diff options
author | Ingo Molnar <mingo@elte.hu> | 2009-10-01 05:20:33 -0400 |
---|---|---|
committer | Ingo Molnar <mingo@elte.hu> | 2009-10-01 05:20:48 -0400 |
commit | 0aa73ba1c4e1ad1d51a29e0df95ccd9f746918b6 (patch) | |
tree | f0714ddcd02812b4fbe3b5405df9e4068f5587e2 /kernel | |
parent | 925936ebf35a95c290e010b784c962164e6728f3 (diff) | |
parent | 33974093c024f08caadd2fc71a83bd811ed1831d (diff) |
Merge branch 'tracing/urgent' into tracing/core
Merge reason: Pick up latest fixes and update to latest upstream.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'kernel')
89 files changed, 8962 insertions, 8544 deletions
diff --git a/kernel/Makefile b/kernel/Makefile index 3d9c7e27e3f9..b8d4cd8ac0b9 100644 --- a/kernel/Makefile +++ b/kernel/Makefile | |||
@@ -58,7 +58,6 @@ obj-$(CONFIG_KEXEC) += kexec.o | |||
58 | obj-$(CONFIG_BACKTRACE_SELF_TEST) += backtracetest.o | 58 | obj-$(CONFIG_BACKTRACE_SELF_TEST) += backtracetest.o |
59 | obj-$(CONFIG_COMPAT) += compat.o | 59 | obj-$(CONFIG_COMPAT) += compat.o |
60 | obj-$(CONFIG_CGROUPS) += cgroup.o | 60 | obj-$(CONFIG_CGROUPS) += cgroup.o |
61 | obj-$(CONFIG_CGROUP_DEBUG) += cgroup_debug.o | ||
62 | obj-$(CONFIG_CGROUP_FREEZER) += cgroup_freezer.o | 61 | obj-$(CONFIG_CGROUP_FREEZER) += cgroup_freezer.o |
63 | obj-$(CONFIG_CPUSETS) += cpuset.o | 62 | obj-$(CONFIG_CPUSETS) += cpuset.o |
64 | obj-$(CONFIG_CGROUP_NS) += ns_cgroup.o | 63 | obj-$(CONFIG_CGROUP_NS) += ns_cgroup.o |
@@ -87,7 +86,6 @@ obj-$(CONFIG_RELAY) += relay.o | |||
87 | obj-$(CONFIG_SYSCTL) += utsname_sysctl.o | 86 | obj-$(CONFIG_SYSCTL) += utsname_sysctl.o |
88 | obj-$(CONFIG_TASK_DELAY_ACCT) += delayacct.o | 87 | obj-$(CONFIG_TASK_DELAY_ACCT) += delayacct.o |
89 | obj-$(CONFIG_TASKSTATS) += taskstats.o tsacct.o | 88 | obj-$(CONFIG_TASKSTATS) += taskstats.o tsacct.o |
90 | obj-$(CONFIG_MARKERS) += marker.o | ||
91 | obj-$(CONFIG_TRACEPOINTS) += tracepoint.o | 89 | obj-$(CONFIG_TRACEPOINTS) += tracepoint.o |
92 | obj-$(CONFIG_LATENCYTOP) += latencytop.o | 90 | obj-$(CONFIG_LATENCYTOP) += latencytop.o |
93 | obj-$(CONFIG_FUNCTION_TRACER) += trace/ | 91 | obj-$(CONFIG_FUNCTION_TRACER) += trace/ |
@@ -96,7 +94,7 @@ obj-$(CONFIG_X86_DS) += trace/ | |||
96 | obj-$(CONFIG_RING_BUFFER) += trace/ | 94 | obj-$(CONFIG_RING_BUFFER) += trace/ |
97 | obj-$(CONFIG_SMP) += sched_cpupri.o | 95 | obj-$(CONFIG_SMP) += sched_cpupri.o |
98 | obj-$(CONFIG_SLOW_WORK) += slow-work.o | 96 | obj-$(CONFIG_SLOW_WORK) += slow-work.o |
99 | obj-$(CONFIG_PERF_COUNTERS) += perf_counter.o | 97 | obj-$(CONFIG_PERF_EVENTS) += perf_event.o |
100 | 98 | ||
101 | ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y) | 99 | ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y) |
102 | # According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is | 100 | # According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is |
diff --git a/kernel/audit.c b/kernel/audit.c index defc2e6f1e3b..5feed232be9d 100644 --- a/kernel/audit.c +++ b/kernel/audit.c | |||
@@ -855,18 +855,24 @@ static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh) | |||
855 | break; | 855 | break; |
856 | } | 856 | } |
857 | case AUDIT_SIGNAL_INFO: | 857 | case AUDIT_SIGNAL_INFO: |
858 | err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); | 858 | len = 0; |
859 | if (err) | 859 | if (audit_sig_sid) { |
860 | return err; | 860 | err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); |
861 | if (err) | ||
862 | return err; | ||
863 | } | ||
861 | sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); | 864 | sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); |
862 | if (!sig_data) { | 865 | if (!sig_data) { |
863 | security_release_secctx(ctx, len); | 866 | if (audit_sig_sid) |
867 | security_release_secctx(ctx, len); | ||
864 | return -ENOMEM; | 868 | return -ENOMEM; |
865 | } | 869 | } |
866 | sig_data->uid = audit_sig_uid; | 870 | sig_data->uid = audit_sig_uid; |
867 | sig_data->pid = audit_sig_pid; | 871 | sig_data->pid = audit_sig_pid; |
868 | memcpy(sig_data->ctx, ctx, len); | 872 | if (audit_sig_sid) { |
869 | security_release_secctx(ctx, len); | 873 | memcpy(sig_data->ctx, ctx, len); |
874 | security_release_secctx(ctx, len); | ||
875 | } | ||
870 | audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO, | 876 | audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO, |
871 | 0, 0, sig_data, sizeof(*sig_data) + len); | 877 | 0, 0, sig_data, sizeof(*sig_data) + len); |
872 | kfree(sig_data); | 878 | kfree(sig_data); |
diff --git a/kernel/audit_watch.c b/kernel/audit_watch.c index 0e96dbc60ea9..cc7e87936cbc 100644 --- a/kernel/audit_watch.c +++ b/kernel/audit_watch.c | |||
@@ -45,8 +45,8 @@ | |||
45 | 45 | ||
46 | struct audit_watch { | 46 | struct audit_watch { |
47 | atomic_t count; /* reference count */ | 47 | atomic_t count; /* reference count */ |
48 | char *path; /* insertion path */ | ||
49 | dev_t dev; /* associated superblock device */ | 48 | dev_t dev; /* associated superblock device */ |
49 | char *path; /* insertion path */ | ||
50 | unsigned long ino; /* associated inode number */ | 50 | unsigned long ino; /* associated inode number */ |
51 | struct audit_parent *parent; /* associated parent */ | 51 | struct audit_parent *parent; /* associated parent */ |
52 | struct list_head wlist; /* entry in parent->watches list */ | 52 | struct list_head wlist; /* entry in parent->watches list */ |
diff --git a/kernel/auditsc.c b/kernel/auditsc.c index 68d3c6a0ecd6..267e484f0198 100644 --- a/kernel/auditsc.c +++ b/kernel/auditsc.c | |||
@@ -168,12 +168,12 @@ struct audit_context { | |||
168 | int in_syscall; /* 1 if task is in a syscall */ | 168 | int in_syscall; /* 1 if task is in a syscall */ |
169 | enum audit_state state, current_state; | 169 | enum audit_state state, current_state; |
170 | unsigned int serial; /* serial number for record */ | 170 | unsigned int serial; /* serial number for record */ |
171 | struct timespec ctime; /* time of syscall entry */ | ||
172 | int major; /* syscall number */ | 171 | int major; /* syscall number */ |
172 | struct timespec ctime; /* time of syscall entry */ | ||
173 | unsigned long argv[4]; /* syscall arguments */ | 173 | unsigned long argv[4]; /* syscall arguments */ |
174 | int return_valid; /* return code is valid */ | ||
175 | long return_code;/* syscall return code */ | 174 | long return_code;/* syscall return code */ |
176 | u64 prio; | 175 | u64 prio; |
176 | int return_valid; /* return code is valid */ | ||
177 | int name_count; | 177 | int name_count; |
178 | struct audit_names names[AUDIT_NAMES]; | 178 | struct audit_names names[AUDIT_NAMES]; |
179 | char * filterkey; /* key for rule that triggered record */ | 179 | char * filterkey; /* key for rule that triggered record */ |
@@ -198,8 +198,8 @@ struct audit_context { | |||
198 | char target_comm[TASK_COMM_LEN]; | 198 | char target_comm[TASK_COMM_LEN]; |
199 | 199 | ||
200 | struct audit_tree_refs *trees, *first_trees; | 200 | struct audit_tree_refs *trees, *first_trees; |
201 | int tree_count; | ||
202 | struct list_head killed_trees; | 201 | struct list_head killed_trees; |
202 | int tree_count; | ||
203 | 203 | ||
204 | int type; | 204 | int type; |
205 | union { | 205 | union { |
diff --git a/kernel/cgroup.c b/kernel/cgroup.c index c7ece8f027f2..7ccba4bc5e3b 100644 --- a/kernel/cgroup.c +++ b/kernel/cgroup.c | |||
@@ -23,6 +23,7 @@ | |||
23 | */ | 23 | */ |
24 | 24 | ||
25 | #include <linux/cgroup.h> | 25 | #include <linux/cgroup.h> |
26 | #include <linux/ctype.h> | ||
26 | #include <linux/errno.h> | 27 | #include <linux/errno.h> |
27 | #include <linux/fs.h> | 28 | #include <linux/fs.h> |
28 | #include <linux/kernel.h> | 29 | #include <linux/kernel.h> |
@@ -48,6 +49,8 @@ | |||
48 | #include <linux/namei.h> | 49 | #include <linux/namei.h> |
49 | #include <linux/smp_lock.h> | 50 | #include <linux/smp_lock.h> |
50 | #include <linux/pid_namespace.h> | 51 | #include <linux/pid_namespace.h> |
52 | #include <linux/idr.h> | ||
53 | #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */ | ||
51 | 54 | ||
52 | #include <asm/atomic.h> | 55 | #include <asm/atomic.h> |
53 | 56 | ||
@@ -60,6 +63,8 @@ static struct cgroup_subsys *subsys[] = { | |||
60 | #include <linux/cgroup_subsys.h> | 63 | #include <linux/cgroup_subsys.h> |
61 | }; | 64 | }; |
62 | 65 | ||
66 | #define MAX_CGROUP_ROOT_NAMELEN 64 | ||
67 | |||
63 | /* | 68 | /* |
64 | * A cgroupfs_root represents the root of a cgroup hierarchy, | 69 | * A cgroupfs_root represents the root of a cgroup hierarchy, |
65 | * and may be associated with a superblock to form an active | 70 | * and may be associated with a superblock to form an active |
@@ -74,6 +79,9 @@ struct cgroupfs_root { | |||
74 | */ | 79 | */ |
75 | unsigned long subsys_bits; | 80 | unsigned long subsys_bits; |
76 | 81 | ||
82 | /* Unique id for this hierarchy. */ | ||
83 | int hierarchy_id; | ||
84 | |||
77 | /* The bitmask of subsystems currently attached to this hierarchy */ | 85 | /* The bitmask of subsystems currently attached to this hierarchy */ |
78 | unsigned long actual_subsys_bits; | 86 | unsigned long actual_subsys_bits; |
79 | 87 | ||
@@ -94,6 +102,9 @@ struct cgroupfs_root { | |||
94 | 102 | ||
95 | /* The path to use for release notifications. */ | 103 | /* The path to use for release notifications. */ |
96 | char release_agent_path[PATH_MAX]; | 104 | char release_agent_path[PATH_MAX]; |
105 | |||
106 | /* The name for this hierarchy - may be empty */ | ||
107 | char name[MAX_CGROUP_ROOT_NAMELEN]; | ||
97 | }; | 108 | }; |
98 | 109 | ||
99 | /* | 110 | /* |
@@ -141,6 +152,10 @@ struct css_id { | |||
141 | static LIST_HEAD(roots); | 152 | static LIST_HEAD(roots); |
142 | static int root_count; | 153 | static int root_count; |
143 | 154 | ||
155 | static DEFINE_IDA(hierarchy_ida); | ||
156 | static int next_hierarchy_id; | ||
157 | static DEFINE_SPINLOCK(hierarchy_id_lock); | ||
158 | |||
144 | /* dummytop is a shorthand for the dummy hierarchy's top cgroup */ | 159 | /* dummytop is a shorthand for the dummy hierarchy's top cgroup */ |
145 | #define dummytop (&rootnode.top_cgroup) | 160 | #define dummytop (&rootnode.top_cgroup) |
146 | 161 | ||
@@ -201,6 +216,7 @@ struct cg_cgroup_link { | |||
201 | * cgroup, anchored on cgroup->css_sets | 216 | * cgroup, anchored on cgroup->css_sets |
202 | */ | 217 | */ |
203 | struct list_head cgrp_link_list; | 218 | struct list_head cgrp_link_list; |
219 | struct cgroup *cgrp; | ||
204 | /* | 220 | /* |
205 | * List running through cg_cgroup_links pointing at a | 221 | * List running through cg_cgroup_links pointing at a |
206 | * single css_set object, anchored on css_set->cg_links | 222 | * single css_set object, anchored on css_set->cg_links |
@@ -227,8 +243,11 @@ static int cgroup_subsys_init_idr(struct cgroup_subsys *ss); | |||
227 | static DEFINE_RWLOCK(css_set_lock); | 243 | static DEFINE_RWLOCK(css_set_lock); |
228 | static int css_set_count; | 244 | static int css_set_count; |
229 | 245 | ||
230 | /* hash table for cgroup groups. This improves the performance to | 246 | /* |
231 | * find an existing css_set */ | 247 | * hash table for cgroup groups. This improves the performance to find |
248 | * an existing css_set. This hash doesn't (currently) take into | ||
249 | * account cgroups in empty hierarchies. | ||
250 | */ | ||
232 | #define CSS_SET_HASH_BITS 7 | 251 | #define CSS_SET_HASH_BITS 7 |
233 | #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS) | 252 | #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS) |
234 | static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE]; | 253 | static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE]; |
@@ -248,48 +267,22 @@ static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[]) | |||
248 | return &css_set_table[index]; | 267 | return &css_set_table[index]; |
249 | } | 268 | } |
250 | 269 | ||
270 | static void free_css_set_rcu(struct rcu_head *obj) | ||
271 | { | ||
272 | struct css_set *cg = container_of(obj, struct css_set, rcu_head); | ||
273 | kfree(cg); | ||
274 | } | ||
275 | |||
251 | /* We don't maintain the lists running through each css_set to its | 276 | /* We don't maintain the lists running through each css_set to its |
252 | * task until after the first call to cgroup_iter_start(). This | 277 | * task until after the first call to cgroup_iter_start(). This |
253 | * reduces the fork()/exit() overhead for people who have cgroups | 278 | * reduces the fork()/exit() overhead for people who have cgroups |
254 | * compiled into their kernel but not actually in use */ | 279 | * compiled into their kernel but not actually in use */ |
255 | static int use_task_css_set_links __read_mostly; | 280 | static int use_task_css_set_links __read_mostly; |
256 | 281 | ||
257 | /* When we create or destroy a css_set, the operation simply | 282 | static void __put_css_set(struct css_set *cg, int taskexit) |
258 | * takes/releases a reference count on all the cgroups referenced | ||
259 | * by subsystems in this css_set. This can end up multiple-counting | ||
260 | * some cgroups, but that's OK - the ref-count is just a | ||
261 | * busy/not-busy indicator; ensuring that we only count each cgroup | ||
262 | * once would require taking a global lock to ensure that no | ||
263 | * subsystems moved between hierarchies while we were doing so. | ||
264 | * | ||
265 | * Possible TODO: decide at boot time based on the number of | ||
266 | * registered subsystems and the number of CPUs or NUMA nodes whether | ||
267 | * it's better for performance to ref-count every subsystem, or to | ||
268 | * take a global lock and only add one ref count to each hierarchy. | ||
269 | */ | ||
270 | |||
271 | /* | ||
272 | * unlink a css_set from the list and free it | ||
273 | */ | ||
274 | static void unlink_css_set(struct css_set *cg) | ||
275 | { | 283 | { |
276 | struct cg_cgroup_link *link; | 284 | struct cg_cgroup_link *link; |
277 | struct cg_cgroup_link *saved_link; | 285 | struct cg_cgroup_link *saved_link; |
278 | |||
279 | hlist_del(&cg->hlist); | ||
280 | css_set_count--; | ||
281 | |||
282 | list_for_each_entry_safe(link, saved_link, &cg->cg_links, | ||
283 | cg_link_list) { | ||
284 | list_del(&link->cg_link_list); | ||
285 | list_del(&link->cgrp_link_list); | ||
286 | kfree(link); | ||
287 | } | ||
288 | } | ||
289 | |||
290 | static void __put_css_set(struct css_set *cg, int taskexit) | ||
291 | { | ||
292 | int i; | ||
293 | /* | 286 | /* |
294 | * Ensure that the refcount doesn't hit zero while any readers | 287 | * Ensure that the refcount doesn't hit zero while any readers |
295 | * can see it. Similar to atomic_dec_and_lock(), but for an | 288 | * can see it. Similar to atomic_dec_and_lock(), but for an |
@@ -302,21 +295,28 @@ static void __put_css_set(struct css_set *cg, int taskexit) | |||
302 | write_unlock(&css_set_lock); | 295 | write_unlock(&css_set_lock); |
303 | return; | 296 | return; |
304 | } | 297 | } |
305 | unlink_css_set(cg); | ||
306 | write_unlock(&css_set_lock); | ||
307 | 298 | ||
308 | rcu_read_lock(); | 299 | /* This css_set is dead. unlink it and release cgroup refcounts */ |
309 | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 300 | hlist_del(&cg->hlist); |
310 | struct cgroup *cgrp = rcu_dereference(cg->subsys[i]->cgroup); | 301 | css_set_count--; |
302 | |||
303 | list_for_each_entry_safe(link, saved_link, &cg->cg_links, | ||
304 | cg_link_list) { | ||
305 | struct cgroup *cgrp = link->cgrp; | ||
306 | list_del(&link->cg_link_list); | ||
307 | list_del(&link->cgrp_link_list); | ||
311 | if (atomic_dec_and_test(&cgrp->count) && | 308 | if (atomic_dec_and_test(&cgrp->count) && |
312 | notify_on_release(cgrp)) { | 309 | notify_on_release(cgrp)) { |
313 | if (taskexit) | 310 | if (taskexit) |
314 | set_bit(CGRP_RELEASABLE, &cgrp->flags); | 311 | set_bit(CGRP_RELEASABLE, &cgrp->flags); |
315 | check_for_release(cgrp); | 312 | check_for_release(cgrp); |
316 | } | 313 | } |
314 | |||
315 | kfree(link); | ||
317 | } | 316 | } |
318 | rcu_read_unlock(); | 317 | |
319 | kfree(cg); | 318 | write_unlock(&css_set_lock); |
319 | call_rcu(&cg->rcu_head, free_css_set_rcu); | ||
320 | } | 320 | } |
321 | 321 | ||
322 | /* | 322 | /* |
@@ -338,6 +338,78 @@ static inline void put_css_set_taskexit(struct css_set *cg) | |||
338 | } | 338 | } |
339 | 339 | ||
340 | /* | 340 | /* |
341 | * compare_css_sets - helper function for find_existing_css_set(). | ||
342 | * @cg: candidate css_set being tested | ||
343 | * @old_cg: existing css_set for a task | ||
344 | * @new_cgrp: cgroup that's being entered by the task | ||
345 | * @template: desired set of css pointers in css_set (pre-calculated) | ||
346 | * | ||
347 | * Returns true if "cg" matches "old_cg" except for the hierarchy | ||
348 | * which "new_cgrp" belongs to, for which it should match "new_cgrp". | ||
349 | */ | ||
350 | static bool compare_css_sets(struct css_set *cg, | ||
351 | struct css_set *old_cg, | ||
352 | struct cgroup *new_cgrp, | ||
353 | struct cgroup_subsys_state *template[]) | ||
354 | { | ||
355 | struct list_head *l1, *l2; | ||
356 | |||
357 | if (memcmp(template, cg->subsys, sizeof(cg->subsys))) { | ||
358 | /* Not all subsystems matched */ | ||
359 | return false; | ||
360 | } | ||
361 | |||
362 | /* | ||
363 | * Compare cgroup pointers in order to distinguish between | ||
364 | * different cgroups in heirarchies with no subsystems. We | ||
365 | * could get by with just this check alone (and skip the | ||
366 | * memcmp above) but on most setups the memcmp check will | ||
367 | * avoid the need for this more expensive check on almost all | ||
368 | * candidates. | ||
369 | */ | ||
370 | |||
371 | l1 = &cg->cg_links; | ||
372 | l2 = &old_cg->cg_links; | ||
373 | while (1) { | ||
374 | struct cg_cgroup_link *cgl1, *cgl2; | ||
375 | struct cgroup *cg1, *cg2; | ||
376 | |||
377 | l1 = l1->next; | ||
378 | l2 = l2->next; | ||
379 | /* See if we reached the end - both lists are equal length. */ | ||
380 | if (l1 == &cg->cg_links) { | ||
381 | BUG_ON(l2 != &old_cg->cg_links); | ||
382 | break; | ||
383 | } else { | ||
384 | BUG_ON(l2 == &old_cg->cg_links); | ||
385 | } | ||
386 | /* Locate the cgroups associated with these links. */ | ||
387 | cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list); | ||
388 | cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list); | ||
389 | cg1 = cgl1->cgrp; | ||
390 | cg2 = cgl2->cgrp; | ||
391 | /* Hierarchies should be linked in the same order. */ | ||
392 | BUG_ON(cg1->root != cg2->root); | ||
393 | |||
394 | /* | ||
395 | * If this hierarchy is the hierarchy of the cgroup | ||
396 | * that's changing, then we need to check that this | ||
397 | * css_set points to the new cgroup; if it's any other | ||
398 | * hierarchy, then this css_set should point to the | ||
399 | * same cgroup as the old css_set. | ||
400 | */ | ||
401 | if (cg1->root == new_cgrp->root) { | ||
402 | if (cg1 != new_cgrp) | ||
403 | return false; | ||
404 | } else { | ||
405 | if (cg1 != cg2) | ||
406 | return false; | ||
407 | } | ||
408 | } | ||
409 | return true; | ||
410 | } | ||
411 | |||
412 | /* | ||
341 | * find_existing_css_set() is a helper for | 413 | * find_existing_css_set() is a helper for |
342 | * find_css_set(), and checks to see whether an existing | 414 | * find_css_set(), and checks to see whether an existing |
343 | * css_set is suitable. | 415 | * css_set is suitable. |
@@ -378,10 +450,11 @@ static struct css_set *find_existing_css_set( | |||
378 | 450 | ||
379 | hhead = css_set_hash(template); | 451 | hhead = css_set_hash(template); |
380 | hlist_for_each_entry(cg, node, hhead, hlist) { | 452 | hlist_for_each_entry(cg, node, hhead, hlist) { |
381 | if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) { | 453 | if (!compare_css_sets(cg, oldcg, cgrp, template)) |
382 | /* All subsystems matched */ | 454 | continue; |
383 | return cg; | 455 | |
384 | } | 456 | /* This css_set matches what we need */ |
457 | return cg; | ||
385 | } | 458 | } |
386 | 459 | ||
387 | /* No existing cgroup group matched */ | 460 | /* No existing cgroup group matched */ |
@@ -435,8 +508,14 @@ static void link_css_set(struct list_head *tmp_cg_links, | |||
435 | link = list_first_entry(tmp_cg_links, struct cg_cgroup_link, | 508 | link = list_first_entry(tmp_cg_links, struct cg_cgroup_link, |
436 | cgrp_link_list); | 509 | cgrp_link_list); |
437 | link->cg = cg; | 510 | link->cg = cg; |
511 | link->cgrp = cgrp; | ||
512 | atomic_inc(&cgrp->count); | ||
438 | list_move(&link->cgrp_link_list, &cgrp->css_sets); | 513 | list_move(&link->cgrp_link_list, &cgrp->css_sets); |
439 | list_add(&link->cg_link_list, &cg->cg_links); | 514 | /* |
515 | * Always add links to the tail of the list so that the list | ||
516 | * is sorted by order of hierarchy creation | ||
517 | */ | ||
518 | list_add_tail(&link->cg_link_list, &cg->cg_links); | ||
440 | } | 519 | } |
441 | 520 | ||
442 | /* | 521 | /* |
@@ -451,11 +530,11 @@ static struct css_set *find_css_set( | |||
451 | { | 530 | { |
452 | struct css_set *res; | 531 | struct css_set *res; |
453 | struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT]; | 532 | struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT]; |
454 | int i; | ||
455 | 533 | ||
456 | struct list_head tmp_cg_links; | 534 | struct list_head tmp_cg_links; |
457 | 535 | ||
458 | struct hlist_head *hhead; | 536 | struct hlist_head *hhead; |
537 | struct cg_cgroup_link *link; | ||
459 | 538 | ||
460 | /* First see if we already have a cgroup group that matches | 539 | /* First see if we already have a cgroup group that matches |
461 | * the desired set */ | 540 | * the desired set */ |
@@ -489,20 +568,12 @@ static struct css_set *find_css_set( | |||
489 | 568 | ||
490 | write_lock(&css_set_lock); | 569 | write_lock(&css_set_lock); |
491 | /* Add reference counts and links from the new css_set. */ | 570 | /* Add reference counts and links from the new css_set. */ |
492 | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 571 | list_for_each_entry(link, &oldcg->cg_links, cg_link_list) { |
493 | struct cgroup *cgrp = res->subsys[i]->cgroup; | 572 | struct cgroup *c = link->cgrp; |
494 | struct cgroup_subsys *ss = subsys[i]; | 573 | if (c->root == cgrp->root) |
495 | atomic_inc(&cgrp->count); | 574 | c = cgrp; |
496 | /* | 575 | link_css_set(&tmp_cg_links, res, c); |
497 | * We want to add a link once per cgroup, so we | ||
498 | * only do it for the first subsystem in each | ||
499 | * hierarchy | ||
500 | */ | ||
501 | if (ss->root->subsys_list.next == &ss->sibling) | ||
502 | link_css_set(&tmp_cg_links, res, cgrp); | ||
503 | } | 576 | } |
504 | if (list_empty(&rootnode.subsys_list)) | ||
505 | link_css_set(&tmp_cg_links, res, dummytop); | ||
506 | 577 | ||
507 | BUG_ON(!list_empty(&tmp_cg_links)); | 578 | BUG_ON(!list_empty(&tmp_cg_links)); |
508 | 579 | ||
@@ -518,6 +589,41 @@ static struct css_set *find_css_set( | |||
518 | } | 589 | } |
519 | 590 | ||
520 | /* | 591 | /* |
592 | * Return the cgroup for "task" from the given hierarchy. Must be | ||
593 | * called with cgroup_mutex held. | ||
594 | */ | ||
595 | static struct cgroup *task_cgroup_from_root(struct task_struct *task, | ||
596 | struct cgroupfs_root *root) | ||
597 | { | ||
598 | struct css_set *css; | ||
599 | struct cgroup *res = NULL; | ||
600 | |||
601 | BUG_ON(!mutex_is_locked(&cgroup_mutex)); | ||
602 | read_lock(&css_set_lock); | ||
603 | /* | ||
604 | * No need to lock the task - since we hold cgroup_mutex the | ||
605 | * task can't change groups, so the only thing that can happen | ||
606 | * is that it exits and its css is set back to init_css_set. | ||
607 | */ | ||
608 | css = task->cgroups; | ||
609 | if (css == &init_css_set) { | ||
610 | res = &root->top_cgroup; | ||
611 | } else { | ||
612 | struct cg_cgroup_link *link; | ||
613 | list_for_each_entry(link, &css->cg_links, cg_link_list) { | ||
614 | struct cgroup *c = link->cgrp; | ||
615 | if (c->root == root) { | ||
616 | res = c; | ||
617 | break; | ||
618 | } | ||
619 | } | ||
620 | } | ||
621 | read_unlock(&css_set_lock); | ||
622 | BUG_ON(!res); | ||
623 | return res; | ||
624 | } | ||
625 | |||
626 | /* | ||
521 | * There is one global cgroup mutex. We also require taking | 627 | * There is one global cgroup mutex. We also require taking |
522 | * task_lock() when dereferencing a task's cgroup subsys pointers. | 628 | * task_lock() when dereferencing a task's cgroup subsys pointers. |
523 | * See "The task_lock() exception", at the end of this comment. | 629 | * See "The task_lock() exception", at the end of this comment. |
@@ -596,7 +702,7 @@ void cgroup_unlock(void) | |||
596 | static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode); | 702 | static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode); |
597 | static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry); | 703 | static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry); |
598 | static int cgroup_populate_dir(struct cgroup *cgrp); | 704 | static int cgroup_populate_dir(struct cgroup *cgrp); |
599 | static struct inode_operations cgroup_dir_inode_operations; | 705 | static const struct inode_operations cgroup_dir_inode_operations; |
600 | static struct file_operations proc_cgroupstats_operations; | 706 | static struct file_operations proc_cgroupstats_operations; |
601 | 707 | ||
602 | static struct backing_dev_info cgroup_backing_dev_info = { | 708 | static struct backing_dev_info cgroup_backing_dev_info = { |
@@ -677,6 +783,12 @@ static void cgroup_diput(struct dentry *dentry, struct inode *inode) | |||
677 | */ | 783 | */ |
678 | deactivate_super(cgrp->root->sb); | 784 | deactivate_super(cgrp->root->sb); |
