diff options
author | Peter Zijlstra <a.p.zijlstra@chello.nl> | 2006-09-26 02:30:57 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@g5.osdl.org> | 2006-09-26 11:48:44 -0400 |
commit | d08b3851da41d0ee60851f2c75b118e1f7a5fc89 (patch) | |
tree | a01f6930a1387e8f66607e2fe16c62bb7044353b /mm/rmap.c | |
parent | 725d704ecaca4a43f067092c140d4f3271cf2856 (diff) |
[PATCH] mm: tracking shared dirty pages
Tracking of dirty pages in shared writeable mmap()s.
The idea is simple: write protect clean shared writeable pages, catch the
write-fault, make writeable and set dirty. On page write-back clean all the
PTE dirty bits and write protect them once again.
The implementation is a tad harder, mainly because the default
backing_dev_info capabilities were too loosely maintained. Hence it is not
enough to test the backing_dev_info for cap_account_dirty.
The current heuristic is as follows, a VMA is eligible when:
- its shared writeable
(vm_flags & (VM_WRITE|VM_SHARED)) == (VM_WRITE|VM_SHARED)
- it is not a 'special' mapping
(vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) == 0
- the backing_dev_info is cap_account_dirty
mapping_cap_account_dirty(vma->vm_file->f_mapping)
- f_op->mmap() didn't change the default page protection
Page from remap_pfn_range() are explicitly excluded because their COW
semantics are already horrid enough (see vm_normal_page() in do_wp_page()) and
because they don't have a backing store anyway.
mprotect() is taught about the new behaviour as well. However it overrides
the last condition.
Cleaning the pages on write-back is done with page_mkclean() a new rmap call.
It can be called on any page, but is currently only implemented for mapped
pages, if the page is found the be of a VMA that accounts dirty pages it will
also wrprotect the PTE.
Finally, in fs/buffers.c:try_to_free_buffers(); remove clear_page_dirty() from
under ->private_lock. This seems to be safe, since ->private_lock is used to
serialize access to the buffers, not the page itself. This is needed because
clear_page_dirty() will call into page_mkclean() and would thereby violate
locking order.
[dhowells@redhat.com: Provide a page_mkclean() implementation for NOMMU]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Hugh Dickins <hugh@veritas.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Diffstat (limited to 'mm/rmap.c')
-rw-r--r-- | mm/rmap.c | 65 |
1 files changed, 65 insertions, 0 deletions
@@ -434,6 +434,71 @@ int page_referenced(struct page *page, int is_locked) | |||
434 | return referenced; | 434 | return referenced; |
435 | } | 435 | } |
436 | 436 | ||
437 | static int page_mkclean_one(struct page *page, struct vm_area_struct *vma) | ||
438 | { | ||
439 | struct mm_struct *mm = vma->vm_mm; | ||
440 | unsigned long address; | ||
441 | pte_t *pte, entry; | ||
442 | spinlock_t *ptl; | ||
443 | int ret = 0; | ||
444 | |||
445 | address = vma_address(page, vma); | ||
446 | if (address == -EFAULT) | ||
447 | goto out; | ||
448 | |||
449 | pte = page_check_address(page, mm, address, &ptl); | ||
450 | if (!pte) | ||
451 | goto out; | ||
452 | |||
453 | if (!pte_dirty(*pte) && !pte_write(*pte)) | ||
454 | goto unlock; | ||
455 | |||
456 | entry = ptep_get_and_clear(mm, address, pte); | ||
457 | entry = pte_mkclean(entry); | ||
458 | entry = pte_wrprotect(entry); | ||
459 | ptep_establish(vma, address, pte, entry); | ||
460 | lazy_mmu_prot_update(entry); | ||
461 | ret = 1; | ||
462 | |||
463 | unlock: | ||
464 | pte_unmap_unlock(pte, ptl); | ||
465 | out: | ||
466 | return ret; | ||
467 | } | ||
468 | |||
469 | static int page_mkclean_file(struct address_space *mapping, struct page *page) | ||
470 | { | ||
471 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | ||
472 | struct vm_area_struct *vma; | ||
473 | struct prio_tree_iter iter; | ||
474 | int ret = 0; | ||
475 | |||
476 | BUG_ON(PageAnon(page)); | ||
477 | |||
478 | spin_lock(&mapping->i_mmap_lock); | ||
479 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | ||
480 | if (vma->vm_flags & VM_SHARED) | ||
481 | ret += page_mkclean_one(page, vma); | ||
482 | } | ||
483 | spin_unlock(&mapping->i_mmap_lock); | ||
484 | return ret; | ||
485 | } | ||
486 | |||
487 | int page_mkclean(struct page *page) | ||
488 | { | ||
489 | int ret = 0; | ||
490 | |||
491 | BUG_ON(!PageLocked(page)); | ||
492 | |||
493 | if (page_mapped(page)) { | ||
494 | struct address_space *mapping = page_mapping(page); | ||
495 | if (mapping) | ||
496 | ret = page_mkclean_file(mapping, page); | ||
497 | } | ||
498 | |||
499 | return ret; | ||
500 | } | ||
501 | |||
437 | /** | 502 | /** |
438 | * page_set_anon_rmap - setup new anonymous rmap | 503 | * page_set_anon_rmap - setup new anonymous rmap |
439 | * @page: the page to add the mapping to | 504 | * @page: the page to add the mapping to |