diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /lib/zlib_deflate/deftree.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'lib/zlib_deflate/deftree.c')
-rw-r--r-- | lib/zlib_deflate/deftree.c | 1113 |
1 files changed, 1113 insertions, 0 deletions
diff --git a/lib/zlib_deflate/deftree.c b/lib/zlib_deflate/deftree.c new file mode 100644 index 000000000000..ddf348299f24 --- /dev/null +++ b/lib/zlib_deflate/deftree.c | |||
@@ -0,0 +1,1113 @@ | |||
1 | /* +++ trees.c */ | ||
2 | /* trees.c -- output deflated data using Huffman coding | ||
3 | * Copyright (C) 1995-1996 Jean-loup Gailly | ||
4 | * For conditions of distribution and use, see copyright notice in zlib.h | ||
5 | */ | ||
6 | |||
7 | /* | ||
8 | * ALGORITHM | ||
9 | * | ||
10 | * The "deflation" process uses several Huffman trees. The more | ||
11 | * common source values are represented by shorter bit sequences. | ||
12 | * | ||
13 | * Each code tree is stored in a compressed form which is itself | ||
14 | * a Huffman encoding of the lengths of all the code strings (in | ||
15 | * ascending order by source values). The actual code strings are | ||
16 | * reconstructed from the lengths in the inflate process, as described | ||
17 | * in the deflate specification. | ||
18 | * | ||
19 | * REFERENCES | ||
20 | * | ||
21 | * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". | ||
22 | * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc | ||
23 | * | ||
24 | * Storer, James A. | ||
25 | * Data Compression: Methods and Theory, pp. 49-50. | ||
26 | * Computer Science Press, 1988. ISBN 0-7167-8156-5. | ||
27 | * | ||
28 | * Sedgewick, R. | ||
29 | * Algorithms, p290. | ||
30 | * Addison-Wesley, 1983. ISBN 0-201-06672-6. | ||
31 | */ | ||
32 | |||
33 | /* From: trees.c,v 1.11 1996/07/24 13:41:06 me Exp $ */ | ||
34 | |||
35 | /* #include "deflate.h" */ | ||
36 | |||
37 | #include <linux/zutil.h> | ||
38 | #include "defutil.h" | ||
39 | |||
40 | #ifdef DEBUG_ZLIB | ||
41 | # include <ctype.h> | ||
42 | #endif | ||
43 | |||
44 | /* =========================================================================== | ||
45 | * Constants | ||
46 | */ | ||
47 | |||
48 | #define MAX_BL_BITS 7 | ||
49 | /* Bit length codes must not exceed MAX_BL_BITS bits */ | ||
50 | |||
51 | #define END_BLOCK 256 | ||
52 | /* end of block literal code */ | ||
53 | |||
54 | #define REP_3_6 16 | ||
55 | /* repeat previous bit length 3-6 times (2 bits of repeat count) */ | ||
56 | |||
57 | #define REPZ_3_10 17 | ||
58 | /* repeat a zero length 3-10 times (3 bits of repeat count) */ | ||
59 | |||
60 | #define REPZ_11_138 18 | ||
61 | /* repeat a zero length 11-138 times (7 bits of repeat count) */ | ||
62 | |||
63 | static const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ | ||
64 | = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; | ||
65 | |||
66 | static const int extra_dbits[D_CODES] /* extra bits for each distance code */ | ||
67 | = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; | ||
68 | |||
69 | static const int extra_blbits[BL_CODES]/* extra bits for each bit length code */ | ||
70 | = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; | ||
71 | |||
72 | static const uch bl_order[BL_CODES] | ||
73 | = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; | ||
74 | /* The lengths of the bit length codes are sent in order of decreasing | ||
75 | * probability, to avoid transmitting the lengths for unused bit length codes. | ||
76 | */ | ||
77 | |||
78 | #define Buf_size (8 * 2*sizeof(char)) | ||
79 | /* Number of bits used within bi_buf. (bi_buf might be implemented on | ||
80 | * more than 16 bits on some systems.) | ||
81 | */ | ||
82 | |||
83 | /* =========================================================================== | ||
84 | * Local data. These are initialized only once. | ||
85 | */ | ||
86 | |||
87 | static ct_data static_ltree[L_CODES+2]; | ||
88 | /* The static literal tree. Since the bit lengths are imposed, there is no | ||
89 | * need for the L_CODES extra codes used during heap construction. However | ||
90 | * The codes 286 and 287 are needed to build a canonical tree (see zlib_tr_init | ||
91 | * below). | ||
92 | */ | ||
93 | |||
94 | static ct_data static_dtree[D_CODES]; | ||
95 | /* The static distance tree. (Actually a trivial tree since all codes use | ||
96 | * 5 bits.) | ||
97 | */ | ||
98 | |||
99 | static uch dist_code[512]; | ||
100 | /* distance codes. The first 256 values correspond to the distances | ||
101 | * 3 .. 258, the last 256 values correspond to the top 8 bits of | ||
102 | * the 15 bit distances. | ||
103 | */ | ||
104 | |||
105 | static uch length_code[MAX_MATCH-MIN_MATCH+1]; | ||
106 | /* length code for each normalized match length (0 == MIN_MATCH) */ | ||
107 | |||
108 | static int base_length[LENGTH_CODES]; | ||
109 | /* First normalized length for each code (0 = MIN_MATCH) */ | ||
110 | |||
111 | static int base_dist[D_CODES]; | ||
112 | /* First normalized distance for each code (0 = distance of 1) */ | ||
113 | |||
114 | struct static_tree_desc_s { | ||
115 | const ct_data *static_tree; /* static tree or NULL */ | ||
116 | const int *extra_bits; /* extra bits for each code or NULL */ | ||
117 | int extra_base; /* base index for extra_bits */ | ||
118 | int elems; /* max number of elements in the tree */ | ||
119 | int max_length; /* max bit length for the codes */ | ||
120 | }; | ||
121 | |||
122 | static static_tree_desc static_l_desc = | ||
123 | {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; | ||
124 | |||
125 | static static_tree_desc static_d_desc = | ||
126 | {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; | ||
127 | |||
128 | static static_tree_desc static_bl_desc = | ||
129 | {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; | ||
130 | |||
131 | /* =========================================================================== | ||
132 | * Local (static) routines in this file. | ||
133 | */ | ||
134 | |||
