aboutsummaryrefslogtreecommitdiffstats
path: root/lib
diff options
context:
space:
mode:
authorDmitry Kasatkin <dmitry.kasatkin@intel.com>2012-05-09 10:37:56 -0400
committerJames Morris <james.l.morris@oracle.com>2012-05-25 21:51:03 -0400
commit7cf4206a99d1b3e61bdbc7cbbf4a7bf6a9dfcc68 (patch)
treea77ad8cffa35427352cd18f94ed9339640e4d473 /lib
parent9e235dcaf4f63d88a7e9ce5735ba5c2eb2719603 (diff)
Remove unused code from MPI library
MPI library is used by RSA verification implementation. Few files contains functions which are never called. James Morris has asked to remove all of them. Signed-off-by: Dmitry Kasatkin <dmitry.kasatkin@intel.com> Requested-by: James Morris <james.l.morris@oracle.com> Signed-off-by: James Morris <james.l.morris@oracle.com>
Diffstat (limited to 'lib')
-rw-r--r--lib/mpi/mpi-bit.c162
-rw-r--r--lib/mpi/mpicoder.c75
-rw-r--r--lib/mpi/mpih-div.c309
-rw-r--r--lib/mpi/mpih-mul.c30
-rw-r--r--lib/mpi/mpiutil.c88
5 files changed, 0 insertions, 664 deletions
diff --git a/lib/mpi/mpi-bit.c b/lib/mpi/mpi-bit.c
index 0c505361da19..568724804f29 100644
--- a/lib/mpi/mpi-bit.c
+++ b/lib/mpi/mpi-bit.c
@@ -54,165 +54,3 @@ unsigned mpi_get_nbits(MPI a)
54 return n; 54 return n;
55} 55}
56EXPORT_SYMBOL_GPL(mpi_get_nbits); 56EXPORT_SYMBOL_GPL(mpi_get_nbits);
57
58/****************
59 * Test whether bit N is set.
60 */
61int mpi_test_bit(MPI a, unsigned n)
62{
63 unsigned limbno, bitno;
64 mpi_limb_t limb;
65
66 limbno = n / BITS_PER_MPI_LIMB;
67 bitno = n % BITS_PER_MPI_LIMB;
68
69 if (limbno >= a->nlimbs)
70 return 0; /* too far left: this is a 0 */
71 limb = a->d[limbno];
72 return (limb & (A_LIMB_1 << bitno)) ? 1 : 0;
73}
74
75/****************
76 * Set bit N of A.
77 */
78int mpi_set_bit(MPI a, unsigned n)
79{
80 unsigned limbno, bitno;
81
82 limbno = n / BITS_PER_MPI_LIMB;
83 bitno = n % BITS_PER_MPI_LIMB;
84
85 if (limbno >= a->nlimbs) { /* resize */
86 if (a->alloced >= limbno)
87 if (mpi_resize(a, limbno + 1) < 0)
88 return -ENOMEM;
89 a->nlimbs = limbno + 1;
90 }
91 a->d[limbno] |= (A_LIMB_1 << bitno);
92 return 0;
93}
94
95/****************
96 * Set bit N of A. and clear all bits above
97 */
98int mpi_set_highbit(MPI a, unsigned n)
99{
100 unsigned limbno, bitno;
101
102 limbno = n / BITS_PER_MPI_LIMB;
103 bitno = n % BITS_PER_MPI_LIMB;
104
105 if (limbno >= a->nlimbs) { /* resize */
106 if (a->alloced >= limbno)
107 if (mpi_resize(a, limbno + 1) < 0)
108 return -ENOMEM;
109 a->nlimbs = limbno + 1;
110 }
111 a->d[limbno] |= (A_LIMB_1 << bitno);
112 for (bitno++; bitno < BITS_PER_MPI_LIMB; bitno++)
113 a->d[limbno] &= ~(A_LIMB_1 << bitno);
114 a->nlimbs = limbno + 1;
115 return 0;
116}
117
118/****************
119 * clear bit N of A and all bits above
120 */
121void mpi_clear_highbit(MPI a, unsigned n)
122{
123 unsigned limbno, bitno;
124
125 limbno = n / BITS_PER_MPI_LIMB;
126 bitno = n % BITS_PER_MPI_LIMB;
127
128 if (limbno >= a->nlimbs)
129 return; /* not allocated, so need to clear bits :-) */
130
131 for (; bitno < BITS_PER_MPI_LIMB; bitno++)
132 a->d[limbno] &= ~(A_LIMB_1 << bitno);
133 a->nlimbs = limbno + 1;
134}
135
136/****************
137 * Clear bit N of A.
