aboutsummaryrefslogtreecommitdiffstats
path: root/kernel
diff options
context:
space:
mode:
authorTrond Myklebust <Trond.Myklebust@netapp.com>2009-08-19 18:21:52 -0400
committerTrond Myklebust <Trond.Myklebust@netapp.com>2009-08-19 18:21:52 -0400
commit6a396f67d2442e30150ffb5e1142dbb2f2181d3f (patch)
tree2ea4f3ab1d3766204a55ec26600b848ed3a7e8aa /kernel
parentf884dcaead5f17bf586ac5fe6a3ad07b5203616a (diff)
parentcccddf4f5580131c9b963900e1d3400655e633cc (diff)
Merge branch 'nfsv4_xdr_cleanups-for-2.6.32' into nfs-for-2.6.32
Conflicts: fs/nfs/nfs4xdr.c
Diffstat (limited to 'kernel')
-rw-r--r--kernel/futex.c28
-rw-r--r--kernel/futex_compat.c6
-rw-r--r--kernel/irq/manage.c17
-rw-r--r--kernel/irq/numa_migrate.c4
-rw-r--r--kernel/lockdep_proc.c3
-rw-r--r--kernel/perf_counter.c581
-rw-r--r--kernel/posix-cpu-timers.c7
-rw-r--r--kernel/rtmutex.c4
-rw-r--r--kernel/trace/blktrace.c12
-rw-r--r--kernel/trace/ring_buffer.c15
-rw-r--r--kernel/trace/trace.c1
-rw-r--r--kernel/trace/trace.h4
-rw-r--r--kernel/trace/trace_events_filter.c20
-rw-r--r--kernel/wait.c5
14 files changed, 460 insertions, 247 deletions
diff --git a/kernel/futex.c b/kernel/futex.c
index 0672ff88f159..e18cfbdc7190 100644
--- a/kernel/futex.c
+++ b/kernel/futex.c
@@ -1010,15 +1010,19 @@ void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1010 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue 1010 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1011 * q: the futex_q 1011 * q: the futex_q
1012 * key: the key of the requeue target futex 1012 * key: the key of the requeue target futex
1013 * hb: the hash_bucket of the requeue target futex
1013 * 1014 *
1014 * During futex_requeue, with requeue_pi=1, it is possible to acquire the 1015 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1015 * target futex if it is uncontended or via a lock steal. Set the futex_q key 1016 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1016 * to the requeue target futex so the waiter can detect the wakeup on the right 1017 * to the requeue target futex so the waiter can detect the wakeup on the right
1017 * futex, but remove it from the hb and NULL the rt_waiter so it can detect 1018 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1018 * atomic lock acquisition. Must be called with the q->lock_ptr held. 1019 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1020 * to protect access to the pi_state to fixup the owner later. Must be called
1021 * with both q->lock_ptr and hb->lock held.
1019 */ 1022 */
1020static inline 1023static inline
1021void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key) 1024void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1025 struct futex_hash_bucket *hb)
1022{ 1026{
1023 drop_futex_key_refs(&q->key); 1027 drop_futex_key_refs(&q->key);
1024 get_futex_key_refs(key); 1028 get_futex_key_refs(key);
@@ -1030,6 +1034,11 @@ void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key)
1030 WARN_ON(!q->rt_waiter); 1034 WARN_ON(!q->rt_waiter);
1031 q->rt_waiter = NULL; 1035 q->rt_waiter = NULL;
1032 1036
1037 q->lock_ptr = &hb->lock;
1038#ifdef CONFIG_DEBUG_PI_LIST
1039 q->list.plist.lock = &hb->lock;
1040#endif
1041
1033 wake_up_state(q->task, TASK_NORMAL); 1042 wake_up_state(q->task, TASK_NORMAL);
1034} 1043}
1035 1044
@@ -1088,7 +1097,7 @@ static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1088 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task, 1097 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1089 set_waiters); 1098 set_waiters);
1090 if (ret == 1) 1099 if (ret == 1)
1091 requeue_pi_wake_futex(top_waiter, key2); 1100 requeue_pi_wake_futex(top_waiter, key2, hb2);
1092 1101
1093 return ret; 1102 return ret;
1094} 1103}
@@ -1247,8 +1256,15 @@ retry_private:
1247 if (!match_futex(&this->key, &key1)) 1256 if (!match_futex(&this->key, &key1))
1248 continue; 1257 continue;
1249 1258
1250 WARN_ON(!requeue_pi && this->rt_waiter); 1259 /*
1251 WARN_ON(requeue_pi && !this->rt_waiter); 1260 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1261 * be paired with each other and no other futex ops.
1262 */
1263 if ((requeue_pi && !this->rt_waiter) ||
1264 (!requeue_pi && this->rt_waiter)) {
1265 ret = -EINVAL;
1266 break;
1267 }
1252 1268
1253 /* 1269 /*
1254 * Wake nr_wake waiters. For requeue_pi, if we acquired the 1270 * Wake nr_wake waiters. For requeue_pi, if we acquired the
@@ -1273,7 +1289,7 @@ retry_private:
1273 this->task, 1); 1289 this->task, 1);
1274 if (ret == 1) { 1290 if (ret == 1) {
1275 /* We got the lock. */ 1291 /* We got the lock. */
1276 requeue_pi_wake_futex(this, &key2); 1292 requeue_pi_wake_futex(this, &key2, hb2);
1277 continue; 1293 continue;
1278 } else if (ret) { 1294 } else if (ret) {
1279 /* -EDEADLK */ 1295 /* -EDEADLK */
diff --git a/kernel/futex_compat.c b/kernel/futex_compat.c
index d607a5b9ee29..235716556bf1 100644
--- a/kernel/futex_compat.c
+++ b/kernel/futex_compat.c
@@ -180,7 +180,8 @@ asmlinkage long compat_sys_futex(u32 __user *uaddr, int op, u32 val,
180 int cmd = op & FUTEX_CMD_MASK; 180 int cmd = op & FUTEX_CMD_MASK;
181 181
182 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI || 182 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
183 cmd == FUTEX_WAIT_BITSET)) { 183 cmd == FUTEX_WAIT_BITSET ||
184 cmd == FUTEX_WAIT_REQUEUE_PI)) {
184 if (get_compat_timespec(&ts, utime)) 185 if (get_compat_timespec(&ts, utime))
185 return -EFAULT; 186 return -EFAULT;
186 if (!timespec_valid(&ts)) 187 if (!timespec_valid(&ts))
@@ -191,7 +192,8 @@ asmlinkage long compat_sys_futex(u32 __user *uaddr, int op, u32 val,
191 t = ktime_add_safe(ktime_get(), t); 192 t = ktime_add_safe(ktime_get(), t);
192 tp = &t; 193 tp = &t;
193 } 194 }
194 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE) 195 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
196 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
195 val2 = (int) (unsigned long) utime; 197 val2 = (int) (unsigned long) utime;
196 198
197 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3); 199 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
diff --git a/kernel/irq/manage.c b/kernel/irq/manage.c
index 61c679db4687..d222515a5a06 100644
--- a/kernel/irq/manage.c
+++ b/kernel/irq/manage.c
@@ -761,7 +761,6 @@ static struct irqaction *__free_irq(unsigned int irq, void *dev_id)
761{ 761{
762 struct irq_desc *desc = irq_to_desc(irq); 762 struct irq_desc *desc = irq_to_desc(irq);
763 struct irqaction *action, **action_ptr; 763 struct irqaction *action, **action_ptr;
764 struct task_struct *irqthread;
765 unsigned long flags; 764 unsigned long flags;
766 765
