aboutsummaryrefslogtreecommitdiffstats
path: root/litmus/sched_mcrit.c
diff options
context:
space:
mode:
authorMac Mollison <mollison@cs.unc.edu>2010-09-22 00:18:10 -0400
committerMac Mollison <mollison@cs.unc.edu>2010-09-22 00:18:10 -0400
commit47aa67896622051a9069fd503bf960b57898aece (patch)
tree76f5817a4c4ee309f1586b8a4d2f6599547de5b5 /litmus/sched_mcrit.c
parent136a08dbe8c28e751b01e932420f715edb229f6b (diff)
Cloned GSN-EDF to serve as stub for mcrit
Diffstat (limited to 'litmus/sched_mcrit.c')
-rw-r--r--litmus/sched_mcrit.c844
1 files changed, 844 insertions, 0 deletions
diff --git a/litmus/sched_mcrit.c b/litmus/sched_mcrit.c
new file mode 100644
index 000000000000..a5da92d1115c
--- /dev/null
+++ b/litmus/sched_mcrit.c
@@ -0,0 +1,844 @@
1/*
2 * litmus/sched_mcrit.c
3 *
4 * Mixed Criticality plugin
5 *
6 * Cloned from GSN-EDF
7 *
8 * "This version uses the simple approach and serializes all scheduling
9 * decisions by the use of a queue lock. This is probably not the
10 * best way to do it, but it should suffice for now." -GSN-EDF
11 */
12
13#include <linux/spinlock.h>
14#include <linux/percpu.h>
15#include <linux/sched.h>
16
17#include <litmus/litmus.h>
18#include <litmus/jobs.h>
19#include <litmus/sched_plugin.h>
20#include <litmus/edf_common.h>
21#include <litmus/sched_trace.h>
22
23#include <litmus/bheap.h>
24
25#include <linux/module.h>
26
27/* Overview of GSN-EDF operations.
28 *
29 * For a detailed explanation of GSN-EDF have a look at the FMLP paper. This
30 * description only covers how the individual operations are implemented in
31 * LITMUS.
32 *
33 * link_task_to_cpu(T, cpu) - Low-level operation to update the linkage
34 * structure (NOT the actually scheduled
35 * task). If there is another linked task To
36 * already it will set To->linked_on = NO_CPU
37 * (thereby removing its association with this
38 * CPU). However, it will not requeue the
39 * previously linked task (if any). It will set
40 * T's state to RT_F_RUNNING and check whether
41 * it is already running somewhere else. If T
42 * is scheduled somewhere else it will link
43 * it to that CPU instead (and pull the linked
44 * task to cpu). T may be NULL.
45 *
46 * unlink(T) - Unlink removes T from all scheduler data
47 * structures. If it is linked to some CPU it
48 * will link NULL to that CPU. If it is
49 * currently queued in the mcrit queue it will
50 * be removed from the rt_domain. It is safe to
51 * call unlink(T) if T is not linked. T may not
52 * be NULL.
53 *
54 * requeue(T) - Requeue will insert T into the appropriate
55 * queue. If the system is in real-time mode and
56 * the T is released already, it will go into the
57 * ready queue. If the system is not in
58 * real-time mode is T, then T will go into the
59 * release queue. If T's release time is in the
60 * future, it will go into the release
61 * queue. That means that T's release time/job
62 * no/etc. has to be updated before requeu(T) is
63 * called. It is not safe to call requeue(T)
64 * when T is already queued. T may not be NULL.
65 *
66 * mcrit_job_arrival(T) - This is the catch all function when T enters
67 * the system after either a suspension or at a
68 * job release. It will queue T (which means it
69 * is not safe to call mcrit_job_arrival(T) if
70 * T is already queued) and then check whether a
71 * preemption is necessary. If a preemption is
72 * necessary it will update the linkage
73 * accordingly and cause scheduled to be called
74 * (either with an IPI or need_resched). It is
75 * safe to call mcrit_job_arrival(T) if T's
76 * next job has not been actually released yet
77 * (releast time in the future). T will be put
78 * on the release queue in that case.