135 | static void tr_static_init (void); | ||
136 | static void init_block (deflate_state *s); | ||
137 | static void pqdownheap (deflate_state *s, ct_data *tree, int k); | ||
138 | static void gen_bitlen (deflate_state *s, tree_desc *desc); | ||
139 | static void gen_codes (ct_data *tree, int max_code, ush *bl_count); | ||
140 | static void build_tree (deflate_state *s, tree_desc *desc); | ||
141 | static void scan_tree (deflate_state *s, ct_data *tree, int max_code); | ||
142 | static void send_tree (deflate_state *s, ct_data *tree, int max_code); | ||
143 | static int build_bl_tree (deflate_state *s); | ||
144 | static void send_all_trees (deflate_state *s, int lcodes, int dcodes, | ||
145 | int blcodes); | ||
146 | static void compress_block (deflate_state *s, ct_data *ltree, | ||
147 | ct_data *dtree); | ||
148 | static void set_data_type (deflate_state *s); | ||
149 | static unsigned bi_reverse (unsigned value, int length); | ||
150 | static void bi_windup (deflate_state *s); | ||
151 | static void bi_flush (deflate_state *s); | ||
152 | static void copy_block (deflate_state *s, char *buf, unsigned len, | ||
153 | int header); | ||
154 | |||
155 | #ifndef DEBUG_ZLIB | ||
156 | # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) | ||
157 | /* Send a code of the given tree. c and tree must not have side effects */ | ||
158 | |||
159 | #else /* DEBUG_ZLIB */ | ||
160 | # define send_code(s, c, tree) \ | ||
161 | { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ | ||
162 | send_bits(s, tree[c].Code, tree[c].Len); } | ||
163 | #endif | ||
164 | |||
165 | #define d_code(dist) \ | ||
166 | ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)]) | ||
167 | /* Mapping from a distance to a distance code. dist is the distance - 1 and | ||
168 | * must not have side effects. dist_code[256] and dist_code[257] are never | ||
169 | * used. | ||
170 | */ | ||
171 | |||
172 | /* =========================================================================== | ||
173 | * Send a value on a given number of bits. | ||
174 | * IN assertion: length <= 16 and value fits in length bits. | ||
175 | */ | ||
176 | #ifdef DEBUG_ZLIB | ||
177 | static void send_bits (deflate_state *s, int value, int length); | ||
178 | |||
179 | static void send_bits( | ||
180 | deflate_state *s, | ||
181 | int value, /* value to send */ | ||
182 | int length /* number of bits */ | ||
183 | ) | ||
184 | { | ||
185 | Tracevv((stderr," l %2d v %4x ", length, value)); | ||
186 | Assert(length > 0 && length <= 15, "invalid length"); | ||
187 | s->bits_sent += (ulg)length; | ||
188 | |||
189 | /* If not enough room in bi_buf, use (valid) bits from bi_buf and | ||
190 | * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) | ||
191 | * unused bits in value. | ||
192 | */ | ||
193 | if (s->bi_valid > (int)Buf_size - length) { | ||
194 | s->bi_buf |= (value << s->bi_valid); | ||
195 | put_short(s, s->bi_buf); | ||
196 | s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); | ||
197 | s->bi_valid += length - Buf_size; | ||
198 | } else { | ||
199 | s->bi_buf |= value << s->bi_valid; | ||
200 | s->bi_valid += length; | ||
201 | } | ||
202 | } | ||
203 | #else /* !DEBUG_ZLIB */ | ||
204 | |||
205 | #define send_bits(s, value, length) \ | ||
206 | { int len = length;\ | ||
207 | if (s->bi_valid > (int)Buf_size - len) {\ | ||
208 | int val = value;\ | ||
209 | s->bi_buf |= (val << s->bi_valid);\ | ||
210 | put_short(s, s->bi_buf);\ | ||
211 | s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ | ||
212 | s->bi_valid += len - Buf_size;\ | ||
213 | } else {\ | ||
214 | s->bi_buf |= (value) << s->bi_valid;\ | ||
215 | s->bi_valid += len;\ | ||
216 | }\ | ||
217 | } | ||
218 | #endif /* DEBUG_ZLIB */ | ||
219 | |||
220 | /* =========================================================================== | ||
221 | * Initialize the various 'constant' tables. In a multi-threaded environment, | ||
222 | * this function may be called by two threads concurrently, but this is | ||
223 | * harmless since both invocations do exactly the same thing. | ||
224 | */ | ||
225 | static void tr_static_init(void) | ||
226 | { | ||
227 | static int static_init_done; | ||
228 | int n; /* iterates over tree elements */ | ||
229 | int bits; /* bit counter */ | ||
230 | int length; /* length value */ | ||
231 | int code; /* code value */ | ||
232 | int dist; /* distance index */ | ||
233 | ush bl_count[MAX_BITS+1]; | ||
234 | /* number of codes at each bit length for an optimal tree */ | ||
235 | |||
236 | if (static_init_done) return; | ||
237 | |||
238 | /* Initialize the mapping length (0..255) -> length code (0..28) */ | ||
239 | length = 0; | ||
240 | for (code = 0; code < LENGTH_CODES-1; code++) { | ||
241 | base_length[code] = length; | ||
242 | for (n = 0; n < (1<<extra_lbits[code]); n++) { | ||
243 | length_code[length++] = (uch)code; | ||
244 | } | ||
245 | } | ||
246 | Assert (length == 256, "tr_static_init: length != 256"); | ||
247 | /* Note that the length 255 (match length 258) can be represented | ||
248 | * in two different ways: code 284 + 5 bits or code 285, so we | ||
249 | * overwrite length_code[255] to use the best encoding: | ||
250 | */ | ||
251 | length_code[length-1] = (uch)code; | ||
252 | |||
253 | /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ | ||
254 | dist = 0; | ||
255 | for (code = 0 ; code < 16; code++) { | ||
256 | base_dist[code] = dist; | ||
257 | for (n = 0; n < (1<<extra_dbits[code]); n++) { | ||
258 | dist_code[dist++] = (uch)code; | ||
259 | } | ||
260 | } | ||
261 | Assert (dist == 256, "tr_static_init: dist != 256"); | ||
262 | dist >>= 7; /* from now on, all distances are divided by 128 */ | ||
263 | for ( ; code < D_CODES; code++) { | ||
264 | base_dist[code] = dist << 7; | ||
265 | for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { | ||
266 | dist_code[256 + dist++] = (uch)code; | ||
267 | } | ||
268 | } | ||
269 | Assert (dist == 256, "tr_static_init: 256+dist != 512"); | ||