767 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq); 766 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
@@ -809,9 +808,6 @@ static struct irqaction *__free_irq(unsigned int irq, void *dev_id)
809 desc->chip->disable(irq); 808 desc->chip->disable(irq);
810 } 809 }
811 810
812 irqthread = action->thread;
813 action->thread = NULL;
814
815 spin_unlock_irqrestore(&desc->lock, flags); 811 spin_unlock_irqrestore(&desc->lock, flags);
816 812
817 unregister_handler_proc(irq, action); 813 unregister_handler_proc(irq, action);
@@ -819,12 +815,6 @@ static struct irqaction *__free_irq(unsigned int irq, void *dev_id)
819 /* Make sure it's not being used on another CPU: */ 815 /* Make sure it's not being used on another CPU: */
820 synchronize_irq(irq); 816 synchronize_irq(irq);
821 817
822 if (irqthread) {
823 if (!test_bit(IRQTF_DIED, &action->thread_flags))
824 kthread_stop(irqthread);
825 put_task_struct(irqthread);
826 }
827
828#ifdef CONFIG_DEBUG_SHIRQ 818#ifdef CONFIG_DEBUG_SHIRQ
829 /* 819 /*
830 * It's a shared IRQ -- the driver ought to be prepared for an IRQ 820 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
@@ -840,6 +830,13 @@ static struct irqaction *__free_irq(unsigned int irq, void *dev_id)
840 local_irq_restore(flags); 830 local_irq_restore(flags);
841 } 831 }
842#endif 832#endif
833
834 if (action->thread) {
835 if (!test_bit(IRQTF_DIED, &action->thread_flags))
836 kthread_stop(action->thread);
837 put_task_struct(action->thread);
838 }
839
843 return action; 840 return action;
844} 841}
845 842
diff --git a/kernel/irq/numa_migrate.c b/kernel/irq/numa_migrate.c
index 2f69bee57bf2..3fd30197da2e 100644
--- a/kernel/irq/numa_migrate.c
+++ b/kernel/irq/numa_migrate.c
@@ -107,8 +107,8 @@ out_unlock:
107 107
108struct irq_desc *move_irq_desc(struct irq_desc *desc, int node) 108struct irq_desc *move_irq_desc(struct irq_desc *desc, int node)
109{ 109{
110 /* those all static, do move them */ 110 /* those static or target node is -1, do not move them */
111 if (desc->irq < NR_IRQS_LEGACY) 111 if (desc->irq < NR_IRQS_LEGACY || node == -1)
112 return desc; 112 return desc;
113 113
114 if (desc->node != node) 114 if (desc->node != node)
diff --git a/kernel/lockdep_proc.c b/kernel/lockdep_proc.c
index d7135aa2d2c4..e94caa666dba 100644
--- a/kernel/lockdep_proc.c
+++ b/kernel/lockdep_proc.c
@@ -758,7 +758,8 @@ static int __init lockdep_proc_init(void)
758 &proc_lockdep_stats_operations); 758 &proc_lockdep_stats_operations);
759 759
760#ifdef CONFIG_LOCK_STAT 760#ifdef CONFIG_LOCK_STAT
761 proc_create("lock_stat", S_IRUSR, NULL, &proc_lock_stat_operations); 761 proc_create("lock_stat", S_IRUSR | S_IWUSR, NULL,
762 &proc_lock_stat_operations);
762#endif 763#endif
763 764
764 return 0; 765 return 0;
diff --git a/kernel/perf_counter.c b/kernel/perf_counter.c
index 673c1aaf7332..534e20d14d63 100644
--- a/kernel/perf_counter.c
+++ b/kernel/perf_counter.c
@@ -88,6 +88,7 @@ void __weak hw_perf_disable(void) { barrier(); }
88void __weak hw_perf_enable(void) { barrier(); } 88void __weak hw_perf_enable(void) { barrier(); }
89 89
90void __weak hw_perf_counter_setup(int cpu) { barrier(); } 90void __weak hw_perf_counter_setup(int cpu) { barrier(); }
91void __weak hw_perf_counter_setup_online(int cpu) { barrier(); }
91 92
92int __weak 93int __weak
93hw_perf_group_sched_in(struct perf_counter *group_leader, 94hw_perf_group_sched_in(struct perf_counter *group_leader,
@@ -306,6 +307,10 @@ counter_sched_out(struct perf_counter *counter,
306 return; 307 return;
307 308
308 counter->state = PERF_COUNTER_STATE_INACTIVE; 309 counter->state = PERF_COUNTER_STATE_INACTIVE;
310 if (counter->pending_disable) {
311 counter->pending_disable = 0;
312 counter->state = PERF_COUNTER_STATE_OFF;
313 }
309 counter->tstamp_stopped = ctx->time; 314 counter->tstamp_stopped = ctx->time;
310 counter->pmu->disable(counter); 315 counter->pmu->disable(counter);
311 counter->oncpu = -1; 316 counter->oncpu = -1;
@@ -1691,7 +1696,32 @@ static int perf_release(struct inode *inode, struct file *file)
1691 return 0; 1696 return 0;
1692} 1697}
1693 1698
1694static u64 perf_counter_read_tree(struct perf_counter *counter) 1699static int perf_counter_read_size(struct perf_counter *counter)
1700{
1701 int entry = sizeof(u64); /* value */
1702 int size = 0;
1703 int nr = 1;
1704
1705 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1706 size += sizeof(u64);
1707
1708 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1709 size += sizeof(u64);
1710
1711 if (counter->attr.read_format & PERF_FORMAT_ID)
1712 entry += sizeof(u64);
1713
1714 if (counter->attr.read_format & PERF_FORMAT_GROUP) {
1715 nr += counter->group_leader->nr_siblings;
1716 size += sizeof(u64);
1717 }
1718
1719 size += entry * nr;
1720
1721 return size;
1722}
1723
1724static u64 perf_counter_read_value(struct perf_counter *counter)
1695{ 1725{
1696 struct perf_counter *child; 1726 struct perf_counter *child;
1697 u64 total = 0; 1727 u64 total = 0;
@@ -1703,14 +1733,96 @@ static u64 perf_counter_read_tree(struct perf_counter *counter)
1703 return total; 1733 return total;
1704} 1734}
1705 1735
1736static int perf_counter_read_entry(struct perf_counter *counter,
1737 u64 read_format, char __user *buf)
1738{
1739 int n = 0, count = 0;
1740 u64 values[2];
1741
1742 values[n++] = perf_counter_read_value(counter);
1743 if (read_format & PERF_FORMAT_ID)
1744 values[n++] = primary_counter_id(counter);
1745
1746 count = n * sizeof(u64);
1747
1748 if (copy_to_user(buf, values, count))
1749 return -EFAULT;
1750
1751 return count;
1752}
1753
1754static int perf_counter_read_group(struct perf_counter *counter,
1755 u64 read_format, char __user *buf)
1756{
1757 struct perf_counter *leader = counter->group_leader, *sub;
1758 int n = 0, size = 0, err = -EFAULT;
1759 u64 values[3];
1760
1761 values[n++] = 1 + leader->nr_siblings;
1762 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1763 values[n++] = leader->total_time_enabled +
1764 atomic64_read(&leader->child_total_time_enabled);
1765 }
1766 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1767 values[n++] = leader->total_time_running +
1768 atomic64_read(&leader->child_total_time_running);
1769 }
1770
1771 size = n * sizeof(u64);
1772
1773 if (copy_to_user(buf, values, size))
1774 return -EFAULT;
1775
1776 err = perf_counter_read_entry(leader, read_format, buf + size);
1777 if (err < 0)
1778 return err;
1779
1780 size += err;
1781
1782 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1783 err = perf_counter_read_entry(counter, read_format,
1784 buf + size);
1785 if (err < 0)
1786 return err;
1787
1788 size += err;
1789 }
1790
1791 return size;
1792}
1793
1794static int perf_counter_read_one(struct perf_counter *counter,