679 | 785 | ||
786 | /* | ||
787 | * if we're getting rid of the cgroup, refcount should ensure | ||
788 | * that there are no pidlists left. | ||
789 | */ | ||
790 | BUG_ON(!list_empty(&cgrp->pidlists)); | ||
791 | |||
680 | call_rcu(&cgrp->rcu_head, free_cgroup_rcu); | 792 | call_rcu(&cgrp->rcu_head, free_cgroup_rcu); |
681 | } | 793 | } |
682 | iput(inode); | 794 | iput(inode); |
@@ -841,6 +953,8 @@ static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs) | |||
841 | seq_puts(seq, ",noprefix"); | 953 | seq_puts(seq, ",noprefix"); |
842 | if (strlen(root->release_agent_path)) | 954 | if (strlen(root->release_agent_path)) |
843 | seq_printf(seq, ",release_agent=%s", root->release_agent_path); | 955 | seq_printf(seq, ",release_agent=%s", root->release_agent_path); |
956 | if (strlen(root->name)) | ||
957 | seq_printf(seq, ",name=%s", root->name); | ||
844 | mutex_unlock(&cgroup_mutex); | 958 | mutex_unlock(&cgroup_mutex); |
845 | return 0; | 959 | return 0; |
846 | } | 960 | } |
@@ -849,6 +963,12 @@ struct cgroup_sb_opts { | |||
849 | unsigned long subsys_bits; | 963 | unsigned long subsys_bits; |
850 | unsigned long flags; | 964 | unsigned long flags; |
851 | char *release_agent; | 965 | char *release_agent; |
966 | char *name; | ||
967 | /* User explicitly requested empty subsystem */ | ||
968 | bool none; | ||
969 | |||
970 | struct cgroupfs_root *new_root; | ||
971 | |||
852 | }; | 972 | }; |
853 | 973 | ||
854 | /* Convert a hierarchy specifier into a bitmask of subsystems and | 974 | /* Convert a hierarchy specifier into a bitmask of subsystems and |
@@ -863,9 +983,7 @@ static int parse_cgroupfs_options(char *data, | |||
863 | mask = ~(1UL << cpuset_subsys_id); | 983 | mask = ~(1UL << cpuset_subsys_id); |
864 | #endif | 984 | #endif |
865 | 985 | ||
866 | opts->subsys_bits = 0; | 986 | memset(opts, 0, sizeof(*opts)); |
867 | opts->flags = 0; | ||
868 | opts->release_agent = NULL; | ||
869 | 987 | ||
870 | while ((token = strsep(&o, ",")) != NULL) { | 988 | while ((token = strsep(&o, ",")) != NULL) { |
871 | if (!*token) | 989 | if (!*token) |
@@ -879,17 +997,42 @@ static int parse_cgroupfs_options(char *data, | |||
879 | if (!ss->disabled) | 997 | if (!ss->disabled) |
880 | opts->subsys_bits |= 1ul << i; | 998 | opts->subsys_bits |= 1ul << i; |
881 | } | 999 | } |
1000 | } else if (!strcmp(token, "none")) { | ||
1001 | /* Explicitly have no subsystems */ | ||
1002 | opts->none = true; | ||
882 | } else if (!strcmp(token, "noprefix")) { | 1003 | } else if (!strcmp(token, "noprefix")) { |
883 | set_bit(ROOT_NOPREFIX, &opts->flags); | 1004 | set_bit(ROOT_NOPREFIX, &opts->flags); |
884 | } else if (!strncmp(token, "release_agent=", 14)) { | 1005 | } else if (!strncmp(token, "release_agent=", 14)) { |
885 | /* Specifying two release agents is forbidden */ | 1006 | /* Specifying two release agents is forbidden */ |
886 | if (opts->release_agent) | 1007 | if (opts->release_agent) |
887 | return -EINVAL; | 1008 | return -EINVAL; |
888 | opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL); | 1009 | opts->release_agent = |
1010 | kstrndup(token + 14, PATH_MAX, GFP_KERNEL); | ||
889 | if (!opts->release_agent) | 1011 | if (!opts->release_agent) |
890 | return -ENOMEM; | 1012 | return -ENOMEM; |
891 | strncpy(opts->release_agent, token + 14, PATH_MAX - 1); | 1013 | } else if (!strncmp(token, "name=", 5)) { |
892 | opts->release_agent[PATH_MAX - 1] = 0; | 1014 | int i; |
1015 | const char *name = token + 5; | ||
1016 | /* Can't specify an empty name */ | ||
1017 | if (!strlen(name)) | ||
1018 | return -EINVAL; | ||
1019 | /* Must match [\w.-]+ */ | ||
1020 | for (i = 0; i < strlen(name); i++) { | ||
1021 | char c = name[i]; | ||
1022 | if (isalnum(c)) | ||
1023 | continue; | ||
1024 | if ((c == '.') || (c == '-') || (c == '_')) | ||
1025 | continue; | ||
1026 | return -EINVAL; | ||
1027 | } | ||
1028 | /* Specifying two names is forbidden */ | ||
1029 | if (opts->name) | ||
1030 | return -EINVAL; | ||
1031 | opts->name = kstrndup(name, | ||
1032 | MAX_CGROUP_ROOT_NAMELEN, | ||
1033 | GFP_KERNEL); | ||
1034 | if (!opts->name) | ||
1035 | return -ENOMEM; | ||
893 | } else { | 1036 | } else { |
894 | struct cgroup_subsys *ss; | 1037 | struct cgroup_subsys *ss; |
895 | int i; | 1038 | int i; |
@@ -906,6 +1049,8 @@ static int parse_cgroupfs_options(char *data, | |||
906 | } | 1049 | } |
907 | } | 1050 | } |
908 | 1051 | ||
1052 | /* Consistency checks */ | ||
1053 | |||
909 | /* | 1054 | /* |
910 | * Option noprefix was introduced just for backward compatibility | 1055 | * Option noprefix was introduced just for backward compatibility |
911 | * with the old cpuset, so we allow noprefix only if mounting just | 1056 | * with the old cpuset, so we allow noprefix only if mounting just |
@@ -915,8 +1060,16 @@ static int parse_cgroupfs_options(char *data, | |||
915 | (opts->subsys_bits & mask)) | 1060 | (opts->subsys_bits & mask)) |
916 | return -EINVAL; | 1061 | return -EINVAL; |
917 | 1062 | ||
918 | /* We can't have an empty hierarchy */ | 1063 | |
919 | if (!opts->subsys_bits) | 1064 | /* Can't specify "none" and some subsystems */ |
1065 | if (opts->subsys_bits && opts->none) | ||
1066 | return -EINVAL; | ||
1067 | |||
1068 | /* | ||
1069 | * We either have to specify by name or by subsystems. (So all | ||
1070 | * empty hierarchies must have a name). | ||
1071 | */ | ||
1072 | if (!opts->subsys_bits && !opts->name) | ||
920 | return -EINVAL; | 1073 | return -EINVAL; |
921 | 1074 | ||
922 | return 0; | 1075 | return 0; |
@@ -944,6 +1097,12 @@ static int cgroup_remount(struct super_block *sb, int *flags, char *data) | |||
944 | goto out_unlock; | 1097 | goto out_unlock; |
945 | } | 1098 | } |
946 | 1099 | ||
1100 | /* Don't allow name to change at remount */ | ||
1101 | if (opts.name && strcmp(opts.name, root->name)) { | ||
1102 | ret = -EINVAL; | ||
1103 | goto out_unlock; | ||
1104 | } | ||
1105 | |||
947 | ret = rebind_subsystems(root, opts.subsys_bits); | 1106 | ret = rebind_subsystems(root, opts.subsys_bits); |
948 | if (ret) | 1107 | if (ret) |
949 | goto out_unlock; | 1108 | goto out_unlock; |
@@ -955,13 +1114,14 @@ static int cgroup_remount(struct super_block *sb, int *flags, char *data) | |||
955 | strcpy(root->release_agent_path, opts.release_agent); | 1114 | strcpy(root->release_agent_path, opts.release_agent); |
956 | out_unlock: | 1115 | out_unlock: |
957 | kfree(opts.release_agent); | 1116 | kfree(opts.release_agent); |
1117 | kfree(opts.name); | ||
958 | mutex_unlock(&cgroup_mutex); | 1118 | mutex_unlock(&cgroup_mutex); |
959 | mutex_unlock(&cgrp->dentry->d_inode->i_mutex); | 1119 | mutex_unlock(&cgrp->dentry->d_inode->i_mutex); |
960 | unlock_kernel(); | 1120 | unlock_kernel(); |
961 | return ret; | 1121 | return ret; |
962 | } | 1122 | } |
963 | 1123 | ||
964 | static struct super_operations cgroup_ops = { | 1124 | static const struct super_operations cgroup_ops = { |
965 | .statfs = simple_statfs, | 1125 | .statfs = simple_statfs, |
966 | .drop_inode = generic_delete_inode, | 1126 | .drop_inode = generic_delete_inode, |
967 | .show_options = cgroup_show_options, | 1127 | .show_options = cgroup_show_options, |
@@ -974,9 +1134,10 @@ static void init_cgroup_housekeeping(struct cgroup *cgrp) | |||
974 | INIT_LIST_HEAD(&cgrp->children); | 1134 | INIT_LIST_HEAD(&cgrp->children); |
975 | INIT_LIST_HEAD(&cgrp->css_sets); | 1135 | INIT_LIST_HEAD(&cgrp->css_sets); |
976 | INIT_LIST_HEAD(&cgrp->release_list); | 1136 | INIT_LIST_HEAD(&cgrp->release_list); |
977 | INIT_LIST_HEAD(&cgrp->pids_list); | 1137 | INIT_LIST_HEAD(&cgrp->pidlists); |
978 | init_rwsem(&cgrp->pids_mutex); | 1138 | mutex_init(&cgrp->pidlist_mutex); |
979 | } | 1139 | } |
1140 | |||
980 | static void init_cgroup_root(struct cgroupfs_root *root) | 1141 | static void init_cgroup_root(struct cgroupfs_root *root) |
981 | { | 1142 | { |
982 | struct cgroup *cgrp = &root->top_cgroup; | 1143 | struct cgroup *cgrp = &root->top_cgroup; |
@@ -988,33 +1149,106 @@ static void init_cgroup_root(struct cgroupfs_root *root) | |||
988 | init_cgroup_housekeeping(cgrp); | 1149 | init_cgroup_housekeeping(cgrp); |
989 | } | 1150 | } |
990 | 1151 | ||
1152 | static bool init_root_id(struct cgroupfs_root *root) | ||
1153 | { | ||
1154 | int ret = 0; | ||
1155 | |||
1156 | do { | ||
1157 | if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL)) | ||
1158 | return false; | ||
1159 | spin_lock(&hierarchy_id_lock); | ||
1160 | /* Try to allocate the next unused ID */ | ||
1161 | ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id, | ||
1162 | &root->hierarchy_id); | ||
1163 | if (ret == -ENOSPC) | ||
1164 | /* Try again starting from 0 */ | ||
1165 | ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id); | ||
1166 | if (!ret) { | ||
1167 | next_hierarchy_id = root->hierarchy_id + 1; | ||
1168 | } else if (ret != -EAGAIN) { | ||
1169 | /* Can only get here if the 31-bit IDR is full ... */ | ||
1170 | BUG_ON(ret); | ||
1171 | } | ||
1172 | spin_unlock(&hierarchy_id_lock); | ||
1173 | } while (ret); | ||
1174 | return true; | ||
1175 | } | ||
1176 | |||
991 | static int cgroup_test_super(struct super_block *sb, void *data) | 1177 | static int cgroup_test_super(struct super_block *sb, void *data) |
992 | { | 1178 | { |
993 | struct cgroupfs_root *new = data; | 1179 | struct cgroup_sb_opts *opts = data; |
994 | struct cgroupfs_root *root = sb->s_fs_info; | 1180 | struct cgroupfs_root *root = sb->s_fs_info; |
995 | 1181 | ||
996 | /* First check subsystems */ | 1182 | /* If we asked for a name then it must match */ |
997 | if (new->subsys_bits != root->subsys_bits) | 1183 | if (opts->name && strcmp(opts->name, root->name)) |
998 | return 0; | 1184 | return 0; |
999 | 1185 | ||
1000 | /* Next check flags */ | 1186 | /* |
1001 | if (new->flags != root->flags) | 1187 | * If we asked for subsystems (or explicitly for no |
1188 | * subsystems) then they must match | ||
1189 | */ | ||
1190 | if ((opts->subsys_bits || opts->none) | ||
1191 | && (opts->subsys_bits != root->subsys_bits)) | ||
1002 | return 0; | 1192 | return 0; |
1003 | 1193 | ||
1004 | return 1; | 1194 | return 1; |
1005 | } | 1195 | } |
1006 | 1196 | ||
1197 | static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts) | ||
1198 | { | ||
1199 | struct cgroupfs_root *root; | ||
1200 | |||
1201 | if (!opts->subsys_bits && !opts->none) | ||
1202 | return NULL; | ||
1203 | |||
1204 | root = kzalloc(sizeof(*root), GFP_KERNEL); | ||
1205 | if (!root) | ||
1206 | return ERR_PTR(-ENOMEM); | ||
1207 | |||
1208 | if (!init_root_id(root)) { | ||
1209 | kfree(root); | ||
1210 | return ERR_PTR(-ENOMEM); | ||
1211 | } | ||
1212 | init_cgroup_root(root); | ||
1213 | |||
1214 | root->subsys_bits = opts->subsys_bits; | ||
1215 | root->flags = opts->flags; | ||
1216 | if (opts->release_agent) | ||
1217 | strcpy(root->release_agent_path, opts->release_agent); | ||
1218 | if (opts->name) | ||
1219 | strcpy(root->name, opts->name); | ||
1220 | return root; | ||
1221 | } | ||
1222 | |||
1223 | static void cgroup_drop_root(struct cgroupfs_root *root) | ||
1224 | { | ||
1225 | if (!root) | ||
1226 | return; | ||
1227 | |||
1228 | BUG_ON(!root->hierarchy_id); | ||
1229 | spin_lock(&hierarchy_id_lock); | ||
1230 | ida_remove(&hierarchy_ida, root->hierarchy_id); | ||
1231 | spin_unlock(&hierarchy_id_lock); | ||
1232 | kfree(root); | ||
1233 | } | ||
1234 | |||
1007 | static int cgroup_set_super(struct super_block *sb, void *data) | 1235 | static int cgroup_set_super(struct super_block *sb, void *data) |
1008 | { | 1236 | { |
1009 | int ret; | 1237 | int ret; |
1010 | struct cgroupfs_root *root = data; | 1238 | struct cgroup_sb_opts *opts = data; |
1239 | |||
1240 | /* If we don't have a new root, we can't set up a new sb */ | ||
1241 | if (!opts->new_root) | ||
1242 | return -EINVAL; | ||
1243 | |||
1244 | BUG_ON(!opts->subsys_bits && !opts->none); | ||
1011 | 1245 | ||
1012 | ret = set_anon_super(sb, NULL); | 1246 | ret = set_anon_super(sb, NULL); |
1013 | if (ret) | 1247 | if (ret) |
1014 | return ret; | 1248 | return ret; |
1015 | 1249 | ||
1016 | sb->s_fs_info = root; | 1250 | sb->s_fs_info = opts->new_root; |
1017 | root->sb = sb; | 1251 | opts->new_root->sb = sb; |
1018 | 1252 | ||
1019 | sb->s_blocksize = PAGE_CACHE_SIZE; | 1253 | sb->s_blocksize = PAGE_CACHE_SIZE; |
1020 | sb->s_blocksize_bits = PAGE_CACHE_SHIFT; | 1254 | sb->s_blocksize_bits = PAGE_CACHE_SHIFT; |
@@ -1051,48 +1285,43 @@ static int cgroup_get_sb(struct file_system_type *fs_type, | |||
1051 | void *data, struct vfsmount *mnt) | 1285 | void *data, struct vfsmount *mnt) |
1052 | { | 1286 | { |
1053 | struct cgroup_sb_opts opts; | 1287 | struct cgroup_sb_opts opts; |
1288 | struct cgroupfs_root *root; | ||
1054 | int ret = 0; | 1289 | int ret = 0; |
1055 | struct super_block *sb; | 1290 | struct super_block *sb; |
1056 | struct cgroupfs_root *root; | 1291 | struct cgroupfs_root *new_root; |
1057 | struct list_head tmp_cg_links; | ||
1058 | 1292 | ||
1059 | /* First find the desired set of subsystems */ | 1293 | /* First find the desired set of subsystems */ |
1060 | ret = parse_cgroupfs_options(data, &opts); | 1294 | ret = parse_cgroupfs_options(data, &opts); |
1061 | if (ret) { | 1295 | if (ret) |
1062 | kfree(opts.release_agent); | 1296 | goto out_err; |
1063 | return ret; | ||
1064 | } | ||
1065 | |||
1066 | root = kzalloc(sizeof(*root), GFP_KERNEL); | ||
1067 | if (!root) { | ||
1068 | kfree(opts.release_agent); | ||
1069 | return -ENOMEM; | ||
1070 | } | ||
1071 | 1297 | ||
1072 | init_cgroup_root(root); | 1298 | /* |
1073 | root->subsys_bits = opts.subsys_bits; | 1299 | * Allocate a new cgroup root. We may not need it if we're |
1074 | root->flags = opts.flags; | 1300 | * reusing an existing hierarchy. |
1075 | if (opts.release_agent) { | 1301 | */ |
1076 | strcpy(root->release_agent_path, opts.release_agent); | 1302 | new_root = cgroup_root_from_opts(&opts); |
1077 | kfree(opts.release_agent); | 1303 | if (IS_ERR(new_root)) { |
1304 | ret = PTR_ERR(new_root); | ||
1305 | goto out_err; | ||
1078 | } | 1306 | } |
1307 | opts.new_root = new_root; | ||
1079 | 1308 | ||
1080 | sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root); | 1309 | /* Locate an existing or new sb for this hierarchy */ |
1081 | 1310 | sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts); | |
1082 | if (IS_ERR(sb)) { | 1311 | if (IS_ERR(sb)) { |
1083 | kfree(root); | 1312 | ret = PTR_ERR(sb); |
1084 | return PTR_ERR(sb); | 1313 | cgroup_drop_root(opts.new_root); |
1314 | goto out_err; | ||
1085 | } | 1315 | } |
1086 | 1316 | ||
1087 | if (sb->s_fs_info != root) { | 1317 | root = sb->s_fs_info; |
1088 | /* Reusing an existing superblock */ | 1318 | BUG_ON(!root); |
1089 | BUG_ON(sb->s_root == NULL); | 1319 | if (root == opts.new_root) { |
1090 | kfree(root); | 1320 | /* We used the new root structure, so this is a new hierarchy */ |
1091 | root = NULL; | 1321 | struct list_head tmp_cg_links; |
1092 | } else { | ||
1093 | /* New superblock */ | ||
1094 | struct cgroup *root_cgrp = &root->top_cgroup; | 1322 | struct cgroup *root_cgrp = &root->top_cgroup; |
1095 | struct inode *inode; | 1323 | struct inode *inode; |
1324 | struct cgroupfs_root *existing_root; | ||
1096 | int i; | 1325 | int i; |
1097 | 1326 | ||
1098 | BUG_ON(sb->s_root != NULL); | 1327 | BUG_ON(sb->s_root != NULL); |
@@ -1105,6 +1334,18 @@ static int cgroup_get_sb(struct file_system_type *fs_type, | |||
1105 | mutex_lock(&inode->i_mutex); | 1334 | mutex_lock(&inode->i_mutex); |
1106 | mutex_lock(&cgroup_mutex); | 1335 | mutex_lock(&cgroup_mutex); |
1107 | 1336 | ||
1337 | if (strlen(root->name)) { | ||
1338 | /* Check for name clashes with existing mounts */ | ||
1339 | for_each_active_root(existing_root) { | ||
1340 | if (!strcmp(existing_root->name, root->name)) { | ||
1341 | ret = -EBUSY; | ||
1342 | mutex_unlock(&cgroup_mutex); | ||
1343 | mutex_unlock(&inode->i_mutex); | ||
1344 | goto drop_new_super; | ||
1345 | } | ||
1346 | } | ||
1347 | } | ||
1348 | |||
1108 | /* | 1349 | /* |
1109 | * We're accessing css_set_count without locking | 1350 | * We're accessing css_set_count without locking |
1110 | * css_set_lock here, but that's OK - it can only be | 1351 | * css_set_lock here, but that's OK - it can only be |
@@ -1123,7 +1364,8 @@ static int cgroup_get_sb(struct file_system_type *fs_type, | |||
1123 | if (ret == -EBUSY) { | 1364 | if (ret == -EBUSY) { |
1124 | mutex_unlock(&cgroup_mutex); | 1365 | mutex_unlock(&cgroup_mutex); |
1125 | mutex_unlock(&inode->i_mutex); | 1366 | mutex_unlock(&inode->i_mutex); |
1126 | goto free_cg_links; | 1367 | free_cg_links(&tmp_cg_links); |
1368 | goto drop_new_super; | ||
1127 | } | 1369 | } |
1128 | 1370 | ||
1129 | /* EBUSY should be the only error here */ | 1371 | /* EBUSY should be the only error here */ |
@@ -1155,17 +1397,27 @@ static int cgroup_get_sb(struct file_system_type *fs_type, | |||
1155 | BUG_ON(root->number_of_cgroups != 1); | 1397 | BUG_ON(root->number_of_cgroups != 1); |
1156 | 1398 | ||
1157 | cgroup_populate_dir(root_cgrp); | 1399 | cgroup_populate_dir(root_cgrp); |
1158 | mutex_unlock(&inode->i_mutex); | ||
1159 | mutex_unlock(&cgroup_mutex); | 1400 | mutex_unlock(&cgroup_mutex); |
1401 | mutex_unlock(&inode->i_mutex); | ||
1402 | } else { | ||
1403 | /* | ||
1404 | * We re-used an existing hierarchy - the new root (if | ||
1405 | * any) is not needed | ||
1406 | */ | ||
1407 | cgroup_drop_root(opts.new_root); | ||
1160 | } | 1408 | } |
1161 | 1409 | ||
1162 | simple_set_mnt(mnt, sb); | 1410 | simple_set_mnt(mnt, sb); |
1411 | kfree(opts.release_agent); | ||
1412 | kfree(opts.name); | ||
1163 | return 0; | 1413 | return 0; |
1164 | 1414 | ||
1165 | free_cg_links: | ||
1166 | free_cg_links(&tmp_cg_links); | ||
1167 | drop_new_super: | 1415 | drop_new_super: |
1168 | deactivate_locked_super(sb); | 1416 | deactivate_locked_super(sb); |
1417 | out_err: | ||
1418 | kfree(opts.release_agent); | ||
1419 | kfree(opts.name); | ||
1420 | |||
1169 | return ret; | 1421 | return ret; |
1170 | } | 1422 | } |
1171 | 1423 | ||
@@ -1211,7 +1463,7 @@ static void cgroup_kill_sb(struct super_block *sb) { | |||
1211 | mutex_unlock(&cgroup_mutex); | 1463 | mutex_unlock(&cgroup_mutex); |
1212 | 1464 | ||
1213 | kill_litter_super(sb); | 1465 | kill_litter_super(sb); |
1214 | kfree(root); | 1466 | cgroup_drop_root(root); |
1215 | } | 1467 | } |
1216 | 1468 | ||
1217 | static struct file_system_type cgroup_fs_type = { | 1469 | static struct file_system_type cgroup_fs_type = { |
@@ -1276,27 +1528,6 @@ int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen) | |||
1276 | return 0; | 1528 | return 0; |
1277 | } | 1529 | } |
1278 | 1530 | ||
1279 | /* | ||
1280 | * Return the first subsystem attached to a cgroup's hierarchy, and | ||
1281 | * its subsystem id. | ||
1282 | */ | ||
1283 | |||
1284 | static void get_first_subsys(const struct cgroup *cgrp, | ||
1285 | struct cgroup_subsys_state **css, int *subsys_id) | ||
1286 | { | ||
1287 | const struct cgroupfs_root *root = cgrp->root; | ||
1288 | const struct cgroup_subsys *test_ss; | ||
1289 | BUG_ON(list_empty(&root->subsys_list)); | ||
1290 | test_ss = list_entry(root->subsys_list.next, | ||
1291 | struct cgroup_subsys, sibling); | ||
1292 | if (css) { | ||
1293 | *css = cgrp->subsys[test_ss->subsys_id]; | ||
1294 | BUG_ON(!*css); | ||
1295 | } | ||
1296 | if (subsys_id) | ||
1297 | *subsys_id = test_ss->subsys_id; | ||
1298 | } | ||
1299 | |||
1300 | /** | 1531 | /** |
1301 | * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp' | 1532 | * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp' |
1302 | * @cgrp: the cgroup the task is attaching to | 1533 | * @cgrp: the cgroup the task is attaching to |
@@ -1313,18 +1544,15 @@ int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk) | |||
1313 | struct css_set *cg; | 1544 | struct css_set *cg; |
1314 | struct css_set *newcg; | 1545 | struct css_set *newcg; |
1315 | struct cgroupfs_root *root = cgrp->root; | 1546 | struct cgroupfs_root *root = cgrp->root; |
1316 | int subsys_id; | ||
1317 | |||
1318 | get_first_subsys(cgrp, NULL, &subsys_id); | ||
1319 | 1547 | ||
1320 | /* Nothing to do if the task is already in that cgroup */ | 1548 | /* Nothing to do if the task is already in that cgroup */ |
1321 | oldcgrp = task_cgroup(tsk, subsys_id); | 1549 | oldcgrp = task_cgroup_from_root(tsk, root); |
1322 | if (cgrp == oldcgrp) | 1550 | if (cgrp == oldcgrp) |
1323 | return 0; | 1551 | return 0; |
1324 | 1552 | ||
1325 | for_each_subsys(root, ss) { | 1553 | for_each_subsys(root, ss) { |
1326 | if (ss->can_attach) { | 1554 | if (ss->can_attach) { |
1327 | retval = ss->can_attach(ss, cgrp, tsk); | 1555 | retval = ss->can_attach(ss, cgrp, tsk, false); |
1328 | if (retval) | 1556 | if (retval) |
1329 | return retval; | 1557 | return retval; |
1330 | } | 1558 | } |
@@ -1362,7 +1590,7 @@ int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk) | |||
1362 | 1590 | ||
1363 | for_each_subsys(root, ss) { | 1591 | for_each_subsys(root, ss) { |
1364 | if (ss->attach) | 1592 | if (ss->attach) |
1365 | ss->attach(ss, cgrp, oldcgrp, tsk); | 1593 | ss->attach(ss, cgrp, oldcgrp, tsk, false); |
1366 | } | 1594 | } |
1367 | set_bit(CGRP_RELEASABLE, &oldcgrp->flags); | 1595 | set_bit(CGRP_RELEASABLE, &oldcgrp->flags); |
1368 | synchronize_rcu(); | 1596 | synchronize_rcu(); |
@@ -1423,15 +1651,6 @@ static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid) | |||
1423 | return ret; | 1651 | return ret; |
1424 | } | 1652 | } |
1425 | 1653 | ||
1426 | /* The various types of files and directories in a cgroup file system */ | ||
1427 | enum cgroup_filetype { | ||
1428 | FILE_ROOT, | ||
1429 | FILE_DIR, | ||
1430 | FILE_TASKLIST, | ||
1431 | FILE_NOTIFY_ON_RELEASE, | ||
1432 | FILE_RELEASE_AGENT, | ||
1433 | }; | ||
1434 | |||
1435 | /** | 1654 | /** |
1436 | * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive. | 1655 | * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive. |
1437 | * @cgrp: the cgroup to be checked for liveness | 1656 | * @cgrp: the cgroup to be checked for liveness |
@@ -1711,7 +1930,7 @@ static struct file_operations cgroup_file_operations = { | |||
1711 | .release = cgroup_file_release, | 1930 | .release = cgroup_file_release, |
1712 | }; | 1931 | }; |
1713 | 1932 | ||
1714 | static struct inode_operations cgroup_dir_inode_operations = { | 1933 | static const struct inode_operations cgroup_dir_inode_operations = { |
1715 | .lookup = simple_lookup, | 1934 | .lookup = simple_lookup, |
1716 | .mkdir = cgroup_mkdir, | 1935 | .mkdir = cgroup_mkdir, |
1717 | .rmdir = cgroup_rmdir, | 1936 | .rmdir = cgroup_rmdir, |
@@ -1876,7 +2095,7 @@ int cgroup_task_count(const struct cgroup *cgrp) | |||
1876 | * the start of a css_set | 2095 | * the start of a css_set |
1877 | */ | 2096 | */ |
1878 | static void cgroup_advance_iter(struct cgroup *cgrp, | 2097 | static void cgroup_advance_iter(struct cgroup *cgrp, |
1879 | struct cgroup_iter *it) | 2098 | struct cgroup_iter *it) |
1880 | { | 2099 | { |
1881 | struct list_head *l = it->cg_link; | 2100 | struct list_head *l = it->cg_link; |
1882 | struct cg_cgroup_link *link; | 2101 | struct cg_cgroup_link *link; |
@@ -2129,7 +2348,7 @@ int cgroup_scan_tasks(struct cgroup_scanner *scan) | |||
2129 | } | 2348 | } |
2130 | 2349 | ||
2131 | /* | 2350 | /* |
2132 | * Stuff for reading the 'tasks' file. | 2351 | * Stuff for reading the 'tasks'/'procs' files. |
2133 | * | 2352 | * |
2134 | * Reading this file can return large amounts of data if a cgroup has | 2353 | * Reading this file can return large amounts of data if a cgroup has |
2135 | * *lots* of attached tasks. So it may need several calls to read(), | 2354 | * *lots* of attached tasks. So it may need several calls to read(), |
@@ -2139,27 +2358,196 @@ int cgroup_scan_tasks(struct cgroup_scanner *scan) | |||
2139 | */ | 2358 | */ |
2140 | 2359 | ||
2141 | /* | 2360 | /* |
2142 | * Load into 'pidarray' up to 'npids' of the tasks using cgroup | 2361 | * The following two functions "fix" the issue where there are more pids |
2143 | * 'cgrp'. Return actual number of pids loaded. No need to | 2362 | * than kmalloc will give memory for; in such cases, we use vmalloc/vfree. |
2144 | * task_lock(p) when reading out p->cgroup, since we're in an RCU | 2363 | * TODO: replace with a kernel-wide solution to this problem |
2145 | * read section, so the css_set can't go away, and is | 2364 | */ |
2146 | * immutable after creation. | 2365 | #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2)) |
2366 | static void *pidlist_allocate(int count) | ||
2367 | { | ||
2368 | if (PIDLIST_TOO_LARGE(count)) | ||
2369 | return vmalloc(count * sizeof(pid_t)); | ||
2370 | else | ||
2371 | return kmalloc(count * sizeof(pid_t), GFP_KERNEL); | ||
2372 | } | ||
2373 | static void pidlist_free(void *p) | ||
2374 | { | ||
2375 | if (is_vmalloc_addr(p)) | ||
2376 | vfree(p); | ||
2377 | else | ||
2378 | kfree(p); | ||
2379 | } | ||
2380 | static void *pidlist_resize(void *p, int newcount) | ||
2381 | { | ||
2382 | void *newlist; | ||
2383 | /* note: if new alloc fails, old p will still be valid either way */ | ||
2384 | if (is_vmalloc_addr(p)) { | ||
2385 | newlist = vmalloc(newcount * sizeof(pid_t)); | ||
2386 | if (!newlist) | ||
2387 | return NULL; | ||
2388 | memcpy(newlist, p, newcount * sizeof(pid_t)); | ||
2389 | vfree(p); | ||
2390 | } else { | ||
2391 | newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL); | ||
2392 | } | ||
2393 | return newlist; | ||
2394 | } | ||
2395 | |||
2396 | /* | ||
2397 | * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries | ||
