diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /lib/kernel_lock.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'lib/kernel_lock.c')
-rw-r--r-- | lib/kernel_lock.c | 264 |
1 files changed, 264 insertions, 0 deletions
diff --git a/lib/kernel_lock.c b/lib/kernel_lock.c new file mode 100644 index 000000000000..99b0ae3d51dd --- /dev/null +++ b/lib/kernel_lock.c | |||
@@ -0,0 +1,264 @@ | |||
1 | /* | ||
2 | * lib/kernel_lock.c | ||
3 | * | ||
4 | * This is the traditional BKL - big kernel lock. Largely | ||
5 | * relegated to obsolescense, but used by various less | ||
6 | * important (or lazy) subsystems. | ||
7 | */ | ||
8 | #include <linux/smp_lock.h> | ||
9 | #include <linux/module.h> | ||
10 | #include <linux/kallsyms.h> | ||
11 | |||
12 | #if defined(CONFIG_PREEMPT) && defined(__smp_processor_id) && \ | ||
13 | defined(CONFIG_DEBUG_PREEMPT) | ||
14 | |||
15 | /* | ||
16 | * Debugging check. | ||
17 | */ | ||
18 | unsigned int smp_processor_id(void) | ||
19 | { | ||
20 | unsigned long preempt_count = preempt_count(); | ||
21 | int this_cpu = __smp_processor_id(); | ||
22 | cpumask_t this_mask; | ||
23 | |||
24 | if (likely(preempt_count)) | ||
25 | goto out; | ||
26 | |||
27 | if (irqs_disabled()) | ||
28 | goto out; | ||
29 | |||
30 | /* | ||
31 | * Kernel threads bound to a single CPU can safely use | ||
32 | * smp_processor_id(): | ||
33 | */ | ||
34 | this_mask = cpumask_of_cpu(this_cpu); | ||
35 | |||
36 | if (cpus_equal(current->cpus_allowed, this_mask)) | ||
37 | goto out; | ||
38 | |||
39 | /* | ||
40 | * It is valid to assume CPU-locality during early bootup: | ||
41 | */ | ||
42 | if (system_state != SYSTEM_RUNNING) | ||
43 | goto out; | ||
44 | |||
45 | /* | ||
46 | * Avoid recursion: | ||
47 | */ | ||
48 | preempt_disable(); | ||
49 | |||
50 | if (!printk_ratelimit()) | ||
51 | goto out_enable; | ||
52 | |||
53 | printk(KERN_ERR "BUG: using smp_processor_id() in preemptible [%08x] code: %s/%d\n", preempt_count(), current->comm, current->pid); | ||
54 | print_symbol("caller is %s\n", (long)__builtin_return_address(0)); | ||
55 | dump_stack(); | ||
56 | |||
57 | out_enable: | ||
58 | preempt_enable_no_resched(); | ||
59 | out: | ||
60 | return this_cpu; | ||
61 | } | ||
62 | |||
63 | EXPORT_SYMBOL(smp_processor_id); | ||
64 | |||
65 | #endif /* PREEMPT && __smp_processor_id && DEBUG_PREEMPT */ | ||
66 | |||
67 | #ifdef CONFIG_PREEMPT_BKL | ||
68 | /* | ||
69 | * The 'big kernel semaphore' | ||
70 | * | ||
71 | * This mutex is taken and released recursively by lock_kernel() | ||
72 | * and unlock_kernel(). It is transparently dropped and reaquired | ||
73 | * over schedule(). It is used to protect legacy code that hasn't | ||
74 | * been migrated to a proper locking design yet. | ||
75 | * | ||
76 | * Note: code locked by this semaphore will only be serialized against | ||
77 | * other code using the same locking facility. The code guarantees that | ||
78 | * the task remains on the same CPU. | ||
79 | * | ||
80 | * Don't use in new code. | ||
81 | */ | ||
82 | static DECLARE_MUTEX(kernel_sem); | ||
83 | |||
84 | /* | ||
85 | * Re-acquire the kernel semaphore. | ||
86 | * | ||
87 | * This function is called with preemption off. | ||
88 | * | ||
89 | * We are executing in schedule() so the code must be extremely careful | ||
90 | * about recursion, both due to the down() and due to the enabling of | ||
91 | * preemption. schedule() will re-check the preemption flag after | ||
92 | * reacquiring the semaphore. | ||
93 | */ | ||
94 | int __lockfunc __reacquire_kernel_lock(void) | ||
95 | { | ||
96 | struct task_struct *task = current; | ||
97 | int saved_lock_depth = task->lock_depth; | ||
98 | |||
99 | BUG_ON(saved_lock_depth < 0); | ||
100 | |||
101 | task->lock_depth = -1; | ||
102 | preempt_enable_no_resched(); | ||
103 | |||
104 | down(&kernel_sem); | ||
105 | |||
106 | preempt_disable(); | ||
107 | task->lock_depth = saved_lock_depth; | ||
108 | |||
109 | return 0; | ||
110 | } | ||
111 | |||
112 | void __lockfunc __release_kernel_lock(void) | ||
113 | { | ||
114 | up(&kernel_sem); | ||
115 | } | ||
116 | |||
117 | /* | ||
118 | * Getting the big kernel semaphore. | ||
119 | */ | ||
120 | void __lockfunc lock_kernel(void) | ||
121 | { | ||
122 | struct task_struct *task = current; | ||
123 | int depth = task->lock_depth + 1; | ||
