aboutsummaryrefslogtreecommitdiffstats
path: root/mm/memcontrol.c
diff options
context:
space:
mode:
authorDavid Rientjes <rientjes@google.com>2010-08-09 20:19:46 -0400
committerLinus Torvalds <torvalds@linux-foundation.org>2010-08-09 23:45:02 -0400
commita63d83f427fbce97a6cea0db2e64b0eb8435cd10 (patch)
tree8ac229cdf6e2289d97e82e35774057106fe7f4a2 /mm/memcontrol.c
parent74bcbf40546bb7500f2a7ba4ff3cc056a6bd004a (diff)
oom: badness heuristic rewrite
This a complete rewrite of the oom killer's badness() heuristic which is used to determine which task to kill in oom conditions. The goal is to make it as simple and predictable as possible so the results are better understood and we end up killing the task which will lead to the most memory freeing while still respecting the fine-tuning from userspace. Instead of basing the heuristic on mm->total_vm for each task, the task's rss and swap space is used instead. This is a better indication of the amount of memory that will be freeable if the oom killed task is chosen and subsequently exits. This helps specifically in cases where KDE or GNOME is chosen for oom kill on desktop systems instead of a memory hogging task. The baseline for the heuristic is a proportion of memory that each task is currently using in memory plus swap compared to the amount of "allowable" memory. "Allowable," in this sense, means the system-wide resources for unconstrained oom conditions, the set of mempolicy nodes, the mems attached to current's cpuset, or a memory controller's limit. The proportion is given on a scale of 0 (never kill) to 1000 (always kill), roughly meaning that if a task has a badness() score of 500 that the task consumes approximately 50% of allowable memory resident in RAM or in swap space. The proportion is always relative to the amount of "allowable" memory and not the total amount of RAM systemwide so that mempolicies and cpusets may operate in isolation; they shall not need to know the true size of the machine on which they are running if they are bound to a specific set of nodes or mems, respectively. Root tasks are given 3% extra memory just like __vm_enough_memory() provides in LSMs. In the event of two tasks consuming similar amounts of memory, it is generally better to save root's task. Because of the change in the badness() heuristic's baseline, it is also necessary to introduce a new user interface to tune it. It's not possible to redefine the meaning of /proc/pid/oom_adj with a new scale since the ABI cannot be changed for backward compatability. Instead, a new tunable, /proc/pid/oom_score_adj, is added that ranges from -1000 to +1000. It may be used to polarize the heuristic such that certain tasks are never considered for oom kill while others may always be considered. The value is added directly into the badness() score so a value of -500, for example, means to discount 50% of its memory consumption in comparison to other tasks either on the system, bound to the mempolicy, in the cpuset, or sharing the same memory controller. /proc/pid/oom_adj is changed so that its meaning is rescaled into the units used by /proc/pid/oom_score_adj, and vice versa. Changing one of these per-task tunables will rescale the value of the other to an equivalent meaning. Although /proc/pid/oom_adj was originally defined as a bitshift on the badness score, it now shares the same linear growth as /proc/pid/oom_score_adj but with different granularity. This is required so the ABI is not broken with userspace applications and allows oom_adj to be deprecated for future removal. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Nick Piggin <npiggin@suse.de> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Balbir Singh <balbir@in.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm/memcontrol.c')
-rw-r--r--mm/memcontrol.c18
1 files changed, 18 insertions, 0 deletions
diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index 31abd1c2c0c5..de54ea0094a1 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -1127,6 +1127,24 @@ static int mem_cgroup_count_children(struct mem_cgroup *mem)
1127} 1127}
1128 1128
1129/* 1129/*
1130 * Return the memory (and swap, if configured) limit for a memcg.
1131 */
1132u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1133{
1134 u64 limit;
1135 u64 memsw;
1136
1137 limit = res_counter_read_u64(&memcg->res, RES_LIMIT) +
1138 total_swap_pages;
1139 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1140 /*
1141 * If memsw is finite and limits the amount of swap space available
1142 * to this memcg, return that limit.
1143 */
1144 return min(limit, memsw);
1145}
1146
1147/*
1130 * Visit the first child (need not be the first child as per the ordering 1148 * Visit the first child (need not be the first child as per the ordering
1131 * of the cgroup list, since we track last_scanned_child) of @mem and use 1149 * of the cgroup list, since we track last_scanned_child) of @mem and use
1132 * that to reclaim free pages from. 1150 * that to reclaim free pages from.