2545 | check_irq_off(); | 2422 | check_irq_off(); |
2546 | assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock); | 2423 | assert_spin_locked(&cachep->node[numa_mem_id()]->list_lock); |
2547 | #endif | 2424 | #endif |
2548 | } | 2425 | } |
2549 | 2426 | ||
@@ -2551,7 +2428,7 @@ static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) | |||
2551 | { | 2428 | { |
2552 | #ifdef CONFIG_SMP | 2429 | #ifdef CONFIG_SMP |
2553 | check_irq_off(); | 2430 | check_irq_off(); |
2554 | assert_spin_locked(&cachep->nodelists[node]->list_lock); | 2431 | assert_spin_locked(&cachep->node[node]->list_lock); |
2555 | #endif | 2432 | #endif |
2556 | } | 2433 | } |
2557 | 2434 | ||
@@ -2562,7 +2439,7 @@ static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) | |||
2562 | #define check_spinlock_acquired_node(x, y) do { } while(0) | 2439 | #define check_spinlock_acquired_node(x, y) do { } while(0) |
2563 | #endif | 2440 | #endif |
2564 | 2441 | ||
2565 | static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, | 2442 | static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, |
2566 | struct array_cache *ac, | 2443 | struct array_cache *ac, |
2567 | int force, int node); | 2444 | int force, int node); |
2568 | 2445 | ||
@@ -2574,29 +2451,29 @@ static void do_drain(void *arg) | |||
2574 | 2451 | ||
2575 | check_irq_off(); | 2452 | check_irq_off(); |
2576 | ac = cpu_cache_get(cachep); | 2453 | ac = cpu_cache_get(cachep); |
2577 | spin_lock(&cachep->nodelists[node]->list_lock); | 2454 | spin_lock(&cachep->node[node]->list_lock); |
2578 | free_block(cachep, ac->entry, ac->avail, node); | 2455 | free_block(cachep, ac->entry, ac->avail, node); |
2579 | spin_unlock(&cachep->nodelists[node]->list_lock); | 2456 | spin_unlock(&cachep->node[node]->list_lock); |
2580 | ac->avail = 0; | 2457 | ac->avail = 0; |
2581 | } | 2458 | } |
2582 | 2459 | ||
2583 | static void drain_cpu_caches(struct kmem_cache *cachep) | 2460 | static void drain_cpu_caches(struct kmem_cache *cachep) |
2584 | { | 2461 | { |
2585 | struct kmem_list3 *l3; | 2462 | struct kmem_cache_node *n; |
2586 | int node; | 2463 | int node; |
2587 | 2464 | ||
2588 | on_each_cpu(do_drain, cachep, 1); | 2465 | on_each_cpu(do_drain, cachep, 1); |
2589 | check_irq_on(); | 2466 | check_irq_on(); |
2590 | for_each_online_node(node) { | 2467 | for_each_online_node(node) { |
2591 | l3 = cachep->nodelists[node]; | 2468 | n = cachep->node[node]; |
2592 | if (l3 && l3->alien) | 2469 | if (n && n->alien) |
2593 | drain_alien_cache(cachep, l3->alien); | 2470 | drain_alien_cache(cachep, n->alien); |
2594 | } | 2471 | } |
2595 | 2472 | ||
2596 | for_each_online_node(node) { | 2473 | for_each_online_node(node) { |
2597 | l3 = cachep->nodelists[node]; | 2474 | n = cachep->node[node]; |
2598 | if (l3) | 2475 | if (n) |
2599 | drain_array(cachep, l3, l3->shared, 1, node); | 2476 | drain_array(cachep, n, n->shared, 1, node); |
2600 | } | 2477 | } |
2601 | } | 2478 | } |
2602 | 2479 | ||
@@ -2607,19 +2484,19 @@ static void drain_cpu_caches(struct kmem_cache *cachep) | |||
2607 | * Returns the actual number of slabs released. | 2484 | * Returns the actual number of slabs released. |
2608 | */ | 2485 | */ |
2609 | static int drain_freelist(struct kmem_cache *cache, | 2486 | static int drain_freelist(struct kmem_cache *cache, |
2610 | struct kmem_list3 *l3, int tofree) | 2487 | struct kmem_cache_node *n, int tofree) |
2611 | { | 2488 | { |
2612 | struct list_head *p; | 2489 | struct list_head *p; |
2613 | int nr_freed; | 2490 | int nr_freed; |
2614 | struct slab *slabp; | 2491 | struct slab *slabp; |
2615 | 2492 | ||
2616 | nr_freed = 0; | 2493 | nr_freed = 0; |
2617 | while (nr_freed < tofree && !list_empty(&l3->slabs_free)) { | 2494 | while (nr_freed < tofree && !list_empty(&n->slabs_free)) { |
2618 | 2495 | ||
2619 | spin_lock_irq(&l3->list_lock); | 2496 | spin_lock_irq(&n->list_lock); |
2620 | p = l3->slabs_free.prev; | 2497 | p = n->slabs_free.prev; |
2621 | if (p == &l3->slabs_free) { | 2498 | if (p == &n->slabs_free) { |
2622 | spin_unlock_irq(&l3->list_lock); | 2499 | spin_unlock_irq(&n->list_lock); |
2623 | goto out; | 2500 | goto out; |
2624 | } | 2501 | } |
2625 | 2502 | ||
@@ -2632,8 +2509,8 @@ static int drain_freelist(struct kmem_cache *cache, | |||
2632 | * Safe to drop the lock. The slab is no longer linked | 2509 | * Safe to drop the lock. The slab is no longer linked |
2633 | * to the cache. | 2510 | * to the cache. |
2634 | */ | 2511 | */ |
2635 | l3->free_objects -= cache->num; | 2512 | n->free_objects -= cache->num; |
2636 | spin_unlock_irq(&l3->list_lock); | 2513 | spin_unlock_irq(&n->list_lock); |
2637 | slab_destroy(cache, slabp); | 2514 | slab_destroy(cache, slabp); |
2638 | nr_freed++; | 2515 | nr_freed++; |
2639 | } | 2516 | } |
@@ -2645,20 +2522,20 @@ out: | |||
2645 | static int __cache_shrink(struct kmem_cache *cachep) | 2522 | static int __cache_shrink(struct kmem_cache *cachep) |
2646 | { | 2523 | { |