270 | |||
271 | /* Construct the codes of the static literal tree */ | ||
272 | for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; | ||
273 | n = 0; | ||
274 | while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; | ||
275 | while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; | ||
276 | while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; | ||
277 | while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; | ||
278 | /* Codes 286 and 287 do not exist, but we must include them in the | ||
279 | * tree construction to get a canonical Huffman tree (longest code | ||
280 | * all ones) | ||
281 | */ | ||
282 | gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); | ||
283 | |||
284 | /* The static distance tree is trivial: */ | ||
285 | for (n = 0; n < D_CODES; n++) { | ||
286 | static_dtree[n].Len = 5; | ||
287 | static_dtree[n].Code = bi_reverse((unsigned)n, 5); | ||
288 | } | ||
289 | static_init_done = 1; | ||
290 | } | ||
291 | |||
292 | /* =========================================================================== | ||
293 | * Initialize the tree data structures for a new zlib stream. | ||
294 | */ | ||
295 | void zlib_tr_init( | ||
296 | deflate_state *s | ||
297 | ) | ||
298 | { | ||
299 | tr_static_init(); | ||
300 | |||
301 | s->compressed_len = 0L; | ||
302 | |||
303 | s->l_desc.dyn_tree = s->dyn_ltree; | ||
304 | s->l_desc.stat_desc = &static_l_desc; | ||
305 | |||
306 | s->d_desc.dyn_tree = s->dyn_dtree; | ||
307 | s->d_desc.stat_desc = &static_d_desc; | ||
308 | |||
309 | s->bl_desc.dyn_tree = s->bl_tree; | ||
310 | s->bl_desc.stat_desc = &static_bl_desc; | ||
311 | |||
312 | s->bi_buf = 0; | ||
313 | s->bi_valid = 0; | ||
314 | s->last_eob_len = 8; /* enough lookahead for inflate */ | ||
315 | #ifdef DEBUG_ZLIB | ||
316 | s->bits_sent = 0L; | ||
317 | #endif | ||
318 | |||
319 | /* Initialize the first block of the first file: */ | ||
320 | init_block(s); | ||
321 | } | ||
322 | |||
323 | /* =========================================================================== | ||
324 | * Initialize a new block. | ||
325 | */ | ||
326 | static void init_block( | ||
327 | deflate_state *s | ||
328 | ) | ||
329 | { | ||
330 | int n; /* iterates over tree elements */ | ||
331 | |||
332 | /* Initialize the trees. */ | ||
333 | for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; | ||
334 | for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; | ||
335 | for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; | ||
336 | |||
337 | s->dyn_ltree[END_BLOCK].Freq = 1; | ||
338 | s->opt_len = s->static_len = 0L; | ||
339 | s->last_lit = s->matches = 0; | ||
340 | } | ||
341 | |||
342 | #define SMALLEST 1 | ||
343 | /* Index within the heap array of least frequent node in the Huffman tree */ | ||
344 | |||
345 | |||
346 | /* =========================================================================== | ||
347 | * Remove the smallest element from the heap and recreate the heap with | ||
348 | * one less element. Updates heap and heap_len. | ||
349 | */ | ||
350 | #define pqremove(s, tree, top) \ | ||
351 | {\ | ||
352 | top = s->heap[SMALLEST]; \ | ||
353 | s->heap[SMALLEST] = s->heap[s->heap_len--]; \ | ||
354 | pqdownheap(s, tree, SMALLEST); \ | ||
355 | } | ||
356 | |||
357 | /* =========================================================================== | ||
358 | * Compares to subtrees, using the tree depth as tie breaker when | ||
359 | * the subtrees have equal frequency. This minimizes the worst case length. | ||
360 | */ | ||
361 | #define smaller(tree, n, m, depth) \ | ||
362 | (tree[n].Freq < tree[m].Freq || \ | ||
363 | (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) | ||
364 | |||
365 | /* =========================================================================== | ||
366 | * Restore the heap property by moving down the tree starting at node k, | ||
367 | * exchanging a node with the smallest of its two sons if necessary, stopping | ||
368 | * when the heap property is re-established (each father smaller than its | ||
369 | * two sons). | ||
370 | */ | ||
371 | static void pqdownheap( | ||
372 | deflate_state *s, | ||
373 | ct_data *tree, /* the tree to restore */ | ||
374 | int k /* node to move down */ | ||
375 | ) | ||
376 | { | ||
377 | int v = s->heap[k]; | ||
378 | int j = k << 1; /* left son of k */ | ||
379 | while (j <= s->heap_len) { | ||
380 | /* Set j to the smallest of the two sons: */ | ||
381 | if (j < s->heap_len && | ||
382 | smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { | ||
383 | j++; | ||
384 | } | ||
385 | /* Exit if v is smaller than both sons */ | ||
386 | if (smaller(tree, v, s->heap[j], s->depth)) break; | ||
387 | |||
388 | /* Exchange v with the smallest son */ | ||
389 | s->heap[k] = s->heap[j]; k = j; | ||
390 | |||
391 | /* And continue down the tree, setting j to the left son of k */ | ||
392 | j <<= 1; | ||
393 | } | ||
394 | s->heap[k] = v; | ||
395 | } | ||
396 | |||
397 | /* =========================================================================== | ||
398 | * Compute the optimal bit lengths for a tree and update the total bit length | ||
399 | * for the current block. | ||
400 | * IN assertion: the fields freq and dad are set, heap[heap_max] and | ||
401 | * above are the tree nodes sorted by increasing frequency. | ||
402 | * OUT assertions: the field len is set to the optimal bit length, the | ||
403 | * array bl_count contains the frequencies for each bit length. | ||
404 | * The length opt_len is updated; static_len is also updated if stree is | ||
405 | * not null. | ||
406 | */ | ||
407 | static void gen_bitlen( | ||
408 | deflate_state *s, | ||
409 | tree_desc *desc /* the tree descriptor */ | ||
410 | ) | ||
411 | { | ||
412 | ct_data *tree = desc->dyn_tree; | ||
413 | int max_code = desc->max_code; | ||
414 | const ct_data *stree = desc->stat_desc->static_tree; | ||
415 | const int *extra = desc->stat_desc->extra_bits; | ||
416 | int base = desc->stat_desc->extra_base; | ||
