aboutsummaryrefslogtreecommitdiffstats
path: root/kernel
diff options
context:
space:
mode:
authorPaul E. McKenney <paul.mckenney@linaro.org>2011-07-18 00:14:35 -0400
committerPaul E. McKenney <paulmck@linux.vnet.ibm.com>2011-07-20 13:50:11 -0400
commit10f39bb1b2c1923ca73e70cb13aeee0e9b822d8f (patch)
tree2e8349c57b1f0563a27be49410f413b643ded1a9 /kernel
parentbe0e1e21ef707be4d16ea6a96ac9997463e4b8d2 (diff)
rcu: protect __rcu_read_unlock() against scheduler-using irq handlers
The addition of RCU read-side critical sections within runqueue and priority-inheritance lock critical sections introduced some deadlock cycles, for example, involving interrupts from __rcu_read_unlock() where the interrupt handlers call wake_up(). This situation can cause the instance of __rcu_read_unlock() invoked from interrupt to do some of the processing that would otherwise have been carried out by the task-level instance of __rcu_read_unlock(). When the interrupt-level instance of __rcu_read_unlock() is called with a scheduler lock held from interrupt-entry/exit situations where in_irq() returns false, deadlock can result. This commit resolves these deadlocks by using negative values of the per-task ->rcu_read_lock_nesting counter to indicate that an instance of __rcu_read_unlock() is in flight, which in turn prevents instances from interrupt handlers from doing any special processing. This patch is inspired by Steven Rostedt's earlier patch that similarly made __rcu_read_unlock() guard against interrupt-mediated recursion (see https://lkml.org/lkml/2011/7/15/326), but this commit refines Steven's approach to avoid the need for preemption disabling on the __rcu_read_unlock() fastpath and to also avoid the need for manipulating a separate per-CPU variable. This patch avoids need for preempt_disable() by instead using negative values of the per-task ->rcu_read_lock_nesting counter. Note that nested rcu_read_lock()/rcu_read_unlock() pairs are still permitted, but they will never see ->rcu_read_lock_nesting go to zero, and will therefore never invoke rcu_read_unlock_special(), thus preventing them from seeing the RCU_READ_UNLOCK_BLOCKED bit should it be set in ->rcu_read_unlock_special. This patch also adds a check for ->rcu_read_unlock_special being negative in rcu_check_callbacks(), thus preventing the RCU_READ_UNLOCK_NEED_QS bit from being set should a scheduling-clock interrupt occur while __rcu_read_unlock() is exiting from an outermost RCU read-side critical section. Of course, __rcu_read_unlock() can be preempted during the time that ->rcu_read_lock_nesting is negative. This could result in the setting of the RCU_READ_UNLOCK_BLOCKED bit after __rcu_read_unlock() checks it, and would also result it this task being queued on the corresponding rcu_node structure's blkd_tasks list. Therefore, some later RCU read-side critical section would enter rcu_read_unlock_special() to clean up -- which could result in deadlock if that critical section happened to be in the scheduler where the runqueue or priority-inheritance locks were held. This situation is dealt with by making rcu_preempt_note_context_switch() check for negative ->rcu_read_lock_nesting, thus refraining from queuing the task (and from setting RCU_READ_UNLOCK_BLOCKED) if we are already exiting from the outermost RCU read-side critical section (in other words, we really are no longer actually in that RCU read-side critical section). In addition, rcu_preempt_note_context_switch() invokes rcu_read_unlock_special() to carry out the cleanup in this case, which clears out the ->rcu_read_unlock_special bits and dequeues the task (if necessary), in turn avoiding needless delay of the current RCU grace period and needless RCU priority boosting. It is still illegal to call rcu_read_unlock() while holding a scheduler lock if the prior RCU read-side critical section has ever had either preemption or irqs enabled. However, the common use case is legal, namely where then entire RCU read-side critical section executes with irqs disabled, for example, when the scheduler lock is held across the entire lifetime of the RCU read-side critical section. Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Diffstat (limited to 'kernel')