2647 | int ret = 0, i = 0; | 2524 | int ret = 0, i = 0; |
2648 | struct kmem_list3 *l3; | 2525 | struct kmem_cache_node *n; |
2649 | 2526 | ||
2650 | drain_cpu_caches(cachep); | 2527 | drain_cpu_caches(cachep); |
2651 | 2528 | ||
2652 | check_irq_on(); | 2529 | check_irq_on(); |
2653 | for_each_online_node(i) { | 2530 | for_each_online_node(i) { |
2654 | l3 = cachep->nodelists[i]; | 2531 | n = cachep->node[i]; |
2655 | if (!l3) | 2532 | if (!n) |
2656 | continue; | 2533 | continue; |
2657 | 2534 | ||
2658 | drain_freelist(cachep, l3, l3->free_objects); | 2535 | drain_freelist(cachep, n, n->free_objects); |
2659 | 2536 | ||
2660 | ret += !list_empty(&l3->slabs_full) || | 2537 | ret += !list_empty(&n->slabs_full) || |
2661 | !list_empty(&l3->slabs_partial); | 2538 | !list_empty(&n->slabs_partial); |
2662 | } | 2539 | } |
2663 | return (ret ? 1 : 0); | 2540 | return (ret ? 1 : 0); |
2664 | } | 2541 | } |
@@ -2687,7 +2564,7 @@ EXPORT_SYMBOL(kmem_cache_shrink); | |||
2687 | int __kmem_cache_shutdown(struct kmem_cache *cachep) | 2564 | int __kmem_cache_shutdown(struct kmem_cache *cachep) |
2688 | { | 2565 | { |
2689 | int i; | 2566 | int i; |
2690 | struct kmem_list3 *l3; | 2567 | struct kmem_cache_node *n; |
2691 | int rc = __cache_shrink(cachep); | 2568 | int rc = __cache_shrink(cachep); |
2692 | 2569 | ||
2693 | if (rc) | 2570 | if (rc) |
@@ -2696,13 +2573,13 @@ int __kmem_cache_shutdown(struct kmem_cache *cachep) | |||
2696 | for_each_online_cpu(i) | 2573 | for_each_online_cpu(i) |
2697 | kfree(cachep->array[i]); | 2574 | kfree(cachep->array[i]); |
2698 | 2575 | ||
2699 | /* NUMA: free the list3 structures */ | 2576 | /* NUMA: free the node structures */ |
2700 | for_each_online_node(i) { | 2577 | for_each_online_node(i) { |
2701 | l3 = cachep->nodelists[i]; | 2578 | n = cachep->node[i]; |
2702 | if (l3) { | 2579 | if (n) { |
2703 | kfree(l3->shared); | 2580 | kfree(n->shared); |
2704 | free_alien_cache(l3->alien); | 2581 | free_alien_cache(n->alien); |
2705 | kfree(l3); | 2582 | kfree(n); |
2706 | } | 2583 | } |
2707 | } | 2584 | } |
2708 | return 0; | 2585 | return 0; |
@@ -2884,7 +2761,7 @@ static int cache_grow(struct kmem_cache *cachep, | |||
2884 | struct slab *slabp; | 2761 | struct slab *slabp; |
2885 | size_t offset; | 2762 | size_t offset; |
2886 | gfp_t local_flags; | 2763 | gfp_t local_flags; |
2887 | struct kmem_list3 *l3; | 2764 | struct kmem_cache_node *n; |
2888 | 2765 | ||
2889 | /* | 2766 | /* |
2890 | * Be lazy and only check for valid flags here, keeping it out of the | 2767 | * Be lazy and only check for valid flags here, keeping it out of the |
@@ -2893,17 +2770,17 @@ static int cache_grow(struct kmem_cache *cachep, | |||
2893 | BUG_ON(flags & GFP_SLAB_BUG_MASK); | 2770 | BUG_ON(flags & GFP_SLAB_BUG_MASK); |
2894 | local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); | 2771 | local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); |
2895 | 2772 | ||
2896 | /* Take the l3 list lock to change the colour_next on this node */ | 2773 | /* Take the node list lock to change the colour_next on this node */ |
2897 | check_irq_off(); | 2774 | check_irq_off(); |
2898 | l3 = cachep->nodelists[nodeid]; | 2775 | n = cachep->node[nodeid]; |
2899 | spin_lock(&l3->list_lock); | 2776 | spin_lock(&n->list_lock); |
2900 | 2777 | ||
2901 | /* Get colour for the slab, and cal the next value. */ | 2778 | /* Get colour for the slab, and cal the next value. */ |
2902 | offset = l3->colour_next; | 2779 | offset = n->colour_next; |
2903 | l3->colour_next++; | 2780 | n->colour_next++; |
2904 | if (l3->colour_next >= cachep->colour) | 2781 | if (n->colour_next >= cachep->colour) |
2905 | l3->colour_next = 0; | 2782 | n->colour_next = 0; |
2906 | spin_unlock(&l3->list_lock); | 2783 | spin_unlock(&n->list_lock); |
2907 | 2784 | ||
2908 | offset *= cachep->colour_off; | 2785 | offset *= cachep->colour_off; |
2909 | 2786 | ||
@@ -2940,13 +2817,13 @@ static int cache_grow(struct kmem_cache *cachep, | |||
2940 | if (local_flags & __GFP_WAIT) | 2817 | if (local_flags & __GFP_WAIT) |
2941 | local_irq_disable(); | 2818 | local_irq_disable(); |
2942 | check_irq_off(); | 2819 | check_irq_off(); |
2943 | spin_lock(&l3->list_lock); | 2820 | spin_lock(&n->list_lock); |
2944 | 2821 | ||
2945 | /* Make slab active. */ | 2822 | /* Make slab active. */ |
2946 | list_add_tail(&slabp->list, &(l3->slabs_free)); | 2823 | list_add_tail(&slabp->list, &(n->slabs_free)); |
2947 | STATS_INC_GROWN(cachep); | 2824 | STATS_INC_GROWN(cachep); |
2948 | l3->free_objects += cachep->num; | 2825 | n->free_objects += cachep->num; |
2949 | spin_unlock(&l3->list_lock); | 2826 | spin_unlock(&n->list_lock); |
2950 | return 1; | 2827 | return 1; |
2951 | opps1: | 2828 | opps1: |
2952 | kmem_freepages(cachep, objp); | 2829 | kmem_freepages(cachep, objp); |
@@ -3074,7 +2951,7 @@ static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags, | |||
3074 | bool force_refill) | 2951 | bool force_refill) |
3075 | { | 2952 | { |