1795 u64 read_format, char __user *buf)
1796{
1797 u64 values[4];
1798 int n = 0;
1799
1800 values[n++] = perf_counter_read_value(counter);
1801 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1802 values[n++] = counter->total_time_enabled +
1803 atomic64_read(&counter->child_total_time_enabled);
1804 }
1805 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1806 values[n++] = counter->total_time_running +
1807 atomic64_read(&counter->child_total_time_running);
1808 }
1809 if (read_format & PERF_FORMAT_ID)
1810 values[n++] = primary_counter_id(counter);
1811
1812 if (copy_to_user(buf, values, n * sizeof(u64)))
1813 return -EFAULT;
1814
1815 return n * sizeof(u64);
1816}
1817
1706/* 1818/*
1707 * Read the performance counter - simple non blocking version for now 1819 * Read the performance counter - simple non blocking version for now
1708 */ 1820 */
1709static ssize_t 1821static ssize_t
1710perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count) 1822perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1711{ 1823{
1712 u64 values[4]; 1824 u64 read_format = counter->attr.read_format;
1713 int n; 1825 int ret;
1714 1826
1715 /* 1827 /*
1716 * Return end-of-file for a read on a counter that is in 1828 * Return end-of-file for a read on a counter that is in
@@ -1720,28 +1832,18 @@ perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1720 if (counter->state == PERF_COUNTER_STATE_ERROR) 1832 if (counter->state == PERF_COUNTER_STATE_ERROR)
1721 return 0; 1833 return 0;
1722 1834
1835 if (count < perf_counter_read_size(counter))
1836 return -ENOSPC;
1837
1723 WARN_ON_ONCE(counter->ctx->parent_ctx); 1838 WARN_ON_ONCE(counter->ctx->parent_ctx);
1724 mutex_lock(&counter->child_mutex); 1839 mutex_lock(&counter->child_mutex);
1725 values[0] = perf_counter_read_tree(counter); 1840 if (read_format & PERF_FORMAT_GROUP)
1726 n = 1; 1841 ret = perf_counter_read_group(counter, read_format, buf);
1727 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) 1842 else
1728 values[n++] = counter->total_time_enabled + 1843 ret = perf_counter_read_one(counter, read_format, buf);
1729 atomic64_read(&counter->child_total_time_enabled);
1730 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1731 values[n++] = counter->total_time_running +
1732 atomic64_read(&counter->child_total_time_running);
1733 if (counter->attr.read_format & PERF_FORMAT_ID)
1734 values[n++] = primary_counter_id(counter);
1735 mutex_unlock(&counter->child_mutex); 1844 mutex_unlock(&counter->child_mutex);
1736 1845
1737 if (count < n * sizeof(u64)) 1846 return ret;
1738 return -EINVAL;
1739 count = n * sizeof(u64);
1740
1741 if (copy_to_user(buf, values, count))
1742 return -EFAULT;
1743
1744 return count;
1745} 1847}
1746 1848
1747static ssize_t 1849static ssize_t
@@ -2245,7 +2347,7 @@ static void perf_pending_counter(struct perf_pending_entry *entry)
2245 2347
2246 if (counter->pending_disable) { 2348 if (counter->pending_disable) {
2247 counter->pending_disable = 0; 2349 counter->pending_disable = 0;
2248 perf_counter_disable(counter); 2350 __perf_counter_disable(counter);
2249 } 2351 }
2250 2352
2251 if (counter->pending_wakeup) { 2353 if (counter->pending_wakeup) {
@@ -2630,7 +2732,80 @@ static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p)
2630 return task_pid_nr_ns(p, counter->ns); 2732 return task_pid_nr_ns(p, counter->ns);
2631} 2733}
2632 2734
2633static void perf_counter_output(struct perf_counter *counter, int nmi, 2735static void perf_output_read_one(struct perf_output_handle *handle,
2736 struct perf_counter *counter)
2737{
2738 u64 read_format = counter->attr.read_format;
2739 u64 values[4];
2740 int n = 0;
2741
2742 values[n++] = atomic64_read(&counter->count);
2743 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2744 values[n++] = counter->total_time_enabled +
2745 atomic64_read(&counter->child_total_time_enabled);
2746 }
2747 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2748 values[n++] = counter->total_time_running +
2749 atomic64_read(&counter->child_total_time_running);
2750 }
2751 if (read_format & PERF_FORMAT_ID)
2752 values[n++] = primary_counter_id(counter);
2753
2754 perf_output_copy(handle, values, n * sizeof(u64));
2755}
2756
2757/*
2758 * XXX PERF_FORMAT_GROUP vs inherited counters seems difficult.
2759 */
2760static void perf_output_read_group(struct perf_output_handle *handle,
2761 struct perf_counter *counter)
2762{
2763 struct perf_counter *leader = counter->group_leader, *sub;
2764 u64 read_format = counter->attr.read_format;
2765 u64 values[5];
2766 int n = 0;
2767
2768 values[n++] = 1 + leader->nr_siblings;
2769
2770 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2771 values[n++] = leader->total_time_enabled;
2772
2773 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2774 values[n++] = leader->total_time_running;
2775
2776 if (leader != counter)
2777 leader->pmu->read(leader);
2778
2779 values[n++] = atomic64_read(&leader->count);
2780 if (read_format & PERF_FORMAT_ID)
2781 values[n++] = primary_counter_id(leader);
2782
2783 perf_output_copy(handle, values, n * sizeof(u64));
2784
2785 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2786 n = 0;
2787
2788 if (sub != counter)
2789 sub->pmu->read(sub);
2790
2791 values[n++] = atomic64_read(&sub->count);
2792 if (read_format & PERF_FORMAT_ID)
2793 values[n++] = primary_counter_id(sub);
2794
2795 perf_output_copy(handle, values, n * sizeof(u64));
2796 }
2797}
2798
2799static void perf_output_read(struct perf_output_handle *handle,
2800 struct perf_counter *counter)
2801{
2802 if (counter->attr.read_format & PERF_FORMAT_GROUP)
2803 perf_output_read_group(handle, counter);
2804 else
2805 perf_output_read_one(handle, counter);
2806}
2807
2808void perf_counter_output(struct perf_counter *counter, int nmi,
2634 struct perf_sample_data *data) 2809 struct perf_sample_data *data)
2635{ 2810{
2636 int ret; 2811 int ret;
@@ -2641,10 +2816,6 @@ static void perf_counter_output(struct perf_counter *counter, int nmi,
2641 struct { 2816 struct {
2642 u32 pid, tid; 2817 u32 pid, tid;
2643 } tid_entry; 2818 } tid_entry;
2644 struct {
2645 u64 id;
2646 u64 counter;
2647 } group_entry;
2648 struct perf_callchain_entry *callchain = NULL; 2819 struct perf_callchain_entry *callchain = NULL;
2649 int callchain_size = 0; 2820 int callchain_size = 0;
2650 u64 time; 2821 u64 time;
@@ -2699,10 +2870,8 @@ static void perf_counter_output(struct perf_counter *counter, int nmi,
2699 if (sample_type & PERF_SAMPLE_PERIOD) 2870 if (sample_type & PERF_SAMPLE_PERIOD)
2700 header.size += sizeof(u64); 2871 header.size += sizeof(u64);
