diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /lib/zlib_deflate |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'lib/zlib_deflate')
-rw-r--r-- | lib/zlib_deflate/Makefile | 11 | ||||
-rw-r--r-- | lib/zlib_deflate/deflate.c | 1268 | ||||
-rw-r--r-- | lib/zlib_deflate/deflate_syms.c | 21 | ||||
-rw-r--r-- | lib/zlib_deflate/deftree.c | 1113 | ||||
-rw-r--r-- | lib/zlib_deflate/defutil.h | 334 |
5 files changed, 2747 insertions, 0 deletions
diff --git a/lib/zlib_deflate/Makefile b/lib/zlib_deflate/Makefile new file mode 100644 index 000000000000..86275e3fdcbc --- /dev/null +++ b/lib/zlib_deflate/Makefile | |||
@@ -0,0 +1,11 @@ | |||
1 | # | ||
2 | # This is a modified version of zlib, which does all memory | ||
3 | # allocation ahead of time. | ||
4 | # | ||
5 | # This is the compression code, see zlib_inflate for the | ||
6 | # decompression code. | ||
7 | # | ||
8 | |||
9 | obj-$(CONFIG_ZLIB_DEFLATE) += zlib_deflate.o | ||
10 | |||
11 | zlib_deflate-objs := deflate.o deftree.o deflate_syms.o | ||
diff --git a/lib/zlib_deflate/deflate.c b/lib/zlib_deflate/deflate.c new file mode 100644 index 000000000000..ad9a1bf4fc63 --- /dev/null +++ b/lib/zlib_deflate/deflate.c | |||
@@ -0,0 +1,1268 @@ | |||
1 | /* +++ deflate.c */ | ||
2 | /* deflate.c -- compress data using the deflation algorithm | ||
3 | * Copyright (C) 1995-1996 Jean-loup Gailly. | ||
4 | * For conditions of distribution and use, see copyright notice in zlib.h | ||
5 | */ | ||
6 | |||
7 | /* | ||
8 | * ALGORITHM | ||
9 | * | ||
10 | * The "deflation" process depends on being able to identify portions | ||
11 | * of the input text which are identical to earlier input (within a | ||
12 | * sliding window trailing behind the input currently being processed). | ||
13 | * | ||
14 | * The most straightforward technique turns out to be the fastest for | ||
15 | * most input files: try all possible matches and select the longest. | ||
16 | * The key feature of this algorithm is that insertions into the string | ||
17 | * dictionary are very simple and thus fast, and deletions are avoided | ||
18 | * completely. Insertions are performed at each input character, whereas | ||
19 | * string matches are performed only when the previous match ends. So it | ||
20 | * is preferable to spend more time in matches to allow very fast string | ||
21 | * insertions and avoid deletions. The matching algorithm for small | ||
22 | * strings is inspired from that of Rabin & Karp. A brute force approach | ||
23 | * is used to find longer strings when a small match has been found. | ||
24 | * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze | ||
25 | * (by Leonid Broukhis). | ||
26 | * A previous version of this file used a more sophisticated algorithm | ||
27 | * (by Fiala and Greene) which is guaranteed to run in linear amortized | ||
28 | * time, but has a larger average cost, uses more memory and is patented. | ||
29 | * However the F&G algorithm may be faster for some highly redundant | ||
30 | * files if the parameter max_chain_length (described below) is too large. | ||
31 | * | ||
32 | * ACKNOWLEDGEMENTS | ||
33 | * | ||
34 | * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and | ||
35 | * I found it in 'freeze' written by Leonid Broukhis. | ||
36 | * Thanks to many people for bug reports and testing. | ||
37 | * | ||
38 | * REFERENCES | ||
39 | * | ||
40 | * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification". | ||
41 | * Available in ftp://ds.internic.net/rfc/rfc1951.txt | ||
42 | * | ||
43 | * A description of the Rabin and Karp algorithm is given in the book | ||
44 | * "Algorithms" by R. Sedgewick, Addison-Wesley, p252. | ||
45 | * | ||
46 | * Fiala,E.R., and Greene,D.H. | ||
47 | * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 | ||
48 | * | ||
49 | */ | ||
50 | |||
51 | #include <linux/module.h> | ||
52 | #include <linux/zutil.h> | ||
53 | #include "defutil.h" | ||
54 | |||
55 | |||
56 | /* =========================================================================== | ||
57 | * Function prototypes. | ||
58 | */ | ||
59 | typedef enum { | ||
60 | need_more, /* block not completed, need more input or more output */ | ||
61 | block_done, /* block flush performed */ | ||
62 | finish_started, /* finish started, need only more output at next deflate */ | ||
63 | finish_done /* finish done, accept no more input or output */ | ||
64 | } block_state; | ||
65 | |||
66 | typedef block_state (*compress_func) (deflate_state *s, int flush); | ||
67 | /* Compression function. Returns the block state after the call. */ | ||
68 | |||
69 | static void fill_window (deflate_state *s); | ||
70 | static block_state deflate_stored (deflate_state *s, int flush); | ||
71 | static block_state deflate_fast (deflate_state *s, int flush); | ||
72 | static block_state deflate_slow (deflate_state *s, int flush); | ||
73 | static void lm_init (deflate_state *s); | ||
74 | static void putShortMSB (deflate_state *s, uInt b); | ||
75 | static void flush_pending (z_streamp strm); | ||
76 | static int read_buf (z_streamp strm, Byte *buf, unsigned size); | ||
77 | static uInt longest_match (deflate_state *s, IPos cur_match); | ||
78 | |||
79 | #ifdef DEBUG_ZLIB | ||
80 | static void check_match (deflate_state *s, IPos start, IPos match, | ||
81 | int length); | ||
82 | #endif | ||
83 | |||
84 | /* =========================================================================== | ||
85 | * Local data | ||
86 | */ | ||
87 | |||
88 | #define NIL 0 | ||
89 | /* Tail of hash chains */ | ||
90 | |||
91 | #ifndef TOO_FAR | ||
92 | # define TOO_FAR 4096 | ||
93 | #endif | ||
94 | /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */ | ||
95 | |||
96 | #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1) | ||
97 | /* Minimum amount of lookahead, except at the end of the input file. | ||
98 | * See deflate.c for comments about the MIN_MATCH+1. | ||
99 | */ | ||
100 | |||
101 | /* Values for max_lazy_match, good_match and max_chain_length, depending on | ||
102 | * the desired pack level (0..9). The values given below have been tuned to | ||
103 | * exclude worst case performance for pathological files. Better values may be | ||
104 | * found for specific files. | ||
105 | */ | ||
106 | typedef struct config_s { | ||
107 | ush good_length; /* reduce lazy search above this match length */ | ||
108 | ush max_lazy; /* do not perform lazy search above this match length */ | ||
109 | ush nice_length; /* quit search above this match length */ | ||
110 | ush max_chain; | ||
111 | compress_func func; | ||
112 | } config; | ||
113 | |||
114 | static const config configuration_table[10] = { | ||
115 | /* good lazy nice chain */ | ||
116 | /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ | ||
117 | /* 1 */ {4, 4, 8, 4, deflate_fast}, /* maximum speed, no lazy matches */ | ||
118 | /* 2 */ {4, 5, 16, 8, deflate_fast}, | ||
119 | /* 3 */ {4, 6, 32, 32, deflate_fast}, | ||
120 | |||
121 | /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */ | ||
122 | /* 5 */ {8, 16, 32, 32, deflate_slow}, | ||
123 | /* 6 */ {8, 16, 128, 128, deflate_slow}, | ||
124 | /* 7 */ {8, 32, 128, 256, deflate_slow}, | ||
125 | /* 8 */ {32, 128, 258, 1024, deflate_slow}, | ||
126 | /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */ | ||
127 | |||
128 | /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 | ||
129 | * For deflate_fast() (levels <= 3) good is ignored and lazy has a different | ||
130 | * meaning. | ||
131 | */ | ||
132 | |||
133 | #define EQUAL 0 | ||
134 | /* result of memcmp for equal strings */ | ||
135 | |||
136 | /* =========================================================================== | ||
137 | * Update a hash value with the given input byte | ||
138 | * IN assertion: all calls to to UPDATE_HASH are made with consecutive | ||
139 | * input characters, so that a running hash key can be computed from the | ||
140 | * previous key instead of complete recalculation each time. | ||
141 | */ | ||
142 | #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask) | ||
143 | |||
144 | |||
145 | /* =========================================================================== | ||
146 | * Insert string str in the dictionary and set match_head to the previous head | ||
147 | * of the hash chain (the most recent string with same hash key). Return | ||
148 | * the previous length of the hash chain. | ||
149 | * IN assertion: all calls to to INSERT_STRING are made with consecutive | ||
150 | * input characters and the first MIN_MATCH bytes of str are valid | ||
151 | * (except for the last MIN_MATCH-1 bytes of the input file). | ||
152 | */ | ||
153 | #define INSERT_STRING(s, str, match_head) \ | ||
154 | (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ | ||
155 | s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \ | ||
156 | s->head[s->ins_h] = (Pos)(str)) | ||
157 | |||
158 | /* =========================================================================== | ||
159 | * Initialize the hash table (avoiding 64K overflow for 16 bit systems). | ||
160 | * prev[] will be initialized on the fly. | ||
161 | */ | ||
162 | #define CLEAR_HASH(s) \ | ||
163 | s->head[s->hash_size-1] = NIL; \ | ||
164 | memset((char *)s->head, 0, (unsigned)(s->hash_size-1)*sizeof(*s->head)); | ||
165 | |||
166 | /* ========================================================================= */ | ||
167 | int zlib_deflateInit_( | ||
168 | z_streamp strm, | ||
169 | int level, | ||
170 | const char *version, | ||
171 | int stream_size | ||
172 | ) | ||
173 | { | ||
174 | return zlib_deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, | ||
175 | DEF_MEM_LEVEL, | ||
176 | Z_DEFAULT_STRATEGY, version, stream_size); | ||
177 | /* To do: ignore strm->next_in if we use it as window */ | ||
178 | } | ||
179 | |||
180 | /* ========================================================================= */ | ||
181 | int zlib_deflateInit2_( | ||
182 | z_streamp strm, | ||
183 | int level, | ||
184 | int method, | ||
185 | int windowBits, | ||
186 | int memLevel, | ||
187 | int strategy, | ||
188 | const char *version, | ||
189 | int stream_size | ||
190 | ) | ||
191 | { | ||
192 | deflate_state *s; | ||
193 | int noheader = 0; | ||
194 | static char* my_version = ZLIB_VERSION; | ||
195 | deflate_workspace *mem; | ||
196 | |||
197 | ush *overlay; | ||
198 | /* We overlay pending_buf and d_buf+l_buf. This works since the average | ||
199 | * output size for (length,distance) codes is <= 24 bits. | ||
200 | */ | ||
201 | |||
202 | if (version == NULL || version[0] != my_version[0] || | ||
203 | stream_size != sizeof(z_stream)) { | ||
204 | return Z_VERSION_ERROR; | ||
205 | } | ||
206 | if (strm == NULL) return Z_STREAM_ERROR; | ||
207 | |||
208 | strm->msg = NULL; | ||
209 | |||
210 | if (level == Z_DEFAULT_COMPRESSION) level = 6; | ||
211 | |||
212 | mem = (deflate_workspace *) strm->workspace; | ||
213 | |||
214 | if (windowBits < 0) { /* undocumented feature: suppress zlib header */ | ||
215 | noheader = 1; | ||
216 | windowBits = -windowBits; | ||
217 | } | ||
218 | if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || | ||
219 | windowBits < 9 || windowBits > 15 || level < 0 || level > 9 || | ||
220 | strategy < 0 || strategy > Z_HUFFMAN_ONLY) { | ||
221 | return Z_STREAM_ERROR; | ||
222 | } | ||
223 | s = (deflate_state *) &(mem->deflate_memory); | ||
224 | strm->state = (struct internal_state *)s; | ||
225 | s->strm = strm; | ||
226 | |||
227 | s->noheader = noheader; | ||
228 | s->w_bits = windowBits; | ||
229 | s->w_size = 1 << s->w_bits; | ||
230 | s->w_mask = s->w_size - 1; | ||
231 | |||
232 | s->hash_bits = memLevel + 7; | ||
233 | s->hash_size = 1 << s->hash_bits; | ||
234 | s->hash_mask = s->hash_size - 1; | ||
235 | s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH); | ||
236 | |||
237 | s->window = (Byte *) mem->window_memory; | ||
238 | s->prev = (Pos *) mem->prev_memory; | ||
239 | s->head = (Pos *) mem->head_memory; | ||
240 | |||
241 | s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ | ||
242 | |||
243 | overlay = (ush *) mem->overlay_memory; | ||
244 | s->pending_buf = (uch *) overlay; | ||
245 | s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L); | ||
246 | |||
247 | s->d_buf = overlay + s->lit_bufsize/sizeof(ush); | ||
248 | s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize; | ||
249 | |||
250 | s->level = level; | ||
251 | s->strategy = strategy; | ||
252 | s->method = (Byte)method; | ||
253 | |||
254 | return zlib_deflateReset(strm); | ||
255 | } | ||
256 | |||
257 | /* ========================================================================= */ | ||
258 | int zlib_deflateSetDictionary( | ||
259 | z_streamp strm, | ||
260 | const Byte *dictionary, | ||
261 | uInt dictLength | ||
262 | ) | ||
263 | { | ||
264 | deflate_state *s; | ||
265 | uInt length = dictLength; | ||
266 | uInt n; | ||
267 | IPos hash_head = 0; | ||
268 | |||
269 | if (strm == NULL || strm->state == NULL || dictionary == NULL) | ||
270 | return Z_STREAM_ERROR; | ||
271 | |||
272 | s = (deflate_state *) strm->state; | ||
273 | if (s->status != INIT_STATE) return Z_STREAM_ERROR; | ||
274 | |||
275 | strm->adler = zlib_adler32(strm->adler, dictionary, dictLength); | ||
276 | |||
277 | if (length < MIN_MATCH) return Z_OK; | ||
278 | if (length > MAX_DIST(s)) { | ||
279 | length = MAX_DIST(s); | ||
280 | #ifndef USE_DICT_HEAD | ||
281 | dictionary += dictLength - length; /* use the tail of the dictionary */ | ||
282 | #endif | ||
283 | } | ||
284 | memcpy((char *)s->window, dictionary, length); | ||
285 | s->strstart = length; | ||
286 | s->block_start = (long)length; | ||
287 | |||
288 | /* Insert all strings in the hash table (except for the last two bytes). | ||
289 | * s->lookahead stays null, so s->ins_h will be recomputed at the next | ||
290 | * call of fill_window. | ||
291 | */ | ||
292 | s->ins_h = s->window[0]; | ||
293 | UPDATE_HASH(s, s->ins_h, s->window[1]); | ||
294 | for (n = 0; n <= length - MIN_MATCH; n++) { | ||
295 | INSERT_STRING(s, n, hash_head); | ||
296 | } | ||
297 | if (hash_head) hash_head = 0; /* to make compiler happy */ | ||
298 | return Z_OK; | ||
299 | } | ||
300 | |||
301 | /* ========================================================================= */ | ||
302 | int zlib_deflateReset( | ||
303 | z_streamp strm | ||
304 | ) | ||
305 | { | ||
306 | deflate_state *s; | ||
307 | |||
308 | if (strm == NULL || strm->state == NULL) | ||