79 *
80 * job_completion(T) - Take care of everything that needs to be done
81 * to prepare T for its next release and place
82 * it in the right queue with
83 * mcrit_job_arrival().
84 *
85 *
86 * When we now that T is linked to CPU then link_task_to_cpu(NULL, CPU) is
87 * equivalent to unlink(T). Note that if you unlink a task from a CPU none of
88 * the functions will automatically propagate pending task from the ready queue
89 * to a linked task. This is the job of the calling function ( by means of
90 * __take_ready).
91 */
92
93
94/* cpu_entry_t - maintain the linked and scheduled state
95 */
96typedef struct {
97 int cpu;
98 struct task_struct* linked; /* only RT tasks */
99 struct task_struct* scheduled; /* only RT tasks */
100 atomic_t will_schedule; /* prevent unneeded IPIs */
101 struct bheap_node* hn;
102} cpu_entry_t;
103DEFINE_PER_CPU(cpu_entry_t, mcrit_cpu_entries);
104
105cpu_entry_t* mcrit_cpus[NR_CPUS];
106
107#define set_will_schedule() \
108 (atomic_set(&__get_cpu_var(mcrit_cpu_entries).will_schedule, 1))
109#define clear_will_schedule() \
110 (atomic_set(&__get_cpu_var(mcrit_cpu_entries).will_schedule, 0))
111#define test_will_schedule(cpu) \
112 (atomic_read(&per_cpu(mcrit_cpu_entries, cpu).will_schedule))
113
114
115/* the cpus queue themselves according to priority in here */
116static struct bheap_node mcrit_heap_node[NR_CPUS];
117static struct bheap mcrit_cpu_heap;
118
119static rt_domain_t mcrit;
120#define mcrit_lock (mcrit.ready_lock)
121
122
123/* Uncomment this if you want to see all scheduling decisions in the
124 * TRACE() log.
125#define WANT_ALL_SCHED_EVENTS
126 */
127
128static int cpu_lower_prio(struct bheap_node *_a, struct bheap_node *_b)
129{
130 cpu_entry_t *a, *b;
131 a = _a->value;
132 b = _b->value;
133 /* Note that a and b are inverted: we want the lowest-priority CPU at
134 * the top of the heap.
135 */
136 return edf_higher_prio(b->linked, a->linked);
137}
138
139/* update_cpu_position - Move the cpu entry to the correct place to maintain
140 * order in the cpu queue. Caller must hold mcrit lock.
141 */
142static void update_cpu_position(cpu_entry_t *entry)
143{
144 if (likely(bheap_node_in_heap(entry->hn)))
145 bheap_delete(cpu_lower_prio, &mcrit_cpu_heap, entry->hn);
146 bheap_insert(cpu_lower_prio, &mcrit_cpu_heap, entry->hn);
147}
148
149/* caller must hold mcrit lock */
150static cpu_entry_t* lowest_prio_cpu(void)
151{
152 struct bheap_node* hn;
153 hn = bheap_peek(cpu_lower_prio, &mcrit_cpu_heap);
154 return hn->value;
155}
156
157
158/* link_task_to_cpu - Update the link of a CPU.
159 * Handles the case where the to-be-linked task is already
160 * scheduled on a different CPU.
161 */
162static noinline void link_task_to_cpu(struct task_struct* linked,
163 cpu_entry_t *entry)
164{
165 cpu_entry_t *sched;
166 struct task_struct* tmp;
167 int on_cpu;
168
169 BUG_ON(linked && !is_realtime(linked));
170
171 /* Currently linked task is set to be unlinked. */
172 if (entry->linked) {
173 entry->linked->rt_param.linked_on = NO_CPU;
174 }
175
176 /* Link new task to CPU. */
177 if (linked) {
178 set_rt_flags(linked, RT_F_RUNNING);
179 /* handle task is already scheduled somewhere! */
180 on_cpu = linked->rt_param.scheduled_on;
181 if (on_cpu != NO_CPU) {
182 sched = &per_cpu(mcrit_cpu_entries, on_cpu);
183 /* this should only happen if not linked already */
184 BUG_ON(sched->linked == linked);
185
186 /* If we are already scheduled on the CPU to which we
187 * wanted to link, we don't need to do the swap --
188 * we just link ourselves to the CPU and depend on
189 * the caller to get things right.
