diff options
author | Suresh Siddha <suresh.b.siddha@intel.com> | 2009-08-19 21:05:36 -0400 |
---|---|---|
committer | H. Peter Anvin <hpa@zytor.com> | 2009-08-21 19:25:55 -0400 |
commit | d0af9eed5aa91b6b7b5049cae69e5ea956fd85c3 (patch) | |
tree | b9214db00ba734e5b943165082c30336f7a8425a /kernel | |
parent | 269c861baa2fe7c114c3bc7831292758d29eb336 (diff) |
x86, pat/mtrr: Rendezvous all the cpus for MTRR/PAT init
SDM Vol 3a section titled "MTRR considerations in MP systems" specifies
the need for synchronizing the logical cpu's while initializing/updating
MTRR.
Currently Linux kernel does the synchronization of all cpu's only when
a single MTRR register is programmed/updated. During an AP online
(during boot/cpu-online/resume) where we initialize all the MTRR/PAT registers,
we don't follow this synchronization algorithm.
This can lead to scenarios where during a dynamic cpu online, that logical cpu
is initializing MTRR/PAT with cache disabled (cr0.cd=1) etc while other logical
HT sibling continue to run (also with cache disabled because of cr0.cd=1
on its sibling).
Starting from Westmere, VMX transitions with cr0.cd=1 don't work properly
(because of some VMX performance optimizations) and the above scenario
(with one logical cpu doing VMX activity and another logical cpu coming online)
can result in system crash.
Fix the MTRR initialization by doing rendezvous of all the cpus. During
boot and resume, we delay the MTRR/PAT init for APs till all the
logical cpu's come online and the rendezvous process at the end of AP's bringup,
will initialize the MTRR/PAT for all AP's.
For dynamic single cpu online, we synchronize all the logical cpus and
do the MTRR/PAT init on the AP that is coming online.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Diffstat (limited to 'kernel')
-rw-r--r-- | kernel/cpu.c | 14 |
1 files changed, 14 insertions, 0 deletions
diff --git a/kernel/cpu.c b/kernel/cpu.c index 8ce10043e4ac..f5f9485b8c0f 100644 --- a/kernel/cpu.c +++ b/kernel/cpu.c | |||
@@ -413,6 +413,14 @@ int disable_nonboot_cpus(void) | |||
413 | return error; | 413 | return error; |
414 | } | 414 | } |
415 | 415 | ||
416 | void __weak arch_enable_nonboot_cpus_begin(void) | ||
417 | { | ||
418 | } | ||
419 | |||
420 | void __weak arch_enable_nonboot_cpus_end(void) | ||
421 | { | ||
422 | } | ||
423 | |||
416 | void __ref enable_nonboot_cpus(void) | 424 | void __ref enable_nonboot_cpus(void) |
417 | { | 425 | { |
418 | int cpu, error; | 426 | int cpu, error; |
@@ -424,6 +432,9 @@ void __ref enable_nonboot_cpus(void) | |||
424 | goto out; | 432 | goto out; |
425 | 433 | ||
426 | printk("Enabling non-boot CPUs ...\n"); | 434 | printk("Enabling non-boot CPUs ...\n"); |
435 | |||
436 | arch_enable_nonboot_cpus_begin(); | ||
437 | |||
427 | for_each_cpu(cpu, frozen_cpus) { | 438 | for_each_cpu(cpu, frozen_cpus) { |
428 | error = _cpu_up(cpu, 1); | 439 | error = _cpu_up(cpu, 1); |
429 | if (!error) { | 440 | if (!error) { |
@@ -432,6 +443,9 @@ void __ref enable_nonboot_cpus(void) | |||
432 | } | 443 | } |
433 | printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error); | 444 | printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error); |
434 | } | 445 | } |
446 | |||
447 | arch_enable_nonboot_cpus_end(); | ||
448 | |||
435 | cpumask_clear(frozen_cpus); | 449 | cpumask_clear(frozen_cpus); |
436 | out: | 450 | out: |
437 | cpu_maps_update_done(); | 451 | cpu_maps_update_done(); |