diff options
| author | David Woodhouse <David.Woodhouse@intel.com> | 2009-09-20 08:55:36 -0400 |
|---|---|---|
| committer | David Woodhouse <David.Woodhouse@intel.com> | 2009-09-20 08:55:36 -0400 |
| commit | 6469f540ea37d53db089c8fea9c0c77a3d9353d4 (patch) | |
| tree | 1dc9dc077150d57f4424cae49e711b5dd6e903a1 /mm/percpu.c | |
| parent | 304e6d5fe294b80e6d3107f99ec241816390ebcc (diff) | |
| parent | 78f28b7c555359c67c2a0d23f7436e915329421e (diff) | |
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
Conflicts:
drivers/mtd/mtdcore.c
Merged in order that I can apply the Nomadik nand/onenand support patches.
Diffstat (limited to 'mm/percpu.c')
| -rw-r--r-- | mm/percpu.c | 1421 |
1 files changed, 1078 insertions, 343 deletions
diff --git a/mm/percpu.c b/mm/percpu.c index 5fe37842e0ea..43d8cacfdaa5 100644 --- a/mm/percpu.c +++ b/mm/percpu.c | |||
| @@ -8,12 +8,13 @@ | |||
| 8 | * | 8 | * |
| 9 | * This is percpu allocator which can handle both static and dynamic | 9 | * This is percpu allocator which can handle both static and dynamic |
| 10 | * areas. Percpu areas are allocated in chunks in vmalloc area. Each | 10 | * areas. Percpu areas are allocated in chunks in vmalloc area. Each |
| 11 | * chunk is consisted of nr_cpu_ids units and the first chunk is used | 11 | * chunk is consisted of boot-time determined number of units and the |
| 12 | * for static percpu variables in the kernel image (special boot time | 12 | * first chunk is used for static percpu variables in the kernel image |
| 13 | * alloc/init handling necessary as these areas need to be brought up | 13 | * (special boot time alloc/init handling necessary as these areas |
| 14 | * before allocation services are running). Unit grows as necessary | 14 | * need to be brought up before allocation services are running). |
| 15 | * and all units grow or shrink in unison. When a chunk is filled up, | 15 | * Unit grows as necessary and all units grow or shrink in unison. |
| 16 | * another chunk is allocated. ie. in vmalloc area | 16 | * When a chunk is filled up, another chunk is allocated. ie. in |
| 17 | * vmalloc area | ||
| 17 | * | 18 | * |
| 18 | * c0 c1 c2 | 19 | * c0 c1 c2 |
| 19 | * ------------------- ------------------- ------------ | 20 | * ------------------- ------------------- ------------ |
| @@ -22,11 +23,13 @@ | |||
| 22 | * | 23 | * |
| 23 | * Allocation is done in offset-size areas of single unit space. Ie, | 24 | * Allocation is done in offset-size areas of single unit space. Ie, |
| 24 | * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0, | 25 | * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0, |
| 25 | * c1:u1, c1:u2 and c1:u3. Percpu access can be done by configuring | 26 | * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to |
| 26 | * percpu base registers pcpu_unit_size apart. | 27 | * cpus. On NUMA, the mapping can be non-linear and even sparse. |
| 28 | * Percpu access can be done by configuring percpu base registers | ||
| 29 | * according to cpu to unit mapping and pcpu_unit_size. | ||
| 27 | * | 30 | * |
| 28 | * There are usually many small percpu allocations many of them as | 31 | * There are usually many small percpu allocations many of them being |
| 29 | * small as 4 bytes. The allocator organizes chunks into lists | 32 | * as small as 4 bytes. The allocator organizes chunks into lists |
| 30 | * according to free size and tries to allocate from the fullest one. | 33 | * according to free size and tries to allocate from the fullest one. |
| 31 | * Each chunk keeps the maximum contiguous area size hint which is | 34 | * Each chunk keeps the maximum contiguous area size hint which is |
| 32 | * guaranteed to be eqaul to or larger than the maximum contiguous | 35 | * guaranteed to be eqaul to or larger than the maximum contiguous |
| @@ -43,7 +46,7 @@ | |||
| 43 | * | 46 | * |
| 44 | * To use this allocator, arch code should do the followings. | 47 | * To use this allocator, arch code should do the followings. |
| 45 | * | 48 | * |
| 46 | * - define CONFIG_HAVE_DYNAMIC_PER_CPU_AREA | 49 | * - drop CONFIG_HAVE_LEGACY_PER_CPU_AREA |
| 47 | * | 50 | * |
| 48 | * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate | 51 | * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate |
| 49 | * regular address to percpu pointer and back if they need to be | 52 | * regular address to percpu pointer and back if they need to be |
| @@ -55,7 +58,9 @@ | |||
| 55 | 58 | ||
| 56 | #include <linux/bitmap.h> | 59 | #include <linux/bitmap.h> |
| 57 | #include <linux/bootmem.h> | 60 | #include <linux/bootmem.h> |
| 61 | #include <linux/err.h> | ||
| 58 | #include <linux/list.h> | 62 | #include <linux/list.h> |
| 63 | #include <linux/log2.h> | ||
| 59 | #include <linux/mm.h> | 64 | #include <linux/mm.h> |
| 60 | #include <linux/module.h> | 65 | #include <linux/module.h> |
| 61 | #include <linux/mutex.h> | 66 | #include <linux/mutex.h> |
| @@ -89,25 +94,38 @@ struct pcpu_chunk { | |||
| 89 | struct list_head list; /* linked to pcpu_slot lists */ | 94 | struct list_head list; /* linked to pcpu_slot lists */ |
| 90 | int free_size; /* free bytes in the chunk */ | 95 | int free_size; /* free bytes in the chunk */ |
| 91 | int contig_hint; /* max contiguous size hint */ | 96 | int contig_hint; /* max contiguous size hint */ |
| 92 | struct vm_struct *vm; /* mapped vmalloc region */ | 97 | void *base_addr; /* base address of this chunk */ |
| 93 | int map_used; /* # of map entries used */ | 98 | int map_used; /* # of map entries used */ |
| 94 | int map_alloc; /* # of map entries allocated */ | 99 | int map_alloc; /* # of map entries allocated */ |
| 95 | int *map; /* allocation map */ | 100 | int *map; /* allocation map */ |
| 101 | struct vm_struct **vms; /* mapped vmalloc regions */ | ||
| 96 | bool immutable; /* no [de]population allowed */ | 102 | bool immutable; /* no [de]population allowed */ |
| 97 | struct page **page; /* points to page array */ | 103 | unsigned long populated[]; /* populated bitmap */ |
| 98 | struct page *page_ar[]; /* #cpus * UNIT_PAGES */ | ||
| 99 | }; | 104 | }; |
| 100 | 105 | ||
| 101 | static int pcpu_unit_pages __read_mostly; | 106 | static int pcpu_unit_pages __read_mostly; |
| 102 | static int pcpu_unit_size __read_mostly; | 107 | static int pcpu_unit_size __read_mostly; |
| 103 | static int pcpu_chunk_size __read_mostly; | 108 | static int pcpu_nr_units __read_mostly; |
| 109 | static int pcpu_atom_size __read_mostly; | ||
| 104 | static int pcpu_nr_slots __read_mostly; | 110 | static int pcpu_nr_slots __read_mostly; |
| 105 | static size_t pcpu_chunk_struct_size __read_mostly; | 111 | static size_t pcpu_chunk_struct_size __read_mostly; |
| 106 | 112 | ||
| 113 | /* cpus with the lowest and highest unit numbers */ | ||
| 114 | static unsigned int pcpu_first_unit_cpu __read_mostly; | ||
| 115 | static unsigned int pcpu_last_unit_cpu __read_mostly; | ||
| 116 | |||
| 107 | /* the address of the first chunk which starts with the kernel static area */ | 117 | /* the address of the first chunk which starts with the kernel static area */ |
| 108 | void *pcpu_base_addr __read_mostly; | 118 | void *pcpu_base_addr __read_mostly; |
| 109 | EXPORT_SYMBOL_GPL(pcpu_base_addr); | 119 | EXPORT_SYMBOL_GPL(pcpu_base_addr); |
| 110 | 120 | ||
| 121 | static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */ | ||
| 122 | const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */ | ||
| 123 | |||
| 124 | /* group information, used for vm allocation */ | ||
| 125 | static int pcpu_nr_groups __read_mostly; | ||
| 126 | static const unsigned long *pcpu_group_offsets __read_mostly; | ||
| 127 | static const size_t *pcpu_group_sizes __read_mostly; | ||
| 128 | |||
| 111 | /* | 129 | /* |
| 112 | * The first chunk which always exists. Note that unlike other | 130 | * The first chunk which always exists. Note that unlike other |
| 113 | * chunks, this one can be allocated and mapped in several different | 131 | * chunks, this one can be allocated and mapped in several different |
| @@ -129,9 +147,9 @@ static int pcpu_reserved_chunk_limit; | |||
| 129 | * Synchronization rules. | 147 | * Synchronization rules. |
| 130 | * | 148 | * |
| 131 | * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former | 149 | * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former |
| 132 | * protects allocation/reclaim paths, chunks and chunk->page arrays. | 150 | * protects allocation/reclaim paths, chunks, populated bitmap and |
| 133 | * The latter is a spinlock and protects the index data structures - | 151 | * vmalloc mapping. The latter is a spinlock and protects the index |
| 134 | * chunk slots, chunks and area maps in chunks. | 152 | * data structures - chunk slots, chunks and area maps in chunks. |
| 135 | * | 153 | * |
| 136 | * During allocation, pcpu_alloc_mutex is kept locked all the time and | 154 | * During allocation, pcpu_alloc_mutex is kept locked all the time and |
| 137 | * pcpu_lock is grabbed and released as necessary. All actual memory | 155 | * pcpu_lock is grabbed and released as necessary. All actual memory |
| @@ -178,26 +196,23 @@ static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) | |||
| 178 | 196 | ||
| 179 | static int pcpu_page_idx(unsigned int cpu, int page_idx) | 197 | static int pcpu_page_idx(unsigned int cpu, int page_idx) |
| 180 | { | 198 | { |
| 181 | return cpu * pcpu_unit_pages + page_idx; | 199 | return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; |
| 182 | } | ||
| 183 | |||
| 184 | static struct page **pcpu_chunk_pagep(struct pcpu_chunk *chunk, | ||
| 185 | unsigned int cpu, int page_idx) | ||
| 186 | { | ||
| 187 | return &chunk->page[pcpu_page_idx(cpu, page_idx)]; | ||
| 188 | } | 200 | } |
| 189 | 201 | ||
| 190 | static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, | 202 | static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, |
| 191 | unsigned int cpu, int page_idx) | 203 | unsigned int cpu, int page_idx) |
| 192 | { | 204 | { |
| 193 | return (unsigned long)chunk->vm->addr + | 205 | return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] + |
| 194 | (pcpu_page_idx(cpu, page_idx) << PAGE_SHIFT); | 206 | (page_idx << PAGE_SHIFT); |
| 195 | } | 207 | } |
| 196 | 208 | ||
| 197 | static bool pcpu_chunk_page_occupied(struct pcpu_chunk *chunk, | 209 | static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk, |
| 198 | int page_idx) | 210 | unsigned int cpu, int page_idx) |