3076 | int batchcount; | 2953 | int batchcount; |
3077 | struct kmem_list3 *l3; | 2954 | struct kmem_cache_node *n; |
3078 | struct array_cache *ac; | 2955 | struct array_cache *ac; |
3079 | int node; | 2956 | int node; |
3080 | 2957 | ||
@@ -3093,14 +2970,14 @@ retry: | |||
3093 | */ | 2970 | */ |
3094 | batchcount = BATCHREFILL_LIMIT; | 2971 | batchcount = BATCHREFILL_LIMIT; |
3095 | } | 2972 | } |
3096 | l3 = cachep->nodelists[node]; | 2973 | n = cachep->node[node]; |
3097 | 2974 | ||
3098 | BUG_ON(ac->avail > 0 || !l3); | 2975 | BUG_ON(ac->avail > 0 || !n); |
3099 | spin_lock(&l3->list_lock); | 2976 | spin_lock(&n->list_lock); |
3100 | 2977 | ||
3101 | /* See if we can refill from the shared array */ | 2978 | /* See if we can refill from the shared array */ |
3102 | if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) { | 2979 | if (n->shared && transfer_objects(ac, n->shared, batchcount)) { |
3103 | l3->shared->touched = 1; | 2980 | n->shared->touched = 1; |
3104 | goto alloc_done; | 2981 | goto alloc_done; |
3105 | } | 2982 | } |
3106 | 2983 | ||
@@ -3108,11 +2985,11 @@ retry: | |||
3108 | struct list_head *entry; | 2985 | struct list_head *entry; |
3109 | struct slab *slabp; | 2986 | struct slab *slabp; |
3110 | /* Get slab alloc is to come from. */ | 2987 | /* Get slab alloc is to come from. */ |
3111 | entry = l3->slabs_partial.next; | 2988 | entry = n->slabs_partial.next; |
3112 | if (entry == &l3->slabs_partial) { | 2989 | if (entry == &n->slabs_partial) { |
3113 | l3->free_touched = 1; | 2990 | n->free_touched = 1; |
3114 | entry = l3->slabs_free.next; | 2991 | entry = n->slabs_free.next; |
3115 | if (entry == &l3->slabs_free) | 2992 | if (entry == &n->slabs_free) |
3116 | goto must_grow; | 2993 | goto must_grow; |
3117 | } | 2994 | } |
3118 | 2995 | ||
@@ -3140,15 +3017,15 @@ retry: | |||
3140 | /* move slabp to correct slabp list: */ | 3017 | /* move slabp to correct slabp list: */ |
3141 | list_del(&slabp->list); | 3018 | list_del(&slabp->list); |
3142 | if (slabp->free == BUFCTL_END) | 3019 | if (slabp->free == BUFCTL_END) |
3143 | list_add(&slabp->list, &l3->slabs_full); | 3020 | list_add(&slabp->list, &n->slabs_full); |
3144 | else | 3021 | else |
3145 | list_add(&slabp->list, &l3->slabs_partial); | 3022 | list_add(&slabp->list, &n->slabs_partial); |
3146 | } | 3023 | } |
3147 | 3024 | ||
3148 | must_grow: | 3025 | must_grow: |
3149 | l3->free_objects -= ac->avail; | 3026 | n->free_objects -= ac->avail; |
3150 | alloc_done: | 3027 | alloc_done: |
3151 | spin_unlock(&l3->list_lock); | 3028 | spin_unlock(&n->list_lock); |
3152 | 3029 | ||
3153 | if (unlikely(!ac->avail)) { | 3030 | if (unlikely(!ac->avail)) { |
3154 | int x; | 3031 | int x; |
@@ -3315,7 +3192,7 @@ static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) | |||
3315 | /* | 3192 | /* |
3316 | * Fallback function if there was no memory available and no objects on a | 3193 | * Fallback function if there was no memory available and no objects on a |
3317 | * certain node and fall back is permitted. First we scan all the | 3194 | * certain node and fall back is permitted. First we scan all the |
3318 | * available nodelists for available objects. If that fails then we | 3195 | * available node for available objects. If that fails then we |
3319 | * perform an allocation without specifying a node. This allows the page | 3196 | * perform an allocation without specifying a node. This allows the page |
3320 | * allocator to do its reclaim / fallback magic. We then insert the | 3197 | * allocator to do its reclaim / fallback magic. We then insert the |
3321 | * slab into the proper nodelist and then allocate from it. | 3198 | * slab into the proper nodelist and then allocate from it. |
@@ -3349,8 +3226,8 @@ retry: | |||
3349 | nid = zone_to_nid(zone); | 3226 | nid = zone_to_nid(zone); |
3350 | 3227 | ||
3351 | if (cpuset_zone_allowed_hardwall(zone, flags) && | 3228 | if (cpuset_zone_allowed_hardwall(zone, flags) && |
3352 | cache->nodelists[nid] && | 3229 | cache->node[nid] && |
3353 | cache->nodelists[nid]->free_objects) { | 3230 | cache->node[nid]->free_objects) { |
3354 | obj = ____cache_alloc_node(cache, | 3231 | obj = ____cache_alloc_node(cache, |
3355 | flags | GFP_THISNODE, nid); | 3232 | flags | GFP_THISNODE, nid); |
3356 | if (obj) | 3233 | if (obj) |
@@ -3406,21 +3283,22 @@ static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, | |||
3406 | { | 3283 | { |
3407 | struct list_head *entry; | 3284 | struct list_head *entry; |
3408 | struct slab *slabp; | 3285 | struct slab *slabp; |
3409 | struct kmem_list3 *l3; | 3286 | struct kmem_cache_node *n; |
3410 | void *obj; | 3287 | void *obj; |
3411 | int x; | 3288 | int x; |
3412 | 3289 | ||
3413 | l3 = cachep->nodelists[nodeid]; | 3290 | VM_BUG_ON(nodeid > num_online_nodes()); |
3414 | BUG_ON(!l3); | 3291 | n = cachep->node[nodeid]; |
3292 | BUG_ON(!n); | ||
3415 | 3293 | ||
3416 | retry: | 3294 | retry: |
3417 | check_irq_off(); | 3295 | check_irq_off(); |