138 */
139void mpi_clear_bit(MPI a, unsigned n)
140{
141 unsigned limbno, bitno;
142
143 limbno = n / BITS_PER_MPI_LIMB;
144 bitno = n % BITS_PER_MPI_LIMB;
145
146 if (limbno >= a->nlimbs)
147 return; /* don't need to clear this bit, it's to far to left */
148 a->d[limbno] &= ~(A_LIMB_1 << bitno);
149}
150
151/****************
152 * Shift A by N bits to the right
153 * FIXME: should use alloc_limb if X and A are same.
154 */
155int mpi_rshift(MPI x, MPI a, unsigned n)
156{
157 mpi_ptr_t xp;
158 mpi_size_t xsize;
159
160 xsize = a->nlimbs;
161 x->sign = a->sign;
162 if (RESIZE_IF_NEEDED(x, (size_t) xsize) < 0)
163 return -ENOMEM;
164 xp = x->d;
165
166 if (xsize) {
167 mpihelp_rshift(xp, a->d, xsize, n);
168 MPN_NORMALIZE(xp, xsize);
169 }
170 x->nlimbs = xsize;
171 return 0;
172}
173
174/****************
175 * Shift A by COUNT limbs to the left
176 * This is used only within the MPI library
177 */
178int mpi_lshift_limbs(MPI a, unsigned int count)
179{
180 const int n = a->nlimbs;
181 mpi_ptr_t ap;
182 int i;
183
184 if (!count || !n)
185 return 0;
186
187 if (RESIZE_IF_NEEDED(a, n + count) < 0)
188 return -ENOMEM;
189
190 ap = a->d;
191 for (i = n - 1; i >= 0; i--)
192 ap[i + count] = ap[i];
193 for (i = 0; i < count; i++)
194 ap[i] = 0;
195 a->nlimbs += count;
196 return 0;
197}
198
199/****************
200 * Shift A by COUNT limbs to the right
201 * This is used only within the MPI library
202 */
203void mpi_rshift_limbs(MPI a, unsigned int count)
204{
205 mpi_ptr_t ap = a->d;
206 mpi_size_t n = a->nlimbs;
207 unsigned int i;
208
209 if (count >= n) {
210 a->nlimbs = 0;
211 return;
212 }
213
214 for (i = 0; i < n - count; i++)
215 ap[i] = ap[i + count];
216 ap[i] = 0;
217 a->nlimbs -= count;
218}
diff --git a/lib/mpi/mpicoder.c b/lib/mpi/mpicoder.c
index f26b41fcb48c..f0fa65995800 100644
--- a/lib/mpi/mpicoder.c
+++ b/lib/mpi/mpicoder.c
@@ -74,81 +74,6 @@ leave:
74EXPORT_SYMBOL_GPL(mpi_read_from_buffer); 74EXPORT_SYMBOL_GPL(mpi_read_from_buffer);
75 75
76/**************** 76/****************
77 * Make an mpi from a character string.
78 */
79int mpi_fromstr(MPI val, const char *str)
80{
81 int hexmode = 0, sign = 0, prepend_zero = 0, i, j, c, c1, c2;
82 unsigned nbits, nbytes, nlimbs;
83 mpi_limb_t a;
84
85 if (*str == '-') {
86 sign = 1;
87 str++;
88 }
89 if (*str == '0' && str[1] == 'x')
90 hexmode = 1;
91 else
92 return -EINVAL; /* other bases are not yet supported */
93 str += 2;
94
95 nbits = strlen(str) * 4;
96 if (nbits % 8)
97 prepend_zero = 1;
98 nbytes = (nbits + 7) / 8;
99 nlimbs = (nbytes + BYTES_PER_MPI_LIMB - 1) / BYTES_PER_MPI_LIMB;
100 if (val->alloced < nlimbs)
101 if (!mpi_resize(val, nlimbs))
102 return -ENOMEM;
103 i = BYTES_PER_MPI_LIMB - nbytes % BYTES_PER_MPI_LIMB;
104 i %= BYTES_PER_MPI_LIMB;
105 j = val->nlimbs = nlimbs;
106 val->sign = sign;
107 for (; j > 0; j--) {
108 a = 0;
109 for (; i < BYTES_PER_MPI_LIMB; i++) {
110 if (prepend_zero) {
111 c1 = '0';
112 prepend_zero = 0;
113 } else
114 c1 = *str++;
115 assert(c1);
116 c2 = *str++;
117 assert(c2);
118 if (c1 >= '0' && c1 <= '9')
119 c = c1 - '0';
120 else if (c1 >= 'a' && c1 <= 'f')
121 c = c1 - 'a' + 10;
122 else if (c1 >= 'A' && c1 <= 'F')
123 c = c1 - 'A' + 10;
124 else {
125 mpi_clear(val);
126 return 1;
127 }
128 c <<= 4;
129 if (c2 >= '0' && c2 <= '9')
130 c |= c2 - '0';
131 else if (c2 >= 'a' && c2 <= 'f')
132 c |= c2 - 'a' + 10;
133 else if (c2 >= 'A' && c2 <= 'F')
134 c |= c2 - 'A' + 10;
135 else {
136 mpi_clear(val);
137 return 1;
138 }
139 a <<= 8;
140 a |= c;
141 }
142 i = 0;
143
144 val->d[j - 1] = a;
145 }
146
147 return 0;
148}
149EXPORT_SYMBOL_GPL(mpi_fromstr);
150
151/****************
152 * Return an allocated buffer with the MPI (msb first). 77 * Return an allocated buffer with the MPI (msb first).