309 | return Z_STREAM_ERROR; | ||
310 | |||
311 | strm->total_in = strm->total_out = 0; | ||
312 | strm->msg = NULL; | ||
313 | strm->data_type = Z_UNKNOWN; | ||
314 | |||
315 | s = (deflate_state *)strm->state; | ||
316 | s->pending = 0; | ||
317 | s->pending_out = s->pending_buf; | ||
318 | |||
319 | if (s->noheader < 0) { | ||
320 | s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */ | ||
321 | } | ||
322 | s->status = s->noheader ? BUSY_STATE : INIT_STATE; | ||
323 | strm->adler = 1; | ||
324 | s->last_flush = Z_NO_FLUSH; | ||
325 | |||
326 | zlib_tr_init(s); | ||
327 | lm_init(s); | ||
328 | |||
329 | return Z_OK; | ||
330 | } | ||
331 | |||
332 | /* ========================================================================= */ | ||
333 | int zlib_deflateParams( | ||
334 | z_streamp strm, | ||
335 | int level, | ||
336 | int strategy | ||
337 | ) | ||
338 | { | ||
339 | deflate_state *s; | ||
340 | compress_func func; | ||
341 | int err = Z_OK; | ||
342 | |||
343 | if (strm == NULL || strm->state == NULL) return Z_STREAM_ERROR; | ||
344 | s = (deflate_state *) strm->state; | ||
345 | |||
346 | if (level == Z_DEFAULT_COMPRESSION) { | ||
347 | level = 6; | ||
348 | } | ||
349 | if (level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) { | ||
350 | return Z_STREAM_ERROR; | ||
351 | } | ||
352 | func = configuration_table[s->level].func; | ||
353 | |||
354 | if (func != configuration_table[level].func && strm->total_in != 0) { | ||
355 | /* Flush the last buffer: */ | ||
356 | err = zlib_deflate(strm, Z_PARTIAL_FLUSH); | ||
357 | } | ||
358 | if (s->level != level) { | ||
359 | s->level = level; | ||
360 | s->max_lazy_match = configuration_table[level].max_lazy; | ||
361 | s->good_match = configuration_table[level].good_length; | ||
362 | s->nice_match = configuration_table[level].nice_length; | ||
363 | s->max_chain_length = configuration_table[level].max_chain; | ||
364 | } | ||
365 | s->strategy = strategy; | ||
366 | return err; | ||
367 | } | ||
368 | |||
369 | /* ========================================================================= | ||
370 | * Put a short in the pending buffer. The 16-bit value is put in MSB order. | ||
371 | * IN assertion: the stream state is correct and there is enough room in | ||
372 | * pending_buf. | ||
373 | */ | ||
374 | static void putShortMSB( | ||
375 | deflate_state *s, | ||
376 | uInt b | ||
377 | ) | ||
378 | { | ||
379 | put_byte(s, (Byte)(b >> 8)); | ||
380 | put_byte(s, (Byte)(b & 0xff)); | ||
381 | } | ||
382 | |||
383 | /* ========================================================================= | ||
384 | * Flush as much pending output as possible. All deflate() output goes | ||
385 | * through this function so some applications may wish to modify it | ||
386 | * to avoid allocating a large strm->next_out buffer and copying into it. | ||
387 | * (See also read_buf()). | ||
388 | */ | ||
389 | static void flush_pending( | ||
390 | z_streamp strm | ||
391 | ) | ||
392 | { | ||
393 | deflate_state *s = (deflate_state *) strm->state; | ||
394 | unsigned len = s->pending; | ||
395 | |||
396 | if (len > strm->avail_out) len = strm->avail_out; | ||
397 | if (len == 0) return; | ||
398 | |||
399 | if (strm->next_out != NULL) { | ||
400 | memcpy(strm->next_out, s->pending_out, len); | ||
401 | strm->next_out += len; | ||
402 | } | ||
403 | s->pending_out += len; | ||
404 | strm->total_out += len; | ||
405 | strm->avail_out -= len; | ||
406 | s->pending -= len; | ||
407 | if (s->pending == 0) { | ||
408 | s->pending_out = s->pending_buf; | ||
409 | } | ||
410 | } | ||
411 | |||
412 | /* ========================================================================= */ | ||
413 | int zlib_deflate( | ||
414 | z_streamp strm, | ||
415 | int flush | ||
416 | ) | ||
417 | { | ||
418 | int old_flush; /* value of flush param for previous deflate call */ | ||
419 | deflate_state *s; | ||
420 | |||
421 | if (strm == NULL || strm->state == NULL || | ||
422 | flush > Z_FINISH || flush < 0) { | ||
423 | return Z_STREAM_ERROR; | ||
424 | } | ||
425 | s = (deflate_state *) strm->state; | ||
426 | |||
427 | if ((strm->next_in == NULL && strm->avail_in != 0) || | ||
428 | (s->status == FINISH_STATE && flush != Z_FINISH)) { | ||
429 | return Z_STREAM_ERROR; | ||
430 | } | ||
431 | if (strm->avail_out == 0) return Z_BUF_ERROR; | ||
432 | |||
433 | s->strm = strm; /* just in case */ | ||
434 | old_flush = s->last_flush; | ||
435 | s->last_flush = flush; | ||
436 | |||
437 | /* Write the zlib header */ | ||
438 | if (s->status == INIT_STATE) { | ||
439 | |||
440 | uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8; | ||
441 | uInt level_flags = (s->level-1) >> 1; | ||
442 | |||
443 | if (level_flags > 3) level_flags = 3; | ||
444 | header |= (level_flags << 6); | ||
445 | if (s->strstart != 0) header |= PRESET_DICT; | ||
446 | header += 31 - (header % 31); | ||
447 | |||
448 | s->status = BUSY_STATE; | ||
449 | putShortMSB(s, header); | ||
450 | |||
451 | /* Save the adler32 of the preset dictionary: */ | ||
452 | if (s->strstart != 0) { | ||
453 | putShortMSB(s, (uInt)(strm->adler >> 16)); | ||
454 | putShortMSB(s, (uInt)(strm->adler & 0xffff)); | ||
455 | } | ||
456 | strm->adler = 1L; | ||
457 | } | ||
458 | |||
459 | /* Flush as much pending output as possible */ | ||
460 | if (s->pending != 0) { | ||
461 | flush_pending(strm); | ||
462 | if (strm->avail_out == 0) { | ||
463 | /* Since avail_out is 0, deflate will be called again with | ||
464 | * more output space, but possibly with both pending and | ||
465 | * avail_in equal to zero. There won't be anything to do, | ||
466 | * but this is not an error situation so make sure we | ||
467 | * return OK instead of BUF_ERROR at next call of deflate: | ||
468 | */ | ||
469 | s->last_flush = -1; | ||
470 | return Z_OK; | ||
471 | } | ||
472 | |||
473 | /* Make sure there is something to do and avoid duplicate consecutive | ||
474 | * flushes. For repeated and useless calls with Z_FINISH, we keep | ||
475 | * returning Z_STREAM_END instead of Z_BUFF_ERROR. | ||
476 | */ | ||
477 | } else if (strm->avail_in == 0 && flush <= old_flush && | ||
478 | flush != Z_FINISH) { | ||
479 | return Z_BUF_ERROR; | ||
480 | } | ||
481 | |||
482 | /* User must not provide more input after the first FINISH: */ | ||
483 | if (s->status == FINISH_STATE && strm->avail_in != 0) { | ||
484 | return Z_BUF_ERROR; | ||
485 | } | ||
486 | |||
487 | /* Start a new block or continue the current one. | ||
488 | */ | ||
489 | if (strm->avail_in != 0 || s->lookahead != 0 || | ||
490 | (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) { | ||
491 | block_state bstate; | ||
492 | |||
493 | bstate = (*(configuration_table[s->level].func))(s, flush); | ||
494 | |||
495 | if (bstate == finish_started || bstate == finish_done) { | ||
496 | s->status = FINISH_STATE; | ||
497 | } | ||
498 | if (bstate == need_more || bstate == finish_started) { | ||
499 | if (strm->avail_out == 0) { | ||
500 | s->last_flush = -1; /* avoid BUF_ERROR next call, see above */ | ||
501 | } | ||
502 | return Z_OK; | ||
503 | /* If flush != Z_NO_FLUSH && avail_out == 0, the next call | ||
504 | * of deflate should use the same flush parameter to make sure | ||
505 | * that the flush is complete. So we don't have to output an | ||
506 | * empty block here, this will be done at next call. This also | ||
507 | * ensures that for a very small output buffer, we emit at most | ||
508 | * one empty block. | ||
509 | */ | ||
510 | } | ||
511 | if (bstate == block_done) { | ||
512 | if (flush == Z_PARTIAL_FLUSH) { | ||
513 | zlib_tr_align(s); | ||
514 | } else if (flush == Z_PACKET_FLUSH) { | ||
515 | /* Output just the 3-bit `stored' block type value, | ||
516 | but not a zero length. */ | ||
517 | zlib_tr_stored_type_only(s); | ||
518 | } else { /* FULL_FLUSH or SYNC_FLUSH */ | ||
519 | zlib_tr_stored_block(s, (char*)0, 0L, 0); | ||
520 | /* For a full flush, this empty block will be recognized | ||
521 | * as a special marker by inflate_sync(). | ||
522 | */ | ||
523 | if (flush == Z_FULL_FLUSH) { | ||
524 | CLEAR_HASH(s); /* forget history */ | ||
525 | } | ||
526 | } | ||
527 | flush_pending(strm); | ||
528 | if (strm->avail_out == 0) { | ||
529 | s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */ | ||
530 | return Z_OK; | ||
531 | } | ||
532 | } | ||
533 | } | ||
534 | Assert(strm->avail_out > 0, "bug2"); | ||
535 | |||
536 | if (flush != Z_FINISH) return Z_OK; | ||
537 | if (s->noheader) return Z_STREAM_END; | ||
538 | |||
539 | /* Write the zlib trailer (adler32) */ | ||
540 | putShortMSB(s, (uInt)(strm->adler >> 16)); | ||
541 | putShortMSB(s, (uInt)(strm->adler & 0xffff)); | ||
542 | flush_pending(strm); | ||
543 | /* If avail_out is zero, the application will call deflate again | ||
544 | * to flush the rest. | ||
545 | */ | ||
546 | s->noheader = -1; /* write the trailer only once! */ | ||
547 | return s->pending != 0 ? Z_OK : Z_STREAM_END; | ||
548 | } | ||
549 | |||
550 | /* ========================================================================= */ | ||
551 | int zlib_deflateEnd( | ||
552 | z_streamp strm | ||
553 | ) | ||
554 | { | ||
555 | int status; | ||
556 | deflate_state *s; | ||
557 | |||
558 | if (strm == NULL || strm->state == NULL) return Z_STREAM_ERROR; | ||
559 | s = (deflate_state *) strm->state; | ||
560 | |||
561 | status = s->status; | ||
562 | if (status != INIT_STATE && status != BUSY_STATE && | ||
563 | status != FINISH_STATE) { | ||
564 | return Z_STREAM_ERROR; | ||
565 | } | ||
566 | |||
567 | strm->state = NULL; | ||
568 | |||
569 | return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; | ||
570 | } | ||
571 | |||
572 | /* ========================================================================= | ||
573 | * Copy the source state to the destination state. | ||
574 | */ | ||
575 | int zlib_deflateCopy ( | ||
576 | z_streamp dest, | ||
577 | z_streamp source | ||
578 | ) | ||
579 | { | ||
580 | #ifdef MAXSEG_64K | ||
581 | return Z_STREAM_ERROR; | ||
582 | #else | ||
583 | deflate_state *ds; | ||
584 | deflate_state *ss; | ||
585 | ush *overlay; | ||
586 | deflate_workspace *mem; | ||
587 | |||
588 | |||
589 | if (source == NULL || dest == NULL || source->state == NULL) { | ||
590 | return Z_STREAM_ERROR; | ||
591 | } | ||
592 | |||
593 | ss = (deflate_state *) source->state; | ||
594 | |||
595 | *dest = *source; | ||
596 | |||
597 | mem = (deflate_workspace *) dest->workspace; | ||
598 | |||
599 | ds = &(mem->deflate_memory); | ||
600 | |||
601 | dest->state = (struct internal_state *) ds; | ||
602 | *ds = *ss; | ||
603 | ds->strm = dest; | ||
604 | |||
605 | ds->window = (Byte *) mem->window_memory; | ||
606 | ds->prev = (Pos *) mem->prev_memory; | ||
607 | ds->head = (Pos *) mem->head_memory; | ||
608 | overlay = (ush *) mem->overlay_memory; | ||
609 | ds->pending_buf = (uch *) overlay; | ||
610 | |||
611 | memcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte)); | ||
612 | memcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos)); | ||
613 | memcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos)); | ||
614 | memcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size); | ||
615 | |||
616 | ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf); | ||
617 | ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush); | ||
618 | ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize; | ||
619 | |||
620 | ds->l_desc.dyn_tree = ds->dyn_ltree; | ||
621 | ds->d_desc.dyn_tree = ds->dyn_dtree; | ||
622 | ds->bl_desc.dyn_tree = ds->bl_tree; | ||
623 | |||
624 | return Z_OK; | ||
625 | #endif | ||
626 | } | ||
627 | |||
628 | /* =========================================================================== | ||
629 | * Read a new buffer from the current input stream, update the adler32 | ||
630 | * and total number of bytes read. All deflate() input goes through | ||
631 | * this function so some applications may wish to modify it to avoid | ||
632 | * allocating a large strm->next_in buffer and copying from it. | ||
633 | * (See also flush_pending()). | ||
634 | */ | ||
635 | static int read_buf( | ||
636 | z_streamp strm, | ||
637 | Byte *buf, | ||
638 | unsigned size | ||
639 | ) | ||
640 | { | ||
641 | unsigned len = strm->avail_in; | ||
642 | |||
643 | if (len > size) len = size; | ||
644 | if (len == 0) return 0; | ||
645 | |||
646 | strm->avail_in -= len; | ||
647 | |||
648 | if (!((deflate_state *)(strm->state))->noheader) { | ||
649 | strm->adler = zlib_adler32(strm->adler, strm->next_in, len); | ||
650 | } | ||
651 | memcpy(buf, strm->next_in, len); | ||
652 | strm->next_in += len; | ||
653 | strm->total_in += len; | ||
654 | |||
655 | return (int)len; | ||
656 | } | ||
657 | |||
658 | /* =========================================================================== | ||
659 | * Initialize the "longest match" routines for a new zlib stream | ||
660 | */ | ||
661 | static void lm_init( | ||
662 | deflate_state *s | ||
663 | ) | ||
664 | { | ||
665 | s->window_size = (ulg)2L*s->w_size; | ||
666 | |||
667 | CLEAR_HASH(s); | ||
668 | |||
669 | /* Set the default configuration parameters: | ||
670 | */ | ||
671 | s->max_lazy_match = configuration_table[s->level].max_lazy; | ||
672 | s->good_match = configuration_table[s->level].good_length; | ||
673 | s->nice_match = configuration_table[s->level].nice_length; | ||
674 | s->max_chain_length = configuration_table[s->level].max_chain; | ||
675 | |||
676 | s->strstart = 0; | ||
677 | s->block_start = 0L; | ||
678 | s->lookahead = 0; | ||
679 | s->match_length = s->prev_length = MIN_MATCH-1; | ||
680 | s->match_available = 0; | ||
681 | s->ins_h = 0; | ||
682 | } | ||
683 | |||
684 | /* =========================================================================== | ||
685 | * Set match_start to the longest match starting at the given string and | ||
686 | * return its length. Matches shorter or equal to prev_length are discarded, | ||
687 | * in which case the result is equal to prev_length and match_start is | ||
688 | * garbage. | ||
689 | * IN assertions: cur_match is the head of the hash chain for the current | ||
690 | * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 | ||
691 | * OUT assertion: the match length is not greater than s->lookahead. | ||
692 | */ | ||
693 | /* For 80x86 and 680x0, an optimized version will be provided in match.asm or | ||
694 | * match.S. The code will be functionally equivalent. | ||
695 | */ | ||