3418 | spin_lock(&l3->list_lock); | 3296 | spin_lock(&n->list_lock); |
3419 | entry = l3->slabs_partial.next; | 3297 | entry = n->slabs_partial.next; |
3420 | if (entry == &l3->slabs_partial) { | 3298 | if (entry == &n->slabs_partial) { |
3421 | l3->free_touched = 1; | 3299 | n->free_touched = 1; |
3422 | entry = l3->slabs_free.next; | 3300 | entry = n->slabs_free.next; |
3423 | if (entry == &l3->slabs_free) | 3301 | if (entry == &n->slabs_free) |
3424 | goto must_grow; | 3302 | goto must_grow; |
3425 | } | 3303 | } |
3426 | 3304 | ||
@@ -3436,20 +3314,20 @@ retry: | |||
3436 | 3314 | ||
3437 | obj = slab_get_obj(cachep, slabp, nodeid); | 3315 | obj = slab_get_obj(cachep, slabp, nodeid); |
3438 | check_slabp(cachep, slabp); | 3316 | check_slabp(cachep, slabp); |
3439 | l3->free_objects--; | 3317 | n->free_objects--; |
3440 | /* move slabp to correct slabp list: */ | 3318 | /* move slabp to correct slabp list: */ |
3441 | list_del(&slabp->list); | 3319 | list_del(&slabp->list); |
3442 | 3320 | ||
3443 | if (slabp->free == BUFCTL_END) | 3321 | if (slabp->free == BUFCTL_END) |
3444 | list_add(&slabp->list, &l3->slabs_full); | 3322 | list_add(&slabp->list, &n->slabs_full); |
3445 | else | 3323 | else |
3446 | list_add(&slabp->list, &l3->slabs_partial); | 3324 | list_add(&slabp->list, &n->slabs_partial); |
3447 | 3325 | ||
3448 | spin_unlock(&l3->list_lock); | 3326 | spin_unlock(&n->list_lock); |
3449 | goto done; | 3327 | goto done; |
3450 | 3328 | ||
3451 | must_grow: | 3329 | must_grow: |
3452 | spin_unlock(&l3->list_lock); | 3330 | spin_unlock(&n->list_lock); |
3453 | x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL); | 3331 | x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL); |
3454 | if (x) | 3332 | if (x) |
3455 | goto retry; | 3333 | goto retry; |
@@ -3495,7 +3373,7 @@ slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, | |||
3495 | if (nodeid == NUMA_NO_NODE) | 3373 | if (nodeid == NUMA_NO_NODE) |
3496 | nodeid = slab_node; | 3374 | nodeid = slab_node; |
3497 | 3375 | ||
3498 | if (unlikely(!cachep->nodelists[nodeid])) { | 3376 | if (unlikely(!cachep->node[nodeid])) { |
3499 | /* Node not bootstrapped yet */ | 3377 | /* Node not bootstrapped yet */ |
3500 | ptr = fallback_alloc(cachep, flags); | 3378 | ptr = fallback_alloc(cachep, flags); |
3501 | goto out; | 3379 | goto out; |
@@ -3601,7 +3479,7 @@ static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, | |||
3601 | int node) | 3479 | int node) |
3602 | { | 3480 | { |
3603 | int i; | 3481 | int i; |
3604 | struct kmem_list3 *l3; | 3482 | struct kmem_cache_node *n; |
3605 | 3483 | ||
3606 | for (i = 0; i < nr_objects; i++) { | 3484 | for (i = 0; i < nr_objects; i++) { |
3607 | void *objp; | 3485 | void *objp; |
@@ -3611,19 +3489,19 @@ static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, | |||
3611 | objp = objpp[i]; | 3489 | objp = objpp[i]; |
3612 | 3490 | ||
3613 | slabp = virt_to_slab(objp); | 3491 | slabp = virt_to_slab(objp); |
3614 | l3 = cachep->nodelists[node]; | 3492 | n = cachep->node[node]; |
3615 | list_del(&slabp->list); | 3493 | list_del(&slabp->list); |
3616 | check_spinlock_acquired_node(cachep, node); | 3494 | check_spinlock_acquired_node(cachep, node); |
3617 | check_slabp(cachep, slabp); | 3495 | check_slabp(cachep, slabp); |
3618 | slab_put_obj(cachep, slabp, objp, node); | 3496 | slab_put_obj(cachep, slabp, objp, node); |
3619 | STATS_DEC_ACTIVE(cachep); | 3497 | STATS_DEC_ACTIVE(cachep); |
3620 | l3->free_objects++; | 3498 | n->free_objects++; |
3621 | check_slabp(cachep, slabp); | 3499 | check_slabp(cachep, slabp); |
3622 | 3500 | ||
3623 | /* fixup slab chains */ | 3501 | /* fixup slab chains */ |
3624 | if (slabp->inuse == 0) { | 3502 | if (slabp->inuse == 0) { |
3625 | if (l3->free_objects > l3->free_limit) { | 3503 | if (n->free_objects > n->free_limit) { |
3626 | l3->free_objects -= cachep->num; | 3504 | n->free_objects -= cachep->num; |
3627 | /* No need to drop any previously held | 3505 | /* No need to drop any previously held |
3628 | * lock here, even if we have a off-slab slab | 3506 | * lock here, even if we have a off-slab slab |
3629 | * descriptor it is guaranteed to come from | 3507 | * descriptor it is guaranteed to come from |
@@ -3632,14 +3510,14 @@ static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, | |||
3632 | */ | 3510 | */ |
3633 | slab_destroy(cachep, slabp); | 3511 | slab_destroy(cachep, slabp); |
3634 | } else { | 3512 | } else { |
3635 | list_add(&slabp->list, &l3->slabs_free); | 3513 | list_add(&slabp->list, &n->slabs_free); |
3636 | } | 3514 | } |
3637 | } else { | 3515 | } else { |
3638 | /* Unconditionally move a slab to the end of the | 3516 | /* Unconditionally move a slab to the end of the |
3639 | * partial list on free - maximum time for the | 3517 | * partial list on free - maximum time for the |
3640 | * other objects to be freed, too. | 3518 | * other objects to be freed, too. |
3641 | */ | 3519 | */ |