| 199 | { | 211 | { |
| 200 | return *pcpu_chunk_pagep(chunk, 0, page_idx) != NULL; | 212 | /* must not be used on pre-mapped chunk */ |
| 213 | WARN_ON(chunk->immutable); | ||
| 214 | |||
| 215 | return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx)); | ||
| 201 | } | 216 | } |
| 202 | 217 | ||
| 203 | /* set the pointer to a chunk in a page struct */ | 218 | /* set the pointer to a chunk in a page struct */ |
| @@ -212,6 +227,34 @@ static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) | |||
| 212 | return (struct pcpu_chunk *)page->index; | 227 | return (struct pcpu_chunk *)page->index; |
| 213 | } | 228 | } |
| 214 | 229 | ||
| 230 | static void pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end) | ||
| 231 | { | ||
| 232 | *rs = find_next_zero_bit(chunk->populated, end, *rs); | ||
| 233 | *re = find_next_bit(chunk->populated, end, *rs + 1); | ||
| 234 | } | ||
| 235 | |||
| 236 | static void pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end) | ||
| 237 | { | ||
| 238 | *rs = find_next_bit(chunk->populated, end, *rs); | ||
| 239 | *re = find_next_zero_bit(chunk->populated, end, *rs + 1); | ||
| 240 | } | ||
| 241 | |||
| 242 | /* | ||
| 243 | * (Un)populated page region iterators. Iterate over (un)populated | ||
| 244 | * page regions betwen @start and @end in @chunk. @rs and @re should | ||
| 245 | * be integer variables and will be set to start and end page index of | ||
| 246 | * the current region. | ||
| 247 | */ | ||
| 248 | #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \ | ||
| 249 | for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \ | ||
| 250 | (rs) < (re); \ | ||
| 251 | (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end))) | ||
| 252 | |||
| 253 | #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \ | ||
| 254 | for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \ | ||
| 255 | (rs) < (re); \ | ||
| 256 | (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end))) | ||
| 257 | |||
| 215 | /** | 258 | /** |
| 216 | * pcpu_mem_alloc - allocate memory | 259 | * pcpu_mem_alloc - allocate memory |
| 217 | * @size: bytes to allocate | 260 | * @size: bytes to allocate |
| @@ -287,16 +330,24 @@ static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) | |||
| 287 | */ | 330 | */ |
| 288 | static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) | 331 | static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) |
| 289 | { | 332 | { |
| 290 | void *first_start = pcpu_first_chunk->vm->addr; | 333 | void *first_start = pcpu_first_chunk->base_addr; |
| 291 | 334 | ||
| 292 | /* is it in the first chunk? */ | 335 | /* is it in the first chunk? */ |
| 293 | if (addr >= first_start && addr < first_start + pcpu_chunk_size) { | 336 | if (addr >= first_start && addr < first_start + pcpu_unit_size) { |
| 294 | /* is it in the reserved area? */ | 337 | /* is it in the reserved area? */ |
| 295 | if (addr < first_start + pcpu_reserved_chunk_limit) | 338 | if (addr < first_start + pcpu_reserved_chunk_limit) |
| 296 | return pcpu_reserved_chunk; | 339 | return pcpu_reserved_chunk; |
| 297 | return pcpu_first_chunk; | 340 | return pcpu_first_chunk; |
| 298 | } | 341 | } |
| 299 | 342 | ||
| 343 | /* | ||
| 344 | * The address is relative to unit0 which might be unused and | ||
| 345 | * thus unmapped. Offset the address to the unit space of the | ||
| 346 | * current processor before looking it up in the vmalloc | ||
| 347 | * space. Note that any possible cpu id can be used here, so | ||
| 348 | * there's no need to worry about preemption or cpu hotplug. | ||
| 349 | */ | ||
| 350 | addr += pcpu_unit_offsets[raw_smp_processor_id()]; | ||
| 300 | return pcpu_get_page_chunk(vmalloc_to_page(addr)); | 351 | return pcpu_get_page_chunk(vmalloc_to_page(addr)); |
| 301 | } | 352 | } |
| 302 | 353 | ||
| @@ -545,125 +596,327 @@ static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme) | |||
| 545 | } | 596 | } |
| 546 | 597 | ||
| 547 | /** | 598 | /** |
| 548 | * pcpu_unmap - unmap pages out of a pcpu_chunk | 599 | * pcpu_get_pages_and_bitmap - get temp pages array and bitmap |
| 549 | * @chunk: chunk of interest | 600 | * @chunk: chunk of interest |
| 550 | * @page_start: page index of the first page to unmap | 601 | * @bitmapp: output parameter for bitmap |
| 551 | * @page_end: page index of the last page to unmap + 1 | 602 | * @may_alloc: may allocate the array |
| 552 | * @flush_tlb: whether to flush tlb or not | ||
| 553 | * | 603 | * |
| 554 | * For each cpu, unmap pages [@page_start,@page_end) out of @chunk. | 604 | * Returns pointer to array of pointers to struct page and bitmap, |
| 555 | * If @flush is true, vcache is flushed before unmapping and tlb | 605 | * both of which can be indexed with pcpu_page_idx(). The returned |
| 556 | * after. | 606 | * array is cleared to zero and *@bitmapp is copied from |
| 607 | * @chunk->populated. Note that there is only one array and bitmap | ||
| 608 | * and access exclusion is the caller's responsibility. | ||
| 609 | * | ||
| 610 | * CONTEXT: | ||
| 611 | * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc. | ||
| 612 | * Otherwise, don't care. | ||
| 613 | * | ||
| 614 | * RETURNS: | ||
| 615 | * Pointer to temp pages array on success, NULL on failure. | ||
| 557 | */ | 616 | */ |
| 558 | static void pcpu_unmap(struct pcpu_chunk *chunk, int page_start, int page_end, | 617 | static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk, |
| 559 | bool flush_tlb) | 618 | unsigned long **bitmapp, |
| 619 | bool may_alloc) | ||
| 560 | { | 620 | { |
| 561 | unsigned int last = nr_cpu_ids - 1; | 621 | static struct page **pages; |
| 562 | unsigned int cpu; | 622 | static unsigned long *bitmap; |
| 623 | size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]); | ||
| 624 | size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) * | ||
| 625 | sizeof(unsigned long); | ||
| 626 | |||
| 627 | if (!pages || !bitmap) { | ||
| 628 | if (may_alloc && !pages) | ||
| 629 | pages = pcpu_mem_alloc(pages_size); | ||
| 630 | if (may_alloc && !bitmap) | ||
| 631 | bitmap = pcpu_mem_alloc(bitmap_size); | ||
| 632 | if (!pages || !bitmap) | ||
| 633 | return NULL; | ||
| 634 | } | ||
| 563 | 635 | ||
| 564 | /* unmap must not be done on immutable chunk */ | 636 | memset(pages, 0, pages_size); |
| 565 | WARN_ON(chunk->immutable); | 637 | bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages); |
| 566 | 638 | ||
| 567 | /* | 639 | *bitmapp = bitmap; |
| 568 | * Each flushing trial can be very expensive, issue flush on | 640 | return pages; |
| 569 | * the whole region at once rather than doing it for each cpu. | 641 | } |
| 570 | * This could be an overkill but is more scalable. | ||
| 571 | */ | ||
| 572 | flush_cache_vunmap(pcpu_chunk_addr(chunk, 0, page_start), | ||
| 573 | pcpu_chunk_addr(chunk, last, page_end)); | ||
| 574 | 642 | ||
| 575 | for_each_possible_cpu(cpu) | 643 | /** |
| 576 | unmap_kernel_range_noflush( | 644 | * pcpu_free_pages - free pages which were allocated for @chunk |
| 577 | pcpu_chunk_addr(chunk, cpu, page_start), | 645 | * @chunk: chunk pages were allocated for |
| 578 | (page_end - page_start) << PAGE_SHIFT); | 646 | * @pages: array of pages to be freed, indexed by pcpu_page_idx() |
| 579 | 647 | * @populated: populated bitmap | |
| 580 | /* ditto as flush_cache_vunmap() */ | 648 | * @page_start: page index of the first page to be freed |
| 581 | if (flush_tlb) | 649 | * @page_end: page index of the last page to be freed + 1 |
| 582 | flush_tlb_kernel_range(pcpu_chunk_addr(chunk, 0, page_start), | 650 | * |
| 583 | pcpu_chunk_addr(chunk, last, page_end)); | 651 | * Free pages [@page_start and @page_end) in @pages for all units. |
| 652 | * The pages were allocated for @chunk. | ||
| 653 | */ | ||
| 654 | static void pcpu_free_pages(struct pcpu_chunk *chunk, | ||
| 655 | struct page **pages, unsigned long *populated, | ||
| 656 | int page_start, int page_end) | ||
| 657 | { | ||
| 658 | unsigned int cpu; | ||
| 659 | int i; | ||
| 660 | |||
| 661 | for_each_possible_cpu(cpu) { | ||
| 662 | for (i = page_start; i < page_end; i++) { | ||
| 663 | struct page *page = pages[pcpu_page_idx(cpu, i)]; | ||
| 664 | |||
| 665 | if (page) | ||
| 666 | __free_page(page); | ||
| 667 | } | ||
| 668 | } | ||
| 584 | } | 669 | } |
| 585 | 670 | ||
| 586 | /** | 671 | /** |
| 587 | * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk | 672 | * pcpu_alloc_pages - allocates pages for @chunk |
| 588 | * @chunk: chunk to depopulate | 673 | * @chunk: target chunk |
| 589 | * @off: offset to the area to depopulate | 674 | * @pages: array to put the allocated pages into, indexed by pcpu_page_idx() |
| 590 | * @size: size of the area to depopulate in bytes | 675 | * @populated: populated bitmap |
| 591 | * @flush: whether to flush cache and tlb or not | 676 | * @page_start: page index of the first page to be allocated |
| 592 | * | 677 | * @page_end: page index of the last page to be allocated + 1 |
| 593 | * For each cpu, depopulate and unmap pages [@page_start,@page_end) | 678 | * |
| 594 | * from @chunk. If @flush is true, vcache is flushed before unmapping | 679 | * Allocate pages [@page_start,@page_end) into @pages for all units. |
| 595 | * and tlb after. | 680 | * The allocation is for @chunk. Percpu core doesn't care about the |
| 596 | * | 681 | * content of @pages and will pass it verbatim to pcpu_map_pages(). |
| 597 | * CONTEXT: | ||
| 598 | * pcpu_alloc_mutex. | ||
| 599 | */ | 682 | */ |
| 600 | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size, | 683 | static int pcpu_alloc_pages(struct pcpu_chunk *chunk, |
| 601 | bool flush) | 684 | struct page **pages, unsigned long *populated, |
| 685 | int page_start, int page_end) | ||
| 602 | { | 686 | { |
| 603 | int page_start = PFN_DOWN(off); | 687 | const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD; |
| 604 | int page_end = PFN_UP(off + size); | ||
| 605 | int unmap_start = -1; | ||
| 606 | int uninitialized_var(unmap_end); | ||
| 607 | unsigned int cpu; | 688 | unsigned int cpu; |
| 608 | int i; | 689 | int i; |
| 609 | 690 | ||
| 610 | for (i = page_start; i < page_end; i++) { | 691 | for_each_possible_cpu(cpu) { |
| 611 | for_each_possible_cpu(cpu) { | 692 | for (i = page_start; i < page_end; i++) { |
| 612 | struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i); | 693 | struct page **pagep = &pages[pcpu_page_idx(cpu, i)]; |
| 694 | |||