2701 2872
2702 if (sample_type & PERF_SAMPLE_GROUP) { 2873 if (sample_type & PERF_SAMPLE_READ)
2703 header.size += sizeof(u64) + 2874 header.size += perf_counter_read_size(counter);
2704 counter->nr_siblings * sizeof(group_entry);
2705 }
2706 2875
2707 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 2876 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2708 callchain = perf_callchain(data->regs); 2877 callchain = perf_callchain(data->regs);
@@ -2714,6 +2883,18 @@ static void perf_counter_output(struct perf_counter *counter, int nmi,
2714 header.size += sizeof(u64); 2883 header.size += sizeof(u64);
2715 } 2884 }
2716 2885
2886 if (sample_type & PERF_SAMPLE_RAW) {
2887 int size = sizeof(u32);
2888
2889 if (data->raw)
2890 size += data->raw->size;
2891 else
2892 size += sizeof(u32);
2893
2894 WARN_ON_ONCE(size & (sizeof(u64)-1));
2895 header.size += size;
2896 }
2897
2717 ret = perf_output_begin(&handle, counter, header.size, nmi, 1); 2898 ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
2718 if (ret) 2899 if (ret)
2719 return; 2900 return;
@@ -2747,26 +2928,8 @@ static void perf_counter_output(struct perf_counter *counter, int nmi,
2747 if (sample_type & PERF_SAMPLE_PERIOD) 2928 if (sample_type & PERF_SAMPLE_PERIOD)
2748 perf_output_put(&handle, data->period); 2929 perf_output_put(&handle, data->period);
2749 2930
2750 /* 2931 if (sample_type & PERF_SAMPLE_READ)
2751 * XXX PERF_SAMPLE_GROUP vs inherited counters seems difficult. 2932 perf_output_read(&handle, counter);
2752 */
2753 if (sample_type & PERF_SAMPLE_GROUP) {
2754 struct perf_counter *leader, *sub;
2755 u64 nr = counter->nr_siblings;
2756
2757 perf_output_put(&handle, nr);
2758
2759 leader = counter->group_leader;
2760 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
2761 if (sub != counter)
2762 sub->pmu->read(sub);
2763
2764 group_entry.id = primary_counter_id(sub);
2765 group_entry.counter = atomic64_read(&sub->count);
2766
2767 perf_output_put(&handle, group_entry);
2768 }
2769 }
2770 2933
2771 if (sample_type & PERF_SAMPLE_CALLCHAIN) { 2934 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
2772 if (callchain) 2935 if (callchain)
@@ -2777,6 +2940,22 @@ static void perf_counter_output(struct perf_counter *counter, int nmi,
2777 } 2940 }
2778 } 2941 }
2779 2942
2943 if (sample_type & PERF_SAMPLE_RAW) {
2944 if (data->raw) {
2945 perf_output_put(&handle, data->raw->size);
2946 perf_output_copy(&handle, data->raw->data, data->raw->size);
2947 } else {
2948 struct {
2949 u32 size;
2950 u32 data;
2951 } raw = {
2952 .size = sizeof(u32),
2953 .data = 0,
2954 };
2955 perf_output_put(&handle, raw);
2956 }
2957 }
2958
2780 perf_output_end(&handle); 2959 perf_output_end(&handle);
2781} 2960}
2782 2961
@@ -2789,8 +2968,6 @@ struct perf_read_event {
2789 2968
2790 u32 pid; 2969 u32 pid;
2791 u32 tid; 2970 u32 tid;
2792 u64 value;
2793 u64 format[3];
2794}; 2971};
2795 2972
2796static void 2973static void
@@ -2802,34 +2979,20 @@ perf_counter_read_event(struct perf_counter *counter,
2802 .header = { 2979 .header = {
2803 .type = PERF_EVENT_READ, 2980 .type = PERF_EVENT_READ,
2804 .misc = 0, 2981 .misc = 0,
2805 .size = sizeof(event) - sizeof(event.format), 2982 .size = sizeof(event) + perf_counter_read_size(counter),
2806 }, 2983 },
2807 .pid = perf_counter_pid(counter, task), 2984 .pid = perf_counter_pid(counter, task),
2808 .tid = perf_counter_tid(counter, task), 2985 .tid = perf_counter_tid(counter, task),
2809 .value = atomic64_read(&counter->count),
2810 }; 2986 };
2811 int ret, i = 0; 2987 int ret;
2812
2813 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2814 event.header.size += sizeof(u64);
2815 event.format[i++] = counter->total_time_enabled;
2816 }
2817
2818 if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2819 event.header.size += sizeof(u64);
2820 event.format[i++] = counter->total_time_running;
2821 }
2822
2823 if (counter->attr.read_format & PERF_FORMAT_ID) {
2824 event.header.size += sizeof(u64);
2825 event.format[i++] = primary_counter_id(counter);
2826 }
2827 2988
2828 ret = perf_output_begin(&handle, counter, event.header.size, 0, 0); 2989 ret = perf_output_begin(&handle, counter, event.header.size, 0, 0);
2829 if (ret) 2990 if (ret)
2830 return; 2991 return;
2831 2992
2832 perf_output_copy(&handle, &event, event.header.size); 2993 perf_output_put(&handle, event);
2994 perf_output_read(&handle, counter);
2995
2833 perf_output_end(&handle); 2996 perf_output_end(&handle);
2834} 2997}
2835 2998
@@ -2840,7 +3003,8 @@ perf_counter_read_event(struct perf_counter *counter,
2840 */ 3003 */
2841 3004
2842struct perf_task_event { 3005struct perf_task_event {
2843 struct task_struct *task; 3006 struct task_struct *task;
3007 struct perf_counter_context *task_ctx;
2844 3008
2845 struct { 3009 struct {
2846 struct perf_event_header header; 3010 struct perf_event_header header;
@@ -2864,10 +3028,10 @@ static void perf_counter_task_output(struct perf_counter *counter,
2864 return; 3028 return;
2865 3029
2866 task_event->event.pid = perf_counter_pid(counter, task); 3030 task_event->event.pid = perf_counter_pid(counter, task);
2867 task_event->event.ppid = perf_counter_pid(counter, task->real_parent); 3031 task_event->event.ppid = perf_counter_pid(counter, current);
2868 3032
2869 task_event->event.tid = perf_counter_tid(counter, task); 3033 task_event->event.tid = perf_counter_tid(counter, task);
2870 task_event->event.ptid = perf_counter_tid(counter, task->real_parent); 3034 task_event->event.ptid = perf_counter_tid(counter, current);
2871 3035
2872 perf_output_put(&handle, task_event->event); 3036 perf_output_put(&handle, task_event->event);
2873 perf_output_end(&handle); 3037 perf_output_end(&handle);
@@ -2900,24 +3064,23 @@ static void perf_counter_task_ctx(struct perf_counter_context *ctx,
2900static void perf_counter_task_event(struct perf_task_event *task_event) 3064static void perf_counter_task_event(struct perf_task_event *task_event)
2901{ 3065{
2902 struct perf_cpu_context *cpuctx; 3066 struct perf_cpu_context *cpuctx;
2903 struct perf_counter_context *ctx; 3067 struct perf_counter_context *ctx = task_event->task_ctx;
2904 3068
2905 cpuctx = &get_cpu_var(perf_cpu_context); 3069 cpuctx = &get_cpu_var(perf_cpu_context);
2906 perf_counter_task_ctx(&cpuctx->ctx, task_event); 3070 perf_counter_task_ctx(&cpuctx->ctx, task_event);
2907 put_cpu_var(perf_cpu_context); 3071 put_cpu_var(perf_cpu_context);
2908 3072
2909 rcu_read_lock(); 3073 rcu_read_lock();
2910 /* 3074 if (!ctx)
2911 * doesn't really matter which of the child contexts the 3075 ctx = rcu_dereference(task_event->task->perf_counter_ctxp);
2912 * events ends up in.