417 | int max_length = desc->stat_desc->max_length; | ||
418 | int h; /* heap index */ | ||
419 | int n, m; /* iterate over the tree elements */ | ||
420 | int bits; /* bit length */ | ||
421 | int xbits; /* extra bits */ | ||
422 | ush f; /* frequency */ | ||
423 | int overflow = 0; /* number of elements with bit length too large */ | ||
424 | |||
425 | for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; | ||
426 | |||
427 | /* In a first pass, compute the optimal bit lengths (which may | ||
428 | * overflow in the case of the bit length tree). | ||
429 | */ | ||
430 | tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ | ||
431 | |||
432 | for (h = s->heap_max+1; h < HEAP_SIZE; h++) { | ||
433 | n = s->heap[h]; | ||
434 | bits = tree[tree[n].Dad].Len + 1; | ||
435 | if (bits > max_length) bits = max_length, overflow++; | ||
436 | tree[n].Len = (ush)bits; | ||
437 | /* We overwrite tree[n].Dad which is no longer needed */ | ||
438 | |||
439 | if (n > max_code) continue; /* not a leaf node */ | ||
440 | |||
441 | s->bl_count[bits]++; | ||
442 | xbits = 0; | ||
443 | if (n >= base) xbits = extra[n-base]; | ||
444 | f = tree[n].Freq; | ||
445 | s->opt_len += (ulg)f * (bits + xbits); | ||
446 | if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); | ||
447 | } | ||
448 | if (overflow == 0) return; | ||
449 | |||
450 | Trace((stderr,"\nbit length overflow\n")); | ||
451 | /* This happens for example on obj2 and pic of the Calgary corpus */ | ||
452 | |||
453 | /* Find the first bit length which could increase: */ | ||
454 | do { | ||
455 | bits = max_length-1; | ||
456 | while (s->bl_count[bits] == 0) bits--; | ||
457 | s->bl_count[bits]--; /* move one leaf down the tree */ | ||
458 | s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ | ||
459 | s->bl_count[max_length]--; | ||
460 | /* The brother of the overflow item also moves one step up, | ||
461 | * but this does not affect bl_count[max_length] | ||
462 | */ | ||
463 | overflow -= 2; | ||
464 | } while (overflow > 0); | ||
465 | |||
466 | /* Now recompute all bit lengths, scanning in increasing frequency. | ||
467 | * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all | ||
468 | * lengths instead of fixing only the wrong ones. This idea is taken | ||
469 | * from 'ar' written by Haruhiko Okumura.) | ||
470 | */ | ||
471 | for (bits = max_length; bits != 0; bits--) { | ||
472 | n = s->bl_count[bits]; | ||
473 | while (n != 0) { | ||
474 | m = s->heap[--h]; | ||
475 | if (m > max_code) continue; | ||
476 | if (tree[m].Len != (unsigned) bits) { | ||
477 | Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); | ||
478 | s->opt_len += ((long)bits - (long)tree[m].Len) | ||
479 | *(long)tree[m].Freq; | ||
480 | tree[m].Len = (ush)bits; | ||
481 | } | ||
482 | n--; | ||
483 | } | ||
484 | } | ||
485 | } | ||
486 | |||
487 | /* =========================================================================== | ||
488 | * Generate the codes for a given tree and bit counts (which need not be | ||
489 | * optimal). | ||
490 | * IN assertion: the array bl_count contains the bit length statistics for | ||
491 | * the given tree and the field len is set for all tree elements. | ||
492 | * OUT assertion: the field code is set for all tree elements of non | ||
493 | * zero code length. | ||
494 | */ | ||
495 | static void gen_codes( | ||
496 | ct_data *tree, /* the tree to decorate */ | ||
497 | int max_code, /* largest code with non zero frequency */ | ||
498 | ush *bl_count /* number of codes at each bit length */ | ||
499 | ) | ||
500 | { | ||
501 | ush next_code[MAX_BITS+1]; /* next code value for each bit length */ | ||
502 | ush code = 0; /* running code value */ | ||
503 | int bits; /* bit index */ | ||
504 | int n; /* code index */ | ||
505 | |||
506 | /* The distribution counts are first used to generate the code values | ||
507 | * without bit reversal. | ||
508 | */ | ||
509 | for (bits = 1; bits <= MAX_BITS; bits++) { | ||
510 | next_code[bits] = code = (code + bl_count[bits-1]) << 1; | ||
511 | } | ||
512 | /* Check that the bit counts in bl_count are consistent. The last code | ||
513 | * must be all ones. | ||
514 | */ | ||
515 | Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, | ||
516 | "inconsistent bit counts"); | ||
517 | Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); | ||
518 | |||
519 | for (n = 0; n <= max_code; n++) { | ||
520 | int len = tree[n].Len; | ||
521 | if (len == 0) continue; | ||
522 | /* Now reverse the bits */ | ||
523 | tree[n].Code = bi_reverse(next_code[len]++, len); | ||
524 | |||
525 | Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", | ||
526 | n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); | ||
527 | } | ||
528 | } | ||
529 | |||
530 | /* =========================================================================== | ||
531 | * Construct one Huffman tree and assigns the code bit strings and lengths. | ||
532 | * Update the total bit length for the current block. | ||
533 | * IN assertion: the field freq is set for all tree elements. | ||
534 | * OUT assertions: the fields len and code are set to the optimal bit length | ||
535 | * and corresponding code. The length opt_len is updated; static_len is | ||
536 | * also updated if stree is not null. The field max_code is set. | ||
537 | */ | ||
538 | static void build_tree( | ||
539 | deflate_state *s, | ||
540 | tree_desc *desc /* the tree descriptor */ | ||
541 | ) | ||
542 | { | ||
543 | ct_data *tree = desc->dyn_tree; | ||
544 | const ct_data *stree = desc->stat_desc->static_tree; | ||
545 | int elems = desc->stat_desc->elems; | ||
546 | int n, m; /* iterate over heap elements */ | ||
547 | int max_code = -1; /* largest code with non zero frequency */ | ||
548 | int node; /* new node being created */ | ||
549 | |||
550 | /* Construct the initial heap, with least frequent element in | ||
551 | * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. | ||