153 * NBYTES receives the length of this buffer. Caller must free the 78 * NBYTES receives the length of this buffer. Caller must free the
154 * return string (This function does return a 0 byte buffer with NBYTES 79 * return string (This function does return a 0 byte buffer with NBYTES
diff --git a/lib/mpi/mpih-div.c b/lib/mpi/mpih-div.c
index cde1aaec18da..c57d1d46295e 100644
--- a/lib/mpi/mpih-div.c
+++ b/lib/mpi/mpih-div.c
@@ -37,159 +37,6 @@
37#define UDIV_TIME UMUL_TIME 37#define UDIV_TIME UMUL_TIME
38#endif 38#endif
39 39
40/* FIXME: We should be using invert_limb (or invert_normalized_limb)
41 * here (not udiv_qrnnd).
42 */
43
44mpi_limb_t
45mpihelp_mod_1(mpi_ptr_t dividend_ptr, mpi_size_t dividend_size,
46 mpi_limb_t divisor_limb)
47{
48 mpi_size_t i;
49 mpi_limb_t n1, n0, r;
50 int dummy;
51
52 /* Botch: Should this be handled at all? Rely on callers? */
53 if (!dividend_size)
54 return 0;
55
56 /* If multiplication is much faster than division, and the
57 * dividend is large, pre-invert the divisor, and use
58 * only multiplications in the inner loop.
59 *
60 * This test should be read:
61 * Does it ever help to use udiv_qrnnd_preinv?
62 * && Does what we save compensate for the inversion overhead?
63 */
64 if (UDIV_TIME > (2 * UMUL_TIME + 6)
65 && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) {
66 int normalization_steps;
67
68 count_leading_zeros(normalization_steps, divisor_limb);
69 if (normalization_steps) {
70 mpi_limb_t divisor_limb_inverted;
71
72 divisor_limb <<= normalization_steps;
73
74 /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
75 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
76 * most significant bit (with weight 2**N) implicit.
77 *
78 * Special case for DIVISOR_LIMB == 100...000.
79 */
80 if (!(divisor_limb << 1))
81 divisor_limb_inverted = ~(mpi_limb_t) 0;
82 else
83 udiv_qrnnd(divisor_limb_inverted, dummy,
84 -divisor_limb, 0, divisor_limb);
85
86 n1 = dividend_ptr[dividend_size - 1];
87 r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
88
89 /* Possible optimization:
90 * if (r == 0
91 * && divisor_limb > ((n1 << normalization_steps)
92 * | (dividend_ptr[dividend_size - 2] >> ...)))
93 * ...one division less...
94 */
95 for (i = dividend_size - 2; i >= 0; i--) {
96 n0 = dividend_ptr[i];
97 UDIV_QRNND_PREINV(dummy, r, r,
98 ((n1 << normalization_steps)
99 | (n0 >>
100 (BITS_PER_MPI_LIMB -
101 normalization_steps))),
102 divisor_limb,
103 divisor_limb_inverted);
104 n1 = n0;
105 }
106 UDIV_QRNND_PREINV(dummy, r, r,
107 n1 << normalization_steps,
108 divisor_limb, divisor_limb_inverted);
109 return r >> normalization_steps;
110 } else {
111 mpi_limb_t divisor_limb_inverted;
112
113 /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
114 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
115 * most significant bit (with weight 2**N) implicit.
