aboutsummaryrefslogtreecommitdiffstats
path: root/mm/ksm.c
diff options
context:
space:
mode:
authorIzik Eidus <ieidus@redhat.com>2009-09-21 20:02:03 -0400
committerLinus Torvalds <torvalds@linux-foundation.org>2009-09-22 10:17:31 -0400
commit31dbd01f314364b70c2e026a5793a29a4da8a9dc (patch)
tree1a2d47ae7b839129383dd4e10a9ed731f15a5bf9 /mm/ksm.c
parent9a840895147b12de5cdd633c600b38686840ee53 (diff)
ksm: Kernel SamePage Merging
Ksm is code that allows merging of identical pages between one or more applications, in a way invisible to the applications that use it. Pages that are merged are marked as read-only, then COWed when any application tries to change them. Whereas fork() allows sharing anonymous pages between parent and child, ksm can share anonymous pages between unrelated processes. Ksm works by walking over the memory pages of the applications it scans, in order to find identical pages. It uses two sorted data structures, called the stable and unstable trees, to locate identical pages in an effective way. When ksm finds two identical pages, it marks them as readonly and merges them into a single page. After the pages have been marked as readonly and merged into one, Linux treats them as normal copy-on-write pages, copying to a fresh anonymous page if write access is required later. Ksm scans and merges anonymous pages only in those memory areas that have been registered with it by madvise(addr, length, MADV_MERGEABLE). The ksm scanner is controlled by sysfs files in /sys/kernel/mm/ksm/: max_kernel_pages - the maximum number of unswappable kernel pages which may be allocated by ksm (0 for unlimited). kernel_pages_allocated - how many ksm pages are currently allocated, sharing identical content between different processes (pages unswappable in this release). pages_shared - how many pages have been saved by sharing with ksm pages (kernel_pages_allocated being excluded from this count). pages_to_scan - how many pages ksm should scan before sleeping. sleep_millisecs - how many milliseconds ksm should sleep between scans. run - write 0 to disable ksm, read 0 while ksm is disabled (default), write 1 to run ksm, read 1 while ksm is running, write 2 to disable ksm and unmerge all its pages. Includes contributions by Andrea Arcangeli Chris Wright and Hugh Dickins. [hugh.dickins@tiscali.co.uk: fix rare page leak] Signed-off-by: Izik Eidus <ieidus@redhat.com> Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk> Signed-off-by: Chris Wright <chrisw@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Cc: Avi Kivity <avi@redhat.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm/ksm.c')
-rw-r--r--mm/ksm.c1489
1 files changed, 1484 insertions, 5 deletions
diff --git a/mm/ksm.c b/mm/ksm.c
index 8b76008fcd32..2c02094807e0 100644
--- a/mm/ksm.c
+++ b/mm/ksm.c
@@ -1,11 +1,1285 @@
1/* 1/*
2 * Initial dummy version just to illustrate KSM's interface to other files. 2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
7 * Copyright (C) 2008 Red Hat, Inc.
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2.
3 */ 14 */
4 15
5#include <linux/errno.h> 16#include <linux/errno.h>
17#include <linux/mm.h>
18#include <linux/fs.h>
6#include <linux/mman.h> 19#include <linux/mman.h>
20#include <linux/sched.h>
21#include <linux/rwsem.h>
22#include <linux/pagemap.h>
23#include <linux/rmap.h>
24#include <linux/spinlock.h>
25#include <linux/jhash.h>
26#include <linux/delay.h>
27#include <linux/kthread.h>
28#include <linux/wait.h>
29#include <linux/slab.h>
30#include <linux/rbtree.h>
31#include <linux/mmu_notifier.h>
7#include <linux/ksm.h> 32#include <linux/ksm.h>
8 33
34#include <asm/tlbflush.h>
35
36/*
37 * A few notes about the KSM scanning process,
38 * to make it easier to understand the data structures below:
39 *
40 * In order to reduce excessive scanning, KSM sorts the memory pages by their
41 * contents into a data structure that holds pointers to the pages' locations.
42 *
43 * Since the contents of the pages may change at any moment, KSM cannot just
44 * insert the pages into a normal sorted tree and expect it to find anything.
45 * Therefore KSM uses two data structures - the stable and the unstable tree.
46 *
47 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
48 * by their contents. Because each such page is write-protected, searching on
49 * this tree is fully assured to be working (except when pages are unmapped),
50 * and therefore this tree is called the stable tree.
51 *
52 * In addition to the stable tree, KSM uses a second data structure called the
53 * unstable tree: this tree holds pointers to pages which have been found to
54 * be "unchanged for a period of time". The unstable tree sorts these pages
55 * by their contents, but since they are not write-protected, KSM cannot rely
56 * upon the unstable tree to work correctly - the unstable tree is liable to
57 * be corrupted as its contents are modified, and so it is called unstable.
58 *
59 * KSM solves this problem by several techniques:
60 *
61 * 1) The unstable tree is flushed every time KSM completes scanning all
62 * memory areas, and then the tree is rebuilt again from the beginning.
63 * 2) KSM will only insert into the unstable tree, pages whose hash value
64 * has not changed since the previous scan of all memory areas.
65 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
66 * colors of the nodes and not on their contents, assuring that even when
67 * the tree gets "corrupted" it won't get out of balance, so scanning time
68 * remains the same (also, searching and inserting nodes in an rbtree uses
69 * the same algorithm, so we have no overhead when we flush and rebuild).
70 * 4) KSM never flushes the stable tree, which means that even if it were to
71 * take 10 attempts to find a page in the unstable tree, once it is found,
72 * it is secured in the stable tree. (When we scan a new page, we first
73 * compare it against the stable tree, and then against the unstable tree.)
74 */
75
76/**
77 * struct mm_slot - ksm information per mm that is being scanned
78 * @link: link to the mm_slots hash list
79 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
80 * @rmap_list: head for this mm_slot's list of rmap_items
81 * @mm: the mm that this information is valid for
82 */
83struct mm_slot {
84 struct hlist_node link;
85 struct list_head mm_list;
86 struct list_head rmap_list;
87 struct mm_struct *mm;
88};
89
90/**
91 * struct ksm_scan - cursor for scanning
92 * @mm_slot: the current mm_slot we are scanning
93 * @address: the next address inside that to be scanned
94 * @rmap_item: the current rmap that we are scanning inside the rmap_list
95 * @seqnr: count of completed full scans (needed when removing unstable node)
96 *
97 * There is only the one ksm_scan instance of this cursor structure.