190 */
191 if (entry != sched) {
192 TRACE_TASK(linked,
193 "already scheduled on %d, updating link.\n",
194 sched->cpu);
195 tmp = sched->linked;
196 linked->rt_param.linked_on = sched->cpu;
197 sched->linked = linked;
198 update_cpu_position(sched);
199 linked = tmp;
200 }
201 }
202 if (linked) /* might be NULL due to swap */
203 linked->rt_param.linked_on = entry->cpu;
204 }
205 entry->linked = linked;
206#ifdef WANT_ALL_SCHED_EVENTS
207 if (linked)
208 TRACE_TASK(linked, "linked to %d.\n", entry->cpu);
209 else
210 TRACE("NULL linked to %d.\n", entry->cpu);
211#endif
212 update_cpu_position(entry);
213}
214
215/* unlink - Make sure a task is not linked any longer to an entry
216 * where it was linked before. Must hold mcrit_lock.
217 */
218static noinline void unlink(struct task_struct* t)
219{
220 cpu_entry_t *entry;
221
222 if (unlikely(!t)) {
223 TRACE_BUG_ON(!t);
224 return;
225 }
226
227 if (t->rt_param.linked_on != NO_CPU) {
228 /* unlink */
229 entry = &per_cpu(mcrit_cpu_entries, t->rt_param.linked_on);
230 t->rt_param.linked_on = NO_CPU;
231 link_task_to_cpu(NULL, entry);
232 } else if (is_queued(t)) {
233 /* This is an interesting situation: t is scheduled,
234 * but was just recently unlinked. It cannot be
235 * linked anywhere else (because then it would have
236 * been relinked to this CPU), thus it must be in some
237 * queue. We must remove it from the list in this
238 * case.
239 */
240 remove(&mcrit, t);
241 }
242}
243
244
245/* preempt - force a CPU to reschedule
246 */
247static void preempt(cpu_entry_t *entry)
248{
249 preempt_if_preemptable(entry->scheduled, entry->cpu);
250}
251
252/* requeue - Put an unlinked task into gsn-edf domain.
253 * Caller must hold mcrit_lock.
254 */
255static noinline void requeue(struct task_struct* task)
256{
257 BUG_ON(!task);
258 /* sanity check before insertion */
259 BUG_ON(is_queued(task));
260
261 if (is_released(task, litmus_clock()))
262 __add_ready(&mcrit, task);
263 else {
264 /* it has got to wait */
265 add_release(&mcrit, task);
266 }
267}
268
269/* check for any necessary preemptions */
270static void check_for_preemptions(void)
271{
272 struct task_struct *task;
273 cpu_entry_t* last;
274
275 for(last = lowest_prio_cpu();
276 edf_preemption_needed(&mcrit, last->linked);
277 last = lowest_prio_cpu()) {
278 /* preemption necessary */
279 task = __take_ready(&mcrit);
280 TRACE("check_for_preemptions: attempting to link task %d to %d\n",
281 task->pid, last->cpu);
282 if (last->linked)
283 requeue(last->linked);
284 link_task_to_cpu(task, last);
285 preempt(last);
286 }
287}
288
289/* mcrit_job_arrival: task is either resumed or released */
290static noinline void mcrit_job_arrival(struct task_struct* task)
291{
292 BUG_ON(!task);
293
294 requeue(task);
295 check_for_preemptions();
296}
297
298static void mcrit_release_jobs(rt_domain_t* rt, struct bheap* tasks)
299{
300 unsigned long flags;
301
302 raw_spin_lock_irqsave(&mcrit_lock, flags);
303
304 __merge_ready(rt, tasks);
305 check_for_preemptions();
306
307 raw_spin_unlock_irqrestore(&mcrit_lock, flags);
308}
309
310/* caller holds mcrit_lock */
311static noinline void job_completion(struct task_struct *t, int forced)
312{
313 BUG_ON(!t);
314
315 sched_trace_task_completion(t, forced);
316
317 TRACE_TASK(t, "job_completion().\n");
318
319 /* set flags */
320 set_rt_flags(t, RT_F_SLEEP);
321 /* prepare for next period */
322 prepare_for_next_period(t);
323 if (is_released(t, litmus_clock()))
324 sched_trace_task_release(t);
325 /* unlink */
326 unlink(t);
327 /* requeue
328 * But don't requeue a blocking task. */
329 if (is_running(t))
330 mcrit_job_arrival(t);
331}
332
333/* mcrit_tick - this function is called for every local timer
334 * interrupt.