552 | * heap[0] is not used. | ||
553 | */ | ||
554 | s->heap_len = 0, s->heap_max = HEAP_SIZE; | ||
555 | |||
556 | for (n = 0; n < elems; n++) { | ||
557 | if (tree[n].Freq != 0) { | ||
558 | s->heap[++(s->heap_len)] = max_code = n; | ||
559 | s->depth[n] = 0; | ||
560 | } else { | ||
561 | tree[n].Len = 0; | ||
562 | } | ||
563 | } | ||
564 | |||
565 | /* The pkzip format requires that at least one distance code exists, | ||
566 | * and that at least one bit should be sent even if there is only one | ||
567 | * possible code. So to avoid special checks later on we force at least | ||
568 | * two codes of non zero frequency. | ||
569 | */ | ||
570 | while (s->heap_len < 2) { | ||
571 | node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); | ||
572 | tree[node].Freq = 1; | ||
573 | s->depth[node] = 0; | ||
574 | s->opt_len--; if (stree) s->static_len -= stree[node].Len; | ||
575 | /* node is 0 or 1 so it does not have extra bits */ | ||
576 | } | ||
577 | desc->max_code = max_code; | ||
578 | |||
579 | /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, | ||
580 | * establish sub-heaps of increasing lengths: | ||
581 | */ | ||
582 | for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); | ||
583 | |||
584 | /* Construct the Huffman tree by repeatedly combining the least two | ||
585 | * frequent nodes. | ||
586 | */ | ||
587 | node = elems; /* next internal node of the tree */ | ||
588 | do { | ||
589 | pqremove(s, tree, n); /* n = node of least frequency */ | ||
590 | m = s->heap[SMALLEST]; /* m = node of next least frequency */ | ||
591 | |||
592 | s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ | ||
593 | s->heap[--(s->heap_max)] = m; | ||
594 | |||
595 | /* Create a new node father of n and m */ | ||
596 | tree[node].Freq = tree[n].Freq + tree[m].Freq; | ||
597 | s->depth[node] = (uch) (max(s->depth[n], s->depth[m]) + 1); | ||
598 | tree[n].Dad = tree[m].Dad = (ush)node; | ||
599 | #ifdef DUMP_BL_TREE | ||
600 | if (tree == s->bl_tree) { | ||
601 | fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", | ||
602 | node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); | ||
603 | } | ||
604 | #endif | ||
605 | /* and insert the new node in the heap */ | ||
606 | s->heap[SMALLEST] = node++; | ||
607 | pqdownheap(s, tree, SMALLEST); | ||
608 | |||
609 | } while (s->heap_len >= 2); | ||
610 | |||
611 | s->heap[--(s->heap_max)] = s->heap[SMALLEST]; | ||
612 | |||
613 | /* At this point, the fields freq and dad are set. We can now | ||
614 | * generate the bit lengths. | ||
615 | */ | ||
616 | gen_bitlen(s, (tree_desc *)desc); | ||
617 | |||
618 | /* The field len is now set, we can generate the bit codes */ | ||
619 | gen_codes ((ct_data *)tree, max_code, s->bl_count); | ||
620 | } | ||
621 | |||
622 | /* =========================================================================== | ||
623 | * Scan a literal or distance tree to determine the frequencies of the codes | ||
624 | * in the bit length tree. | ||
625 | */ | ||
626 | static void scan_tree( | ||
627 | deflate_state *s, | ||
628 | ct_data *tree, /* the tree to be scanned */ | ||
629 | int max_code /* and its largest code of non zero frequency */ | ||
630 | ) | ||
631 | { | ||
632 | int n; /* iterates over all tree elements */ | ||
633 | int prevlen = -1; /* last emitted length */ | ||
634 | int curlen; /* length of current code */ | ||
635 | int nextlen = tree[0].Len; /* length of next code */ | ||
636 | int count = 0; /* repeat count of the current code */ | ||
637 | int max_count = 7; /* max repeat count */ | ||
638 | int min_count = 4; /* min repeat count */ | ||
639 | |||
640 | if (nextlen == 0) max_count = 138, min_count = 3; | ||
641 | tree[max_code+1].Len = (ush)0xffff; /* guard */ | ||
642 | |||
643 | for (n = 0; n <= max_code; n++) { | ||
644 | curlen = nextlen; nextlen = tree[n+1].Len; | ||
645 | if (++count < max_count && curlen == nextlen) { | ||
646 | continue; | ||
647 | } else if (count < min_count) { | ||
648 | s->bl_tree[curlen].Freq += count; | ||
649 | } else if (curlen != 0) { | ||
650 | if (curlen != prevlen) s->bl_tree[curlen].Freq++; | ||
651 | s->bl_tree[REP_3_6].Freq++; | ||
652 | } else if (count <= 10) { | ||
653 | s->bl_tree[REPZ_3_10].Freq++; | ||
654 | } else { | ||
655 | s->bl_tree[REPZ_11_138].Freq++; | ||
656 | } | ||
657 | count = 0; prevlen = curlen; | ||
658 | if (nextlen == 0) { | ||
659 | max_count = 138, min_count = 3; | ||
660 | } else if (curlen == nextlen) { | ||
661 | max_count = 6, min_count = 3; | ||
662 | } else { | ||
663 | max_count = 7, min_count = 4; | ||
664 | } | ||
665 | } | ||
666 | } | ||
667 | |||
668 | /* =========================================================================== | ||
669 | * Send a literal or distance tree in compressed form, using the codes in | ||
670 | * bl_tree. | ||
671 | */ | ||
672 | static void send_tree( | ||
673 | deflate_state *s, | ||
674 | ct_data *tree, /* the tree to be scanned */ | ||
675 | int max_code /* and its largest code of non zero frequency */ | ||
676 | ) | ||
677 | { | ||
678 | int n; /* iterates over all tree elements */ | ||
679 | int prevlen = -1; /* last emitted length */ | ||
680 | int curlen; /* length of current code */ | ||
681 | int nextlen = tree[0].Len; /* length of next code */ | ||
682 | int count = 0; /* repeat count of the current code */ | ||
683 | int max_count = 7; /* max repeat count */ | ||
684 | int min_count = 4; /* min repeat count */ | ||
685 | |||
686 | /* tree[max_code+1].Len = -1; */ /* guard already set */ | ||
687 | if (nextlen == 0) max_count = 138, min_count = 3; | ||
688 | |||
689 | for (n = 0; n <= max_code; n++) { | ||
690 | curlen = nextlen; nextlen = tree[n+1].Len; | ||
691 | if (++count < max_count && curlen == nextlen) { | ||
692 | continue; | ||
693 | } else if (count < min_count) { | ||
694 | do { send_code(s, curlen, s->bl_tree); } while (--count != 0); | ||
695 | |||
696 | } else if (curlen != 0) { | ||
697 | if (curlen != prevlen) { | ||