2398 | * If the new stripped list is sufficiently smaller and there's enough memory | ||
2399 | * to allocate a new buffer, will let go of the unneeded memory. Returns the | ||
2400 | * number of unique elements. | ||
2401 | */ | ||
2402 | /* is the size difference enough that we should re-allocate the array? */ | ||
2403 | #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new)) | ||
2404 | static int pidlist_uniq(pid_t **p, int length) | ||
2405 | { | ||
2406 | int src, dest = 1; | ||
2407 | pid_t *list = *p; | ||
2408 | pid_t *newlist; | ||
2409 | |||
2410 | /* | ||
2411 | * we presume the 0th element is unique, so i starts at 1. trivial | ||
2412 | * edge cases first; no work needs to be done for either | ||
2413 | */ | ||
2414 | if (length == 0 || length == 1) | ||
2415 | return length; | ||
2416 | /* src and dest walk down the list; dest counts unique elements */ | ||
2417 | for (src = 1; src < length; src++) { | ||
2418 | /* find next unique element */ | ||
2419 | while (list[src] == list[src-1]) { | ||
2420 | src++; | ||
2421 | if (src == length) | ||
2422 | goto after; | ||
2423 | } | ||
2424 | /* dest always points to where the next unique element goes */ | ||
2425 | list[dest] = list[src]; | ||
2426 | dest++; | ||
2427 | } | ||
2428 | after: | ||
2429 | /* | ||
2430 | * if the length difference is large enough, we want to allocate a | ||
2431 | * smaller buffer to save memory. if this fails due to out of memory, | ||
2432 | * we'll just stay with what we've got. | ||
2433 | */ | ||
2434 | if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) { | ||
2435 | newlist = pidlist_resize(list, dest); | ||
2436 | if (newlist) | ||
2437 | *p = newlist; | ||
2438 | } | ||
2439 | return dest; | ||
2440 | } | ||
2441 | |||
2442 | static int cmppid(const void *a, const void *b) | ||
2443 | { | ||
2444 | return *(pid_t *)a - *(pid_t *)b; | ||
2445 | } | ||
2446 | |||
2447 | /* | ||
2448 | * find the appropriate pidlist for our purpose (given procs vs tasks) | ||
2449 | * returns with the lock on that pidlist already held, and takes care | ||
2450 | * of the use count, or returns NULL with no locks held if we're out of | ||
2451 | * memory. | ||
2147 | */ | 2452 | */ |
2148 | static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp) | 2453 | static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, |
2454 | enum cgroup_filetype type) | ||
2149 | { | 2455 | { |
2150 | int n = 0, pid; | 2456 | struct cgroup_pidlist *l; |
2457 | /* don't need task_nsproxy() if we're looking at ourself */ | ||
2458 | struct pid_namespace *ns = get_pid_ns(current->nsproxy->pid_ns); | ||
2459 | /* | ||
2460 | * We can't drop the pidlist_mutex before taking the l->mutex in case | ||
2461 | * the last ref-holder is trying to remove l from the list at the same | ||
2462 | * time. Holding the pidlist_mutex precludes somebody taking whichever | ||
2463 | * list we find out from under us - compare release_pid_array(). | ||
2464 | */ | ||
2465 | mutex_lock(&cgrp->pidlist_mutex); | ||
2466 | list_for_each_entry(l, &cgrp->pidlists, links) { | ||
2467 | if (l->key.type == type && l->key.ns == ns) { | ||
2468 | /* found a matching list - drop the extra refcount */ | ||
2469 | put_pid_ns(ns); | ||
2470 | /* make sure l doesn't vanish out from under us */ | ||
2471 | down_write(&l->mutex); | ||
2472 | mutex_unlock(&cgrp->pidlist_mutex); | ||
2473 | l->use_count++; | ||
2474 | return l; | ||
2475 | } | ||
2476 | } | ||
2477 | /* entry not found; create a new one */ | ||
2478 | l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); | ||
2479 | if (!l) { | ||
2480 | mutex_unlock(&cgrp->pidlist_mutex); | ||
2481 | put_pid_ns(ns); | ||
2482 | return l; | ||
2483 | } | ||
2484 | init_rwsem(&l->mutex); | ||
2485 | down_write(&l->mutex); | ||
2486 | l->key.type = type; | ||
2487 | l->key.ns = ns; | ||
2488 | l->use_count = 0; /* don't increment here */ | ||
2489 | l->list = NULL; | ||
2490 | l->owner = cgrp; | ||
2491 | list_add(&l->links, &cgrp->pidlists); | ||
2492 | mutex_unlock(&cgrp->pidlist_mutex); | ||
2493 | return l; | ||
2494 | } | ||
2495 | |||
2496 | /* | ||
2497 | * Load a cgroup's pidarray with either procs' tgids or tasks' pids | ||
2498 | */ | ||
2499 | static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, | ||
2500 | struct cgroup_pidlist **lp) | ||
2501 | { | ||
2502 | pid_t *array; | ||
2503 | int length; | ||
2504 | int pid, n = 0; /* used for populating the array */ | ||
2151 | struct cgroup_iter it; | 2505 | struct cgroup_iter it; |
2152 | struct task_struct *tsk; | 2506 | struct task_struct *tsk; |
2507 | struct cgroup_pidlist *l; | ||
2508 | |||
2509 | /* | ||
2510 | * If cgroup gets more users after we read count, we won't have | ||
2511 | * enough space - tough. This race is indistinguishable to the | ||
2512 | * caller from the case that the additional cgroup users didn't | ||
2513 | * show up until sometime later on. | ||
2514 | */ | ||
2515 | length = cgroup_task_count(cgrp); | ||
2516 | array = pidlist_allocate(length); | ||
2517 | if (!array) | ||
2518 | return -ENOMEM; | ||
2519 | /* now, populate the array */ | ||
2153 | cgroup_iter_start(cgrp, &it); | 2520 | cgroup_iter_start(cgrp, &it); |
2154 | while ((tsk = cgroup_iter_next(cgrp, &it))) { | 2521 | while ((tsk = cgroup_iter_next(cgrp, &it))) { |
2155 | if (unlikely(n == npids)) | 2522 | if (unlikely(n == length)) |
2156 | break; | 2523 | break; |
2157 | pid = task_pid_vnr(tsk); | 2524 | /* get tgid or pid for procs or tasks file respectively */ |
2158 | if (pid > 0) | 2525 | if (type == CGROUP_FILE_PROCS) |
2159 | pidarray[n++] = pid; | 2526 | pid = task_tgid_vnr(tsk); |
2527 | else | ||
2528 | pid = task_pid_vnr(tsk); | ||
2529 | if (pid > 0) /* make sure to only use valid results */ | ||
2530 | array[n++] = pid; | ||
2160 | } | 2531 | } |
2161 | cgroup_iter_end(cgrp, &it); | 2532 | cgroup_iter_end(cgrp, &it); |
2162 | return n; | 2533 | length = n; |
2534 | /* now sort & (if procs) strip out duplicates */ | ||
2535 | sort(array, length, sizeof(pid_t), cmppid, NULL); | ||
2536 | if (type == CGROUP_FILE_PROCS) | ||
2537 | length = pidlist_uniq(&array, length); | ||
2538 | l = cgroup_pidlist_find(cgrp, type); | ||
2539 | if (!l) { | ||
2540 | pidlist_free(array); | ||
2541 | return -ENOMEM; | ||
2542 | } | ||
2543 | /* store array, freeing old if necessary - lock already held */ | ||
2544 | pidlist_free(l->list); | ||
2545 | l->list = array; | ||
2546 | l->length = length; | ||
2547 | l->use_count++; | ||
2548 | up_write(&l->mutex); | ||
2549 | *lp = l; | ||
2550 | return 0; | ||
2163 | } | 2551 | } |
2164 | 2552 | ||
2165 | /** | 2553 | /** |
@@ -2216,37 +2604,14 @@ err: | |||
2216 | return ret; | 2604 | return ret; |
2217 | } | 2605 | } |
2218 | 2606 | ||
2219 | /* | ||
2220 | * Cache pids for all threads in the same pid namespace that are | ||
2221 | * opening the same "tasks" file. | ||
2222 | */ | ||
2223 | struct cgroup_pids { | ||
2224 | /* The node in cgrp->pids_list */ | ||
2225 | struct list_head list; | ||
2226 | /* The cgroup those pids belong to */ | ||
2227 | struct cgroup *cgrp; | ||
2228 | /* The namepsace those pids belong to */ | ||
2229 | struct pid_namespace *ns; | ||
2230 | /* Array of process ids in the cgroup */ | ||
2231 | pid_t *tasks_pids; | ||
2232 | /* How many files are using the this tasks_pids array */ | ||
2233 | int use_count; | ||
2234 | /* Length of the current tasks_pids array */ | ||
2235 | int length; | ||
2236 | }; | ||
2237 | |||
2238 | static int cmppid(const void *a, const void *b) | ||
2239 | { | ||
2240 | return *(pid_t *)a - *(pid_t *)b; | ||
2241 | } | ||
2242 | 2607 | ||
2243 | /* | 2608 | /* |
2244 | * seq_file methods for the "tasks" file. The seq_file position is the | 2609 | * seq_file methods for the tasks/procs files. The seq_file position is the |
2245 | * next pid to display; the seq_file iterator is a pointer to the pid | 2610 | * next pid to display; the seq_file iterator is a pointer to the pid |
2246 | * in the cgroup->tasks_pids array. | 2611 | * in the cgroup->l->list array. |
2247 | */ | 2612 | */ |
2248 | 2613 | ||
2249 | static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos) | 2614 | static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) |
2250 | { | 2615 | { |
2251 | /* | 2616 | /* |
2252 | * Initially we receive a position value that corresponds to | 2617 | * Initially we receive a position value that corresponds to |
@@ -2254,48 +2619,45 @@ static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos) | |||
2254 | * after a seek to the start). Use a binary-search to find the | 2619 | * after a seek to the start). Use a binary-search to find the |
2255 | * next pid to display, if any | 2620 | * next pid to display, if any |
2256 | */ | 2621 | */ |
2257 | struct cgroup_pids *cp = s->private; | 2622 | struct cgroup_pidlist *l = s->private; |
2258 | struct cgroup *cgrp = cp->cgrp; | ||
2259 | int index = 0, pid = *pos; | 2623 | int index = 0, pid = *pos; |
2260 | int *iter; | 2624 | int *iter; |
2261 | 2625 | ||
2262 | down_read(&cgrp->pids_mutex); | 2626 | down_read(&l->mutex); |
2263 | if (pid) { | 2627 | if (pid) { |
2264 | int end = cp->length; | 2628 | int end = l->length; |
2265 | 2629 | ||
2266 | while (index < end) { | 2630 | while (index < end) { |
2267 | int mid = (index + end) / 2; | 2631 | int mid = (index + end) / 2; |
2268 | if (cp->tasks_pids[mid] == pid) { | 2632 | if (l->list[mid] == pid) { |
2269 | index = mid; | 2633 | index = mid; |
2270 | break; | 2634 | break; |
2271 | } else if (cp->tasks_pids[mid] <= pid) | 2635 | } else if (l->list[mid] <= pid) |
2272 | index = mid + 1; | 2636 | index = mid + 1; |
2273 | else | 2637 | else |
2274 | end = mid; | 2638 | end = mid; |
2275 | } | 2639 | } |
2276 | } | 2640 | } |
2277 | /* If we're off the end of the array, we're done */ | 2641 | /* If we're off the end of the array, we're done */ |
2278 | if (index >= cp->length) | 2642 | if (index >= l->length) |
2279 | return NULL; | 2643 | return NULL; |
2280 | /* Update the abstract position to be the actual pid that we found */ | 2644 | /* Update the abstract position to be the actual pid that we found */ |
2281 | iter = cp->tasks_pids + index; | 2645 | iter = l->list + index; |
2282 | *pos = *iter; | 2646 | *pos = *iter; |
2283 | return iter; | 2647 | return iter; |
2284 | } | 2648 | } |
2285 | 2649 | ||
2286 | static void cgroup_tasks_stop(struct seq_file *s, void *v) | 2650 | static void cgroup_pidlist_stop(struct seq_file *s, void *v) |
2287 | { | 2651 | { |
2288 | struct cgroup_pids *cp = s->private; | 2652 | struct cgroup_pidlist *l = s->private; |
2289 | struct cgroup *cgrp = cp->cgrp; | 2653 | up_read(&l->mutex); |
2290 | up_read(&cgrp->pids_mutex); | ||
2291 | } | 2654 | } |
2292 | 2655 | ||
2293 | static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos) | 2656 | static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) |
2294 | { | 2657 | { |
2295 | struct cgroup_pids *cp = s->private; | 2658 | struct cgroup_pidlist *l = s->private; |
2296 | int *p = v; | 2659 | pid_t *p = v; |
2297 | int *end = cp->tasks_pids + cp->length; | 2660 | pid_t *end = l->list + l->length; |
2298 | |||
2299 | /* | 2661 | /* |
2300 | * Advance to the next pid in the array. If this goes off the | 2662 | * Advance to the next pid in the array. If this goes off the |
2301 | * end, we're done | 2663 | * end, we're done |
@@ -2309,124 +2671,107 @@ static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos) | |||
2309 | } | 2671 | } |
2310 | } | 2672 | } |
2311 | 2673 | ||
2312 | static int cgroup_tasks_show(struct seq_file *s, void *v) | 2674 | static int cgroup_pidlist_show(struct seq_file *s, void *v) |
2313 | { | 2675 | { |
2314 | return seq_printf(s, "%d\n", *(int *)v); | 2676 | return seq_printf(s, "%d\n", *(int *)v); |
2315 | } | 2677 | } |
2316 | 2678 | ||
2317 | static struct seq_operations cgroup_tasks_seq_operations = { | 2679 | /* |
2318 | .start = cgroup_tasks_start, | 2680 | * seq_operations functions for iterating on pidlists through seq_file - |
2319 | .stop = cgroup_tasks_stop, | 2681 | * independent of whether it's tasks or procs |
2320 | .next = cgroup_tasks_next, | 2682 | */ |
2321 | .show = cgroup_tasks_show, | 2683 | static const struct seq_operations cgroup_pidlist_seq_operations = { |
2684 | .start = cgroup_pidlist_start, | ||
2685 | .stop = cgroup_pidlist_stop, | ||
2686 | .next = cgroup_pidlist_next, | ||
2687 | .show = cgroup_pidlist_show, | ||
2322 | }; | 2688 | }; |
2323 | 2689 | ||
2324 | static void release_cgroup_pid_array(struct cgroup_pids *cp) | 2690 | static void cgroup_release_pid_array(struct cgroup_pidlist *l) |
2325 | { | 2691 | { |
2326 | struct cgroup *cgrp = cp->cgrp; | 2692 | /* |
2327 | 2693 | * the case where we're the last user of this particular pidlist will | |
2328 | down_write(&cgrp->pids_mutex); | 2694 | * have us remove it from the cgroup's list, which entails taking the |
2329 | BUG_ON(!cp->use_count); | 2695 | * mutex. since in pidlist_find the pidlist->lock depends on cgroup-> |
2330 | if (!--cp->use_count) { | 2696 | * pidlist_mutex, we have to take pidlist_mutex first. |
2331 | list_del(&cp->list); | 2697 | */ |
2332 | put_pid_ns(cp->ns); | 2698 | mutex_lock(&l->owner->pidlist_mutex); |
2333 | kfree(cp->tasks_pids); | 2699 | down_write(&l->mutex); |
2334 | kfree(cp); | 2700 | BUG_ON(!l->use_count); |
2701 | if (!--l->use_count) { | ||
2702 | /* we're the last user if refcount is 0; remove and free */ | ||
2703 | list_del(&l->links); | ||
2704 | mutex_unlock(&l->owner->pidlist_mutex); | ||
2705 | pidlist_free(l->list); | ||
2706 | put_pid_ns(l->key.ns); | ||
2707 | up_write(&l->mutex); | ||
2708 | kfree(l); | ||
2709 | return; | ||
2335 | } | 2710 | } |
2336 | up_write(&cgrp->pids_mutex); | 2711 | mutex_unlock(&l->owner->pidlist_mutex); |
2712 | up_write(&l->mutex); | ||
2337 | } | 2713 | } |
2338 | 2714 | ||
2339 | static int cgroup_tasks_release(struct inode *inode, struct file *file) | 2715 | static int cgroup_pidlist_release(struct inode *inode, struct file *file) |
2340 | { | 2716 | { |
2341 | struct seq_file *seq; | 2717 | struct cgroup_pidlist *l; |
2342 | struct cgroup_pids *cp; | ||
2343 | |||
2344 | if (!(file->f_mode & FMODE_READ)) | 2718 | if (!(file->f_mode & FMODE_READ)) |
2345 | return 0; | 2719 | return 0; |
2346 | 2720 | /* | |
2347 | seq = file->private_data; | 2721 | * the seq_file will only be initialized if the file was opened for |
2348 | cp = seq->private; | 2722 | * reading; hence we check if it's not null only in that case. |
2349 | 2723 | */ | |
2350 | release_cgroup_pid_array(cp); | 2724 | l = ((struct seq_file *)file->private_data)->private; |
2725 | cgroup_release_pid_array(l); | ||
2351 | return seq_release(inode, file); | 2726 | return seq_release(inode, file); |
2352 | } | 2727 | } |
2353 | 2728 | ||
2354 | static struct file_operations cgroup_tasks_operations = { | 2729 | static const struct file_operations cgroup_pidlist_operations = { |
2355 | .read = seq_read, | 2730 | .read = seq_read, |
2356 | .llseek = seq_lseek, | 2731 | .llseek = seq_lseek, |
2357 | .write = cgroup_file_write, | 2732 | .write = cgroup_file_write, |
2358 | .release = cgroup_tasks_release, | 2733 | .release = cgroup_pidlist_release, |
2359 | }; | 2734 | }; |
2360 | 2735 | ||
2361 | /* | 2736 | /* |
2362 | * Handle an open on 'tasks' file. Prepare an array containing the | 2737 | * The following functions handle opens on a file that displays a pidlist |
2363 | * process id's of tasks currently attached to the cgroup being opened. | 2738 | * (tasks or procs). Prepare an array of the process/thread IDs of whoever's |
2739 | * in the cgroup. | ||
2364 | */ | 2740 | */ |
2365 | 2741 | /* helper function for the two below it */ | |
2366 | static int cgroup_tasks_open(struct inode *unused, struct file *file) | 2742 | static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type) |
2367 | { | 2743 | { |
2368 | struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); | 2744 | struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); |
2369 | struct pid_namespace *ns = current->nsproxy->pid_ns; | 2745 | struct cgroup_pidlist *l; |
2370 | struct cgroup_pids *cp; | ||
2371 | pid_t *pidarray; | ||
2372 | int npids; | ||
2373 | int retval; | 2746 | int retval; |
2374 | 2747 | ||
2375 | /* Nothing to do for write-only files */ | 2748 | /* Nothing to do for write-only files */ |
2376 | if (!(file->f_mode & FMODE_READ)) | 2749 | if (!(file->f_mode & FMODE_READ)) |
2377 | return 0; | 2750 | return 0; |
2378 | 2751 | ||
2379 | /* | 2752 | /* have the array populated */ |
2380 | * If cgroup gets more users after we read count, we won't have | 2753 | retval = pidlist_array_load(cgrp, type, &l); |
2381 | * enough space - tough. This race is indistinguishable to the | 2754 | if (retval) |
2382 | * caller from the case that the additional cgroup users didn't | 2755 | return retval; |
2383 | * show up until sometime later on. | 2756 | /* configure file information */ |
2384 | */ | 2757 | file->f_op = &cgroup_pidlist_operations; |
2385 | npids = cgroup_task_count(cgrp); | ||
2386 | pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL); | ||
2387 | if (!pidarray) | ||
2388 | return -ENOMEM; | ||
2389 | npids = pid_array_load(pidarray, npids, cgrp); | ||
2390 | sort(pidarray, npids, sizeof(pid_t), cmppid, NULL); | ||
2391 | |||
2392 | /* | ||
2393 | * Store the array in the cgroup, freeing the old | ||
2394 | * array if necessary | ||
2395 | */ | ||
2396 | down_write(&cgrp->pids_mutex); | ||
2397 | |||
2398 | list_for_each_entry(cp, &cgrp->pids_list, list) { | ||
2399 | if (ns == cp->ns) | ||
2400 | goto found; | ||
2401 | } | ||
2402 | |||
2403 | cp = kzalloc(sizeof(*cp), GFP_KERNEL); | ||
2404 | if (!cp) { | ||
2405 | up_write(&cgrp->pids_mutex); | ||
2406 | kfree(pidarray); | ||
2407 | return -ENOMEM; | ||
2408 | } | ||
2409 | cp->cgrp = cgrp; | ||
2410 | cp->ns = ns; | ||
2411 | get_pid_ns(ns); | ||
2412 | list_add(&cp->list, &cgrp->pids_list); | ||
2413 | found: | ||
2414 | kfree(cp->tasks_pids); | ||
2415 | cp->tasks_pids = pidarray; | ||
2416 | cp->length = npids; | ||
2417 | cp->use_count++; | ||
2418 | up_write(&cgrp->pids_mutex); | ||
2419 | |||
2420 | file->f_op = &cgroup_tasks_operations; | ||
2421 | 2758 | ||
2422 | retval = seq_open(file, &cgroup_tasks_seq_operations); | 2759 | retval = seq_open(file, &cgroup_pidlist_seq_operations); |
2423 | if (retval) { | 2760 | if (retval) { |
2424 | release_cgroup_pid_array(cp); | 2761 | cgroup_release_pid_array(l); |
2425 | return retval; | 2762 | return retval; |
2426 | } | 2763 | } |
2427 | ((struct seq_file *)file->private_data)->private = cp; | 2764 | ((struct seq_file *)file->private_data)->private = l; |
2428 | return 0; | 2765 | return 0; |
2429 | } | 2766 | } |
2767 | static int cgroup_tasks_open(struct inode *unused, struct file *file) | ||
2768 | { | ||
2769 | return cgroup_pidlist_open(file, CGROUP_FILE_TASKS); | ||
2770 | } | ||
2771 | static int cgroup_procs_open(struct inode *unused, struct file *file) | ||
2772 | { | ||
2773 | return cgroup_pidlist_open(file, CGROUP_FILE_PROCS); | ||
2774 | } | ||
2430 | 2775 | ||
2431 | static u64 cgroup_read_notify_on_release(struct cgroup *cgrp, | 2776 | static u64 cgroup_read_notify_on_release(struct cgroup *cgrp, |
2432 | struct cftype *cft) | 2777 | struct cftype *cft) |
@@ -2449,21 +2794,27 @@ static int cgroup_write_notify_on_release(struct cgroup *cgrp, | |||
2449 | /* | 2794 | /* |
2450 | * for the common functions, 'private' gives the type of file | 2795 | * for the common functions, 'private' gives the type of file |
2451 | */ | 2796 | */ |
2797 | /* for hysterical raisins, we can't put this on the older files */ | ||
2798 | #define CGROUP_FILE_GENERIC_PREFIX "cgroup." | ||
2452 | static struct cftype files[] = { | 2799 | static struct cftype files[] = { |
2453 | { | 2800 | { |
2454 | .name = "tasks", | 2801 | .name = "tasks", |
2455 | .open = cgroup_tasks_open, | 2802 | .open = cgroup_tasks_open, |
2456 | .write_u64 = cgroup_tasks_write, | 2803 | .write_u64 = cgroup_tasks_write, |
2457 | .release = cgroup_tasks_release, | 2804 | .release = cgroup_pidlist_release, |
2458 | .private = FILE_TASKLIST, | ||
2459 | .mode = S_IRUGO | S_IWUSR, | 2805 | .mode = S_IRUGO | S_IWUSR, |
2460 | }, | 2806 | }, |
2461 | 2807 | { | |
2808 | .name = CGROUP_FILE_GENERIC_PREFIX "procs", | ||
2809 | .open = cgroup_procs_open, | ||
2810 | /* .write_u64 = cgroup_procs_write, TODO */ | ||
2811 | .release = cgroup_pidlist_release, | ||
2812 | .mode = S_IRUGO, | ||
2813 | }, | ||
2462 | { | 2814 | { |
2463 | .name = "notify_on_release", | 2815 | .name = "notify_on_release", |
2464 | .read_u64 = cgroup_read_notify_on_release, | 2816 | .read_u64 = cgroup_read_notify_on_release, |
2465 | .write_u64 = cgroup_write_notify_on_release, | 2817 | .write_u64 = cgroup_write_notify_on_release, |
2466 | .private = FILE_NOTIFY_ON_RELEASE, | ||
2467 | }, | 2818 | }, |
2468 | }; | 2819 | }; |
2469 | 2820 | ||
@@ -2472,7 +2823,6 @@ static struct cftype cft_release_agent = { | |||
2472 | .read_seq_string = cgroup_release_agent_show, | 2823 | .read_seq_string = cgroup_release_agent_show, |
2473 | .write_string = cgroup_release_agent_write, | 2824 | .write_string = cgroup_release_agent_write, |
2474 | .max_write_len = PATH_MAX, | 2825 | .max_write_len = PATH_MAX, |
2475 | .private = FILE_RELEASE_AGENT, | ||
2476 | }; | 2826 | }; |
2477 | 2827 | ||
2478 | static int cgroup_populate_dir(struct cgroup *cgrp) | 2828 | static int cgroup_populate_dir(struct cgroup *cgrp) |
@@ -2879,6 +3229,7 @@ int __init cgroup_init_early(void) | |||
2879 | init_task.cgroups = &init_css_set; | 3229 | init_task.cgroups = &init_css_set; |
2880 | 3230 | ||
2881 | init_css_set_link.cg = &init_css_set; | 3231 | init_css_set_link.cg = &init_css_set; |
3232 | init_css_set_link.cgrp = dummytop; | ||
2882 | list_add(&init_css_set_link.cgrp_link_list, | 3233 | list_add(&init_css_set_link.cgrp_link_list, |
2883 | &rootnode.top_cgroup.css_sets); | 3234 | &rootnode.top_cgroup.css_sets); |
2884 | list_add(&init_css_set_link.cg_link_list, | 3235 | list_add(&init_css_set_link.cg_link_list, |
@@ -2933,7 +3284,7 @@ int __init cgroup_init(void) | |||
2933 | /* Add init_css_set to the hash table */ | 3284 | /* Add init_css_set to the hash table */ |
2934 | hhead = css_set_hash(init_css_set.subsys); | 3285 | hhead = css_set_hash(init_css_set.subsys); |
2935 | hlist_add_head(&init_css_set.hlist, hhead); | 3286 | hlist_add_head(&init_css_set.hlist, hhead); |
2936 | 3287 | BUG_ON(!init_root_id(&rootnode)); | |
2937 | err = register_filesystem(&cgroup_fs_type); | 3288 | err = register_filesystem(&cgroup_fs_type); |
2938 | if (err < 0) | 3289 | if (err < 0) |
2939 | goto out; | 3290 | goto out; |
@@ -2986,15 +3337,16 @@ static int proc_cgroup_show(struct seq_file *m, void *v) | |||
2986 | for_each_active_root(root) { | 3337 | for_each_active_root(root) { |
2987 | struct cgroup_subsys *ss; | 3338 | struct cgroup_subsys *ss; |
2988 | struct cgroup *cgrp; | 3339 | struct cgroup *cgrp; |
2989 | int subsys_id; | ||
2990 | int count = 0; | 3340 | int count = 0; |
2991 | 3341 | ||
2992 | seq_printf(m, "%lu:", root->subsys_bits); | 3342 | seq_printf(m, "%d:", root->hierarchy_id); |
2993 | for_each_subsys(root, ss) | 3343 | for_each_subsys(root, ss) |
2994 | seq_printf(m, "%s%s", count++ ? "," : "", ss->name); | 3344 | seq_printf(m, "%s%s", count++ ? "," : "", ss->name); |
3345 | if (strlen(root->name)) | ||
3346 | seq_printf(m, "%sname=%s", count ? "," : "", | ||
3347 | root->name); | ||
2995 | seq_putc(m, ':'); | 3348 | seq_putc(m, ':'); |
2996 | get_first_subsys(&root->top_cgroup, NULL, &subsys_id); | 3349 | cgrp = task_cgroup_from_root(tsk, root); |
2997 | cgrp = task_cgroup(tsk, subsys_id); | ||
2998 | retval = cgroup_path(cgrp, buf, PAGE_SIZE); | 3350 | retval = cgroup_path(cgrp, buf, PAGE_SIZE); |
2999 | if (retval < 0) | 3351 | if (retval < 0) |
3000 | goto out_unlock; | 3352 | goto out_unlock; |
@@ -3033,8 +3385,8 @@ static int proc_cgroupstats_show(struct seq_file *m, void *v) | |||
3033 | mutex_lock(&cgroup_mutex); | 3385 | mutex_lock(&cgroup_mutex); |
3034 | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 3386 | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { |
3035 | struct cgroup_subsys *ss = subsys[i]; | 3387 | struct cgroup_subsys *ss = subsys[i]; |
3036 | seq_printf(m, "%s\t%lu\t%d\t%d\n", | 3388 | seq_printf(m, "%s\t%d\t%d\t%d\n", |
3037 | ss->name, ss->root->subsys_bits, | 3389 | ss->name, ss->root->hierarchy_id, |
3038 | ss->root->number_of_cgroups, !ss->disabled); | 3390 | ss->root->number_of_cgroups, !ss->disabled); |
3039 | } | 3391 | } |
3040 | mutex_unlock(&cgroup_mutex); | 3392 | mutex_unlock(&cgroup_mutex); |
@@ -3320,13 +3672,11 @@ int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task) | |||
3320 | { | 3672 | { |
3321 | int ret; | 3673 | int ret; |
3322 | struct cgroup *target; | 3674 | struct cgroup *target; |
3323 | int subsys_id; | ||
3324 | 3675 | ||
3325 | if (cgrp == dummytop) | 3676 | if (cgrp == dummytop) |
3326 | return 1; | 3677 | return 1; |
3327 | 3678 | ||
3328 | get_first_subsys(cgrp, NULL, &subsys_id); | 3679 | target = task_cgroup_from_root(task, cgrp->root); |
3329 | target = task_cgroup(task, subsys_id); | ||
3330 | while (cgrp != target && cgrp!= cgrp->top_cgroup) | 3680 | while (cgrp != target && cgrp!= cgrp->top_cgroup) |
3331 | cgrp = cgrp->parent; | 3681 | cgrp = cgrp->parent; |
3332 | ret = (cgrp == target); | 3682 | ret = (cgrp == target); |
@@ -3693,3 +4043,154 @@ css_get_next(struct cgroup_subsys *ss, int id, | |||
3693 | return ret; | 4043 | return ret; |
