aboutsummaryrefslogtreecommitdiffstats
path: root/mm/page-writeback.c
diff options
context:
space:
mode:
authorWu Fengguang <fengguang.wu@intel.com>2011-03-02 17:04:18 -0500
committerWu Fengguang <fengguang.wu@intel.com>2011-10-03 09:08:56 -0400
commit6c14ae1e92c77eabd3e7527cf2e7836cde8b8487 (patch)
treedd5fdede1873b246bbeb3518a9a741bb057db0c5 /mm/page-writeback.c
parentc8e28ce049faa53a470c132893abbc9f2bde9420 (diff)
writeback: dirty position control
bdi_position_ratio() provides a scale factor to bdi->dirty_ratelimit, so that the resulted task rate limit can drive the dirty pages back to the global/bdi setpoints. Old scheme is, | free run area | throttle area ----------------------------------------+----------------------------> thresh^ dirty pages New scheme is, ^ task rate limit | | * | * | * |[free run] * [smooth throttled] | * | * | * ..bdi->dirty_ratelimit..........* | . * | . * | . * | . * | . * +-------------------------------.-----------------------*------------> setpoint^ limit^ dirty pages The slope of the bdi control line should be 1) large enough to pull the dirty pages to setpoint reasonably fast 2) small enough to avoid big fluctuations in the resulted pos_ratio and hence task ratelimit Since the fluctuation range of the bdi dirty pages is typically observed to be within 1-second worth of data, the bdi control line's slope is selected to be a linear function of bdi write bandwidth, so that it can adapt to slow/fast storage devices well. Assume the bdi control line pos_ratio = 1.0 + k * (dirty - bdi_setpoint) where k is the negative slope. If targeting for 12.5% fluctuation range in pos_ratio when dirty pages are fluctuating in range [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2], we get slope k = - 1 / (8 * write_bw) Let pos_ratio(x_intercept) = 0, we get the parameter used in code: x_intercept = bdi_setpoint + 8 * write_bw The global/bdi slopes are nicely complementing each other when the system has only one major bdi (indicated by bdi_thresh ~= thresh): 1) slope of global control line => scaling to the control scope size 2) slope of main bdi control line => scaling to the writeout bandwidth so that - in memory tight systems, (1) becomes strong enough to squeeze dirty pages inside the control scope - in large memory systems where the "gravity" of (1) for pulling the dirty pages to setpoint is too weak, (2) can back (1) up and drive dirty pages to bdi_setpoint ~= setpoint reasonably fast. Unfortunately in JBOD setups, the fluctuation range of bdi threshold is related to memory size due to the interferences between disks. In this case, the bdi slope will be weighted sum of write_bw and bdi_thresh. Given equations span = x_intercept - bdi_setpoint k = df/dx = - 1 / span and the extremum values span = bdi_thresh dx = bdi_thresh we get df = - dx / span = - 1.0 That means, when bdi_dirty deviates bdi_thresh up, pos_ratio and hence task ratelimit will fluctuate by -100%. peter: use 3rd order polynomial for the global control line CC: Peter Zijlstra <a.p.zijlstra@chello.nl> Acked-by: Jan Kara <jack@suse.cz> Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Diffstat (limited to 'mm/page-writeback.c')
-rw-r--r--mm/page-writeback.c191
1 files changed, 190 insertions, 1 deletions
diff --git a/mm/page-writeback.c b/mm/page-writeback.c
index 0e6dd5c2ed31..c16ddd8f5cb6 100644
--- a/mm/page-writeback.c
+++ b/mm/page-writeback.c
@@ -46,6 +46,8 @@
46 */ 46 */
47#define BANDWIDTH_INTERVAL max(HZ/5, 1) 47#define BANDWIDTH_INTERVAL max(HZ/5, 1)
48 48
49#define RATELIMIT_CALC_SHIFT 10
50
49/* 51/*
50 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 52 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
51 * will look to see if it needs to force writeback or throttling. 53 * will look to see if it needs to force writeback or throttling.
@@ -411,6 +413,12 @@ unsigned long determine_dirtyable_memory(void)
411 return x + 1; /* Ensure that we never return 0 */ 413 return x + 1; /* Ensure that we never return 0 */
412} 414}
413 415
416static unsigned long dirty_freerun_ceiling(unsigned long thresh,
417 unsigned long bg_thresh)
418{
419 return (thresh + bg_thresh) / 2;
420}
421
414static unsigned long hard_dirty_limit(unsigned long thresh) 422static unsigned long hard_dirty_limit(unsigned long thresh)
415{ 423{
416 return max(thresh, global_dirty_limit); 424 return max(thresh, global_dirty_limit);
@@ -495,6 +503,184 @@ unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
495 return bdi_dirty; 503 return bdi_dirty;
496} 504}
497 505
506/*
507 * Dirty position control.
508 *
509 * (o) global/bdi setpoints
510 *
511 * We want the dirty pages be balanced around the global/bdi setpoints.
512 * When the number of dirty pages is higher/lower than the setpoint, the
513 * dirty position control ratio (and hence task dirty ratelimit) will be
514 * decreased/increased to bring the dirty pages back to the setpoint.
515 *
516 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
517 *
518 * if (dirty < setpoint) scale up pos_ratio
519 * if (dirty > setpoint) scale down pos_ratio
520 *
521 * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
522 * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
523 *
524 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
525 *
526 * (o) global control line
527 *
528 * ^ pos_ratio
529 * |
530 * | |<===== global dirty control scope ======>|
531 * 2.0 .............*
532 * | .*
533 * | . *
534 * | . *
535 * | . *
536 * | . *
537 * | . *
538 * 1.0 ................................*
539 * | . . *
540 * | . . *
541 * | . . *
542 * | . . *
543 * | . . *
544 * 0 +------------.------------------.----------------------*------------->
545 * freerun^ setpoint^ limit^ dirty pages
546 *
547 * (o) bdi control line
548 *
549 * ^ pos_ratio
550 * |
551 * | *
552 * | *
553 * | *
554 * | *
555 * | * |<=========== span ============>|
556 * 1.0 .......................*
557 * | . *
558 * | . *
559 * | . *
560 * | . *
561 * | . *
562 * | . *
563 * | . *
564 * | . *
565 * | . *
566 * | . *
567 * | . *
568 * 1/4 ...............................................* * * * * * * * * * * *
569 * | . .