-rw-r--r--kernel/rcutree_plugin.h29
1 files changed, 24 insertions, 5 deletions
diff --git a/kernel/rcutree_plugin.h b/kernel/rcutree_plugin.h
index 4d2c068ba13e..d9d7a89da8bb 100644
--- a/kernel/rcutree_plugin.h
+++ b/kernel/rcutree_plugin.h
@@ -68,6 +68,7 @@ struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt_state);
68DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data); 68DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
69static struct rcu_state *rcu_state = &rcu_preempt_state; 69static struct rcu_state *rcu_state = &rcu_preempt_state;
70 70
71static void rcu_read_unlock_special(struct task_struct *t);
71static int rcu_preempted_readers_exp(struct rcu_node *rnp); 72static int rcu_preempted_readers_exp(struct rcu_node *rnp);
72 73
73/* 74/*
@@ -147,7 +148,7 @@ static void rcu_preempt_note_context_switch(int cpu)
147 struct rcu_data *rdp; 148 struct rcu_data *rdp;
148 struct rcu_node *rnp; 149 struct rcu_node *rnp;
149 150
150 if (t->rcu_read_lock_nesting && 151 if (t->rcu_read_lock_nesting > 0 &&
151 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) { 152 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
152 153
153 /* Possibly blocking in an RCU read-side critical section. */ 154 /* Possibly blocking in an RCU read-side critical section. */
@@ -190,6 +191,14 @@ static void rcu_preempt_note_context_switch(int cpu)
190 rnp->gp_tasks = &t->rcu_node_entry; 191 rnp->gp_tasks = &t->rcu_node_entry;
191 } 192 }
192 raw_spin_unlock_irqrestore(&rnp->lock, flags); 193 raw_spin_unlock_irqrestore(&rnp->lock, flags);
194 } else if (t->rcu_read_lock_nesting < 0 &&
195 t->rcu_read_unlock_special) {
196
197 /*
198 * Complete exit from RCU read-side critical section on
199 * behalf of preempted instance of __rcu_read_unlock().
200 */
201 rcu_read_unlock_special(t);
193 } 202 }
194 203
195 /* 204 /*
@@ -391,13 +400,22 @@ void __rcu_read_unlock(void)
391 struct task_struct *t = current; 400 struct task_struct *t = current;
392 401
393 barrier(); /* needed if we ever invoke rcu_read_unlock in rcutree.c */ 402 barrier(); /* needed if we ever invoke rcu_read_unlock in rcutree.c */
394 if (--t->rcu_read_lock_nesting == 0) { 403 if (t->rcu_read_lock_nesting != 1)
395 barrier(); /* decr before ->rcu_read_unlock_special load */ 404 --t->rcu_read_lock_nesting;
405 else {
406 t->rcu_read_lock_nesting = INT_MIN;
407 barrier(); /* assign before ->rcu_read_unlock_special load */
396 if (unlikely(ACCESS_ONCE(t->rcu_read_unlock_special))) 408 if (unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
397 rcu_read_unlock_special(t); 409 rcu_read_unlock_special(t);
410 barrier(); /* ->rcu_read_unlock_special load before assign */
411 t->rcu_read_lock_nesting = 0;
398 } 412 }
399#ifdef CONFIG_PROVE_LOCKING 413#ifdef CONFIG_PROVE_LOCKING
400 WARN_ON_ONCE(ACCESS_ONCE(t->rcu_read_lock_nesting) < 0); 414 {
415 int rrln = ACCESS_ONCE(t->rcu_read_lock_nesting);
416
417 WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
418 }
401#endif /* #ifdef CONFIG_PROVE_LOCKING */ 419#endif /* #ifdef CONFIG_PROVE_LOCKING */
402} 420}
403EXPORT_SYMBOL_GPL(__rcu_read_unlock); 421EXPORT_SYMBOL_GPL(__rcu_read_unlock);
@@ -593,7 +611,8 @@ static void rcu_preempt_check_callbacks(int cpu)
593 rcu_preempt_qs(cpu); 611 rcu_preempt_qs(cpu);
594 return; 612 return;
595 } 613 }
596 if (per_cpu(rcu_preempt_data, cpu).qs_pending) 614 if (t->rcu_read_lock_nesting > 0 &&
615 per_cpu(rcu_preempt_data, cpu).qs_pending)
597 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS; 616 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
598} 617}
599 618