335 *
336 * checks whether the current task has expired and checks
337 * whether we need to preempt it if it has not expired
338 */
339static void mcrit_tick(struct task_struct* t)
340{
341 if (is_realtime(t) && budget_enforced(t) && budget_exhausted(t)) {
342 if (!is_np(t)) {
343 /* np tasks will be preempted when they become
344 * preemptable again
345 */
346 set_tsk_need_resched(t);
347 set_will_schedule();
348 TRACE("mcrit_scheduler_tick: "
349 "%d is preemptable "
350 " => FORCE_RESCHED\n", t->pid);
351 } else if (is_user_np(t)) {
352 TRACE("mcrit_scheduler_tick: "
353 "%d is non-preemptable, "
354 "preemption delayed.\n", t->pid);
355 request_exit_np(t);
356 }
357 }
358}
359
360/* Getting schedule() right is a bit tricky. schedule() may not make any
361 * assumptions on the state of the current task since it may be called for a
362 * number of reasons. The reasons include a scheduler_tick() determined that it
363 * was necessary, because sys_exit_np() was called, because some Linux
364 * subsystem determined so, or even (in the worst case) because there is a bug
365 * hidden somewhere. Thus, we must take extreme care to determine what the
366 * current state is.
367 *
368 * The CPU could currently be scheduling a task (or not), be linked (or not).
369 *
370 * The following assertions for the scheduled task could hold:
371 *
372 * - !is_running(scheduled) // the job blocks
373 * - scheduled->timeslice == 0 // the job completed (forcefully)
374 * - get_rt_flag() == RT_F_SLEEP // the job completed (by syscall)
375 * - linked != scheduled // we need to reschedule (for any reason)
376 * - is_np(scheduled) // rescheduling must be delayed,
377 * sys_exit_np must be requested
378 *
379 * Any of these can occur together.
380 */
381static struct task_struct* mcrit_schedule(struct task_struct * prev)
382{
383 cpu_entry_t* entry = &__get_cpu_var(mcrit_cpu_entries);
384 int out_of_time, sleep, preempt, np, exists, blocks;
385 struct task_struct* next = NULL;
386
387#ifdef CONFIG_RELEASE_MASTER
388 /* Bail out early if we are the release master.
389 * The release master never schedules any real-time tasks.