3694 | } | 4044 | } |
3695 | 4045 | ||
4046 | #ifdef CONFIG_CGROUP_DEBUG | ||
4047 | static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss, | ||
4048 | struct cgroup *cont) | ||
4049 | { | ||
4050 | struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL); | ||
4051 | |||
4052 | if (!css) | ||
4053 | return ERR_PTR(-ENOMEM); | ||
4054 | |||
4055 | return css; | ||
4056 | } | ||
4057 | |||
4058 | static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont) | ||
4059 | { | ||
4060 | kfree(cont->subsys[debug_subsys_id]); | ||
4061 | } | ||
4062 | |||
4063 | static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft) | ||
4064 | { | ||
4065 | return atomic_read(&cont->count); | ||
4066 | } | ||
4067 | |||
4068 | static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft) | ||
4069 | { | ||
4070 | return cgroup_task_count(cont); | ||
4071 | } | ||
4072 | |||
4073 | static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft) | ||
4074 | { | ||
4075 | return (u64)(unsigned long)current->cgroups; | ||
4076 | } | ||
4077 | |||
4078 | static u64 current_css_set_refcount_read(struct cgroup *cont, | ||
4079 | struct cftype *cft) | ||
4080 | { | ||
4081 | u64 count; | ||
4082 | |||
4083 | rcu_read_lock(); | ||
4084 | count = atomic_read(¤t->cgroups->refcount); | ||
4085 | rcu_read_unlock(); | ||
4086 | return count; | ||
4087 | } | ||
4088 | |||
4089 | static int current_css_set_cg_links_read(struct cgroup *cont, | ||
4090 | struct cftype *cft, | ||
4091 | struct seq_file *seq) | ||
4092 | { | ||
4093 | struct cg_cgroup_link *link; | ||
4094 | struct css_set *cg; | ||
4095 | |||
4096 | read_lock(&css_set_lock); | ||
4097 | rcu_read_lock(); | ||
4098 | cg = rcu_dereference(current->cgroups); | ||
4099 | list_for_each_entry(link, &cg->cg_links, cg_link_list) { | ||
4100 | struct cgroup *c = link->cgrp; | ||
4101 | const char *name; | ||
4102 | |||
4103 | if (c->dentry) | ||
4104 | name = c->dentry->d_name.name; | ||
4105 | else | ||
4106 | name = "?"; | ||
4107 | seq_printf(seq, "Root %d group %s\n", | ||
4108 | c->root->hierarchy_id, name); | ||
4109 | } | ||
4110 | rcu_read_unlock(); | ||
4111 | read_unlock(&css_set_lock); | ||
4112 | return 0; | ||
4113 | } | ||
4114 | |||
4115 | #define MAX_TASKS_SHOWN_PER_CSS 25 | ||
4116 | static int cgroup_css_links_read(struct cgroup *cont, | ||
4117 | struct cftype *cft, | ||
4118 | struct seq_file *seq) | ||
4119 | { | ||
4120 | struct cg_cgroup_link *link; | ||
4121 | |||
4122 | read_lock(&css_set_lock); | ||
4123 | list_for_each_entry(link, &cont->css_sets, cgrp_link_list) { | ||
4124 | struct css_set *cg = link->cg; | ||
4125 | struct task_struct *task; | ||
4126 | int count = 0; | ||
4127 | seq_printf(seq, "css_set %p\n", cg); | ||
4128 | list_for_each_entry(task, &cg->tasks, cg_list) { | ||
4129 | if (count++ > MAX_TASKS_SHOWN_PER_CSS) { | ||
4130 | seq_puts(seq, " ...\n"); | ||
4131 | break; | ||
4132 | } else { | ||
4133 | seq_printf(seq, " task %d\n", | ||
4134 | task_pid_vnr(task)); | ||
4135 | } | ||
4136 | } | ||
4137 | } | ||
4138 | read_unlock(&css_set_lock); | ||
4139 | return 0; | ||
4140 | } | ||
4141 | |||
4142 | static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft) | ||
4143 | { | ||
4144 | return test_bit(CGRP_RELEASABLE, &cgrp->flags); | ||
4145 | } | ||
4146 | |||
4147 | static struct cftype debug_files[] = { | ||
4148 | { | ||
4149 | .name = "cgroup_refcount", | ||
4150 | .read_u64 = cgroup_refcount_read, | ||
4151 | }, | ||
4152 | { | ||
4153 | .name = "taskcount", | ||
4154 | .read_u64 = debug_taskcount_read, | ||
4155 | }, | ||
4156 | |||
4157 | { | ||
4158 | .name = "current_css_set", | ||
4159 | .read_u64 = current_css_set_read, | ||
4160 | }, | ||
4161 | |||
4162 | { | ||
4163 | .name = "current_css_set_refcount", | ||
4164 | .read_u64 = current_css_set_refcount_read, | ||
4165 | }, | ||
4166 | |||
4167 | { | ||
4168 | .name = "current_css_set_cg_links", | ||
4169 | .read_seq_string = current_css_set_cg_links_read, | ||
4170 | }, | ||
4171 | |||
4172 | { | ||
4173 | .name = "cgroup_css_links", | ||
4174 | .read_seq_string = cgroup_css_links_read, | ||
4175 | }, | ||
4176 | |||
4177 | { | ||
4178 | .name = "releasable", | ||
4179 | .read_u64 = releasable_read, | ||
4180 | }, | ||
4181 | }; | ||
4182 | |||
4183 | static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont) | ||
4184 | { | ||
4185 | return cgroup_add_files(cont, ss, debug_files, | ||
4186 | ARRAY_SIZE(debug_files)); | ||
4187 | } | ||
4188 | |||
4189 | struct cgroup_subsys debug_subsys = { | ||
4190 | .name = "debug", | ||
4191 | .create = debug_create, | ||
4192 | .destroy = debug_destroy, | ||
4193 | .populate = debug_populate, | ||
4194 | .subsys_id = debug_subsys_id, | ||
4195 | }; | ||
4196 | #endif /* CONFIG_CGROUP_DEBUG */ | ||
diff --git a/kernel/cgroup_debug.c b/kernel/cgroup_debug.c deleted file mode 100644 index 0c92d797baa6..000000000000 --- a/kernel/cgroup_debug.c +++ /dev/null | |||
@@ -1,105 +0,0 @@ | |||
1 | /* | ||
2 | * kernel/cgroup_debug.c - Example cgroup subsystem that | ||
3 | * exposes debug info | ||
4 | * | ||
5 | * Copyright (C) Google Inc, 2007 | ||
6 | * | ||
7 | * Developed by Paul Menage (menage@google.com) | ||
8 | * | ||
9 | */ | ||
10 | |||
11 | #include <linux/cgroup.h> | ||
12 | #include <linux/fs.h> | ||
13 | #include <linux/slab.h> | ||
14 | #include <linux/rcupdate.h> | ||
15 | |||
16 | #include <asm/atomic.h> | ||
17 | |||
18 | static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss, | ||
19 | struct cgroup *cont) | ||
20 | { | ||
21 | struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL); | ||
22 | |||
23 | if (!css) | ||
24 | return ERR_PTR(-ENOMEM); | ||
25 | |||
26 | return css; | ||
27 | } | ||
28 | |||
29 | static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont) | ||
30 | { | ||
31 | kfree(cont->subsys[debug_subsys_id]); | ||
32 | } | ||
33 | |||
34 | static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft) | ||
35 | { | ||
36 | return atomic_read(&cont->count); | ||
37 | } | ||
38 | |||
39 | static u64 taskcount_read(struct cgroup *cont, struct cftype *cft) | ||
40 | { | ||
41 | u64 count; | ||
42 | |||
43 | count = cgroup_task_count(cont); | ||
44 | return count; | ||
45 | } | ||
46 | |||
47 | static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft) | ||
48 | { | ||
49 | return (u64)(long)current->cgroups; | ||
50 | } | ||
51 | |||
52 | static u64 current_css_set_refcount_read(struct cgroup *cont, | ||
53 | struct cftype *cft) | ||
54 | { | ||
55 | u64 count; | ||
56 | |||
57 | rcu_read_lock(); | ||
58 | count = atomic_read(¤t->cgroups->refcount); | ||
59 | rcu_read_unlock(); | ||
60 | return count; | ||
61 | } | ||
62 | |||
63 | static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft) | ||
64 | { | ||
65 | return test_bit(CGRP_RELEASABLE, &cgrp->flags); | ||
66 | } | ||
67 | |||
68 | static struct cftype files[] = { | ||
69 | { | ||
70 | .name = "cgroup_refcount", | ||
71 | .read_u64 = cgroup_refcount_read, | ||
72 | }, | ||
73 | { | ||
74 | .name = "taskcount", | ||
75 | .read_u64 = taskcount_read, | ||
76 | }, | ||
77 | |||
78 | { | ||
79 | .name = "current_css_set", | ||
80 | .read_u64 = current_css_set_read, | ||
81 | }, | ||
82 | |||
83 | { | ||
84 | .name = "current_css_set_refcount", | ||
85 | .read_u64 = current_css_set_refcount_read, | ||
86 | }, | ||
87 | |||
88 | { | ||
89 | .name = "releasable", | ||
90 | .read_u64 = releasable_read, | ||
91 | }, | ||
92 | }; | ||
93 | |||
94 | static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont) | ||
95 | { | ||
96 | return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files)); | ||
97 | } | ||
98 | |||
99 | struct cgroup_subsys debug_subsys = { | ||
100 | .name = "debug", | ||
101 | .create = debug_create, | ||
102 | .destroy = debug_destroy, | ||
103 | .populate = debug_populate, | ||
104 | .subsys_id = debug_subsys_id, | ||
105 | }; | ||
diff --git a/kernel/cgroup_freezer.c b/kernel/cgroup_freezer.c index fb249e2bcada..59e9ef6aab40 100644 --- a/kernel/cgroup_freezer.c +++ b/kernel/cgroup_freezer.c | |||
@@ -159,7 +159,7 @@ static bool is_task_frozen_enough(struct task_struct *task) | |||
159 | */ | 159 | */ |
160 | static int freezer_can_attach(struct cgroup_subsys *ss, | 160 | static int freezer_can_attach(struct cgroup_subsys *ss, |
161 | struct cgroup *new_cgroup, | 161 | struct cgroup *new_cgroup, |
162 | struct task_struct *task) | 162 | struct task_struct *task, bool threadgroup) |
163 | { | 163 | { |
164 | struct freezer *freezer; | 164 | struct freezer *freezer; |
165 | 165 | ||
@@ -177,6 +177,19 @@ static int freezer_can_attach(struct cgroup_subsys *ss, | |||
177 | if (freezer->state == CGROUP_FROZEN) | 177 | if (freezer->state == CGROUP_FROZEN) |
178 | return -EBUSY; | 178 | return -EBUSY; |
179 | 179 | ||
180 | if (threadgroup) { | ||
181 | struct task_struct *c; | ||
182 | |||
183 | rcu_read_lock(); | ||
184 | list_for_each_entry_rcu(c, &task->thread_group, thread_group) { | ||
185 | if (is_task_frozen_enough(c)) { | ||
186 | rcu_read_unlock(); | ||
187 | return -EBUSY; | ||
188 | } | ||
189 | } | ||
190 | rcu_read_unlock(); | ||
191 | } | ||
192 | |||
180 | return 0; | 193 | return 0; |
181 | } | 194 | } |
182 | 195 | ||
diff --git a/kernel/cpuset.c b/kernel/cpuset.c index 7e75a41bd508..b5cb469d2545 100644 --- a/kernel/cpuset.c +++ b/kernel/cpuset.c | |||
@@ -1324,9 +1324,10 @@ static int fmeter_getrate(struct fmeter *fmp) | |||
1324 | static cpumask_var_t cpus_attach; | 1324 | static cpumask_var_t cpus_attach; |
1325 | 1325 | ||
1326 | /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */ | 1326 | /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */ |
1327 | static int cpuset_can_attach(struct cgroup_subsys *ss, | 1327 | static int cpuset_can_attach(struct cgroup_subsys *ss, struct cgroup *cont, |
1328 | struct cgroup *cont, struct task_struct *tsk) | 1328 | struct task_struct *tsk, bool threadgroup) |
1329 | { | 1329 | { |
1330 | int ret; | ||
1330 | struct cpuset *cs = cgroup_cs(cont); | 1331 | struct cpuset *cs = cgroup_cs(cont); |
1331 | 1332 | ||
1332 | if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)) | 1333 | if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)) |
@@ -1343,18 +1344,51 @@ static int cpuset_can_attach(struct cgroup_subsys *ss, | |||
1343 | if (tsk->flags & PF_THREAD_BOUND) | 1344 | if (tsk->flags & PF_THREAD_BOUND) |
1344 | return -EINVAL; | 1345 | return -EINVAL; |
1345 | 1346 | ||
1346 | return security_task_setscheduler(tsk, 0, NULL); | 1347 | ret = security_task_setscheduler(tsk, 0, NULL); |
1348 | if (ret) | ||
1349 | return ret; | ||
1350 | if (threadgroup) { | ||
1351 | struct task_struct *c; | ||
1352 | |||
1353 | rcu_read_lock(); | ||
1354 | list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { | ||
1355 | ret = security_task_setscheduler(c, 0, NULL); | ||
1356 | if (ret) { | ||
1357 | rcu_read_unlock(); | ||
1358 | return ret; | ||
1359 | } | ||
1360 | } | ||
1361 | rcu_read_unlock(); | ||
1362 | } | ||
1363 | return 0; | ||
1364 | } | ||
1365 | |||
1366 | static void cpuset_attach_task(struct task_struct *tsk, nodemask_t *to, | ||
1367 | struct cpuset *cs) | ||
1368 | { | ||
1369 | int err; | ||
1370 | /* | ||
1371 | * can_attach beforehand should guarantee that this doesn't fail. | ||
1372 | * TODO: have a better way to handle failure here | ||
1373 | */ | ||
1374 | err = set_cpus_allowed_ptr(tsk, cpus_attach); | ||
1375 | WARN_ON_ONCE(err); | ||
1376 | |||
1377 | task_lock(tsk); | ||
1378 | cpuset_change_task_nodemask(tsk, to); | ||
1379 | task_unlock(tsk); | ||
1380 | cpuset_update_task_spread_flag(cs, tsk); | ||
1381 | |||
1347 | } | 1382 | } |
1348 | 1383 | ||
1349 | static void cpuset_attach(struct cgroup_subsys *ss, | 1384 | static void cpuset_attach(struct cgroup_subsys *ss, struct cgroup *cont, |
1350 | struct cgroup *cont, struct cgroup *oldcont, | 1385 | struct cgroup *oldcont, struct task_struct *tsk, |
1351 | struct task_struct *tsk) | 1386 | bool threadgroup) |
1352 | { | 1387 | { |
1353 | nodemask_t from, to; | 1388 | nodemask_t from, to; |
1354 | struct mm_struct *mm; | 1389 | struct mm_struct *mm; |
1355 | struct cpuset *cs = cgroup_cs(cont); | 1390 | struct cpuset *cs = cgroup_cs(cont); |
1356 | struct cpuset *oldcs = cgroup_cs(oldcont); | 1391 | struct cpuset *oldcs = cgroup_cs(oldcont); |
1357 | int err; | ||
1358 | 1392 | ||
1359 | if (cs == &top_cpuset) { | 1393 | if (cs == &top_cpuset) { |
1360 | cpumask_copy(cpus_attach, cpu_possible_mask); | 1394 | cpumask_copy(cpus_attach, cpu_possible_mask); |
@@ -1363,15 +1397,19 @@ static void cpuset_attach(struct cgroup_subsys *ss, | |||
1363 | guarantee_online_cpus(cs, cpus_attach); | 1397 | guarantee_online_cpus(cs, cpus_attach); |
1364 | guarantee_online_mems(cs, &to); | 1398 | guarantee_online_mems(cs, &to); |
1365 | } | 1399 | } |
1366 | err = set_cpus_allowed_ptr(tsk, cpus_attach); | ||
1367 | if (err) | ||
1368 | return; | ||
1369 | 1400 | ||
1370 | task_lock(tsk); | 1401 | /* do per-task migration stuff possibly for each in the threadgroup */ |
1371 | cpuset_change_task_nodemask(tsk, &to); | 1402 | cpuset_attach_task(tsk, &to, cs); |
1372 | task_unlock(tsk); | 1403 | if (threadgroup) { |
1373 | cpuset_update_task_spread_flag(cs, tsk); | 1404 | struct task_struct *c; |
1405 | rcu_read_lock(); | ||
1406 | list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { | ||
1407 | cpuset_attach_task(c, &to, cs); | ||
1408 | } | ||
1409 | rcu_read_unlock(); | ||
1410 | } | ||
1374 | 1411 | ||
1412 | /* change mm; only needs to be done once even if threadgroup */ | ||
1375 | from = oldcs->mems_allowed; | 1413 | from = oldcs->mems_allowed; |
1376 | to = cs->mems_allowed; | 1414 | to = cs->mems_allowed; |
1377 | mm = get_task_mm(tsk); | 1415 | mm = get_task_mm(tsk); |
diff --git a/kernel/cred.c b/kernel/cred.c index d7f7a01082eb..dd76cfe5f5b0 100644 --- a/kernel/cred.c +++ b/kernel/cred.c | |||
@@ -782,6 +782,25 @@ EXPORT_SYMBOL(set_create_files_as); | |||
782 | 782 | ||
783 | #ifdef CONFIG_DEBUG_CREDENTIALS | 783 | #ifdef CONFIG_DEBUG_CREDENTIALS |
784 | 784 | ||
785 | bool creds_are_invalid(const struct cred *cred) | ||
786 | { | ||
787 | if (cred->magic != CRED_MAGIC) | ||
788 | return true; | ||
789 | if (atomic_read(&cred->usage) < atomic_read(&cred->subscribers)) | ||
790 | return true; | ||
791 | #ifdef CONFIG_SECURITY_SELINUX | ||
792 | if (selinux_is_enabled()) { | ||
793 | if ((unsigned long) cred->security < PAGE_SIZE) | ||
794 | return true; | ||
795 | if ((*(u32 *)cred->security & 0xffffff00) == | ||
796 | (POISON_FREE << 24 | POISON_FREE << 16 | POISON_FREE << 8)) | ||
797 | return true; | ||
798 | } | ||
799 | #endif | ||
800 | return false; | ||
801 | } | ||
802 | EXPORT_SYMBOL(creds_are_invalid); | ||
803 | |||
785 | /* | 804 | /* |
786 | * dump invalid credentials | 805 | * dump invalid credentials |
787 | */ | 806 | */ |
diff --git a/kernel/delayacct.c b/kernel/delayacct.c index abb6e17505e2..ead9b610aa71 100644 --- a/kernel/delayacct.c +++ b/kernel/delayacct.c | |||
@@ -15,6 +15,7 @@ | |||
15 | 15 | ||
16 | #include <linux/sched.h> | 16 | #include <linux/sched.h> |
17 | #include <linux/slab.h> | 17 | #include <linux/slab.h> |
18 | #include <linux/taskstats.h> | ||
18 | #include <linux/time.h> | 19 | #include <linux/time.h> |
19 | #include <linux/sysctl.h> | 20 | #include <linux/sysctl.h> |
20 | #include <linux/delayacct.h> | 21 | #include <linux/delayacct.h> |
diff --git a/kernel/exit.c b/kernel/exit.c index ae5d8660ddff..5859f598c951 100644 --- a/kernel/exit.c +++ b/kernel/exit.c | |||
@@ -47,7 +47,7 @@ | |||
47 | #include <linux/tracehook.h> | 47 | #include <linux/tracehook.h> |
48 | #include <linux/fs_struct.h> | 48 | #include <linux/fs_struct.h> |
49 | #include <linux/init_task.h> | 49 | #include <linux/init_task.h> |
50 | #include <linux/perf_counter.h> | 50 | #include <linux/perf_event.h> |
51 | #include <trace/events/sched.h> | 51 | #include <trace/events/sched.h> |
52 | 52 | ||
53 | #include <asm/uaccess.h> | 53 | #include <asm/uaccess.h> |
@@ -154,8 +154,8 @@ static void delayed_put_task_struct(struct rcu_head *rhp) | |||
154 | { | 154 | { |
155 | struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); | 155 | struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); |
156 | 156 | ||
157 | #ifdef CONFIG_PERF_COUNTERS | 157 | #ifdef CONFIG_PERF_EVENTS |
158 | WARN_ON_ONCE(tsk->perf_counter_ctxp); | 158 | WARN_ON_ONCE(tsk->perf_event_ctxp); |
159 | #endif | 159 | #endif |
160 | trace_sched_process_free(tsk); | 160 | trace_sched_process_free(tsk); |
161 | put_task_struct(tsk); | 161 | put_task_struct(tsk); |
@@ -359,8 +359,10 @@ void __set_special_pids(struct pid *pid) | |||
359 | { | 359 | { |
360 | struct task_struct *curr = current->group_leader; | 360 | struct task_struct *curr = current->group_leader; |
361 | 361 | ||
362 | if (task_session(curr) != pid) | 362 | if (task_session(curr) != pid) { |
363 | change_pid(curr, PIDTYPE_SID, pid); | 363 | change_pid(curr, PIDTYPE_SID, pid); |
364 | proc_sid_connector(curr); | ||
365 | } | ||
364 | 366 | ||
365 | if (task_pgrp(curr) != pid) | 367 | if (task_pgrp(curr) != pid) |
366 | change_pid(curr, PIDTYPE_PGID, pid); | 368 | change_pid(curr, PIDTYPE_PGID, pid); |
@@ -945,6 +947,8 @@ NORET_TYPE void do_exit(long code) | |||
945 | if (group_dead) { | 947 | if (group_dead) { |
946 | hrtimer_cancel(&tsk->signal->real_timer); | 948 | hrtimer_cancel(&tsk->signal->real_timer); |
947 | exit_itimers(tsk->signal); | 949 | exit_itimers(tsk->signal); |
950 | if (tsk->mm) | ||
951 | setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); | ||
948 | } | 952 | } |
949 | acct_collect(code, group_dead); | 953 | acct_collect(code, group_dead); |
950 | if (group_dead) | 954 | if (group_dead) |
@@ -972,8 +976,6 @@ NORET_TYPE void do_exit(long code) | |||
972 | disassociate_ctty(1); | 976 | disassociate_ctty(1); |
973 | 977 | ||
974 | module_put(task_thread_info(tsk)->exec_domain->module); | 978 | module_put(task_thread_info(tsk)->exec_domain->module); |
975 | if (tsk->binfmt) | ||
976 | module_put(tsk->binfmt->module); | ||
977 | 979 | ||
978 | proc_exit_connector(tsk); | 980 | proc_exit_connector(tsk); |
979 | 981 | ||
@@ -981,7 +983,7 @@ NORET_TYPE void do_exit(long code) | |||
981 | * Flush inherited counters to the parent - before the parent | 983 | * Flush inherited counters to the parent - before the parent |
982 | * gets woken up by child-exit notifications. | 984 | * gets woken up by child-exit notifications. |
983 | */ | 985 | */ |
984 | perf_counter_exit_task(tsk); | 986 | perf_event_exit_task(tsk); |
985 | 987 | ||
986 | exit_notify(tsk, group_dead); | 988 | exit_notify(tsk, group_dead); |
987 | #ifdef CONFIG_NUMA | 989 | #ifdef CONFIG_NUMA |
@@ -1093,28 +1095,28 @@ struct wait_opts { | |||
1093 | int __user *wo_stat; | 1095 | int __user *wo_stat; |
1094 | struct rusage __user *wo_rusage; | 1096 | struct rusage __user *wo_rusage; |
1095 | 1097 | ||
1098 | wait_queue_t child_wait; | ||
1096 | int notask_error; | 1099 | int notask_error; |
1097 | }; | 1100 | }; |
1098 | 1101 | ||
1099 | static struct pid *task_pid_type(struct task_struct *task, enum pid_type type) | 1102 | static inline |
1103 | struct pid *task_pid_type(struct task_struct *task, enum pid_type type) | ||
1100 | { | 1104 | { |
1101 | struct pid *pid = NULL; | 1105 | if (type != PIDTYPE_PID) |
1102 | if (type == PIDTYPE_PID) | 1106 | task = task->group_leader; |
1103 | pid = task->pids[type].pid; | 1107 | return task->pids[type].pid; |
1104 | else if (type < PIDTYPE_MAX) | ||
1105 | pid = task->group_leader->pids[type].pid; | ||
1106 | return pid; | ||
1107 | } | 1108 | } |
1108 | 1109 | ||
1109 | static int eligible_child(struct wait_opts *wo, struct task_struct *p) | 1110 | static int eligible_pid(struct wait_opts *wo, struct task_struct *p) |
1110 | { | 1111 | { |
1111 | int err; | 1112 | return wo->wo_type == PIDTYPE_MAX || |
1112 | 1113 | task_pid_type(p, wo->wo_type) == wo->wo_pid; | |
1113 | if (wo->wo_type < PIDTYPE_MAX) { | 1114 | } |
1114 | if (task_pid_type(p, wo->wo_type) != wo->wo_pid) | ||
1115 | return 0; | ||
1116 | } | ||
1117 | 1115 | ||
1116 | static int eligible_child(struct wait_opts *wo, struct task_struct *p) | ||
1117 | { | ||
1118 | if (!eligible_pid(wo, p)) | ||
1119 | return 0; | ||
1118 | /* Wait for all children (clone and not) if __WALL is set; | 1120 | /* Wait for all children (clone and not) if __WALL is set; |
1119 | * otherwise, wait for clone children *only* if __WCLONE is | 1121 | * otherwise, wait for clone children *only* if __WCLONE is |
1120 | * set; otherwise, wait for non-clone children *only*. (Note: | 1122 | * set; otherwise, wait for non-clone children *only*. (Note: |
@@ -1124,10 +1126,6 @@ static int eligible_child(struct wait_opts *wo, struct task_struct *p) | |||
1124 | && !(wo->wo_flags & __WALL)) | 1126 | && !(wo->wo_flags & __WALL)) |
1125 | return 0; | 1127 | return 0; |
1126 | 1128 | ||
1127 | err = security_task_wait(p); | ||
1128 | if (err) | ||
1129 | return err; | ||
1130 | |||
1131 | return 1; | 1129 | return 1; |
1132 | } | 1130 | } |
1133 | 1131 | ||
@@ -1140,18 +1138,20 @@ static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, | |||
1140 | 1138 | ||
1141 | put_task_struct(p); | 1139 | put_task_struct(p); |
1142 | infop = wo->wo_info; | 1140 | infop = wo->wo_info; |
1143 | if (!retval) | 1141 | if (infop) { |
1144 | retval = put_user(SIGCHLD, &infop->si_signo); | 1142 | if (!retval) |
1145 | if (!retval) | 1143 | retval = put_user(SIGCHLD, &infop->si_signo); |
1146 | retval = put_user(0, &infop->si_errno); | 1144 | if (!retval) |
1147 | if (!retval) | 1145 | retval = put_user(0, &infop->si_errno); |
1148 | retval = put_user((short)why, &infop->si_code); | 1146 | if (!retval) |
1149 | if (!retval) | 1147 | retval = put_user((short)why, &infop->si_code); |
1150 | retval = put_user(pid, &infop->si_pid); | 1148 | if (!retval) |
1151 | if (!retval) | 1149 | retval = put_user(pid, &infop->si_pid); |
1152 | retval = put_user(uid, &infop->si_uid); | 1150 | if (!retval) |
1153 | if (!retval) | 1151 | retval = put_user(uid, &infop->si_uid); |
1154 | retval = put_user(status, &infop->si_status); | 1152 | if (!retval) |
1153 | retval = put_user(status, &infop->si_status); | ||
1154 | } | ||
1155 | if (!retval) | 1155 | if (!retval) |
1156 | retval = pid; | 1156 | retval = pid; |
1157 | return retval; | 1157 | return retval; |
@@ -1208,6 +1208,7 @@ static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) | |||
1208 | if (likely(!traced) && likely(!task_detached(p))) { | 1208 | if (likely(!traced) && likely(!task_detached(p))) { |
1209 | struct signal_struct *psig; | 1209 | struct signal_struct *psig; |
1210 | struct signal_struct *sig; | 1210 | struct signal_struct *sig; |
1211 | unsigned long maxrss; | ||
1211 | 1212 | ||
1212 | /* | 1213 | /* |
1213 | * The resource counters for the group leader are in its | 1214 | * The resource counters for the group leader are in its |
@@ -1256,6 +1257,9 @@ static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) | |||
1256 | psig->coublock += | 1257 | psig->coublock += |
1257 | task_io_get_oublock(p) + | 1258 | task_io_get_oublock(p) + |
1258 | sig->oublock + sig->coublock; | 1259 | sig->oublock + sig->coublock; |
1260 | maxrss = max(sig->maxrss, sig->cmaxrss); | ||
1261 | if (psig->cmaxrss < maxrss) | ||
1262 | psig->cmaxrss = maxrss; | ||
1259 | task_io_accounting_add(&psig->ioac, &p->ioac); | 1263 | task_io_accounting_add(&psig->ioac, &p->ioac); |
1260 | task_io_accounting_add(&psig->ioac, &sig->ioac); | 1264 | task_io_accounting_add(&psig->ioac, &sig->ioac); |
1261 | spin_unlock_irq(&p->real_parent->sighand->siglock); | 1265 | spin_unlock_irq(&p->real_parent->sighand->siglock); |
@@ -1477,13 +1481,14 @@ static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) | |||
1477 | * then ->notask_error is 0 if @p is an eligible child, | 1481 | * then ->notask_error is 0 if @p is an eligible child, |
1478 | * or another error from security_task_wait(), or still -ECHILD. | 1482 | * or another error from security_task_wait(), or still -ECHILD. |
1479 | */ | 1483 | */ |
1480 | static int wait_consider_task(struct wait_opts *wo, struct task_struct *parent, | 1484 | static int wait_consider_task(struct wait_opts *wo, int ptrace, |
1481 | int ptrace, struct task_struct *p) | 1485 | struct task_struct *p) |
1482 | { | 1486 | { |
1483 | int ret = eligible_child(wo, p); | 1487 | int ret = eligible_child(wo, p); |
1484 | if (!ret) | 1488 | if (!ret) |
1485 | return ret; | 1489 | return ret; |
1486 | 1490 | ||
1491 | ret = security_task_wait(p); | ||
1487 | if (unlikely(ret < 0)) { | 1492 | if (unlikely(ret < 0)) { |
1488 | /* | 1493 | /* |
1489 | * If we have not yet seen any eligible child, | 1494 | * If we have not yet seen any eligible child, |
@@ -1545,7 +1550,7 @@ static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) | |||
1545 | * Do not consider detached threads. | 1550 | * Do not consider detached threads. |
1546 | */ | 1551 | */ |
1547 | if (!task_detached(p)) { | 1552 | if (!task_detached(p)) { |
1548 | int ret = wait_consider_task(wo, tsk, 0, p); | 1553 | int ret = wait_consider_task(wo, 0, p); |
1549 | if (ret) | 1554 | if (ret) |
1550 | return ret; | 1555 | return ret; |
1551 | } | 1556 | } |
@@ -1559,7 +1564,7 @@ static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) | |||
1559 | struct task_struct *p; | 1564 | struct task_struct *p; |
1560 | 1565 | ||
1561 | list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { | 1566 | list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { |
1562 | int ret = wait_consider_task(wo, tsk, 1, p); | 1567 | int ret = wait_consider_task(wo, 1, p); |
