aboutsummaryrefslogtreecommitdiffstats
path: root/mm/memory.c
diff options
context:
space:
mode:
authorIngo Molnar <mingo@elte.hu>2008-07-08 04:32:56 -0400
committerIngo Molnar <mingo@elte.hu>2008-07-08 04:32:56 -0400
commit896395c290f902576270d84291c1f7f8bfbe339d (patch)
tree650114bff3a5f808ee1d713ecc443b0eaab2e1c3 /mm/memory.c
parentaf1cf204ba2fd8135933a2e4df523fb1112dc0e2 (diff)
parent1b40a895df6c7d5a80e71f65674060b03d84bbef (diff)
Merge branch 'linus' into tmp.x86.mpparse.new
Diffstat (limited to 'mm/memory.c')
-rw-r--r--mm/memory.c85
1 files changed, 74 insertions, 11 deletions
diff --git a/mm/memory.c b/mm/memory.c
index fb5608a120ed..2302d228fe04 100644
--- a/mm/memory.c
+++ b/mm/memory.c
@@ -999,17 +999,15 @@ struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
999 goto no_page_table; 999 goto no_page_table;
1000 1000
1001 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 1001 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1002 if (!ptep)
1003 goto out;
1004 1002
1005 pte = *ptep; 1003 pte = *ptep;
1006 if (!pte_present(pte)) 1004 if (!pte_present(pte))
1007 goto unlock; 1005 goto no_page;
1008 if ((flags & FOLL_WRITE) && !pte_write(pte)) 1006 if ((flags & FOLL_WRITE) && !pte_write(pte))
1009 goto unlock; 1007 goto unlock;
1010 page = vm_normal_page(vma, address, pte); 1008 page = vm_normal_page(vma, address, pte);
1011 if (unlikely(!page)) 1009 if (unlikely(!page))
1012 goto unlock; 1010 goto bad_page;
1013 1011
1014 if (flags & FOLL_GET) 1012 if (flags & FOLL_GET)
1015 get_page(page); 1013 get_page(page);
@@ -1024,6 +1022,15 @@ unlock:
1024out: 1022out:
1025 return page; 1023 return page;
1026 1024
1025bad_page:
1026 pte_unmap_unlock(ptep, ptl);
1027 return ERR_PTR(-EFAULT);
1028
1029no_page:
1030 pte_unmap_unlock(ptep, ptl);
1031 if (!pte_none(pte))
1032 return page;
1033 /* Fall through to ZERO_PAGE handling */
1027no_page_table: 1034no_page_table:
1028 /* 1035 /*
1029 * When core dumping an enormous anonymous area that nobody 1036 * When core dumping an enormous anonymous area that nobody
@@ -1038,6 +1045,26 @@ no_page_table:
1038 return page; 1045 return page;
1039} 1046}
1040 1047
1048/* Can we do the FOLL_ANON optimization? */
1049static inline int use_zero_page(struct vm_area_struct *vma)
1050{
1051 /*
1052 * We don't want to optimize FOLL_ANON for make_pages_present()
1053 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1054 * we want to get the page from the page tables to make sure
1055 * that we serialize and update with any other user of that
1056 * mapping.
1057 */
1058 if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1059 return 0;
1060 /*
1061 * And if we have a fault or a nopfn routine, it's not an
1062 * anonymous region.
1063 */
1064 return !vma->vm_ops ||
1065 (!vma->vm_ops->fault && !vma->vm_ops->nopfn);
1066}
1067
1041int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1068int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1042 unsigned long start, int len, int write, int force, 1069 unsigned long start, int len, int write, int force,
1043 struct page **pages, struct vm_area_struct **vmas) 1070 struct page **pages, struct vm_area_struct **vmas)
@@ -1112,8 +1139,7 @@ int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1112 foll_flags = FOLL_TOUCH; 1139 foll_flags = FOLL_TOUCH;
1113 if (pages) 1140 if (pages)
1114 foll_flags |= FOLL_GET; 1141 foll_flags |= FOLL_GET;
1115 if (!write && !(vma->vm_flags & VM_LOCKED) && 1142 if (!write && use_zero_page(vma))
1116 (!vma->vm_ops || !vma->vm_ops->fault))
1117 foll_flags |= FOLL_ANON; 1143 foll_flags |= FOLL_ANON;
1118 1144
1119 do { 1145 do {
@@ -1125,7 +1151,7 @@ int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1125 * be processed until returning to user space. 1151 * be processed until returning to user space.