698 | send_code(s, curlen, s->bl_tree); count--; | ||
699 | } | ||
700 | Assert(count >= 3 && count <= 6, " 3_6?"); | ||
701 | send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); | ||
702 | |||
703 | } else if (count <= 10) { | ||
704 | send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); | ||
705 | |||
706 | } else { | ||
707 | send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); | ||
708 | } | ||
709 | count = 0; prevlen = curlen; | ||
710 | if (nextlen == 0) { | ||
711 | max_count = 138, min_count = 3; | ||
712 | } else if (curlen == nextlen) { | ||
713 | max_count = 6, min_count = 3; | ||
714 | } else { | ||
715 | max_count = 7, min_count = 4; | ||
716 | } | ||
717 | } | ||
718 | } | ||
719 | |||
720 | /* =========================================================================== | ||
721 | * Construct the Huffman tree for the bit lengths and return the index in | ||
722 | * bl_order of the last bit length code to send. | ||
723 | */ | ||
724 | static int build_bl_tree( | ||
725 | deflate_state *s | ||
726 | ) | ||
727 | { | ||
728 | int max_blindex; /* index of last bit length code of non zero freq */ | ||
729 | |||
730 | /* Determine the bit length frequencies for literal and distance trees */ | ||
731 | scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); | ||
732 | scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); | ||
733 | |||
734 | /* Build the bit length tree: */ | ||
735 | build_tree(s, (tree_desc *)(&(s->bl_desc))); | ||
736 | /* opt_len now includes the length of the tree representations, except | ||
737 | * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. | ||
738 | */ | ||
739 | |||
740 | /* Determine the number of bit length codes to send. The pkzip format | ||
741 | * requires that at least 4 bit length codes be sent. (appnote.txt says | ||
742 | * 3 but the actual value used is 4.) | ||
743 | */ | ||
744 | for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { | ||
745 | if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; | ||
746 | } | ||
747 | /* Update opt_len to include the bit length tree and counts */ | ||
748 | s->opt_len += 3*(max_blindex+1) + 5+5+4; | ||
749 | Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", | ||
750 | s->opt_len, s->static_len)); | ||
751 | |||
752 | return max_blindex; | ||
753 | } | ||
754 | |||
755 | /* =========================================================================== | ||
756 | * Send the header for a block using dynamic Huffman trees: the counts, the | ||
757 | * lengths of the bit length codes, the literal tree and the distance tree. | ||
758 | * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. | ||
759 | */ | ||
760 | static void send_all_trees( | ||
761 | deflate_state *s, | ||
762 | int lcodes, /* number of codes for each tree */ | ||
763 | int dcodes, /* number of codes for each tree */ | ||
764 | int blcodes /* number of codes for each tree */ | ||
765 | ) | ||
766 | { | ||
767 | int rank; /* index in bl_order */ | ||
768 | |||
769 | Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); | ||
770 | Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, | ||
771 | "too many codes"); | ||
772 | Tracev((stderr, "\nbl counts: ")); | ||
773 | send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ | ||
774 | send_bits(s, dcodes-1, 5); | ||
775 | send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */ | ||
776 | for (rank = 0; rank < blcodes; rank++) { | ||
777 | Tracev((stderr, "\nbl code %2d ", bl_order[rank])); | ||
778 | send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); | ||
779 | } | ||
780 | Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); | ||
781 | |||
782 | send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ | ||
783 | Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); | ||
784 | |||
785 | send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ | ||
786 | Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); | ||
787 | } | ||
788 | |||
789 | /* =========================================================================== | ||
790 | * Send a stored block | ||
791 | */ | ||
792 | void zlib_tr_stored_block( | ||
793 | deflate_state *s, | ||
794 | char *buf, /* input block */ | ||
795 | ulg stored_len, /* length of input block */ | ||
796 | int eof /* true if this is the last block for a file */ | ||
797 | ) | ||
798 | { | ||
799 | send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */ | ||
800 | s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; | ||
801 | s->compressed_len += (stored_len + 4) << 3; | ||
802 | |||
803 | copy_block(s, buf, (unsigned)stored_len, 1); /* with header */ | ||
804 | } | ||
805 | |||
806 | /* Send just the `stored block' type code without any length bytes or data. | ||
807 | */ | ||
808 | void zlib_tr_stored_type_only( | ||
809 | deflate_state *s | ||
810 | ) | ||
811 | { | ||
812 | send_bits(s, (STORED_BLOCK << 1), 3); | ||
813 | bi_windup(s); | ||
814 | s->compressed_len = (s->compressed_len + 3) & ~7L; | ||
815 | } | ||
816 | |||
817 | |||
818 | /* =========================================================================== | ||
819 | * Send one empty static block to give enough lookahead for inflate. | ||
820 | * This takes 10 bits, of which 7 may remain in the bit buffer. | ||
821 | * The current inflate code requires 9 bits of lookahead. If the | ||
822 | * last two codes for the previous block (real code plus EOB) were coded | ||
823 | * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode | ||
824 | * the last real code. In this case we send two empty static blocks instead | ||
825 | * of one. (There are no problems if the previous block is stored or fixed.) | ||
826 | * To simplify the code, we assume the worst case of last real code encoded | ||
827 | * on one bit only. | ||
828 | */ | ||
829 | void zlib_tr_align( | ||
830 | deflate_state *s | ||
831 | ) | ||
832 | { | ||
833 | send_bits(s, STATIC_TREES<<1, 3); | ||
834 | send_code(s, END_BLOCK, static_ltree); | ||