696 | static uInt longest_match( | ||
697 | deflate_state *s, | ||
698 | IPos cur_match /* current match */ | ||
699 | ) | ||
700 | { | ||
701 | unsigned chain_length = s->max_chain_length;/* max hash chain length */ | ||
702 | register Byte *scan = s->window + s->strstart; /* current string */ | ||
703 | register Byte *match; /* matched string */ | ||
704 | register int len; /* length of current match */ | ||
705 | int best_len = s->prev_length; /* best match length so far */ | ||
706 | int nice_match = s->nice_match; /* stop if match long enough */ | ||
707 | IPos limit = s->strstart > (IPos)MAX_DIST(s) ? | ||
708 | s->strstart - (IPos)MAX_DIST(s) : NIL; | ||
709 | /* Stop when cur_match becomes <= limit. To simplify the code, | ||
710 | * we prevent matches with the string of window index 0. | ||
711 | */ | ||
712 | Pos *prev = s->prev; | ||
713 | uInt wmask = s->w_mask; | ||
714 | |||
715 | #ifdef UNALIGNED_OK | ||
716 | /* Compare two bytes at a time. Note: this is not always beneficial. | ||
717 | * Try with and without -DUNALIGNED_OK to check. | ||
718 | */ | ||
719 | register Byte *strend = s->window + s->strstart + MAX_MATCH - 1; | ||
720 | register ush scan_start = *(ush*)scan; | ||
721 | register ush scan_end = *(ush*)(scan+best_len-1); | ||
722 | #else | ||
723 | register Byte *strend = s->window + s->strstart + MAX_MATCH; | ||
724 | register Byte scan_end1 = scan[best_len-1]; | ||
725 | register Byte scan_end = scan[best_len]; | ||
726 | #endif | ||
727 | |||
728 | /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. | ||
729 | * It is easy to get rid of this optimization if necessary. | ||
730 | */ | ||
731 | Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); | ||
732 | |||
733 | /* Do not waste too much time if we already have a good match: */ | ||
734 | if (s->prev_length >= s->good_match) { | ||
735 | chain_length >>= 2; | ||
736 | } | ||
737 | /* Do not look for matches beyond the end of the input. This is necessary | ||
738 | * to make deflate deterministic. | ||
739 | */ | ||
740 | if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead; | ||
741 | |||
742 | Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); | ||
743 | |||
744 | do { | ||
745 | Assert(cur_match < s->strstart, "no future"); | ||
746 | match = s->window + cur_match; | ||
747 | |||
748 | /* Skip to next match if the match length cannot increase | ||
749 | * or if the match length is less than 2: | ||
750 | */ | ||
751 | #if (defined(UNALIGNED_OK) && MAX_MATCH == 258) | ||
752 | /* This code assumes sizeof(unsigned short) == 2. Do not use | ||
753 | * UNALIGNED_OK if your compiler uses a different size. | ||
754 | */ | ||
755 | if (*(ush*)(match+best_len-1) != scan_end || | ||
756 | *(ush*)match != scan_start) continue; | ||
757 | |||
758 | /* It is not necessary to compare scan[2] and match[2] since they are | ||
759 | * always equal when the other bytes match, given that the hash keys | ||
760 | * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at | ||
761 | * strstart+3, +5, ... up to strstart+257. We check for insufficient | ||
762 | * lookahead only every 4th comparison; the 128th check will be made | ||
763 | * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is | ||
764 | * necessary to put more guard bytes at the end of the window, or | ||
765 | * to check more often for insufficient lookahead. | ||
766 | */ | ||
767 | Assert(scan[2] == match[2], "scan[2]?"); | ||
768 | scan++, match++; | ||
769 | do { | ||
770 | } while (*(ush*)(scan+=2) == *(ush*)(match+=2) && | ||
771 | *(ush*)(scan+=2) == *(ush*)(match+=2) && | ||
772 | *(ush*)(scan+=2) == *(ush*)(match+=2) && | ||
773 | *(ush*)(scan+=2) == *(ush*)(match+=2) && | ||
774 | scan < strend); | ||
775 | /* The funny "do {}" generates better code on most compilers */ | ||
776 | |||
777 | /* Here, scan <= window+strstart+257 */ | ||
778 | Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); | ||
779 | if (*scan == *match) scan++; | ||
780 | |||
781 | len = (MAX_MATCH - 1) - (int)(strend-scan); | ||
782 | scan = strend - (MAX_MATCH-1); | ||
783 | |||
784 | #else /* UNALIGNED_OK */ | ||
785 | |||
786 | if (match[best_len] != scan_end || | ||
787 | match[best_len-1] != scan_end1 || | ||
788 | *match != *scan || | ||
789 | *++match != scan[1]) continue; | ||
790 | |||
791 | /* The check at best_len-1 can be removed because it will be made | ||
792 | * again later. (This heuristic is not always a win.) | ||
793 | * It is not necessary to compare scan[2] and match[2] since they | ||
794 | * are always equal when the other bytes match, given that | ||
795 | * the hash keys are equal and that HASH_BITS >= 8. | ||
796 | */ | ||
797 | scan += 2, match++; | ||
798 | Assert(*scan == *match, "match[2]?"); | ||
799 | |||
800 | /* We check for insufficient lookahead only every 8th comparison; | ||
801 | * the 256th check will be made at strstart+258. | ||
802 | */ | ||
803 | do { | ||
804 | } while (*++scan == *++match && *++scan == *++match && | ||
805 | *++scan == *++match && *++scan == *++match && | ||
806 | *++scan == *++match && *++scan == *++match && | ||
807 | *++scan == *++match && *++scan == *++match && | ||
808 | scan < strend); | ||
809 | |||
810 | Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); | ||
811 | |||
812 | len = MAX_MATCH - (int)(strend - scan); | ||
813 | scan = strend - MAX_MATCH; | ||
814 | |||
815 | #endif /* UNALIGNED_OK */ | ||
816 | |||
817 | if (len > best_len) { | ||
818 | s->match_start = cur_match; | ||
819 | best_len = len; | ||
820 | if (len >= nice_match) break; | ||
821 | #ifdef UNALIGNED_OK | ||
822 | scan_end = *(ush*)(scan+best_len-1); | ||
823 | #else | ||
824 | scan_end1 = scan[best_len-1]; | ||
825 | scan_end = scan[best_len]; | ||
826 | #endif | ||
827 | } | ||
828 | } while ((cur_match = prev[cur_match & wmask]) > limit | ||
829 | && --chain_length != 0); | ||
830 | |||
831 | if ((uInt)best_len <= s->lookahead) return best_len; | ||
832 | return s->lookahead; | ||
833 | } | ||
834 | |||
835 | #ifdef DEBUG_ZLIB | ||
836 | /* =========================================================================== | ||
837 | * Check that the match at match_start is indeed a match. | ||
838 | */ | ||
839 | static void check_match( | ||
840 | deflate_state *s, | ||
841 | IPos start, | ||
842 | IPos match, | ||
843 | int length | ||
844 | ) | ||
845 | { | ||
846 | /* check that the match is indeed a match */ | ||
847 | if (memcmp((char *)s->window + match, | ||
848 | (char *)s->window + start, length) != EQUAL) { | ||
849 | fprintf(stderr, " start %u, match %u, length %d\n", | ||
850 | start, match, length); | ||
851 | do { | ||
852 | fprintf(stderr, "%c%c", s->window[match++], s->window[start++]); | ||
853 | } while (--length != 0); | ||
854 | z_error("invalid match"); | ||
855 | } | ||
856 | if (z_verbose > 1) { | ||
857 | fprintf(stderr,"\\[%d,%d]", start-match, length); | ||
858 | do { putc(s->window[start++], stderr); } while (--length != 0); | ||
859 | } | ||
860 | } | ||
861 | #else | ||
862 | # define check_match(s, start, match, length) | ||
863 | #endif | ||
864 | |||
865 | /* =========================================================================== | ||
866 | * Fill the window when the lookahead becomes insufficient. | ||
867 | * Updates strstart and lookahead. | ||
868 | * | ||
869 | * IN assertion: lookahead < MIN_LOOKAHEAD | ||
870 | * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD | ||
871 | * At least one byte has been read, or avail_in == 0; reads are | ||
872 | * performed for at least two bytes (required for the zip translate_eol | ||
873 | * option -- not supported here). | ||
874 | */ | ||
875 | static void fill_window( | ||
876 | deflate_state *s | ||
877 | ) | ||
878 | { | ||
879 | register unsigned n, m; | ||
880 | register Pos *p; | ||
881 | unsigned more; /* Amount of free space at the end of the window. */ | ||
882 | uInt wsize = s->w_size; | ||
883 | |||
884 | do { | ||
885 | more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart); | ||
886 | |||
887 | /* Deal with !@#$% 64K limit: */ | ||
888 | if (more == 0 && s->strstart == 0 && s->lookahead == 0) { | ||
889 | more = wsize; | ||
890 | |||
891 | } else if (more == (unsigned)(-1)) { | ||
892 | /* Very unlikely, but possible on 16 bit machine if strstart == 0 | ||
893 | * and lookahead == 1 (input done one byte at time) | ||
894 | */ | ||
895 | more--; | ||
896 | |||
897 | /* If the window is almost full and there is insufficient lookahead, | ||
898 | * move the upper half to the lower one to make room in the upper half. | ||
899 | */ | ||
900 | } else if (s->strstart >= wsize+MAX_DIST(s)) { | ||
901 | |||
902 | memcpy((char *)s->window, (char *)s->window+wsize, | ||
903 | (unsigned)wsize); | ||
904 | s->match_start -= wsize; | ||
905 | s->strstart -= wsize; /* we now have strstart >= MAX_DIST */ | ||
906 | s->block_start -= (long) wsize; | ||
907 | |||
908 | /* Slide the hash table (could be avoided with 32 bit values | ||
909 | at the expense of memory usage). We slide even when level == 0 | ||
910 | to keep the hash table consistent if we switch back to level > 0 | ||
911 | later. (Using level 0 permanently is not an optimal usage of | ||
912 | zlib, so we don't care about this pathological case.) | ||
913 | */ | ||
914 | n = s->hash_size; | ||
915 | p = &s->head[n]; | ||
916 | do { | ||
917 | m = *--p; | ||
918 | *p = (Pos)(m >= wsize ? m-wsize : NIL); | ||
919 | } while (--n); | ||
920 | |||
921 | n = wsize; | ||
922 | p = &s->prev[n]; | ||
923 | do { | ||
924 | m = *--p; | ||
925 | *p = (Pos)(m >= wsize ? m-wsize : NIL); | ||
926 | /* If n is not on any hash chain, prev[n] is garbage but | ||
927 | * its value will never be used. | ||
928 | */ | ||
929 | } while (--n); | ||
930 | more += wsize; | ||
931 | } | ||
932 | if (s->strm->avail_in == 0) return; | ||
933 | |||
934 | /* If there was no sliding: | ||
935 | * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && | ||
936 | * more == window_size - lookahead - strstart | ||
937 | * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) | ||
938 | * => more >= window_size - 2*WSIZE + 2 | ||
939 | * In the BIG_MEM or MMAP case (not yet supported), | ||
940 | * window_size == input_size + MIN_LOOKAHEAD && | ||
941 | * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. | ||
942 | * Otherwise, window_size == 2*WSIZE so more >= 2. | ||
943 | * If there was sliding, more >= WSIZE. So in all cases, more >= 2. | ||
944 | */ | ||
945 | Assert(more >= 2, "more < 2"); | ||
946 | |||
947 | n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more); | ||
948 | s->lookahead += n; | ||
949 | |||
950 | /* Initialize the hash value now that we have some input: */ | ||
951 | if (s->lookahead >= MIN_MATCH) { | ||
952 | s->ins_h = s->window[s->strstart]; | ||
953 | UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); | ||
954 | #if MIN_MATCH != 3 | ||
955 | Call UPDATE_HASH() MIN_MATCH-3 more times | ||
956 | #endif | ||
957 | } | ||
958 | /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, | ||
959 | * but this is not important since only literal bytes will be emitted. | ||
960 | */ | ||
961 | |||
962 | } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); | ||
963 | } | ||
964 | |||
965 | /* =========================================================================== | ||
966 | * Flush the current block, with given end-of-file flag. | ||
967 | * IN assertion: strstart is set to the end of the current match. | ||
968 | */ | ||
969 | #define FLUSH_BLOCK_ONLY(s, eof) { \ | ||
970 | zlib_tr_flush_block(s, (s->block_start >= 0L ? \ | ||
971 | (char *)&s->window[(unsigned)s->block_start] : \ | ||
972 | NULL), \ | ||
973 | (ulg)((long)s->strstart - s->block_start), \ | ||
974 | (eof)); \ | ||
975 | s->block_start = s->strstart; \ | ||
976 | flush_pending(s->strm); \ | ||
977 | Tracev((stderr,"[FLUSH]")); \ | ||
978 | } | ||
979 | |||
980 | /* Same but force premature exit if necessary. */ | ||
981 | #define FLUSH_BLOCK(s, eof) { \ | ||
982 | FLUSH_BLOCK_ONLY(s, eof); \ | ||
983 | if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \ | ||
984 | } | ||
985 | |||
986 | /* =========================================================================== | ||
987 | * Copy without compression as much as possible from the input stream, return | ||
988 | * the current block state. | ||
989 | * This function does not insert new strings in the dictionary since | ||
990 | * uncompressible data is probably not useful. This function is used | ||
991 | * only for the level=0 compression option. | ||
992 | * NOTE: this function should be optimized to avoid extra copying from | ||
993 | * window to pending_buf. | ||
994 | */ | ||
995 | static block_state deflate_stored( | ||
996 | deflate_state *s, | ||
997 | int flush | ||
998 | ) | ||
999 | { | ||
1000 | /* Stored blocks are limited to 0xffff bytes, pending_buf is limited | ||
1001 | * to pending_buf_size, and each stored block has a 5 byte header: | ||
1002 | */ | ||
1003 | ulg max_block_size = 0xffff; | ||
1004 | ulg max_start; | ||
1005 | |||
1006 | if (max_block_size > s->pending_buf_size - 5) { | ||
1007 | max_block_size = s->pending_buf_size - 5; | ||
1008 | } | ||
1009 | |||
1010 | /* Copy as much as possible from input to output: */ | ||
1011 | for (;;) { | ||
1012 | /* Fill the window as much as possible: */ | ||
1013 | if (s->lookahead <= 1) { | ||
1014 | |||
1015 | Assert(s->strstart < s->w_size+MAX_DIST(s) || | ||
1016 | s->block_start >= (long)s->w_size, "slide too late"); | ||
1017 | |||
1018 | fill_window(s); | ||
1019 | if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more; | ||
1020 | |||
1021 | if (s->lookahead == 0) break; /* flush the current block */ | ||
1022 | } | ||
1023 | Assert(s->block_start >= 0L, "block gone"); | ||
1024 | |||
1025 | s->strstart += s->lookahead; | ||
1026 | s->lookahead = 0; | ||
1027 | |||
1028 | /* Emit a stored block if pending_buf will be full: */ | ||
1029 | max_start = s->block_start + max_block_size; | ||
1030 | if (s->strstart == 0 || (ulg)s->strstart >= max_start) { | ||
1031 | /* strstart == 0 is possible when wraparound on 16-bit machine */ | ||
1032 | s->lookahead = (uInt)(s->strstart - max_start); | ||
1033 | s->strstart = (uInt)max_start; | ||
1034 | FLUSH_BLOCK(s, 0); | ||
1035 | } | ||
1036 | /* Flush if we may have to slide, otherwise block_start may become | ||
1037 | * negative and the data will be gone: | ||
1038 | */ | ||
