diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /lib/prio_tree.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'lib/prio_tree.c')
-rw-r--r-- | lib/prio_tree.c | 484 |
1 files changed, 484 insertions, 0 deletions
diff --git a/lib/prio_tree.c b/lib/prio_tree.c new file mode 100644 index 000000000000..ccfd850b0dec --- /dev/null +++ b/lib/prio_tree.c | |||
@@ -0,0 +1,484 @@ | |||
1 | /* | ||
2 | * lib/prio_tree.c - priority search tree | ||
3 | * | ||
4 | * Copyright (C) 2004, Rajesh Venkatasubramanian <vrajesh@umich.edu> | ||
5 | * | ||
6 | * This file is released under the GPL v2. | ||
7 | * | ||
8 | * Based on the radix priority search tree proposed by Edward M. McCreight | ||
9 | * SIAM Journal of Computing, vol. 14, no.2, pages 257-276, May 1985 | ||
10 | * | ||
11 | * 02Feb2004 Initial version | ||
12 | */ | ||
13 | |||
14 | #include <linux/init.h> | ||
15 | #include <linux/mm.h> | ||
16 | #include <linux/prio_tree.h> | ||
17 | |||
18 | /* | ||
19 | * A clever mix of heap and radix trees forms a radix priority search tree (PST) | ||
20 | * which is useful for storing intervals, e.g, we can consider a vma as a closed | ||
21 | * interval of file pages [offset_begin, offset_end], and store all vmas that | ||
22 | * map a file in a PST. Then, using the PST, we can answer a stabbing query, | ||
23 | * i.e., selecting a set of stored intervals (vmas) that overlap with (map) a | ||
24 | * given input interval X (a set of consecutive file pages), in "O(log n + m)" | ||
25 | * time where 'log n' is the height of the PST, and 'm' is the number of stored | ||
26 | * intervals (vmas) that overlap (map) with the input interval X (the set of | ||
27 | * consecutive file pages). | ||
28 | * | ||
29 | * In our implementation, we store closed intervals of the form [radix_index, | ||
30 | * heap_index]. We assume that always radix_index <= heap_index. McCreight's PST | ||
31 | * is designed for storing intervals with unique radix indices, i.e., each | ||
32 | * interval have different radix_index. However, this limitation can be easily | ||
33 | * overcome by using the size, i.e., heap_index - radix_index, as part of the | ||
34 | * index, so we index the tree using [(radix_index,size), heap_index]. | ||
35 | * | ||
36 | * When the above-mentioned indexing scheme is used, theoretically, in a 32 bit | ||
37 | * machine, the maximum height of a PST can be 64. We can use a balanced version | ||
38 | * of the priority search tree to optimize the tree height, but the balanced | ||
39 | * tree proposed by McCreight is too complex and memory-hungry for our purpose. | ||
40 | */ | ||
41 | |||
42 | /* | ||
43 | * The following macros are used for implementing prio_tree for i_mmap | ||
44 | */ | ||
45 | |||
46 | #define RADIX_INDEX(vma) ((vma)->vm_pgoff) | ||
47 | #define VMA_SIZE(vma) (((vma)->vm_end - (vma)->vm_start) >> PAGE_SHIFT) | ||
48 | /* avoid overflow */ | ||
49 | #define HEAP_INDEX(vma) ((vma)->vm_pgoff + (VMA_SIZE(vma) - 1)) | ||
50 | |||
51 | |||
52 | static void get_index(const struct prio_tree_root *root, | ||
53 | const struct prio_tree_node *node, | ||
54 | unsigned long *radix, unsigned long *heap) | ||
55 | { | ||
56 | if (root->raw) { | ||
57 | struct vm_area_struct *vma = prio_tree_entry( | ||
58 | node, struct vm_area_struct, shared.prio_tree_node); | ||
59 | |||
60 | *radix = RADIX_INDEX(vma); | ||
61 | *heap = HEAP_INDEX(vma); | ||
62 | } | ||
63 | else { | ||
64 | *radix = node->start; | ||