98 */
99struct ksm_scan {
100 struct mm_slot *mm_slot;
101 unsigned long address;
102 struct rmap_item *rmap_item;
103 unsigned long seqnr;
104};
105
106/**
107 * struct rmap_item - reverse mapping item for virtual addresses
108 * @link: link into mm_slot's rmap_list (rmap_list is per mm)
109 * @mm: the memory structure this rmap_item is pointing into
110 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
111 * @oldchecksum: previous checksum of the page at that virtual address
112 * @node: rb_node of this rmap_item in either unstable or stable tree
113 * @next: next rmap_item hanging off the same node of the stable tree
114 * @prev: previous rmap_item hanging off the same node of the stable tree
115 */
116struct rmap_item {
117 struct list_head link;
118 struct mm_struct *mm;
119 unsigned long address; /* + low bits used for flags below */
120 union {
121 unsigned int oldchecksum; /* when unstable */
122 struct rmap_item *next; /* when stable */
123 };
124 union {
125 struct rb_node node; /* when tree node */
126 struct rmap_item *prev; /* in stable list */
127 };
128};
129
130#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
131#define NODE_FLAG 0x100 /* is a node of unstable or stable tree */
132#define STABLE_FLAG 0x200 /* is a node or list item of stable tree */
133
134/* The stable and unstable tree heads */
135static struct rb_root root_stable_tree = RB_ROOT;
136static struct rb_root root_unstable_tree = RB_ROOT;
137
138#define MM_SLOTS_HASH_HEADS 1024
139static struct hlist_head *mm_slots_hash;
140
141static struct mm_slot ksm_mm_head = {
142 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
143};
144static struct ksm_scan ksm_scan = {
145 .mm_slot = &ksm_mm_head,
146};
147
148static struct kmem_cache *rmap_item_cache;
149static struct kmem_cache *mm_slot_cache;
150
151/* The number of nodes in the stable tree */
152static unsigned long ksm_kernel_pages_allocated;
153
154/* The number of page slots sharing those nodes */
155static unsigned long ksm_pages_shared;
156
157/* Limit on the number of unswappable pages used */
158static unsigned long ksm_max_kernel_pages;
159
160/* Number of pages ksmd should scan in one batch */
161static unsigned int ksm_thread_pages_to_scan;
162
163/* Milliseconds ksmd should sleep between batches */
164static unsigned int ksm_thread_sleep_millisecs;
165
166#define KSM_RUN_STOP 0
167#define KSM_RUN_MERGE 1
168#define KSM_RUN_UNMERGE 2
169static unsigned int ksm_run;
170
171static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
172static DEFINE_MUTEX(ksm_thread_mutex);
173static DEFINE_SPINLOCK(ksm_mmlist_lock);
174
175#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
176 sizeof(struct __struct), __alignof__(struct __struct),\
177 (__flags), NULL)
178
179static int __init ksm_slab_init(void)
180{
181 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
182 if (!rmap_item_cache)
183 goto out;
184
185 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
186 if (!mm_slot_cache)
187 goto out_free;
188
189 return 0;
190
191out_free:
192 kmem_cache_destroy(rmap_item_cache);
193out:
194 return -ENOMEM;
195}
196
197static void __init ksm_slab_free(void)
198{
199 kmem_cache_destroy(mm_slot_cache);
200 kmem_cache_destroy(rmap_item_cache);
201 mm_slot_cache = NULL;
202}
203
204static inline struct rmap_item *alloc_rmap_item(void)
205{
206 return kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
207}
208
209static inline void free_rmap_item(struct rmap_item *rmap_item)
210{
211 rmap_item->mm = NULL; /* debug safety */
212 kmem_cache_free(rmap_item_cache, rmap_item);
213}
214
215static inline struct mm_slot *alloc_mm_slot(void)
216{
217 if (!mm_slot_cache) /* initialization failed */
218 return NULL;
219 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
220}
221
222static inline void free_mm_slot(struct mm_slot *mm_slot)
223{
224 kmem_cache_free(mm_slot_cache, mm_slot);
225}
226
227static int __init mm_slots_hash_init(void)
228{
229 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
230 GFP_KERNEL);
231 if (!mm_slots_hash)
232 return -ENOMEM;
233 return 0;
234}
235
236static void __init mm_slots_hash_free(void)
237{
238 kfree(mm_slots_hash);
239}
240
241static struct mm_slot *get_mm_slot(struct mm_struct *mm)
242{
243 struct mm_slot *mm_slot;
244 struct hlist_head *bucket;
245 struct hlist_node *node;
246
247 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
248 % MM_SLOTS_HASH_HEADS];
249 hlist_for_each_entry(mm_slot, node, bucket, link) {
250 if (mm == mm_slot->mm)
251 return mm_slot;
252 }
253 return NULL;
254}
255
256static void insert_to_mm_slots_hash(struct mm_struct *mm,
257 struct mm_slot *mm_slot)
258{
259 struct hlist_head *bucket;
260
261 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
262 % MM_SLOTS_HASH_HEADS];
263 mm_slot->mm = mm;
264 INIT_LIST_HEAD(&mm_slot->rmap_list);
265 hlist_add_head(&mm_slot->link, bucket);
266}
267
268static inline int in_stable_tree(struct rmap_item *rmap_item)
269{
270 return rmap_item->address & STABLE_FLAG;
271}
272
273/*
274 * We use break_ksm to break COW on a ksm page: it's a stripped down
275 *
276 * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
277 * put_page(page);
278 *
279 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
280 * in case the application has unmapped and remapped mm,addr meanwhile.
281 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
282 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
283 */
284static void break_ksm(struct vm_area_struct *vma, unsigned long addr)
285{
286 struct page *page;
287 int ret;
288
289 do {
290 cond_resched();
291 page = follow_page(vma, addr, FOLL_GET);
292 if (!page)
293 break;
294 if (PageKsm(page))
295 ret = handle_mm_fault(vma->vm_mm, vma, addr,
296 FAULT_FLAG_WRITE);
297 else
298 ret = VM_FAULT_WRITE;
299 put_page(page);
300 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS)));
301
302 /* Which leaves us looping there if VM_FAULT_OOM: hmmm... */
303}
304
305static void __break_cow(struct mm_struct *mm, unsigned long addr)
306{
307 struct vm_area_struct *vma;
308
309 vma = find_vma(mm, addr);
310 if (!vma || vma->vm_start > addr)
311 return;
312 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
313 return;
314 break_ksm(vma, addr);
315}
316
317static void break_cow(struct mm_struct *mm, unsigned long addr)
318{
319 down_read(&mm->mmap_sem);
320 __break_cow(mm, addr);
321 up_read(&mm->mmap_sem);
322}
323
324static struct page *get_mergeable_page(struct rmap_item *rmap_item)
325{
326 struct mm_struct *mm = rmap_item->mm;
327 unsigned long addr = rmap_item->address;
328 struct vm_area_struct *vma;
329 struct page *page;
330
331 down_read(&mm->mmap_sem);
332 vma = find_vma(mm, addr);
333 if (!vma || vma->vm_start > addr)
334 goto out;
335 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
336 goto out;
337
338 page = follow_page(vma, addr, FOLL_GET);
339 if (!page)
340 goto out;
341 if (PageAnon(page)) {
342 flush_anon_page(vma, page, addr);
343 flush_dcache_page(page);
344 } else {
345 put_page(page);
346out: page = NULL;
347 }
348 up_read(&mm->mmap_sem);
349 return page;
350}
351
352/*
353 * get_ksm_page: checks if the page at the virtual address in rmap_item
354 * is still PageKsm, in which case we can trust the content of the page,
355 * and it returns the gotten page; but NULL if the page has been zapped.