1126 */ 1152 */
1127 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE))) 1153 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1128 return -ENOMEM; 1154 return i ? i : -ENOMEM;
1129 1155
1130 if (write) 1156 if (write)
1131 foll_flags |= FOLL_WRITE; 1157 foll_flags |= FOLL_WRITE;
@@ -1159,6 +1185,8 @@ int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1159 1185
1160 cond_resched(); 1186 cond_resched();
1161 } 1187 }
1188 if (IS_ERR(page))
1189 return i ? i : PTR_ERR(page);
1162 if (pages) { 1190 if (pages) {
1163 pages[i] = page; 1191 pages[i] = page;
1164 1192
@@ -1669,8 +1697,19 @@ static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1669 struct page *dirty_page = NULL; 1697 struct page *dirty_page = NULL;
1670 1698
1671 old_page = vm_normal_page(vma, address, orig_pte); 1699 old_page = vm_normal_page(vma, address, orig_pte);
1672 if (!old_page) 1700 if (!old_page) {
1701 /*
1702 * VM_MIXEDMAP !pfn_valid() case
1703 *
1704 * We should not cow pages in a shared writeable mapping.
1705 * Just mark the pages writable as we can't do any dirty
1706 * accounting on raw pfn maps.
1707 */
1708 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1709 (VM_WRITE|VM_SHARED))
1710 goto reuse;
1673 goto gotten; 1711 goto gotten;
1712 }
1674 1713
1675 /* 1714 /*
1676 * Take out anonymous pages first, anonymous shared vmas are 1715 * Take out anonymous pages first, anonymous shared vmas are
@@ -1723,6 +1762,7 @@ static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1723 } 1762 }
1724 1763
1725 if (reuse) { 1764 if (reuse) {
1765reuse:
1726 flush_cache_page(vma, address, pte_pfn(orig_pte)); 1766 flush_cache_page(vma, address, pte_pfn(orig_pte));
1727 entry = pte_mkyoung(orig_pte); 1767 entry = pte_mkyoung(orig_pte);
1728 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1768 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
@@ -1757,7 +1797,6 @@ gotten:
1757 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 1797 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1758 if (likely(pte_same(*page_table, orig_pte))) { 1798 if (likely(pte_same(*page_table, orig_pte))) {
1759 if (old_page) { 1799 if (old_page) {
1760 page_remove_rmap(old_page, vma);
1761 if (!PageAnon(old_page)) { 1800 if (!PageAnon(old_page)) {
1762 dec_mm_counter(mm, file_rss); 1801 dec_mm_counter(mm, file_rss);
1763 inc_mm_counter(mm, anon_rss); 1802 inc_mm_counter(mm, anon_rss);
@@ -1779,6 +1818,32 @@ gotten:
1779 lru_cache_add_active(new_page); 1818 lru_cache_add_active(new_page);
1780 page_add_new_anon_rmap(new_page, vma, address); 1819 page_add_new_anon_rmap(new_page, vma, address);
1781 1820
1821 if (old_page) {
1822 /*
1823 * Only after switching the pte to the new page may
1824 * we remove the mapcount here. Otherwise another
1825 * process may come and find the rmap count decremented
1826 * before the pte is switched to the new page, and
1827 * "reuse" the old page writing into it while our pte
1828 * here still points into it and can be read by other
1829 * threads.
1830 *
1831 * The critical issue is to order this
1832 * page_remove_rmap with the ptp_clear_flush above.
1833 * Those stores are ordered by (if nothing else,)
1834 * the barrier present in the atomic_add_negative
1835 * in page_remove_rmap.
1836 *
1837 * Then the TLB flush in ptep_clear_flush ensures that
1838 * no process can access the old page before the
1839 * decremented mapcount is visible. And the old page
1840 * cannot be reused until after the decremented
1841 * mapcount is visible. So transitively, TLBs to
1842 * old page will be flushed before it can be reused.
1843 */
1844 page_remove_rmap(old_page, vma);
1845 }
1846
1782 /* Free the old page.. */ 1847 /* Free the old page.. */
1783 new_page = old_page; 1848 new_page = old_page;
1784 ret |= VM_FAULT_WRITE; 1849 ret |= VM_FAULT_WRITE;
@@ -2295,8 +2360,6 @@ static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2295 vmf.flags = flags; 2360 vmf.flags = flags;
2296 vmf.page = NULL; 2361 vmf.page = NULL;
2297 2362
2298 BUG_ON(vma->vm_flags & VM_PFNMAP);
2299
2300 ret = vma->vm_ops->fault(vma, &vmf); 2363 ret = vma->vm_ops->fault(vma, &vmf);
2301 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2364 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2302 return ret; 2365 return ret;