1039 | if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) { | ||
1040 | FLUSH_BLOCK(s, 0); | ||
1041 | } | ||
1042 | } | ||
1043 | FLUSH_BLOCK(s, flush == Z_FINISH); | ||
1044 | return flush == Z_FINISH ? finish_done : block_done; | ||
1045 | } | ||
1046 | |||
1047 | /* =========================================================================== | ||
1048 | * Compress as much as possible from the input stream, return the current | ||
1049 | * block state. | ||
1050 | * This function does not perform lazy evaluation of matches and inserts | ||
1051 | * new strings in the dictionary only for unmatched strings or for short | ||
1052 | * matches. It is used only for the fast compression options. | ||
1053 | */ | ||
1054 | static block_state deflate_fast( | ||
1055 | deflate_state *s, | ||
1056 | int flush | ||
1057 | ) | ||
1058 | { | ||
1059 | IPos hash_head = NIL; /* head of the hash chain */ | ||
1060 | int bflush; /* set if current block must be flushed */ | ||
1061 | |||
1062 | for (;;) { | ||
1063 | /* Make sure that we always have enough lookahead, except | ||
1064 | * at the end of the input file. We need MAX_MATCH bytes | ||
1065 | * for the next match, plus MIN_MATCH bytes to insert the | ||
1066 | * string following the next match. | ||
1067 | */ | ||
1068 | if (s->lookahead < MIN_LOOKAHEAD) { | ||
1069 | fill_window(s); | ||
1070 | if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { | ||
1071 | return need_more; | ||
1072 | } | ||
1073 | if (s->lookahead == 0) break; /* flush the current block */ | ||
1074 | } | ||
1075 | |||
1076 | /* Insert the string window[strstart .. strstart+2] in the | ||
1077 | * dictionary, and set hash_head to the head of the hash chain: | ||
1078 | */ | ||
1079 | if (s->lookahead >= MIN_MATCH) { | ||
1080 | INSERT_STRING(s, s->strstart, hash_head); | ||
1081 | } | ||
1082 | |||
1083 | /* Find the longest match, discarding those <= prev_length. | ||
1084 | * At this point we have always match_length < MIN_MATCH | ||
1085 | */ | ||
1086 | if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) { | ||
1087 | /* To simplify the code, we prevent matches with the string | ||
1088 | * of window index 0 (in particular we have to avoid a match | ||
1089 | * of the string with itself at the start of the input file). | ||
1090 | */ | ||
1091 | if (s->strategy != Z_HUFFMAN_ONLY) { | ||
1092 | s->match_length = longest_match (s, hash_head); | ||
1093 | } | ||
1094 | /* longest_match() sets match_start */ | ||
1095 | } | ||
1096 | if (s->match_length >= MIN_MATCH) { | ||
1097 | check_match(s, s->strstart, s->match_start, s->match_length); | ||
1098 | |||
1099 | bflush = zlib_tr_tally(s, s->strstart - s->match_start, | ||
1100 | s->match_length - MIN_MATCH); | ||
1101 | |||
1102 | s->lookahead -= s->match_length; | ||
1103 | |||
1104 | /* Insert new strings in the hash table only if the match length | ||
1105 | * is not too large. This saves time but degrades compression. | ||
1106 | */ | ||
1107 | if (s->match_length <= s->max_insert_length && | ||
1108 | s->lookahead >= MIN_MATCH) { | ||
1109 | s->match_length--; /* string at strstart already in hash table */ | ||
1110 | do { | ||
1111 | s->strstart++; | ||
1112 | INSERT_STRING(s, s->strstart, hash_head); | ||
1113 | /* strstart never exceeds WSIZE-MAX_MATCH, so there are | ||
1114 | * always MIN_MATCH bytes ahead. | ||
1115 | */ | ||
1116 | } while (--s->match_length != 0); | ||
1117 | s->strstart++; | ||
1118 | } else { | ||
1119 | s->strstart += s->match_length; | ||
1120 | s->match_length = 0; | ||
1121 | s->ins_h = s->window[s->strstart]; | ||
1122 | UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); | ||
1123 | #if MIN_MATCH != 3 | ||
1124 | Call UPDATE_HASH() MIN_MATCH-3 more times | ||
1125 | #endif | ||
1126 | /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not | ||
1127 | * matter since it will be recomputed at next deflate call. | ||
1128 | */ | ||
1129 | } | ||
1130 | } else { | ||
1131 | /* No match, output a literal byte */ | ||
1132 | Tracevv((stderr,"%c", s->window[s->strstart])); | ||
1133 | bflush = zlib_tr_tally (s, 0, s->window[s->strstart]); | ||
1134 | s->lookahead--; | ||
1135 | s->strstart++; | ||
1136 | } | ||
1137 | if (bflush) FLUSH_BLOCK(s, 0); | ||
1138 | } | ||
1139 | FLUSH_BLOCK(s, flush == Z_FINISH); | ||
1140 | return flush == Z_FINISH ? finish_done : block_done; | ||
1141 | } | ||
1142 | |||
1143 | /* =========================================================================== | ||
1144 | * Same as above, but achieves better compression. We use a lazy | ||
1145 | * evaluation for matches: a match is finally adopted only if there is | ||
1146 | * no better match at the next window position. | ||
1147 | */ | ||
1148 | static block_state deflate_slow( | ||
1149 | deflate_state *s, | ||
1150 | int flush | ||
1151 | ) | ||
1152 | { | ||
1153 | IPos hash_head = NIL; /* head of hash chain */ | ||
1154 | int bflush; /* set if current block must be flushed */ | ||
1155 | |||
1156 | /* Process the input block. */ | ||
1157 | for (;;) { | ||
1158 | /* Make sure that we always have enough lookahead, except | ||
1159 | * at the end of the input file. We need MAX_MATCH bytes | ||
1160 | * for the next match, plus MIN_MATCH bytes to insert the | ||
1161 | * string following the next match. | ||
1162 | */ | ||
1163 | if (s->lookahead < MIN_LOOKAHEAD) { | ||
1164 | fill_window(s); | ||
1165 | if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { | ||
1166 | return need_more; | ||
1167 | } | ||
1168 | if (s->lookahead == 0) break; /* flush the current block */ | ||
1169 | } | ||
1170 | |||
1171 | /* Insert the string window[strstart .. strstart+2] in the | ||
1172 | * dictionary, and set hash_head to the head of the hash chain: | ||
1173 | */ | ||
1174 | if (s->lookahead >= MIN_MATCH) { | ||
1175 | INSERT_STRING(s, s->strstart, hash_head); | ||
1176 | } | ||
1177 | |||
1178 | /* Find the longest match, discarding those <= prev_length. | ||
1179 | */ | ||
1180 | s->prev_length = s->match_length, s->prev_match = s->match_start; | ||
1181 | s->match_length = MIN_MATCH-1; | ||
1182 | |||
1183 | if (hash_head != NIL && s->prev_length < s->max_lazy_match && | ||
1184 | s->strstart - hash_head <= MAX_DIST(s)) { | ||
1185 | /* To simplify the code, we prevent matches with the string | ||
1186 | * of window index 0 (in particular we have to avoid a match | ||
1187 | * of the string with itself at the start of the input file). | ||
1188 | */ | ||
1189 | if (s->strategy != Z_HUFFMAN_ONLY) { | ||
1190 | s->match_length = longest_match (s, hash_head); | ||
1191 | } | ||
1192 | /* longest_match() sets match_start */ | ||
1193 | |||
1194 | if (s->match_length <= 5 && (s->strategy == Z_FILTERED || | ||
1195 | (s->match_length == MIN_MATCH && | ||
1196 | s->strstart - s->match_start > TOO_FAR))) { | ||
1197 | |||
1198 | /* If prev_match is also MIN_MATCH, match_start is garbage | ||
1199 | * but we will ignore the current match anyway. | ||
1200 | */ | ||
1201 | s->match_length = MIN_MATCH-1; | ||
1202 | } | ||
1203 | } | ||
1204 | /* If there was a match at the previous step and the current | ||
1205 | * match is not better, output the previous match: | ||
1206 | */ | ||
1207 | if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) { | ||
1208 | uInt max_insert = s->strstart + s->lookahead - MIN_MATCH; | ||
1209 | /* Do not insert strings in hash table beyond this. */ | ||
1210 | |||
1211 | check_match(s, s->strstart-1, s->prev_match, s->prev_length); | ||
1212 | |||
1213 | bflush = zlib_tr_tally(s, s->strstart -1 - s->prev_match, | ||
1214 | s->prev_length - MIN_MATCH); | ||
1215 | |||
1216 | /* Insert in hash table all strings up to the end of the match. | ||
1217 | * strstart-1 and strstart are already inserted. If there is not | ||
1218 | * enough lookahead, the last two strings are not inserted in | ||
1219 | * the hash table. | ||
1220 | */ | ||
1221 | s->lookahead -= s->prev_length-1; | ||
1222 | s->prev_length -= 2; | ||
1223 | do { | ||
1224 | if (++s->strstart <= max_insert) { | ||
1225 | INSERT_STRING(s, s->strstart, hash_head); | ||
1226 | } | ||
1227 | } while (--s->prev_length != 0); | ||
1228 | s->match_available = 0; | ||
1229 | s->match_length = MIN_MATCH-1; | ||
1230 | s->strstart++; | ||
1231 | |||
1232 | if (bflush) FLUSH_BLOCK(s, 0); | ||
1233 | |||
1234 | } else if (s->match_available) { | ||
1235 | /* If there was no match at the previous position, output a | ||
1236 | * single literal. If there was a match but the current match | ||
1237 | * is longer, truncate the previous match to a single literal. | ||
1238 | */ | ||
1239 | Tracevv((stderr,"%c", s->window[s->strstart-1])); | ||
1240 | if (zlib_tr_tally (s, 0, s->window[s->strstart-1])) { | ||
1241 | FLUSH_BLOCK_ONLY(s, 0); | ||
1242 | } | ||
1243 | s->strstart++; | ||
1244 | s->lookahead--; | ||
1245 | if (s->strm->avail_out == 0) return need_more; | ||
1246 | } else { | ||
1247 | /* There is no previous match to compare with, wait for | ||
1248 | * the next step to decide. | ||
1249 | */ | ||
1250 | s->match_available = 1; | ||
1251 | s->strstart++; | ||
1252 | s->lookahead--; | ||
1253 | } | ||
1254 | } | ||
1255 | Assert (flush != Z_NO_FLUSH, "no flush?"); | ||
1256 | if (s->match_available) { | ||
1257 | Tracevv((stderr,"%c", s->window[s->strstart-1])); | ||
1258 | zlib_tr_tally (s, 0, s->window[s->strstart-1]); | ||
1259 | s->match_available = 0; | ||
1260 | } | ||
1261 | FLUSH_BLOCK(s, flush == Z_FINISH); | ||
1262 | return flush == Z_FINISH ? finish_done : block_done; | ||
1263 | } | ||
1264 | |||
1265 | int zlib_deflate_workspacesize(void) | ||
1266 | { | ||
1267 | return sizeof(deflate_workspace); | ||
1268 | } | ||
diff --git a/lib/zlib_deflate/deflate_syms.c b/lib/zlib_deflate/deflate_syms.c new file mode 100644 index 000000000000..5985b28c8e30 --- /dev/null +++ b/lib/zlib_deflate/deflate_syms.c | |||
@@ -0,0 +1,21 @@ | |||
1 | /* | ||
2 | * linux/lib/zlib_deflate/deflate_syms.c | ||
3 | * | ||
4 | * Exported symbols for the deflate functionality. | ||
5 | * | ||
6 | */ | ||
7 | |||
8 | #include <linux/module.h> | ||
9 | #include <linux/init.h> | ||
10 | |||
11 | #include <linux/zlib.h> | ||
12 | |||
13 | EXPORT_SYMBOL(zlib_deflate_workspacesize); | ||
14 | EXPORT_SYMBOL(zlib_deflate); | ||
15 | EXPORT_SYMBOL(zlib_deflateInit_); | ||
16 | EXPORT_SYMBOL(zlib_deflateInit2_); | ||
17 | EXPORT_SYMBOL(zlib_deflateEnd); | ||
18 | EXPORT_SYMBOL(zlib_deflateReset); | ||
19 | EXPORT_SYMBOL(zlib_deflateCopy); | ||
20 | EXPORT_SYMBOL(zlib_deflateParams); | ||
21 | MODULE_LICENSE("GPL"); | ||
diff --git a/lib/zlib_deflate/deftree.c b/lib/zlib_deflate/deftree.c new file mode 100644 index 000000000000..ddf348299f24 --- /dev/null +++ b/lib/zlib_deflate/deftree.c | |||
@@ -0,0 +1,1113 @@ | |||
1 | /* +++ trees.c */ | ||
2 | /* trees.c -- output deflated data using Huffman coding | ||
3 | * Copyright (C) 1995-1996 Jean-loup Gailly | ||
4 | * For conditions of distribution and use, see copyright notice in zlib.h | ||
5 | */ | ||
6 | |||
7 | /* | ||
8 | * ALGORITHM | ||
9 | * | ||
10 | * The "deflation" process uses several Huffman trees. The more | ||
11 | * common source values are represented by shorter bit sequences. | ||
12 | * | ||
13 | * Each code tree is stored in a compressed form which is itself | ||
14 | * a Huffman encoding of the lengths of all the code strings (in | ||
15 | * ascending order by source values). The actual code strings are | ||
16 | * reconstructed from the lengths in the inflate process, as described | ||
17 | * in the deflate specification. | ||
18 | * | ||
19 | * REFERENCES | ||
20 | * | ||
21 | * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". | ||
22 | * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc | ||
23 | * | ||
24 | * Storer, James A. | ||
25 | * Data Compression: Methods and Theory, pp. 49-50. | ||
26 | * Computer Science Press, 1988. ISBN 0-7167-8156-5. | ||
27 | * | ||
28 | * Sedgewick, R. | ||
29 | * Algorithms, p290. | ||
30 | * Addison-Wesley, 1983. ISBN 0-201-06672-6. | ||
31 | */ | ||
32 | |||
33 | /* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */ | ||
34 | |||
35 | /* #include "deflate.h" */ | ||
36 | |||
37 | #include <linux/zutil.h> | ||
38 | #include "defutil.h" | ||
39 | |||
40 | #ifdef DEBUG_ZLIB | ||
41 | # include <ctype.h> | ||
42 | #endif | ||
43 | |||
44 | /* =========================================================================== | ||
45 | * Constants | ||
46 | */ | ||
47 | |||
48 | #define MAX_BL_BITS 7 | ||
49 | /* Bit length codes must not exceed MAX_BL_BITS bits */ | ||
50 | |||
51 | #define END_BLOCK 256 | ||
52 | /* end of block literal code */ | ||
53 | |||
54 | #define REP_3_6 16 | ||
55 | /* repeat previous bit length 3-6 times (2 bits of repeat count) */ | ||
56 | |||
57 | #define REPZ_3_10 17 | ||
58 | /* repeat a zero length 3-10 times (3 bits of repeat count) */ | ||
59 | |||
60 | #define REPZ_11_138 18 | ||
61 | /* repeat a zero length 11-138 times (7 bits of repeat count) */ | ||
62 | |||
63 | static const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ | ||
64 | = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; | ||
65 | |||
66 | static const int extra_dbits[D_CODES] /* extra bits for each distance code */ | ||
67 | = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; | ||
68 | |||
69 | static const int extra_blbits[BL_CODES]/* extra bits for each bit length code */ | ||
70 | = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; | ||
71 | |||
72 | static const uch bl_order[BL_CODES] | ||
73 | = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; | ||
74 | /* The lengths of the bit length codes are sent in order of decreasing | ||
75 | * probability, to avoid transmitting the lengths for unused bit length codes. | ||
76 | */ | ||
77 | |||
78 | #define Buf_size (8 * 2*sizeof(char)) | ||
79 | /* Number of bits used within bi_buf. (bi_buf might be implemented on | ||
80 | * more than 16 bits on some systems.) | ||
81 | */ | ||
82 | |||
83 | /* =========================================================================== | ||
84 | * Local data. These are initialized only once. | ||
85 | */ | ||
86 | |||
87 | static ct_data static_ltree[L_CODES+2]; | ||
88 | /* The static literal tree. Since the bit lengths are imposed, there is no | ||
89 | * need for the L_CODES extra codes used during heap construction. However | ||
90 | * The codes 286 and 287 are needed to build a canonical tree (see zlib_tr_init | ||
91 | * below). | ||