390 */
391 if (mcrit.release_master == entry->cpu)
392 return NULL;
393#endif
394
395 raw_spin_lock(&mcrit_lock);
396 clear_will_schedule();
397
398 /* sanity checking */
399 BUG_ON(entry->scheduled && entry->scheduled != prev);
400 BUG_ON(entry->scheduled && !is_realtime(prev));
401 BUG_ON(is_realtime(prev) && !entry->scheduled);
402
403 /* (0) Determine state */
404 exists = entry->scheduled != NULL;
405 blocks = exists && !is_running(entry->scheduled);
406 out_of_time = exists &&
407 budget_enforced(entry->scheduled) &&
408 budget_exhausted(entry->scheduled);
409 np = exists && is_np(entry->scheduled);
410 sleep = exists && get_rt_flags(entry->scheduled) == RT_F_SLEEP;
411 preempt = entry->scheduled != entry->linked;
412
413#ifdef WANT_ALL_SCHED_EVENTS
414 TRACE_TASK(prev, "invoked mcrit_schedule.\n");
415#endif
416
417 if (exists)
418 TRACE_TASK(prev,
419 "blocks:%d out_of_time:%d np:%d sleep:%d preempt:%d "
420 "state:%d sig:%d\n",
421 blocks, out_of_time, np, sleep, preempt,
422 prev->state, signal_pending(prev));
423 if (entry->linked && preempt)
424 TRACE_TASK(prev, "will be preempted by %s/%d\n",
425 entry->linked->comm, entry->linked->pid);
426
427
428 /* If a task blocks we have no choice but to reschedule.
429 */
430 if (blocks)
431 unlink(entry->scheduled);
432
433 /* Request a sys_exit_np() call if we would like to preempt but cannot.
434 * We need to make sure to update the link structure anyway in case
435 * that we are still linked. Multiple calls to request_exit_np() don't
436 * hurt.
437 */
438 if (np && (out_of_time || preempt || sleep)) {
439 unlink(entry->scheduled);
440 request_exit_np(entry->scheduled);
441 }
442
443 /* Any task that is preemptable and either exhausts its execution
444 * budget or wants to sleep completes. We may have to reschedule after
445 * this. Don't do a job completion if we block (can't have timers running
446 * for blocked jobs). Preemption go first for the same reason.
447 */
448 if (!np && (out_of_time || sleep) && !blocks && !preempt)
449 job_completion(entry->scheduled, !sleep);
450
451 /* Link pending task if we became unlinked.
452 */
453 if (!entry->linked)
454 link_task_to_cpu(__take_ready(&mcrit), entry);
455
456 /* The final scheduling decision. Do we need to switch for some reason?
457 * If linked is different from scheduled, then select linked as next.
458 */
459 if ((!np || blocks) &&
460 entry->linked != entry->scheduled) {
461 /* Schedule a linked job? */
462 if (entry->linked) {
463 entry->linked->rt_param.scheduled_on = entry->cpu;
464 next = entry->linked;
465 }
466 if (entry->scheduled) {
467 /* not gonna be scheduled soon */
468 entry->scheduled->rt_param.scheduled_on = NO_CPU;
469 TRACE_TASK(entry->scheduled, "scheduled_on = NO_CPU\n");
470 }
471 } else
472 /* Only override Linux scheduler if we have a real-time task
473 * scheduled that needs to continue.
474 */
475 if (exists)
476 next = prev;
477
478 raw_spin_unlock(&mcrit_lock);
479
480#ifdef WANT_ALL_SCHED_EVENTS
481 TRACE("mcrit_lock released, next=0x%p\n", next);
482
483 if (next)
484 TRACE_TASK(next, "scheduled at %llu\n", litmus_clock());
485 else if (exists && !next)
486 TRACE("becomes idle at %llu.\n", litmus_clock());
487#endif
488
489
490 return next;
491}
492
493
494/* _finish_switch - we just finished the switch away from prev
495 */
496static void mcrit_finish_switch(struct task_struct *prev)
497{
498 cpu_entry_t* entry = &__get_cpu_var(mcrit_cpu_entries);
499
500 entry->scheduled = is_realtime(current) ? current : NULL;
501#ifdef WANT_ALL_SCHED_EVENTS
502 TRACE_TASK(prev, "switched away from\n");