356 */
357static struct page *get_ksm_page(struct rmap_item *rmap_item)
358{
359 struct page *page;
360
361 page = get_mergeable_page(rmap_item);
362 if (page && !PageKsm(page)) {
363 put_page(page);
364 page = NULL;
365 }
366 return page;
367}
368
369/*
370 * Removing rmap_item from stable or unstable tree.
371 * This function will clean the information from the stable/unstable tree.
372 */
373static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
374{
375 if (in_stable_tree(rmap_item)) {
376 struct rmap_item *next_item = rmap_item->next;
377
378 if (rmap_item->address & NODE_FLAG) {
379 if (next_item) {
380 rb_replace_node(&rmap_item->node,
381 &next_item->node,
382 &root_stable_tree);
383 next_item->address |= NODE_FLAG;
384 } else {
385 rb_erase(&rmap_item->node, &root_stable_tree);
386 ksm_kernel_pages_allocated--;
387 }
388 } else {
389 struct rmap_item *prev_item = rmap_item->prev;
390
391 BUG_ON(prev_item->next != rmap_item);
392 prev_item->next = next_item;
393 if (next_item) {
394 BUG_ON(next_item->prev != rmap_item);
395 next_item->prev = rmap_item->prev;
396 }
397 }
398
399 rmap_item->next = NULL;
400 ksm_pages_shared--;
401
402 } else if (rmap_item->address & NODE_FLAG) {
403 unsigned char age;
404 /*
405 * ksm_thread can and must skip the rb_erase, because
406 * root_unstable_tree was already reset to RB_ROOT.
407 * But __ksm_exit has to be careful: do the rb_erase
408 * if it's interrupting a scan, and this rmap_item was
409 * inserted by this scan rather than left from before.
410 *
411 * Because of the case in which remove_mm_from_lists
412 * increments seqnr before removing rmaps, unstable_nr
413 * may even be 2 behind seqnr, but should never be
414 * further behind. Yes, I did have trouble with this!
415 */
416 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
417 BUG_ON(age > 2);
418 if (!age)
419 rb_erase(&rmap_item->node, &root_unstable_tree);
420 }
421
422 rmap_item->address &= PAGE_MASK;
423
424 cond_resched(); /* we're called from many long loops */
425}
426
427static void remove_all_slot_rmap_items(struct mm_slot *mm_slot)
428{
429 struct rmap_item *rmap_item, *node;
430
431 list_for_each_entry_safe(rmap_item, node, &mm_slot->rmap_list, link) {
432 remove_rmap_item_from_tree(rmap_item);
433 list_del(&rmap_item->link);
434 free_rmap_item(rmap_item);
435 }
436}
437
438static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
439 struct list_head *cur)
440{
441 struct rmap_item *rmap_item;
442
443 while (cur != &mm_slot->rmap_list) {
444 rmap_item = list_entry(cur, struct rmap_item, link);
445 cur = cur->next;
446 remove_rmap_item_from_tree(rmap_item);
447 list_del(&rmap_item->link);
448 free_rmap_item(rmap_item);
449 }
450}
451
452/*
453 * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
454 * than check every pte of a given vma, the locking doesn't quite work for
455 * that - an rmap_item is assigned to the stable tree after inserting ksm
456 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
457 * rmap_items from parent to child at fork time (so as not to waste time
458 * if exit comes before the next scan reaches it).
459 */
460static void unmerge_ksm_pages(struct vm_area_struct *vma,
461 unsigned long start, unsigned long end)
462{
463 unsigned long addr;
464
465 for (addr = start; addr < end; addr += PAGE_SIZE)
466 break_ksm(vma, addr);
467}
468
469static void unmerge_and_remove_all_rmap_items(void)
470{
471 struct mm_slot *mm_slot;
472 struct mm_struct *mm;
473 struct vm_area_struct *vma;
474
475 list_for_each_entry(mm_slot, &ksm_mm_head.mm_list, mm_list) {
476 mm = mm_slot->mm;
477 down_read(&mm->mmap_sem);
478 for (vma = mm->mmap; vma; vma = vma->vm_next) {
479 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
480 continue;
481 unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end);
482 }
483 remove_all_slot_rmap_items(mm_slot);
484 up_read(&mm->mmap_sem);
485 }
486
487 spin_lock(&ksm_mmlist_lock);
488 if (ksm_scan.mm_slot != &ksm_mm_head) {
489 ksm_scan.mm_slot = &ksm_mm_head;
490 ksm_scan.seqnr++;
491 }
492 spin_unlock(&ksm_mmlist_lock);
493}
494
495static void remove_mm_from_lists(struct mm_struct *mm)
496{
497 struct mm_slot *mm_slot;
498
499 spin_lock(&ksm_mmlist_lock);
500 mm_slot = get_mm_slot(mm);
501
502 /*
503 * This mm_slot is always at the scanning cursor when we're
504 * called from scan_get_next_rmap_item; but it's a special
505 * case when we're called from __ksm_exit.