835 | s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ | ||
836 | bi_flush(s); | ||
837 | /* Of the 10 bits for the empty block, we have already sent | ||
838 | * (10 - bi_valid) bits. The lookahead for the last real code (before | ||
839 | * the EOB of the previous block) was thus at least one plus the length | ||
840 | * of the EOB plus what we have just sent of the empty static block. | ||
841 | */ | ||
842 | if (1 + s->last_eob_len + 10 - s->bi_valid < 9) { | ||
843 | send_bits(s, STATIC_TREES<<1, 3); | ||
844 | send_code(s, END_BLOCK, static_ltree); | ||
845 | s->compressed_len += 10L; | ||
846 | bi_flush(s); | ||
847 | } | ||
848 | s->last_eob_len = 7; | ||
849 | } | ||
850 | |||
851 | /* =========================================================================== | ||
852 | * Determine the best encoding for the current block: dynamic trees, static | ||
853 | * trees or store, and output the encoded block to the zip file. This function | ||
854 | * returns the total compressed length for the file so far. | ||
855 | */ | ||
856 | ulg zlib_tr_flush_block( | ||
857 | deflate_state *s, | ||
858 | char *buf, /* input block, or NULL if too old */ | ||
859 | ulg stored_len, /* length of input block */ | ||
860 | int eof /* true if this is the last block for a file */ | ||
861 | ) | ||
862 | { | ||
863 | ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ | ||
864 | int max_blindex = 0; /* index of last bit length code of non zero freq */ | ||
865 | |||
866 | /* Build the Huffman trees unless a stored block is forced */ | ||
867 | if (s->level > 0) { | ||
868 | |||
869 | /* Check if the file is ascii or binary */ | ||
870 | if (s->data_type == Z_UNKNOWN) set_data_type(s); | ||
871 | |||
872 | /* Construct the literal and distance trees */ | ||
873 | build_tree(s, (tree_desc *)(&(s->l_desc))); | ||
874 | Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, | ||
875 | s->static_len)); | ||
876 | |||
877 | build_tree(s, (tree_desc *)(&(s->d_desc))); | ||
878 | Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, | ||
879 | s->static_len)); | ||
880 | /* At this point, opt_len and static_len are the total bit lengths of | ||
881 | * the compressed block data, excluding the tree representations. | ||
882 | */ | ||
883 | |||
884 | /* Build the bit length tree for the above two trees, and get the index | ||
885 | * in bl_order of the last bit length code to send. | ||
886 | */ | ||
887 | max_blindex = build_bl_tree(s); | ||
888 | |||
889 | /* Determine the best encoding. Compute first the block length in bytes*/ | ||
890 | opt_lenb = (s->opt_len+3+7)>>3; | ||
891 | static_lenb = (s->static_len+3+7)>>3; | ||
892 | |||
893 | Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", | ||
894 | opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, | ||
895 | s->last_lit)); | ||
896 | |||
897 | if (static_lenb <= opt_lenb) opt_lenb = static_lenb; | ||
898 | |||
899 | } else { | ||
900 | Assert(buf != (char*)0, "lost buf"); | ||
901 | opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ | ||
902 | } | ||
903 | |||
904 | /* If compression failed and this is the first and last block, | ||
905 | * and if the .zip file can be seeked (to rewrite the local header), | ||
906 | * the whole file is transformed into a stored file: | ||
907 | */ | ||
908 | #ifdef STORED_FILE_OK | ||
909 | # ifdef FORCE_STORED_FILE | ||
910 | if (eof && s->compressed_len == 0L) { /* force stored file */ | ||
911 | # else | ||
912 | if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) { | ||
913 | # endif | ||
914 | /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */ | ||
915 | if (buf == (char*)0) error ("block vanished"); | ||
916 | |||
917 | copy_block(s, buf, (unsigned)stored_len, 0); /* without header */ | ||
918 | s->compressed_len = stored_len << 3; | ||
919 | s->method = STORED; | ||
920 | } else | ||
921 | #endif /* STORED_FILE_OK */ | ||
922 | |||
923 | #ifdef FORCE_STORED | ||
924 | if (buf != (char*)0) { /* force stored block */ | ||
925 | #else | ||
926 | if (stored_len+4 <= opt_lenb && buf != (char*)0) { | ||
927 | /* 4: two words for the lengths */ | ||
928 | #endif | ||
929 | /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. | ||
930 | * Otherwise we can't have processed more than WSIZE input bytes since | ||
931 | * the last block flush, because compression would have been | ||
932 | * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to | ||
933 | * transform a block into a stored block. | ||
934 | */ | ||
935 | zlib_tr_stored_block(s, buf, stored_len, eof); | ||
936 | |||
937 | #ifdef FORCE_STATIC | ||
938 | } else if (static_lenb >= 0) { /* force static trees */ | ||
939 | #else | ||
940 | } else if (static_lenb == opt_lenb) { | ||
941 | #endif | ||
942 | send_bits(s, (STATIC_TREES<<1)+eof, 3); | ||
943 | compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree); | ||
944 | s->compressed_len += 3 + s->static_len; | ||
945 | } else { | ||
946 | send_bits(s, (DYN_TREES<<1)+eof, 3); | ||
947 | send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, | ||
948 | max_blindex+1); | ||
949 | compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree); | ||
950 | s->compressed_len += 3 + s->opt_len; | ||
951 | } | ||
952 | Assert (s->compressed_len == s->bits_sent, "bad compressed size"); | ||
953 | init_block(s); | ||
954 | |||
955 | if (eof) { | ||
956 | bi_windup(s); | ||
957 | s->compressed_len += 7; /* align on byte boundary */ | ||
958 | } | ||
959 | Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, | ||
960 | s->compressed_len-7*eof)); | ||
961 | |||
962 | return s->compressed_len >> 3; | ||
963 | } | ||
964 | |||
965 | /* =========================================================================== | ||
966 | * Save the match info and tally the frequency counts. Return true if | ||
967 | * the current block must be flushed. | ||
968 | */ | ||
969 | int zlib_tr_tally( | ||
970 | deflate_state *s, | ||
971 | unsigned dist, /* distance of matched string */ | ||