503#endif
504}
505
506
507/* Prepare a task for running in RT mode
508 */
509static void mcrit_task_new(struct task_struct * t, int on_rq, int running)
510{
511 unsigned long flags;
512 cpu_entry_t* entry;
513
514 TRACE("gsn edf: task new %d\n", t->pid);
515
516 raw_spin_lock_irqsave(&mcrit_lock, flags);
517
518 /* setup job params */
519 release_at(t, litmus_clock());
520
521 if (running) {
522 entry = &per_cpu(mcrit_cpu_entries, task_cpu(t));
523 BUG_ON(entry->scheduled);
524
525#ifdef CONFIG_RELEASE_MASTER
526 if (entry->cpu != mcrit.release_master) {
527#endif
528 entry->scheduled = t;
529 tsk_rt(t)->scheduled_on = task_cpu(t);
530#ifdef CONFIG_RELEASE_MASTER
531 } else {
532 /* do not schedule on release master */
533 preempt(entry); /* force resched */
534 tsk_rt(t)->scheduled_on = NO_CPU;
535 }
536#endif
537 } else {
538 t->rt_param.scheduled_on = NO_CPU;
539 }
540 t->rt_param.linked_on = NO_CPU;
541
542 mcrit_job_arrival(t);
543 raw_spin_unlock_irqrestore(&mcrit_lock, flags);
544}
545
546static void mcrit_task_wake_up(struct task_struct *task)
547{
548 unsigned long flags;
549 lt_t now;
550
551 TRACE_TASK(task, "wake_up at %llu\n", litmus_clock());
552
553 raw_spin_lock_irqsave(&mcrit_lock, flags);
554 /* We need to take suspensions because of semaphores into
555 * account! If a job resumes after being suspended due to acquiring
556 * a semaphore, it should never be treated as a new job release.
557 */
558 if (get_rt_flags(task) == RT_F_EXIT_SEM) {
559 set_rt_flags(task, RT_F_RUNNING);
560 } else {
561 now = litmus_clock();
562 if (is_tardy(task, now)) {
563 /* new sporadic release */
564 release_at(task, now);
565 sched_trace_task_release(task);
566 }
567 else {
568 if (task->rt.time_slice) {
569 /* came back in time before deadline
570 */
571 set_rt_flags(task, RT_F_RUNNING);
572 }
573 }
574 }
575 mcrit_job_arrival(task);
576 raw_spin_unlock_irqrestore(&mcrit_lock, flags);
577}
578
579static void mcrit_task_block(struct task_struct *t)
580{
581 unsigned long flags;
582
583 TRACE_TASK(t, "block at %llu\n", litmus_clock());
584
585 /* unlink if necessary */
586 raw_spin_lock_irqsave(&mcrit_lock, flags);
587 unlink(t);
588 raw_spin_unlock_irqrestore(&mcrit_lock, flags);
589
590 BUG_ON(!is_realtime(t));
591}
592
593
594static void mcrit_task_exit(struct task_struct * t)
595{
596 unsigned long flags;
597
598 /* unlink if necessary */
599 raw_spin_lock_irqsave(&mcrit_lock, flags);
600 unlink(t);
601 if (tsk_rt(t)->scheduled_on != NO_CPU) {
602 mcrit_cpus[tsk_rt(t)->scheduled_on]->scheduled = NULL;
603 tsk_rt(t)->scheduled_on = NO_CPU;
604 }
605 raw_spin_unlock_irqrestore(&mcrit_lock, flags);
606
607 BUG_ON(!is_realtime(t));
608 TRACE_TASK(t, "RIP\n");
609}
610
611#ifdef CONFIG_FMLP
612
613/* Update the queue position of a task that got it's priority boosted via
614 * priority inheritance. */
615static void update_queue_position(struct task_struct *holder)
616{
617 /* We don't know whether holder is in the ready queue. It should, but
618 * on a budget overrun it may already be in a release queue. Hence,
619 * calling unlink() is not possible since it assumes that the task is
620 * not in a release queue. However, we can safely check whether
621 * sem->holder is currently in a queue or scheduled after locking both
622 * the release and the ready queue lock. */
623
624 /* Assumption: caller holds mcrit_lock */
625
626 int check_preempt = 0;
627
628 if (tsk_rt(holder)->linked_on != NO_CPU) {
629 TRACE_TASK(holder, "%s: linked on %d\n",
630 __FUNCTION__, tsk_rt(holder)->linked_on);
631 /* Holder is scheduled; need to re-order CPUs.