92 | */ | ||
93 | |||
94 | static ct_data static_dtree[D_CODES]; | ||
95 | /* The static distance tree. (Actually a trivial tree since all codes use | ||
96 | * 5 bits.) | ||
97 | */ | ||
98 | |||
99 | static uch dist_code[512]; | ||
100 | /* distance codes. The first 256 values correspond to the distances | ||
101 | * 3 .. 258, the last 256 values correspond to the top 8 bits of | ||
102 | * the 15 bit distances. | ||
103 | */ | ||
104 | |||
105 | static uch length_code[MAX_MATCH-MIN_MATCH+1]; | ||
106 | /* length code for each normalized match length (0 == MIN_MATCH) */ | ||
107 | |||
108 | static int base_length[LENGTH_CODES]; | ||
109 | /* First normalized length for each code (0 = MIN_MATCH) */ | ||
110 | |||
111 | static int base_dist[D_CODES]; | ||
112 | /* First normalized distance for each code (0 = distance of 1) */ | ||
113 | |||
114 | struct static_tree_desc_s { | ||
115 | const ct_data *static_tree; /* static tree or NULL */ | ||
116 | const int *extra_bits; /* extra bits for each code or NULL */ | ||
117 | int extra_base; /* base index for extra_bits */ | ||
118 | int elems; /* max number of elements in the tree */ | ||
119 | int max_length; /* max bit length for the codes */ | ||
120 | }; | ||
121 | |||
122 | static static_tree_desc static_l_desc = | ||
123 | {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; | ||
124 | |||
125 | static static_tree_desc static_d_desc = | ||
126 | {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; | ||
127 | |||
128 | static static_tree_desc static_bl_desc = | ||
129 | {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; | ||
130 | |||
131 | /* =========================================================================== | ||
132 | * Local (static) routines in this file. | ||
133 | */ | ||
134 | |||
135 | static void tr_static_init (void); | ||
136 | static void init_block (deflate_state *s); | ||
137 | static void pqdownheap (deflate_state *s, ct_data *tree, int k); | ||
138 | static void gen_bitlen (deflate_state *s, tree_desc *desc); | ||
139 | static void gen_codes (ct_data *tree, int max_code, ush *bl_count); | ||
140 | static void build_tree (deflate_state *s, tree_desc *desc); | ||
141 | static void scan_tree (deflate_state *s, ct_data *tree, int max_code); | ||
142 | static void send_tree (deflate_state *s, ct_data *tree, int max_code); | ||
143 | static int build_bl_tree (deflate_state *s); | ||
144 | static void send_all_trees (deflate_state *s, int lcodes, int dcodes, | ||
145 | int blcodes); | ||
146 | static void compress_block (deflate_state *s, ct_data *ltree, | ||
147 | ct_data *dtree); | ||
148 | static void set_data_type (deflate_state *s); | ||
149 | static unsigned bi_reverse (unsigned value, int length); | ||
150 | static void bi_windup (deflate_state *s); | ||
151 | static void bi_flush (deflate_state *s); | ||
152 | static void copy_block (deflate_state *s, char *buf, unsigned len, | ||
153 | int header); | ||
154 | |||
155 | #ifndef DEBUG_ZLIB | ||
156 | # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) | ||
157 | /* Send a code of the given tree. c and tree must not have side effects */ | ||
158 | |||
159 | #else /* DEBUG_ZLIB */ | ||
160 | # define send_code(s, c, tree) \ | ||
161 | { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ | ||
162 | send_bits(s, tree[c].Code, tree[c].Len); } | ||
163 | #endif | ||
164 | |||
165 | #define d_code(dist) \ | ||
166 | ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)]) | ||
167 | /* Mapping from a distance to a distance code. dist is the distance - 1 and | ||
168 | * must not have side effects. dist_code[256] and dist_code[257] are never | ||
169 | * used. | ||
170 | */ | ||
171 | |||
172 | /* =========================================================================== | ||
173 | * Send a value on a given number of bits. | ||
174 | * IN assertion: length <= 16 and value fits in length bits. | ||
175 | */ | ||
176 | #ifdef DEBUG_ZLIB | ||
177 | static void send_bits (deflate_state *s, int value, int length); | ||
178 | |||
179 | static void send_bits( | ||
180 | deflate_state *s, | ||
181 | int value, /* value to send */ | ||
182 | int length /* number of bits */ | ||
183 | ) | ||
184 | { | ||
185 | Tracevv((stderr," l %2d v %4x ", length, value)); | ||
186 | Assert(length > 0 && length <= 15, "invalid length"); | ||
187 | s->bits_sent += (ulg)length; | ||
188 | |||
189 | /* If not enough room in bi_buf, use (valid) bits from bi_buf and | ||
190 | * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) | ||
191 | * unused bits in value. | ||
192 | */ | ||
193 | if (s->bi_valid > (int)Buf_size - length) { | ||
194 | s->bi_buf |= (value << s->bi_valid); | ||
195 | put_short(s, s->bi_buf); | ||
196 | s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); | ||
197 | s->bi_valid += length - Buf_size; | ||
198 | } else { | ||
199 | s->bi_buf |= value << s->bi_valid; | ||
200 | s->bi_valid += length; | ||
201 | } | ||
202 | } | ||
203 | #else /* !DEBUG_ZLIB */ | ||
204 | |||
205 | #define send_bits(s, value, length) \ | ||
206 | { int len = length;\ | ||
207 | if (s->bi_valid > (int)Buf_size - len) {\ | ||
208 | int val = value;\ | ||
209 | s->bi_buf |= (val << s->bi_valid);\ | ||
210 | put_short(s, s->bi_buf);\ | ||
211 | s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ | ||
212 | s->bi_valid += len - Buf_size;\ | ||
213 | } else {\ | ||
214 | s->bi_buf |= (value) << s->bi_valid;\ | ||
215 | s->bi_valid += len;\ | ||
216 | }\ | ||
217 | } | ||
218 | #endif /* DEBUG_ZLIB */ | ||
219 | |||
220 | /* =========================================================================== | ||
221 | * Initialize the various 'constant' tables. In a multi-threaded environment, | ||
222 | * this function may be called by two threads concurrently, but this is | ||
223 | * harmless since both invocations do exactly the same thing. | ||
224 | */ | ||
225 | static void tr_static_init(void) | ||
226 | { | ||
227 | static int static_init_done; | ||
228 | int n; /* iterates over tree elements */ | ||
229 | int bits; /* bit counter */ | ||
230 | int length; /* length value */ | ||
231 | int code; /* code value */ | ||
232 | int dist; /* distance index */ | ||
233 | ush bl_count[MAX_BITS+1]; | ||
234 | /* number of codes at each bit length for an optimal tree */ | ||
235 | |||
236 | if (static_init_done) return; | ||
237 | |||
238 | /* Initialize the mapping length (0..255) -> length code (0..28) */ | ||
239 | length = 0; | ||
240 | for (code = 0; code < LENGTH_CODES-1; code++) { | ||
241 | base_length[code] = length; | ||
242 | for (n = 0; n < (1<<extra_lbits[code]); n++) { | ||
243 | length_code[length++] = (uch)code; | ||
244 | } | ||
245 | } | ||
246 | Assert (length == 256, "tr_static_init: length != 256"); | ||
247 | /* Note that the length 255 (match length 258) can be represented | ||
248 | * in two different ways: code 284 + 5 bits or code 285, so we | ||
249 | * overwrite length_code[255] to use the best encoding: | ||
250 | */ | ||
251 | length_code[length-1] = (uch)code; | ||
252 | |||
253 | /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ | ||
254 | dist = 0; | ||
255 | for (code = 0 ; code < 16; code++) { | ||
256 | base_dist[code] = dist; | ||
257 | for (n = 0; n < (1<<extra_dbits[code]); n++) { | ||
258 | dist_code[dist++] = (uch)code; | ||
259 | } | ||
260 | } | ||
261 | Assert (dist == 256, "tr_static_init: dist != 256"); | ||
262 | dist >>= 7; /* from now on, all distances are divided by 128 */ | ||
263 | for ( ; code < D_CODES; code++) { | ||
264 | base_dist[code] = dist << 7; | ||
265 | for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { | ||
266 | dist_code[256 + dist++] = (uch)code; | ||
267 | } | ||
268 | } | ||
269 | Assert (dist == 256, "tr_static_init: 256+dist != 512"); | ||
270 | |||
271 | /* Construct the codes of the static literal tree */ | ||
272 | for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; | ||
273 | n = 0; | ||
274 | while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; | ||
275 | while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; | ||
276 | while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; | ||
277 | while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; | ||
278 | /* Codes 286 and 287 do not exist, but we must include them in the | ||
279 | * tree construction to get a canonical Huffman tree (longest code | ||
280 | * all ones) | ||
281 | */ | ||
282 | gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); | ||
283 | |||
284 | /* The static distance tree is trivial: */ | ||
285 | for (n = 0; n < D_CODES; n++) { | ||
286 | static_dtree[n].Len = 5; | ||
287 | static_dtree[n].Code = bi_reverse((unsigned)n, 5); | ||
288 | } | ||
289 | static_init_done = 1; | ||
290 | } | ||
291 | |||
292 | /* =========================================================================== | ||
293 | * Initialize the tree data structures for a new zlib stream. | ||
294 | */ | ||
295 | void zlib_tr_init( | ||
296 | deflate_state *s | ||
297 | ) | ||
298 | { | ||
299 | tr_static_init(); | ||
300 | |||
301 | s->compressed_len = 0L; | ||
302 | |||
303 | s->l_desc.dyn_tree = s->dyn_ltree; | ||
304 | s->l_desc.stat_desc = &static_l_desc; | ||
305 | |||
306 | s->d_desc.dyn_tree = s->dyn_dtree; | ||
307 | s->d_desc.stat_desc = &static_d_desc; | ||
308 | |||
309 | s->bl_desc.dyn_tree = s->bl_tree; | ||
310 | s->bl_desc.stat_desc = &static_bl_desc; | ||
311 | |||
312 | s->bi_buf = 0; | ||
313 | s->bi_valid = 0; | ||
314 | s->last_eob_len = 8; /* enough lookahead for inflate */ | ||
315 | #ifdef DEBUG_ZLIB | ||
316 | s->bits_sent = 0L; | ||
317 | #endif | ||
318 | |||
319 | /* Initialize the first block of the first file: */ | ||
320 | init_block(s); | ||
321 | } | ||
322 | |||
323 | /* =========================================================================== | ||
324 | * Initialize a new block. | ||
325 | */ | ||
326 | static void init_block( | ||
327 | deflate_state *s | ||
328 | ) | ||
329 | { | ||
330 | int n; /* iterates over tree elements */ | ||
331 | |||
332 | /* Initialize the trees. */ | ||
333 | for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; | ||
334 | for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; | ||
335 | for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; | ||
336 | |||
337 | s->dyn_ltree[END_BLOCK].Freq = 1; | ||
338 | s->opt_len = s->static_len = 0L; | ||
339 | s->last_lit = s->matches = 0; | ||
340 | } | ||
341 | |||
342 | #define SMALLEST 1 | ||
343 | /* Index within the heap array of least frequent node in the Huffman tree */ | ||
344 | |||
345 | |||
346 | /* =========================================================================== | ||
347 | * Remove the smallest element from the heap and recreate the heap with | ||
348 | * one less element. Updates heap and heap_len. | ||
349 | */ | ||
350 | #define pqremove(s, tree, top) \ | ||
351 | {\ | ||
352 | top = s->heap[SMALLEST]; \ | ||
353 | s->heap[SMALLEST] = s->heap[s->heap_len--]; \ | ||
354 | pqdownheap(s, tree, SMALLEST); \ | ||
355 | } | ||
356 | |||
357 | /* =========================================================================== | ||
358 | * Compares to subtrees, using the tree depth as tie breaker when | ||
359 | * the subtrees have equal frequency. This minimizes the worst case length. | ||
360 | */ | ||
361 | #define smaller(tree, n, m, depth) \ | ||
362 | (tree[n].Freq < tree[m].Freq || \ | ||
363 | (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) | ||
364 | |||
365 | /* =========================================================================== | ||
366 | * Restore the heap property by moving down the tree starting at node k, | ||
367 | * exchanging a node with the smallest of its two sons if necessary, stopping | ||
368 | * when the heap property is re-established (each father smaller than its | ||
369 | * two sons). | ||
370 | */ | ||
371 | static void pqdownheap( | ||
372 | deflate_state *s, | ||
373 | ct_data *tree, /* the tree to restore */ | ||
374 | int k /* node to move down */ | ||
375 | ) | ||
376 | { | ||
377 | int v = s->heap[k]; | ||
378 | int j = k << 1; /* left son of k */ | ||
379 | while (j <= s->heap_len) { | ||
380 | /* Set j to the smallest of the two sons: */ | ||
381 | if (j < s->heap_len && | ||
382 | smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { | ||
383 | j++; | ||
384 | } | ||
385 | /* Exit if v is smaller than both sons */ | ||
386 | if (smaller(tree, v, s->heap[j], s->depth)) break; | ||
387 | |||
388 | /* Exchange v with the smallest son */ | ||
389 | s->heap[k] = s->heap[j]; k = j; | ||
390 | |||
391 | /* And continue down the tree, setting j to the left son of k */ | ||
392 | j <<= 1; | ||
393 | } | ||
394 | s->heap[k] = v; | ||
395 | } | ||
396 | |||
397 | /* =========================================================================== | ||
398 | * Compute the optimal bit lengths for a tree and update the total bit length | ||
399 | * for the current block. | ||
400 | * IN assertion: the fields freq and dad are set, heap[heap_max] and | ||
401 | * above are the tree nodes sorted by increasing frequency. | ||
402 | * OUT assertions: the field len is set to the optimal bit length, the | ||
403 | * array bl_count contains the frequencies for each bit length. | ||
404 | * The length opt_len is updated; static_len is also updated if stree is | ||
405 | * not null. | ||
406 | */ | ||
407 | static void gen_bitlen( | ||
408 | deflate_state *s, | ||
409 | tree_desc *desc /* the tree descriptor */ | ||
410 | ) | ||
411 | { | ||
412 | ct_data *tree = desc->dyn_tree; | ||
413 | int max_code = desc->max_code; | ||
414 | const ct_data *stree = desc->stat_desc->static_tree; | ||
415 | const int *extra = desc->stat_desc->extra_bits; | ||
416 | int base = desc->stat_desc->extra_base; | ||
417 | int max_length = desc->stat_desc->max_length; | ||
418 | int h; /* heap index */ | ||
419 | int n, m; /* iterate over the tree elements */ | ||
420 | int bits; /* bit length */ | ||
421 | int xbits; /* extra bits */ | ||
422 | ush f; /* frequency */ | ||
423 | int overflow = 0; /* number of elements with bit length too large */ | ||
424 | |||
425 | for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; | ||
426 | |||
427 | /* In a first pass, compute the optimal bit lengths (which may | ||
428 | * overflow in the case of the bit length tree). | ||
429 | */ | ||
430 | tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ | ||
431 | |||