124 | |||
125 | if (likely(!depth)) | ||
126 | /* | ||
127 | * No recursion worries - we set up lock_depth _after_ | ||
128 | */ | ||
129 | down(&kernel_sem); | ||
130 | |||
131 | task->lock_depth = depth; | ||
132 | } | ||
133 | |||
134 | void __lockfunc unlock_kernel(void) | ||
135 | { | ||
136 | struct task_struct *task = current; | ||
137 | |||
138 | BUG_ON(task->lock_depth < 0); | ||
139 | |||
140 | if (likely(--task->lock_depth < 0)) | ||
141 | up(&kernel_sem); | ||
142 | } | ||
143 | |||
144 | #else | ||
145 | |||
146 | /* | ||
147 | * The 'big kernel lock' | ||
148 | * | ||
149 | * This spinlock is taken and released recursively by lock_kernel() | ||
150 | * and unlock_kernel(). It is transparently dropped and reaquired | ||
151 | * over schedule(). It is used to protect legacy code that hasn't | ||
152 | * been migrated to a proper locking design yet. | ||
153 | * | ||
154 | * Don't use in new code. | ||
155 | */ | ||
156 | static __cacheline_aligned_in_smp DEFINE_SPINLOCK(kernel_flag); | ||
157 | |||
158 | |||
159 | /* | ||
160 | * Acquire/release the underlying lock from the scheduler. | ||
161 | * | ||
162 | * This is called with preemption disabled, and should | ||
163 | * return an error value if it cannot get the lock and | ||
164 | * TIF_NEED_RESCHED gets set. | ||
165 | * | ||
166 | * If it successfully gets the lock, it should increment | ||
167 | * the preemption count like any spinlock does. | ||
168 | * | ||
169 | * (This works on UP too - _raw_spin_trylock will never | ||
170 | * return false in that case) | ||
171 | */ | ||
172 | int __lockfunc __reacquire_kernel_lock(void) | ||
173 | { | ||
174 | while (!_raw_spin_trylock(&kernel_flag)) { | ||
175 | if (test_thread_flag(TIF_NEED_RESCHED)) | ||
176 | return -EAGAIN; | ||
177 | cpu_relax(); | ||
178 | } | ||
179 | preempt_disable(); | ||
180 | return 0; | ||
181 | } | ||
182 | |||
183 | void __lockfunc __release_kernel_lock(void) | ||
184 | { | ||
185 | _raw_spin_unlock(&kernel_flag); | ||
186 | preempt_enable_no_resched(); | ||
187 | } | ||
188 | |||
189 | /* | ||
190 | * These are the BKL spinlocks - we try to be polite about preemption. | ||
191 | * If SMP is not on (ie UP preemption), this all goes away because the | ||
192 | * _raw_spin_trylock() will always succeed. | ||
193 | */ | ||
194 | #ifdef CONFIG_PREEMPT | ||
195 | static inline void __lock_kernel(void) | ||
196 | { | ||
197 | preempt_disable(); | ||
198 | if (unlikely(!_raw_spin_trylock(&kernel_flag))) { | ||
199 | /* | ||
200 | * If preemption was disabled even before this | ||
201 | * was called, there's nothing we can be polite | ||
202 | * about - just spin. | ||
203 | */ | ||
204 | if (preempt_count() > 1) { | ||
205 | _raw_spin_lock(&kernel_flag); | ||
206 | return; | ||
207 | } | ||
208 | |||
209 | /* | ||
210 | * Otherwise, let's wait for the kernel lock | ||
211 | * with preemption enabled.. | ||
212 | */ | ||
213 | do { | ||
214 | preempt_enable(); | ||
215 | while (spin_is_locked(&kernel_flag)) | ||
216 | cpu_relax(); | ||
217 | preempt_disable(); | ||
218 | } while (!_raw_spin_trylock(&kernel_flag)); | ||
219 | } | ||
220 | } | ||
221 | |||
222 | #else | ||
223 | |||
224 | /* | ||
225 | * Non-preemption case - just get the spinlock | ||
226 | */ | ||
227 | static inline void __lock_kernel(void) | ||
228 | { | ||
229 | _raw_spin_lock(&kernel_flag); | ||
230 | } | ||
231 | #endif | ||
232 | |||
233 | static inline void __unlock_kernel(void) | ||
234 | { | ||
235 | _raw_spin_unlock(&kernel_flag); | ||
236 | preempt_enable(); | ||
237 | } | ||
238 | |||
239 | /* | ||
240 | * Getting the big kernel lock. | ||
241 | * | ||
242 | * This cannot happen asynchronously, so we only need to | ||
243 | * worry about other CPU's. | ||
244 | */ | ||
245 | void __lockfunc lock_kernel(void) | ||
246 | { | ||
247 | int depth = current->lock_depth+1; | ||
248 | if (likely(!depth)) | ||
249 | __lock_kernel(); | ||
250 | current->lock_depth = depth; | ||
251 | } | ||
252 | |||
253 | void __lockfunc unlock_kernel(void) | ||
254 | { | ||
255 | BUG_ON(current->lock_depth < 0); | ||
256 | if (likely(--current->lock_depth < 0)) | ||
257 | __unlock_kernel(); | ||
258 | } | ||
259 | |||
260 | #endif | ||
261 | |||
262 | EXPORT_SYMBOL(lock_kernel); | ||
263 | EXPORT_SYMBOL(unlock_kernel); | ||
264 | |||