1563 | if (ret) | 1568 | if (ret) |
1564 | return ret; | 1569 | return ret; |
1565 | } | 1570 | } |
@@ -1567,15 +1572,38 @@ static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) | |||
1567 | return 0; | 1572 | return 0; |
1568 | } | 1573 | } |
1569 | 1574 | ||
1575 | static int child_wait_callback(wait_queue_t *wait, unsigned mode, | ||
1576 | int sync, void *key) | ||
1577 | { | ||
1578 | struct wait_opts *wo = container_of(wait, struct wait_opts, | ||
1579 | child_wait); | ||
1580 | struct task_struct *p = key; | ||
1581 | |||
1582 | if (!eligible_pid(wo, p)) | ||
1583 | return 0; | ||
1584 | |||
1585 | if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) | ||
1586 | return 0; | ||
1587 | |||
1588 | return default_wake_function(wait, mode, sync, key); | ||
1589 | } | ||
1590 | |||
1591 | void __wake_up_parent(struct task_struct *p, struct task_struct *parent) | ||
1592 | { | ||
1593 | __wake_up_sync_key(&parent->signal->wait_chldexit, | ||
1594 | TASK_INTERRUPTIBLE, 1, p); | ||
1595 | } | ||
1596 | |||
1570 | static long do_wait(struct wait_opts *wo) | 1597 | static long do_wait(struct wait_opts *wo) |
1571 | { | 1598 | { |
1572 | DECLARE_WAITQUEUE(wait, current); | ||
1573 | struct task_struct *tsk; | 1599 | struct task_struct *tsk; |
1574 | int retval; | 1600 | int retval; |
1575 | 1601 | ||
1576 | trace_sched_process_wait(wo->wo_pid); | 1602 | trace_sched_process_wait(wo->wo_pid); |
1577 | 1603 | ||
1578 | add_wait_queue(¤t->signal->wait_chldexit,&wait); | 1604 | init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); |
1605 | wo->child_wait.private = current; | ||
1606 | add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); | ||
1579 | repeat: | 1607 | repeat: |
1580 | /* | 1608 | /* |
1581 | * If there is nothing that can match our critiera just get out. | 1609 | * If there is nothing that can match our critiera just get out. |
@@ -1616,32 +1644,7 @@ notask: | |||
1616 | } | 1644 | } |
1617 | end: | 1645 | end: |
1618 | __set_current_state(TASK_RUNNING); | 1646 | __set_current_state(TASK_RUNNING); |
1619 | remove_wait_queue(¤t->signal->wait_chldexit,&wait); | 1647 | remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); |
1620 | if (wo->wo_info) { | ||
1621 | struct siginfo __user *infop = wo->wo_info; | ||
1622 | |||
1623 | if (retval > 0) | ||
1624 | retval = 0; | ||
1625 | else { | ||
1626 | /* | ||
1627 | * For a WNOHANG return, clear out all the fields | ||
1628 | * we would set so the user can easily tell the | ||
1629 | * difference. | ||
1630 | */ | ||
1631 | if (!retval) | ||
1632 | retval = put_user(0, &infop->si_signo); | ||
1633 | if (!retval) | ||
1634 | retval = put_user(0, &infop->si_errno); | ||
1635 | if (!retval) | ||
1636 | retval = put_user(0, &infop->si_code); | ||
1637 | if (!retval) | ||
1638 | retval = put_user(0, &infop->si_pid); | ||
1639 | if (!retval) | ||
1640 | retval = put_user(0, &infop->si_uid); | ||
1641 | if (!retval) | ||
1642 | retval = put_user(0, &infop->si_status); | ||
1643 | } | ||
1644 | } | ||
1645 | return retval; | 1648 | return retval; |
1646 | } | 1649 | } |
1647 | 1650 | ||
@@ -1686,6 +1689,29 @@ SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, | |||
1686 | wo.wo_stat = NULL; | 1689 | wo.wo_stat = NULL; |
1687 | wo.wo_rusage = ru; | 1690 | wo.wo_rusage = ru; |
1688 | ret = do_wait(&wo); | 1691 | ret = do_wait(&wo); |
1692 | |||
1693 | if (ret > 0) { | ||
1694 | ret = 0; | ||
1695 | } else if (infop) { | ||
1696 | /* | ||
1697 | * For a WNOHANG return, clear out all the fields | ||
1698 | * we would set so the user can easily tell the | ||
1699 | * difference. | ||
1700 | */ | ||
1701 | if (!ret) | ||
1702 | ret = put_user(0, &infop->si_signo); | ||
1703 | if (!ret) | ||
1704 | ret = put_user(0, &infop->si_errno); | ||
1705 | if (!ret) | ||
1706 | ret = put_user(0, &infop->si_code); | ||
1707 | if (!ret) | ||
1708 | ret = put_user(0, &infop->si_pid); | ||
1709 | if (!ret) | ||
1710 | ret = put_user(0, &infop->si_uid); | ||
1711 | if (!ret) | ||
1712 | ret = put_user(0, &infop->si_status); | ||
1713 | } | ||
1714 | |||
1689 | put_pid(pid); | 1715 | put_pid(pid); |
1690 | 1716 | ||
1691 | /* avoid REGPARM breakage on x86: */ | 1717 | /* avoid REGPARM breakage on x86: */ |
diff --git a/kernel/fork.c b/kernel/fork.c index bfee931ee3fb..266c6af6ef1b 100644 --- a/kernel/fork.c +++ b/kernel/fork.c | |||
@@ -49,6 +49,7 @@ | |||
49 | #include <linux/ftrace.h> | 49 | #include <linux/ftrace.h> |
50 | #include <linux/profile.h> | 50 | #include <linux/profile.h> |
51 | #include <linux/rmap.h> | 51 | #include <linux/rmap.h> |
52 | #include <linux/ksm.h> | ||
52 | #include <linux/acct.h> | 53 | #include <linux/acct.h> |
53 | #include <linux/tsacct_kern.h> | 54 | #include <linux/tsacct_kern.h> |
54 | #include <linux/cn_proc.h> | 55 | #include <linux/cn_proc.h> |
@@ -61,7 +62,8 @@ | |||
61 | #include <linux/blkdev.h> | 62 | #include <linux/blkdev.h> |
62 | #include <linux/fs_struct.h> | 63 | #include <linux/fs_struct.h> |
63 | #include <linux/magic.h> | 64 | #include <linux/magic.h> |
64 | #include <linux/perf_counter.h> | 65 | #include <linux/perf_event.h> |
66 | #include <linux/posix-timers.h> | ||
65 | 67 | ||
66 | #include <asm/pgtable.h> | 68 | #include <asm/pgtable.h> |
67 | #include <asm/pgalloc.h> | 69 | #include <asm/pgalloc.h> |
@@ -136,9 +138,17 @@ struct kmem_cache *vm_area_cachep; | |||
136 | /* SLAB cache for mm_struct structures (tsk->mm) */ | 138 | /* SLAB cache for mm_struct structures (tsk->mm) */ |
137 | static struct kmem_cache *mm_cachep; | 139 | static struct kmem_cache *mm_cachep; |
138 | 140 | ||
141 | static void account_kernel_stack(struct thread_info *ti, int account) | ||
142 | { | ||
143 | struct zone *zone = page_zone(virt_to_page(ti)); | ||
144 | |||
145 | mod_zone_page_state(zone, NR_KERNEL_STACK, account); | ||
146 | } | ||
147 | |||
139 | void free_task(struct task_struct *tsk) | 148 | void free_task(struct task_struct *tsk) |
140 | { | 149 | { |
141 | prop_local_destroy_single(&tsk->dirties); | 150 | prop_local_destroy_single(&tsk->dirties); |
151 | account_kernel_stack(tsk->stack, -1); | ||
142 | free_thread_info(tsk->stack); | 152 | free_thread_info(tsk->stack); |
143 | rt_mutex_debug_task_free(tsk); | 153 | rt_mutex_debug_task_free(tsk); |
144 | ftrace_graph_exit_task(tsk); | 154 | ftrace_graph_exit_task(tsk); |
@@ -253,6 +263,9 @@ static struct task_struct *dup_task_struct(struct task_struct *orig) | |||
253 | tsk->btrace_seq = 0; | 263 | tsk->btrace_seq = 0; |
254 | #endif | 264 | #endif |
255 | tsk->splice_pipe = NULL; | 265 | tsk->splice_pipe = NULL; |
266 | |||
267 | account_kernel_stack(ti, 1); | ||
268 | |||
256 | return tsk; | 269 | return tsk; |
257 | 270 | ||
258 | out: | 271 | out: |
@@ -288,6 +301,9 @@ static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) | |||
288 | rb_link = &mm->mm_rb.rb_node; | 301 | rb_link = &mm->mm_rb.rb_node; |
289 | rb_parent = NULL; | 302 | rb_parent = NULL; |
290 | pprev = &mm->mmap; | 303 | pprev = &mm->mmap; |
304 | retval = ksm_fork(mm, oldmm); | ||
305 | if (retval) | ||
306 | goto out; | ||
291 | 307 | ||
292 | for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { | 308 | for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { |
293 | struct file *file; | 309 | struct file *file; |
@@ -418,22 +434,30 @@ __setup("coredump_filter=", coredump_filter_setup); | |||
418 | 434 | ||
419 | #include <linux/init_task.h> | 435 | #include <linux/init_task.h> |
420 | 436 | ||
437 | static void mm_init_aio(struct mm_struct *mm) | ||
438 | { | ||
439 | #ifdef CONFIG_AIO | ||
440 | spin_lock_init(&mm->ioctx_lock); | ||
441 | INIT_HLIST_HEAD(&mm->ioctx_list); | ||
442 | #endif | ||
443 | } | ||
444 | |||
421 | static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p) | 445 | static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p) |
422 | { | 446 | { |
423 | atomic_set(&mm->mm_users, 1); | 447 | atomic_set(&mm->mm_users, 1); |
424 | atomic_set(&mm->mm_count, 1); | 448 | atomic_set(&mm->mm_count, 1); |
425 | init_rwsem(&mm->mmap_sem); | 449 | init_rwsem(&mm->mmap_sem); |
426 | INIT_LIST_HEAD(&mm->mmlist); | 450 | INIT_LIST_HEAD(&mm->mmlist); |
427 | mm->flags = (current->mm) ? current->mm->flags : default_dump_filter; | 451 | mm->flags = (current->mm) ? |
452 | (current->mm->flags & MMF_INIT_MASK) : default_dump_filter; | ||
428 | mm->core_state = NULL; | 453 | mm->core_state = NULL; |
429 | mm->nr_ptes = 0; | 454 | mm->nr_ptes = 0; |
430 | set_mm_counter(mm, file_rss, 0); | 455 | set_mm_counter(mm, file_rss, 0); |
431 | set_mm_counter(mm, anon_rss, 0); | 456 | set_mm_counter(mm, anon_rss, 0); |
432 | spin_lock_init(&mm->page_table_lock); | 457 | spin_lock_init(&mm->page_table_lock); |
433 | spin_lock_init(&mm->ioctx_lock); | ||
434 | INIT_HLIST_HEAD(&mm->ioctx_list); | ||
435 | mm->free_area_cache = TASK_UNMAPPED_BASE; | 458 | mm->free_area_cache = TASK_UNMAPPED_BASE; |
436 | mm->cached_hole_size = ~0UL; | 459 | mm->cached_hole_size = ~0UL; |
460 | mm_init_aio(mm); | ||
437 | mm_init_owner(mm, p); | 461 | mm_init_owner(mm, p); |
438 | 462 | ||
439 | if (likely(!mm_alloc_pgd(mm))) { | 463 | if (likely(!mm_alloc_pgd(mm))) { |
@@ -485,6 +509,7 @@ void mmput(struct mm_struct *mm) | |||
485 | 509 | ||
486 | if (atomic_dec_and_test(&mm->mm_users)) { | 510 | if (atomic_dec_and_test(&mm->mm_users)) { |
487 | exit_aio(mm); | 511 | exit_aio(mm); |
512 | ksm_exit(mm); | ||
488 | exit_mmap(mm); | 513 | exit_mmap(mm); |
489 | set_mm_exe_file(mm, NULL); | 514 | set_mm_exe_file(mm, NULL); |
490 | if (!list_empty(&mm->mmlist)) { | 515 | if (!list_empty(&mm->mmlist)) { |
@@ -493,6 +518,8 @@ void mmput(struct mm_struct *mm) | |||
493 | spin_unlock(&mmlist_lock); | 518 | spin_unlock(&mmlist_lock); |
494 | } | 519 | } |
495 | put_swap_token(mm); | 520 | put_swap_token(mm); |
521 | if (mm->binfmt) | ||
522 | module_put(mm->binfmt->module); | ||
496 | mmdrop(mm); | 523 | mmdrop(mm); |
497 | } | 524 | } |
498 | } | 525 | } |
@@ -618,9 +645,14 @@ struct mm_struct *dup_mm(struct task_struct *tsk) | |||
618 | mm->hiwater_rss = get_mm_rss(mm); | 645 | mm->hiwater_rss = get_mm_rss(mm); |
619 | mm->hiwater_vm = mm->total_vm; | 646 | mm->hiwater_vm = mm->total_vm; |
620 | 647 | ||
648 | if (mm->binfmt && !try_module_get(mm->binfmt->module)) | ||
649 | goto free_pt; | ||
650 | |||
621 | return mm; | 651 | return mm; |
622 | 652 | ||
623 | free_pt: | 653 | free_pt: |
654 | /* don't put binfmt in mmput, we haven't got module yet */ | ||
655 | mm->binfmt = NULL; | ||
624 | mmput(mm); | 656 | mmput(mm); |
625 | 657 | ||
626 | fail_nomem: | 658 | fail_nomem: |
@@ -788,10 +820,10 @@ static void posix_cpu_timers_init_group(struct signal_struct *sig) | |||
788 | thread_group_cputime_init(sig); | 820 | thread_group_cputime_init(sig); |
789 | 821 | ||
790 | /* Expiration times and increments. */ | 822 | /* Expiration times and increments. */ |
791 | sig->it_virt_expires = cputime_zero; | 823 | sig->it[CPUCLOCK_PROF].expires = cputime_zero; |
792 | sig->it_virt_incr = cputime_zero; | 824 | sig->it[CPUCLOCK_PROF].incr = cputime_zero; |
793 | sig->it_prof_expires = cputime_zero; | 825 | sig->it[CPUCLOCK_VIRT].expires = cputime_zero; |
794 | sig->it_prof_incr = cputime_zero; | 826 | sig->it[CPUCLOCK_VIRT].incr = cputime_zero; |
795 | 827 | ||
796 | /* Cached expiration times. */ | 828 | /* Cached expiration times. */ |
797 | sig->cputime_expires.prof_exp = cputime_zero; | 829 | sig->cputime_expires.prof_exp = cputime_zero; |
@@ -849,6 +881,7 @@ static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) | |||
849 | sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0; | 881 | sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0; |
850 | sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0; | 882 | sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0; |
851 | sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0; | 883 | sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0; |
884 | sig->maxrss = sig->cmaxrss = 0; | ||
852 | task_io_accounting_init(&sig->ioac); | 885 | task_io_accounting_init(&sig->ioac); |
853 | sig->sum_sched_runtime = 0; | 886 | sig->sum_sched_runtime = 0; |
854 | taskstats_tgid_init(sig); | 887 | taskstats_tgid_init(sig); |
@@ -863,6 +896,8 @@ static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) | |||
863 | 896 | ||
864 | tty_audit_fork(sig); | 897 | tty_audit_fork(sig); |
865 | 898 | ||
899 | sig->oom_adj = current->signal->oom_adj; | ||
900 | |||
866 | return 0; | 901 | return 0; |
867 | } | 902 | } |
868 | 903 | ||
@@ -958,6 +993,16 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
958 | if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) | 993 | if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) |
959 | return ERR_PTR(-EINVAL); | 994 | return ERR_PTR(-EINVAL); |
960 | 995 | ||
996 | /* | ||
997 | * Siblings of global init remain as zombies on exit since they are | ||
998 | * not reaped by their parent (swapper). To solve this and to avoid | ||
999 | * multi-rooted process trees, prevent global and container-inits | ||
1000 | * from creating siblings. | ||
1001 | */ | ||
1002 | if ((clone_flags & CLONE_PARENT) && | ||
1003 | current->signal->flags & SIGNAL_UNKILLABLE) | ||
1004 | return ERR_PTR(-EINVAL); | ||
1005 | |||
961 | retval = security_task_create(clone_flags); | 1006 | retval = security_task_create(clone_flags); |
962 | if (retval) | 1007 | if (retval) |
963 | goto fork_out; | 1008 | goto fork_out; |
@@ -999,9 +1044,6 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
999 | if (!try_module_get(task_thread_info(p)->exec_domain->module)) | 1044 | if (!try_module_get(task_thread_info(p)->exec_domain->module)) |
1000 | goto bad_fork_cleanup_count; | 1045 | goto bad_fork_cleanup_count; |
1001 | 1046 | ||
1002 | if (p->binfmt && !try_module_get(p->binfmt->module)) | ||
1003 | goto bad_fork_cleanup_put_domain; | ||
1004 | |||
1005 | p->did_exec = 0; | 1047 | p->did_exec = 0; |
1006 | delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ | 1048 | delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ |
1007 | copy_flags(clone_flags, p); | 1049 | copy_flags(clone_flags, p); |
@@ -1075,10 +1117,12 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
1075 | 1117 | ||
1076 | p->bts = NULL; | 1118 | p->bts = NULL; |
1077 | 1119 | ||
1120 | p->stack_start = stack_start; | ||
1121 | |||
1078 | /* Perform scheduler related setup. Assign this task to a CPU. */ | 1122 | /* Perform scheduler related setup. Assign this task to a CPU. */ |
1079 | sched_fork(p, clone_flags); | 1123 | sched_fork(p, clone_flags); |
1080 | 1124 | ||
1081 | retval = perf_counter_init_task(p); | 1125 | retval = perf_event_init_task(p); |
1082 | if (retval) | 1126 | if (retval) |
1083 | goto bad_fork_cleanup_policy; | 1127 | goto bad_fork_cleanup_policy; |
1084 | 1128 | ||
@@ -1253,7 +1297,7 @@ static struct task_struct *copy_process(unsigned long clone_flags, | |||
1253 | write_unlock_irq(&tasklist_lock); | 1297 | write_unlock_irq(&tasklist_lock); |
1254 | proc_fork_connector(p); | 1298 | proc_fork_connector(p); |
1255 | cgroup_post_fork(p); | 1299 | cgroup_post_fork(p); |
1256 | perf_counter_fork(p); | 1300 | perf_event_fork(p); |
1257 | return p; | 1301 | return p; |
1258 | 1302 | ||
1259 | bad_fork_free_pid: | 1303 | bad_fork_free_pid: |
@@ -1280,16 +1324,13 @@ bad_fork_cleanup_semundo: | |||
1280 | bad_fork_cleanup_audit: | 1324 | bad_fork_cleanup_audit: |
1281 | audit_free(p); | 1325 | audit_free(p); |
1282 | bad_fork_cleanup_policy: | 1326 | bad_fork_cleanup_policy: |
1283 | perf_counter_free_task(p); | 1327 | perf_event_free_task(p); |
1284 | #ifdef CONFIG_NUMA | 1328 | #ifdef CONFIG_NUMA |
1285 | mpol_put(p->mempolicy); | 1329 | mpol_put(p->mempolicy); |
1286 | bad_fork_cleanup_cgroup: | 1330 | bad_fork_cleanup_cgroup: |
1287 | #endif | 1331 | #endif |
1288 | cgroup_exit(p, cgroup_callbacks_done); | 1332 | cgroup_exit(p, cgroup_callbacks_done); |
1289 | delayacct_tsk_free(p); | 1333 | delayacct_tsk_free(p); |
1290 | if (p->binfmt) | ||
1291 | module_put(p->binfmt->module); | ||
1292 | bad_fork_cleanup_put_domain: | ||
1293 | module_put(task_thread_info(p)->exec_domain->module); | 1334 | module_put(task_thread_info(p)->exec_domain->module); |
1294 | bad_fork_cleanup_count: | 1335 | bad_fork_cleanup_count: |
1295 | atomic_dec(&p->cred->user->processes); | 1336 | atomic_dec(&p->cred->user->processes); |
diff --git a/kernel/futex.c b/kernel/futex.c index 248dd119a86e..b911adceb2c4 100644 --- a/kernel/futex.c +++ b/kernel/futex.c | |||
@@ -89,36 +89,36 @@ struct futex_pi_state { | |||
89 | union futex_key key; | 89 | union futex_key key; |
90 | }; | 90 | }; |
91 | 91 | ||
92 | /* | 92 | /** |
93 | * We use this hashed waitqueue instead of a normal wait_queue_t, so | 93 | * struct futex_q - The hashed futex queue entry, one per waiting task |
94 | * @task: the task waiting on the futex | ||
95 | * @lock_ptr: the hash bucket lock | ||
96 | * @key: the key the futex is hashed on | ||
97 | * @pi_state: optional priority inheritance state | ||
98 | * @rt_waiter: rt_waiter storage for use with requeue_pi | ||
99 | * @requeue_pi_key: the requeue_pi target futex key | ||
100 | * @bitset: bitset for the optional bitmasked wakeup | ||
101 | * | ||
102 | * We use this hashed waitqueue, instead of a normal wait_queue_t, so | ||
94 | * we can wake only the relevant ones (hashed queues may be shared). | 103 | * we can wake only the relevant ones (hashed queues may be shared). |
95 | * | 104 | * |
96 | * A futex_q has a woken state, just like tasks have TASK_RUNNING. | 105 | * A futex_q has a woken state, just like tasks have TASK_RUNNING. |
97 | * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0. | 106 | * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0. |
98 | * The order of wakup is always to make the first condition true, then | 107 | * The order of wakup is always to make the first condition true, then |
99 | * wake up q->waiter, then make the second condition true. | 108 | * the second. |
109 | * | ||
110 | * PI futexes are typically woken before they are removed from the hash list via | ||
111 | * the rt_mutex code. See unqueue_me_pi(). | ||
100 | */ | 112 | */ |
101 | struct futex_q { | 113 | struct futex_q { |
102 | struct plist_node list; | 114 | struct plist_node list; |
103 | /* Waiter reference */ | ||
104 | struct task_struct *task; | ||
105 | 115 | ||
106 | /* Which hash list lock to use: */ | 116 | struct task_struct *task; |
107 | spinlock_t *lock_ptr; | 117 | spinlock_t *lock_ptr; |
108 | |||
109 | /* Key which the futex is hashed on: */ | ||
110 | union futex_key key; | 118 | union futex_key key; |
111 | |||
112 | /* Optional priority inheritance state: */ | ||
113 | struct futex_pi_state *pi_state; | 119 | struct futex_pi_state *pi_state; |
114 | |||
115 | /* rt_waiter storage for requeue_pi: */ | ||
116 | struct rt_mutex_waiter *rt_waiter; | 120 | struct rt_mutex_waiter *rt_waiter; |
117 | |||
118 | /* The expected requeue pi target futex key: */ | ||
119 | union futex_key *requeue_pi_key; | 121 | union futex_key *requeue_pi_key; |
120 | |||
121 | /* Bitset for the optional bitmasked wakeup */ | ||
122 | u32 bitset; | 122 | u32 bitset; |
123 | }; | 123 | }; |
124 | 124 | ||
@@ -198,11 +198,12 @@ static void drop_futex_key_refs(union futex_key *key) | |||
198 | } | 198 | } |
199 | 199 | ||
200 | /** | 200 | /** |
201 | * get_futex_key - Get parameters which are the keys for a futex. | 201 | * get_futex_key() - Get parameters which are the keys for a futex |
202 | * @uaddr: virtual address of the futex | 202 | * @uaddr: virtual address of the futex |
203 | * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED | 203 | * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED |
204 | * @key: address where result is stored. | 204 | * @key: address where result is stored. |
205 | * @rw: mapping needs to be read/write (values: VERIFY_READ, VERIFY_WRITE) | 205 | * @rw: mapping needs to be read/write (values: VERIFY_READ, |
206 | * VERIFY_WRITE) | ||
206 | * | 207 | * |
207 | * Returns a negative error code or 0 | 208 | * Returns a negative error code or 0 |
208 | * The key words are stored in *key on success. | 209 | * The key words are stored in *key on success. |
@@ -288,8 +289,8 @@ void put_futex_key(int fshared, union futex_key *key) | |||
288 | drop_futex_key_refs(key); | 289 | drop_futex_key_refs(key); |
289 | } | 290 | } |
290 | 291 | ||
291 | /* | 292 | /** |
292 | * fault_in_user_writeable - fault in user address and verify RW access | 293 | * fault_in_user_writeable() - Fault in user address and verify RW access |
293 | * @uaddr: pointer to faulting user space address | 294 | * @uaddr: pointer to faulting user space address |
294 | * | 295 | * |
295 | * Slow path to fixup the fault we just took in the atomic write | 296 | * Slow path to fixup the fault we just took in the atomic write |
@@ -309,8 +310,8 @@ static int fault_in_user_writeable(u32 __user *uaddr) | |||
309 | 310 | ||
310 | /** | 311 | /** |
311 | * futex_top_waiter() - Return the highest priority waiter on a futex | 312 | * futex_top_waiter() - Return the highest priority waiter on a futex |
312 | * @hb: the hash bucket the futex_q's reside in | 313 | * @hb: the hash bucket the futex_q's reside in |
313 | * @key: the futex key (to distinguish it from other futex futex_q's) | 314 | * @key: the futex key (to distinguish it from other futex futex_q's) |
314 | * | 315 | * |
315 | * Must be called with the hb lock held. | 316 | * Must be called with the hb lock held. |
316 | */ | 317 | */ |
@@ -588,7 +589,7 @@ lookup_pi_state(u32 uval, struct futex_hash_bucket *hb, | |||
588 | } | 589 | } |
589 | 590 | ||
590 | /** | 591 | /** |
591 | * futex_lock_pi_atomic() - atomic work required to acquire a pi aware futex | 592 | * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex |
592 | * @uaddr: the pi futex user address | 593 | * @uaddr: the pi futex user address |
593 | * @hb: the pi futex hash bucket | 594 | * @hb: the pi futex hash bucket |
594 | * @key: the futex key associated with uaddr and hb | 595 | * @key: the futex key associated with uaddr and hb |
@@ -1011,9 +1012,9 @@ void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1, | |||
1011 | 1012 | ||
1012 | /** | 1013 | /** |
1013 | * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue | 1014 | * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue |
1014 | * q: the futex_q | 1015 | * @q: the futex_q |
1015 | * key: the key of the requeue target futex | 1016 | * @key: the key of the requeue target futex |
1016 | * hb: the hash_bucket of the requeue target futex | 1017 | * @hb: the hash_bucket of the requeue target futex |
1017 | * | 1018 | * |
1018 | * During futex_requeue, with requeue_pi=1, it is possible to acquire the | 1019 | * During futex_requeue, with requeue_pi=1, it is possible to acquire the |
1019 | * target futex if it is uncontended or via a lock steal. Set the futex_q key | 1020 | * target futex if it is uncontended or via a lock steal. Set the futex_q key |
@@ -1350,6 +1351,25 @@ static inline struct futex_hash_bucket *queue_lock(struct futex_q *q) | |||
1350 | return hb; | 1351 | return hb; |
1351 | } | 1352 | } |
1352 | 1353 | ||
1354 | static inline void | ||
1355 | queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb) | ||
1356 | { | ||
1357 | spin_unlock(&hb->lock); | ||
1358 | drop_futex_key_refs(&q->key); | ||
1359 | } | ||
1360 | |||
1361 | /** | ||
1362 | * queue_me() - Enqueue the futex_q on the futex_hash_bucket | ||
1363 | * @q: The futex_q to enqueue | ||
1364 | * @hb: The destination hash bucket | ||
1365 | * | ||
1366 | * The hb->lock must be held by the caller, and is released here. A call to | ||
1367 | * queue_me() is typically paired with exactly one call to unqueue_me(). The | ||
1368 | * exceptions involve the PI related operations, which may use unqueue_me_pi() | ||
1369 | * or nothing if the unqueue is done as part of the wake process and the unqueue | ||
1370 | * state is implicit in the state of woken task (see futex_wait_requeue_pi() for | ||
1371 | * an example). | ||
1372 | */ | ||
1353 | static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb) | 1373 | static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb) |
1354 | { | 1374 | { |
1355 | int prio; | 1375 | int prio; |
@@ -1373,19 +1393,17 @@ static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb) | |||
1373 | spin_unlock(&hb->lock); | 1393 | spin_unlock(&hb->lock); |
1374 | } | 1394 | } |
1375 | 1395 | ||
1376 | static inline void | 1396 | /** |
1377 | queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb) | 1397 | * unqueue_me() - Remove the futex_q from its futex_hash_bucket |
1378 | { | 1398 | * @q: The futex_q to unqueue |
1379 | spin_unlock(&hb->lock); | 1399 | * |
1380 | drop_futex_key_refs(&q->key); | 1400 | * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must |
1381 | } | 1401 | * be paired with exactly one earlier call to queue_me(). |
1382 | 1402 | * | |
1383 | /* | 1403 | * Returns: |
1384 | * queue_me and unqueue_me must be called as a pair, each | 1404 | * 1 - if the futex_q was still queued (and we removed unqueued it) |
1385 | * exactly once. They are called with the hashed spinlock held. | 1405 | * 0 - if the futex_q was already removed by the waking thread |
1386 | */ | 1406 | */ |
1387 | |||
1388 | /* Return 1 if we were still queued (ie. 0 means we were woken) */ | ||
1389 | static int unqueue_me(struct futex_q *q) | 1407 | static int unqueue_me(struct futex_q *q) |
1390 | { | 1408 | { |
1391 | spinlock_t *lock_ptr; | 1409 | spinlock_t *lock_ptr; |