2913 */
2914 ctx = rcu_dereference(current->perf_counter_ctxp);
2915 if (ctx) 3076 if (ctx)
2916 perf_counter_task_ctx(ctx, task_event); 3077 perf_counter_task_ctx(ctx, task_event);
2917 rcu_read_unlock(); 3078 rcu_read_unlock();
2918} 3079}
2919 3080
2920static void perf_counter_task(struct task_struct *task, int new) 3081static void perf_counter_task(struct task_struct *task,
3082 struct perf_counter_context *task_ctx,
3083 int new)
2921{ 3084{
2922 struct perf_task_event task_event; 3085 struct perf_task_event task_event;
2923 3086
@@ -2927,8 +3090,9 @@ static void perf_counter_task(struct task_struct *task, int new)
2927 return; 3090 return;
2928 3091
2929 task_event = (struct perf_task_event){ 3092 task_event = (struct perf_task_event){
2930 .task = task, 3093 .task = task,
2931 .event = { 3094 .task_ctx = task_ctx,
3095 .event = {
2932 .header = { 3096 .header = {
2933 .type = new ? PERF_EVENT_FORK : PERF_EVENT_EXIT, 3097 .type = new ? PERF_EVENT_FORK : PERF_EVENT_EXIT,
2934 .misc = 0, 3098 .misc = 0,
@@ -2946,7 +3110,7 @@ static void perf_counter_task(struct task_struct *task, int new)
2946 3110
2947void perf_counter_fork(struct task_struct *task) 3111void perf_counter_fork(struct task_struct *task)
2948{ 3112{
2949 perf_counter_task(task, 1); 3113 perf_counter_task(task, NULL, 1);
2950} 3114}
2951 3115
2952/* 3116/*
@@ -3335,125 +3499,111 @@ int perf_counter_overflow(struct perf_counter *counter, int nmi,
3335 * Generic software counter infrastructure 3499 * Generic software counter infrastructure
3336 */ 3500 */
3337 3501
3338static void perf_swcounter_update(struct perf_counter *counter) 3502/*
3503 * We directly increment counter->count and keep a second value in
3504 * counter->hw.period_left to count intervals. This period counter
3505 * is kept in the range [-sample_period, 0] so that we can use the
3506 * sign as trigger.
3507 */
3508
3509static u64 perf_swcounter_set_period(struct perf_counter *counter)
3339{ 3510{
3340 struct hw_perf_counter *hwc = &counter->hw; 3511 struct hw_perf_counter *hwc = &counter->hw;
3341 u64 prev, now; 3512 u64 period = hwc->last_period;
3342 s64 delta; 3513 u64 nr, offset;
3514 s64 old, val;
3515
3516 hwc->last_period = hwc->sample_period;
3343 3517
3344again: 3518again:
3345 prev = atomic64_read(&hwc->prev_count); 3519 old = val = atomic64_read(&hwc->period_left);
3346 now = atomic64_read(&hwc->count); 3520 if (val < 0)
3347 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev) 3521 return 0;
3348 goto again;
3349 3522
3350 delta = now - prev; 3523 nr = div64_u64(period + val, period);
3524 offset = nr * period;
3525 val -= offset;
3526 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3527 goto again;
3351 3528
3352 atomic64_add(delta, &counter->count); 3529 return nr;
3353 atomic64_sub(delta, &hwc->period_left);
3354} 3530}
3355 3531
3356static void perf_swcounter_set_period(struct perf_counter *counter) 3532static void perf_swcounter_overflow(struct perf_counter *counter,
3533 int nmi, struct perf_sample_data *data)
3357{ 3534{
3358 struct hw_perf_counter *hwc = &counter->hw; 3535 struct hw_perf_counter *hwc = &counter->hw;
3359 s64 left = atomic64_read(&hwc->period_left); 3536 u64 overflow;
3360 s64 period = hwc->sample_period;
3361 3537
3362 if (unlikely(left <= -period)) { 3538 data->period = counter->hw.last_period;
3363 left = period; 3539 overflow = perf_swcounter_set_period(counter);
3364 atomic64_set(&hwc->period_left, left);
3365 hwc->last_period = period;
3366 }
3367 3540
3368 if (unlikely(left <= 0)) { 3541 if (hwc->interrupts == MAX_INTERRUPTS)
3369 left += period; 3542 return;
3370 atomic64_add(period, &hwc->period_left);
3371 hwc->last_period = period;
3372 }
3373 3543
3374 atomic64_set(&hwc->prev_count, -left); 3544 for (; overflow; overflow--) {
3375 atomic64_set(&hwc->count, -left); 3545 if (perf_counter_overflow(counter, nmi, data)) {
3546 /*
3547 * We inhibit the overflow from happening when
3548 * hwc->interrupts == MAX_INTERRUPTS.
3549 */
3550 break;
3551 }
3552 }
3376} 3553}
3377 3554
3378static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer) 3555static void perf_swcounter_unthrottle(struct perf_counter *counter)
3379{ 3556{
3380 enum hrtimer_restart ret = HRTIMER_RESTART;
3381 struct perf_sample_data data;
3382 struct perf_counter *counter;
3383 u64 period;
3384
3385 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
3386 counter->pmu->read(counter);
3387
3388 data.addr = 0;
3389 data.regs = get_irq_regs();
3390 /* 3557 /*
3391 * In case we exclude kernel IPs or are somehow not in interrupt 3558 * Nothing to do, we already reset hwc->interrupts.
3392 * context, provide the next best thing, the user IP.
3393 */ 3559 */
3394 if ((counter->attr.exclude_kernel || !data.regs) && 3560}
3395 !counter->attr.exclude_user)
3396 data.regs = task_pt_regs(current);
3397 3561
3398 if (data.regs) { 3562static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
3399 if (perf_counter_overflow(counter, 0, &data)) 3563 int nmi, struct perf_sample_data *data)
3400 ret = HRTIMER_NORESTART; 3564{
3401 } 3565 struct hw_perf_counter *hwc = &counter->hw;
3402 3566
3403 period = max_t(u64, 10000, counter->hw.sample_period); 3567 atomic64_add(nr, &counter->count);
3404 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3405 3568
3406 return ret; 3569 if (!hwc->sample_period)
3407} 3570 return;
3408 3571
3409static void perf_swcounter_overflow(struct perf_counter *counter, 3572 if (!data->regs)
3410 int nmi, struct perf_sample_data *data) 3573 return;
3411{
3412 data->period = counter->hw.last_period;
3413 3574
3414 perf_swcounter_update(counter); 3575 if (!atomic64_add_negative(nr, &hwc->period_left))
3415 perf_swcounter_set_period(counter); 3576 perf_swcounter_overflow(counter, nmi, data);
3416 if (perf_counter_overflow(counter, nmi, data))
3417 /* soft-disable the counter */
3418 ;
3419} 3577}
3420 3578
3421static int perf_swcounter_is_counting(struct perf_counter *counter) 3579static int perf_swcounter_is_counting(struct perf_counter *counter)
3422{ 3580{
3423 struct perf_counter_context *ctx; 3581 /*
3424 unsigned long flags; 3582 * The counter is active, we're good!
3425 int count; 3583 */
3426
3427 if (counter->state == PERF_COUNTER_STATE_ACTIVE) 3584 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
3428 return 1; 3585 return 1;
3429 3586
3587 /*
3588 * The counter is off/error, not counting.
3589 */
3430 if (counter->state != PERF_COUNTER_STATE_INACTIVE) 3590 if (counter->state != PERF_COUNTER_STATE_INACTIVE)
3431 return 0; 3591 return 0;
3432 3592
3433 /* 3593 /*
3434 * If the counter is inactive, it could be just because 3594 * The counter is inactive, if the context is active
3435 * its task is scheduled out, or because it's in a group 3595 * we're part of a group that didn't make it on the 'pmu',
3436 * which could not go on the PMU. We want to count in 3596 * not counting.
3437 * the first case but not the second. If the context is
3438 * currently active then an inactive software counter must
3439 * be the second case. If it's not currently active then
3440 * we need to know whether the counter was active when the
3441 * context was last active, which we can determine by
3442 * comparing counter->tstamp_stopped with ctx->time.
3443 *
3444 * We are within an RCU read-side critical section,
3445 * which protects the existence of *ctx.
3446 */ 3597 */
3447 ctx = counter->ctx; 3598 if (counter->ctx->is_active)
3448 spin_lock_irqsave(&ctx->lock, flags); 3599 return 0;
3449 count = 1; 3600
3450 /* Re-check state now we have the lock */ 3601 /*
3451 if (counter->state < PERF_COUNTER_STATE_INACTIVE || 3602 * We're inactive and the context is too, this means the
3452 counter->ctx->is_active || 3603 * task is scheduled out, we're counting events that happen
3453 counter->tstamp_stopped < ctx->time) 3604 * to us, like migration events.