65 | *heap = node->last; | ||
66 | } | ||
67 | } | ||
68 | |||
69 | static unsigned long index_bits_to_maxindex[BITS_PER_LONG]; | ||
70 | |||
71 | void __init prio_tree_init(void) | ||
72 | { | ||
73 | unsigned int i; | ||
74 | |||
75 | for (i = 0; i < ARRAY_SIZE(index_bits_to_maxindex) - 1; i++) | ||
76 | index_bits_to_maxindex[i] = (1UL << (i + 1)) - 1; | ||
77 | index_bits_to_maxindex[ARRAY_SIZE(index_bits_to_maxindex) - 1] = ~0UL; | ||
78 | } | ||
79 | |||
80 | /* | ||
81 | * Maximum heap_index that can be stored in a PST with index_bits bits | ||
82 | */ | ||
83 | static inline unsigned long prio_tree_maxindex(unsigned int bits) | ||
84 | { | ||
85 | return index_bits_to_maxindex[bits - 1]; | ||
86 | } | ||
87 | |||
88 | /* | ||
89 | * Extend a priority search tree so that it can store a node with heap_index | ||
90 | * max_heap_index. In the worst case, this algorithm takes O((log n)^2). | ||
91 | * However, this function is used rarely and the common case performance is | ||
92 | * not bad. | ||
93 | */ | ||
94 | static struct prio_tree_node *prio_tree_expand(struct prio_tree_root *root, | ||
95 | struct prio_tree_node *node, unsigned long max_heap_index) | ||
96 | { | ||
97 | struct prio_tree_node *first = NULL, *prev, *last = NULL; | ||
98 | |||
99 | if (max_heap_index > prio_tree_maxindex(root->index_bits)) | ||
100 | root->index_bits++; | ||
101 | |||
102 | while (max_heap_index > prio_tree_maxindex(root->index_bits)) { | ||
103 | root->index_bits++; | ||
104 | |||
105 | if (prio_tree_empty(root)) | ||
106 | continue; | ||
107 | |||
108 | if (first == NULL) { | ||
109 | first = root->prio_tree_node; | ||
110 | prio_tree_remove(root, root->prio_tree_node); | ||
111 | INIT_PRIO_TREE_NODE(first); | ||
112 | last = first; | ||
113 | } else { | ||
114 | prev = last; | ||
115 | last = root->prio_tree_node; | ||
116 | prio_tree_remove(root, root->prio_tree_node); | ||
117 | INIT_PRIO_TREE_NODE(last); | ||
118 | prev->left = last; | ||
119 | last->parent = prev; | ||
120 | } | ||
121 | } | ||
122 | |||
123 | INIT_PRIO_TREE_NODE(node); | ||
124 | |||
125 | if (first) { | ||
126 | node->left = first; | ||
127 | first->parent = node; | ||
128 | } else | ||
129 | last = node; | ||
130 | |||
131 | if (!prio_tree_empty(root)) { | ||
132 | last->left = root->prio_tree_node; | ||
133 | last->left->parent = last; | ||
134 | } | ||
135 | |||
136 | root->prio_tree_node = node; | ||
137 | return node; | ||
138 | } | ||
139 | |||
140 | /* | ||
141 | * Replace a prio_tree_node with a new node and return the old node | ||
142 | */ | ||
143 | struct prio_tree_node *prio_tree_replace(struct prio_tree_root *root, | ||
144 | struct prio_tree_node *old, struct prio_tree_node *node) | ||
145 | { | ||
146 | INIT_PRIO_TREE_NODE(node); | ||
147 | |||
148 | if (prio_tree_root(old)) { | ||
149 | BUG_ON(root->prio_tree_node != old); | ||
150 | /* | ||
151 | * We can reduce root->index_bits here. However, it is complex | ||
152 | * and does not help much to improve performance (IMO). | ||
153 | */ | ||
154 | node->parent = node; | ||
155 | root->prio_tree_node = node; | ||
156 | } else { | ||
157 | node->parent = old->parent; | ||
158 | if (old->parent->left == old) | ||
159 | old->parent->left = node; | ||
160 | else | ||
161 | old->parent->right = node; | ||
162 | } | ||
163 | |||
164 | if (!prio_tree_left_empty(old)) { | ||
165 | node->left = old->left; | ||
166 | old->left->parent = node; | ||
167 | } | ||
168 | |||