116 *
117 * Special case for DIVISOR_LIMB == 100...000.
118 */
119 if (!(divisor_limb << 1))
120 divisor_limb_inverted = ~(mpi_limb_t) 0;
121 else
122 udiv_qrnnd(divisor_limb_inverted, dummy,
123 -divisor_limb, 0, divisor_limb);
124
125 i = dividend_size - 1;
126 r = dividend_ptr[i];
127
128 if (r >= divisor_limb)
129 r = 0;
130 else
131 i--;
132
133 for (; i >= 0; i--) {
134 n0 = dividend_ptr[i];
135 UDIV_QRNND_PREINV(dummy, r, r,
136 n0, divisor_limb,
137 divisor_limb_inverted);
138 }
139 return r;
140 }
141 } else {
142 if (UDIV_NEEDS_NORMALIZATION) {
143 int normalization_steps;
144
145 count_leading_zeros(normalization_steps, divisor_limb);
146 if (normalization_steps) {
147 divisor_limb <<= normalization_steps;
148
149 n1 = dividend_ptr[dividend_size - 1];
150 r = n1 >> (BITS_PER_MPI_LIMB -
151 normalization_steps);
152
153 /* Possible optimization:
154 * if (r == 0
155 * && divisor_limb > ((n1 << normalization_steps)
156 * | (dividend_ptr[dividend_size - 2] >> ...)))
157 * ...one division less...
158 */
159 for (i = dividend_size - 2; i >= 0; i--) {
160 n0 = dividend_ptr[i];
161 udiv_qrnnd(dummy, r, r,
162 ((n1 << normalization_steps)
163 | (n0 >>
164 (BITS_PER_MPI_LIMB -
165 normalization_steps))),
166 divisor_limb);
167 n1 = n0;
168 }
169 udiv_qrnnd(dummy, r, r,
170 n1 << normalization_steps,
171 divisor_limb);
172 return r >> normalization_steps;
173 }
174 }
175 /* No normalization needed, either because udiv_qrnnd doesn't require
176 * it, or because DIVISOR_LIMB is already normalized. */
177 i = dividend_size - 1;
178 r = dividend_ptr[i];
179
180 if (r >= divisor_limb)
181 r = 0;
182 else
183 i--;
184
185 for (; i >= 0; i--) {
186 n0 = dividend_ptr[i];
187 udiv_qrnnd(dummy, r, r, n0, divisor_limb);
188 }
189 return r;
190 }
191}
192
193/* Divide num (NP/NSIZE) by den (DP/DSIZE) and write 40/* Divide num (NP/NSIZE) by den (DP/DSIZE) and write
194 * the NSIZE-DSIZE least significant quotient limbs at QP 41 * the NSIZE-DSIZE least significant quotient limbs at QP
195 * and the DSIZE long remainder at NP. If QEXTRA_LIMBS is 42 * and the DSIZE long remainder at NP. If QEXTRA_LIMBS is
@@ -387,159 +234,3 @@ q_test:
387 234
388 return most_significant_q_limb; 235 return most_significant_q_limb;
389} 236}
390
391/****************
392 * Divide (DIVIDEND_PTR,,DIVIDEND_SIZE) by DIVISOR_LIMB.
393 * Write DIVIDEND_SIZE limbs of quotient at QUOT_PTR.
394 * Return the single-limb remainder.
395 * There are no constraints on the value of the divisor.
396 *
397 * QUOT_PTR and DIVIDEND_PTR might point to the same limb.
398 */
399
400mpi_limb_t
401mpihelp_divmod_1(mpi_ptr_t quot_ptr,
402 mpi_ptr_t dividend_ptr, mpi_size_t dividend_size,
403 mpi_limb_t divisor_limb)
404{
405 mpi_size_t i;
406 mpi_limb_t n1, n0, r;
407 int dummy;
408
409 if (!dividend_size)
410 return 0;
411
412 /* If multiplication is much faster than division, and the
413 * dividend is large, pre-invert the divisor, and use
414 * only multiplications in the inner loop.
415 *
416 * This test should be read:
417 * Does it ever help to use udiv_qrnnd_preinv?
418 * && Does what we save compensate for the inversion overhead?