3642 | list_add_tail(&slabp->list, &l3->slabs_partial); | 3520 | list_add_tail(&slabp->list, &n->slabs_partial); |
3643 | } | 3521 | } |
3644 | } | 3522 | } |
3645 | } | 3523 | } |
@@ -3647,7 +3525,7 @@ static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, | |||
3647 | static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) | 3525 | static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) |
3648 | { | 3526 | { |
3649 | int batchcount; | 3527 | int batchcount; |
3650 | struct kmem_list3 *l3; | 3528 | struct kmem_cache_node *n; |
3651 | int node = numa_mem_id(); | 3529 | int node = numa_mem_id(); |
3652 | 3530 | ||
3653 | batchcount = ac->batchcount; | 3531 | batchcount = ac->batchcount; |
@@ -3655,10 +3533,10 @@ static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) | |||
3655 | BUG_ON(!batchcount || batchcount > ac->avail); | 3533 | BUG_ON(!batchcount || batchcount > ac->avail); |
3656 | #endif | 3534 | #endif |
3657 | check_irq_off(); | 3535 | check_irq_off(); |
3658 | l3 = cachep->nodelists[node]; | 3536 | n = cachep->node[node]; |
3659 | spin_lock(&l3->list_lock); | 3537 | spin_lock(&n->list_lock); |
3660 | if (l3->shared) { | 3538 | if (n->shared) { |
3661 | struct array_cache *shared_array = l3->shared; | 3539 | struct array_cache *shared_array = n->shared; |
3662 | int max = shared_array->limit - shared_array->avail; | 3540 | int max = shared_array->limit - shared_array->avail; |
3663 | if (max) { | 3541 | if (max) { |
3664 | if (batchcount > max) | 3542 | if (batchcount > max) |
@@ -3677,8 +3555,8 @@ free_done: | |||
3677 | int i = 0; | 3555 | int i = 0; |
3678 | struct list_head *p; | 3556 | struct list_head *p; |
3679 | 3557 | ||
3680 | p = l3->slabs_free.next; | 3558 | p = n->slabs_free.next; |
3681 | while (p != &(l3->slabs_free)) { | 3559 | while (p != &(n->slabs_free)) { |
3682 | struct slab *slabp; | 3560 | struct slab *slabp; |
3683 | 3561 | ||
3684 | slabp = list_entry(p, struct slab, list); | 3562 | slabp = list_entry(p, struct slab, list); |
@@ -3690,7 +3568,7 @@ free_done: | |||
3690 | STATS_SET_FREEABLE(cachep, i); | 3568 | STATS_SET_FREEABLE(cachep, i); |
3691 | } | 3569 | } |
3692 | #endif | 3570 | #endif |
3693 | spin_unlock(&l3->list_lock); | 3571 | spin_unlock(&n->list_lock); |
3694 | ac->avail -= batchcount; | 3572 | ac->avail -= batchcount; |
3695 | memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); | 3573 | memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); |
3696 | } | 3574 | } |
@@ -3800,7 +3678,7 @@ __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) | |||
3800 | { | 3678 | { |
3801 | struct kmem_cache *cachep; | 3679 | struct kmem_cache *cachep; |
3802 | 3680 | ||
3803 | cachep = kmem_find_general_cachep(size, flags); | 3681 | cachep = kmalloc_slab(size, flags); |
3804 | if (unlikely(ZERO_OR_NULL_PTR(cachep))) | 3682 | if (unlikely(ZERO_OR_NULL_PTR(cachep))) |
3805 | return cachep; | 3683 | return cachep; |
3806 | return kmem_cache_alloc_node_trace(cachep, flags, node, size); | 3684 | return kmem_cache_alloc_node_trace(cachep, flags, node, size); |
@@ -3845,7 +3723,7 @@ static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, | |||
3845 | * Then kmalloc uses the uninlined functions instead of the inline | 3723 | * Then kmalloc uses the uninlined functions instead of the inline |
3846 | * functions. | 3724 | * functions. |
3847 | */ | 3725 | */ |
3848 | cachep = __find_general_cachep(size, flags); | 3726 | cachep = kmalloc_slab(size, flags); |
3849 | if (unlikely(ZERO_OR_NULL_PTR(cachep))) | 3727 | if (unlikely(ZERO_OR_NULL_PTR(cachep))) |
3850 | return cachep; | 3728 | return cachep; |
3851 | ret = slab_alloc(cachep, flags, caller); | 3729 | ret = slab_alloc(cachep, flags, caller); |
@@ -3934,12 +3812,12 @@ void kfree(const void *objp) | |||
3934 | EXPORT_SYMBOL(kfree); | 3812 | EXPORT_SYMBOL(kfree); |
3935 | 3813 | ||
3936 | /* | 3814 | /* |
3937 | * This initializes kmem_list3 or resizes various caches for all nodes. | 3815 | * This initializes kmem_cache_node or resizes various caches for all nodes. |
3938 | */ | 3816 | */ |
3939 | static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp) | 3817 | static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp) |
3940 | { | 3818 | { |
3941 | int node; | 3819 | int node; |
3942 | struct kmem_list3 *l3; | 3820 | struct kmem_cache_node *n; |
3943 | struct array_cache *new_shared; | 3821 | struct array_cache *new_shared; |
3944 | struct array_cache **new_alien = NULL; | 3822 | struct array_cache **new_alien = NULL; |
3945 | 3823 | ||
@@ -3962,43 +3840,43 @@ static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp) | |||
3962 | } | 3840 | } |
3963 | } | 3841 | } |
3964 | 3842 | ||
3965 | l3 = cachep->nodelists[node]; | 3843 | n = cachep->node[node]; |
3966 | if (l3) { | 3844 | if (n) { |
3967 | struct array_cache *shared = l3->shared; | 3845 | struct array_cache *shared = n->shared; |
3968 | 3846 | ||
3969 | spin_lock_irq(&l3->list_lock); | 3847 | spin_lock_irq(&n->list_lock); |