3454 count = 0; 3605 */
3455 spin_unlock_irqrestore(&ctx->lock, flags); 3606 return 1;
3456 return count;
3457} 3607}
3458 3608
3459static int perf_swcounter_match(struct perf_counter *counter, 3609static int perf_swcounter_match(struct perf_counter *counter,
@@ -3479,15 +3629,6 @@ static int perf_swcounter_match(struct perf_counter *counter,
3479 return 1; 3629 return 1;
3480} 3630}
3481 3631
3482static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
3483 int nmi, struct perf_sample_data *data)
3484{
3485 int neg = atomic64_add_negative(nr, &counter->hw.count);
3486
3487 if (counter->hw.sample_period && !neg && data->regs)
3488 perf_swcounter_overflow(counter, nmi, data);
3489}
3490
3491static void perf_swcounter_ctx_event(struct perf_counter_context *ctx, 3632static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
3492 enum perf_type_id type, 3633 enum perf_type_id type,
3493 u32 event, u64 nr, int nmi, 3634 u32 event, u64 nr, int nmi,
@@ -3566,27 +3707,66 @@ void __perf_swcounter_event(u32 event, u64 nr, int nmi,
3566 3707
3567static void perf_swcounter_read(struct perf_counter *counter) 3708static void perf_swcounter_read(struct perf_counter *counter)
3568{ 3709{
3569 perf_swcounter_update(counter);
3570} 3710}
3571 3711
3572static int perf_swcounter_enable(struct perf_counter *counter) 3712static int perf_swcounter_enable(struct perf_counter *counter)
3573{ 3713{
3574 perf_swcounter_set_period(counter); 3714 struct hw_perf_counter *hwc = &counter->hw;
3715
3716 if (hwc->sample_period) {
3717 hwc->last_period = hwc->sample_period;
3718 perf_swcounter_set_period(counter);
3719 }
3575 return 0; 3720 return 0;
3576} 3721}
3577 3722
3578static void perf_swcounter_disable(struct perf_counter *counter) 3723static void perf_swcounter_disable(struct perf_counter *counter)
3579{ 3724{
3580 perf_swcounter_update(counter);
3581} 3725}
3582 3726
3583static const struct pmu perf_ops_generic = { 3727static const struct pmu perf_ops_generic = {
3584 .enable = perf_swcounter_enable, 3728 .enable = perf_swcounter_enable,
3585 .disable = perf_swcounter_disable, 3729 .disable = perf_swcounter_disable,
3586 .read = perf_swcounter_read, 3730 .read = perf_swcounter_read,
3731 .unthrottle = perf_swcounter_unthrottle,
3587}; 3732};
3588 3733
3589/* 3734/*
3735 * hrtimer based swcounter callback
3736 */
3737
3738static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
3739{
3740 enum hrtimer_restart ret = HRTIMER_RESTART;
3741 struct perf_sample_data data;
3742 struct perf_counter *counter;
3743 u64 period;
3744
3745 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
3746 counter->pmu->read(counter);
3747
3748 data.addr = 0;
3749 data.regs = get_irq_regs();
3750 /*
3751 * In case we exclude kernel IPs or are somehow not in interrupt
3752 * context, provide the next best thing, the user IP.
3753 */
3754 if ((counter->attr.exclude_kernel || !data.regs) &&
3755 !counter->attr.exclude_user)
3756 data.regs = task_pt_regs(current);
3757
3758 if (data.regs) {
3759 if (perf_counter_overflow(counter, 0, &data))
3760 ret = HRTIMER_NORESTART;
3761 }
3762
3763 period = max_t(u64, 10000, counter->hw.sample_period);
3764 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3765
3766 return ret;
3767}
3768
3769/*
3590 * Software counter: cpu wall time clock 3770 * Software counter: cpu wall time clock
3591 */ 3771 */
3592 3772
@@ -3703,17 +3883,24 @@ static const struct pmu perf_ops_task_clock = {
3703}; 3883};
3704 3884
3705#ifdef CONFIG_EVENT_PROFILE 3885#ifdef CONFIG_EVENT_PROFILE
3706void perf_tpcounter_event(int event_id) 3886void perf_tpcounter_event(int event_id, u64 addr, u64 count, void *record,
3887 int entry_size)
3707{ 3888{
3889 struct perf_raw_record raw = {
3890 .size = entry_size,
3891 .data = record,
3892 };
3893
3708 struct perf_sample_data data = { 3894 struct perf_sample_data data = {
3709 .regs = get_irq_regs(), 3895 .regs = get_irq_regs(),
3710 .addr = 0, 3896 .addr = addr,
3897 .raw = &raw,
3711 }; 3898 };
3712 3899
3713 if (!data.regs) 3900 if (!data.regs)
3714 data.regs = task_pt_regs(current); 3901 data.regs = task_pt_regs(current);
3715 3902
3716 do_perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, &data); 3903 do_perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, count, 1, &data);
3717} 3904}
3718EXPORT_SYMBOL_GPL(perf_tpcounter_event); 3905EXPORT_SYMBOL_GPL(perf_tpcounter_event);
3719 3906
@@ -3727,6 +3914,14 @@ static void tp_perf_counter_destroy(struct perf_counter *counter)
3727 3914
3728static const struct pmu *tp_perf_counter_init(struct perf_counter *counter) 3915static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
3729{ 3916{
3917 /*
3918 * Raw tracepoint data is a severe data leak, only allow root to
3919 * have these.
3920 */
3921 if ((counter->attr.sample_type & PERF_SAMPLE_RAW) &&
3922 !capable(CAP_SYS_ADMIN))
3923 return ERR_PTR(-EPERM);
3924
3730 if (ftrace_profile_enable(counter->attr.config)) 3925 if (ftrace_profile_enable(counter->attr.config))
3731 return NULL; 3926 return NULL;
3732 3927
@@ -3860,9 +4055,9 @@ perf_counter_alloc(struct perf_counter_attr *attr,
3860 atomic64_set(&hwc->period_left, hwc->sample_period); 4055 atomic64_set(&hwc->period_left, hwc->sample_period);
3861 4056
3862 /* 4057 /*
3863 * we currently do not support PERF_SAMPLE_GROUP on inherited counters 4058 * we currently do not support PERF_FORMAT_GROUP on inherited counters
3864 */ 4059 */
3865 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_GROUP)) 4060 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
3866 goto done; 4061 goto done;
3867 4062
3868 switch (attr->type) { 4063 switch (attr->type) {
@@ -4269,7 +4464,7 @@ void perf_counter_exit_task(struct task_struct *child)
4269 unsigned long flags; 4464 unsigned long flags;
4270 4465
4271 if (likely(!child->perf_counter_ctxp)) { 4466 if (likely(!child->perf_counter_ctxp)) {
4272 perf_counter_task(child, 0); 4467 perf_counter_task(child, NULL, 0);
4273 return; 4468 return;
4274 } 4469 }
4275 4470
@@ -4289,6 +4484,7 @@ void perf_counter_exit_task(struct task_struct *child)
4289 * incremented the context's refcount before we do put_ctx below. 4484 * incremented the context's refcount before we do put_ctx below.
4290 */ 4485 */
4291 spin_lock(&child_ctx->lock); 4486 spin_lock(&child_ctx->lock);
4487 child->perf_counter_ctxp = NULL;
4292 /* 4488 /*
4293 * If this context is a clone; unclone it so it can't get 4489 * If this context is a clone; unclone it so it can't get
4294 * swapped to another process while we're removing all 4490 * swapped to another process while we're removing all
@@ -4302,9 +4498,7 @@ void perf_counter_exit_task(struct task_struct *child)
4302 * won't get any samples after PERF_EVENT_EXIT. We can however still 4498 * won't get any samples after PERF_EVENT_EXIT. We can however still
4303 * get a few PERF_EVENT_READ events. 4499 * get a few PERF_EVENT_READ events.