419 */
420 if (UDIV_TIME > (2 * UMUL_TIME + 6)
421 && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) {
422 int normalization_steps;
423
424 count_leading_zeros(normalization_steps, divisor_limb);
425 if (normalization_steps) {
426 mpi_limb_t divisor_limb_inverted;
427
428 divisor_limb <<= normalization_steps;
429
430 /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
431 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
432 * most significant bit (with weight 2**N) implicit.
433 */
434 /* Special case for DIVISOR_LIMB == 100...000. */
435 if (!(divisor_limb << 1))
436 divisor_limb_inverted = ~(mpi_limb_t) 0;
437 else
438 udiv_qrnnd(divisor_limb_inverted, dummy,
439 -divisor_limb, 0, divisor_limb);
440
441 n1 = dividend_ptr[dividend_size - 1];
442 r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
443
444 /* Possible optimization:
445 * if (r == 0
446 * && divisor_limb > ((n1 << normalization_steps)
447 * | (dividend_ptr[dividend_size - 2] >> ...)))
448 * ...one division less...
449 */
450 for (i = dividend_size - 2; i >= 0; i--) {
451 n0 = dividend_ptr[i];
452 UDIV_QRNND_PREINV(quot_ptr[i + 1], r, r,
453 ((n1 << normalization_steps)
454 | (n0 >>
455 (BITS_PER_MPI_LIMB -
456 normalization_steps))),
457 divisor_limb,
458 divisor_limb_inverted);
459 n1 = n0;
460 }
461 UDIV_QRNND_PREINV(quot_ptr[0], r, r,
462 n1 << normalization_steps,
463 divisor_limb, divisor_limb_inverted);
464 return r >> normalization_steps;
465 } else {
466 mpi_limb_t divisor_limb_inverted;
467
468 /* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB. The
469 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
470 * most significant bit (with weight 2**N) implicit.
471 */
472 /* Special case for DIVISOR_LIMB == 100...000. */
473 if (!(divisor_limb << 1))
474 divisor_limb_inverted = ~(mpi_limb_t) 0;
475 else
476 udiv_qrnnd(divisor_limb_inverted, dummy,
477 -divisor_limb, 0, divisor_limb);
478
479 i = dividend_size - 1;
480 r = dividend_ptr[i];
481
482 if (r >= divisor_limb)
483 r = 0;
484 else
485 quot_ptr[i--] = 0;
486
487 for (; i >= 0; i--) {
488 n0 = dividend_ptr[i];
489 UDIV_QRNND_PREINV(quot_ptr[i], r, r,
490 n0, divisor_limb,
491 divisor_limb_inverted);
492 }
493 return r;
494 }
495 } else {
496 if (UDIV_NEEDS_NORMALIZATION) {
497 int normalization_steps;
498
499 count_leading_zeros(normalization_steps, divisor_limb);
500 if (normalization_steps) {
501 divisor_limb <<= normalization_steps;
502
503 n1 = dividend_ptr[dividend_size - 1];
504 r = n1 >> (BITS_PER_MPI_LIMB -
505 normalization_steps);
506
507 /* Possible optimization:
508 * if (r == 0
509 * && divisor_limb > ((n1 << normalization_steps)
510 * | (dividend_ptr[dividend_size - 2] >> ...)))
511 * ...one division less...
512 */
513 for (i = dividend_size - 2; i >= 0; i--) {
514 n0 = dividend_ptr[i];
515 udiv_qrnnd(quot_ptr[i + 1], r, r,
516 ((n1 << normalization_steps)
517 | (n0 >>
518 (BITS_PER_MPI_LIMB -
519 normalization_steps))),
520 divisor_limb);
521 n1 = n0;
522 }
523 udiv_qrnnd(quot_ptr[0], r, r,
524 n1 << normalization_steps,
525 divisor_limb);
526 return r >> normalization_steps;
527 }
528 }
529 /* No normalization needed, either because udiv_qrnnd doesn't require
530 * it, or because DIVISOR_LIMB is already normalized. */
531 i = dividend_size - 1;
532 r = dividend_ptr[i];
533
534 if (r >= divisor_limb)
535 r = 0;
536 else