3970 | 3848 | ||
3971 | if (shared) | 3849 | if (shared) |
3972 | free_block(cachep, shared->entry, | 3850 | free_block(cachep, shared->entry, |
3973 | shared->avail, node); | 3851 | shared->avail, node); |
3974 | 3852 | ||
3975 | l3->shared = new_shared; | 3853 | n->shared = new_shared; |
3976 | if (!l3->alien) { | 3854 | if (!n->alien) { |
3977 | l3->alien = new_alien; | 3855 | n->alien = new_alien; |
3978 | new_alien = NULL; | 3856 | new_alien = NULL; |
3979 | } | 3857 | } |
3980 | l3->free_limit = (1 + nr_cpus_node(node)) * | 3858 | n->free_limit = (1 + nr_cpus_node(node)) * |
3981 | cachep->batchcount + cachep->num; | 3859 | cachep->batchcount + cachep->num; |
3982 | spin_unlock_irq(&l3->list_lock); | 3860 | spin_unlock_irq(&n->list_lock); |
3983 | kfree(shared); | 3861 | kfree(shared); |
3984 | free_alien_cache(new_alien); | 3862 | free_alien_cache(new_alien); |
3985 | continue; | 3863 | continue; |
3986 | } | 3864 | } |
3987 | l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node); | 3865 | n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node); |
3988 | if (!l3) { | 3866 | if (!n) { |
3989 | free_alien_cache(new_alien); | 3867 | free_alien_cache(new_alien); |
3990 | kfree(new_shared); | 3868 | kfree(new_shared); |
3991 | goto fail; | 3869 | goto fail; |
3992 | } | 3870 | } |
3993 | 3871 | ||
3994 | kmem_list3_init(l3); | 3872 | kmem_cache_node_init(n); |
3995 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + | 3873 | n->next_reap = jiffies + REAPTIMEOUT_LIST3 + |
3996 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; | 3874 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; |
3997 | l3->shared = new_shared; | 3875 | n->shared = new_shared; |
3998 | l3->alien = new_alien; | 3876 | n->alien = new_alien; |
3999 | l3->free_limit = (1 + nr_cpus_node(node)) * | 3877 | n->free_limit = (1 + nr_cpus_node(node)) * |
4000 | cachep->batchcount + cachep->num; | 3878 | cachep->batchcount + cachep->num; |
4001 | cachep->nodelists[node] = l3; | 3879 | cachep->node[node] = n; |
4002 | } | 3880 | } |
4003 | return 0; | 3881 | return 0; |
4004 | 3882 | ||
@@ -4007,13 +3885,13 @@ fail: | |||
4007 | /* Cache is not active yet. Roll back what we did */ | 3885 | /* Cache is not active yet. Roll back what we did */ |
4008 | node--; | 3886 | node--; |
4009 | while (node >= 0) { | 3887 | while (node >= 0) { |
4010 | if (cachep->nodelists[node]) { | 3888 | if (cachep->node[node]) { |
4011 | l3 = cachep->nodelists[node]; | 3889 | n = cachep->node[node]; |
4012 | 3890 | ||
4013 | kfree(l3->shared); | 3891 | kfree(n->shared); |
4014 | free_alien_cache(l3->alien); | 3892 | free_alien_cache(n->alien); |
4015 | kfree(l3); | 3893 | kfree(n); |
4016 | cachep->nodelists[node] = NULL; | 3894 | cachep->node[node] = NULL; |
4017 | } | 3895 | } |
4018 | node--; | 3896 | node--; |
4019 | } | 3897 | } |
@@ -4073,9 +3951,9 @@ static int __do_tune_cpucache(struct kmem_cache *cachep, int limit, | |||
4073 | struct array_cache *ccold = new->new[i]; | 3951 | struct array_cache *ccold = new->new[i]; |
4074 | if (!ccold) | 3952 | if (!ccold) |
4075 | continue; | 3953 | continue; |
4076 | spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock); | 3954 | spin_lock_irq(&cachep->node[cpu_to_mem(i)]->list_lock); |
4077 | free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i)); | 3955 | free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i)); |
4078 | spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock); | 3956 | spin_unlock_irq(&cachep->node[cpu_to_mem(i)]->list_lock); |
4079 | kfree(ccold); | 3957 | kfree(ccold); |
4080 | } | 3958 | } |
4081 | kfree(new); | 3959 | kfree(new); |
@@ -4176,11 +4054,11 @@ skip_setup: | |||
4176 | } | 4054 | } |
4177 | 4055 | ||
4178 | /* | 4056 | /* |
4179 | * Drain an array if it contains any elements taking the l3 lock only if | 4057 | * Drain an array if it contains any elements taking the node lock only if |
4180 | * necessary. Note that the l3 listlock also protects the array_cache | 4058 | * necessary. Note that the node listlock also protects the array_cache |
4181 | * if drain_array() is used on the shared array. | 4059 | * if drain_array() is used on the shared array. |
4182 | */ | 4060 | */ |
4183 | static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, | 4061 | static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n, |
4184 | struct array_cache *ac, int force, int node) | 4062 | struct array_cache *ac, int force, int node) |
4185 | { | 4063 | { |
4186 | int tofree; | 4064 | int tofree; |
@@ -4190,7 +4068,7 @@ static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, | |||
4190 | if (ac->touched && !force) { | 4068 | if (ac->touched && !force) { |
4191 | ac->touched = 0; | 4069 | ac->touched = 0; |
4192 | } else { | 4070 | } else { |
4193 | spin_lock_irq(&l3->list_lock); | 4071 | spin_lock_irq(&n->list_lock); |
4194 | if (ac->avail) { | 4072 | if (ac->avail) { |