432 | for (h = s->heap_max+1; h < HEAP_SIZE; h++) { | ||
433 | n = s->heap[h]; | ||
434 | bits = tree[tree[n].Dad].Len + 1; | ||
435 | if (bits > max_length) bits = max_length, overflow++; | ||
436 | tree[n].Len = (ush)bits; | ||
437 | /* We overwrite tree[n].Dad which is no longer needed */ | ||
438 | |||
439 | if (n > max_code) continue; /* not a leaf node */ | ||
440 | |||
441 | s->bl_count[bits]++; | ||
442 | xbits = 0; | ||
443 | if (n >= base) xbits = extra[n-base]; | ||
444 | f = tree[n].Freq; | ||
445 | s->opt_len += (ulg)f * (bits + xbits); | ||
446 | if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); | ||
447 | } | ||
448 | if (overflow == 0) return; | ||
449 | |||
450 | Trace((stderr,"\nbit length overflow\n")); | ||
451 | /* This happens for example on obj2 and pic of the Calgary corpus */ | ||
452 | |||
453 | /* Find the first bit length which could increase: */ | ||
454 | do { | ||
455 | bits = max_length-1; | ||
456 | while (s->bl_count[bits] == 0) bits--; | ||
457 | s->bl_count[bits]--; /* move one leaf down the tree */ | ||
458 | s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ | ||
459 | s->bl_count[max_length]--; | ||
460 | /* The brother of the overflow item also moves one step up, | ||
461 | * but this does not affect bl_count[max_length] | ||
462 | */ | ||
463 | overflow -= 2; | ||
464 | } while (overflow > 0); | ||
465 | |||
466 | /* Now recompute all bit lengths, scanning in increasing frequency. | ||
467 | * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all | ||
468 | * lengths instead of fixing only the wrong ones. This idea is taken | ||
469 | * from 'ar' written by Haruhiko Okumura.) | ||
470 | */ | ||
471 | for (bits = max_length; bits != 0; bits--) { | ||
472 | n = s->bl_count[bits]; | ||
473 | while (n != 0) { | ||
474 | m = s->heap[--h]; | ||
475 | if (m > max_code) continue; | ||
476 | if (tree[m].Len != (unsigned) bits) { | ||
477 | Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); | ||
478 | s->opt_len += ((long)bits - (long)tree[m].Len) | ||
479 | *(long)tree[m].Freq; | ||
480 | tree[m].Len = (ush)bits; | ||
481 | } | ||
482 | n--; | ||
483 | } | ||
484 | } | ||
485 | } | ||
486 | |||
487 | /* =========================================================================== | ||
488 | * Generate the codes for a given tree and bit counts (which need not be | ||
489 | * optimal). | ||
490 | * IN assertion: the array bl_count contains the bit length statistics for | ||
491 | * the given tree and the field len is set for all tree elements. | ||
492 | * OUT assertion: the field code is set for all tree elements of non | ||
493 | * zero code length. | ||
494 | */ | ||
495 | static void gen_codes( | ||
496 | ct_data *tree, /* the tree to decorate */ | ||
497 | int max_code, /* largest code with non zero frequency */ | ||
498 | ush *bl_count /* number of codes at each bit length */ | ||
499 | ) | ||
500 | { | ||
501 | ush next_code[MAX_BITS+1]; /* next code value for each bit length */ | ||
502 | ush code = 0; /* running code value */ | ||
503 | int bits; /* bit index */ | ||
504 | int n; /* code index */ | ||
505 | |||
506 | /* The distribution counts are first used to generate the code values | ||
507 | * without bit reversal. | ||
508 | */ | ||
509 | for (bits = 1; bits <= MAX_BITS; bits++) { | ||
510 | next_code[bits] = code = (code + bl_count[bits-1]) << 1; | ||
511 | } | ||
512 | /* Check that the bit counts in bl_count are consistent. The last code | ||
513 | * must be all ones. | ||
514 | */ | ||
515 | Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, | ||
516 | "inconsistent bit counts"); | ||
517 | Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); | ||
518 | |||
519 | for (n = 0; n <= max_code; n++) { | ||
520 | int len = tree[n].Len; | ||
521 | if (len == 0) continue; | ||
522 | /* Now reverse the bits */ | ||
523 | tree[n].Code = bi_reverse(next_code[len]++, len); | ||
524 | |||
525 | Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", | ||
526 | n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); | ||
527 | } | ||
528 | } | ||
529 | |||
530 | /* =========================================================================== | ||
531 | * Construct one Huffman tree and assigns the code bit strings and lengths. | ||
532 | * Update the total bit length for the current block. | ||
533 | * IN assertion: the field freq is set for all tree elements. | ||
534 | * OUT assertions: the fields len and code are set to the optimal bit length | ||
535 | * and corresponding code. The length opt_len is updated; static_len is | ||
536 | * also updated if stree is not null. The field max_code is set. | ||
537 | */ | ||
538 | static void build_tree( | ||
539 | deflate_state *s, | ||
540 | tree_desc *desc /* the tree descriptor */ | ||
541 | ) | ||
542 | { | ||
543 | ct_data *tree = desc->dyn_tree; | ||
544 | const ct_data *stree = desc->stat_desc->static_tree; | ||
545 | int elems = desc->stat_desc->elems; | ||
546 | int n, m; /* iterate over heap elements */ | ||
547 | int max_code = -1; /* largest code with non zero frequency */ | ||
548 | int node; /* new node being created */ | ||
549 | |||
550 | /* Construct the initial heap, with least frequent element in | ||
551 | * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. | ||
552 | * heap[0] is not used. | ||
553 | */ | ||
554 | s->heap_len = 0, s->heap_max = HEAP_SIZE; | ||
555 | |||
556 | for (n = 0; n < elems; n++) { | ||
557 | if (tree[n].Freq != 0) { | ||
558 | s->heap[++(s->heap_len)] = max_code = n; | ||
559 | s->depth[n] = 0; | ||
560 | } else { | ||
561 | tree[n].Len = 0; | ||
562 | } | ||
563 | } | ||
564 | |||
565 | /* The pkzip format requires that at least one distance code exists, | ||
566 | * and that at least one bit should be sent even if there is only one | ||
567 | * possible code. So to avoid special checks later on we force at least | ||
568 | * two codes of non zero frequency. | ||
569 | */ | ||
570 | while (s->heap_len < 2) { | ||
571 | node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); | ||
572 | tree[node].Freq = 1; | ||
573 | s->depth[node] = 0; | ||
574 | s->opt_len--; if (stree) s->static_len -= stree[node].Len; | ||
575 | /* node is 0 or 1 so it does not have extra bits */ | ||
576 | } | ||
577 | desc->max_code = max_code; | ||
578 | |||
579 | /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, | ||
580 | * establish sub-heaps of increasing lengths: | ||
581 | */ | ||
582 | for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); | ||
583 | |||
584 | /* Construct the Huffman tree by repeatedly combining the least two | ||
585 | * frequent nodes. | ||
586 | */ | ||
587 | node = elems; /* next internal node of the tree */ | ||
588 | do { | ||
589 | pqremove(s, tree, n); /* n = node of least frequency */ | ||
590 | m = s->heap[SMALLEST]; /* m = node of next least frequency */ | ||
591 | |||
592 | s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ | ||
593 | s->heap[--(s->heap_max)] = m; | ||
594 | |||
595 | /* Create a new node father of n and m */ | ||
596 | tree[node].Freq = tree[n].Freq + tree[m].Freq; | ||
597 | s->depth[node] = (uch) (max(s->depth[n], s->depth[m]) + 1); | ||
598 | tree[n].Dad = tree[m].Dad = (ush)node; | ||
599 | #ifdef DUMP_BL_TREE | ||
600 | if (tree == s->bl_tree) { | ||
601 | fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", | ||
602 | node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); | ||
603 | } | ||
604 | #endif | ||
605 | /* and insert the new node in the heap */ | ||
606 | s->heap[SMALLEST] = node++; | ||
607 | pqdownheap(s, tree, SMALLEST); | ||
608 | |||
609 | } while (s->heap_len >= 2); | ||
610 | |||
611 | s->heap[--(s->heap_max)] = s->heap[SMALLEST]; | ||
612 | |||
613 | /* At this point, the fields freq and dad are set. We can now | ||
614 | * generate the bit lengths. | ||
615 | */ | ||
616 | gen_bitlen(s, (tree_desc *)desc); | ||
617 | |||
618 | /* The field len is now set, we can generate the bit codes */ | ||
619 | gen_codes ((ct_data *)tree, max_code, s->bl_count); | ||
620 | } | ||
621 | |||
622 | /* =========================================================================== | ||
623 | * Scan a literal or distance tree to determine the frequencies of the codes | ||
624 | * in the bit length tree. | ||
625 | */ | ||
626 | static void scan_tree( | ||
627 | deflate_state *s, | ||
628 | ct_data *tree, /* the tree to be scanned */ | ||
629 | int max_code /* and its largest code of non zero frequency */ | ||
630 | ) | ||
631 | { | ||
632 | int n; /* iterates over all tree elements */ | ||
633 | int prevlen = -1; /* last emitted length */ | ||
634 | int curlen; /* length of current code */ | ||
635 | int nextlen = tree[0].Len; /* length of next code */ | ||
636 | int count = 0; /* repeat count of the current code */ | ||
637 | int max_count = 7; /* max repeat count */ | ||
638 | int min_count = 4; /* min repeat count */ | ||
639 | |||
640 | if (nextlen == 0) max_count = 138, min_count = 3; | ||
641 | tree[max_code+1].Len = (ush)0xffff; /* guard */ | ||
642 | |||
643 | for (n = 0; n <= max_code; n++) { | ||
644 | curlen = nextlen; nextlen = tree[n+1].Len; | ||
645 | if (++count < max_count && curlen == nextlen) { | ||
646 | continue; | ||
647 | } else if (count < min_count) { | ||
648 | s->bl_tree[curlen].Freq += count; | ||
649 | } else if (curlen != 0) { | ||
650 | if (curlen != prevlen) s->bl_tree[curlen].Freq++; | ||
651 | s->bl_tree[REP_3_6].Freq++; | ||
652 | } else if (count <= 10) { | ||
653 | s->bl_tree[REPZ_3_10].Freq++; | ||
654 | } else { | ||
655 | s->bl_tree[REPZ_11_138].Freq++; | ||
656 | } | ||
657 | count = 0; prevlen = curlen; | ||
658 | if (nextlen == 0) { | ||
659 | max_count = 138, min_count = 3; | ||
660 | } else if (curlen == nextlen) { | ||
661 | max_count = 6, min_count = 3; | ||
662 | } else { | ||
663 | max_count = 7, min_count = 4; | ||
664 | } | ||
665 | } | ||
666 | } | ||
667 | |||
668 | /* =========================================================================== | ||
669 | * Send a literal or distance tree in compressed form, using the codes in | ||
670 | * bl_tree. | ||
671 | */ | ||
672 | static void send_tree( | ||
673 | deflate_state *s, | ||
674 | ct_data *tree, /* the tree to be scanned */ | ||
675 | int max_code /* and its largest code of non zero frequency */ | ||
676 | ) | ||
677 | { | ||
678 | int n; /* iterates over all tree elements */ | ||
679 | int prevlen = -1; /* last emitted length */ | ||
680 | int curlen; /* length of current code */ | ||
681 | int nextlen = tree[0].Len; /* length of next code */ | ||
682 | int count = 0; /* repeat count of the current code */ | ||
683 | int max_count = 7; /* max repeat count */ | ||
684 | int min_count = 4; /* min repeat count */ | ||
685 | |||
686 | /* tree[max_code+1].Len = -1; */ /* guard already set */ | ||
687 | if (nextlen == 0) max_count = 138, min_count = 3; | ||
688 | |||
689 | for (n = 0; n <= max_code; n++) { | ||
690 | curlen = nextlen; nextlen = tree[n+1].Len; | ||
691 | if (++count < max_count && curlen == nextlen) { | ||
692 | continue; | ||
693 | } else if (count < min_count) { | ||
694 | do { send_code(s, curlen, s->bl_tree); } while (--count != 0); | ||
695 | |||
696 | } else if (curlen != 0) { | ||
697 | if (curlen != prevlen) { | ||
698 | send_code(s, curlen, s->bl_tree); count--; | ||
699 | } | ||
700 | Assert(count >= 3 && count <= 6, " 3_6?"); | ||
701 | send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); | ||
702 | |||
703 | } else if (count <= 10) { | ||
704 | send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); | ||
705 | |||
706 | } else { | ||
707 | send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); | ||
708 | } | ||
709 | count = 0; prevlen = curlen; | ||
710 | if (nextlen == 0) { | ||
711 | max_count = 138, min_count = 3; | ||
712 | } else if (curlen == nextlen) { | ||
713 | max_count = 6, min_count = 3; | ||
714 | } else { | ||
715 | max_count = 7, min_count = 4; | ||
716 | } | ||
717 | } | ||
718 | } | ||
719 | |||
720 | /* =========================================================================== | ||
721 | * Construct the Huffman tree for the bit lengths and return the index in | ||
722 | * bl_order of the last bit length code to send. | ||
723 | */ | ||
724 | static int build_bl_tree( | ||
725 | deflate_state *s | ||
726 | ) | ||
727 | { | ||
728 | int max_blindex; /* index of last bit length code of non zero freq */ | ||
729 | |||
730 | /* Determine the bit length frequencies for literal and distance trees */ | ||
731 | scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); | ||
732 | scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); | ||
733 | |||
734 | /* Build the bit length tree: */ | ||
735 | build_tree(s, (tree_desc *)(&(s->bl_desc))); | ||
736 | /* opt_len now includes the length of the tree representations, except | ||
737 | * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. | ||
738 | */ | ||
739 | |||
740 | /* Determine the number of bit length codes to send. The pkzip format | ||
741 | * requires that at least 4 bit length codes be sent. (appnote.txt says | ||
742 | * 3 but the actual value used is 4.) | ||
743 | */ | ||
744 | for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { | ||
745 | if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; | ||
746 | } | ||
747 | /* Update opt_len to include the bit length tree and counts */ | ||
748 | s->opt_len += 3*(max_blindex+1) + 5+5+4; | ||
749 | Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", | ||
750 | s->opt_len, s->static_len)); | ||
751 | |||
752 | return max_blindex; | ||
753 | } | ||
754 | |||
755 | /* =========================================================================== | ||
756 | * Send the header for a block using dynamic Huffman trees: the counts, the | ||
757 | * lengths of the bit length codes, the literal tree and the distance tree. | ||
758 | * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. | ||
759 | */ | ||
760 | static void send_all_trees( | ||
761 | deflate_state *s, | ||
762 | int lcodes, /* number of codes for each tree */ | ||
763 | int dcodes, /* number of codes for each tree */ | ||
764 | int blcodes /* number of codes for each tree */ | ||
765 | ) | ||
766 | { | ||
767 | int rank; /* index in bl_order */ | ||
768 | |||
769 | Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); | ||
770 | Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, | ||
771 | "too many codes"); | ||
772 | Tracev((stderr, "\nbl counts: ")); | ||