169 | if (!prio_tree_right_empty(old)) { | ||
170 | node->right = old->right; | ||
171 | old->right->parent = node; | ||
172 | } | ||
173 | |||
174 | return old; | ||
175 | } | ||
176 | |||
177 | /* | ||
178 | * Insert a prio_tree_node @node into a radix priority search tree @root. The | ||
179 | * algorithm typically takes O(log n) time where 'log n' is the number of bits | ||
180 | * required to represent the maximum heap_index. In the worst case, the algo | ||
181 | * can take O((log n)^2) - check prio_tree_expand. | ||
182 | * | ||
183 | * If a prior node with same radix_index and heap_index is already found in | ||
184 | * the tree, then returns the address of the prior node. Otherwise, inserts | ||
185 | * @node into the tree and returns @node. | ||
186 | */ | ||
187 | struct prio_tree_node *prio_tree_insert(struct prio_tree_root *root, | ||
188 | struct prio_tree_node *node) | ||
189 | { | ||
190 | struct prio_tree_node *cur, *res = node; | ||
191 | unsigned long radix_index, heap_index; | ||
192 | unsigned long r_index, h_index, index, mask; | ||
193 | int size_flag = 0; | ||
194 | |||
195 | get_index(root, node, &radix_index, &heap_index); | ||
196 | |||
197 | if (prio_tree_empty(root) || | ||
198 | heap_index > prio_tree_maxindex(root->index_bits)) | ||
199 | return prio_tree_expand(root, node, heap_index); | ||
200 | |||
201 | cur = root->prio_tree_node; | ||
202 | mask = 1UL << (root->index_bits - 1); | ||
203 | |||
204 | while (mask) { | ||
205 | get_index(root, cur, &r_index, &h_index); | ||
206 | |||
207 | if (r_index == radix_index && h_index == heap_index) | ||
208 | return cur; | ||
209 | |||
210 | if (h_index < heap_index || | ||
211 | (h_index == heap_index && r_index > radix_index)) { | ||
212 | struct prio_tree_node *tmp = node; | ||
213 | node = prio_tree_replace(root, cur, node); | ||
214 | cur = tmp; | ||
215 | /* swap indices */ | ||
216 | index = r_index; | ||
217 | r_index = radix_index; | ||
218 | radix_index = index; | ||
219 | index = h_index; | ||
220 | h_index = heap_index; | ||
221 | heap_index = index; | ||
222 | } | ||
223 | |||
224 | if (size_flag) | ||
225 | index = heap_index - radix_index; | ||
226 | else | ||
227 | index = radix_index; | ||
228 | |||
229 | if (index & mask) { | ||
230 | if (prio_tree_right_empty(cur)) { | ||
231 | INIT_PRIO_TREE_NODE(node); | ||
232 | cur->right = node; | ||
233 | node->parent = cur; | ||
234 | return res; | ||
235 | } else | ||
236 | cur = cur->right; | ||
237 | } else { | ||
238 | if (prio_tree_left_empty(cur)) { | ||
239 | INIT_PRIO_TREE_NODE(node); | ||
240 | cur->left = node; | ||
241 | node->parent = cur; | ||
242 | return res; | ||
243 | } else | ||
244 | cur = cur->left; | ||
245 | } | ||
246 | |||
247 | mask >>= 1; | ||
248 | |||
249 | if (!mask) { | ||
250 | mask = 1UL << (BITS_PER_LONG - 1); | ||
251 | size_flag = 1; | ||
252 | } | ||
253 | } | ||
254 | /* Should not reach here */ | ||
255 | BUG(); | ||
256 | return NULL; | ||
257 | } | ||
258 | |||
259 | /* | ||
260 | * Remove a prio_tree_node @node from a radix priority search tree @root. The | ||
261 | * algorithm takes O(log n) time where 'log n' is the number of bits required | ||
262 | * to represent the maximum heap_index. | ||
263 | */ | ||
264 | void prio_tree_remove(struct prio_tree_root *root, struct prio_tree_node *node) | ||
265 | { | ||
266 | struct prio_tree_node *cur; | ||
267 | unsigned long r_index, h_index_right, h_index_left; | ||
268 | |||