4195 | tofree = force ? ac->avail : (ac->limit + 4) / 5; | 4073 | tofree = force ? ac->avail : (ac->limit + 4) / 5; |
4196 | if (tofree > ac->avail) | 4074 | if (tofree > ac->avail) |
@@ -4200,7 +4078,7 @@ static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, | |||
4200 | memmove(ac->entry, &(ac->entry[tofree]), | 4078 | memmove(ac->entry, &(ac->entry[tofree]), |
4201 | sizeof(void *) * ac->avail); | 4079 | sizeof(void *) * ac->avail); |
4202 | } | 4080 | } |
4203 | spin_unlock_irq(&l3->list_lock); | 4081 | spin_unlock_irq(&n->list_lock); |
4204 | } | 4082 | } |
4205 | } | 4083 | } |
4206 | 4084 | ||
@@ -4219,7 +4097,7 @@ static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, | |||
4219 | static void cache_reap(struct work_struct *w) | 4097 | static void cache_reap(struct work_struct *w) |
4220 | { | 4098 | { |
4221 | struct kmem_cache *searchp; | 4099 | struct kmem_cache *searchp; |
4222 | struct kmem_list3 *l3; | 4100 | struct kmem_cache_node *n; |
4223 | int node = numa_mem_id(); | 4101 | int node = numa_mem_id(); |
4224 | struct delayed_work *work = to_delayed_work(w); | 4102 | struct delayed_work *work = to_delayed_work(w); |
4225 | 4103 | ||
@@ -4231,33 +4109,33 @@ static void cache_reap(struct work_struct *w) | |||
4231 | check_irq_on(); | 4109 | check_irq_on(); |
4232 | 4110 | ||
4233 | /* | 4111 | /* |
4234 | * We only take the l3 lock if absolutely necessary and we | 4112 | * We only take the node lock if absolutely necessary and we |
4235 | * have established with reasonable certainty that | 4113 | * have established with reasonable certainty that |
4236 | * we can do some work if the lock was obtained. | 4114 | * we can do some work if the lock was obtained. |
4237 | */ | 4115 | */ |
4238 | l3 = searchp->nodelists[node]; | 4116 | n = searchp->node[node]; |
4239 | 4117 | ||
4240 | reap_alien(searchp, l3); | 4118 | reap_alien(searchp, n); |
4241 | 4119 | ||
4242 | drain_array(searchp, l3, cpu_cache_get(searchp), 0, node); | 4120 | drain_array(searchp, n, cpu_cache_get(searchp), 0, node); |
4243 | 4121 | ||
4244 | /* | 4122 | /* |
4245 | * These are racy checks but it does not matter | 4123 | * These are racy checks but it does not matter |
4246 | * if we skip one check or scan twice. | 4124 | * if we skip one check or scan twice. |
4247 | */ | 4125 | */ |
4248 | if (time_after(l3->next_reap, jiffies)) | 4126 | if (time_after(n->next_reap, jiffies)) |
4249 | goto next; | 4127 | goto next; |
4250 | 4128 | ||
4251 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3; | 4129 | n->next_reap = jiffies + REAPTIMEOUT_LIST3; |
4252 | 4130 | ||
4253 | drain_array(searchp, l3, l3->shared, 0, node); | 4131 | drain_array(searchp, n, n->shared, 0, node); |
4254 | 4132 | ||
4255 | if (l3->free_touched) | 4133 | if (n->free_touched) |
4256 | l3->free_touched = 0; | 4134 | n->free_touched = 0; |
4257 | else { | 4135 | else { |
4258 | int freed; | 4136 | int freed; |
4259 | 4137 | ||
4260 | freed = drain_freelist(searchp, l3, (l3->free_limit + | 4138 | freed = drain_freelist(searchp, n, (n->free_limit + |
4261 | 5 * searchp->num - 1) / (5 * searchp->num)); | 4139 | 5 * searchp->num - 1) / (5 * searchp->num)); |
4262 | STATS_ADD_REAPED(searchp, freed); | 4140 | STATS_ADD_REAPED(searchp, freed); |
4263 | } | 4141 | } |
@@ -4283,25 +4161,25 @@ void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) | |||
4283 | const char *name; | 4161 | const char *name; |
4284 | char *error = NULL; | 4162 | char *error = NULL; |
4285 | int node; | 4163 | int node; |
4286 | struct kmem_list3 *l3; | 4164 | struct kmem_cache_node *n; |
4287 | 4165 | ||
4288 | active_objs = 0; | 4166 | active_objs = 0; |
4289 | num_slabs = 0; | 4167 | num_slabs = 0; |
4290 | for_each_online_node(node) { | 4168 | for_each_online_node(node) { |
4291 | l3 = cachep->nodelists[node]; | 4169 | n = cachep->node[node]; |
4292 | if (!l3) | 4170 | if (!n) |
4293 | continue; | 4171 | continue; |
4294 | 4172 | ||
4295 | check_irq_on(); | 4173 | check_irq_on(); |
4296 | spin_lock_irq(&l3->list_lock); | 4174 | spin_lock_irq(&n->list_lock); |
4297 | 4175 | ||
4298 | list_for_each_entry(slabp, &l3->slabs_full, list) { | 4176 | list_for_each_entry(slabp, &n->slabs_full, list) { |
4299 | if (slabp->inuse != cachep->num && !error) | 4177 | if (slabp->inuse != cachep->num && !error) |
4300 | error = "slabs_full accounting error"; | 4178 | error = "slabs_full accounting error"; |
4301 | active_objs += cachep->num; | 4179 | active_objs += cachep->num; |
4302 | active_slabs++; | 4180 | active_slabs++; |
4303 | } | 4181 | } |
4304 | list_for_each_entry(slabp, &l3->slabs_partial, list) { | 4182 | list_for_each_entry(slabp, &n->slabs_partial, list) { |
4305 | if (slabp->inuse == cachep->num && !error) | 4183 | if (slabp->inuse == cachep->num && !error) |
4306 | error = "slabs_partial inuse accounting error"; | 4184 | error = "slabs_partial inuse accounting error"; |
4307 | if (!slabp->inuse && !error) | 4185 | if (!slabp->inuse && !error) |