773 | send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ | ||
774 | send_bits(s, dcodes-1, 5); | ||
775 | send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */ | ||
776 | for (rank = 0; rank < blcodes; rank++) { | ||
777 | Tracev((stderr, "\nbl code %2d ", bl_order[rank])); | ||
778 | send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); | ||
779 | } | ||
780 | Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); | ||
781 | |||
782 | send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ | ||
783 | Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); | ||
784 | |||
785 | send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ | ||
786 | Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); | ||
787 | } | ||
788 | |||
789 | /* =========================================================================== | ||
790 | * Send a stored block | ||
791 | */ | ||
792 | void zlib_tr_stored_block( | ||
793 | deflate_state *s, | ||
794 | char *buf, /* input block */ | ||
795 | ulg stored_len, /* length of input block */ | ||
796 | int eof /* true if this is the last block for a file */ | ||
797 | ) | ||
798 | { | ||
799 | send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */ | ||
800 | s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; | ||
801 | s->compressed_len += (stored_len + 4) << 3; | ||
802 | |||
803 | copy_block(s, buf, (unsigned)stored_len, 1); /* with header */ | ||
804 | } | ||
805 | |||
806 | /* Send just the `stored block' type code without any length bytes or data. | ||
807 | */ | ||
808 | void zlib_tr_stored_type_only( | ||
809 | deflate_state *s | ||
810 | ) | ||
811 | { | ||
812 | send_bits(s, (STORED_BLOCK << 1), 3); | ||
813 | bi_windup(s); | ||
814 | s->compressed_len = (s->compressed_len + 3) & ~7L; | ||
815 | } | ||
816 | |||
817 | |||
818 | /* =========================================================================== | ||
819 | * Send one empty static block to give enough lookahead for inflate. | ||
820 | * This takes 10 bits, of which 7 may remain in the bit buffer. | ||
821 | * The current inflate code requires 9 bits of lookahead. If the | ||
822 | * last two codes for the previous block (real code plus EOB) were coded | ||
823 | * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode | ||
824 | * the last real code. In this case we send two empty static blocks instead | ||
825 | * of one. (There are no problems if the previous block is stored or fixed.) | ||
826 | * To simplify the code, we assume the worst case of last real code encoded | ||
827 | * on one bit only. | ||
828 | */ | ||
829 | void zlib_tr_align( | ||
830 | deflate_state *s | ||
831 | ) | ||
832 | { | ||
833 | send_bits(s, STATIC_TREES<<1, 3); | ||
834 | send_code(s, END_BLOCK, static_ltree); | ||
835 | s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ | ||
836 | bi_flush(s); | ||
837 | /* Of the 10 bits for the empty block, we have already sent | ||
838 | * (10 - bi_valid) bits. The lookahead for the last real code (before | ||
839 | * the EOB of the previous block) was thus at least one plus the length | ||
840 | * of the EOB plus what we have just sent of the empty static block. | ||
841 | */ | ||
842 | if (1 + s->last_eob_len + 10 - s->bi_valid < 9) { | ||
843 | send_bits(s, STATIC_TREES<<1, 3); | ||
844 | send_code(s, END_BLOCK, static_ltree); | ||
845 | s->compressed_len += 10L; | ||
846 | bi_flush(s); | ||
847 | } | ||
848 | s->last_eob_len = 7; | ||
849 | } | ||
850 | |||
851 | /* =========================================================================== | ||
852 | * Determine the best encoding for the current block: dynamic trees, static | ||
853 | * trees or store, and output the encoded block to the zip file. This function | ||
854 | * returns the total compressed length for the file so far. | ||
855 | */ | ||
856 | ulg zlib_tr_flush_block( | ||
857 | deflate_state *s, | ||
858 | char *buf, /* input block, or NULL if too old */ | ||
859 | ulg stored_len, /* length of input block */ | ||
860 | int eof /* true if this is the last block for a file */ | ||
861 | ) | ||
862 | { | ||
863 | ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ | ||
864 | int max_blindex = 0; /* index of last bit length code of non zero freq */ | ||
865 | |||
866 | /* Build the Huffman trees unless a stored block is forced */ | ||
867 | if (s->level > 0) { | ||
868 | |||
869 | /* Check if the file is ascii or binary */ | ||
870 | if (s->data_type == Z_UNKNOWN) set_data_type(s); | ||
871 | |||
872 | /* Construct the literal and distance trees */ | ||
873 | build_tree(s, (tree_desc *)(&(s->l_desc))); | ||
874 | Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, | ||
875 | s->static_len)); | ||
876 | |||
877 | build_tree(s, (tree_desc *)(&(s->d_desc))); | ||
878 | Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, | ||
879 | s->static_len)); | ||
880 | /* At this point, opt_len and static_len are the total bit lengths of | ||
881 | * the compressed block data, excluding the tree representations. | ||
882 | */ | ||
883 | |||
884 | /* Build the bit length tree for the above two trees, and get the index | ||
885 | * in bl_order of the last bit length code to send. | ||
886 | */ | ||
887 | max_blindex = build_bl_tree(s); | ||
888 | |||
889 | /* Determine the best encoding. Compute first the block length in bytes*/ | ||
890 | opt_lenb = (s->opt_len+3+7)>>3; | ||
891 | static_lenb = (s->static_len+3+7)>>3; | ||
892 | |||
893 | Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", | ||
894 | opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, | ||
895 | s->last_lit)); | ||
896 | |||
897 | if (static_lenb <= opt_lenb) opt_lenb = static_lenb; | ||
898 | |||
899 | } else { | ||
900 | Assert(buf != (char*)0, "lost buf"); | ||
901 | opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ | ||
902 | } | ||
903 | |||
904 | /* If compression failed and this is the first and last block, | ||
905 | * and if the .zip file can be seeked (to rewrite the local header), | ||
906 | * the whole file is transformed into a stored file: | ||
907 | */ | ||
908 | #ifdef STORED_FILE_OK | ||
909 | # ifdef FORCE_STORED_FILE | ||
910 | if (eof && s->compressed_len == 0L) { /* force stored file */ | ||
911 | # else | ||
912 | if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) { | ||
913 | # endif | ||
914 | /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */ | ||
915 | if (buf == (char*)0) error ("block vanished"); | ||
916 | |||
917 | copy_block(s, buf, (unsigned)stored_len, 0); /* without header */ | ||
918 | s->compressed_len = stored_len << 3; | ||
919 | s->method = STORED; | ||
920 | } else | ||
921 | #endif /* STORED_FILE_OK */ | ||
922 | |||
923 | #ifdef FORCE_STORED | ||
924 | if (buf != (char*)0) { /* force stored block */ | ||
925 | #else | ||
926 | if (stored_len+4 <= opt_lenb && buf != (char*)0) { | ||
927 | /* 4: two words for the lengths */ | ||
928 | #endif | ||
929 | /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. | ||
930 | * Otherwise we can't have processed more than WSIZE input bytes since | ||
931 | * the last block flush, because compression would have been | ||
932 | * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to | ||
933 | * transform a block into a stored block. | ||
934 | */ | ||
935 | zlib_tr_stored_block(s, buf, stored_len, eof); | ||
936 | |||
937 | #ifdef FORCE_STATIC | ||
938 | } else if (static_lenb >= 0) { /* force static trees */ | ||
939 | #else | ||
940 | } else if (static_lenb == opt_lenb) { | ||
941 | #endif | ||
942 | send_bits(s, (STATIC_TREES<<1)+eof, 3); | ||
943 | compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree); | ||
944 | s->compressed_len += 3 + s->static_len; | ||
945 | } else { | ||
946 | send_bits(s, (DYN_TREES<<1)+eof, 3); | ||
947 | send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, | ||
948 | max_blindex+1); | ||
949 | compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree); | ||
950 | s->compressed_len += 3 + s->opt_len; | ||
951 | } | ||
952 | Assert (s->compressed_len == s->bits_sent, "bad compressed size"); | ||
953 | init_block(s); | ||
954 | |||
955 | if (eof) { | ||
956 | bi_windup(s); | ||
957 | s->compressed_len += 7; /* align on byte boundary */ | ||
958 | } | ||
959 | Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, | ||
960 | s->compressed_len-7*eof)); | ||
961 | |||
962 | return s->compressed_len >> 3; | ||
963 | } | ||
964 | |||
965 | /* =========================================================================== | ||
966 | * Save the match info and tally the frequency counts. Return true if | ||
967 | * the current block must be flushed. | ||
968 | */ | ||
969 | int zlib_tr_tally( | ||
970 | deflate_state *s, | ||
971 | unsigned dist, /* distance of matched string */ | ||
972 | unsigned lc /* match length-MIN_MATCH or unmatched char (if dist==0) */ | ||
973 | ) | ||
974 | { | ||
975 | s->d_buf[s->last_lit] = (ush)dist; | ||
976 | s->l_buf[s->last_lit++] = (uch)lc; | ||
977 | if (dist == 0) { | ||
978 | /* lc is the unmatched char */ | ||
979 | s->dyn_ltree[lc].Freq++; | ||
980 | } else { | ||
981 | s->matches++; | ||
982 | /* Here, lc is the match length - MIN_MATCH */ | ||
983 | dist--; /* dist = match distance - 1 */ | ||
984 | Assert((ush)dist < (ush)MAX_DIST(s) && | ||
985 | (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && | ||
986 | (ush)d_code(dist) < (ush)D_CODES, "zlib_tr_tally: bad match"); | ||
987 | |||
988 | s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++; | ||
989 | s->dyn_dtree[d_code(dist)].Freq++; | ||
990 | } | ||
991 | |||
992 | /* Try to guess if it is profitable to stop the current block here */ | ||
993 | if ((s->last_lit & 0xfff) == 0 && s->level > 2) { | ||
994 | /* Compute an upper bound for the compressed length */ | ||
995 | ulg out_length = (ulg)s->last_lit*8L; | ||
996 | ulg in_length = (ulg)((long)s->strstart - s->block_start); | ||
997 | int dcode; | ||
998 | for (dcode = 0; dcode < D_CODES; dcode++) { | ||
999 | out_length += (ulg)s->dyn_dtree[dcode].Freq * | ||
1000 | (5L+extra_dbits[dcode]); | ||
1001 | } | ||
1002 | out_length >>= 3; | ||
1003 | Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", | ||
1004 | s->last_lit, in_length, out_length, | ||
1005 | 100L - out_length*100L/in_length)); | ||
1006 | if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; | ||
1007 | } | ||
1008 | return (s->last_lit == s->lit_bufsize-1); | ||
1009 | /* We avoid equality with lit_bufsize because of wraparound at 64K | ||
1010 | * on 16 bit machines and because stored blocks are restricted to | ||
1011 | * 64K-1 bytes. | ||
1012 | */ | ||
1013 | } | ||
1014 | |||
1015 | /* =========================================================================== | ||
1016 | * Send the block data compressed using the given Huffman trees | ||
1017 | */ | ||
1018 | static void compress_block( | ||
1019 | deflate_state *s, | ||
1020 | ct_data *ltree, /* literal tree */ | ||
1021 | ct_data *dtree /* distance tree */ | ||
1022 | ) | ||
1023 | { | ||
1024 | unsigned dist; /* distance of matched string */ | ||
1025 | int lc; /* match length or unmatched char (if dist == 0) */ | ||
1026 | unsigned lx = 0; /* running index in l_buf */ | ||
1027 | unsigned code; /* the code to send */ | ||
1028 | int extra; /* number of extra bits to send */ | ||
1029 | |||
1030 | if (s->last_lit != 0) do { | ||
1031 | dist = s->d_buf[lx]; | ||
1032 | lc = s->l_buf[lx++]; | ||
1033 | if (dist == 0) { | ||
1034 | send_code(s, lc, ltree); /* send a literal byte */ | ||
1035 | Tracecv(isgraph(lc), (stderr," '%c' ", lc)); | ||
1036 | } else { | ||
1037 | /* Here, lc is the match length - MIN_MATCH */ | ||
1038 | code = length_code[lc]; | ||
1039 | send_code(s, code+LITERALS+1, ltree); /* send the length code */ | ||
1040 | extra = extra_lbits[code]; | ||
1041 | if (extra != 0) { | ||
1042 | lc -= base_length[code]; | ||
1043 | send_bits(s, lc, extra); /* send the extra length bits */ | ||
1044 | } | ||
1045 | dist--; /* dist is now the match distance - 1 */ | ||
1046 | code = d_code(dist); | ||
1047 | Assert (code < D_CODES, "bad d_code"); | ||
1048 | |||
1049 | send_code(s, code, dtree); /* send the distance code */ | ||
1050 | extra = extra_dbits[code]; | ||
1051 | if (extra != 0) { | ||
1052 | dist -= base_dist[code]; | ||
1053 | send_bits(s, dist, extra); /* send the extra distance bits */ | ||
1054 | } | ||
1055 | } /* literal or match pair ? */ | ||
1056 | |||
1057 | /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ | ||
1058 | Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow"); | ||
1059 | |||
1060 | } while (lx < s->last_lit); | ||
1061 | |||
1062 | send_code(s, END_BLOCK, ltree); | ||
1063 | s->last_eob_len = ltree[END_BLOCK].Len; | ||
1064 | } | ||
1065 | |||
1066 | /* =========================================================================== | ||
1067 | * Set the data type to ASCII or BINARY, using a crude approximation: | ||
1068 | * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise. | ||
1069 | * IN assertion: the fields freq of dyn_ltree are set and the total of all | ||
1070 | * frequencies does not exceed 64K (to fit in an int on 16 bit machines). | ||
1071 | */ | ||
1072 | static void set_data_type( | ||
1073 | deflate_state *s | ||
1074 | ) | ||
1075 | { | ||
1076 | int n = 0; | ||
1077 | unsigned ascii_freq = 0; | ||
1078 | unsigned bin_freq = 0; | ||
1079 | while (n < 7) bin_freq += s->dyn_ltree[n++].Freq; | ||
1080 | while (n < 128) ascii_freq += s->dyn_ltree[n++].Freq; | ||
1081 | while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq; | ||
1082 | s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII); | ||
1083 | } | ||
1084 | |||
1085 | /* =========================================================================== | ||
1086 | * Copy a stored block, storing first the length and its | ||
1087 | * one's complement if requested. | ||
1088 | */ | ||
1089 | static void copy_block( | ||
1090 | deflate_state *s, | ||
1091 | char *buf, /* the input data */ | ||
1092 | unsigned len, /* its length */ | ||
1093 | int header /* true if block header must be written */ | ||
1094 | ) | ||
1095 | { | ||
1096 | bi_windup(s); /* align on byte boundary */ | ||
1097 | s->last_eob_len = 8; /* enough lookahead for inflate */ | ||
1098 | |||
1099 | if (header) { | ||
1100 | put_short(s, (ush)len); | ||
1101 | put_short(s, (ush)~len); | ||
1102 | #ifdef DEBUG_ZLIB | ||
1103 | s->bits_sent += 2*16; | ||
1104 | #endif | ||
1105 | } | ||