@@ -1638,17 +1656,14 @@ out: | |||
1638 | static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q, | 1656 | static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q, |
1639 | struct hrtimer_sleeper *timeout) | 1657 | struct hrtimer_sleeper *timeout) |
1640 | { | 1658 | { |
1641 | queue_me(q, hb); | ||
1642 | |||
1643 | /* | 1659 | /* |
1644 | * There might have been scheduling since the queue_me(), as we | 1660 | * The task state is guaranteed to be set before another task can |
1645 | * cannot hold a spinlock across the get_user() in case it | 1661 | * wake it. set_current_state() is implemented using set_mb() and |
1646 | * faults, and we cannot just set TASK_INTERRUPTIBLE state when | 1662 | * queue_me() calls spin_unlock() upon completion, both serializing |
1647 | * queueing ourselves into the futex hash. This code thus has to | 1663 | * access to the hash list and forcing another memory barrier. |
1648 | * rely on the futex_wake() code removing us from hash when it | ||
1649 | * wakes us up. | ||
1650 | */ | 1664 | */ |
1651 | set_current_state(TASK_INTERRUPTIBLE); | 1665 | set_current_state(TASK_INTERRUPTIBLE); |
1666 | queue_me(q, hb); | ||
1652 | 1667 | ||
1653 | /* Arm the timer */ | 1668 | /* Arm the timer */ |
1654 | if (timeout) { | 1669 | if (timeout) { |
@@ -1658,8 +1673,8 @@ static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q, | |||
1658 | } | 1673 | } |
1659 | 1674 | ||
1660 | /* | 1675 | /* |
1661 | * !plist_node_empty() is safe here without any lock. | 1676 | * If we have been removed from the hash list, then another task |
1662 | * q.lock_ptr != 0 is not safe, because of ordering against wakeup. | 1677 | * has tried to wake us, and we can skip the call to schedule(). |
1663 | */ | 1678 | */ |
1664 | if (likely(!plist_node_empty(&q->list))) { | 1679 | if (likely(!plist_node_empty(&q->list))) { |
1665 | /* | 1680 | /* |
@@ -2114,12 +2129,12 @@ int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb, | |||
2114 | 2129 | ||
2115 | /** | 2130 | /** |
2116 | * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2 | 2131 | * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2 |
2117 | * @uaddr: the futex we initialyl wait on (non-pi) | 2132 | * @uaddr: the futex we initially wait on (non-pi) |
2118 | * @fshared: whether the futexes are shared (1) or not (0). They must be | 2133 | * @fshared: whether the futexes are shared (1) or not (0). They must be |
2119 | * the same type, no requeueing from private to shared, etc. | 2134 | * the same type, no requeueing from private to shared, etc. |
2120 | * @val: the expected value of uaddr | 2135 | * @val: the expected value of uaddr |
2121 | * @abs_time: absolute timeout | 2136 | * @abs_time: absolute timeout |
2122 | * @bitset: 32 bit wakeup bitset set by userspace, defaults to all. | 2137 | * @bitset: 32 bit wakeup bitset set by userspace, defaults to all |
2123 | * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0) | 2138 | * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0) |
2124 | * @uaddr2: the pi futex we will take prior to returning to user-space | 2139 | * @uaddr2: the pi futex we will take prior to returning to user-space |
2125 | * | 2140 | * |
@@ -2246,7 +2261,7 @@ static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared, | |||
2246 | res = fixup_owner(uaddr2, fshared, &q, !ret); | 2261 | res = fixup_owner(uaddr2, fshared, &q, !ret); |
2247 | /* | 2262 | /* |
2248 | * If fixup_owner() returned an error, proprogate that. If it | 2263 | * If fixup_owner() returned an error, proprogate that. If it |
2249 | * acquired the lock, clear our -ETIMEDOUT or -EINTR. | 2264 | * acquired the lock, clear -ETIMEDOUT or -EINTR. |
2250 | */ | 2265 | */ |
2251 | if (res) | 2266 | if (res) |
2252 | ret = (res < 0) ? res : 0; | 2267 | ret = (res < 0) ? res : 0; |
@@ -2302,9 +2317,9 @@ out: | |||
2302 | */ | 2317 | */ |
2303 | 2318 | ||
2304 | /** | 2319 | /** |
2305 | * sys_set_robust_list - set the robust-futex list head of a task | 2320 | * sys_set_robust_list() - Set the robust-futex list head of a task |
2306 | * @head: pointer to the list-head | 2321 | * @head: pointer to the list-head |
2307 | * @len: length of the list-head, as userspace expects | 2322 | * @len: length of the list-head, as userspace expects |
2308 | */ | 2323 | */ |
2309 | SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head, | 2324 | SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head, |
2310 | size_t, len) | 2325 | size_t, len) |
@@ -2323,10 +2338,10 @@ SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head, | |||
2323 | } | 2338 | } |
2324 | 2339 | ||
2325 | /** | 2340 | /** |
2326 | * sys_get_robust_list - get the robust-futex list head of a task | 2341 | * sys_get_robust_list() - Get the robust-futex list head of a task |
2327 | * @pid: pid of the process [zero for current task] | 2342 | * @pid: pid of the process [zero for current task] |
2328 | * @head_ptr: pointer to a list-head pointer, the kernel fills it in | 2343 | * @head_ptr: pointer to a list-head pointer, the kernel fills it in |
2329 | * @len_ptr: pointer to a length field, the kernel fills in the header size | 2344 | * @len_ptr: pointer to a length field, the kernel fills in the header size |
2330 | */ | 2345 | */ |
2331 | SYSCALL_DEFINE3(get_robust_list, int, pid, | 2346 | SYSCALL_DEFINE3(get_robust_list, int, pid, |
2332 | struct robust_list_head __user * __user *, head_ptr, | 2347 | struct robust_list_head __user * __user *, head_ptr, |
diff --git a/kernel/gcov/Kconfig b/kernel/gcov/Kconfig index 654efd09f6a9..70a298d6da71 100644 --- a/kernel/gcov/Kconfig +++ b/kernel/gcov/Kconfig | |||
@@ -34,7 +34,7 @@ config GCOV_KERNEL | |||
34 | config GCOV_PROFILE_ALL | 34 | config GCOV_PROFILE_ALL |
35 | bool "Profile entire Kernel" | 35 | bool "Profile entire Kernel" |
36 | depends on GCOV_KERNEL | 36 | depends on GCOV_KERNEL |
37 | depends on S390 || X86 || (PPC && EXPERIMENTAL) | 37 | depends on S390 || X86 || (PPC && EXPERIMENTAL) || MICROBLAZE |
38 | default n | 38 | default n |
39 | ---help--- | 39 | ---help--- |
40 | This options activates profiling for the entire kernel. | 40 | This options activates profiling for the entire kernel. |
diff --git a/kernel/hrtimer.c b/kernel/hrtimer.c index 05071bf6a37b..6d7020490f94 100644 --- a/kernel/hrtimer.c +++ b/kernel/hrtimer.c | |||
@@ -48,36 +48,7 @@ | |||
48 | 48 | ||
49 | #include <asm/uaccess.h> | 49 | #include <asm/uaccess.h> |
50 | 50 | ||
51 | /** | 51 | #include <trace/events/timer.h> |
52 | * ktime_get - get the monotonic time in ktime_t format | ||
53 | * | ||
54 | * returns the time in ktime_t format | ||
55 | */ | ||
56 | ktime_t ktime_get(void) | ||
57 | { | ||
58 | struct timespec now; | ||
59 | |||
60 | ktime_get_ts(&now); | ||
61 | |||
62 | return timespec_to_ktime(now); | ||
63 | } | ||
64 | EXPORT_SYMBOL_GPL(ktime_get); | ||
65 | |||
66 | /** | ||
67 | * ktime_get_real - get the real (wall-) time in ktime_t format | ||
68 | * | ||
69 | * returns the time in ktime_t format | ||
70 | */ | ||
71 | ktime_t ktime_get_real(void) | ||
72 | { | ||
73 | struct timespec now; | ||
74 | |||
75 | getnstimeofday(&now); | ||
76 | |||
77 | return timespec_to_ktime(now); | ||
78 | } | ||
79 | |||
80 | EXPORT_SYMBOL_GPL(ktime_get_real); | ||
81 | 52 | ||
82 | /* | 53 | /* |
83 | * The timer bases: | 54 | * The timer bases: |
@@ -106,31 +77,6 @@ DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = | |||
106 | } | 77 | } |
107 | }; | 78 | }; |
108 | 79 | ||
109 | /** | ||
110 | * ktime_get_ts - get the monotonic clock in timespec format | ||
111 | * @ts: pointer to timespec variable | ||
112 | * | ||
113 | * The function calculates the monotonic clock from the realtime | ||
114 | * clock and the wall_to_monotonic offset and stores the result | ||
115 | * in normalized timespec format in the variable pointed to by @ts. | ||
116 | */ | ||
117 | void ktime_get_ts(struct timespec *ts) | ||
118 | { | ||
119 | struct timespec tomono; | ||
120 | unsigned long seq; | ||
121 | |||
122 | do { | ||
123 | seq = read_seqbegin(&xtime_lock); | ||
124 | getnstimeofday(ts); | ||
125 | tomono = wall_to_monotonic; | ||
126 | |||
127 | } while (read_seqretry(&xtime_lock, seq)); | ||
128 | |||
129 | set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, | ||
130 | ts->tv_nsec + tomono.tv_nsec); | ||
131 | } | ||
132 | EXPORT_SYMBOL_GPL(ktime_get_ts); | ||
133 | |||
134 | /* | 80 | /* |
135 | * Get the coarse grained time at the softirq based on xtime and | 81 | * Get the coarse grained time at the softirq based on xtime and |
136 | * wall_to_monotonic. | 82 | * wall_to_monotonic. |
@@ -498,6 +444,26 @@ static inline void debug_hrtimer_activate(struct hrtimer *timer) { } | |||
498 | static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } | 444 | static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } |
499 | #endif | 445 | #endif |
500 | 446 | ||
447 | static inline void | ||
448 | debug_init(struct hrtimer *timer, clockid_t clockid, | ||
449 | enum hrtimer_mode mode) | ||
450 | { | ||
451 | debug_hrtimer_init(timer); | ||
452 | trace_hrtimer_init(timer, clockid, mode); | ||
453 | } | ||
454 | |||
455 | static inline void debug_activate(struct hrtimer *timer) | ||
456 | { | ||
457 | debug_hrtimer_activate(timer); | ||
458 | trace_hrtimer_start(timer); | ||
459 | } | ||
460 | |||
461 | static inline void debug_deactivate(struct hrtimer *timer) | ||
462 | { | ||
463 | debug_hrtimer_deactivate(timer); | ||
464 | trace_hrtimer_cancel(timer); | ||
465 | } | ||
466 | |||
501 | /* High resolution timer related functions */ | 467 | /* High resolution timer related functions */ |
502 | #ifdef CONFIG_HIGH_RES_TIMERS | 468 | #ifdef CONFIG_HIGH_RES_TIMERS |
503 | 469 | ||
@@ -543,13 +509,14 @@ static inline int hrtimer_hres_active(void) | |||
543 | * next event | 509 | * next event |
544 | * Called with interrupts disabled and base->lock held | 510 | * Called with interrupts disabled and base->lock held |
545 | */ | 511 | */ |
546 | static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base) | 512 | static void |
513 | hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) | ||
547 | { | 514 | { |
548 | int i; | 515 | int i; |
549 | struct hrtimer_clock_base *base = cpu_base->clock_base; | 516 | struct hrtimer_clock_base *base = cpu_base->clock_base; |
550 | ktime_t expires; | 517 | ktime_t expires, expires_next; |
551 | 518 | ||
552 | cpu_base->expires_next.tv64 = KTIME_MAX; | 519 | expires_next.tv64 = KTIME_MAX; |
553 | 520 | ||
554 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { | 521 | for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { |
555 | struct hrtimer *timer; | 522 | struct hrtimer *timer; |
@@ -565,10 +532,15 @@ static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base) | |||
565 | */ | 532 | */ |
566 | if (expires.tv64 < 0) | 533 | if (expires.tv64 < 0) |
567 | expires.tv64 = 0; | 534 | expires.tv64 = 0; |
568 | if (expires.tv64 < cpu_base->expires_next.tv64) | 535 | if (expires.tv64 < expires_next.tv64) |
569 | cpu_base->expires_next = expires; | 536 | expires_next = expires; |
570 | } | 537 | } |
571 | 538 | ||
539 | if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64) | ||
540 | return; | ||
541 | |||
542 | cpu_base->expires_next.tv64 = expires_next.tv64; | ||
543 | |||
572 | if (cpu_base->expires_next.tv64 != KTIME_MAX) | 544 | if (cpu_base->expires_next.tv64 != KTIME_MAX) |
573 | tick_program_event(cpu_base->expires_next, 1); | 545 | tick_program_event(cpu_base->expires_next, 1); |
574 | } | 546 | } |
@@ -651,7 +623,7 @@ static void retrigger_next_event(void *arg) | |||
651 | base->clock_base[CLOCK_REALTIME].offset = | 623 | base->clock_base[CLOCK_REALTIME].offset = |
652 | timespec_to_ktime(realtime_offset); | 624 | timespec_to_ktime(realtime_offset); |
653 | 625 | ||
654 | hrtimer_force_reprogram(base); | 626 | hrtimer_force_reprogram(base, 0); |
655 | spin_unlock(&base->lock); | 627 | spin_unlock(&base->lock); |
656 | } | 628 | } |
657 | 629 | ||
@@ -764,7 +736,8 @@ static int hrtimer_switch_to_hres(void) | |||
764 | static inline int hrtimer_hres_active(void) { return 0; } | 736 | static inline int hrtimer_hres_active(void) { return 0; } |
765 | static inline int hrtimer_is_hres_enabled(void) { return 0; } | 737 | static inline int hrtimer_is_hres_enabled(void) { return 0; } |
766 | static inline int hrtimer_switch_to_hres(void) { return 0; } | 738 | static inline int hrtimer_switch_to_hres(void) { return 0; } |
767 | static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { } | 739 | static inline void |
740 | hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { } | ||
768 | static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, | 741 | static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, |
769 | struct hrtimer_clock_base *base, | 742 | struct hrtimer_clock_base *base, |
770 | int wakeup) | 743 | int wakeup) |
@@ -854,7 +827,7 @@ static int enqueue_hrtimer(struct hrtimer *timer, | |||
854 | struct hrtimer *entry; | 827 | struct hrtimer *entry; |
855 | int leftmost = 1; | 828 | int leftmost = 1; |
856 | 829 | ||
857 | debug_hrtimer_activate(timer); | 830 | debug_activate(timer); |
858 | 831 | ||
859 | /* | 832 | /* |
860 | * Find the right place in the rbtree: | 833 | * Find the right place in the rbtree: |
@@ -907,19 +880,29 @@ static void __remove_hrtimer(struct hrtimer *timer, | |||
907 | struct hrtimer_clock_base *base, | 880 | struct hrtimer_clock_base *base, |
908 | unsigned long newstate, int reprogram) | 881 | unsigned long newstate, int reprogram) |
909 | { | 882 | { |
910 | if (timer->state & HRTIMER_STATE_ENQUEUED) { | 883 | if (!(timer->state & HRTIMER_STATE_ENQUEUED)) |
911 | /* | 884 | goto out; |
912 | * Remove the timer from the rbtree and replace the | 885 | |
913 | * first entry pointer if necessary. | 886 | /* |
914 | */ | 887 | * Remove the timer from the rbtree and replace the first |
915 | if (base->first == &timer->node) { | 888 | * entry pointer if necessary. |
916 | base->first = rb_next(&timer->node); | 889 | */ |
917 | /* Reprogram the clock event device. if enabled */ | 890 | if (base->first == &timer->node) { |
918 | if (reprogram && hrtimer_hres_active()) | 891 | base->first = rb_next(&timer->node); |
919 | hrtimer_force_reprogram(base->cpu_base); | 892 | #ifdef CONFIG_HIGH_RES_TIMERS |
893 | /* Reprogram the clock event device. if enabled */ | ||
894 | if (reprogram && hrtimer_hres_active()) { | ||
895 | ktime_t expires; | ||
896 | |||
897 | expires = ktime_sub(hrtimer_get_expires(timer), | ||
898 | base->offset); | ||
899 | if (base->cpu_base->expires_next.tv64 == expires.tv64) | ||
900 | hrtimer_force_reprogram(base->cpu_base, 1); | ||
920 | } | 901 | } |
921 | rb_erase(&timer->node, &base->active); | 902 | #endif |
922 | } | 903 | } |
904 | rb_erase(&timer->node, &base->active); | ||
905 | out: | ||
923 | timer->state = newstate; | 906 | timer->state = newstate; |
924 | } | 907 | } |
925 | 908 | ||
@@ -940,7 +923,7 @@ remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base) | |||
940 | * reprogramming happens in the interrupt handler. This is a | 923 | * reprogramming happens in the interrupt handler. This is a |
941 | * rare case and less expensive than a smp call. | 924 | * rare case and less expensive than a smp call. |
942 | */ | 925 | */ |
943 | debug_hrtimer_deactivate(timer); | 926 | debug_deactivate(timer); |
944 | timer_stats_hrtimer_clear_start_info(timer); | 927 | timer_stats_hrtimer_clear_start_info(timer); |
945 | reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases); | 928 | reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases); |
946 | __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, | 929 | __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, |
@@ -1155,7 +1138,6 @@ static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, | |||
1155 | clock_id = CLOCK_MONOTONIC; | 1138 | clock_id = CLOCK_MONOTONIC; |
1156 | 1139 | ||
1157 | timer->base = &cpu_base->clock_base[clock_id]; | 1140 | timer->base = &cpu_base->clock_base[clock_id]; |
1158 | INIT_LIST_HEAD(&timer->cb_entry); | ||
1159 | hrtimer_init_timer_hres(timer); | 1141 | hrtimer_init_timer_hres(timer); |
1160 | 1142 | ||
1161 | #ifdef CONFIG_TIMER_STATS | 1143 | #ifdef CONFIG_TIMER_STATS |
@@ -1174,7 +1156,7 @@ static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, | |||
1174 | void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, | 1156 | void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, |
1175 | enum hrtimer_mode mode) | 1157 | enum hrtimer_mode mode) |
1176 | { | 1158 | { |
1177 | debug_hrtimer_init(timer); | 1159 | debug_init(timer, clock_id, mode); |
1178 | __hrtimer_init(timer, clock_id, mode); | 1160 | __hrtimer_init(timer, clock_id, mode); |
1179 | } | 1161 | } |
1180 | EXPORT_SYMBOL_GPL(hrtimer_init); | 1162 | EXPORT_SYMBOL_GPL(hrtimer_init); |
@@ -1198,7 +1180,7 @@ int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp) | |||
1198 | } | 1180 | } |
1199 | EXPORT_SYMBOL_GPL(hrtimer_get_res); | 1181 | EXPORT_SYMBOL_GPL(hrtimer_get_res); |
1200 | 1182 | ||
1201 | static void __run_hrtimer(struct hrtimer *timer) | 1183 | static void __run_hrtimer(struct hrtimer *timer, ktime_t *now) |
1202 | { | 1184 | { |
1203 | struct hrtimer_clock_base *base = timer->base; | 1185 | struct hrtimer_clock_base *base = timer->base; |
1204 | struct hrtimer_cpu_base *cpu_base = base->cpu_base; | 1186 | struct hrtimer_cpu_base *cpu_base = base->cpu_base; |
@@ -1207,7 +1189,7 @@ static void __run_hrtimer(struct hrtimer *timer) | |||
1207 | 1189 | ||
1208 | WARN_ON(!irqs_disabled()); | 1190 | WARN_ON(!irqs_disabled()); |
1209 | 1191 | ||
1210 | debug_hrtimer_deactivate(timer); | 1192 | debug_deactivate(timer); |
1211 | __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0); | 1193 | __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0); |
1212 | timer_stats_account_hrtimer(timer); | 1194 | timer_stats_account_hrtimer(timer); |
1213 | fn = timer->function; | 1195 | fn = timer->function; |
@@ -1218,7 +1200,9 @@ static void __run_hrtimer(struct hrtimer *timer) | |||
1218 | * the timer base. | 1200 | * the timer base. |
1219 | */ | 1201 | */ |
1220 | spin_unlock(&cpu_base->lock); | 1202 | spin_unlock(&cpu_base->lock); |
1203 | trace_hrtimer_expire_entry(timer, now); | ||
1221 | restart = fn(timer); | 1204 | restart = fn(timer); |
1205 | trace_hrtimer_expire_exit(timer); | ||
1222 | spin_lock(&cpu_base->lock); | 1206 | spin_lock(&cpu_base->lock); |
1223 | 1207 | ||
1224 | /* | 1208 | /* |
@@ -1329,7 +1313,7 @@ void hrtimer_interrupt(struct clock_event_device *dev) | |||
1329 | break; | 1313 | break; |
1330 | } | 1314 | } |
1331 | 1315 | ||
1332 | __run_hrtimer(timer); | 1316 | __run_hrtimer(timer, &basenow); |
1333 | } | 1317 | } |
1334 | base++; | 1318 | base++; |
1335 | } | 1319 | } |
@@ -1451,7 +1435,7 @@ void hrtimer_run_queues(void) | |||
1451 | hrtimer_get_expires_tv64(timer)) | 1435 | hrtimer_get_expires_tv64(timer)) |
1452 | break; | 1436 | break; |
1453 | 1437 | ||
1454 | __run_hrtimer(timer); | 1438 | __run_hrtimer(timer, &base->softirq_time); |
1455 | } | 1439 | } |
1456 | spin_unlock(&cpu_base->lock); | 1440 | spin_unlock(&cpu_base->lock); |
1457 | } | 1441 | } |
@@ -1628,7 +1612,7 @@ static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, | |||
1628 | while ((node = rb_first(&old_base->active))) { | 1612 | while ((node = rb_first(&old_base->active))) { |
1629 | timer = rb_entry(node, struct hrtimer, node); | 1613 | timer = rb_entry(node, struct hrtimer, node); |
1630 | BUG_ON(hrtimer_callback_running(timer)); | 1614 | BUG_ON(hrtimer_callback_running(timer)); |
1631 | debug_hrtimer_deactivate(timer); | 1615 | debug_deactivate(timer); |
1632 | 1616 | ||
1633 | /* | 1617 | /* |
1634 | * Mark it as STATE_MIGRATE not INACTIVE otherwise the | 1618 | * Mark it as STATE_MIGRATE not INACTIVE otherwise the |
diff --git a/kernel/hung_task.c b/kernel/hung_task.c index 022a4927b785..d4e841747400 100644 --- a/kernel/hung_task.c +++ b/kernel/hung_task.c | |||
@@ -171,12 +171,12 @@ static unsigned long timeout_jiffies(unsigned long timeout) | |||
171 | * Process updating of timeout sysctl | 171 | * Process updating of timeout sysctl |
172 | */ | 172 | */ |
173 | int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, | 173 | int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, |
174 | struct file *filp, void __user *buffer, | 174 | void __user *buffer, |
175 | size_t *lenp, loff_t *ppos) | 175 | size_t *lenp, loff_t *ppos) |
176 | { | 176 | { |
177 | int ret; | 177 | int ret; |
178 | 178 | ||
179 | ret = proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos); | 179 | ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); |
180 | 180 | ||
181 | if (ret || !write) | 181 | if (ret || !write) |
182 | goto out; | 182 | goto out; |
diff --git a/kernel/itimer.c b/kernel/itimer.c index 58762f7077ec..b03451ede528 100644 --- a/kernel/itimer.c +++ b/kernel/itimer.c | |||
@@ -12,6 +12,7 @@ | |||
12 | #include <linux/time.h> | 12 | #include <linux/time.h> |
13 | #include <linux/posix-timers.h> | 13 | #include <linux/posix-timers.h> |
14 | #include <linux/hrtimer.h> | 14 | #include <linux/hrtimer.h> |
15 | #include <trace/events/timer.h> | ||
15 | 16 | ||
16 | #include <asm/uaccess.h> | 17 | #include <asm/uaccess.h> |
17 | 18 | ||
@@ -41,10 +42,43 @@ static struct timeval itimer_get_remtime(struct hrtimer *timer) | |||
41 | return ktime_to_timeval(rem); | 42 | return ktime_to_timeval(rem); |
42 | } | 43 | } |
43 | 44 | ||
45 | static void get_cpu_itimer(struct task_struct *tsk, unsigned int clock_id, | ||
46 | struct itimerval *const value) | ||
47 | { | ||
48 | cputime_t cval, cinterval; | ||
49 | struct cpu_itimer *it = &tsk->signal->it[clock_id]; | ||
50 | |||
51 | spin_lock_irq(&tsk->sighand->siglock); | ||
52 | |||
53 | cval = it->expires; | ||
54 | cinterval = it->incr; | ||
55 | if (!cputime_eq(cval, cputime_zero)) { | ||
56 | struct task_cputime cputime; | ||
57 | cputime_t t; | ||
58 | |||
59 | thread_group_cputimer(tsk, &cputime); | ||
60 | if (clock_id == CPUCLOCK_PROF) | ||
61 | t = cputime_add(cputime.utime, cputime.stime); | ||
62 | else | ||
63 | /* CPUCLOCK_VIRT */ | ||
64 | t = cputime.utime; | ||
65 | |||
66 | if (cputime_le(cval, t)) | ||
67 | /* about to fire */ | ||
68 | cval = cputime_one_jiffy; | ||
69 | else | ||
70 | cval = cputime_sub(cval, t); | ||
71 | } | ||
72 | |||
73 | spin_unlock_irq(&tsk->sighand->siglock); | ||
74 | |||
75 | cputime_to_timeval(cval, &value->it_value); | ||
76 | cputime_to_timeval(cinterval, &value->it_interval); | ||
77 | } | ||
78 | |||
44 | int do_getitimer(int which, struct itimerval *value) | 79 | int do_getitimer(int which, struct itimerval *value) |
45 | { | 80 | { |
46 | struct task_struct *tsk = current; | 81 | struct task_struct *tsk = current; |
47 | cputime_t cinterval, cval; | ||
48 | 82 | ||
49 | switch (which) { | 83 | switch (which) { |
50 | case ITIMER_REAL: | 84 | case ITIMER_REAL: |
@@ -55,44 +89,10 @@ int do_getitimer(int which, struct itimerval *value) | |||
55 | spin_unlock_irq(&tsk->sighand->siglock); | 89 | spin_unlock_irq(&tsk->sighand->siglock); |
56 | break; | 90 | break; |
57 | case ITIMER_VIRTUAL: | 91 | case ITIMER_VIRTUAL: |
58 | spin_lock_irq(&tsk->sighand->siglock); | 92 | get_cpu_itimer(tsk, CPUCLOCK_VIRT, value); |
59 | cval = tsk->signal->it_virt_expires; | ||
60 | cinterval = tsk->signal->it_virt_incr; | ||
61 | if (!cputime_eq(cval, cputime_zero)) { | ||
62 | struct task_cputime cputime; | ||
63 | cputime_t utime; | ||
64 | |||
65 | thread_group_cputimer(tsk, &cputime); | ||
66 | utime = cputime.utime; | ||
67 | if (cputime_le(cval, utime)) { /* about to fire */ | ||
68 | cval = jiffies_to_cputime(1); | ||
69 | } else { | ||
70 | cval = cputime_sub(cval, utime); | ||
71 | } | ||
72 | } | ||
73 | spin_unlock_irq(&tsk->sighand->siglock); | ||
74 | cputime_to_timeval(cval, &value->it_value); | ||
75 | cputime_to_timeval(cinterval, &value->it_interval); | ||
76 | break; | 93 | break; |
77 | case ITIMER_PROF: | 94 | case ITIMER_PROF: |
78 | spin_lock_irq(&tsk->sighand->siglock); | 95 | get_cpu_itimer(tsk, CPUCLOCK_PROF, value); |
79 | cval = tsk->signal->it_prof_expires; | ||
80 | cinterval = tsk->signal->it_prof_incr; | ||
81 | if (!cputime_eq(cval, cputime_zero)) { | ||
82 | struct task_cputime times; | ||
83 | cputime_t ptime; | ||
84 | |||
85 | thread_group_cputimer(tsk, ×); | ||
86 | ptime = cputime_add(times.utime, times.stime); | ||
87 | if (cputime_le(cval, ptime)) { /* about to fire */ | ||
88 | cval = jiffies_to_cputime(1); | ||
89 | } else { | ||
90 | cval = cputime_sub(cval, ptime); | ||
91 | } | ||
92 | } | ||
93 | spin_unlock_irq(&tsk->sighand->siglock); | ||
94 | cputime_to_timeval(cval, &value->it_value); | ||
95 | cputime_to_timeval(cinterval, &value->it_interval); | ||
96 | break; | 96 | break; |
97 | default: | 97 | default: |
98 | return(-EINVAL); | 98 | return(-EINVAL); |
@@ -123,11 +123,62 @@ enum hrtimer_restart it_real_fn(struct hrtimer *timer) | |||
123 | struct signal_struct *sig = | 123 | struct signal_struct *sig = |
124 | container_of(timer, struct signal_struct, real_timer); | 124 | container_of(timer, struct signal_struct, real_timer); |
125 | 125 | ||
126 | trace_itimer_expire(ITIMER_REAL, sig->leader_pid, 0); | ||
126 | kill_pid_info(SIGALRM, SEND_SIG_PRIV, sig->leader_pid); | 127 | kill_pid_info(SIGALRM, SEND_SIG_PRIV, sig->leader_pid); |
127 | 128 | ||
128 | return HRTIMER_NORESTART; | 129 | return HRTIMER_NORESTART; |
129 | } | 130 | } |
130 | 131 | ||
132 | static inline u32 cputime_sub_ns(cputime_t ct, s64 real_ns) | ||