632 * We can't use heap_decrease() here since
633 * the cpu_heap is ordered in reverse direction, so
634 * it is actually an increase. */
635 bheap_delete(cpu_lower_prio, &mcrit_cpu_heap,
636 mcrit_cpus[tsk_rt(holder)->linked_on]->hn);
637 bheap_insert(cpu_lower_prio, &mcrit_cpu_heap,
638 mcrit_cpus[tsk_rt(holder)->linked_on]->hn);
639 } else {
640 /* holder may be queued: first stop queue changes */
641 raw_spin_lock(&mcrit.release_lock);
642 if (is_queued(holder)) {
643 TRACE_TASK(holder, "%s: is queued\n",
644 __FUNCTION__);
645 /* We need to update the position
646 * of holder in some heap. Note that this
647 * may be a release heap. */
648 check_preempt =
649 !bheap_decrease(edf_ready_order,
650 tsk_rt(holder)->heap_node);
651 } else {
652 /* Nothing to do: if it is not queued and not linked
653 * then it is currently being moved by other code
654 * (e.g., a timer interrupt handler) that will use the
655 * correct priority when enqueuing the task. */
656 TRACE_TASK(holder, "%s: is NOT queued => Done.\n",
657 __FUNCTION__);
658 }
659 raw_spin_unlock(&mcrit.release_lock);
660
661 /* If holder was enqueued in a release heap, then the following
662 * preemption check is pointless, but we can't easily detect
663 * that case. If you want to fix this, then consider that
664 * simply adding a state flag requires O(n) time to update when
665 * releasing n tasks, which conflicts with the goal to have
666 * O(log n) merges. */
667 if (check_preempt) {
668 /* heap_decrease() hit the top level of the heap: make
669 * sure preemption checks get the right task, not the
670 * potentially stale cache. */
671 bheap_uncache_min(edf_ready_order,
672 &mcrit.ready_queue);
673 check_for_preemptions();
674 }
675 }
676}
677
678static long mcrit_pi_block(struct pi_semaphore *sem,
679 struct task_struct *new_waiter)
680{
681 /* This callback has to handle the situation where a new waiter is
682 * added to the wait queue of the semaphore.
683 *
684 * We must check if has a higher priority than the currently
685 * highest-priority task, and then potentially reschedule.
686 */
687
688 BUG_ON(!new_waiter);
689
690 if (edf_higher_prio(new_waiter, sem->hp.task)) {
691 TRACE_TASK(new_waiter, " boosts priority via %p\n", sem);
692 /* called with IRQs disabled */
693 raw_spin_lock(&mcrit_lock);
694 /* store new highest-priority task */
695 sem->hp.task = new_waiter;
696 if (sem->holder) {
697 TRACE_TASK(sem->holder,
698 " holds %p and will inherit from %s/%d\n",
699 sem,
700 new_waiter->comm, new_waiter->pid);
701 /* let holder inherit */
702 sem->holder->rt_param.inh_task = new_waiter;
703 update_queue_position(sem->holder);
704 }
705 raw_spin_unlock(&mcrit_lock);
706 }
707
708 return 0;
709}
710
711static long mcrit_inherit_priority(struct pi_semaphore *sem,
712 struct task_struct *new_owner)
713{
714 /* We don't need to acquire the mcrit_lock since at the time of this
715 * call new_owner isn't actually scheduled yet (it's still sleeping)
716 * and since the calling function already holds sem->wait.lock, which
717 * prevents concurrent sem->hp.task changes.
718 */
719
720 if (sem->hp.task && sem->hp.task != new_owner) {
721 new_owner->rt_param.inh_task = sem->hp.task;
722 TRACE_TASK(new_owner, "inherited priority from %s/%d\n",
723 sem->hp.task->comm, sem->hp.task->pid);
724 } else
725 TRACE_TASK(new_owner,
726 "cannot inherit priority, "
727 "no higher priority job waits.\n");
728 return 0;
729}
730
731/* This function is called on a semaphore release, and assumes that
732 * the current task is also the semaphore holder.