972 | unsigned lc /* match length-MIN_MATCH or unmatched char (if dist==0) */ | ||
973 | ) | ||
974 | { | ||
975 | s->d_buf[s->last_lit] = (ush)dist; | ||
976 | s->l_buf[s->last_lit++] = (uch)lc; | ||
977 | if (dist == 0) { | ||
978 | /* lc is the unmatched char */ | ||
979 | s->dyn_ltree[lc].Freq++; | ||
980 | } else { | ||
981 | s->matches++; | ||
982 | /* Here, lc is the match length - MIN_MATCH */ | ||
983 | dist--; /* dist = match distance - 1 */ | ||
984 | Assert((ush)dist < (ush)MAX_DIST(s) && | ||
985 | (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && | ||
986 | (ush)d_code(dist) < (ush)D_CODES, "zlib_tr_tally: bad match"); | ||
987 | |||
988 | s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++; | ||
989 | s->dyn_dtree[d_code(dist)].Freq++; | ||
990 | } | ||
991 | |||
992 | /* Try to guess if it is profitable to stop the current block here */ | ||
993 | if ((s->last_lit & 0xfff) == 0 && s->level > 2) { | ||
994 | /* Compute an upper bound for the compressed length */ | ||
995 | ulg out_length = (ulg)s->last_lit*8L; | ||
996 | ulg in_length = (ulg)((long)s->strstart - s->block_start); | ||
997 | int dcode; | ||
998 | for (dcode = 0; dcode < D_CODES; dcode++) { | ||
999 | out_length += (ulg)s->dyn_dtree[dcode].Freq * | ||
1000 | (5L+extra_dbits[dcode]); | ||
1001 | } | ||
1002 | out_length >>= 3; | ||
1003 | Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", | ||
1004 | s->last_lit, in_length, out_length, | ||
1005 | 100L - out_length*100L/in_length)); | ||
1006 | if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; | ||
1007 | } | ||
1008 | return (s->last_lit == s->lit_bufsize-1); | ||
1009 | /* We avoid equality with lit_bufsize because of wraparound at 64K | ||
1010 | * on 16 bit machines and because stored blocks are restricted to | ||
1011 | * 64K-1 bytes. | ||
1012 | */ | ||
1013 | } | ||
1014 | |||
1015 | /* =========================================================================== | ||
1016 | * Send the block data compressed using the given Huffman trees | ||
1017 | */ | ||
1018 | static void compress_block( | ||
1019 | deflate_state *s, | ||
1020 | ct_data *ltree, /* literal tree */ | ||
1021 | ct_data *dtree /* distance tree */ | ||
1022 | ) | ||
1023 | { | ||
1024 | unsigned dist; /* distance of matched string */ | ||
1025 | int lc; /* match length or unmatched char (if dist == 0) */ | ||
1026 | unsigned lx = 0; /* running index in l_buf */ | ||
1027 | unsigned code; /* the code to send */ | ||
1028 | int extra; /* number of extra bits to send */ | ||
1029 | |||
1030 | if (s->last_lit != 0) do { | ||
1031 | dist = s->d_buf[lx]; | ||
1032 | lc = s->l_buf[lx++]; | ||
1033 | if (dist == 0) { | ||
1034 | send_code(s, lc, ltree); /* send a literal byte */ | ||
1035 | Tracecv(isgraph(lc), (stderr," '%c' ", lc)); | ||
1036 | } else { | ||
1037 | /* Here, lc is the match length - MIN_MATCH */ | ||
1038 | code = length_code[lc]; | ||
1039 | send_code(s, code+LITERALS+1, ltree); /* send the length code */ | ||
1040 | extra = extra_lbits[code]; | ||
1041 | if (extra != 0) { | ||
1042 | lc -= base_length[code]; | ||
1043 | send_bits(s, lc, extra); /* send the extra length bits */ | ||
1044 | } | ||
1045 | dist--; /* dist is now the match distance - 1 */ | ||
1046 | code = d_code(dist); | ||
1047 | Assert (code < D_CODES, "bad d_code"); | ||
1048 | |||
1049 | send_code(s, code, dtree); /* send the distance code */ | ||
1050 | extra = extra_dbits[code]; | ||
1051 | if (extra != 0) { | ||
1052 | dist -= base_dist[code]; | ||
1053 | send_bits(s, dist, extra); /* send the extra distance bits */ | ||
1054 | } | ||
1055 | } /* literal or match pair ? */ | ||
1056 | |||
1057 | /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ | ||
1058 | Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow"); | ||
1059 | |||
1060 | } while (lx < s->last_lit); | ||
1061 | |||
1062 | send_code(s, END_BLOCK, ltree); | ||
1063 | s->last_eob_len = ltree[END_BLOCK].Len; | ||
1064 | } | ||
1065 | |||
1066 | /* =========================================================================== | ||
1067 | * Set the data type to ASCII or BINARY, using a crude approximation: | ||
1068 | * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise. | ||
1069 | * IN assertion: the fields freq of dyn_ltree are set and the total of all | ||
1070 | * frequencies does not exceed 64K (to fit in an int on 16 bit machines). | ||
1071 | */ | ||
1072 | static void set_data_type( | ||
1073 | deflate_state *s | ||
1074 | ) | ||
1075 | { | ||
1076 | int n = 0; | ||
1077 | unsigned ascii_freq = 0; | ||
1078 | unsigned bin_freq = 0; | ||
1079 | while (n < 7) bin_freq += s->dyn_ltree[n++].Freq; | ||
1080 | while (n < 128) ascii_freq += s->dyn_ltree[n++].Freq; | ||
1081 | while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq; | ||
1082 | s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII); | ||
1083 | } | ||
1084 | |||
1085 | /* =========================================================================== | ||
1086 | * Copy a stored block, storing first the length and its | ||
1087 | * one's complement if requested. | ||
1088 | */ | ||
1089 | static void copy_block( | ||
1090 | deflate_state *s, | ||
1091 | char *buf, /* the input data */ | ||
1092 | unsigned len, /* its length */ | ||
1093 | int header /* true if block header must be written */ | ||
1094 | ) | ||
1095 | { | ||
1096 | bi_windup(s); /* align on byte boundary */ | ||
1097 | s->last_eob_len = 8; /* enough lookahead for inflate */ | ||
1098 | |||
1099 | if (header) { | ||
1100 | put_short(s, (ush)len); | ||
1101 | put_short(s, (ush)~len); | ||
1102 | #ifdef DEBUG_ZLIB | ||
1103 | s->bits_sent += 2*16; | ||
1104 | #endif | ||
1105 | } | ||
1106 | #ifdef DEBUG_ZLIB | ||
1107 | s->bits_sent += (ulg)len<<3; | ||
1108 | #endif | ||
1109 | /* bundle up the put_byte(s, *buf++) calls */ | ||
1110 | memcpy(&s->pending_buf[s->pending], buf, len); | ||
1111 | s->pending += len; | ||
1112 | } | ||
1113 | |||