506 */
507 if (ksm_scan.mm_slot == mm_slot) {
508 ksm_scan.mm_slot = list_entry(
509 mm_slot->mm_list.next, struct mm_slot, mm_list);
510 ksm_scan.address = 0;
511 ksm_scan.rmap_item = list_entry(
512 &ksm_scan.mm_slot->rmap_list, struct rmap_item, link);
513 if (ksm_scan.mm_slot == &ksm_mm_head)
514 ksm_scan.seqnr++;
515 }
516
517 hlist_del(&mm_slot->link);
518 list_del(&mm_slot->mm_list);
519 spin_unlock(&ksm_mmlist_lock);
520
521 remove_all_slot_rmap_items(mm_slot);
522 free_mm_slot(mm_slot);
523 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
524}
525
526static u32 calc_checksum(struct page *page)
527{
528 u32 checksum;
529 void *addr = kmap_atomic(page, KM_USER0);
530 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
531 kunmap_atomic(addr, KM_USER0);
532 return checksum;
533}
534
535static int memcmp_pages(struct page *page1, struct page *page2)
536{
537 char *addr1, *addr2;
538 int ret;
539
540 addr1 = kmap_atomic(page1, KM_USER0);
541 addr2 = kmap_atomic(page2, KM_USER1);
542 ret = memcmp(addr1, addr2, PAGE_SIZE);
543 kunmap_atomic(addr2, KM_USER1);
544 kunmap_atomic(addr1, KM_USER0);
545 return ret;
546}
547
548static inline int pages_identical(struct page *page1, struct page *page2)
549{
550 return !memcmp_pages(page1, page2);
551}
552
553static int write_protect_page(struct vm_area_struct *vma, struct page *page,
554 pte_t *orig_pte)
555{
556 struct mm_struct *mm = vma->vm_mm;
557 unsigned long addr;
558 pte_t *ptep;
559 spinlock_t *ptl;
560 int swapped;
561 int err = -EFAULT;
562
563 addr = page_address_in_vma(page, vma);
564 if (addr == -EFAULT)
565 goto out;
566
567 ptep = page_check_address(page, mm, addr, &ptl, 0);
568 if (!ptep)
569 goto out;
570
571 if (pte_write(*ptep)) {
572 pte_t entry;
573
574 swapped = PageSwapCache(page);
575 flush_cache_page(vma, addr, page_to_pfn(page));
576 /*
577 * Ok this is tricky, when get_user_pages_fast() run it doesnt
578 * take any lock, therefore the check that we are going to make
579 * with the pagecount against the mapcount is racey and
580 * O_DIRECT can happen right after the check.
581 * So we clear the pte and flush the tlb before the check
582 * this assure us that no O_DIRECT can happen after the check
583 * or in the middle of the check.
584 */
585 entry = ptep_clear_flush(vma, addr, ptep);
586 /*
587 * Check that no O_DIRECT or similar I/O is in progress on the
588 * page
589 */
590 if ((page_mapcount(page) + 2 + swapped) != page_count(page)) {
591 set_pte_at_notify(mm, addr, ptep, entry);
592 goto out_unlock;
593 }
594 entry = pte_wrprotect(entry);
595 set_pte_at_notify(mm, addr, ptep, entry);
596 }
597 *orig_pte = *ptep;
598 err = 0;
599
600out_unlock:
601 pte_unmap_unlock(ptep, ptl);
602out:
603 return err;
604}
605
606/**
607 * replace_page - replace page in vma by new ksm page
608 * @vma: vma that holds the pte pointing to oldpage
609 * @oldpage: the page we are replacing by newpage
610 * @newpage: the ksm page we replace oldpage by
611 * @orig_pte: the original value of the pte
612 *
613 * Returns 0 on success, -EFAULT on failure.
614 */
615static int replace_page(struct vm_area_struct *vma, struct page *oldpage,
616 struct page *newpage, pte_t orig_pte)
617{
618 struct mm_struct *mm = vma->vm_mm;
619 pgd_t *pgd;
620 pud_t *pud;
621 pmd_t *pmd;
622 pte_t *ptep;
623 spinlock_t *ptl;
624 unsigned long addr;
625 pgprot_t prot;
626 int err = -EFAULT;
627
628 prot = vm_get_page_prot(vma->vm_flags & ~VM_WRITE);
629
630 addr = page_address_in_vma(oldpage, vma);
631 if (addr == -EFAULT)
632 goto out;
633
634 pgd = pgd_offset(mm, addr);
635 if (!pgd_present(*pgd))
636 goto out;
637
638 pud = pud_offset(pgd, addr);
639 if (!pud_present(*pud))
640 goto out;
641
642 pmd = pmd_offset(pud, addr);
643 if (!pmd_present(*pmd))
644 goto out;
645
646 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
647 if (!pte_same(*ptep, orig_pte)) {
648 pte_unmap_unlock(ptep, ptl);
649 goto out;
650 }
651
652 get_page(newpage);
653 page_add_ksm_rmap(newpage);
654
655 flush_cache_page(vma, addr, pte_pfn(*ptep));
656 ptep_clear_flush(vma, addr, ptep);
657 set_pte_at_notify(mm, addr, ptep, mk_pte(newpage, prot));
658
659 page_remove_rmap(oldpage);
660 put_page(oldpage);
661
662 pte_unmap_unlock(ptep, ptl);
663 err = 0;
664out:
665 return err;
666}
667
668/*
669 * try_to_merge_one_page - take two pages and merge them into one
670 * @vma: the vma that hold the pte pointing into oldpage
671 * @oldpage: the page that we want to replace with newpage
672 * @newpage: the page that we want to map instead of oldpage
673 *
674 * Note:
675 * oldpage should be a PageAnon page, while newpage should be a PageKsm page,
676 * or a newly allocated kernel page which page_add_ksm_rmap will make PageKsm.
677 *
678 * This function returns 0 if the pages were merged, -EFAULT otherwise.
679 */
680static int try_to_merge_one_page(struct vm_area_struct *vma,
681 struct page *oldpage,
682 struct page *newpage)
683{
684 pte_t orig_pte = __pte(0);
685 int err = -EFAULT;
686
687 if (!(vma->vm_flags & VM_MERGEABLE))
688 goto out;
689
690 if (!PageAnon(oldpage))
691 goto out;
692
693 get_page(newpage);
694 get_page(oldpage);
695
696 /*
697 * We need the page lock to read a stable PageSwapCache in
698 * write_protect_page(). We use trylock_page() instead of
699 * lock_page() because we don't want to wait here - we
700 * prefer to continue scanning and merging different pages,
701 * then come back to this page when it is unlocked.
702 */
703 if (!trylock_page(oldpage))
704 goto out_putpage;
705 /*
706 * If this anonymous page is mapped only here, its pte may need
707 * to be write-protected. If it's mapped elsewhere, all of its
708 * ptes are necessarily already write-protected. But in either
709 * case, we need to lock and check page_count is not raised.
710 */
711 if (write_protect_page(vma, oldpage, &orig_pte)) {
712 unlock_page(oldpage);
713 goto out_putpage;
714 }
715 unlock_page(oldpage);
716
717 if (pages_identical(oldpage, newpage))
718 err = replace_page(vma, oldpage, newpage, orig_pte);
719
720out_putpage:
721 put_page(oldpage);
722 put_page(newpage);
723out:
724 return err;
725}
726
727/*
728 * try_to_merge_two_pages - take two identical pages and prepare them
729 * to be merged into one page.