733 */
734static long mcrit_return_priority(struct pi_semaphore *sem)
735{
736 struct task_struct* t = current;
737 int ret = 0;
738
739 /* Find new highest-priority semaphore task
740 * if holder task is the current hp.task.
741 *
742 * Calling function holds sem->wait.lock.
743 */
744 if (t == sem->hp.task)
745 edf_set_hp_task(sem);
746
747 TRACE_CUR("mcrit_return_priority for lock %p\n", sem);
748
749 if (t->rt_param.inh_task) {
750 /* interrupts already disabled by PI code */
751 raw_spin_lock(&mcrit_lock);
752
753 /* Reset inh_task to NULL. */
754 t->rt_param.inh_task = NULL;
755
756 /* Check if rescheduling is necessary */
757 unlink(t);
758 mcrit_job_arrival(t);
759 raw_spin_unlock(&mcrit_lock);
760 }
761
762 return ret;
763}
764
765#endif
766
767static long mcrit_admit_task(struct task_struct* tsk)
768{
769 return 0;
770}
771
772static long mcrit_activate_plugin(void)
773{
774 int cpu;
775 cpu_entry_t *entry;
776
777 bheap_init(&mcrit_cpu_heap);
778#ifdef CONFIG_RELEASE_MASTER
779 mcrit.release_master = atomic_read(&release_master_cpu);
780#endif
781
782 for_each_online_cpu(cpu) {
783 entry = &per_cpu(mcrit_cpu_entries, cpu);
784 bheap_node_init(&entry->hn, entry);
785 atomic_set(&entry->will_schedule, 0);
786 entry->linked = NULL;
787 entry->scheduled = NULL;
788#ifdef CONFIG_RELEASE_MASTER
789 if (cpu != mcrit.release_master) {
790#endif
791 TRACE("GSN-EDF: Initializing CPU #%d.\n", cpu);
792 update_cpu_position(entry);
793#ifdef CONFIG_RELEASE_MASTER
794 } else {
795 TRACE("GSN-EDF: CPU %d is release master.\n", cpu);
796 }
797#endif
798 }
799 return 0;
800}
801
802/* Plugin object */
803static struct sched_plugin m_crit_plugin __cacheline_aligned_in_smp = {
804 .plugin_name = "MCRIT",
805 .finish_switch = mcrit_finish_switch,
806 .tick = mcrit_tick,
807 .task_new = mcrit_task_new,
808 .complete_job = complete_job,
809 .task_exit = mcrit_task_exit,
810 .schedule = mcrit_schedule,
811 .task_wake_up = mcrit_task_wake_up,
812 .task_block = mcrit_task_block,
813#ifdef CONFIG_FMLP
814 .fmlp_active = 1,
815 .pi_block = mcrit_pi_block,
816 .inherit_priority = mcrit_inherit_priority,
817 .return_priority = mcrit_return_priority,
818#endif
819 .admit_task = mcrit_admit_task,
820 .activate_plugin = mcrit_activate_plugin,
821};
822
823
824static int __init init_m_crit(void)
825{
826 int cpu;
827 cpu_entry_t *entry;
828
829 bheap_init(&mcrit_cpu_heap);
830 /* initialize CPU state */
831 for (cpu = 0; cpu < NR_CPUS; cpu++) {
832 entry = &per_cpu(mcrit_cpu_entries, cpu);
833 mcrit_cpus[cpu] = entry;
834 atomic_set(&entry->will_schedule, 0);
835 entry->cpu = cpu;
836 entry->hn = &mcrit_heap_node[cpu];
837 bheap_node_init(&entry->hn, entry);
838 }
839 edf_domain_init(&mcrit, NULL, mcrit_release_jobs);
840 return register_sched_plugin(&m_crit_plugin);
841}
842
843
844module_init(init_m_crit);