133 | { | ||
134 | struct timespec ts; | ||
135 | s64 cpu_ns; | ||
136 | |||
137 | cputime_to_timespec(ct, &ts); | ||
138 | cpu_ns = timespec_to_ns(&ts); | ||
139 | |||
140 | return (cpu_ns <= real_ns) ? 0 : cpu_ns - real_ns; | ||
141 | } | ||
142 | |||
143 | static void set_cpu_itimer(struct task_struct *tsk, unsigned int clock_id, | ||
144 | const struct itimerval *const value, | ||
145 | struct itimerval *const ovalue) | ||
146 | { | ||
147 | cputime_t cval, nval, cinterval, ninterval; | ||
148 | s64 ns_ninterval, ns_nval; | ||
149 | struct cpu_itimer *it = &tsk->signal->it[clock_id]; | ||
150 | |||
151 | nval = timeval_to_cputime(&value->it_value); | ||
152 | ns_nval = timeval_to_ns(&value->it_value); | ||
153 | ninterval = timeval_to_cputime(&value->it_interval); | ||
154 | ns_ninterval = timeval_to_ns(&value->it_interval); | ||
155 | |||
156 | it->incr_error = cputime_sub_ns(ninterval, ns_ninterval); | ||
157 | it->error = cputime_sub_ns(nval, ns_nval); | ||
158 | |||
159 | spin_lock_irq(&tsk->sighand->siglock); | ||
160 | |||
161 | cval = it->expires; | ||
162 | cinterval = it->incr; | ||
163 | if (!cputime_eq(cval, cputime_zero) || | ||
164 | !cputime_eq(nval, cputime_zero)) { | ||
165 | if (cputime_gt(nval, cputime_zero)) | ||
166 | nval = cputime_add(nval, cputime_one_jiffy); | ||
167 | set_process_cpu_timer(tsk, clock_id, &nval, &cval); | ||
168 | } | ||
169 | it->expires = nval; | ||
170 | it->incr = ninterval; | ||
171 | trace_itimer_state(clock_id == CPUCLOCK_VIRT ? | ||
172 | ITIMER_VIRTUAL : ITIMER_PROF, value, nval); | ||
173 | |||
174 | spin_unlock_irq(&tsk->sighand->siglock); | ||
175 | |||
176 | if (ovalue) { | ||
177 | cputime_to_timeval(cval, &ovalue->it_value); | ||
178 | cputime_to_timeval(cinterval, &ovalue->it_interval); | ||
179 | } | ||
180 | } | ||
181 | |||
131 | /* | 182 | /* |
132 | * Returns true if the timeval is in canonical form | 183 | * Returns true if the timeval is in canonical form |
133 | */ | 184 | */ |
@@ -139,7 +190,6 @@ int do_setitimer(int which, struct itimerval *value, struct itimerval *ovalue) | |||
139 | struct task_struct *tsk = current; | 190 | struct task_struct *tsk = current; |
140 | struct hrtimer *timer; | 191 | struct hrtimer *timer; |
141 | ktime_t expires; | 192 | ktime_t expires; |
142 | cputime_t cval, cinterval, nval, ninterval; | ||
143 | 193 | ||
144 | /* | 194 | /* |
145 | * Validate the timevals in value. | 195 | * Validate the timevals in value. |
@@ -171,51 +221,14 @@ again: | |||
171 | } else | 221 | } else |
172 | tsk->signal->it_real_incr.tv64 = 0; | 222 | tsk->signal->it_real_incr.tv64 = 0; |
173 | 223 | ||
224 | trace_itimer_state(ITIMER_REAL, value, 0); | ||
174 | spin_unlock_irq(&tsk->sighand->siglock); | 225 | spin_unlock_irq(&tsk->sighand->siglock); |
175 | break; | 226 | break; |
176 | case ITIMER_VIRTUAL: | 227 | case ITIMER_VIRTUAL: |
177 | nval = timeval_to_cputime(&value->it_value); | 228 | set_cpu_itimer(tsk, CPUCLOCK_VIRT, value, ovalue); |
178 | ninterval = timeval_to_cputime(&value->it_interval); | ||
179 | spin_lock_irq(&tsk->sighand->siglock); | ||
180 | cval = tsk->signal->it_virt_expires; | ||
181 | cinterval = tsk->signal->it_virt_incr; | ||
182 | if (!cputime_eq(cval, cputime_zero) || | ||
183 | !cputime_eq(nval, cputime_zero)) { | ||
184 | if (cputime_gt(nval, cputime_zero)) | ||
185 | nval = cputime_add(nval, | ||
186 | jiffies_to_cputime(1)); | ||
187 | set_process_cpu_timer(tsk, CPUCLOCK_VIRT, | ||
188 | &nval, &cval); | ||
189 | } | ||
190 | tsk->signal->it_virt_expires = nval; | ||
191 | tsk->signal->it_virt_incr = ninterval; | ||
192 | spin_unlock_irq(&tsk->sighand->siglock); | ||
193 | if (ovalue) { | ||
194 | cputime_to_timeval(cval, &ovalue->it_value); | ||
195 | cputime_to_timeval(cinterval, &ovalue->it_interval); | ||
196 | } | ||
197 | break; | 229 | break; |
198 | case ITIMER_PROF: | 230 | case ITIMER_PROF: |
199 | nval = timeval_to_cputime(&value->it_value); | 231 | set_cpu_itimer(tsk, CPUCLOCK_PROF, value, ovalue); |
200 | ninterval = timeval_to_cputime(&value->it_interval); | ||
201 | spin_lock_irq(&tsk->sighand->siglock); | ||
202 | cval = tsk->signal->it_prof_expires; | ||
203 | cinterval = tsk->signal->it_prof_incr; | ||
204 | if (!cputime_eq(cval, cputime_zero) || | ||
205 | !cputime_eq(nval, cputime_zero)) { | ||
206 | if (cputime_gt(nval, cputime_zero)) | ||
207 | nval = cputime_add(nval, | ||
208 | jiffies_to_cputime(1)); | ||
209 | set_process_cpu_timer(tsk, CPUCLOCK_PROF, | ||
210 | &nval, &cval); | ||
211 | } | ||
212 | tsk->signal->it_prof_expires = nval; | ||
213 | tsk->signal->it_prof_incr = ninterval; | ||
214 | spin_unlock_irq(&tsk->sighand->siglock); | ||
215 | if (ovalue) { | ||
216 | cputime_to_timeval(cval, &ovalue->it_value); | ||
217 | cputime_to_timeval(cinterval, &ovalue->it_interval); | ||
218 | } | ||
219 | break; | 232 | break; |
220 | default: | 233 | default: |
221 | return -EINVAL; | 234 | return -EINVAL; |
diff --git a/kernel/kallsyms.c b/kernel/kallsyms.c index 3a29dbe7898e..8b6b8b697c68 100644 --- a/kernel/kallsyms.c +++ b/kernel/kallsyms.c | |||
@@ -59,7 +59,8 @@ static inline int is_kernel_inittext(unsigned long addr) | |||
59 | 59 | ||
60 | static inline int is_kernel_text(unsigned long addr) | 60 | static inline int is_kernel_text(unsigned long addr) |
61 | { | 61 | { |
62 | if (addr >= (unsigned long)_stext && addr <= (unsigned long)_etext) | 62 | if ((addr >= (unsigned long)_stext && addr <= (unsigned long)_etext) || |
63 | arch_is_kernel_text(addr)) | ||
63 | return 1; | 64 | return 1; |
64 | return in_gate_area_no_task(addr); | 65 | return in_gate_area_no_task(addr); |
65 | } | 66 | } |
diff --git a/kernel/kfifo.c b/kernel/kfifo.c index 26539e3228e5..3765ff3c1bbe 100644 --- a/kernel/kfifo.c +++ b/kernel/kfifo.c | |||
@@ -117,7 +117,7 @@ EXPORT_SYMBOL(kfifo_free); | |||
117 | * writer, you don't need extra locking to use these functions. | 117 | * writer, you don't need extra locking to use these functions. |
118 | */ | 118 | */ |
119 | unsigned int __kfifo_put(struct kfifo *fifo, | 119 | unsigned int __kfifo_put(struct kfifo *fifo, |
120 | unsigned char *buffer, unsigned int len) | 120 | const unsigned char *buffer, unsigned int len) |
121 | { | 121 | { |
122 | unsigned int l; | 122 | unsigned int l; |
123 | 123 | ||
diff --git a/kernel/kprobes.c b/kernel/kprobes.c index ef177d653b2c..cfadc1291d0b 100644 --- a/kernel/kprobes.c +++ b/kernel/kprobes.c | |||
@@ -1321,7 +1321,7 @@ static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v) | |||
1321 | return 0; | 1321 | return 0; |
1322 | } | 1322 | } |
1323 | 1323 | ||
1324 | static struct seq_operations kprobes_seq_ops = { | 1324 | static const struct seq_operations kprobes_seq_ops = { |
1325 | .start = kprobe_seq_start, | 1325 | .start = kprobe_seq_start, |
1326 | .next = kprobe_seq_next, | 1326 | .next = kprobe_seq_next, |
1327 | .stop = kprobe_seq_stop, | 1327 | .stop = kprobe_seq_stop, |
diff --git a/kernel/lockdep.c b/kernel/lockdep.c index f74d2d7aa605..3815ac1d58b2 100644 --- a/kernel/lockdep.c +++ b/kernel/lockdep.c | |||
@@ -578,6 +578,9 @@ static int static_obj(void *obj) | |||
578 | if ((addr >= start) && (addr < end)) | 578 | if ((addr >= start) && (addr < end)) |
579 | return 1; | 579 | return 1; |
580 | 580 | ||
581 | if (arch_is_kernel_data(addr)) | ||
582 | return 1; | ||
583 | |||
581 | #ifdef CONFIG_SMP | 584 | #ifdef CONFIG_SMP |
582 | /* | 585 | /* |
583 | * percpu var? | 586 | * percpu var? |
diff --git a/kernel/lockdep_proc.c b/kernel/lockdep_proc.c index d4b3dbc79fdb..d4aba4f3584c 100644 --- a/kernel/lockdep_proc.c +++ b/kernel/lockdep_proc.c | |||
@@ -594,7 +594,7 @@ static int ls_show(struct seq_file *m, void *v) | |||
594 | return 0; | 594 | return 0; |
595 | } | 595 | } |
596 | 596 | ||
597 | static struct seq_operations lockstat_ops = { | 597 | static const struct seq_operations lockstat_ops = { |
598 | .start = ls_start, | 598 | .start = ls_start, |
599 | .next = ls_next, | 599 | .next = ls_next, |
600 | .stop = ls_stop, | 600 | .stop = ls_stop, |
diff --git a/kernel/marker.c b/kernel/marker.c deleted file mode 100644 index ea54f2647868..000000000000 --- a/kernel/marker.c +++ /dev/null | |||
@@ -1,930 +0,0 @@ | |||
1 | /* | ||
2 | * Copyright (C) 2007 Mathieu Desnoyers | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or modify | ||
5 | * it under the terms of the GNU General Public License as published by | ||
6 | * the Free Software Foundation; either version 2 of the License, or | ||
7 | * (at your option) any later version. | ||
8 | * | ||
9 | * This program is distributed in the hope that it will be useful, | ||
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
12 | * GNU General Public License for more details. | ||
13 | * | ||
14 | * You should have received a copy of the GNU General Public License | ||
15 | * along with this program; if not, write to the Free Software | ||
16 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
17 | */ | ||
18 | #include <linux/module.h> | ||
19 | #include <linux/mutex.h> | ||
20 | #include <linux/types.h> | ||
21 | #include <linux/jhash.h> | ||
22 | #include <linux/list.h> | ||
23 | #include <linux/rcupdate.h> | ||
24 | #include <linux/marker.h> | ||
25 | #include <linux/err.h> | ||
26 | #include <linux/slab.h> | ||
27 | |||
28 | extern struct marker __start___markers[]; | ||
29 | extern struct marker __stop___markers[]; | ||
30 | |||
31 | /* Set to 1 to enable marker debug output */ | ||
32 | static const int marker_debug; | ||
33 | |||
34 | /* | ||
35 | * markers_mutex nests inside module_mutex. Markers mutex protects the builtin | ||
36 | * and module markers and the hash table. | ||
37 | */ | ||
38 | static DEFINE_MUTEX(markers_mutex); | ||
39 | |||
40 | /* | ||
41 | * Marker hash table, containing the active markers. | ||
42 | * Protected by module_mutex. | ||
43 | */ | ||
44 | #define MARKER_HASH_BITS 6 | ||
45 | #define MARKER_TABLE_SIZE (1 << MARKER_HASH_BITS) | ||
46 | static struct hlist_head marker_table[MARKER_TABLE_SIZE]; | ||
47 | |||
48 | /* | ||
49 | * Note about RCU : | ||
50 | * It is used to make sure every handler has finished using its private data | ||
51 | * between two consecutive operation (add or remove) on a given marker. It is | ||
52 | * also used to delay the free of multiple probes array until a quiescent state | ||
53 | * is reached. | ||
54 | * marker entries modifications are protected by the markers_mutex. | ||
55 | */ | ||
56 | struct marker_entry { | ||
57 | struct hlist_node hlist; | ||
58 | char *format; | ||
59 | /* Probe wrapper */ | ||
60 | void (*call)(const struct marker *mdata, void *call_private, ...); | ||
61 | struct marker_probe_closure single; | ||
62 | struct marker_probe_closure *multi; | ||
63 | int refcount; /* Number of times armed. 0 if disarmed. */ | ||
64 | struct rcu_head rcu; | ||
65 | void *oldptr; | ||
66 | int rcu_pending; | ||
67 | unsigned char ptype:1; | ||
68 | unsigned char format_allocated:1; | ||
69 | char name[0]; /* Contains name'\0'format'\0' */ | ||
70 | }; | ||
71 | |||
72 | /** | ||
73 | * __mark_empty_function - Empty probe callback | ||
74 | * @probe_private: probe private data | ||
75 | * @call_private: call site private data | ||
76 | * @fmt: format string | ||
77 | * @...: variable argument list | ||
78 | * | ||
79 | * Empty callback provided as a probe to the markers. By providing this to a | ||
80 | * disabled marker, we make sure the execution flow is always valid even | ||
81 | * though the function pointer change and the marker enabling are two distinct | ||
82 | * operations that modifies the execution flow of preemptible code. | ||
83 | */ | ||
84 | notrace void __mark_empty_function(void *probe_private, void *call_private, | ||
85 | const char *fmt, va_list *args) | ||
86 | { | ||
87 | } | ||
88 | EXPORT_SYMBOL_GPL(__mark_empty_function); | ||
89 | |||
90 | /* | ||
91 | * marker_probe_cb Callback that prepares the variable argument list for probes. | ||
92 | * @mdata: pointer of type struct marker | ||
93 | * @call_private: caller site private data | ||
94 | * @...: Variable argument list. | ||
95 | * | ||
96 | * Since we do not use "typical" pointer based RCU in the 1 argument case, we | ||
97 | * need to put a full smp_rmb() in this branch. This is why we do not use | ||
98 | * rcu_dereference() for the pointer read. | ||
99 | */ | ||
100 | notrace void marker_probe_cb(const struct marker *mdata, | ||
101 | void *call_private, ...) | ||
102 | { | ||
103 | va_list args; | ||
104 | char ptype; | ||
105 | |||
106 | /* | ||
107 | * rcu_read_lock_sched does two things : disabling preemption to make | ||
108 | * sure the teardown of the callbacks can be done correctly when they | ||
109 | * are in modules and they insure RCU read coherency. | ||
110 | */ | ||
111 | rcu_read_lock_sched_notrace(); | ||
112 | ptype = mdata->ptype; | ||
113 | if (likely(!ptype)) { | ||
114 | marker_probe_func *func; | ||
115 | /* Must read the ptype before ptr. They are not data dependant, | ||
116 | * so we put an explicit smp_rmb() here. */ | ||
117 | smp_rmb(); | ||
118 | func = mdata->single.func; | ||
119 | /* Must read the ptr before private data. They are not data | ||
120 | * dependant, so we put an explicit smp_rmb() here. */ | ||
121 | smp_rmb(); | ||
122 | va_start(args, call_private); | ||
123 | func(mdata->single.probe_private, call_private, mdata->format, | ||
124 | &args); | ||
125 | va_end(args); | ||
126 | } else { | ||
127 | struct marker_probe_closure *multi; | ||
128 | int i; | ||
129 | /* | ||
130 | * Read mdata->ptype before mdata->multi. | ||
131 | */ | ||
132 | smp_rmb(); | ||
133 | multi = mdata->multi; | ||
134 | /* | ||
135 | * multi points to an array, therefore accessing the array | ||
136 | * depends on reading multi. However, even in this case, | ||
137 | * we must insure that the pointer is read _before_ the array | ||
138 | * data. Same as rcu_dereference, but we need a full smp_rmb() | ||
139 | * in the fast path, so put the explicit barrier here. | ||
140 | */ | ||
141 | smp_read_barrier_depends(); | ||
142 | for (i = 0; multi[i].func; i++) { | ||
143 | va_start(args, call_private); | ||
144 | multi[i].func(multi[i].probe_private, call_private, | ||
145 | mdata->format, &args); | ||
146 | va_end(args); | ||
147 | } | ||
148 | } | ||
149 | rcu_read_unlock_sched_notrace(); | ||
150 | } | ||
151 | EXPORT_SYMBOL_GPL(marker_probe_cb); | ||
152 | |||
153 | /* | ||
154 | * marker_probe_cb Callback that does not prepare the variable argument list. | ||
155 | * @mdata: pointer of type struct marker | ||
156 | * @call_private: caller site private data | ||
157 | * @...: Variable argument list. | ||
158 | * | ||
159 | * Should be connected to markers "MARK_NOARGS". | ||
160 | */ | ||
161 | static notrace void marker_probe_cb_noarg(const struct marker *mdata, | ||
162 | void *call_private, ...) | ||
163 | { | ||
164 | va_list args; /* not initialized */ | ||
165 | char ptype; | ||
166 | |||
167 | rcu_read_lock_sched_notrace(); | ||
168 | ptype = mdata->ptype; | ||
169 | if (likely(!ptype)) { | ||
170 | marker_probe_func *func; | ||
171 | /* Must read the ptype before ptr. They are not data dependant, | ||
172 | * so we put an explicit smp_rmb() here. */ | ||
173 | smp_rmb(); | ||
174 | func = mdata->single.func; | ||
175 | /* Must read the ptr before private data. They are not data | ||
176 | * dependant, so we put an explicit smp_rmb() here. */ | ||
177 | smp_rmb(); | ||
178 | func(mdata->single.probe_private, call_private, mdata->format, | ||
179 | &args); | ||
180 | } else { | ||
181 | struct marker_probe_closure *multi; | ||
182 | int i; | ||
183 | /* | ||
184 | * Read mdata->ptype before mdata->multi. | ||
185 | */ | ||
186 | smp_rmb(); | ||
187 | multi = mdata->multi; | ||
188 | /* | ||
189 | * multi points to an array, therefore accessing the array | ||
190 | * depends on reading multi. However, even in this case, | ||
191 | * we must insure that the pointer is read _before_ the array | ||
192 | * data. Same as rcu_dereference, but we need a full smp_rmb() | ||
193 | * in the fast path, so put the explicit barrier here. | ||
194 | */ | ||
195 | smp_read_barrier_depends(); | ||
196 | for (i = 0; multi[i].func; i++) | ||
197 | multi[i].func(multi[i].probe_private, call_private, | ||
198 | mdata->format, &args); | ||
199 | } | ||
200 | rcu_read_unlock_sched_notrace(); | ||
201 | } | ||
202 | |||
203 | static void free_old_closure(struct rcu_head *head) | ||
204 | { | ||
205 | struct marker_entry *entry = container_of(head, | ||
206 | struct marker_entry, rcu); | ||
207 | kfree(entry->oldptr); | ||
208 | /* Make sure we free the data before setting the pending flag to 0 */ | ||
209 | smp_wmb(); | ||
210 | entry->rcu_pending = 0; | ||
211 | } | ||
212 | |||
213 | static void debug_print_probes(struct marker_entry *entry) | ||
214 | { | ||
215 | int i; | ||
216 | |||
217 | if (!marker_debug) | ||
218 | return; | ||
219 | |||
220 | if (!entry->ptype) { | ||
221 | printk(KERN_DEBUG "Single probe : %p %p\n", | ||
222 | entry->single.func, | ||
223 | entry->single.probe_private); | ||
224 | } else { | ||
225 | for (i = 0; entry->multi[i].func; i++) | ||
226 | printk(KERN_DEBUG "Multi probe %d : %p %p\n", i, | ||
227 | entry->multi[i].func, | ||
228 | entry->multi[i].probe_private); | ||
229 | } | ||
230 | } | ||
231 | |||
232 | static struct marker_probe_closure * | ||
233 | marker_entry_add_probe(struct marker_entry *entry, | ||
234 | marker_probe_func *probe, void *probe_private) | ||
235 | { | ||
236 | int nr_probes = 0; | ||
237 | struct marker_probe_closure *old, *new; | ||
238 | |||
239 | WARN_ON(!probe); | ||
240 | |||
241 | debug_print_probes(entry); | ||
242 | old = entry->multi; | ||
243 | if (!entry->ptype) { | ||
244 | if (entry->single.func == probe && | ||
245 | entry->single.probe_private == probe_private) | ||
246 | return ERR_PTR(-EBUSY); | ||
247 | if (entry->single.func == __mark_empty_function) { | ||
248 | /* 0 -> 1 probes */ | ||
249 | entry->single.func = probe; | ||
250 | entry->single.probe_private = probe_private; | ||
251 | entry->refcount = 1; | ||
252 | entry->ptype = 0; | ||
253 | debug_print_probes(entry); | ||
254 | return NULL; | ||
255 | } else { | ||
256 | /* 1 -> 2 probes */ | ||
257 | nr_probes = 1; | ||
258 | old = NULL; | ||
259 | } | ||
260 | } else { | ||
261 | /* (N -> N+1), (N != 0, 1) probes */ | ||
262 | for (nr_probes = 0; old[nr_probes].func; nr_probes++) | ||
263 | if (old[nr_probes].func == probe | ||
264 | && old[nr_probes].probe_private | ||
265 | == probe_private) | ||
266 | return ERR_PTR(-EBUSY); | ||
267 | } | ||
268 | /* + 2 : one for new probe, one for NULL func */ | ||
269 | new = kzalloc((nr_probes + 2) * sizeof(struct marker_probe_closure), | ||
270 | GFP_KERNEL); | ||
271 | if (new == NULL) | ||
272 | return ERR_PTR(-ENOMEM); | ||
273 | if (!old) | ||
274 | new[0] = entry->single; | ||
275 | else | ||
276 | memcpy(new, old, | ||
277 | nr_probes * sizeof(struct marker_probe_closure)); | ||
278 | new[nr_probes].func = probe; | ||
279 | new[nr_probes].probe_private = probe_private; | ||
280 | entry->refcount = nr_probes + 1; | ||
281 | entry->multi = new; | ||
282 | entry->ptype = 1; | ||
283 | debug_print_probes(entry); | ||
284 | return old; | ||
285 | } | ||
286 | |||
287 | static struct marker_probe_closure * | ||
288 | marker_entry_remove_probe(struct marker_entry *entry, | ||
289 | marker_probe_func *probe, void *probe_private) | ||
290 | { | ||
291 | int nr_probes = 0, nr_del = 0, i; | ||
292 | struct marker_probe_closure *old, *new; | ||
293 | |||
294 | old = entry->multi; | ||
295 | |||
296 | debug_print_probes(entry); | ||
297 | if (!entry->ptype) { | ||
298 | /* 0 -> N is an error */ | ||
299 | WARN_ON(entry->single.func == __mark_empty_function); | ||
300 | /* 1 -> 0 probes */ | ||
301 | WARN_ON(probe && entry->single.func != probe); | ||
302 | WARN_ON(entry->single.probe_private != probe_private); | ||
303 | entry->single.func = __mark_empty_function; | ||
304 | entry->refcount = 0; | ||
305 | entry->ptype = 0; | ||
306 | debug_print_probes(entry); | ||
307 | return NULL; | ||
308 | } else { | ||
309 | /* (N -> M), (N > 1, M >= 0) probes */ | ||
310 | for (nr_probes = 0; old[nr_probes].func; nr_probes++) { | ||
311 | if ((!probe || old[nr_probes].func == probe) | ||
312 | && old[nr_probes].probe_private | ||
313 | == probe_private) | ||
314 | nr_del++; | ||
315 | } | ||
316 | } | ||
317 | |||
318 | if (nr_probes - nr_del == 0) { | ||
319 | /* N -> 0, (N > 1) */ | ||
320 | entry->single.func = __mark_empty_function; | ||
321 | entry->refcount = 0; | ||
322 | entry->ptype = 0; | ||
323 | } else if (nr_probes - nr_del == 1) { | ||
324 | /* N -> 1, (N > 1) */ | ||
325 | for (i = 0; old[i].func; i++) | ||
326 | if ((probe && old[i].func != probe) || | ||
327 | old[i].probe_private != probe_private) | ||
328 | entry->single = old[i]; | ||
329 | entry->refcount = 1; | ||
330 | entry->ptype = 0; | ||
331 | } else { | ||
332 | int j = 0; | ||
333 | /* N -> M, (N > 1, M > 1) */ | ||
334 | /* + 1 for NULL */ | ||
335 | new = kzalloc((nr_probes - nr_del + 1) | ||
336 | * sizeof(struct marker_probe_closure), GFP_KERNEL); | ||
337 | if (new == NULL) | ||
338 | return ERR_PTR(-ENOMEM); | ||
339 | for (i = 0; old[i].func; i++) | ||
340 | if ((probe && old[i].func != probe) || | ||
341 | old[i].probe_private != probe_private) | ||
342 | new[j++] = old[i]; | ||
343 | entry->refcount = nr_probes - nr_del; | ||
344 | entry->ptype = 1; | ||
345 | entry->multi = new; | ||
346 | } | ||
347 | debug_print_probes(entry); | ||
348 | return old; | ||
349 | } | ||
350 | |||
351 | /* | ||
352 | * Get marker if the marker is present in the marker hash table. | ||
353 | * Must be called with markers_mutex held. | ||
354 | * Returns NULL if not present. | ||
355 | */ | ||
356 | static struct marker_entry *get_marker(const char *name) | ||
357 | { | ||
358 | struct hlist_head *head; | ||
359 | struct hlist_node *node; | ||
360 | struct marker_entry *e; | ||
361 | u32 hash = jhash(name, strlen(name), 0); | ||
362 | |||
363 | head = &marker_table[hash & ((1 << MARKER_HASH_BITS)-1)]; | ||
364 | hlist_for_each_entry(e, node, head, hlist) { | ||
365 | if (!strcmp(name, e->name)) | ||
366 | return e; | ||
367 | } | ||
368 | return NULL; | ||
369 | } | ||
370 | |||
371 | /* | ||
372 | * Add the marker to the marker hash table. Must be called with markers_mutex | ||
373 | * held. | ||
374 | */ | ||
375 | static struct marker_entry *add_marker(const char *name, const char *format) | ||
376 | { | ||
377 | struct hlist_head *head; | ||
378 | struct hlist_node *node; | ||
379 | struct marker_entry *e; | ||
380 | size_t name_len = strlen(name) + 1; | ||
381 | size_t format_len = 0; | ||
382 | u32 hash = jhash(name, name_len-1, 0); | ||
383 | |||
384 | if (format) | ||
385 | format_len = strlen(format) + 1; | ||
386 | head = &marker_table[hash & ((1 << MARKER_HASH_BITS)-1)]; | ||
387 | hlist_for_each_entry(e, node, head, hlist) { | ||
388 | if (!strcmp(name, e->name)) { | ||
389 | printk(KERN_NOTICE | ||
390 | "Marker %s busy\n", name); | ||
391 | return ERR_PTR(-EBUSY); /* Already there */ | ||
392 | } | ||
393 | } | ||
394 | /* | ||
395 | * Using kmalloc here to allocate a variable length element. Could | ||
396 | * cause some memory fragmentation if overused. | ||
397 | */ | ||
398 | e = kmalloc(sizeof(struct marker_entry) + name_len + format_len, | ||
399 | GFP_KERNEL); | ||
400 | if (!e) | ||
401 | return ERR_PTR(-ENOMEM); | ||
402 | memcpy(&e->name[0], name, name_len); | ||
403 | if (format) { | ||
404 | e->format = &e->name[name_len]; | ||
405 | memcpy(e->format, format, format_len); | ||
406 | if (strcmp(e->format, MARK_NOARGS) == 0) | ||
407 | e->call = marker_probe_cb_noarg; | ||
408 | else | ||
409 | e->call = marker_probe_cb; | ||
410 | trace_mark(core_marker_format, "name %s format %s", | ||
411 | e->name, e->format); | ||
412 | } else { | ||
413 | e->format = NULL; | ||
414 | e->call = marker_probe_cb; | ||
415 | } | ||
416 | e->single.func = __mark_empty_function; | ||
417 | e->single.probe_private = NULL; | ||
418 | e->multi = NULL; | ||
419 | e->ptype = 0; | ||
420 | e->format_allocated = 0; | ||
421 | e->refcount = 0; | ||
422 | e->rcu_pending = 0; | ||
423 | hlist_add_head(&e->hlist, head); | ||
424 | return e; | ||
425 | } | ||
426 | |||
427 | /* | ||
428 | * Remove the marker from the marker hash table. Must be called with mutex_lock | ||
429 | * held. | ||
430 | */ | ||
431 | static int remove_marker(const char *name) | ||
432 | { | ||
433 | struct hlist_head *head; | ||
434 | struct hlist_node *node; | ||
435 | struct marker_entry *e; | ||
436 | int found = 0; | ||
437 | size_t len = strlen(name) + 1; | ||
438 | u32 hash = jhash(name, len-1, 0); | ||
439 | |||
440 | head = &marker_table[hash & ((1 << MARKER_HASH_BITS)-1)]; | ||
441 | hlist_for_each_entry(e, node, head, hlist) { | ||
442 | if (!strcmp(name, e->name)) { | ||
443 | found = 1; | ||
444 | break; | ||
445 | } | ||
446 | } | ||
447 | if (!found) | ||
448 | return -ENOENT; | ||
449 | if (e->single.func != __mark_empty_function) | ||
450 | return -EBUSY; | ||
451 | hlist_del(&e->hlist); | ||
452 | if (e->format_allocated) | ||
453 | kfree(e->format); | ||
454 | /* Make sure the call_rcu has been executed */ | ||
455 | if (e->rcu_pending) | ||
456 | rcu_barrier_sched(); | ||
457 | kfree(e); | ||
458 | return 0; | ||
459 | } | ||
460 | |||
461 | /* | ||
462 | * Set the mark_entry format to the format found in the element. | ||
463 | */ | ||
464 | static int marker_set_format(struct marker_entry *entry, const char *format) | ||
465 | { | ||