269 | cur = node; | ||
270 | |||
271 | while (!prio_tree_left_empty(cur) || !prio_tree_right_empty(cur)) { | ||
272 | if (!prio_tree_left_empty(cur)) | ||
273 | get_index(root, cur->left, &r_index, &h_index_left); | ||
274 | else { | ||
275 | cur = cur->right; | ||
276 | continue; | ||
277 | } | ||
278 | |||
279 | if (!prio_tree_right_empty(cur)) | ||
280 | get_index(root, cur->right, &r_index, &h_index_right); | ||
281 | else { | ||
282 | cur = cur->left; | ||
283 | continue; | ||
284 | } | ||
285 | |||
286 | /* both h_index_left and h_index_right cannot be 0 */ | ||
287 | if (h_index_left >= h_index_right) | ||
288 | cur = cur->left; | ||
289 | else | ||
290 | cur = cur->right; | ||
291 | } | ||
292 | |||
293 | if (prio_tree_root(cur)) { | ||
294 | BUG_ON(root->prio_tree_node != cur); | ||
295 | __INIT_PRIO_TREE_ROOT(root, root->raw); | ||
296 | return; | ||
297 | } | ||
298 | |||
299 | if (cur->parent->right == cur) | ||
300 | cur->parent->right = cur->parent; | ||
301 | else | ||
302 | cur->parent->left = cur->parent; | ||
303 | |||
304 | while (cur != node) | ||
305 | cur = prio_tree_replace(root, cur->parent, cur); | ||
306 | } | ||
307 | |||
308 | /* | ||
309 | * Following functions help to enumerate all prio_tree_nodes in the tree that | ||
310 | * overlap with the input interval X [radix_index, heap_index]. The enumeration | ||
311 | * takes O(log n + m) time where 'log n' is the height of the tree (which is | ||
312 | * proportional to # of bits required to represent the maximum heap_index) and | ||
313 | * 'm' is the number of prio_tree_nodes that overlap the interval X. | ||
314 | */ | ||
315 | |||
316 | static struct prio_tree_node *prio_tree_left(struct prio_tree_iter *iter, | ||
317 | unsigned long *r_index, unsigned long *h_index) | ||
318 | { | ||
319 | if (prio_tree_left_empty(iter->cur)) | ||
320 | return NULL; | ||
321 | |||
322 | get_index(iter->root, iter->cur->left, r_index, h_index); | ||
323 | |||
324 | if (iter->r_index <= *h_index) { | ||
325 | iter->cur = iter->cur->left; | ||
326 | iter->mask >>= 1; | ||
327 | if (iter->mask) { | ||
328 | if (iter->size_level) | ||
329 | iter->size_level++; | ||
330 | } else { | ||
331 | if (iter->size_level) { | ||
332 | BUG_ON(!prio_tree_left_empty(iter->cur)); | ||
333 | BUG_ON(!prio_tree_right_empty(iter->cur)); | ||
334 | iter->size_level++; | ||
335 | iter->mask = ULONG_MAX; | ||
336 | } else { | ||
337 | iter->size_level = 1; | ||
338 | iter->mask = 1UL << (BITS_PER_LONG - 1); | ||
339 | } | ||
340 | } | ||
341 | return iter->cur; | ||
342 | } | ||
343 | |||
344 | return NULL; | ||
345 | } | ||
346 | |||
347 | static struct prio_tree_node *prio_tree_right(struct prio_tree_iter *iter, | ||
348 | unsigned long *r_index, unsigned long *h_index) | ||
349 | { | ||
350 | unsigned long value; | ||
351 | |||
352 | if (prio_tree_right_empty(iter->cur)) | ||
353 | return NULL; | ||
354 | |||
355 | if (iter->size_level) | ||
356 | value = iter->value; | ||
357 | else | ||
358 | value = iter->value | iter->mask; | ||
359 | |||
360 | if (iter->h_index < value) | ||
361 | return NULL; | ||
362 | |||
363 | get_index(iter->root, iter->cur->right, r_index, h_index); | ||
364 | |||
365 | if (iter->r_index <= *h_index) { | ||
366 | iter->cur = iter->cur->right; | ||
367 | iter->mask >>= 1; | ||
368 | iter->value = value; | ||
369 | if (iter->mask) { | ||
370 | if (iter->size_level) | ||
371 | iter->size_level++; | ||
372 | } else { | ||
373 | if (iter->size_level) { | ||