730 *
731 * This function returns 0 if we successfully mapped two identical pages
732 * into one page, -EFAULT otherwise.
733 *
734 * Note that this function allocates a new kernel page: if one of the pages
735 * is already a ksm page, try_to_merge_with_ksm_page should be used.
736 */
737static int try_to_merge_two_pages(struct mm_struct *mm1, unsigned long addr1,
738 struct page *page1, struct mm_struct *mm2,
739 unsigned long addr2, struct page *page2)
740{
741 struct vm_area_struct *vma;
742 struct page *kpage;
743 int err = -EFAULT;
744
745 /*
746 * The number of nodes in the stable tree
747 * is the number of kernel pages that we hold.
748 */
749 if (ksm_max_kernel_pages &&
750 ksm_max_kernel_pages <= ksm_kernel_pages_allocated)
751 return err;
752
753 kpage = alloc_page(GFP_HIGHUSER);
754 if (!kpage)
755 return err;
756
757 down_read(&mm1->mmap_sem);
758 vma = find_vma(mm1, addr1);
759 if (!vma || vma->vm_start > addr1) {
760 put_page(kpage);
761 up_read(&mm1->mmap_sem);
762 return err;
763 }
764
765 copy_user_highpage(kpage, page1, addr1, vma);
766 err = try_to_merge_one_page(vma, page1, kpage);
767 up_read(&mm1->mmap_sem);
768
769 if (!err) {
770 down_read(&mm2->mmap_sem);
771 vma = find_vma(mm2, addr2);
772 if (!vma || vma->vm_start > addr2) {
773 put_page(kpage);
774 up_read(&mm2->mmap_sem);
775 break_cow(mm1, addr1);
776 return -EFAULT;
777 }
778
779 err = try_to_merge_one_page(vma, page2, kpage);
780 up_read(&mm2->mmap_sem);
781
782 /*
783 * If the second try_to_merge_one_page failed, we have a
784 * ksm page with just one pte pointing to it, so break it.
785 */
786 if (err)
787 break_cow(mm1, addr1);
788 else
789 ksm_pages_shared += 2;
790 }
791
792 put_page(kpage);
793 return err;
794}
795
796/*
797 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
798 * but no new kernel page is allocated: kpage must already be a ksm page.
799 */
800static int try_to_merge_with_ksm_page(struct mm_struct *mm1,
801 unsigned long addr1,
802 struct page *page1,
803 struct page *kpage)
804{
805 struct vm_area_struct *vma;
806 int err = -EFAULT;
807
808 down_read(&mm1->mmap_sem);
809 vma = find_vma(mm1, addr1);
810 if (!vma || vma->vm_start > addr1) {
811 up_read(&mm1->mmap_sem);
812 return err;
813 }
814
815 err = try_to_merge_one_page(vma, page1, kpage);
816 up_read(&mm1->mmap_sem);
817
818 if (!err)
819 ksm_pages_shared++;
820
821 return err;
822}
823
824/*
825 * stable_tree_search - search page inside the stable tree
826 * @page: the page that we are searching identical pages to.
827 * @page2: pointer into identical page that we are holding inside the stable
828 * tree that we have found.
829 * @rmap_item: the reverse mapping item
830 *
831 * This function checks if there is a page inside the stable tree
832 * with identical content to the page that we are scanning right now.
833 *
834 * This function return rmap_item pointer to the identical item if found,
835 * NULL otherwise.
836 */
837static struct rmap_item *stable_tree_search(struct page *page,
838 struct page **page2,
839 struct rmap_item *rmap_item)
840{
841 struct rb_node *node = root_stable_tree.rb_node;
842
843 while (node) {
844 struct rmap_item *tree_rmap_item, *next_rmap_item;
845 int ret;
846
847 tree_rmap_item = rb_entry(node, struct rmap_item, node);
848 while (tree_rmap_item) {
849 BUG_ON(!in_stable_tree(tree_rmap_item));
850 cond_resched();
851 page2[0] = get_ksm_page(tree_rmap_item);
852 if (page2[0])
853 break;
854 next_rmap_item = tree_rmap_item->next;
855 remove_rmap_item_from_tree(tree_rmap_item);
856 tree_rmap_item = next_rmap_item;
857 }
858 if (!tree_rmap_item)
859 return NULL;
860
861 ret = memcmp_pages(page, page2[0]);
862
863 if (ret < 0) {
864 put_page(page2[0]);
865 node = node->rb_left;
866 } else if (ret > 0) {
867 put_page(page2[0]);
868 node = node->rb_right;
869 } else {
870 return tree_rmap_item;
871 }
872 }
873
874 return NULL;
875}
876
877/*
878 * stable_tree_insert - insert rmap_item pointing to new ksm page
879 * into the stable tree.
880 *
881 * @page: the page that we are searching identical page to inside the stable
882 * tree.
883 * @rmap_item: pointer to the reverse mapping item.
884 *
885 * This function returns rmap_item if success, NULL otherwise.
886 */
887static struct rmap_item *stable_tree_insert(struct page *page,
888 struct rmap_item *rmap_item)
889{
890 struct rb_node **new = &root_stable_tree.rb_node;
891 struct rb_node *parent = NULL;
892
893 while (*new) {
894 struct rmap_item *tree_rmap_item, *next_rmap_item;
895 struct page *tree_page;
896 int ret;
897
898 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
899 while (tree_rmap_item) {
900 BUG_ON(!in_stable_tree(tree_rmap_item));
901 cond_resched();
902 tree_page = get_ksm_page(tree_rmap_item);
903 if (tree_page)
904 break;
905 next_rmap_item = tree_rmap_item->next;
906 remove_rmap_item_from_tree(tree_rmap_item);
907 tree_rmap_item = next_rmap_item;
908 }
909 if (!tree_rmap_item)
910 return NULL;
911
912 ret = memcmp_pages(page, tree_page);
913 put_page(tree_page);
914
915 parent = *new;
916 if (ret < 0)
917 new = &parent->rb_left;
918 else if (ret > 0)
919 new = &parent->rb_right;
920 else {
921 /*
922 * It is not a bug that stable_tree_search() didn't
923 * find this node: because at that time our page was
924 * not yet write-protected, so may have changed since.
925 */
926 return NULL;
927 }
928 }
929
930 ksm_kernel_pages_allocated++;
931
932 rmap_item->address |= NODE_FLAG | STABLE_FLAG;
933 rmap_item->next = NULL;
934 rb_link_node(&rmap_item->node, parent, new);
935 rb_insert_color(&rmap_item->node, &root_stable_tree);
936
937 return rmap_item;
938}
939
940/*
941 * unstable_tree_search_insert - search and insert items into the unstable tree.