| 695 | *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0); | ||
| 696 | if (!*pagep) { | ||
| 697 | pcpu_free_pages(chunk, pages, populated, | ||
| 698 | page_start, page_end); | ||
| 699 | return -ENOMEM; | ||
| 700 | } | ||
| 701 | } | ||
| 702 | } | ||
| 703 | return 0; | ||
| 704 | } | ||
| 613 | 705 | ||
| 614 | if (!*pagep) | 706 | /** |
| 615 | continue; | 707 | * pcpu_pre_unmap_flush - flush cache prior to unmapping |
| 708 | * @chunk: chunk the regions to be flushed belongs to | ||
| 709 | * @page_start: page index of the first page to be flushed | ||
| 710 | * @page_end: page index of the last page to be flushed + 1 | ||
| 711 | * | ||
| 712 | * Pages in [@page_start,@page_end) of @chunk are about to be | ||
| 713 | * unmapped. Flush cache. As each flushing trial can be very | ||
| 714 | * expensive, issue flush on the whole region at once rather than | ||
| 715 | * doing it for each cpu. This could be an overkill but is more | ||
| 716 | * scalable. | ||
| 717 | */ | ||
| 718 | static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk, | ||
| 719 | int page_start, int page_end) | ||
| 720 | { | ||
| 721 | flush_cache_vunmap( | ||
| 722 | pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), | ||
| 723 | pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); | ||
| 724 | } | ||
| 725 | |||
| 726 | static void __pcpu_unmap_pages(unsigned long addr, int nr_pages) | ||
| 727 | { | ||
| 728 | unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT); | ||
| 729 | } | ||
| 616 | 730 | ||
| 617 | __free_page(*pagep); | 731 | /** |
| 732 | * pcpu_unmap_pages - unmap pages out of a pcpu_chunk | ||
| 733 | * @chunk: chunk of interest | ||
| 734 | * @pages: pages array which can be used to pass information to free | ||
| 735 | * @populated: populated bitmap | ||
| 736 | * @page_start: page index of the first page to unmap | ||
| 737 | * @page_end: page index of the last page to unmap + 1 | ||
| 738 | * | ||
| 739 | * For each cpu, unmap pages [@page_start,@page_end) out of @chunk. | ||
| 740 | * Corresponding elements in @pages were cleared by the caller and can | ||
| 741 | * be used to carry information to pcpu_free_pages() which will be | ||
| 742 | * called after all unmaps are finished. The caller should call | ||
| 743 | * proper pre/post flush functions. | ||
| 744 | */ | ||
| 745 | static void pcpu_unmap_pages(struct pcpu_chunk *chunk, | ||
| 746 | struct page **pages, unsigned long *populated, | ||
| 747 | int page_start, int page_end) | ||
| 748 | { | ||
| 749 | unsigned int cpu; | ||
| 750 | int i; | ||
| 618 | 751 | ||
| 619 | /* | 752 | for_each_possible_cpu(cpu) { |
| 620 | * If it's partial depopulation, it might get | 753 | for (i = page_start; i < page_end; i++) { |
| 621 | * populated or depopulated again. Mark the | 754 | struct page *page; |
| 622 | * page gone. | ||
| 623 | */ | ||
| 624 | *pagep = NULL; | ||
| 625 | 755 | ||
| 626 | unmap_start = unmap_start < 0 ? i : unmap_start; | 756 | page = pcpu_chunk_page(chunk, cpu, i); |
| 627 | unmap_end = i + 1; | 757 | WARN_ON(!page); |
| 758 | pages[pcpu_page_idx(cpu, i)] = page; | ||
| 628 | } | 759 | } |
| 760 | __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start), | ||
| 761 | page_end - page_start); | ||
| 629 | } | 762 | } |
| 630 | 763 | ||
| 631 | if (unmap_start >= 0) | 764 | for (i = page_start; i < page_end; i++) |
| 632 | pcpu_unmap(chunk, unmap_start, unmap_end, flush); | 765 | __clear_bit(i, populated); |
| 766 | } | ||
| 767 | |||
| 768 | /** | ||
| 769 | * pcpu_post_unmap_tlb_flush - flush TLB after unmapping | ||
| 770 | * @chunk: pcpu_chunk the regions to be flushed belong to | ||
| 771 | * @page_start: page index of the first page to be flushed | ||
| 772 | * @page_end: page index of the last page to be flushed + 1 | ||
| 773 | * | ||
| 774 | * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush | ||
| 775 | * TLB for the regions. This can be skipped if the area is to be | ||
| 776 | * returned to vmalloc as vmalloc will handle TLB flushing lazily. | ||
| 777 | * | ||
| 778 | * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once | ||
| 779 | * for the whole region. | ||
| 780 | */ | ||
| 781 | static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk, | ||
| 782 | int page_start, int page_end) | ||
| 783 | { | ||
| 784 | flush_tlb_kernel_range( | ||
| 785 | pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), | ||
| 786 | pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); | ||
| 787 | } | ||
| 788 | |||
| 789 | static int __pcpu_map_pages(unsigned long addr, struct page **pages, | ||
| 790 | int nr_pages) | ||
| 791 | { | ||
| 792 | return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT, | ||
| 793 | PAGE_KERNEL, pages); | ||
| 633 | } | 794 | } |
| 634 | 795 | ||
| 635 | /** | 796 | /** |
| 636 | * pcpu_map - map pages into a pcpu_chunk | 797 | * pcpu_map_pages - map pages into a pcpu_chunk |
| 637 | * @chunk: chunk of interest | 798 | * @chunk: chunk of interest |
| 799 | * @pages: pages array containing pages to be mapped | ||
| 800 | * @populated: populated bitmap | ||
| 638 | * @page_start: page index of the first page to map | 801 | * @page_start: page index of the first page to map |
| 639 | * @page_end: page index of the last page to map + 1 | 802 | * @page_end: page index of the last page to map + 1 |
| 640 | * | 803 | * |
| 641 | * For each cpu, map pages [@page_start,@page_end) into @chunk. | 804 | * For each cpu, map pages [@page_start,@page_end) into @chunk. The |
| 642 | * vcache is flushed afterwards. | 805 | * caller is responsible for calling pcpu_post_map_flush() after all |
| 806 | * mappings are complete. | ||
| 807 | * | ||
| 808 | * This function is responsible for setting corresponding bits in | ||
| 809 | * @chunk->populated bitmap and whatever is necessary for reverse | ||
| 810 | * lookup (addr -> chunk). | ||
| 643 | */ | 811 | */ |
| 644 | static int pcpu_map(struct pcpu_chunk *chunk, int page_start, int page_end) | 812 | static int pcpu_map_pages(struct pcpu_chunk *chunk, |
| 813 | struct page **pages, unsigned long *populated, | ||
| 814 | int page_start, int page_end) | ||
| 645 | { | 815 | { |
| 646 | unsigned int last = nr_cpu_ids - 1; | 816 | unsigned int cpu, tcpu; |
| 647 | unsigned int cpu; | 817 | int i, err; |
| 648 | int err; | ||
| 649 | |||
| 650 | /* map must not be done on immutable chunk */ | ||
| 651 | WARN_ON(chunk->immutable); | ||
| 652 | 818 | ||
| 653 | for_each_possible_cpu(cpu) { | 819 | for_each_possible_cpu(cpu) { |
| 654 | err = map_kernel_range_noflush( | 820 | err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start), |
| 655 | pcpu_chunk_addr(chunk, cpu, page_start), | 821 | &pages[pcpu_page_idx(cpu, page_start)], |
| 656 | (page_end - page_start) << PAGE_SHIFT, | 822 | page_end - page_start); |
| 657 | PAGE_KERNEL, | ||
| 658 | pcpu_chunk_pagep(chunk, cpu, page_start)); | ||
| 659 | if (err < 0) | 823 | if (err < 0) |
| 660 | return err; | 824 | goto err; |
| 825 | } | ||
| 826 | |||
| 827 | /* mapping successful, link chunk and mark populated */ | ||
| 828 | for (i = page_start; i < page_end; i++) { | ||
| 829 | for_each_possible_cpu(cpu) | ||
| 830 | pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)], | ||
| 831 | chunk); | ||
| 832 | __set_bit(i, populated); | ||
| 661 | } | 833 | } |
| 662 | 834 | ||
| 663 | /* flush at once, please read comments in pcpu_unmap() */ | ||
| 664 | flush_cache_vmap(pcpu_chunk_addr(chunk, 0, page_start), | ||
| 665 | pcpu_chunk_addr(chunk, last, page_end)); | ||
| 666 | return 0; | 835 | return 0; |
| 836 | |||
| 837 | err: | ||
| 838 | for_each_possible_cpu(tcpu) { | ||
| 839 | if (tcpu == cpu) | ||
| 840 | break; | ||
| 841 | __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start), | ||
| 842 | page_end - page_start); | ||
| 843 | } | ||
| 844 | return err; | ||
| 845 | } | ||
| 846 | |||
| 847 | /** | ||
| 848 | * pcpu_post_map_flush - flush cache after mapping | ||
| 849 | * @chunk: pcpu_chunk the regions to be flushed belong to | ||
| 850 | * @page_start: page index of the first page to be flushed | ||
| 851 | * @page_end: page index of the last page to be flushed + 1 | ||
| 852 | * | ||
| 853 | * Pages [@page_start,@page_end) of @chunk have been mapped. Flush | ||
| 854 | * cache. | ||
| 855 | * | ||
| 856 | * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once | ||
| 857 | * for the whole region. | ||
| 858 | */ | ||
| 859 | static void pcpu_post_map_flush(struct pcpu_chunk *chunk, | ||
| 860 | int page_start, int page_end) | ||
| 861 | { | ||
| 862 | flush_cache_vmap( | ||
| 863 | pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start), | ||
| 864 | pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end)); | ||
| 865 | } | ||
| 866 | |||
| 867 | /** | ||
| 868 | * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk | ||
| 869 | * @chunk: chunk to depopulate | ||
| 870 | * @off: offset to the area to depopulate | ||
| 871 | * @size: size of the area to depopulate in bytes | ||
| 872 | * @flush: whether to flush cache and tlb or not | ||
| 873 | * | ||
| 874 | * For each cpu, depopulate and unmap pages [@page_start,@page_end) | ||
| 875 | * from @chunk. If @flush is true, vcache is flushed before unmapping | ||
| 876 | * and tlb after. | ||
| 877 | * | ||
| 878 | * CONTEXT: | ||
| 879 | * pcpu_alloc_mutex. | ||
| 880 | */ | ||
| 881 | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size) | ||
| 882 | { | ||
| 883 | int page_start = PFN_DOWN(off); | ||
| 884 | int page_end = PFN_UP(off + size); | ||
| 885 | struct page **pages; | ||
| 886 | unsigned long *populated; | ||
| 887 | int rs, re; | ||
| 888 | |||
| 889 | /* quick path, check whether it's empty already */ | ||
| 890 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { | ||
| 891 | if (rs == page_start && re == page_end) | ||
| 892 | return; | ||
| 893 | break; | ||
| 894 | } | ||
| 895 | |||
| 896 | /* immutable chunks can't be depopulated */ | ||
| 897 | WARN_ON(chunk->immutable); | ||
| 898 | |||
| 899 | /* | ||
| 900 | * If control reaches here, there must have been at least one | ||
| 901 | * successful population attempt so the temp pages array must | ||
| 902 | * be available now. | ||
| 903 | */ | ||
| 904 | pages = pcpu_get_pages_and_bitmap(chunk, &populated, false); | ||
| 905 | BUG_ON(!pages); | ||
| 906 | |||
| 907 | /* unmap and free */ | ||
| 908 | pcpu_pre_unmap_flush(chunk, page_start, page_end); | ||
| 909 | |||