4304 */ 4500 */
4305 perf_counter_task(child, 0); 4501 perf_counter_task(child, child_ctx, 0);
4306
4307 child->perf_counter_ctxp = NULL;
4308 4502
4309 /* 4503 /*
4310 * We can recurse on the same lock type through: 4504 * We can recurse on the same lock type through:
@@ -4525,6 +4719,11 @@ perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
4525 perf_counter_init_cpu(cpu); 4719 perf_counter_init_cpu(cpu);
4526 break; 4720 break;
4527 4721
4722 case CPU_ONLINE:
4723 case CPU_ONLINE_FROZEN:
4724 hw_perf_counter_setup_online(cpu);
4725 break;
4726
4528 case CPU_DOWN_PREPARE: 4727 case CPU_DOWN_PREPARE:
4529 case CPU_DOWN_PREPARE_FROZEN: 4728 case CPU_DOWN_PREPARE_FROZEN:
4530 perf_counter_exit_cpu(cpu); 4729 perf_counter_exit_cpu(cpu);
@@ -4549,6 +4748,8 @@ void __init perf_counter_init(void)
4549{ 4748{
4550 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE, 4749 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
4551 (void *)(long)smp_processor_id()); 4750 (void *)(long)smp_processor_id());
4751 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
4752 (void *)(long)smp_processor_id());
4552 register_cpu_notifier(&perf_cpu_nb); 4753 register_cpu_notifier(&perf_cpu_nb);
4553} 4754}
4554 4755
diff --git a/kernel/posix-cpu-timers.c b/kernel/posix-cpu-timers.c
index bece7c0b67b2..e33a21cb9407 100644
--- a/kernel/posix-cpu-timers.c
+++ b/kernel/posix-cpu-timers.c
@@ -521,11 +521,12 @@ void posix_cpu_timers_exit(struct task_struct *tsk)
521} 521}
522void posix_cpu_timers_exit_group(struct task_struct *tsk) 522void posix_cpu_timers_exit_group(struct task_struct *tsk)
523{ 523{
524 struct task_cputime cputime; 524 struct signal_struct *const sig = tsk->signal;
525 525
526 thread_group_cputimer(tsk, &cputime);
527 cleanup_timers(tsk->signal->cpu_timers, 526 cleanup_timers(tsk->signal->cpu_timers,
528 cputime.utime, cputime.stime, cputime.sum_exec_runtime); 527 cputime_add(tsk->utime, sig->utime),
528 cputime_add(tsk->stime, sig->stime),
529 tsk->se.sum_exec_runtime + sig->sum_sched_runtime);
529} 530}
530 531
531static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now) 532static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
diff --git a/kernel/rtmutex.c b/kernel/rtmutex.c
index fcd107a78c5a..29bd4baf9e75 100644
--- a/kernel/rtmutex.c
+++ b/kernel/rtmutex.c
@@ -1039,16 +1039,14 @@ int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1039 if (!rt_mutex_owner(lock) || try_to_steal_lock(lock, task)) { 1039 if (!rt_mutex_owner(lock) || try_to_steal_lock(lock, task)) {
1040 /* We got the lock for task. */ 1040 /* We got the lock for task. */
1041 debug_rt_mutex_lock(lock); 1041 debug_rt_mutex_lock(lock);
1042
1043 rt_mutex_set_owner(lock, task, 0); 1042 rt_mutex_set_owner(lock, task, 0);
1044 1043 spin_unlock(&lock->wait_lock);
1045 rt_mutex_deadlock_account_lock(lock, task); 1044 rt_mutex_deadlock_account_lock(lock, task);
1046 return 1; 1045 return 1;
1047 } 1046 }
1048 1047
1049 ret = task_blocks_on_rt_mutex(lock, waiter, task, detect_deadlock); 1048 ret = task_blocks_on_rt_mutex(lock, waiter, task, detect_deadlock);
1050 1049
1051
1052 if (ret && !waiter->task) { 1050 if (ret && !waiter->task) {
1053 /* 1051 /*
1054 * Reset the return value. We might have 1052 * Reset the return value. We might have
diff --git a/kernel/trace/blktrace.c b/kernel/trace/blktrace.c
index 1090b0aed9ba..7a34cb563fec 100644
--- a/kernel/trace/blktrace.c
+++ b/kernel/trace/blktrace.c
@@ -267,8 +267,8 @@ static void blk_trace_free(struct blk_trace *bt)
267{ 267{
268 debugfs_remove(bt->msg_file); 268 debugfs_remove(bt->msg_file);
269 debugfs_remove(bt->dropped_file); 269 debugfs_remove(bt->dropped_file);
270 debugfs_remove(bt->dir);
271 relay_close(bt->rchan); 270 relay_close(bt->rchan);
271 debugfs_remove(bt->dir);
272 free_percpu(bt->sequence); 272 free_percpu(bt->sequence);
273 free_percpu(bt->msg_data); 273 free_percpu(bt->msg_data);
274 kfree(bt); 274 kfree(bt);
@@ -378,18 +378,8 @@ static int blk_subbuf_start_callback(struct rchan_buf *buf, void *subbuf,
378 378
379static int blk_remove_buf_file_callback(struct dentry *dentry) 379static int blk_remove_buf_file_callback(struct dentry *dentry)
380{ 380{
381 struct dentry *parent = dentry->d_parent;
382 debugfs_remove(dentry); 381 debugfs_remove(dentry);
383 382
384 /*
385 * this will fail for all but the last file, but that is ok. what we
386 * care about is the top level buts->name directory going away, when
387 * the last trace file is gone. Then we don't have to rmdir() that
388 * manually on trace stop, so it nicely solves the issue with
389 * force killing of running traces.
390 */
391
392 debugfs_remove(parent);
393 return 0; 383 return 0;
394} 384}
395 385
diff --git a/kernel/trace/ring_buffer.c b/kernel/trace/ring_buffer.c
index bf27bb7a63e2..a330513d96ce 100644
--- a/kernel/trace/ring_buffer.c
+++ b/kernel/trace/ring_buffer.c
@@ -735,6 +735,7 @@ ring_buffer_free(struct ring_buffer *buffer)
735 735
736 put_online_cpus(); 736 put_online_cpus();
737 737
738 kfree(buffer->buffers);
738 free_cpumask_var(buffer->cpumask); 739 free_cpumask_var(buffer->cpumask);
739 740
740 kfree(buffer); 741 kfree(buffer);
@@ -1785,7 +1786,7 @@ void ring_buffer_discard_commit(struct ring_buffer *buffer,
1785 */ 1786 */
1786 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 1787 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
1787 1788
1788 if (!rb_try_to_discard(cpu_buffer, event)) 1789 if (rb_try_to_discard(cpu_buffer, event))
1789 goto out; 1790 goto out;
1790 1791
1791 /* 1792 /*
@@ -2383,7 +2384,6 @@ rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2383 * the box. Return the padding, and we will release 2384 * the box. Return the padding, and we will release
2384 * the current locks, and try again. 2385 * the current locks, and try again.
2385 */ 2386 */
2386 rb_advance_reader(cpu_buffer);
2387 return event; 2387 return event;
2388 2388
2389 case RINGBUF_TYPE_TIME_EXTEND: 2389 case RINGBUF_TYPE_TIME_EXTEND:
@@ -2486,7 +2486,7 @@ static inline int rb_ok_to_lock(void)
2486 * buffer too. A one time deal is all you get from reading 2486 * buffer too. A one time deal is all you get from reading
2487 * the ring buffer from an NMI. 2487 * the ring buffer from an NMI.