942 *
943 * @page: the page that we are going to search for identical page or to insert
944 * into the unstable tree
945 * @page2: pointer into identical page that was found inside the unstable tree
946 * @rmap_item: the reverse mapping item of page
947 *
948 * This function searches for a page in the unstable tree identical to the
949 * page currently being scanned; and if no identical page is found in the
950 * tree, we insert rmap_item as a new object into the unstable tree.
951 *
952 * This function returns pointer to rmap_item found to be identical
953 * to the currently scanned page, NULL otherwise.
954 *
955 * This function does both searching and inserting, because they share
956 * the same walking algorithm in an rbtree.
957 */
958static struct rmap_item *unstable_tree_search_insert(struct page *page,
959 struct page **page2,
960 struct rmap_item *rmap_item)
961{
962 struct rb_node **new = &root_unstable_tree.rb_node;
963 struct rb_node *parent = NULL;
964
965 while (*new) {
966 struct rmap_item *tree_rmap_item;
967 int ret;
968
969 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
970 page2[0] = get_mergeable_page(tree_rmap_item);
971 if (!page2[0])
972 return NULL;
973
974 /*
975 * Don't substitute an unswappable ksm page
976 * just for one good swappable forked page.
977 */
978 if (page == page2[0]) {
979 put_page(page2[0]);
980 return NULL;
981 }
982
983 ret = memcmp_pages(page, page2[0]);
984
985 parent = *new;
986 if (ret < 0) {
987 put_page(page2[0]);
988 new = &parent->rb_left;
989 } else if (ret > 0) {
990 put_page(page2[0]);
991 new = &parent->rb_right;
992 } else {
993 return tree_rmap_item;
994 }
995 }
996
997 rmap_item->address |= NODE_FLAG;
998 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
999 rb_link_node(&rmap_item->node, parent, new);
1000 rb_insert_color(&rmap_item->node, &root_unstable_tree);
1001
1002 return NULL;
1003}
1004
1005/*
1006 * stable_tree_append - add another rmap_item to the linked list of
1007 * rmap_items hanging off a given node of the stable tree, all sharing
1008 * the same ksm page.
1009 */
1010static void stable_tree_append(struct rmap_item *rmap_item,
1011 struct rmap_item *tree_rmap_item)
1012{
1013 rmap_item->next = tree_rmap_item->next;
1014 rmap_item->prev = tree_rmap_item;
1015
1016 if (tree_rmap_item->next)
1017 tree_rmap_item->next->prev = rmap_item;
1018
1019 tree_rmap_item->next = rmap_item;
1020 rmap_item->address |= STABLE_FLAG;
1021}
1022
1023/*
1024 * cmp_and_merge_page - take a page computes its hash value and check if there
1025 * is similar hash value to different page,
1026 * in case we find that there is similar hash to different page we call to
1027 * try_to_merge_two_pages().
1028 *
1029 * @page: the page that we are searching identical page to.
1030 * @rmap_item: the reverse mapping into the virtual address of this page
1031 */
1032static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1033{
1034 struct page *page2[1];
1035 struct rmap_item *tree_rmap_item;
1036 unsigned int checksum;
1037 int err;
1038
1039 if (in_stable_tree(rmap_item))
1040 remove_rmap_item_from_tree(rmap_item);
1041
1042 /* We first start with searching the page inside the stable tree */
1043 tree_rmap_item = stable_tree_search(page, page2, rmap_item);
1044 if (tree_rmap_item) {
1045 if (page == page2[0]) { /* forked */
1046 ksm_pages_shared++;
1047 err = 0;
1048 } else
1049 err = try_to_merge_with_ksm_page(rmap_item->mm,
1050 rmap_item->address,
1051 page, page2[0]);
1052 put_page(page2[0]);
1053
1054 if (!err) {
1055 /*
1056 * The page was successfully merged:
1057 * add its rmap_item to the stable tree.
1058 */
1059 stable_tree_append(rmap_item, tree_rmap_item);
1060 }
1061 return;
1062 }
1063
1064 /*
1065 * A ksm page might have got here by fork, but its other
1066 * references have already been removed from the stable tree.
1067 */
1068 if (PageKsm(page))
1069 break_cow(rmap_item->mm, rmap_item->address);
1070
1071 /*
1072 * In case the hash value of the page was changed from the last time we
1073 * have calculated it, this page to be changed frequely, therefore we
1074 * don't want to insert it to the unstable tree, and we don't want to
1075 * waste our time to search if there is something identical to it there.
1076 */
1077 checksum = calc_checksum(page);
1078 if (rmap_item->oldchecksum != checksum) {
1079 rmap_item->oldchecksum = checksum;
1080 return;
1081 }
1082
1083 tree_rmap_item = unstable_tree_search_insert(page, page2, rmap_item);
1084 if (tree_rmap_item) {
1085 err = try_to_merge_two_pages(rmap_item->mm,
1086 rmap_item->address, page,
1087 tree_rmap_item->mm,
1088 tree_rmap_item->address, page2[0]);
1089 /*
1090 * As soon as we merge this page, we want to remove the
1091 * rmap_item of the page we have merged with from the unstable
1092 * tree, and insert it instead as new node in the stable tree.
1093 */
1094 if (!err) {
1095 rb_erase(&tree_rmap_item->node, &root_unstable_tree);
1096 tree_rmap_item->address &= ~NODE_FLAG;
1097 /*
1098 * If we fail to insert the page into the stable tree,
1099 * we will have 2 virtual addresses that are pointing
1100 * to a ksm page left outside the stable tree,
1101 * in which case we need to break_cow on both.