537 quot_ptr[i--] = 0;
538
539 for (; i >= 0; i--) {
540 n0 = dividend_ptr[i];
541 udiv_qrnnd(quot_ptr[i], r, r, n0, divisor_limb);
542 }
543 return r;
544 }
545}
diff --git a/lib/mpi/mpih-mul.c b/lib/mpi/mpih-mul.c
index c69c5eef233b..7c841719fdfb 100644
--- a/lib/mpi/mpih-mul.c
+++ b/lib/mpi/mpih-mul.c
@@ -330,36 +330,6 @@ mpih_sqr_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size, mpi_ptr_t tspace)
330 } 330 }
331} 331}
332 332
333/* This should be made into an inline function in gmp.h. */
334int mpihelp_mul_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t size)
335{
336 if (up == vp) {
337 if (size < KARATSUBA_THRESHOLD)
338 mpih_sqr_n_basecase(prodp, up, size);
339 else {
340 mpi_ptr_t tspace;
341 tspace = mpi_alloc_limb_space(2 * size);
342 if (!tspace)
343 return -ENOMEM;
344 mpih_sqr_n(prodp, up, size, tspace);
345 mpi_free_limb_space(tspace);
346 }
347 } else {
348 if (size < KARATSUBA_THRESHOLD)
349 mul_n_basecase(prodp, up, vp, size);
350 else {
351 mpi_ptr_t tspace;
352 tspace = mpi_alloc_limb_space(2 * size);
353 if (!tspace)
354 return -ENOMEM;
355 mul_n(prodp, up, vp, size, tspace);
356 mpi_free_limb_space(tspace);
357 }
358 }
359
360 return 0;
361}
362
363int 333int
364mpihelp_mul_karatsuba_case(mpi_ptr_t prodp, 334mpihelp_mul_karatsuba_case(mpi_ptr_t prodp,
365 mpi_ptr_t up, mpi_size_t usize, 335 mpi_ptr_t up, mpi_size_t usize,
diff --git a/lib/mpi/mpiutil.c b/lib/mpi/mpiutil.c
index 26e4ed31e256..657979f71bef 100644
--- a/lib/mpi/mpiutil.c
+++ b/lib/mpi/mpiutil.c
@@ -106,13 +106,6 @@ int mpi_resize(MPI a, unsigned nlimbs)
106 return 0; 106 return 0;
107} 107}
108 108
109void mpi_clear(MPI a)
110{
111 a->nlimbs = 0;
112 a->nbits = 0;
113 a->flags = 0;
114}
115
116void mpi_free(MPI a) 109void mpi_free(MPI a)
117{ 110{
118 if (!a) 111 if (!a)
@@ -128,84 +121,3 @@ void mpi_free(MPI a)
128 kfree(a); 121 kfree(a);
129} 122}
130EXPORT_SYMBOL_GPL(mpi_free); 123EXPORT_SYMBOL_GPL(mpi_free);
131
132/****************
133 * Note: This copy function should not interpret the MPI
134 * but copy it transparently.
135 */
136int mpi_copy(MPI *copied, const MPI a)
137{
138 size_t i;
139 MPI b;
140
141 *copied = NULL;
142
143 if (a) {
144 b = mpi_alloc(a->nlimbs);
145 if (!b)
146 return -ENOMEM;
147
148 b->nlimbs = a->nlimbs;
149 b->sign = a->sign;
150 b->flags = a->flags;
151 b->nbits = a->nbits;
152
153 for (i = 0; i < b->nlimbs; i++)
154 b->d[i] = a->d[i];
155
156 *copied = b;
157 }
158
159 return 0;
160}
161
162int mpi_set(MPI w, const MPI u)
163{
164 mpi_ptr_t wp, up;
165 mpi_size_t usize = u->nlimbs;
166 int usign = u->sign;
167
168 if (RESIZE_IF_NEEDED(w, (size_t) usize) < 0)
169 return -ENOMEM;
170
171 wp = w->d;
172 up = u->d;
173 MPN_COPY(wp, up, usize);
174 w->nlimbs = usize;
175 w->nbits = u->nbits;
176 w->flags = u->flags;
177 w->sign = usign;
178 return 0;
179}
180
181int mpi_set_ui(MPI w, unsigned long u)
182{
183 if (RESIZE_IF_NEEDED(w, 1) < 0)
184 return -ENOMEM;
185 w->d[0] = u;
186 w->nlimbs = u ? 1 : 0;
187 w->sign = 0;
188 w->nbits = 0;
189 w->flags = 0;
190 return 0;
191}
192
193MPI mpi_alloc_set_ui(unsigned long u)
194{
195 MPI w = mpi_alloc(1);
196 if (!w)
197 return w;
198 w->d[0] = u;
199 w->nlimbs = u ? 1 : 0;
200 w->sign = 0;
201 return w;
202}
203
204void mpi_swap(MPI a, MPI b)
205{
206 struct gcry_mpi tmp;
207
208 tmp = *a;
209 *a = *b;
210 *b = tmp;
211}