| 910 | pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) | ||
| 911 | pcpu_unmap_pages(chunk, pages, populated, rs, re); | ||
| 912 | |||
| 913 | /* no need to flush tlb, vmalloc will handle it lazily */ | ||
| 914 | |||
| 915 | pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) | ||
| 916 | pcpu_free_pages(chunk, pages, populated, rs, re); | ||
| 917 | |||
| 918 | /* commit new bitmap */ | ||
| 919 | bitmap_copy(chunk->populated, populated, pcpu_unit_pages); | ||
| 667 | } | 920 | } |
| 668 | 921 | ||
| 669 | /** | 922 | /** |
| @@ -680,58 +933,68 @@ static int pcpu_map(struct pcpu_chunk *chunk, int page_start, int page_end) | |||
| 680 | */ | 933 | */ |
| 681 | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size) | 934 | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size) |
| 682 | { | 935 | { |
| 683 | const gfp_t alloc_mask = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD; | ||
| 684 | int page_start = PFN_DOWN(off); | 936 | int page_start = PFN_DOWN(off); |
| 685 | int page_end = PFN_UP(off + size); | 937 | int page_end = PFN_UP(off + size); |
| 686 | int map_start = -1; | 938 | int free_end = page_start, unmap_end = page_start; |
| 687 | int uninitialized_var(map_end); | 939 | struct page **pages; |
| 940 | unsigned long *populated; | ||
| 688 | unsigned int cpu; | 941 | unsigned int cpu; |
| 689 | int i; | 942 | int rs, re, rc; |
| 690 | 943 | ||
| 691 | for (i = page_start; i < page_end; i++) { | 944 | /* quick path, check whether all pages are already there */ |
| 692 | if (pcpu_chunk_page_occupied(chunk, i)) { | 945 | pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) { |
| 693 | if (map_start >= 0) { | 946 | if (rs == page_start && re == page_end) |
| 694 | if (pcpu_map(chunk, map_start, map_end)) | 947 | goto clear; |
| 695 | goto err; | 948 | break; |
| 696 | map_start = -1; | 949 | } |
| 697 | } | ||
| 698 | continue; | ||
| 699 | } | ||
| 700 | 950 | ||
| 701 | map_start = map_start < 0 ? i : map_start; | 951 | /* need to allocate and map pages, this chunk can't be immutable */ |
| 702 | map_end = i + 1; | 952 | WARN_ON(chunk->immutable); |
| 703 | 953 | ||
| 704 | for_each_possible_cpu(cpu) { | 954 | pages = pcpu_get_pages_and_bitmap(chunk, &populated, true); |
| 705 | struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i); | 955 | if (!pages) |
| 956 | return -ENOMEM; | ||
| 706 | 957 | ||
| 707 | *pagep = alloc_pages_node(cpu_to_node(cpu), | 958 | /* alloc and map */ |
| 708 | alloc_mask, 0); | 959 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { |
| 709 | if (!*pagep) | 960 | rc = pcpu_alloc_pages(chunk, pages, populated, rs, re); |
| 710 | goto err; | 961 | if (rc) |
| 711 | pcpu_set_page_chunk(*pagep, chunk); | 962 | goto err_free; |
| 712 | } | 963 | free_end = re; |
| 713 | } | 964 | } |
| 714 | 965 | ||
| 715 | if (map_start >= 0 && pcpu_map(chunk, map_start, map_end)) | 966 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { |
| 716 | goto err; | 967 | rc = pcpu_map_pages(chunk, pages, populated, rs, re); |
| 968 | if (rc) | ||
| 969 | goto err_unmap; | ||
| 970 | unmap_end = re; | ||
| 971 | } | ||
| 972 | pcpu_post_map_flush(chunk, page_start, page_end); | ||
| 717 | 973 | ||
| 974 | /* commit new bitmap */ | ||
| 975 | bitmap_copy(chunk->populated, populated, pcpu_unit_pages); | ||
| 976 | clear: | ||
| 718 | for_each_possible_cpu(cpu) | 977 | for_each_possible_cpu(cpu) |
| 719 | memset(chunk->vm->addr + cpu * pcpu_unit_size + off, 0, | 978 | memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); |
| 720 | size); | ||
| 721 | |||
| 722 | return 0; | 979 | return 0; |
| 723 | err: | 980 | |
| 724 | /* likely under heavy memory pressure, give memory back */ | 981 | err_unmap: |
| 725 | pcpu_depopulate_chunk(chunk, off, size, true); | 982 | pcpu_pre_unmap_flush(chunk, page_start, unmap_end); |
| 726 | return -ENOMEM; | 983 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end) |
| 984 | pcpu_unmap_pages(chunk, pages, populated, rs, re); | ||
| 985 | pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end); | ||
| 986 | err_free: | ||
| 987 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end) | ||
| 988 | pcpu_free_pages(chunk, pages, populated, rs, re); | ||
| 989 | return rc; | ||
| 727 | } | 990 | } |
| 728 | 991 | ||
| 729 | static void free_pcpu_chunk(struct pcpu_chunk *chunk) | 992 | static void free_pcpu_chunk(struct pcpu_chunk *chunk) |
| 730 | { | 993 | { |
| 731 | if (!chunk) | 994 | if (!chunk) |
| 732 | return; | 995 | return; |
| 733 | if (chunk->vm) | 996 | if (chunk->vms) |
| 734 | free_vm_area(chunk->vm); | 997 | pcpu_free_vm_areas(chunk->vms, pcpu_nr_groups); |
| 735 | pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0])); | 998 | pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0])); |
| 736 | kfree(chunk); | 999 | kfree(chunk); |
| 737 | } | 1000 | } |
| @@ -747,10 +1010,11 @@ static struct pcpu_chunk *alloc_pcpu_chunk(void) | |||
| 747 | chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0])); | 1010 | chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0])); |
| 748 | chunk->map_alloc = PCPU_DFL_MAP_ALLOC; | 1011 | chunk->map_alloc = PCPU_DFL_MAP_ALLOC; |
| 749 | chunk->map[chunk->map_used++] = pcpu_unit_size; | 1012 | chunk->map[chunk->map_used++] = pcpu_unit_size; |
| 750 | chunk->page = chunk->page_ar; | ||
| 751 | 1013 | ||
| 752 | chunk->vm = get_vm_area(pcpu_chunk_size, VM_ALLOC); | 1014 | chunk->vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes, |
| 753 | if (!chunk->vm) { | 1015 | pcpu_nr_groups, pcpu_atom_size, |
| 1016 | GFP_KERNEL); | ||
| 1017 | if (!chunk->vms) { | ||
| 754 | free_pcpu_chunk(chunk); | 1018 | free_pcpu_chunk(chunk); |
| 755 | return NULL; | 1019 | return NULL; |
| 756 | } | 1020 | } |
| @@ -758,6 +1022,7 @@ static struct pcpu_chunk *alloc_pcpu_chunk(void) | |||
| 758 | INIT_LIST_HEAD(&chunk->list); | 1022 | INIT_LIST_HEAD(&chunk->list); |
| 759 | chunk->free_size = pcpu_unit_size; | 1023 | chunk->free_size = pcpu_unit_size; |
| 760 | chunk->contig_hint = pcpu_unit_size; | 1024 | chunk->contig_hint = pcpu_unit_size; |
| 1025 | chunk->base_addr = chunk->vms[0]->addr - pcpu_group_offsets[0]; | ||
| 761 | 1026 | ||
| 762 | return chunk; | 1027 | return chunk; |
| 763 | } | 1028 | } |
| @@ -847,7 +1112,8 @@ area_found: | |||
| 847 | 1112 | ||
| 848 | mutex_unlock(&pcpu_alloc_mutex); | 1113 | mutex_unlock(&pcpu_alloc_mutex); |
| 849 | 1114 | ||
| 850 | return __addr_to_pcpu_ptr(chunk->vm->addr + off); | 1115 | /* return address relative to base address */ |
| 1116 | return __addr_to_pcpu_ptr(chunk->base_addr + off); | ||
| 851 | 1117 | ||
| 852 | fail_unlock: | 1118 | fail_unlock: |
| 853 | spin_unlock_irq(&pcpu_lock); | 1119 | spin_unlock_irq(&pcpu_lock); |
| @@ -925,12 +1191,13 @@ static void pcpu_reclaim(struct work_struct *work) | |||
| 925 | } | 1191 | } |
| 926 | 1192 | ||
| 927 | spin_unlock_irq(&pcpu_lock); | 1193 | spin_unlock_irq(&pcpu_lock); |
| 928 | mutex_unlock(&pcpu_alloc_mutex); | ||
| 929 | 1194 | ||
| 930 | list_for_each_entry_safe(chunk, next, &todo, list) { | 1195 | list_for_each_entry_safe(chunk, next, &todo, list) { |
| 931 | pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size, false); | 1196 | pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size); |
| 932 | free_pcpu_chunk(chunk); | 1197 | free_pcpu_chunk(chunk); |
| 933 | } | 1198 | } |
| 1199 | |||
| 1200 | mutex_unlock(&pcpu_alloc_mutex); | ||
| 934 | } | 1201 | } |
| 935 | 1202 | ||
| 936 | /** | 1203 | /** |
| @@ -955,7 +1222,7 @@ void free_percpu(void *ptr) | |||
| 955 | spin_lock_irqsave(&pcpu_lock, flags); | 1222 | spin_lock_irqsave(&pcpu_lock, flags); |
| 956 | 1223 | ||
| 957 | chunk = pcpu_chunk_addr_search(addr); | 1224 | chunk = pcpu_chunk_addr_search(addr); |
| 958 | off = addr - chunk->vm->addr; | 1225 | off = addr - chunk->base_addr; |
| 959 | 1226 | ||
| 960 | pcpu_free_area(chunk, off); | 1227 | pcpu_free_area(chunk, off); |
| 961 | 1228 | ||
| @@ -974,30 +1241,295 @@ void free_percpu(void *ptr) | |||
| 974 | } | 1241 | } |
| 975 | EXPORT_SYMBOL_GPL(free_percpu); | 1242 | EXPORT_SYMBOL_GPL(free_percpu); |
| 976 | 1243 | ||
| 1244 | static inline size_t pcpu_calc_fc_sizes(size_t static_size, | ||
| 1245 | size_t reserved_size, | ||
| 1246 | ssize_t *dyn_sizep) | ||
| 1247 | { | ||
| 1248 | size_t size_sum; | ||
| 1249 | |||
| 1250 | size_sum = PFN_ALIGN(static_size + reserved_size + | ||
| 1251 | (*dyn_sizep >= 0 ? *dyn_sizep : 0)); | ||
| 1252 | if (*dyn_sizep != 0) | ||
| 1253 | *dyn_sizep = size_sum - static_size - reserved_size; | ||
| 1254 | |||
| 1255 | return size_sum; | ||
| 1256 | } | ||
| 1257 | |||
| 977 | /** | 1258 | /** |
| 978 | * pcpu_setup_first_chunk - initialize the first percpu chunk | 1259 | * pcpu_alloc_alloc_info - allocate percpu allocation info |
| 979 | * @get_page_fn: callback to fetch page pointer | 1260 | * @nr_groups: the number of groups |
| 980 | * @static_size: the size of static percpu area in bytes | 1261 | * @nr_units: the number of units |
| 1262 | * | ||
| 1263 | * Allocate ai which is large enough for @nr_groups groups containing | ||
| 1264 | * @nr_units units. The returned ai's groups[0].cpu_map points to the | ||
| 1265 | * cpu_map array which is long enough for @nr_units and filled with | ||
| 1266 | * NR_CPUS. It's the caller's responsibility to initialize cpu_map | ||
| 1267 | * pointer of other groups. | ||
| 1268 | * | ||
| 1269 | * RETURNS: | ||
| 1270 | * Pointer to the allocated pcpu_alloc_info on success, NULL on | ||
| 1271 | * failure. | ||
| 1272 | */ | ||
| 1273 | struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, | ||
| 1274 | int nr_units) | ||
| 1275 | { | ||
| 1276 | struct pcpu_alloc_info *ai; | ||
| 1277 | size_t base_size, ai_size; | ||
| 1278 | void *ptr; | ||
| 1279 | int unit; | ||
| 1280 | |||
| 1281 | base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]), | ||
| 1282 | __alignof__(ai->groups[0].cpu_map[0])); | ||
| 1283 | ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); | ||
| 1284 | |||
| 1285 | ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size)); | ||
| 1286 | if (!ptr) | ||
| 1287 | return NULL; | ||
| 1288 | ai = ptr; | ||
| 1289 | ptr += base_size; | ||
| 1290 | |||
| 1291 | ai->groups[0].cpu_map = ptr; | ||
| 1292 | |||
| 1293 | for (unit = 0; unit < nr_units; unit++) | ||
| 1294 | ai->groups[0].cpu_map[unit] = NR_CPUS; | ||
| 1295 | |||
| 1296 | ai->nr_groups = nr_groups; | ||