570 * | . .
571 * | . .
572 * 0 +----------------------.-------------------------------.------------->
573 * bdi_setpoint^ x_intercept^
574 *
575 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
576 * be smoothly throttled down to normal if it starts high in situations like
577 * - start writing to a slow SD card and a fast disk at the same time. The SD
578 * card's bdi_dirty may rush to many times higher than bdi_setpoint.
579 * - the bdi dirty thresh drops quickly due to change of JBOD workload
580 */
581static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
582 unsigned long thresh,
583 unsigned long bg_thresh,
584 unsigned long dirty,
585 unsigned long bdi_thresh,
586 unsigned long bdi_dirty)
587{
588 unsigned long write_bw = bdi->avg_write_bandwidth;
589 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
590 unsigned long limit = hard_dirty_limit(thresh);
591 unsigned long x_intercept;
592 unsigned long setpoint; /* dirty pages' target balance point */
593 unsigned long bdi_setpoint;
594 unsigned long span;
595 long long pos_ratio; /* for scaling up/down the rate limit */
596 long x;
597
598 if (unlikely(dirty >= limit))
599 return 0;
600
601 /*
602 * global setpoint
603 *
604 * setpoint - dirty 3
605 * f(dirty) := 1.0 + (----------------)
606 * limit - setpoint
607 *
608 * it's a 3rd order polynomial that subjects to
609 *
610 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
611 * (2) f(setpoint) = 1.0 => the balance point
612 * (3) f(limit) = 0 => the hard limit
613 * (4) df/dx <= 0 => negative feedback control
614 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
615 * => fast response on large errors; small oscillation near setpoint
616 */
617 setpoint = (freerun + limit) / 2;
618 x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
619 limit - setpoint + 1);
620 pos_ratio = x;
621 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
622 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
623 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
624
625 /*
626 * We have computed basic pos_ratio above based on global situation. If
627 * the bdi is over/under its share of dirty pages, we want to scale
628 * pos_ratio further down/up. That is done by the following mechanism.
629 */
630
631 /*
632 * bdi setpoint
633 *
634 * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
635 *
636 * x_intercept - bdi_dirty
637 * := --------------------------
638 * x_intercept - bdi_setpoint
639 *
640 * The main bdi control line is a linear function that subjects to
641 *
642 * (1) f(bdi_setpoint) = 1.0
643 * (2) k = - 1 / (8 * write_bw) (in single bdi case)
644 * or equally: x_intercept = bdi_setpoint + 8 * write_bw
645 *
646 * For single bdi case, the dirty pages are observed to fluctuate
647 * regularly within range
648 * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
649 * for various filesystems, where (2) can yield in a reasonable 12.5%
650 * fluctuation range for pos_ratio.
651 *
652 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
653 * own size, so move the slope over accordingly and choose a slope that
654 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
655 */
656 if (unlikely(bdi_thresh > thresh))
657 bdi_thresh = thresh;
658 /*
659 * scale global setpoint to bdi's:
660 * bdi_setpoint = setpoint * bdi_thresh / thresh
661 */
662 x = div_u64((u64)bdi_thresh << 16, thresh + 1);
663 bdi_setpoint = setpoint * (u64)x >> 16;
664 /*
665 * Use span=(8*write_bw) in single bdi case as indicated by
666 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
667 *
668 * bdi_thresh thresh - bdi_thresh
669 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
670 * thresh thresh
671 */
672 span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
673 x_intercept = bdi_setpoint + span;
674
675 if (bdi_dirty < x_intercept - span / 4) {
676 pos_ratio *= x_intercept - bdi_dirty;
677 do_div(pos_ratio, x_intercept - bdi_setpoint + 1);
678 } else
679 pos_ratio /= 4;
680
681 return pos_ratio;
682}
683
498static void bdi_update_write_bandwidth(struct backing_dev_info *bdi, 684static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
499 unsigned long elapsed, 685 unsigned long elapsed,
500 unsigned long written) 686 unsigned long written)
@@ -655,6 +841,7 @@ static void balance_dirty_pages(struct address_space *mapping,
655 unsigned long nr_reclaimable, bdi_nr_reclaimable; 841 unsigned long nr_reclaimable, bdi_nr_reclaimable;
656 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */ 842 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
657 unsigned long bdi_dirty; 843 unsigned long bdi_dirty;
844 unsigned long freerun;
658 unsigned long background_thresh; 845 unsigned long background_thresh;
659 unsigned long dirty_thresh; 846 unsigned long dirty_thresh;
660 unsigned long bdi_thresh; 847 unsigned long bdi_thresh;
@@ -679,7 +866,9 @@ static void balance_dirty_pages(struct address_space *mapping,
679 * catch-up. This avoids (excessively) small writeouts 866 * catch-up. This avoids (excessively) small writeouts
680 * when the bdi limits are ramping up. 867 * when the bdi limits are ramping up.
681 */ 868 */
682 if (nr_dirty <= (background_thresh + dirty_thresh) / 2) 869 freerun = dirty_freerun_ceiling(dirty_thresh,
870 background_thresh);
871 if (nr_dirty <= freerun)
683 break; 872 break;
684 873
685 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh); 874 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);