1106 | #ifdef DEBUG_ZLIB | ||
1107 | s->bits_sent += (ulg)len<<3; | ||
1108 | #endif | ||
1109 | /* bundle up the put_byte(s, *buf++) calls */ | ||
1110 | memcpy(&s->pending_buf[s->pending], buf, len); | ||
1111 | s->pending += len; | ||
1112 | } | ||
1113 | |||
diff --git a/lib/zlib_deflate/defutil.h b/lib/zlib_deflate/defutil.h new file mode 100644 index 000000000000..d9feaf638608 --- /dev/null +++ b/lib/zlib_deflate/defutil.h | |||
@@ -0,0 +1,334 @@ | |||
1 | |||
2 | |||
3 | |||
4 | #define Assert(err, str) | ||
5 | #define Trace(dummy) | ||
6 | #define Tracev(dummy) | ||
7 | #define Tracecv(err, dummy) | ||
8 | #define Tracevv(dummy) | ||
9 | |||
10 | |||
11 | |||
12 | #define LENGTH_CODES 29 | ||
13 | /* number of length codes, not counting the special END_BLOCK code */ | ||
14 | |||
15 | #define LITERALS 256 | ||
16 | /* number of literal bytes 0..255 */ | ||
17 | |||
18 | #define L_CODES (LITERALS+1+LENGTH_CODES) | ||
19 | /* number of Literal or Length codes, including the END_BLOCK code */ | ||
20 | |||
21 | #define D_CODES 30 | ||
22 | /* number of distance codes */ | ||
23 | |||
24 | #define BL_CODES 19 | ||
25 | /* number of codes used to transfer the bit lengths */ | ||
26 | |||
27 | #define HEAP_SIZE (2*L_CODES+1) | ||
28 | /* maximum heap size */ | ||
29 | |||
30 | #define MAX_BITS 15 | ||
31 | /* All codes must not exceed MAX_BITS bits */ | ||
32 | |||
33 | #define INIT_STATE 42 | ||
34 | #define BUSY_STATE 113 | ||
35 | #define FINISH_STATE 666 | ||
36 | /* Stream status */ | ||
37 | |||
38 | |||
39 | /* Data structure describing a single value and its code string. */ | ||
40 | typedef struct ct_data_s { | ||
41 | union { | ||
42 | ush freq; /* frequency count */ | ||
43 | ush code; /* bit string */ | ||
44 | } fc; | ||
45 | union { | ||
46 | ush dad; /* father node in Huffman tree */ | ||
47 | ush len; /* length of bit string */ | ||
48 | } dl; | ||
49 | } ct_data; | ||
50 | |||
51 | #define Freq fc.freq | ||
52 | #define Code fc.code | ||
53 | #define Dad dl.dad | ||
54 | #define Len dl.len | ||
55 | |||
56 | typedef struct static_tree_desc_s static_tree_desc; | ||
57 | |||
58 | typedef struct tree_desc_s { | ||
59 | ct_data *dyn_tree; /* the dynamic tree */ | ||
60 | int max_code; /* largest code with non zero frequency */ | ||
61 | static_tree_desc *stat_desc; /* the corresponding static tree */ | ||
62 | } tree_desc; | ||
63 | |||
64 | typedef ush Pos; | ||
65 | typedef unsigned IPos; | ||
66 | |||
67 | /* A Pos is an index in the character window. We use short instead of int to | ||
68 | * save space in the various tables. IPos is used only for parameter passing. | ||
69 | */ | ||
70 | |||
71 | typedef struct deflate_state { | ||
72 | z_streamp strm; /* pointer back to this zlib stream */ | ||
73 | int status; /* as the name implies */ | ||
74 | Byte *pending_buf; /* output still pending */ | ||
75 | ulg pending_buf_size; /* size of pending_buf */ | ||
76 | Byte *pending_out; /* next pending byte to output to the stream */ | ||
77 | int pending; /* nb of bytes in the pending buffer */ | ||
78 | int noheader; /* suppress zlib header and adler32 */ | ||
79 | Byte data_type; /* UNKNOWN, BINARY or ASCII */ | ||
80 | Byte method; /* STORED (for zip only) or DEFLATED */ | ||
81 | int last_flush; /* value of flush param for previous deflate call */ | ||
82 | |||
83 | /* used by deflate.c: */ | ||
84 | |||
85 | uInt w_size; /* LZ77 window size (32K by default) */ | ||
86 | uInt w_bits; /* log2(w_size) (8..16) */ | ||
87 | uInt w_mask; /* w_size - 1 */ | ||
88 | |||
89 | Byte *window; | ||
90 | /* Sliding window. Input bytes are read into the second half of the window, | ||
91 | * and move to the first half later to keep a dictionary of at least wSize | ||
92 | * bytes. With this organization, matches are limited to a distance of | ||
93 | * wSize-MAX_MATCH bytes, but this ensures that IO is always | ||
94 | * performed with a length multiple of the block size. Also, it limits | ||
95 | * the window size to 64K, which is quite useful on MSDOS. | ||
96 | * To do: use the user input buffer as sliding window. | ||
97 | */ | ||
98 | |||
99 | ulg window_size; | ||
100 | /* Actual size of window: 2*wSize, except when the user input buffer | ||
101 | * is directly used as sliding window. | ||
102 | */ | ||
103 | |||
104 | Pos *prev; | ||
105 | /* Link to older string with same hash index. To limit the size of this | ||
106 | * array to 64K, this link is maintained only for the last 32K strings. | ||
107 | * An index in this array is thus a window index modulo 32K. | ||
108 | */ | ||
109 | |||
110 | Pos *head; /* Heads of the hash chains or NIL. */ | ||
111 | |||
112 | uInt ins_h; /* hash index of string to be inserted */ | ||
113 | uInt hash_size; /* number of elements in hash table */ | ||
114 | uInt hash_bits; /* log2(hash_size) */ | ||
115 | uInt hash_mask; /* hash_size-1 */ | ||
116 | |||
117 | uInt hash_shift; | ||
118 | /* Number of bits by which ins_h must be shifted at each input | ||
119 | * step. It must be such that after MIN_MATCH steps, the oldest | ||
120 | * byte no longer takes part in the hash key, that is: | ||
121 | * hash_shift * MIN_MATCH >= hash_bits | ||
122 | */ | ||
123 | |||
124 | long block_start; | ||
125 | /* Window position at the beginning of the current output block. Gets | ||
126 | * negative when the window is moved backwards. | ||
127 | */ | ||
128 | |||
129 | uInt match_length; /* length of best match */ | ||
130 | IPos prev_match; /* previous match */ | ||
131 | int match_available; /* set if previous match exists */ | ||
132 | uInt strstart; /* start of string to insert */ | ||
133 | uInt match_start; /* start of matching string */ | ||
134 | uInt lookahead; /* number of valid bytes ahead in window */ | ||
135 | |||
136 | uInt prev_length; | ||
137 | /* Length of the best match at previous step. Matches not greater than this | ||
138 | * are discarded. This is used in the lazy match evaluation. | ||
139 | */ | ||
140 | |||
141 | uInt max_chain_length; | ||
142 | /* To speed up deflation, hash chains are never searched beyond this | ||
143 | * length. A higher limit improves compression ratio but degrades the | ||
144 | * speed. | ||
145 | */ | ||
146 | |||
147 | uInt max_lazy_match; | ||
148 | /* Attempt to find a better match only when the current match is strictly | ||
149 | * smaller than this value. This mechanism is used only for compression | ||
150 | * levels >= 4. | ||
151 | */ | ||
152 | # define max_insert_length max_lazy_match | ||
153 | /* Insert new strings in the hash table only if the match length is not | ||
154 | * greater than this length. This saves time but degrades compression. | ||
155 | * max_insert_length is used only for compression levels <= 3. | ||
156 | */ | ||
157 | |||
158 | int level; /* compression level (1..9) */ | ||
159 | int strategy; /* favor or force Huffman coding*/ | ||
160 | |||
161 | uInt good_match; | ||
162 | /* Use a faster search when the previous match is longer than this */ | ||
163 | |||
164 | int nice_match; /* Stop searching when current match exceeds this */ | ||
165 | |||
166 | /* used by trees.c: */ | ||
167 | /* Didn't use ct_data typedef below to supress compiler warning */ | ||
168 | struct ct_data_s dyn_ltree[HEAP_SIZE]; /* literal and length tree */ | ||
169 | struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */ | ||
170 | struct ct_data_s bl_tree[2*BL_CODES+1]; /* Huffman tree for bit lengths */ | ||
171 | |||
172 | struct tree_desc_s l_desc; /* desc. for literal tree */ | ||
173 | struct tree_desc_s d_desc; /* desc. for distance tree */ | ||
174 | struct tree_desc_s bl_desc; /* desc. for bit length tree */ | ||
175 | |||
176 | ush bl_count[MAX_BITS+1]; | ||
177 | /* number of codes at each bit length for an optimal tree */ | ||
178 | |||
179 | int heap[2*L_CODES+1]; /* heap used to build the Huffman trees */ | ||
180 | int heap_len; /* number of elements in the heap */ | ||
181 | int heap_max; /* element of largest frequency */ | ||
182 | /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used. | ||
183 | * The same heap array is used to build all trees. | ||
184 | */ | ||
185 | |||
186 | uch depth[2*L_CODES+1]; | ||
187 | /* Depth of each subtree used as tie breaker for trees of equal frequency | ||
188 | */ | ||
189 | |||
190 | uch *l_buf; /* buffer for literals or lengths */ | ||
191 | |||
192 | uInt lit_bufsize; | ||
193 | /* Size of match buffer for literals/lengths. There are 4 reasons for | ||
194 | * limiting lit_bufsize to 64K: | ||
195 | * - frequencies can be kept in 16 bit counters | ||
196 | * - if compression is not successful for the first block, all input | ||
197 | * data is still in the window so we can still emit a stored block even | ||
198 | * when input comes from standard input. (This can also be done for | ||
199 | * all blocks if lit_bufsize is not greater than 32K.) | ||
200 | * - if compression is not successful for a file smaller than 64K, we can | ||
201 | * even emit a stored file instead of a stored block (saving 5 bytes). | ||
202 | * This is applicable only for zip (not gzip or zlib). | ||
203 | * - creating new Huffman trees less frequently may not provide fast | ||
204 | * adaptation to changes in the input data statistics. (Take for | ||
205 | * example a binary file with poorly compressible code followed by | ||
206 | * a highly compressible string table.) Smaller buffer sizes give | ||
207 | * fast adaptation but have of course the overhead of transmitting | ||
208 | * trees more frequently. | ||
209 | * - I can't count above 4 | ||
210 | */ | ||
211 | |||
212 | uInt last_lit; /* running index in l_buf */ | ||
213 | |||
214 | ush *d_buf; | ||
215 | /* Buffer for distances. To simplify the code, d_buf and l_buf have | ||
216 | * the same number of elements. To use different lengths, an extra flag | ||
217 | * array would be necessary. | ||
218 | */ | ||
219 | |||
220 | ulg opt_len; /* bit length of current block with optimal trees */ | ||
221 | ulg static_len; /* bit length of current block with static trees */ | ||
222 | ulg compressed_len; /* total bit length of compressed file */ | ||
223 | uInt matches; /* number of string matches in current block */ | ||
224 | int last_eob_len; /* bit length of EOB code for last block */ | ||
225 | |||
226 | #ifdef DEBUG_ZLIB | ||
227 | ulg bits_sent; /* bit length of the compressed data */ | ||
228 | #endif | ||
229 | |||
230 | ush bi_buf; | ||
231 | /* Output buffer. bits are inserted starting at the bottom (least | ||
232 | * significant bits). | ||
233 | */ | ||
234 | int bi_valid; | ||
235 | /* Number of valid bits in bi_buf. All bits above the last valid bit | ||
236 | * are always zero. | ||
237 | */ | ||
238 | |||
239 | } deflate_state; | ||
240 | |||
241 | typedef struct deflate_workspace { | ||
242 | /* State memory for the deflator */ | ||
243 | deflate_state deflate_memory; | ||
244 | Byte window_memory[2 * (1 << MAX_WBITS)]; | ||
245 | Pos prev_memory[1 << MAX_WBITS]; | ||
246 | Pos head_memory[1 << (MAX_MEM_LEVEL + 7)]; | ||
247 | char overlay_memory[(1 << (MAX_MEM_LEVEL + 6)) * (sizeof(ush)+2)]; | ||
248 | } deflate_workspace; | ||
249 | |||
250 | /* Output a byte on the stream. | ||
251 | * IN assertion: there is enough room in pending_buf. | ||
252 | */ | ||
253 | #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);} | ||
254 | |||
255 | |||
256 | #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1) | ||
257 | /* Minimum amount of lookahead, except at the end of the input file. | ||
258 | * See deflate.c for comments about the MIN_MATCH+1. | ||
259 | */ | ||
260 | |||
261 | #define MAX_DIST(s) ((s)->w_size-MIN_LOOKAHEAD) | ||
262 | /* In order to simplify the code, particularly on 16 bit machines, match | ||
263 | * distances are limited to MAX_DIST instead of WSIZE. | ||
264 | */ | ||
265 | |||
266 | /* in trees.c */ | ||
267 | void zlib_tr_init (deflate_state *s); | ||
268 | int zlib_tr_tally (deflate_state *s, unsigned dist, unsigned lc); | ||
269 | ulg zlib_tr_flush_block (deflate_state *s, char *buf, ulg stored_len, | ||
270 | int eof); | ||
271 | void zlib_tr_align (deflate_state *s); | ||
272 | void zlib_tr_stored_block (deflate_state *s, char *buf, ulg stored_len, | ||
273 | int eof); | ||
274 | void zlib_tr_stored_type_only (deflate_state *); | ||
275 | |||
276 | |||
277 | /* =========================================================================== | ||
278 | * Output a short LSB first on the stream. | ||
279 | * IN assertion: there is enough room in pendingBuf. | ||
280 | */ | ||
281 | #define put_short(s, w) { \ | ||
282 | put_byte(s, (uch)((w) & 0xff)); \ | ||
283 | put_byte(s, (uch)((ush)(w) >> 8)); \ | ||
284 | } | ||
285 | |||
286 | /* =========================================================================== | ||
287 | * Reverse the first len bits of a code, using straightforward code (a faster | ||
288 | * method would use a table) | ||
289 | * IN assertion: 1 <= len <= 15 | ||
290 | */ | ||
291 | static inline unsigned bi_reverse(unsigned code, /* the value to invert */ | ||
292 | int len) /* its bit length */ | ||
293 | { | ||
294 | register unsigned res = 0; | ||
295 | do { | ||
296 | res |= code & 1; | ||
297 | code >>= 1, res <<= 1; | ||
298 | } while (--len > 0); | ||
299 | return res >> 1; | ||
300 | } | ||
301 | |||
302 | /* =========================================================================== | ||
303 | * Flush the bit buffer, keeping at most 7 bits in it. | ||
304 | */ | ||
305 | static inline void bi_flush(deflate_state *s) | ||
306 | { | ||
307 | if (s->bi_valid == 16) { | ||
308 | put_short(s, s->bi_buf); | ||
309 | s->bi_buf = 0; | ||
310 | s->bi_valid = 0; | ||
311 | } else if (s->bi_valid >= 8) { | ||
312 | put_byte(s, (Byte)s->bi_buf); | ||
313 | s->bi_buf >>= 8; | ||
314 | s->bi_valid -= 8; | ||
315 | } | ||
316 | } | ||
317 | |||
318 | /* =========================================================================== | ||
319 | * Flush the bit buffer and align the output on a byte boundary | ||
320 | */ | ||
321 | static inline void bi_windup(deflate_state *s) | ||
322 | { | ||
323 | if (s->bi_valid > 8) { | ||
324 | put_short(s, s->bi_buf); | ||
325 | } else if (s->bi_valid > 0) { | ||
326 | put_byte(s, (Byte)s->bi_buf); | ||
327 | } | ||
328 | s->bi_buf = 0; | ||
329 | s->bi_valid = 0; | ||
330 | #ifdef DEBUG_ZLIB | ||
331 | s->bits_sent = (s->bits_sent+7) & ~7; | ||
332 | #endif | ||
333 | } | ||
334 | |||