@@ -4309,16 +4187,16 @@ void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) | |||
4309 | active_objs += slabp->inuse; | 4187 | active_objs += slabp->inuse; |
4310 | active_slabs++; | 4188 | active_slabs++; |
4311 | } | 4189 | } |
4312 | list_for_each_entry(slabp, &l3->slabs_free, list) { | 4190 | list_for_each_entry(slabp, &n->slabs_free, list) { |
4313 | if (slabp->inuse && !error) | 4191 | if (slabp->inuse && !error) |
4314 | error = "slabs_free/inuse accounting error"; | 4192 | error = "slabs_free/inuse accounting error"; |
4315 | num_slabs++; | 4193 | num_slabs++; |
4316 | } | 4194 | } |
4317 | free_objects += l3->free_objects; | 4195 | free_objects += n->free_objects; |
4318 | if (l3->shared) | 4196 | if (n->shared) |
4319 | shared_avail += l3->shared->avail; | 4197 | shared_avail += n->shared->avail; |
4320 | 4198 | ||
4321 | spin_unlock_irq(&l3->list_lock); | 4199 | spin_unlock_irq(&n->list_lock); |
4322 | } | 4200 | } |
4323 | num_slabs += active_slabs; | 4201 | num_slabs += active_slabs; |
4324 | num_objs = num_slabs * cachep->num; | 4202 | num_objs = num_slabs * cachep->num; |
@@ -4344,7 +4222,7 @@ void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo) | |||
4344 | void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) | 4222 | void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep) |
4345 | { | 4223 | { |
4346 | #if STATS | 4224 | #if STATS |
4347 | { /* list3 stats */ | 4225 | { /* node stats */ |
4348 | unsigned long high = cachep->high_mark; | 4226 | unsigned long high = cachep->high_mark; |
4349 | unsigned long allocs = cachep->num_allocations; | 4227 | unsigned long allocs = cachep->num_allocations; |
4350 | unsigned long grown = cachep->grown; | 4228 | unsigned long grown = cachep->grown; |
@@ -4497,9 +4375,9 @@ static int leaks_show(struct seq_file *m, void *p) | |||
4497 | { | 4375 | { |
4498 | struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list); | 4376 | struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list); |
4499 | struct slab *slabp; | 4377 | struct slab *slabp; |
4500 | struct kmem_list3 *l3; | 4378 | struct kmem_cache_node *n; |
4501 | const char *name; | 4379 | const char *name; |
4502 | unsigned long *n = m->private; | 4380 | unsigned long *x = m->private; |
4503 | int node; | 4381 | int node; |
4504 | int i; | 4382 | int i; |
4505 | 4383 | ||
@@ -4510,43 +4388,43 @@ static int leaks_show(struct seq_file *m, void *p) | |||
4510 | 4388 | ||
4511 | /* OK, we can do it */ | 4389 | /* OK, we can do it */ |
4512 | 4390 | ||
4513 | n[1] = 0; | 4391 | x[1] = 0; |
4514 | 4392 | ||
4515 | for_each_online_node(node) { | 4393 | for_each_online_node(node) { |
4516 | l3 = cachep->nodelists[node]; | 4394 | n = cachep->node[node]; |
4517 | if (!l3) | 4395 | if (!n) |
4518 | continue; | 4396 | continue; |
4519 | 4397 | ||
4520 | check_irq_on(); | 4398 | check_irq_on(); |
4521 | spin_lock_irq(&l3->list_lock); | 4399 | spin_lock_irq(&n->list_lock); |
4522 | 4400 | ||
4523 | list_for_each_entry(slabp, &l3->slabs_full, list) | 4401 | list_for_each_entry(slabp, &n->slabs_full, list) |
4524 | handle_slab(n, cachep, slabp); | 4402 | handle_slab(x, cachep, slabp); |
4525 | list_for_each_entry(slabp, &l3->slabs_partial, list) | 4403 | list_for_each_entry(slabp, &n->slabs_partial, list) |
4526 | handle_slab(n, cachep, slabp); | 4404 | handle_slab(x, cachep, slabp); |
4527 | spin_unlock_irq(&l3->list_lock); | 4405 | spin_unlock_irq(&n->list_lock); |
4528 | } | 4406 | } |
4529 | name = cachep->name; | 4407 | name = cachep->name; |
4530 | if (n[0] == n[1]) { | 4408 | if (x[0] == x[1]) { |
4531 | /* Increase the buffer size */ | 4409 | /* Increase the buffer size */ |
4532 | mutex_unlock(&slab_mutex); | 4410 | mutex_unlock(&slab_mutex); |
4533 | m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL); | 4411 | m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL); |
4534 | if (!m->private) { | 4412 | if (!m->private) { |
4535 | /* Too bad, we are really out */ | 4413 | /* Too bad, we are really out */ |
4536 | m->private = n; | 4414 | m->private = x; |
4537 | mutex_lock(&slab_mutex); | 4415 | mutex_lock(&slab_mutex); |
4538 | return -ENOMEM; | 4416 | return -ENOMEM; |
4539 | } | 4417 | } |
4540 | *(unsigned long *)m->private = n[0] * 2; | 4418 | *(unsigned long *)m->private = x[0] * 2; |
4541 | kfree(n); | 4419 | kfree(x); |
4542 | mutex_lock(&slab_mutex); | 4420 | mutex_lock(&slab_mutex); |
4543 | /* Now make sure this entry will be retried */ | 4421 | /* Now make sure this entry will be retried */ |
4544 | m->count = m->size; | 4422 | m->count = m->size; |
4545 | return 0; | 4423 | return 0; |
4546 | } | 4424 | } |
4547 | for (i = 0; i < n[1]; i++) { | 4425 | for (i = 0; i < x[1]; i++) { |
4548 | seq_printf(m, "%s: %lu ", name, n[2*i+3]); | 4426 | seq_printf(m, "%s: %lu ", name, x[2*i+3]); |
4549 | show_symbol(m, n[2*i+2]); | 4427 | show_symbol(m, x[2*i+2]); |
4550 | seq_putc(m, '\n'); | 4428 | seq_putc(m, '\n'); |
4551 | } | 4429 | } |
4552 | 4430 | ||