1102 */
1103 if (stable_tree_insert(page2[0], tree_rmap_item))
1104 stable_tree_append(rmap_item, tree_rmap_item);
1105 else {
1106 break_cow(tree_rmap_item->mm,
1107 tree_rmap_item->address);
1108 break_cow(rmap_item->mm, rmap_item->address);
1109 ksm_pages_shared -= 2;
1110 }
1111 }
1112
1113 put_page(page2[0]);
1114 }
1115}
1116
1117static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1118 struct list_head *cur,
1119 unsigned long addr)
1120{
1121 struct rmap_item *rmap_item;
1122
1123 while (cur != &mm_slot->rmap_list) {
1124 rmap_item = list_entry(cur, struct rmap_item, link);
1125 if ((rmap_item->address & PAGE_MASK) == addr) {
1126 if (!in_stable_tree(rmap_item))
1127 remove_rmap_item_from_tree(rmap_item);
1128 return rmap_item;
1129 }
1130 if (rmap_item->address > addr)
1131 break;
1132 cur = cur->next;
1133 remove_rmap_item_from_tree(rmap_item);
1134 list_del(&rmap_item->link);
1135 free_rmap_item(rmap_item);
1136 }
1137
1138 rmap_item = alloc_rmap_item();
1139 if (rmap_item) {
1140 /* It has already been zeroed */
1141 rmap_item->mm = mm_slot->mm;
1142 rmap_item->address = addr;
1143 list_add_tail(&rmap_item->link, cur);
1144 }
1145 return rmap_item;
1146}
1147
1148static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1149{
1150 struct mm_struct *mm;
1151 struct mm_slot *slot;
1152 struct vm_area_struct *vma;
1153 struct rmap_item *rmap_item;
1154
1155 if (list_empty(&ksm_mm_head.mm_list))
1156 return NULL;
1157
1158 slot = ksm_scan.mm_slot;
1159 if (slot == &ksm_mm_head) {
1160 root_unstable_tree = RB_ROOT;
1161
1162 spin_lock(&ksm_mmlist_lock);
1163 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1164 ksm_scan.mm_slot = slot;
1165 spin_unlock(&ksm_mmlist_lock);
1166next_mm:
1167 ksm_scan.address = 0;
1168 ksm_scan.rmap_item = list_entry(&slot->rmap_list,
1169 struct rmap_item, link);
1170 }
1171
1172 mm = slot->mm;
1173 down_read(&mm->mmap_sem);
1174 for (vma = find_vma(mm, ksm_scan.address); vma; vma = vma->vm_next) {
1175 if (!(vma->vm_flags & VM_MERGEABLE))
1176 continue;
1177 if (ksm_scan.address < vma->vm_start)
1178 ksm_scan.address = vma->vm_start;
1179 if (!vma->anon_vma)
1180 ksm_scan.address = vma->vm_end;
1181
1182 while (ksm_scan.address < vma->vm_end) {
1183 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1184 if (*page && PageAnon(*page)) {
1185 flush_anon_page(vma, *page, ksm_scan.address);
1186 flush_dcache_page(*page);
1187 rmap_item = get_next_rmap_item(slot,
1188 ksm_scan.rmap_item->link.next,
1189 ksm_scan.address);
1190 if (rmap_item) {
1191 ksm_scan.rmap_item = rmap_item;
1192 ksm_scan.address += PAGE_SIZE;
1193 } else
1194 put_page(*page);
1195 up_read(&mm->mmap_sem);
1196 return rmap_item;
1197 }
1198 if (*page)
1199 put_page(*page);
1200 ksm_scan.address += PAGE_SIZE;
1201 cond_resched();
1202 }
1203 }
1204
1205 if (!ksm_scan.address) {
1206 /*
1207 * We've completed a full scan of all vmas, holding mmap_sem
1208 * throughout, and found no VM_MERGEABLE: so do the same as
1209 * __ksm_exit does to remove this mm from all our lists now.
1210 */
1211 remove_mm_from_lists(mm);
1212 up_read(&mm->mmap_sem);
1213 slot = ksm_scan.mm_slot;
1214 if (slot != &ksm_mm_head)
1215 goto next_mm;
1216 return NULL;
1217 }
1218
1219 /*
1220 * Nuke all the rmap_items that are above this current rmap:
1221 * because there were no VM_MERGEABLE vmas with such addresses.
1222 */
1223 remove_trailing_rmap_items(slot, ksm_scan.rmap_item->link.next);
1224 up_read(&mm->mmap_sem);
1225
1226 spin_lock(&ksm_mmlist_lock);
1227 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1228 ksm_scan.mm_slot = slot;
1229 spin_unlock(&ksm_mmlist_lock);
1230
1231 /* Repeat until we've completed scanning the whole list */
1232 if (slot != &ksm_mm_head)
1233 goto next_mm;
1234
1235 /*
1236 * Bump seqnr here rather than at top, so that __ksm_exit
1237 * can skip rb_erase on unstable tree until we run again.
1238 */
1239 ksm_scan.seqnr++;
1240 return NULL;
1241}
1242
1243/**
1244 * ksm_do_scan - the ksm scanner main worker function.
1245 * @scan_npages - number of pages we want to scan before we return.
1246 */
1247static void ksm_do_scan(unsigned int scan_npages)
1248{
1249 struct rmap_item *rmap_item;
1250 struct page *page;
1251
1252 while (scan_npages--) {
1253 cond_resched();
1254 rmap_item = scan_get_next_rmap_item(&page);
1255 if (!rmap_item)
1256 return;
1257 if (!PageKsm(page) || !in_stable_tree(rmap_item))
1258 cmp_and_merge_page(page, rmap_item);
1259 put_page(page);
1260 }
1261}
1262
1263static int ksm_scan_thread(void *nothing)
1264{
1265 set_user_nice(current, 0);
1266
1267 while (!kthread_should_stop()) {
1268 if (ksm_run & KSM_RUN_MERGE) {
1269 mutex_lock(&ksm_thread_mutex);
1270 ksm_do_scan(ksm_thread_pages_to_scan);
1271 mutex_unlock(&ksm_thread_mutex);
1272 schedule_timeout_interruptible(
1273 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1274 } else {
1275 wait_event_interruptible(ksm_thread_wait,
1276 (ksm_run & KSM_RUN_MERGE) ||
1277 kthread_should_stop());
1278 }
1279 }
1280 return 0;
1281}
1282
9int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 1283int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
10 unsigned long end, int advice, unsigned long *vm_flags) 1284 unsigned long end, int advice, unsigned long *vm_flags)
11{ 1285{
@@ -33,7 +1307,8 @@ int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
33 if (!(*vm_flags & VM_MERGEABLE)) 1307 if (!(*vm_flags & VM_MERGEABLE))
34 return 0; /* just ignore the advice */ 1308 return 0; /* just ignore the advice */
35 1309
36 /* Unmerge any merged pages here */ 1310 if (vma->anon_vma)
1311 unmerge_ksm_pages(vma, start, end);
37 1312
38 *vm_flags &= ~VM_MERGEABLE; 1313 *vm_flags &= ~VM_MERGEABLE;
39 break; 1314 break;
@@ -44,13 +1319,217 @@ int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
44 1319
45int __ksm_enter(struct mm_struct *mm) 1320int __ksm_enter(struct mm_struct *mm)
46{ 1321{
47 /* Allocate a structure to track mm and link it into KSM's list */ 1322 struct mm_slot *mm_slot = alloc_mm_slot();
1323 if (!mm_slot)
1324 return -ENOMEM;
1325
1326 spin_lock(&ksm_mmlist_lock);
1327 insert_to_mm_slots_hash(mm, mm_slot);
1328 /*
1329 * Insert just behind the scanning cursor, to let the area settle
1330 * down a little; when fork is followed by immediate exec, we don't
1331 * want ksmd to waste time setting up and tearing down an rmap_list.