| 1297 | ai->__ai_size = PFN_ALIGN(ai_size); | ||
| 1298 | |||
| 1299 | return ai; | ||
| 1300 | } | ||
| 1301 | |||
| 1302 | /** | ||
| 1303 | * pcpu_free_alloc_info - free percpu allocation info | ||
| 1304 | * @ai: pcpu_alloc_info to free | ||
| 1305 | * | ||
| 1306 | * Free @ai which was allocated by pcpu_alloc_alloc_info(). | ||
| 1307 | */ | ||
| 1308 | void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) | ||
| 1309 | { | ||
| 1310 | free_bootmem(__pa(ai), ai->__ai_size); | ||
| 1311 | } | ||
| 1312 | |||
| 1313 | /** | ||
| 1314 | * pcpu_build_alloc_info - build alloc_info considering distances between CPUs | ||
| 981 | * @reserved_size: the size of reserved percpu area in bytes | 1315 | * @reserved_size: the size of reserved percpu area in bytes |
| 982 | * @dyn_size: free size for dynamic allocation in bytes, -1 for auto | 1316 | * @dyn_size: free size for dynamic allocation in bytes, -1 for auto |
| 983 | * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto | 1317 | * @atom_size: allocation atom size |
| 984 | * @base_addr: mapped address, NULL for auto | 1318 | * @cpu_distance_fn: callback to determine distance between cpus, optional |
| 985 | * @populate_pte_fn: callback to allocate pagetable, NULL if unnecessary | 1319 | * |
| 1320 | * This function determines grouping of units, their mappings to cpus | ||
| 1321 | * and other parameters considering needed percpu size, allocation | ||
| 1322 | * atom size and distances between CPUs. | ||
| 1323 | * | ||
| 1324 | * Groups are always mutliples of atom size and CPUs which are of | ||
| 1325 | * LOCAL_DISTANCE both ways are grouped together and share space for | ||
| 1326 | * units in the same group. The returned configuration is guaranteed | ||
| 1327 | * to have CPUs on different nodes on different groups and >=75% usage | ||
| 1328 | * of allocated virtual address space. | ||
| 1329 | * | ||
| 1330 | * RETURNS: | ||
| 1331 | * On success, pointer to the new allocation_info is returned. On | ||
| 1332 | * failure, ERR_PTR value is returned. | ||
| 1333 | */ | ||
| 1334 | struct pcpu_alloc_info * __init pcpu_build_alloc_info( | ||
| 1335 | size_t reserved_size, ssize_t dyn_size, | ||
| 1336 | size_t atom_size, | ||
| 1337 | pcpu_fc_cpu_distance_fn_t cpu_distance_fn) | ||
| 1338 | { | ||
| 1339 | static int group_map[NR_CPUS] __initdata; | ||
| 1340 | static int group_cnt[NR_CPUS] __initdata; | ||
| 1341 | const size_t static_size = __per_cpu_end - __per_cpu_start; | ||
| 1342 | int group_cnt_max = 0, nr_groups = 1, nr_units = 0; | ||
| 1343 | size_t size_sum, min_unit_size, alloc_size; | ||
| 1344 | int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */ | ||
| 1345 | int last_allocs, group, unit; | ||
| 1346 | unsigned int cpu, tcpu; | ||
| 1347 | struct pcpu_alloc_info *ai; | ||
| 1348 | unsigned int *cpu_map; | ||
| 1349 | |||
| 1350 | /* | ||
| 1351 | * Determine min_unit_size, alloc_size and max_upa such that | ||
| 1352 | * alloc_size is multiple of atom_size and is the smallest | ||
| 1353 | * which can accomodate 4k aligned segments which are equal to | ||
| 1354 | * or larger than min_unit_size. | ||
| 1355 | */ | ||
| 1356 | size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size); | ||
| 1357 | min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); | ||
| 1358 | |||
| 1359 | alloc_size = roundup(min_unit_size, atom_size); | ||
| 1360 | upa = alloc_size / min_unit_size; | ||
| 1361 | while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK)) | ||
| 1362 | upa--; | ||
| 1363 | max_upa = upa; | ||
| 1364 | |||
| 1365 | /* group cpus according to their proximity */ | ||
| 1366 | for_each_possible_cpu(cpu) { | ||
| 1367 | group = 0; | ||
| 1368 | next_group: | ||
| 1369 | for_each_possible_cpu(tcpu) { | ||
| 1370 | if (cpu == tcpu) | ||
| 1371 | break; | ||
| 1372 | if (group_map[tcpu] == group && cpu_distance_fn && | ||
| 1373 | (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE || | ||
| 1374 | cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) { | ||
| 1375 | group++; | ||
| 1376 | nr_groups = max(nr_groups, group + 1); | ||
| 1377 | goto next_group; | ||
| 1378 | } | ||
| 1379 | } | ||
| 1380 | group_map[cpu] = group; | ||
| 1381 | group_cnt[group]++; | ||
| 1382 | group_cnt_max = max(group_cnt_max, group_cnt[group]); | ||
| 1383 | } | ||
| 1384 | |||
| 1385 | /* | ||
| 1386 | * Expand unit size until address space usage goes over 75% | ||
| 1387 | * and then as much as possible without using more address | ||
| 1388 | * space. | ||
| 1389 | */ | ||
| 1390 | last_allocs = INT_MAX; | ||
| 1391 | for (upa = max_upa; upa; upa--) { | ||
| 1392 | int allocs = 0, wasted = 0; | ||
| 1393 | |||
| 1394 | if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK)) | ||
| 1395 | continue; | ||
| 1396 | |||
| 1397 | for (group = 0; group < nr_groups; group++) { | ||
| 1398 | int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); | ||
| 1399 | allocs += this_allocs; | ||
| 1400 | wasted += this_allocs * upa - group_cnt[group]; | ||
| 1401 | } | ||
| 1402 | |||
| 1403 | /* | ||
| 1404 | * Don't accept if wastage is over 25%. The | ||
| 1405 | * greater-than comparison ensures upa==1 always | ||
| 1406 | * passes the following check. | ||
| 1407 | */ | ||
| 1408 | if (wasted > num_possible_cpus() / 3) | ||
| 1409 | continue; | ||
| 1410 | |||
| 1411 | /* and then don't consume more memory */ | ||
| 1412 | if (allocs > last_allocs) | ||
| 1413 | break; | ||
| 1414 | last_allocs = allocs; | ||
| 1415 | best_upa = upa; | ||
| 1416 | } | ||
| 1417 | upa = best_upa; | ||
| 1418 | |||
| 1419 | /* allocate and fill alloc_info */ | ||
| 1420 | for (group = 0; group < nr_groups; group++) | ||
| 1421 | nr_units += roundup(group_cnt[group], upa); | ||
| 1422 | |||
| 1423 | ai = pcpu_alloc_alloc_info(nr_groups, nr_units); | ||
| 1424 | if (!ai) | ||
| 1425 | return ERR_PTR(-ENOMEM); | ||
| 1426 | cpu_map = ai->groups[0].cpu_map; | ||
| 1427 | |||
| 1428 | for (group = 0; group < nr_groups; group++) { | ||
| 1429 | ai->groups[group].cpu_map = cpu_map; | ||
| 1430 | cpu_map += roundup(group_cnt[group], upa); | ||
| 1431 | } | ||
| 1432 | |||
| 1433 | ai->static_size = static_size; | ||
| 1434 | ai->reserved_size = reserved_size; | ||
| 1435 | ai->dyn_size = dyn_size; | ||
| 1436 | ai->unit_size = alloc_size / upa; | ||
| 1437 | ai->atom_size = atom_size; | ||
| 1438 | ai->alloc_size = alloc_size; | ||
| 1439 | |||
| 1440 | for (group = 0, unit = 0; group_cnt[group]; group++) { | ||
| 1441 | struct pcpu_group_info *gi = &ai->groups[group]; | ||
| 1442 | |||
| 1443 | /* | ||
| 1444 | * Initialize base_offset as if all groups are located | ||
| 1445 | * back-to-back. The caller should update this to | ||
| 1446 | * reflect actual allocation. | ||
| 1447 | */ | ||
| 1448 | gi->base_offset = unit * ai->unit_size; | ||
| 1449 | |||
| 1450 | for_each_possible_cpu(cpu) | ||
| 1451 | if (group_map[cpu] == group) | ||
| 1452 | gi->cpu_map[gi->nr_units++] = cpu; | ||
| 1453 | gi->nr_units = roundup(gi->nr_units, upa); | ||
| 1454 | unit += gi->nr_units; | ||
| 1455 | } | ||
| 1456 | BUG_ON(unit != nr_units); | ||
| 1457 | |||
| 1458 | return ai; | ||
| 1459 | } | ||
| 1460 | |||
| 1461 | /** | ||
| 1462 | * pcpu_dump_alloc_info - print out information about pcpu_alloc_info | ||
| 1463 | * @lvl: loglevel | ||
| 1464 | * @ai: allocation info to dump | ||
| 1465 | * | ||
| 1466 | * Print out information about @ai using loglevel @lvl. | ||
| 1467 | */ | ||
| 1468 | static void pcpu_dump_alloc_info(const char *lvl, | ||
| 1469 | const struct pcpu_alloc_info *ai) | ||
| 1470 | { | ||
| 1471 | int group_width = 1, cpu_width = 1, width; | ||
| 1472 | char empty_str[] = "--------"; | ||
| 1473 | int alloc = 0, alloc_end = 0; | ||
| 1474 | int group, v; | ||
| 1475 | int upa, apl; /* units per alloc, allocs per line */ | ||
| 1476 | |||
| 1477 | v = ai->nr_groups; | ||
| 1478 | while (v /= 10) | ||
| 1479 | group_width++; | ||
| 1480 | |||
| 1481 | v = num_possible_cpus(); | ||
| 1482 | while (v /= 10) | ||
| 1483 | cpu_width++; | ||
| 1484 | empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; | ||
| 1485 | |||
| 1486 | upa = ai->alloc_size / ai->unit_size; | ||
| 1487 | width = upa * (cpu_width + 1) + group_width + 3; | ||
| 1488 | apl = rounddown_pow_of_two(max(60 / width, 1)); | ||
| 1489 | |||
| 1490 | printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", | ||
| 1491 | lvl, ai->static_size, ai->reserved_size, ai->dyn_size, | ||
| 1492 | ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); | ||
| 1493 | |||
| 1494 | for (group = 0; group < ai->nr_groups; group++) { | ||
| 1495 | const struct pcpu_group_info *gi = &ai->groups[group]; | ||
| 1496 | int unit = 0, unit_end = 0; | ||
| 1497 | |||
| 1498 | BUG_ON(gi->nr_units % upa); | ||
| 1499 | for (alloc_end += gi->nr_units / upa; | ||
| 1500 | alloc < alloc_end; alloc++) { | ||
| 1501 | if (!(alloc % apl)) { | ||
| 1502 | printk("\n"); | ||
| 1503 | printk("%spcpu-alloc: ", lvl); | ||
| 1504 | } | ||
| 1505 | printk("[%0*d] ", group_width, group); | ||
| 1506 | |||
| 1507 | for (unit_end += upa; unit < unit_end; unit++) | ||
| 1508 | if (gi->cpu_map[unit] != NR_CPUS) | ||
| 1509 | printk("%0*d ", cpu_width, | ||
| 1510 | gi->cpu_map[unit]); | ||
| 1511 | else | ||
| 1512 | printk("%s ", empty_str); | ||
| 1513 | } | ||
| 1514 | } | ||
| 1515 | printk("\n"); | ||
| 1516 | } | ||
| 1517 | |||
| 1518 | /** | ||
| 1519 | * pcpu_setup_first_chunk - initialize the first percpu chunk | ||
| 1520 | * @ai: pcpu_alloc_info describing how to percpu area is shaped | ||
| 1521 | * @base_addr: mapped address | ||
| 986 | * | 1522 | * |
| 987 | * Initialize the first percpu chunk which contains the kernel static | 1523 | * Initialize the first percpu chunk which contains the kernel static |
| 988 | * perpcu area. This function is to be called from arch percpu area | 1524 | * perpcu area. This function is to be called from arch percpu area |
| 989 | * setup path. The first two parameters are mandatory. The rest are | 1525 | * setup path. |
| 990 | * optional. | 1526 | * |
| 991 | * | 1527 | * @ai contains all information necessary to initialize the first |
| 992 | * @get_page_fn() should return pointer to percpu page given cpu | 1528 | * chunk and prime the dynamic percpu allocator. |
| 993 | * number and page number. It should at least return enough pages to | 1529 | * |
| 994 | * cover the static area. The returned pages for static area should | 1530 | * @ai->static_size is the size of static percpu area. |