374 | BUG_ON(!prio_tree_left_empty(iter->cur)); | ||
375 | BUG_ON(!prio_tree_right_empty(iter->cur)); | ||
376 | iter->size_level++; | ||
377 | iter->mask = ULONG_MAX; | ||
378 | } else { | ||
379 | iter->size_level = 1; | ||
380 | iter->mask = 1UL << (BITS_PER_LONG - 1); | ||
381 | } | ||
382 | } | ||
383 | return iter->cur; | ||
384 | } | ||
385 | |||
386 | return NULL; | ||
387 | } | ||
388 | |||
389 | static struct prio_tree_node *prio_tree_parent(struct prio_tree_iter *iter) | ||
390 | { | ||
391 | iter->cur = iter->cur->parent; | ||
392 | if (iter->mask == ULONG_MAX) | ||
393 | iter->mask = 1UL; | ||
394 | else if (iter->size_level == 1) | ||
395 | iter->mask = 1UL; | ||
396 | else | ||
397 | iter->mask <<= 1; | ||
398 | if (iter->size_level) | ||
399 | iter->size_level--; | ||
400 | if (!iter->size_level && (iter->value & iter->mask)) | ||
401 | iter->value ^= iter->mask; | ||
402 | return iter->cur; | ||
403 | } | ||
404 | |||
405 | static inline int overlap(struct prio_tree_iter *iter, | ||
406 | unsigned long r_index, unsigned long h_index) | ||
407 | { | ||
408 | return iter->h_index >= r_index && iter->r_index <= h_index; | ||
409 | } | ||
410 | |||
411 | /* | ||
412 | * prio_tree_first: | ||
413 | * | ||
414 | * Get the first prio_tree_node that overlaps with the interval [radix_index, | ||
415 | * heap_index]. Note that always radix_index <= heap_index. We do a pre-order | ||
416 | * traversal of the tree. | ||
417 | */ | ||
418 | static struct prio_tree_node *prio_tree_first(struct prio_tree_iter *iter) | ||
419 | { | ||
420 | struct prio_tree_root *root; | ||
421 | unsigned long r_index, h_index; | ||
422 | |||
423 | INIT_PRIO_TREE_ITER(iter); | ||
424 | |||
425 | root = iter->root; | ||
426 | if (prio_tree_empty(root)) | ||
427 | return NULL; | ||
428 | |||
429 | get_index(root, root->prio_tree_node, &r_index, &h_index); | ||
430 | |||
431 | if (iter->r_index > h_index) | ||
432 | return NULL; | ||
433 | |||
434 | iter->mask = 1UL << (root->index_bits - 1); | ||
435 | iter->cur = root->prio_tree_node; | ||
436 | |||
437 | while (1) { | ||
438 | if (overlap(iter, r_index, h_index)) | ||
439 | return iter->cur; | ||
440 | |||
441 | if (prio_tree_left(iter, &r_index, &h_index)) | ||
442 | continue; | ||
443 | |||
444 | if (prio_tree_right(iter, &r_index, &h_index)) | ||
445 | continue; | ||
446 | |||
447 | break; | ||
448 | } | ||
449 | return NULL; | ||
450 | } | ||
451 | |||
452 | /* | ||
453 | * prio_tree_next: | ||
454 | * | ||
455 | * Get the next prio_tree_node that overlaps with the input interval in iter | ||
456 | */ | ||
457 | struct prio_tree_node *prio_tree_next(struct prio_tree_iter *iter) | ||
458 | { | ||
459 | unsigned long r_index, h_index; | ||
460 | |||
461 | if (iter->cur == NULL) | ||
462 | return prio_tree_first(iter); | ||
463 | |||
464 | repeat: | ||
465 | while (prio_tree_left(iter, &r_index, &h_index)) | ||
466 | if (overlap(iter, r_index, h_index)) | ||
467 | return iter->cur; | ||
468 | |||
469 | while (!prio_tree_right(iter, &r_index, &h_index)) { | ||
470 | while (!prio_tree_root(iter->cur) && | ||
471 | iter->cur->parent->right == iter->cur) | ||
472 | prio_tree_parent(iter); | ||
473 | |||
474 | if (prio_tree_root(iter->cur)) | ||
475 | return NULL; | ||
476 | |||
477 | prio_tree_parent(iter); | ||
478 | } | ||
479 | |||
480 | if (overlap(iter, r_index, h_index)) | ||
481 | return iter->cur; | ||
482 | |||
483 | goto repeat; | ||
484 | } | ||