1332 */
1333 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1334 spin_unlock(&ksm_mmlist_lock);
1335
48 set_bit(MMF_VM_MERGEABLE, &mm->flags); 1336 set_bit(MMF_VM_MERGEABLE, &mm->flags);
49 return 0; 1337 return 0;
50} 1338}
51 1339
52void __ksm_exit(struct mm_struct *mm) 1340void __ksm_exit(struct mm_struct *mm)
53{ 1341{
54 /* Unlink and free all KSM's structures which track this mm */ 1342 /*
55 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1343 * This process is exiting: doesn't hold and doesn't need mmap_sem;
1344 * but we do need to exclude ksmd and other exiters while we modify
1345 * the various lists and trees.
1346 */
1347 mutex_lock(&ksm_thread_mutex);
1348 remove_mm_from_lists(mm);
1349 mutex_unlock(&ksm_thread_mutex);
1350}
1351
1352#define KSM_ATTR_RO(_name) \
1353 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1354#define KSM_ATTR(_name) \
1355 static struct kobj_attribute _name##_attr = \
1356 __ATTR(_name, 0644, _name##_show, _name##_store)
1357
1358static ssize_t sleep_millisecs_show(struct kobject *kobj,
1359 struct kobj_attribute *attr, char *buf)
1360{
1361 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1362}
1363
1364static ssize_t sleep_millisecs_store(struct kobject *kobj,
1365 struct kobj_attribute *attr,
1366 const char *buf, size_t count)
1367{
1368 unsigned long msecs;
1369 int err;
1370
1371 err = strict_strtoul(buf, 10, &msecs);
1372 if (err || msecs > UINT_MAX)
1373 return -EINVAL;
1374
1375 ksm_thread_sleep_millisecs = msecs;
1376
1377 return count;
1378}
1379KSM_ATTR(sleep_millisecs);
1380
1381static ssize_t pages_to_scan_show(struct kobject *kobj,
1382 struct kobj_attribute *attr, char *buf)
1383{
1384 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1385}
1386
1387static ssize_t pages_to_scan_store(struct kobject *kobj,
1388 struct kobj_attribute *attr,
1389 const char *buf, size_t count)
1390{
1391 int err;
1392 unsigned long nr_pages;
1393
1394 err = strict_strtoul(buf, 10, &nr_pages);
1395 if (err || nr_pages > UINT_MAX)
1396 return -EINVAL;
1397
1398 ksm_thread_pages_to_scan = nr_pages;
1399
1400 return count;
1401}
1402KSM_ATTR(pages_to_scan);
1403
1404static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1405 char *buf)
1406{
1407 return sprintf(buf, "%u\n", ksm_run);
1408}
1409
1410static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1411 const char *buf, size_t count)
1412{
1413 int err;
1414 unsigned long flags;
1415
1416 err = strict_strtoul(buf, 10, &flags);
1417 if (err || flags > UINT_MAX)
1418 return -EINVAL;
1419 if (flags > KSM_RUN_UNMERGE)
1420 return -EINVAL;
1421
1422 /*
1423 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1424 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
1425 * breaking COW to free the kernel_pages_allocated (but leaves
1426 * mm_slots on the list for when ksmd may be set running again).
1427 */
1428
1429 mutex_lock(&ksm_thread_mutex);
1430 if (ksm_run != flags) {
1431 ksm_run = flags;
1432 if (flags & KSM_RUN_UNMERGE)
1433 unmerge_and_remove_all_rmap_items();
1434 }
1435 mutex_unlock(&ksm_thread_mutex);
1436
1437 if (flags & KSM_RUN_MERGE)
1438 wake_up_interruptible(&ksm_thread_wait);
1439
1440 return count;
1441}
1442KSM_ATTR(run);
1443
1444static ssize_t pages_shared_show(struct kobject *kobj,
1445 struct kobj_attribute *attr, char *buf)
1446{
1447 return sprintf(buf, "%lu\n",
1448 ksm_pages_shared - ksm_kernel_pages_allocated);
1449}
1450KSM_ATTR_RO(pages_shared);
1451
1452static ssize_t kernel_pages_allocated_show(struct kobject *kobj,
1453 struct kobj_attribute *attr,
1454 char *buf)
1455{
1456 return sprintf(buf, "%lu\n", ksm_kernel_pages_allocated);
1457}
1458KSM_ATTR_RO(kernel_pages_allocated);
1459
1460static ssize_t max_kernel_pages_store(struct kobject *kobj,
1461 struct kobj_attribute *attr,
1462 const char *buf, size_t count)
1463{
1464 int err;
1465 unsigned long nr_pages;
1466
1467 err = strict_strtoul(buf, 10, &nr_pages);
1468 if (err)
1469 return -EINVAL;
1470
1471 ksm_max_kernel_pages = nr_pages;
1472
1473 return count;
1474}
1475
1476static ssize_t max_kernel_pages_show(struct kobject *kobj,
1477 struct kobj_attribute *attr, char *buf)
1478{
1479 return sprintf(buf, "%lu\n", ksm_max_kernel_pages);
1480}
1481KSM_ATTR(max_kernel_pages);
1482
1483static struct attribute *ksm_attrs[] = {
1484 &sleep_millisecs_attr.attr,
1485 &pages_to_scan_attr.attr,
1486 &run_attr.attr,
1487 &pages_shared_attr.attr,
1488 &kernel_pages_allocated_attr.attr,
1489 &max_kernel_pages_attr.attr,
1490 NULL,
1491};
1492
1493static struct attribute_group ksm_attr_group = {
1494 .attrs = ksm_attrs,
1495 .name = "ksm",
1496};
1497
1498static int __init ksm_init(void)
1499{
1500 struct task_struct *ksm_thread;
1501 int err;
1502
1503 err = ksm_slab_init();
1504 if (err)
1505 goto out;
1506
1507 err = mm_slots_hash_init();
1508 if (err)
1509 goto out_free1;
1510
1511 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
1512 if (IS_ERR(ksm_thread)) {
1513 printk(KERN_ERR "ksm: creating kthread failed\n");
1514 err = PTR_ERR(ksm_thread);
1515 goto out_free2;
1516 }
1517
1518 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
1519 if (err) {
1520 printk(KERN_ERR "ksm: register sysfs failed\n");
1521 goto out_free3;
1522 }
1523
1524 return 0;
1525
1526out_free3:
1527 kthread_stop(ksm_thread);
1528out_free2:
1529 mm_slots_hash_free();
1530out_free1:
1531 ksm_slab_free();
1532out:
1533 return err;
56} 1534}
1535module_init(ksm_init)