| 995 | * have been initialized with valid data. If @unit_size is specified, | 1531 | * |
| 996 | * it can also return pages after the static area. NULL return | 1532 | * @ai->reserved_size, if non-zero, specifies the amount of bytes to |
| 997 | * indicates end of pages for the cpu. Note that @get_page_fn() must | ||
| 998 | * return the same number of pages for all cpus. | ||
| 999 | * | ||
| 1000 | * @reserved_size, if non-zero, specifies the amount of bytes to | ||
| 1001 | * reserve after the static area in the first chunk. This reserves | 1533 | * reserve after the static area in the first chunk. This reserves |
| 1002 | * the first chunk such that it's available only through reserved | 1534 | * the first chunk such that it's available only through reserved |
| 1003 | * percpu allocation. This is primarily used to serve module percpu | 1535 | * percpu allocation. This is primarily used to serve module percpu |
| @@ -1005,22 +1537,29 @@ EXPORT_SYMBOL_GPL(free_percpu); | |||
| 1005 | * limited offset range for symbol relocations to guarantee module | 1537 | * limited offset range for symbol relocations to guarantee module |
| 1006 | * percpu symbols fall inside the relocatable range. | 1538 | * percpu symbols fall inside the relocatable range. |
| 1007 | * | 1539 | * |
| 1008 | * @dyn_size, if non-negative, determines the number of bytes | 1540 | * @ai->dyn_size determines the number of bytes available for dynamic |
| 1009 | * available for dynamic allocation in the first chunk. Specifying | 1541 | * allocation in the first chunk. The area between @ai->static_size + |
| 1010 | * non-negative value makes percpu leave alone the area beyond | 1542 | * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. |
| 1011 | * @static_size + @reserved_size + @dyn_size. | ||
| 1012 | * | 1543 | * |
| 1013 | * @unit_size, if non-negative, specifies unit size and must be | 1544 | * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE |
| 1014 | * aligned to PAGE_SIZE and equal to or larger than @static_size + | 1545 | * and equal to or larger than @ai->static_size + @ai->reserved_size + |
| 1015 | * @reserved_size + if non-negative, @dyn_size. | 1546 | * @ai->dyn_size. |
| 1016 | * | 1547 | * |
| 1017 | * Non-null @base_addr means that the caller already allocated virtual | 1548 | * @ai->atom_size is the allocation atom size and used as alignment |
| 1018 | * region for the first chunk and mapped it. percpu must not mess | 1549 | * for vm areas. |
| 1019 | * with the chunk. Note that @base_addr with 0 @unit_size or non-NULL | ||
| 1020 | * @populate_pte_fn doesn't make any sense. | ||
| 1021 | * | 1550 | * |
| 1022 | * @populate_pte_fn is used to populate the pagetable. NULL means the | 1551 | * @ai->alloc_size is the allocation size and always multiple of |
| 1023 | * caller already populated the pagetable. | 1552 | * @ai->atom_size. This is larger than @ai->atom_size if |
| 1553 | * @ai->unit_size is larger than @ai->atom_size. | ||
| 1554 | * | ||
| 1555 | * @ai->nr_groups and @ai->groups describe virtual memory layout of | ||
| 1556 | * percpu areas. Units which should be colocated are put into the | ||
| 1557 | * same group. Dynamic VM areas will be allocated according to these | ||
| 1558 | * groupings. If @ai->nr_groups is zero, a single group containing | ||
| 1559 | * all units is assumed. | ||
| 1560 | * | ||
| 1561 | * The caller should have mapped the first chunk at @base_addr and | ||
| 1562 | * copied static data to each unit. | ||
| 1024 | * | 1563 | * |
| 1025 | * If the first chunk ends up with both reserved and dynamic areas, it | 1564 | * If the first chunk ends up with both reserved and dynamic areas, it |
| 1026 | * is served by two chunks - one to serve the core static and reserved | 1565 | * is served by two chunks - one to serve the core static and reserved |
| @@ -1030,49 +1569,83 @@ EXPORT_SYMBOL_GPL(free_percpu); | |||
| 1030 | * and available for dynamic allocation like any other chunks. | 1569 | * and available for dynamic allocation like any other chunks. |
| 1031 | * | 1570 | * |
| 1032 | * RETURNS: | 1571 | * RETURNS: |
| 1033 | * The determined pcpu_unit_size which can be used to initialize | 1572 | * 0 on success, -errno on failure. |
| 1034 | * percpu access. | ||
| 1035 | */ | 1573 | */ |
| 1036 | size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn, | 1574 | int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, |
| 1037 | size_t static_size, size_t reserved_size, | 1575 | void *base_addr) |
| 1038 | ssize_t dyn_size, ssize_t unit_size, | ||
| 1039 | void *base_addr, | ||
| 1040 | pcpu_populate_pte_fn_t populate_pte_fn) | ||
| 1041 | { | 1576 | { |
| 1042 | static struct vm_struct first_vm; | ||
| 1043 | static int smap[2], dmap[2]; | 1577 | static int smap[2], dmap[2]; |
| 1044 | size_t size_sum = static_size + reserved_size + | 1578 | size_t dyn_size = ai->dyn_size; |
| 1045 | (dyn_size >= 0 ? dyn_size : 0); | 1579 | size_t size_sum = ai->static_size + ai->reserved_size + dyn_size; |
| 1046 | struct pcpu_chunk *schunk, *dchunk = NULL; | 1580 | struct pcpu_chunk *schunk, *dchunk = NULL; |
| 1581 | unsigned long *group_offsets; | ||
| 1582 | size_t *group_sizes; | ||
| 1583 | unsigned long *unit_off; | ||
| 1047 | unsigned int cpu; | 1584 | unsigned int cpu; |
| 1048 | int nr_pages; | 1585 | int *unit_map; |
| 1049 | int err, i; | 1586 | int group, unit, i; |
| 1050 | 1587 | ||
| 1051 | /* santiy checks */ | 1588 | /* sanity checks */ |
| 1052 | BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC || | 1589 | BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC || |
| 1053 | ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC); | 1590 | ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC); |
| 1054 | BUG_ON(!static_size); | 1591 | BUG_ON(ai->nr_groups <= 0); |
| 1055 | if (unit_size >= 0) { | 1592 | BUG_ON(!ai->static_size); |
| 1056 | BUG_ON(unit_size < size_sum); | 1593 | BUG_ON(!base_addr); |
| 1057 | BUG_ON(unit_size & ~PAGE_MASK); | 1594 | BUG_ON(ai->unit_size < size_sum); |
| 1058 | BUG_ON(unit_size < PCPU_MIN_UNIT_SIZE); | 1595 | BUG_ON(ai->unit_size & ~PAGE_MASK); |
| 1059 | } else | 1596 | BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); |
| 1060 | BUG_ON(base_addr); | 1597 | |
| 1061 | BUG_ON(base_addr && populate_pte_fn); | 1598 | pcpu_dump_alloc_info(KERN_DEBUG, ai); |
| 1062 | 1599 | ||
| 1063 | if (unit_size >= 0) | 1600 | /* process group information and build config tables accordingly */ |
| 1064 | pcpu_unit_pages = unit_size >> PAGE_SHIFT; | 1601 | group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0])); |
| 1065 | else | 1602 | group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0])); |
| 1066 | pcpu_unit_pages = max_t(int, PCPU_MIN_UNIT_SIZE >> PAGE_SHIFT, | 1603 | unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0])); |
| 1067 | PFN_UP(size_sum)); | 1604 | unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0])); |
| 1605 | |||
| 1606 | for (cpu = 0; cpu < nr_cpu_ids; cpu++) | ||
| 1607 | unit_map[cpu] = NR_CPUS; | ||
| 1608 | pcpu_first_unit_cpu = NR_CPUS; | ||
| 1609 | |||
| 1610 | for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { | ||
| 1611 | const struct pcpu_group_info *gi = &ai->groups[group]; | ||
| 1612 | |||
| 1613 | group_offsets[group] = gi->base_offset; | ||
| 1614 | group_sizes[group] = gi->nr_units * ai->unit_size; | ||
| 1615 | |||
| 1616 | for (i = 0; i < gi->nr_units; i++) { | ||
| 1617 | cpu = gi->cpu_map[i]; | ||
| 1618 | if (cpu == NR_CPUS) | ||
| 1619 | continue; | ||
| 1068 | 1620 | ||
| 1069 | pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; | 1621 | BUG_ON(cpu > nr_cpu_ids || !cpu_possible(cpu)); |
| 1070 | pcpu_chunk_size = nr_cpu_ids * pcpu_unit_size; | 1622 | BUG_ON(unit_map[cpu] != NR_CPUS); |
| 1071 | pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) | ||
| 1072 | + nr_cpu_ids * pcpu_unit_pages * sizeof(struct page *); | ||
| 1073 | 1623 | ||
| 1074 | if (dyn_size < 0) | 1624 | unit_map[cpu] = unit + i; |
| 1075 | dyn_size = pcpu_unit_size - static_size - reserved_size; | 1625 | unit_off[cpu] = gi->base_offset + i * ai->unit_size; |
| 1626 | |||
| 1627 | if (pcpu_first_unit_cpu == NR_CPUS) | ||
| 1628 | pcpu_first_unit_cpu = cpu; | ||
| 1629 | } | ||
| 1630 | } | ||
| 1631 | pcpu_last_unit_cpu = cpu; | ||
| 1632 | pcpu_nr_units = unit; | ||
| 1633 | |||
| 1634 | for_each_possible_cpu(cpu) | ||
| 1635 | BUG_ON(unit_map[cpu] == NR_CPUS); | ||
| 1636 | |||
| 1637 | pcpu_nr_groups = ai->nr_groups; | ||
| 1638 | pcpu_group_offsets = group_offsets; | ||
| 1639 | pcpu_group_sizes = group_sizes; | ||
| 1640 | pcpu_unit_map = unit_map; | ||
| 1641 | pcpu_unit_offsets = unit_off; | ||
| 1642 | |||
| 1643 | /* determine basic parameters */ | ||
| 1644 | pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; | ||
| 1645 | pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; | ||
| 1646 | pcpu_atom_size = ai->atom_size; | ||
| 1647 | pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) + | ||
| 1648 | BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long); | ||
| 1076 | 1649 | ||
| 1077 | /* | 1650 | /* |
| 1078 | * Allocate chunk slots. The additional last slot is for | 1651 | * Allocate chunk slots. The additional last slot is for |
| @@ -1092,189 +1665,351 @@ size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn, | |||
| 1092 | */ | 1665 | */ |
| 1093 | schunk = alloc_bootmem(pcpu_chunk_struct_size); | 1666 | schunk = alloc_bootmem(pcpu_chunk_struct_size); |
| 1094 | INIT_LIST_HEAD(&schunk->list); | 1667 | INIT_LIST_HEAD(&schunk->list); |
| 1095 | schunk->vm = &first_vm; | 1668 | schunk->base_addr = base_addr; |
| 1096 | schunk->map = smap; | 1669 | schunk->map = smap; |
| 1097 | schunk->map_alloc = ARRAY_SIZE(smap); | 1670 | schunk->map_alloc = ARRAY_SIZE(smap); |
| 1098 | schunk->page = schunk->page_ar; | 1671 | schunk->immutable = true; |
| 1672 | bitmap_fill(schunk->populated, pcpu_unit_pages); | ||
| 1099 | 1673 | ||
| 1100 | if (reserved_size) { | 1674 | if (ai->reserved_size) { |
| 1101 | schunk->free_size = reserved_size; | 1675 | schunk->free_size = ai->reserved_size; |
| 1102 | pcpu_reserved_chunk = schunk; | 1676 | pcpu_reserved_chunk = schunk; |
| 1103 | pcpu_reserved_chunk_limit = static_size + reserved_size; | 1677 | pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size; |
| 1104 | } else { | 1678 | } else { |