2488 */ 2488 */
2489 if (likely(!in_nmi() && !oops_in_progress)) 2489 if (likely(!in_nmi()))
2490 return 1; 2490 return 1;
2491 2491
2492 tracing_off_permanent(); 2492 tracing_off_permanent();
@@ -2519,6 +2519,8 @@ ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
2519 if (dolock) 2519 if (dolock)
2520 spin_lock(&cpu_buffer->reader_lock); 2520 spin_lock(&cpu_buffer->reader_lock);
2521 event = rb_buffer_peek(buffer, cpu, ts); 2521 event = rb_buffer_peek(buffer, cpu, ts);
2522 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2523 rb_advance_reader(cpu_buffer);
2522 if (dolock) 2524 if (dolock)
2523 spin_unlock(&cpu_buffer->reader_lock); 2525 spin_unlock(&cpu_buffer->reader_lock);
2524 local_irq_restore(flags); 2526 local_irq_restore(flags);
@@ -2590,12 +2592,9 @@ ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2590 spin_lock(&cpu_buffer->reader_lock); 2592 spin_lock(&cpu_buffer->reader_lock);
2591 2593
2592 event = rb_buffer_peek(buffer, cpu, ts); 2594 event = rb_buffer_peek(buffer, cpu, ts);
2593 if (!event) 2595 if (event)
2594 goto out_unlock; 2596 rb_advance_reader(cpu_buffer);
2595
2596 rb_advance_reader(cpu_buffer);
2597 2597
2598 out_unlock:
2599 if (dolock) 2598 if (dolock)
2600 spin_unlock(&cpu_buffer->reader_lock); 2599 spin_unlock(&cpu_buffer->reader_lock);
2601 local_irq_restore(flags); 2600 local_irq_restore(flags);
diff --git a/kernel/trace/trace.c b/kernel/trace/trace.c
index 8930e39b9d8c..c22b40f8f576 100644
--- a/kernel/trace/trace.c
+++ b/kernel/trace/trace.c
@@ -848,6 +848,7 @@ tracing_generic_entry_update(struct trace_entry *entry, unsigned long flags,
848 ((pc & SOFTIRQ_MASK) ? TRACE_FLAG_SOFTIRQ : 0) | 848 ((pc & SOFTIRQ_MASK) ? TRACE_FLAG_SOFTIRQ : 0) |
849 (need_resched() ? TRACE_FLAG_NEED_RESCHED : 0); 849 (need_resched() ? TRACE_FLAG_NEED_RESCHED : 0);
850} 850}
851EXPORT_SYMBOL_GPL(tracing_generic_entry_update);
851 852
852struct ring_buffer_event *trace_buffer_lock_reserve(struct trace_array *tr, 853struct ring_buffer_event *trace_buffer_lock_reserve(struct trace_array *tr,
853 int type, 854 int type,
diff --git a/kernel/trace/trace.h b/kernel/trace/trace.h
index 3548ae5cc780..8b9f4f6e9559 100644
--- a/kernel/trace/trace.h
+++ b/kernel/trace/trace.h
@@ -438,10 +438,6 @@ struct trace_entry *tracing_get_trace_entry(struct trace_array *tr,
438struct trace_entry *trace_find_next_entry(struct trace_iterator *iter, 438struct trace_entry *trace_find_next_entry(struct trace_iterator *iter,
439 int *ent_cpu, u64 *ent_ts); 439 int *ent_cpu, u64 *ent_ts);
440 440
441void tracing_generic_entry_update(struct trace_entry *entry,
442 unsigned long flags,
443 int pc);
444
445void default_wait_pipe(struct trace_iterator *iter); 441void default_wait_pipe(struct trace_iterator *iter);
446void poll_wait_pipe(struct trace_iterator *iter); 442void poll_wait_pipe(struct trace_iterator *iter);
447 443
diff --git a/kernel/trace/trace_events_filter.c b/kernel/trace/trace_events_filter.c
index 936c621bbf46..f32dc9d1ea7b 100644
--- a/kernel/trace/trace_events_filter.c
+++ b/kernel/trace/trace_events_filter.c
@@ -624,9 +624,6 @@ static int filter_add_subsystem_pred(struct filter_parse_state *ps,
624 return -ENOSPC; 624 return -ENOSPC;
625 } 625 }
626 626
627 filter->preds[filter->n_preds] = pred;
628 filter->n_preds++;
629
630 list_for_each_entry(call, &ftrace_events, list) { 627 list_for_each_entry(call, &ftrace_events, list) {
631 628
632 if (!call->define_fields) 629 if (!call->define_fields)
@@ -643,6 +640,9 @@ static int filter_add_subsystem_pred(struct filter_parse_state *ps,
643 } 640 }
644 replace_filter_string(call->filter, filter_string); 641 replace_filter_string(call->filter, filter_string);
645 } 642 }
643
644 filter->preds[filter->n_preds] = pred;
645 filter->n_preds++;
646out: 646out:
647 return err; 647 return err;
648} 648}
@@ -1029,12 +1029,17 @@ static int replace_preds(struct event_subsystem *system,
1029 1029
1030 if (elt->op == OP_AND || elt->op == OP_OR) { 1030 if (elt->op == OP_AND || elt->op == OP_OR) {
1031 pred = create_logical_pred(elt->op); 1031 pred = create_logical_pred(elt->op);
1032 if (!pred)
1033 return -ENOMEM;
1032 if (call) { 1034 if (call) {
1033 err = filter_add_pred(ps, call, pred); 1035 err = filter_add_pred(ps, call, pred);
1034 filter_free_pred(pred); 1036 filter_free_pred(pred);
1035 } else 1037 } else {
1036 err = filter_add_subsystem_pred(ps, system, 1038 err = filter_add_subsystem_pred(ps, system,
1037 pred, filter_string); 1039 pred, filter_string);
1040 if (err)
1041 filter_free_pred(pred);
1042 }
1038 if (err) 1043 if (err)
1039 return err; 1044 return err;
1040 1045
@@ -1048,12 +1053,17 @@ static int replace_preds(struct event_subsystem *system,
1048 } 1053 }
1049 1054
1050 pred = create_pred(elt->op, operand1, operand2); 1055 pred = create_pred(elt->op, operand1, operand2);
1056 if (!pred)
1057 return -ENOMEM;
1051 if (call) { 1058 if (call) {
1052 err = filter_add_pred(ps, call, pred); 1059 err = filter_add_pred(ps, call, pred);
1053 filter_free_pred(pred); 1060 filter_free_pred(pred);
1054 } else 1061 } else {
1055 err = filter_add_subsystem_pred(ps, system, pred, 1062 err = filter_add_subsystem_pred(ps, system, pred,
1056 filter_string); 1063 filter_string);
1064 if (err)
1065 filter_free_pred(pred);
1066 }
1057 if (err) 1067 if (err)
1058 return err; 1068 return err;
1059 1069
diff --git a/kernel/wait.c b/kernel/wait.c
index ea7c3b4275cf..c4bd3d825f35 100644
--- a/kernel/wait.c
+++ b/kernel/wait.c
@@ -10,13 +10,14 @@
10#include <linux/wait.h> 10#include <linux/wait.h>
11#include <linux/hash.h> 11#include <linux/hash.h>
12 12
13void init_waitqueue_head(wait_queue_head_t *q) 13void __init_waitqueue_head(wait_queue_head_t *q, struct lock_class_key *key)
14{ 14{
15 spin_lock_init(&q->lock); 15 spin_lock_init(&q->lock);
16 lockdep_set_class(&q->lock, key);
16 INIT_LIST_HEAD(&q->task_list); 17 INIT_LIST_HEAD(&q->task_list);
17} 18}
18 19
19EXPORT_SYMBOL(init_waitqueue_head); 20EXPORT_SYMBOL(__init_waitqueue_head);
20 21
21void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait) 22void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
22{ 23{