| 1105 | schunk->free_size = dyn_size; | 1679 | schunk->free_size = dyn_size; |
| 1106 | dyn_size = 0; /* dynamic area covered */ | 1680 | dyn_size = 0; /* dynamic area covered */ |
| 1107 | } | 1681 | } |
| 1108 | schunk->contig_hint = schunk->free_size; | 1682 | schunk->contig_hint = schunk->free_size; |
| 1109 | 1683 | ||
| 1110 | schunk->map[schunk->map_used++] = -static_size; | 1684 | schunk->map[schunk->map_used++] = -ai->static_size; |
| 1111 | if (schunk->free_size) | 1685 | if (schunk->free_size) |
| 1112 | schunk->map[schunk->map_used++] = schunk->free_size; | 1686 | schunk->map[schunk->map_used++] = schunk->free_size; |
| 1113 | 1687 | ||
| 1114 | /* init dynamic chunk if necessary */ | 1688 | /* init dynamic chunk if necessary */ |
| 1115 | if (dyn_size) { | 1689 | if (dyn_size) { |
| 1116 | dchunk = alloc_bootmem(sizeof(struct pcpu_chunk)); | 1690 | dchunk = alloc_bootmem(pcpu_chunk_struct_size); |
| 1117 | INIT_LIST_HEAD(&dchunk->list); | 1691 | INIT_LIST_HEAD(&dchunk->list); |
| 1118 | dchunk->vm = &first_vm; | 1692 | dchunk->base_addr = base_addr; |
| 1119 | dchunk->map = dmap; | 1693 | dchunk->map = dmap; |
| 1120 | dchunk->map_alloc = ARRAY_SIZE(dmap); | 1694 | dchunk->map_alloc = ARRAY_SIZE(dmap); |
| 1121 | dchunk->page = schunk->page_ar; /* share page map with schunk */ | 1695 | dchunk->immutable = true; |
| 1696 | bitmap_fill(dchunk->populated, pcpu_unit_pages); | ||
| 1122 | 1697 | ||
| 1123 | dchunk->contig_hint = dchunk->free_size = dyn_size; | 1698 | dchunk->contig_hint = dchunk->free_size = dyn_size; |
| 1124 | dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit; | 1699 | dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit; |
| 1125 | dchunk->map[dchunk->map_used++] = dchunk->free_size; | 1700 | dchunk->map[dchunk->map_used++] = dchunk->free_size; |
| 1126 | } | 1701 | } |
| 1127 | 1702 | ||
| 1128 | /* allocate vm address */ | ||
| 1129 | first_vm.flags = VM_ALLOC; | ||
| 1130 | first_vm.size = pcpu_chunk_size; | ||
| 1131 | |||
| 1132 | if (!base_addr) | ||
| 1133 | vm_area_register_early(&first_vm, PAGE_SIZE); | ||
| 1134 | else { | ||
| 1135 | /* | ||
| 1136 | * Pages already mapped. No need to remap into | ||
| 1137 | * vmalloc area. In this case the first chunks can't | ||
| 1138 | * be mapped or unmapped by percpu and are marked | ||
| 1139 | * immutable. | ||
| 1140 | */ | ||
| 1141 | first_vm.addr = base_addr; | ||
| 1142 | schunk->immutable = true; | ||
| 1143 | if (dchunk) | ||
| 1144 | dchunk->immutable = true; | ||
| 1145 | } | ||
| 1146 | |||
| 1147 | /* assign pages */ | ||
| 1148 | nr_pages = -1; | ||
| 1149 | for_each_possible_cpu(cpu) { | ||
| 1150 | for (i = 0; i < pcpu_unit_pages; i++) { | ||
| 1151 | struct page *page = get_page_fn(cpu, i); | ||
| 1152 | |||
| 1153 | if (!page) | ||
| 1154 | break; | ||
| 1155 | *pcpu_chunk_pagep(schunk, cpu, i) = page; | ||
| 1156 | } | ||
| 1157 | |||
| 1158 | BUG_ON(i < PFN_UP(static_size)); | ||
| 1159 | |||
| 1160 | if (nr_pages < 0) | ||
| 1161 | nr_pages = i; | ||
| 1162 | else | ||
| 1163 | BUG_ON(nr_pages != i); | ||
| 1164 | } | ||
| 1165 | |||
| 1166 | /* map them */ | ||
| 1167 | if (populate_pte_fn) { | ||
| 1168 | for_each_possible_cpu(cpu) | ||
| 1169 | for (i = 0; i < nr_pages; i++) | ||
| 1170 | populate_pte_fn(pcpu_chunk_addr(schunk, | ||
| 1171 | cpu, i)); | ||
| 1172 | |||
| 1173 | err = pcpu_map(schunk, 0, nr_pages); | ||
| 1174 | if (err) | ||
| 1175 | panic("failed to setup static percpu area, err=%d\n", | ||
| 1176 | err); | ||
| 1177 | } | ||
| 1178 | |||
| 1179 | /* link the first chunk in */ | 1703 | /* link the first chunk in */ |
| 1180 | pcpu_first_chunk = dchunk ?: schunk; | 1704 | pcpu_first_chunk = dchunk ?: schunk; |
| 1181 | pcpu_chunk_relocate(pcpu_first_chunk, -1); | 1705 | pcpu_chunk_relocate(pcpu_first_chunk, -1); |
| 1182 | 1706 | ||
| 1183 | /* we're done */ | 1707 | /* we're done */ |
| 1184 | pcpu_base_addr = (void *)pcpu_chunk_addr(schunk, 0, 0); | 1708 | pcpu_base_addr = base_addr; |
| 1185 | return pcpu_unit_size; | 1709 | return 0; |
| 1186 | } | 1710 | } |
| 1187 | 1711 | ||
| 1188 | /* | 1712 | const char *pcpu_fc_names[PCPU_FC_NR] __initdata = { |
| 1189 | * Embedding first chunk setup helper. | 1713 | [PCPU_FC_AUTO] = "auto", |
| 1190 | */ | 1714 | [PCPU_FC_EMBED] = "embed", |
| 1191 | static void *pcpue_ptr __initdata; | 1715 | [PCPU_FC_PAGE] = "page", |
| 1192 | static size_t pcpue_size __initdata; | 1716 | }; |
| 1193 | static size_t pcpue_unit_size __initdata; | ||
| 1194 | 1717 | ||
| 1195 | static struct page * __init pcpue_get_page(unsigned int cpu, int pageno) | 1718 | enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; |
| 1196 | { | ||
| 1197 | size_t off = (size_t)pageno << PAGE_SHIFT; | ||
| 1198 | 1719 | ||
| 1199 | if (off >= pcpue_size) | 1720 | static int __init percpu_alloc_setup(char *str) |
| 1200 | return NULL; | 1721 | { |
| 1722 | if (0) | ||
| 1723 | /* nada */; | ||
| 1724 | #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK | ||
| 1725 | else if (!strcmp(str, "embed")) | ||
| 1726 | pcpu_chosen_fc = PCPU_FC_EMBED; | ||
| 1727 | #endif | ||
| 1728 | #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK | ||
| 1729 | else if (!strcmp(str, "page")) | ||
| 1730 | pcpu_chosen_fc = PCPU_FC_PAGE; | ||
| 1731 | #endif | ||
| 1732 | else | ||
| 1733 | pr_warning("PERCPU: unknown allocator %s specified\n", str); | ||
| 1201 | 1734 | ||
| 1202 | return virt_to_page(pcpue_ptr + cpu * pcpue_unit_size + off); | 1735 | return 0; |
| 1203 | } | 1736 | } |
| 1737 | early_param("percpu_alloc", percpu_alloc_setup); | ||
| 1204 | 1738 | ||
| 1739 | #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ | ||
| 1740 | !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) | ||
| 1205 | /** | 1741 | /** |
| 1206 | * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem | 1742 | * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem |
| 1207 | * @static_size: the size of static percpu area in bytes | ||
| 1208 | * @reserved_size: the size of reserved percpu area in bytes | 1743 | * @reserved_size: the size of reserved percpu area in bytes |
| 1209 | * @dyn_size: free size for dynamic allocation in bytes, -1 for auto | 1744 | * @dyn_size: free size for dynamic allocation in bytes, -1 for auto |
| 1210 | * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto | 1745 | * @atom_size: allocation atom size |
| 1746 | * @cpu_distance_fn: callback to determine distance between cpus, optional | ||
| 1747 | * @alloc_fn: function to allocate percpu page | ||
| 1748 | * @free_fn: funtion to free percpu page | ||
| 1211 | * | 1749 | * |
| 1212 | * This is a helper to ease setting up embedded first percpu chunk and | 1750 | * This is a helper to ease setting up embedded first percpu chunk and |
| 1213 | * can be called where pcpu_setup_first_chunk() is expected. | 1751 | * can be called where pcpu_setup_first_chunk() is expected. |
| 1214 | * | 1752 | * |
| 1215 | * If this function is used to setup the first chunk, it is allocated | 1753 | * If this function is used to setup the first chunk, it is allocated |
| 1216 | * as a contiguous area using bootmem allocator and used as-is without | 1754 | * by calling @alloc_fn and used as-is without being mapped into |
| 1217 | * being mapped into vmalloc area. This enables the first chunk to | 1755 | * vmalloc area. Allocations are always whole multiples of @atom_size |
| 1218 | * piggy back on the linear physical mapping which often uses larger | 1756 | * aligned to @atom_size. |
| 1219 | * page size. | 1757 | * |
| 1758 | * This enables the first chunk to piggy back on the linear physical | ||
| 1759 | * mapping which often uses larger page size. Please note that this | ||
| 1760 | * can result in very sparse cpu->unit mapping on NUMA machines thus | ||
| 1761 | * requiring large vmalloc address space. Don't use this allocator if | ||
| 1762 | * vmalloc space is not orders of magnitude larger than distances | ||
| 1763 | * between node memory addresses (ie. 32bit NUMA machines). | ||
| 1220 | * | 1764 | * |
| 1221 | * When @dyn_size is positive, dynamic area might be larger than | 1765 | * When @dyn_size is positive, dynamic area might be larger than |
| 1222 | * specified to fill page alignment. Also, when @dyn_size is auto, | 1766 | * specified to fill page alignment. When @dyn_size is auto, |
| 1223 | * @dyn_size does not fill the whole first chunk but only what's | 1767 | * @dyn_size is just big enough to fill page alignment after static |
| 1224 | * necessary for page alignment after static and reserved areas. | 1768 | * and reserved areas. |
| 1225 | * | 1769 | * |
| 1226 | * If the needed size is smaller than the minimum or specified unit | 1770 | * If the needed size is smaller than the minimum or specified unit |
| 1227 | * size, the leftover is returned to the bootmem allocator. | 1771 | * size, the leftover is returned using @free_fn. |
| 1228 | * | 1772 | * |
| 1229 | * RETURNS: | 1773 | * RETURNS: |
| 1230 | * The determined pcpu_unit_size which can be used to initialize | 1774 | * 0 on success, -errno on failure. |
| 1231 | * percpu access on success, -errno on failure. | ||
| 1232 | */ | 1775 | */ |
| 1233 | ssize_t __init pcpu_embed_first_chunk(size_t static_size, size_t reserved_size, | 1776 | int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size, |
| 1234 | ssize_t dyn_size, ssize_t unit_size) | 1777 | size_t atom_size, |
| 1778 | pcpu_fc_cpu_distance_fn_t cpu_distance_fn, | ||
| 1779 | pcpu_fc_alloc_fn_t alloc_fn, | ||
| 1780 | pcpu_fc_free_fn_t free_fn) | ||
| 1235 | { | 1781 | { |
| 1236 | size_t chunk_size; | 1782 | void *base = (void *)ULONG_MAX; |
| 1237 | unsigned int cpu; | 1783 | void **areas = NULL; |
| 1784 | struct pcpu_alloc_info *ai; | ||
| 1785 | size_t size_sum, areas_size; | ||
| 1786 | int group, i, rc; | ||
| 1787 | |||
| 1788 | ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, | ||
| 1789 | cpu_distance_fn); | ||
| 1790 | if (IS_ERR(ai)) | ||
| 1791 | return PTR_ERR(ai); | ||
| 1792 | |||
| 1793 | size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; | ||
| 1794 | areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); | ||
| 1795 | |||
| 1796 | areas = alloc_bootmem_nopanic(areas_size); | ||
| 1797 | if (!areas) { | ||
| 1798 | rc = -ENOMEM; | ||
| 1799 | goto out_free; | ||
| 1800 | } | ||
| 1238 | 1801 | ||
| 1239 | /* determine parameters and allocate */ | 1802 | /* allocate, copy and determine base address */ |
| 1240 | pcpue_size = PFN_ALIGN(static_size + reserved_size + | 1803 | for (group = 0; group < ai->nr_groups; group++) { |
| 1241 | (dyn_size >= 0 ? dyn_size : 0)); | 1804 | struct pcpu_group_info *gi = &ai->groups[group]; |
| 1242 | if (dyn_size != 0) | 1805 | unsigned int cpu = NR_CPUS; |
| 1243 | dyn_size = pcpue_size - static_size - reserved_size; | 1806 | void *ptr; |
| 1244 | 1807 | ||
| 1245 | if (unit_size >= 0) { | 1808 | for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) |
| 1246 | BUG_ON(unit_size < pcpue_size); | 1809 | cpu = gi->cpu_map[i]; |
| 1247 | pcpue_unit_size = unit_size; | 1810 | BUG_ON(cpu == NR_CPUS); |
| 1248 | } else | 1811 | |
| 1249 | pcpue_unit_size = max_t(size_t, pcpue_size, PCPU_MIN_UNIT_SIZE); | 1812 | /* allocate space for the whole group */ |
| 1250 | 1813 | ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); | |
| 1251 | chunk_size = pcpue_unit_size * nr_cpu_ids; | 1814 | if (!ptr) { |
| 1252 | 1815 | rc = -ENOMEM; | |
| 1253 | pcpue_ptr = __alloc_bootmem_nopanic(chunk_size, PAGE_SIZE, | 1816 | goto out_free_areas; |
| 1254 | __pa(MAX_DMA_ADDRESS)); | 1817 | } |
| 1255 | if (!pcpue_ptr) { | 1818 | areas[group] = ptr; |
| 1256 | pr_warning("PERCPU: failed to allocate %zu bytes for " | 1819 | |
| 1257 | "embedding\n", chunk_size); | 1820 | base = min(ptr, base); |
| 1258 | return -ENOMEM; | 1821 | |
| 1822 | for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { | ||
| 1823 | if (gi->cpu_map[i] == NR_CPUS) { | ||
| 1824 | /* unused unit, free whole */ | ||
| 1825 | free_fn(ptr, ai->unit_size); | ||
| 1826 | continue; | ||
| 1827 | } | ||
| 1828 | /* copy and return the unused part */ | ||
| 1829 | memcpy(ptr, __per_cpu_load, ai->static_size); | ||
| 1830 | free_fn(ptr + size_sum, ai->unit_size - size_sum); | ||
| 1831 | } | ||
| 1259 | } | 1832 | } |
| 1260 | 1833 | ||
| 1261 | /* return the leftover and copy */ | 1834 | /* base address is now known, determine group base offsets */ |
| 1262 | for (cpu = 0; cpu < nr_cpu_ids; cpu++) { | 1835 | for (group = 0; group < ai->nr_groups; group++) |
| 1263 | void *ptr = pcpue_ptr + cpu * pcpue_unit_size; | 1836 | ai->groups[group].base_offset = areas[group] - base; |
| 1837 | |||
| 1838 | pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n", | ||
| 1839 | PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size, | ||
| 1840 | ai->dyn_size, ai->unit_size); | ||
| 1841 | |||
| 1842 | rc = pcpu_setup_first_chunk(ai, base); | ||
| 1843 | goto out_free; | ||
| 1844 | |||
| 1845 | out_free_areas: | ||
| 1846 | for (group = 0; group < ai->nr_groups; group++) | ||
| 1847 | free_fn(areas[group], | ||
| 1848 | ai->groups[group].nr_units * ai->unit_size); | ||
| 1849 | out_free: | ||
| 1850 | pcpu_free_alloc_info(ai); | ||
| 1851 | if (areas) | ||
| 1852 | free_bootmem(__pa(areas), areas_size); | ||
| 1853 | return rc; | ||
| 1854 | } | ||
| 1855 | #endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK || | ||
| 1856 | !CONFIG_HAVE_SETUP_PER_CPU_AREA */ | ||
| 1857 | |||
| 1858 | #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK | ||
| 1859 | /** | ||
| 1860 | * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages | ||
| 1861 | * @reserved_size: the size of reserved percpu area in bytes | ||
| 1862 | * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE | ||
| 1863 | * @free_fn: funtion to free percpu page, always called with PAGE_SIZE | ||
| 1864 | * @populate_pte_fn: function to populate pte | ||
| 1865 | * | ||
| 1866 | * This is a helper to ease setting up page-remapped first percpu | ||
| 1867 | * chunk and can be called where pcpu_setup_first_chunk() is expected. | ||
| 1868 | * | ||
| 1869 | * This is the basic allocator. Static percpu area is allocated | ||
| 1870 | * page-by-page into vmalloc area. | ||
| 1871 | * | ||
| 1872 | * RETURNS: | ||
| 1873 | * 0 on success, -errno on failure. | ||
| 1874 | */ | ||
| 1875 | int __init pcpu_page_first_chunk(size_t reserved_size, | ||
| 1876 | pcpu_fc_alloc_fn_t alloc_fn, | ||
| 1877 | pcpu_fc_free_fn_t free_fn, | ||
| 1878 | pcpu_fc_populate_pte_fn_t populate_pte_fn) | ||
| 1879 | { | ||
| 1880 | static struct vm_struct vm; | ||
| 1881 | struct pcpu_alloc_info *ai; | ||
| 1882 | char psize_str[16]; | ||
| 1883 | int unit_pages; | ||
| 1884 | size_t pages_size; | ||
| 1885 | struct page **pages; | ||
| 1886 | int unit, i, j, rc; | ||
| 1887 | |||
| 1888 | snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); | ||
| 1889 | |||
| 1890 | ai = pcpu_build_alloc_info(reserved_size, -1, PAGE_SIZE, NULL); | ||
| 1891 | if (IS_ERR(ai)) | ||
| 1892 | return PTR_ERR(ai); | ||
| 1893 | BUG_ON(ai->nr_groups != 1); | ||
| 1894 | BUG_ON(ai->groups[0].nr_units != num_possible_cpus()); | ||
| 1895 | |||
| 1896 | unit_pages = ai->unit_size >> PAGE_SHIFT; | ||
| 1897 | |||
| 1898 | /* unaligned allocations can't be freed, round up to page size */ | ||
| 1899 | pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * | ||
| 1900 | sizeof(pages[0])); | ||
| 1901 | pages = alloc_bootmem(pages_size); | ||
| 1902 | |||
| 1903 | /* allocate pages */ | ||
| 1904 | j = 0; | ||
| 1905 | for (unit = 0; unit < num_possible_cpus(); unit++) | ||
| 1906 | for (i = 0; i < unit_pages; i++) { | ||
| 1907 | unsigned int cpu = ai->groups[0].cpu_map[unit]; | ||
| 1908 | void *ptr; | ||
| 1909 | |||
| 1910 | ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); | ||
| 1911 | if (!ptr) { | ||
| 1912 | pr_warning("PERCPU: failed to allocate %s page " | ||
| 1913 | "for cpu%u\n", psize_str, cpu); | ||
| 1914 | goto enomem; | ||
| 1915 | } | ||
| 1916 | pages[j++] = virt_to_page(ptr); | ||
| 1917 | } | ||
| 1918 | |||
| 1919 | /* allocate vm area, map the pages and copy static data */ | ||
| 1920 | vm.flags = VM_ALLOC; | ||
| 1921 | vm.size = num_possible_cpus() * ai->unit_size; | ||
| 1922 | vm_area_register_early(&vm, PAGE_SIZE); | ||
| 1923 | |||
| 1924 | for (unit = 0; unit < num_possible_cpus(); unit++) { | ||
| 1925 | unsigned long unit_addr = | ||
| 1926 | (unsigned long)vm.addr + unit * ai->unit_size; | ||
| 1927 | |||
| 1928 | for (i = 0; i < unit_pages; i++) | ||
| 1929 | populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); | ||
| 1930 | |||
| 1931 | /* pte already populated, the following shouldn't fail */ | ||
| 1932 | rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], | ||
| 1933 | unit_pages); | ||
| 1934 | if (rc < 0) | ||
| 1935 | panic("failed to map percpu area, err=%d\n", rc); | ||
| 1264 | 1936 | ||
| 1265 | if (cpu_possible(cpu)) { | 1937 | /* |
| 1266 | free_bootmem(__pa(ptr + pcpue_size), | 1938 | * FIXME: Archs with virtual cache should flush local |
| 1267 | pcpue_unit_size - pcpue_size); | 1939 | * cache for the linear mapping here - something |
| 1268 | memcpy(ptr, __per_cpu_load, static_size); | 1940 | * equivalent to flush_cache_vmap() on the local cpu. |
| 1269 | } else | 1941 | * flush_cache_vmap() can't be used as most supporting |
| 1270 | free_bootmem(__pa(ptr), pcpue_unit_size); | 1942 | * data structures are not set up yet. |
| 1943 | */ | ||
| 1944 | |||
| 1945 | /* copy static data */ | ||
| 1946 | memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); | ||
| 1271 | } | 1947 | } |
| 1272 | 1948 | ||
| 1273 | /* we're ready, commit */ | 1949 | /* we're ready, commit */ |
| 1274 | pr_info("PERCPU: Embedded %zu pages at %p, static data %zu bytes\n", | 1950 | pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n", |
| 1275 | pcpue_size >> PAGE_SHIFT, pcpue_ptr, static_size); | 1951 | unit_pages, psize_str, vm.addr, ai->static_size, |
| 1952 | ai->reserved_size, ai->dyn_size); | ||
| 1953 | |||
| 1954 | rc = pcpu_setup_first_chunk(ai, vm.addr); | ||
| 1955 | goto out_free_ar; | ||
| 1956 | |||
| 1957 | enomem: | ||
| 1958 | while (--j >= 0) | ||
| 1959 | free_fn(page_address(pages[j]), PAGE_SIZE); | ||
| 1960 | rc = -ENOMEM; | ||
| 1961 | out_free_ar: | ||
| 1962 | free_bootmem(__pa(pages), pages_size); | ||
| 1963 | pcpu_free_alloc_info(ai); | ||
| 1964 | return rc; | ||
| 1965 | } | ||
| 1966 | #endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */ | ||
| 1967 | |||
| 1968 | /* | ||
| 1969 | * Generic percpu area setup. | ||
| 1970 | * | ||
| 1971 | * The embedding helper is used because its behavior closely resembles | ||
| 1972 | * the original non-dynamic generic percpu area setup. This is | ||
| 1973 | * important because many archs have addressing restrictions and might | ||
| 1974 | * fail if the percpu area is located far away from the previous | ||
| 1975 | * location. As an added bonus, in non-NUMA cases, embedding is | ||
| 1976 | * generally a good idea TLB-wise because percpu area can piggy back | ||
| 1977 | * on the physical linear memory mapping which uses large page | ||
| 1978 | * mappings on applicable archs. | ||
| 1979 | */ | ||
| 1980 | #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA | ||
| 1981 | unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; | ||
| 1982 | EXPORT_SYMBOL(__per_cpu_offset); | ||
| 1983 | |||
| 1984 | static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, | ||
| 1985 | size_t align) | ||
| 1986 | { | ||
| 1987 | return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS)); | ||
| 1988 | } | ||
| 1276 | 1989 | ||
| 1277 | return pcpu_setup_first_chunk(pcpue_get_page, static_size, | 1990 | static void __init pcpu_dfl_fc_free(void *ptr, size_t size) |
| 1278 | reserved_size, dyn_size, | 1991 | { |
| 1279 | pcpue_unit_size, pcpue_ptr, NULL); | 1992 | free_bootmem(__pa(ptr), size); |
| 1993 | } | ||
| 1994 | |||
| 1995 | void __init setup_per_cpu_areas(void) | ||
| 1996 | { | ||
| 1997 | unsigned long delta; | ||
| 1998 | unsigned int cpu; | ||
| 1999 | int rc; | ||
| 2000 | |||
| 2001 | /* | ||
| 2002 | * Always reserve area for module percpu variables. That's | ||
| 2003 | * what the legacy allocator did. | ||
| 2004 | */ | ||
| 2005 | rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, | ||
| 2006 | PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, | ||
| 2007 | pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); | ||
| 2008 | if (rc < 0) | ||
| 2009 | panic("Failed to initialized percpu areas."); | ||
| 2010 | |||
| 2011 | delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; | ||
| 2012 | for_each_possible_cpu(cpu) | ||
| 2013 | __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; | ||
| 1280 | } | 2014 | } |
| 2015 | #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ | ||