466 | entry->format = kstrdup(format, GFP_KERNEL); | ||
467 | if (!entry->format) | ||
468 | return -ENOMEM; | ||
469 | entry->format_allocated = 1; | ||
470 | |||
471 | trace_mark(core_marker_format, "name %s format %s", | ||
472 | entry->name, entry->format); | ||
473 | return 0; | ||
474 | } | ||
475 | |||
476 | /* | ||
477 | * Sets the probe callback corresponding to one marker. | ||
478 | */ | ||
479 | static int set_marker(struct marker_entry *entry, struct marker *elem, | ||
480 | int active) | ||
481 | { | ||
482 | int ret = 0; | ||
483 | WARN_ON(strcmp(entry->name, elem->name) != 0); | ||
484 | |||
485 | if (entry->format) { | ||
486 | if (strcmp(entry->format, elem->format) != 0) { | ||
487 | printk(KERN_NOTICE | ||
488 | "Format mismatch for probe %s " | ||
489 | "(%s), marker (%s)\n", | ||
490 | entry->name, | ||
491 | entry->format, | ||
492 | elem->format); | ||
493 | return -EPERM; | ||
494 | } | ||
495 | } else { | ||
496 | ret = marker_set_format(entry, elem->format); | ||
497 | if (ret) | ||
498 | return ret; | ||
499 | } | ||
500 | |||
501 | /* | ||
502 | * probe_cb setup (statically known) is done here. It is | ||
503 | * asynchronous with the rest of execution, therefore we only | ||
504 | * pass from a "safe" callback (with argument) to an "unsafe" | ||
505 | * callback (does not set arguments). | ||
506 | */ | ||
507 | elem->call = entry->call; | ||
508 | /* | ||
509 | * Sanity check : | ||
510 | * We only update the single probe private data when the ptr is | ||
511 | * set to a _non_ single probe! (0 -> 1 and N -> 1, N != 1) | ||
512 | */ | ||
513 | WARN_ON(elem->single.func != __mark_empty_function | ||
514 | && elem->single.probe_private != entry->single.probe_private | ||
515 | && !elem->ptype); | ||
516 | elem->single.probe_private = entry->single.probe_private; | ||
517 | /* | ||
518 | * Make sure the private data is valid when we update the | ||
519 | * single probe ptr. | ||
520 | */ | ||
521 | smp_wmb(); | ||
522 | elem->single.func = entry->single.func; | ||
523 | /* | ||
524 | * We also make sure that the new probe callbacks array is consistent | ||
525 | * before setting a pointer to it. | ||
526 | */ | ||
527 | rcu_assign_pointer(elem->multi, entry->multi); | ||
528 | /* | ||
529 | * Update the function or multi probe array pointer before setting the | ||
530 | * ptype. | ||
531 | */ | ||
532 | smp_wmb(); | ||
533 | elem->ptype = entry->ptype; | ||
534 | |||
535 | if (elem->tp_name && (active ^ elem->state)) { | ||
536 | WARN_ON(!elem->tp_cb); | ||
537 | /* | ||
538 | * It is ok to directly call the probe registration because type | ||
539 | * checking has been done in the __trace_mark_tp() macro. | ||
540 | */ | ||
541 | |||
542 | if (active) { | ||
543 | /* | ||
544 | * try_module_get should always succeed because we hold | ||
545 | * lock_module() to get the tp_cb address. | ||
546 | */ | ||
547 | ret = try_module_get(__module_text_address( | ||
548 | (unsigned long)elem->tp_cb)); | ||
549 | BUG_ON(!ret); | ||
550 | ret = tracepoint_probe_register_noupdate( | ||
551 | elem->tp_name, | ||
552 | elem->tp_cb); | ||
553 | } else { | ||
554 | ret = tracepoint_probe_unregister_noupdate( | ||
555 | elem->tp_name, | ||
556 | elem->tp_cb); | ||
557 | /* | ||
558 | * tracepoint_probe_update_all() must be called | ||
559 | * before the module containing tp_cb is unloaded. | ||
560 | */ | ||
561 | module_put(__module_text_address( | ||
562 | (unsigned long)elem->tp_cb)); | ||
563 | } | ||
564 | } | ||
565 | elem->state = active; | ||
566 | |||
567 | return ret; | ||
568 | } | ||
569 | |||
570 | /* | ||
571 | * Disable a marker and its probe callback. | ||
572 | * Note: only waiting an RCU period after setting elem->call to the empty | ||
573 | * function insures that the original callback is not used anymore. This insured | ||
574 | * by rcu_read_lock_sched around the call site. | ||
575 | */ | ||
576 | static void disable_marker(struct marker *elem) | ||
577 | { | ||
578 | int ret; | ||
579 | |||
580 | /* leave "call" as is. It is known statically. */ | ||
581 | if (elem->tp_name && elem->state) { | ||
582 | WARN_ON(!elem->tp_cb); | ||
583 | /* | ||
584 | * It is ok to directly call the probe registration because type | ||
585 | * checking has been done in the __trace_mark_tp() macro. | ||
586 | */ | ||
587 | ret = tracepoint_probe_unregister_noupdate(elem->tp_name, | ||
588 | elem->tp_cb); | ||
589 | WARN_ON(ret); | ||
590 | /* | ||
591 | * tracepoint_probe_update_all() must be called | ||
592 | * before the module containing tp_cb is unloaded. | ||
593 | */ | ||
594 | module_put(__module_text_address((unsigned long)elem->tp_cb)); | ||
595 | } | ||
596 | elem->state = 0; | ||
597 | elem->single.func = __mark_empty_function; | ||
598 | /* Update the function before setting the ptype */ | ||
599 | smp_wmb(); | ||
600 | elem->ptype = 0; /* single probe */ | ||
601 | /* | ||
602 | * Leave the private data and id there, because removal is racy and | ||
603 | * should be done only after an RCU period. These are never used until | ||
604 | * the next initialization anyway. | ||
605 | */ | ||
606 | } | ||
607 | |||
608 | /** | ||
609 | * marker_update_probe_range - Update a probe range | ||
610 | * @begin: beginning of the range | ||
611 | * @end: end of the range | ||
612 | * | ||
613 | * Updates the probe callback corresponding to a range of markers. | ||
614 | */ | ||
615 | void marker_update_probe_range(struct marker *begin, | ||
616 | struct marker *end) | ||
617 | { | ||
618 | struct marker *iter; | ||
619 | struct marker_entry *mark_entry; | ||
620 | |||
621 | mutex_lock(&markers_mutex); | ||
622 | for (iter = begin; iter < end; iter++) { | ||
623 | mark_entry = get_marker(iter->name); | ||
624 | if (mark_entry) { | ||
625 | set_marker(mark_entry, iter, !!mark_entry->refcount); | ||
626 | /* | ||
627 | * ignore error, continue | ||
628 | */ | ||
629 | } else { | ||
630 | disable_marker(iter); | ||
631 | } | ||
632 | } | ||
633 | mutex_unlock(&markers_mutex); | ||
634 | } | ||
635 | |||
636 | /* | ||
637 | * Update probes, removing the faulty probes. | ||
638 | * | ||
639 | * Internal callback only changed before the first probe is connected to it. | ||
640 | * Single probe private data can only be changed on 0 -> 1 and 2 -> 1 | ||
641 | * transitions. All other transitions will leave the old private data valid. | ||
642 | * This makes the non-atomicity of the callback/private data updates valid. | ||
643 | * | ||
644 | * "special case" updates : | ||
645 | * 0 -> 1 callback | ||
646 | * 1 -> 0 callback | ||
647 | * 1 -> 2 callbacks | ||
648 | * 2 -> 1 callbacks | ||
649 | * Other updates all behave the same, just like the 2 -> 3 or 3 -> 2 updates. | ||
650 | * Site effect : marker_set_format may delete the marker entry (creating a | ||
651 | * replacement). | ||
652 | */ | ||
653 | static void marker_update_probes(void) | ||
654 | { | ||
655 | /* Core kernel markers */ | ||
656 | marker_update_probe_range(__start___markers, __stop___markers); | ||
657 | /* Markers in modules. */ | ||
658 | module_update_markers(); | ||
659 | tracepoint_probe_update_all(); | ||
660 | } | ||
661 | |||
662 | /** | ||
663 | * marker_probe_register - Connect a probe to a marker | ||
664 | * @name: marker name | ||
665 | * @format: format string | ||
666 | * @probe: probe handler | ||
667 | * @probe_private: probe private data | ||
668 | * | ||
669 | * private data must be a valid allocated memory address, or NULL. | ||
670 | * Returns 0 if ok, error value on error. | ||
671 | * The probe address must at least be aligned on the architecture pointer size. | ||
672 | */ | ||
673 | int marker_probe_register(const char *name, const char *format, | ||
674 | marker_probe_func *probe, void *probe_private) | ||
675 | { | ||
676 | struct marker_entry *entry; | ||
677 | int ret = 0; | ||
678 | struct marker_probe_closure *old; | ||
679 | |||
680 | mutex_lock(&markers_mutex); | ||
681 | entry = get_marker(name); | ||
682 | if (!entry) { | ||
683 | entry = add_marker(name, format); | ||
684 | if (IS_ERR(entry)) | ||
685 | ret = PTR_ERR(entry); | ||
686 | } else if (format) { | ||
687 | if (!entry->format) | ||
688 | ret = marker_set_format(entry, format); | ||
689 | else if (strcmp(entry->format, format)) | ||
690 | ret = -EPERM; | ||
691 | } | ||
692 | if (ret) | ||
693 | goto end; | ||
694 | |||
695 | /* | ||
696 | * If we detect that a call_rcu is pending for this marker, | ||
697 | * make sure it's executed now. | ||
698 | */ | ||
699 | if (entry->rcu_pending) | ||
700 | rcu_barrier_sched(); | ||
701 | old = marker_entry_add_probe(entry, probe, probe_private); | ||
702 | if (IS_ERR(old)) { | ||
703 | ret = PTR_ERR(old); | ||
704 | goto end; | ||
705 | } | ||
706 | mutex_unlock(&markers_mutex); | ||
707 | marker_update_probes(); | ||
708 | mutex_lock(&markers_mutex); | ||
709 | entry = get_marker(name); | ||
710 | if (!entry) | ||
711 | goto end; | ||
712 | if (entry->rcu_pending) | ||
713 | rcu_barrier_sched(); | ||
714 | entry->oldptr = old; | ||
715 | entry->rcu_pending = 1; | ||
716 | /* write rcu_pending before calling the RCU callback */ | ||
717 | smp_wmb(); | ||
718 | call_rcu_sched(&entry->rcu, free_old_closure); | ||
719 | end: | ||
720 | mutex_unlock(&markers_mutex); | ||
721 | return ret; | ||
722 | } | ||
723 | EXPORT_SYMBOL_GPL(marker_probe_register); | ||
724 | |||
725 | /** | ||
726 | * marker_probe_unregister - Disconnect a probe from a marker | ||
727 | * @name: marker name | ||
728 | * @probe: probe function pointer | ||
729 | * @probe_private: probe private data | ||
730 | * | ||
731 | * Returns the private data given to marker_probe_register, or an ERR_PTR(). | ||
732 | * We do not need to call a synchronize_sched to make sure the probes have | ||
733 | * finished running before doing a module unload, because the module unload | ||
734 | * itself uses stop_machine(), which insures that every preempt disabled section | ||
735 | * have finished. | ||
736 | */ | ||
737 | int marker_probe_unregister(const char *name, | ||
738 | marker_probe_func *probe, void *probe_private) | ||
739 | { | ||
740 | struct marker_entry *entry; | ||
741 | struct marker_probe_closure *old; | ||
742 | int ret = -ENOENT; | ||
743 | |||
744 | mutex_lock(&markers_mutex); | ||
745 | entry = get_marker(name); | ||
746 | if (!entry) | ||
747 | goto end; | ||
748 | if (entry->rcu_pending) | ||
749 | rcu_barrier_sched(); | ||
750 | old = marker_entry_remove_probe(entry, probe, probe_private); | ||
751 | mutex_unlock(&markers_mutex); | ||
752 | marker_update_probes(); | ||
753 | mutex_lock(&markers_mutex); | ||
754 | entry = get_marker(name); | ||
755 | if (!entry) | ||
756 | goto end; | ||
757 | if (entry->rcu_pending) | ||
758 | rcu_barrier_sched(); | ||
759 | entry->oldptr = old; | ||
760 | entry->rcu_pending = 1; | ||
761 | /* write rcu_pending before calling the RCU callback */ | ||
762 | smp_wmb(); | ||
763 | call_rcu_sched(&entry->rcu, free_old_closure); | ||
764 | remove_marker(name); /* Ignore busy error message */ | ||
765 | ret = 0; | ||
766 | end: | ||
767 | mutex_unlock(&markers_mutex); | ||
768 | return ret; | ||
769 | } | ||
770 | EXPORT_SYMBOL_GPL(marker_probe_unregister); | ||
771 | |||
772 | static struct marker_entry * | ||
773 | get_marker_from_private_data(marker_probe_func *probe, void *probe_private) | ||
774 | { | ||
775 | struct marker_entry *entry; | ||
776 | unsigned int i; | ||
777 | struct hlist_head *head; | ||
778 | struct hlist_node *node; | ||
779 | |||
780 | for (i = 0; i < MARKER_TABLE_SIZE; i++) { | ||
781 | head = &marker_table[i]; | ||
782 | hlist_for_each_entry(entry, node, head, hlist) { | ||
783 | if (!entry->ptype) { | ||
784 | if (entry->single.func == probe | ||
785 | && entry->single.probe_private | ||
786 | == probe_private) | ||
787 | return entry; | ||
788 | } else { | ||
789 | struct marker_probe_closure *closure; | ||
790 | closure = entry->multi; | ||
791 | for (i = 0; closure[i].func; i++) { | ||
792 | if (closure[i].func == probe && | ||
793 | closure[i].probe_private | ||
794 | == probe_private) | ||
795 | return entry; | ||
796 | } | ||
797 | } | ||
798 | } | ||
799 | } | ||
800 | return NULL; | ||
801 | } | ||
802 | |||
803 | /** | ||
804 | * marker_probe_unregister_private_data - Disconnect a probe from a marker | ||
805 | * @probe: probe function | ||
806 | * @probe_private: probe private data | ||
807 | * | ||
808 | * Unregister a probe by providing the registered private data. | ||
809 | * Only removes the first marker found in hash table. | ||
810 | * Return 0 on success or error value. | ||
811 | * We do not need to call a synchronize_sched to make sure the probes have | ||
812 | * finished running before doing a module unload, because the module unload | ||
813 | * itself uses stop_machine(), which insures that every preempt disabled section | ||
814 | * have finished. | ||
815 | */ | ||
816 | int marker_probe_unregister_private_data(marker_probe_func *probe, | ||
817 | void *probe_private) | ||
818 | { | ||
819 | struct marker_entry *entry; | ||
820 | int ret = 0; | ||
821 | struct marker_probe_closure *old; | ||
822 | |||
823 | mutex_lock(&markers_mutex); | ||
824 | entry = get_marker_from_private_data(probe, probe_private); | ||
825 | if (!entry) { | ||
826 | ret = -ENOENT; | ||
827 | goto end; | ||
828 | } | ||
829 | if (entry->rcu_pending) | ||
830 | rcu_barrier_sched(); | ||
831 | old = marker_entry_remove_probe(entry, NULL, probe_private); | ||
832 | mutex_unlock(&markers_mutex); | ||
833 | marker_update_probes(); | ||
834 | mutex_lock(&markers_mutex); | ||
835 | entry = get_marker_from_private_data(probe, probe_private); | ||
836 | if (!entry) | ||
837 | goto end; | ||
838 | if (entry->rcu_pending) | ||
839 | rcu_barrier_sched(); | ||
840 | entry->oldptr = old; | ||
841 | entry->rcu_pending = 1; | ||
842 | /* write rcu_pending before calling the RCU callback */ | ||
843 | smp_wmb(); | ||
844 | call_rcu_sched(&entry->rcu, free_old_closure); | ||
845 | remove_marker(entry->name); /* Ignore busy error message */ | ||
846 | end: | ||
847 | mutex_unlock(&markers_mutex); | ||
848 | return ret; | ||
849 | } | ||
850 | EXPORT_SYMBOL_GPL(marker_probe_unregister_private_data); | ||
851 | |||
852 | /** | ||
853 | * marker_get_private_data - Get a marker's probe private data | ||
854 | * @name: marker name | ||
855 | * @probe: probe to match | ||
856 | * @num: get the nth matching probe's private data | ||
857 | * | ||
858 | * Returns the nth private data pointer (starting from 0) matching, or an | ||
859 | * ERR_PTR. | ||
860 | * Returns the private data pointer, or an ERR_PTR. | ||
861 | * The private data pointer should _only_ be dereferenced if the caller is the | ||
862 | * owner of the data, or its content could vanish. This is mostly used to | ||
863 | * confirm that a caller is the owner of a registered probe. | ||
864 | */ | ||
865 | void *marker_get_private_data(const char *name, marker_probe_func *probe, | ||
866 | int num) | ||
867 | { | ||
868 | struct hlist_head *head; | ||
869 | struct hlist_node *node; | ||
870 | struct marker_entry *e; | ||
871 | size_t name_len = strlen(name) + 1; | ||
872 | u32 hash = jhash(name, name_len-1, 0); | ||
873 | int i; | ||
874 | |||
875 | head = &marker_table[hash & ((1 << MARKER_HASH_BITS)-1)]; | ||
876 | hlist_for_each_entry(e, node, head, hlist) { | ||
877 | if (!strcmp(name, e->name)) { | ||
878 | if (!e->ptype) { | ||
879 | if (num == 0 && e->single.func == probe) | ||
880 | return e->single.probe_private; | ||
881 | } else { | ||
882 | struct marker_probe_closure *closure; | ||
883 | int match = 0; | ||
884 | closure = e->multi; | ||
885 | for (i = 0; closure[i].func; i++) { | ||
886 | if (closure[i].func != probe) | ||
887 | continue; | ||
888 | if (match++ == num) | ||
889 | return closure[i].probe_private; | ||
890 | } | ||
891 | } | ||
892 | break; | ||
893 | } | ||
894 | } | ||
895 | return ERR_PTR(-ENOENT); | ||
896 | } | ||
897 | EXPORT_SYMBOL_GPL(marker_get_private_data); | ||
898 | |||
899 | #ifdef CONFIG_MODULES | ||
900 | |||
901 | int marker_module_notify(struct notifier_block *self, | ||
902 | unsigned long val, void *data) | ||
903 | { | ||
904 | struct module *mod = data; | ||
905 | |||
906 | switch (val) { | ||
907 | case MODULE_STATE_COMING: | ||
908 | marker_update_probe_range(mod->markers, | ||
909 | mod->markers + mod->num_markers); | ||
910 | break; | ||
911 | case MODULE_STATE_GOING: | ||
912 | marker_update_probe_range(mod->markers, | ||
913 | mod->markers + mod->num_markers); | ||
914 | break; | ||
915 | } | ||
916 | return 0; | ||
917 | } | ||
918 | |||
919 | struct notifier_block marker_module_nb = { | ||
920 | .notifier_call = marker_module_notify, | ||
921 | .priority = 0, | ||
922 | }; | ||
923 | |||
924 | static int init_markers(void) | ||
925 | { | ||
926 | return register_module_notifier(&marker_module_nb); | ||
927 | } | ||
928 | __initcall(init_markers); | ||
929 | |||
930 | #endif /* CONFIG_MODULES */ | ||
diff --git a/kernel/module.c b/kernel/module.c index 05ce49ced8f6..fe748a86d452 100644 --- a/kernel/module.c +++ b/kernel/module.c | |||
@@ -47,6 +47,7 @@ | |||
47 | #include <linux/rculist.h> | 47 | #include <linux/rculist.h> |
48 | #include <asm/uaccess.h> | 48 | #include <asm/uaccess.h> |
49 | #include <asm/cacheflush.h> | 49 | #include <asm/cacheflush.h> |
50 | #include <asm/mmu_context.h> | ||
50 | #include <linux/license.h> | 51 | #include <linux/license.h> |
51 | #include <asm/sections.h> | 52 | #include <asm/sections.h> |
52 | #include <linux/tracepoint.h> | 53 | #include <linux/tracepoint.h> |
@@ -1535,6 +1536,10 @@ static void free_module(struct module *mod) | |||
1535 | 1536 | ||
1536 | /* Finally, free the core (containing the module structure) */ | 1537 | /* Finally, free the core (containing the module structure) */ |
1537 | module_free(mod, mod->module_core); | 1538 | module_free(mod, mod->module_core); |
1539 | |||
1540 | #ifdef CONFIG_MPU | ||
1541 | update_protections(current->mm); | ||
1542 | #endif | ||
1538 | } | 1543 | } |
1539 | 1544 | ||
1540 | void *__symbol_get(const char *symbol) | 1545 | void *__symbol_get(const char *symbol) |
@@ -1792,6 +1797,17 @@ static void setup_modinfo(struct module *mod, Elf_Shdr *sechdrs, | |||
1792 | } | 1797 | } |
1793 | } | 1798 | } |
1794 | 1799 | ||
1800 | static void free_modinfo(struct module *mod) | ||
1801 | { | ||
1802 | struct module_attribute *attr; | ||
1803 | int i; | ||
1804 | |||
1805 | for (i = 0; (attr = modinfo_attrs[i]); i++) { | ||
1806 | if (attr->free) | ||
1807 | attr->free(mod); | ||
1808 | } | ||
1809 | } | ||
1810 | |||
1795 | #ifdef CONFIG_KALLSYMS | 1811 | #ifdef CONFIG_KALLSYMS |
1796 | 1812 | ||
1797 | /* lookup symbol in given range of kernel_symbols */ | 1813 | /* lookup symbol in given range of kernel_symbols */ |
@@ -1857,13 +1873,93 @@ static char elf_type(const Elf_Sym *sym, | |||
1857 | return '?'; | 1873 | return '?'; |
1858 | } | 1874 | } |
1859 | 1875 | ||
1876 | static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs, | ||
1877 | unsigned int shnum) | ||
1878 | { | ||
1879 | const Elf_Shdr *sec; | ||
1880 | |||
1881 | if (src->st_shndx == SHN_UNDEF | ||
1882 | || src->st_shndx >= shnum | ||
1883 | || !src->st_name) | ||
1884 | return false; | ||
1885 | |||
1886 | sec = sechdrs + src->st_shndx; | ||
1887 | if (!(sec->sh_flags & SHF_ALLOC) | ||
1888 | #ifndef CONFIG_KALLSYMS_ALL | ||
1889 | || !(sec->sh_flags & SHF_EXECINSTR) | ||
1890 | #endif | ||
1891 | || (sec->sh_entsize & INIT_OFFSET_MASK)) | ||
1892 | return false; | ||
1893 | |||
1894 | return true; | ||
1895 | } | ||
1896 | |||
1897 | static unsigned long layout_symtab(struct module *mod, | ||
1898 | Elf_Shdr *sechdrs, | ||
1899 | unsigned int symindex, | ||
1900 | unsigned int strindex, | ||
1901 | const Elf_Ehdr *hdr, | ||
1902 | const char *secstrings, | ||
1903 | unsigned long *pstroffs, | ||
1904 | unsigned long *strmap) | ||
1905 | { | ||
1906 | unsigned long symoffs; | ||
1907 | Elf_Shdr *symsect = sechdrs + symindex; | ||
1908 | Elf_Shdr *strsect = sechdrs + strindex; | ||
1909 | const Elf_Sym *src; | ||
1910 | const char *strtab; | ||
1911 | unsigned int i, nsrc, ndst; | ||
1912 | |||
1913 | /* Put symbol section at end of init part of module. */ | ||
1914 | symsect->sh_flags |= SHF_ALLOC; | ||
1915 | symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect, | ||
1916 | symindex) | INIT_OFFSET_MASK; | ||
1917 | DEBUGP("\t%s\n", secstrings + symsect->sh_name); | ||
1918 | |||
1919 | src = (void *)hdr + symsect->sh_offset; | ||
1920 | nsrc = symsect->sh_size / sizeof(*src); | ||
1921 | strtab = (void *)hdr + strsect->sh_offset; | ||
1922 | for (ndst = i = 1; i < nsrc; ++i, ++src) | ||
1923 | if (is_core_symbol(src, sechdrs, hdr->e_shnum)) { | ||
1924 | unsigned int j = src->st_name; | ||
1925 | |||
1926 | while(!__test_and_set_bit(j, strmap) && strtab[j]) | ||
1927 | ++j; | ||
1928 | ++ndst; | ||
1929 | } | ||
1930 | |||
1931 | /* Append room for core symbols at end of core part. */ | ||
1932 | symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1); | ||
1933 | mod->core_size = symoffs + ndst * sizeof(Elf_Sym); | ||
1934 | |||
1935 | /* Put string table section at end of init part of module. */ | ||
1936 | strsect->sh_flags |= SHF_ALLOC; | ||
1937 | strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect, | ||
1938 | strindex) | INIT_OFFSET_MASK; | ||
1939 | DEBUGP("\t%s\n", secstrings + strsect->sh_name); | ||
1940 | |||
1941 | /* Append room for core symbols' strings at end of core part. */ | ||
1942 | *pstroffs = mod->core_size; | ||
1943 | __set_bit(0, strmap); | ||
1944 | mod->core_size += bitmap_weight(strmap, strsect->sh_size); | ||
1945 | |||
1946 | return symoffs; | ||
1947 | } | ||
1948 | |||
1860 | static void add_kallsyms(struct module *mod, | 1949 | static void add_kallsyms(struct module *mod, |
1861 | Elf_Shdr *sechdrs, | 1950 | Elf_Shdr *sechdrs, |
1951 | unsigned int shnum, | ||
1862 | unsigned int symindex, | 1952 | unsigned int symindex, |
1863 | unsigned int strindex, | 1953 | unsigned int strindex, |
1864 | const char *secstrings) | 1954 | unsigned long symoffs, |
1955 | unsigned long stroffs, | ||
1956 | const char *secstrings, | ||
1957 | unsigned long *strmap) | ||
1865 | { | 1958 | { |
1866 | unsigned int i; | 1959 | unsigned int i, ndst; |
1960 | const Elf_Sym *src; | ||
1961 | Elf_Sym *dst; | ||
1962 | char *s; | ||
1867 | 1963 | ||
1868 | mod->symtab = (void *)sechdrs[symindex].sh_addr; | 1964 | mod->symtab = (void *)sechdrs[symindex].sh_addr; |
1869 | mod->num_symtab = sechdrs[symindex].sh_size / sizeof(Elf_Sym); | 1965 | mod->num_symtab = sechdrs[symindex].sh_size / sizeof(Elf_Sym); |
@@ -1873,13 +1969,44 @@ static void add_kallsyms(struct module *mod, | |||
1873 | for (i = 0; i < mod->num_symtab; i++) | 1969 | for (i = 0; i < mod->num_symtab; i++) |
1874 | mod->symtab[i].st_info | 1970 | mod->symtab[i].st_info |
1875 | = elf_type(&mod->symtab[i], sechdrs, secstrings, mod); | 1971 | = elf_type(&mod->symtab[i], sechdrs, secstrings, mod); |
1972 | |||
1973 | mod->core_symtab = dst = mod->module_core + symoffs; | ||
1974 | src = mod->symtab; | ||
1975 | *dst = *src; | ||
1976 | for (ndst = i = 1; i < mod->num_symtab; ++i, ++src) { | ||
1977 | if (!is_core_symbol(src, sechdrs, shnum)) | ||
1978 | continue; | ||
1979 | dst[ndst] = *src; | ||
1980 | dst[ndst].st_name = bitmap_weight(strmap, dst[ndst].st_name); | ||
1981 | ++ndst; | ||
1982 | } | ||
1983 | mod->core_num_syms = ndst; | ||
1984 | |||
1985 | mod->core_strtab = s = mod->module_core + stroffs; | ||
1986 | for (*s = 0, i = 1; i < sechdrs[strindex].sh_size; ++i) | ||
1987 | if (test_bit(i, strmap)) | ||
1988 | *++s = mod->strtab[i]; | ||
1876 | } | 1989 | } |
1877 | #else | 1990 | #else |
1991 | static inline unsigned long layout_symtab(struct module *mod, | ||
1992 | Elf_Shdr *sechdrs, | ||
1993 | unsigned int symindex, | ||
1994 | unsigned int strindex, | ||
1995 | const Elf_Hdr *hdr, | ||
1996 | const char *secstrings, | ||
1997 | unsigned long *pstroffs, | ||
1998 | unsigned long *strmap) | ||
1999 | { | ||
2000 | } | ||
1878 | static inline void add_kallsyms(struct module *mod, | 2001 | static inline void add_kallsyms(struct module *mod, |
1879 | Elf_Shdr *sechdrs, | 2002 | Elf_Shdr *sechdrs, |
2003 | unsigned int shnum, | ||
1880 | unsigned int symindex, | 2004 | unsigned int symindex, |
1881 | unsigned int strindex, | 2005 | unsigned int strindex, |
1882 | const char *secstrings) | 2006 | unsigned long symoffs, |
2007 | unsigned long stroffs, | ||
2008 | const char *secstrings, | ||
2009 | const unsigned long *strmap) | ||
1883 | { | 2010 | { |
1884 | } | 2011 | } |
1885 | #endif /* CONFIG_KALLSYMS */ | 2012 | #endif /* CONFIG_KALLSYMS */ |
@@ -1954,6 +2081,9 @@ static noinline struct module *load_module(void __user *umod, | |||
1954 | struct module *mod; | 2081 | struct module *mod; |
1955 | long err = 0; | 2082 | long err = 0; |
1956 | void *percpu = NULL, *ptr = NULL; /* Stops spurious gcc warning */ | 2083 | void *percpu = NULL, *ptr = NULL; /* Stops spurious gcc warning */ |
2084 | #ifdef CONFIG_KALLSYMS | ||
2085 | unsigned long symoffs, stroffs, *strmap; | ||
2086 | #endif | ||
1957 | mm_segment_t old_fs; | 2087 | mm_segment_t old_fs; |
1958 | 2088 | ||
1959 | DEBUGP("load_module: umod=%p, len=%lu, uargs=%p\n", | 2089 | DEBUGP("load_module: umod=%p, len=%lu, uargs=%p\n", |
@@ -2035,11 +2165,6 @@ static noinline struct module *load_module(void __user *umod, | |||
2035 | /* Don't keep modinfo and version sections. */ | 2165 | /* Don't keep modinfo and version sections. */ |
2036 | sechdrs[infoindex].sh_flags &= ~(unsigned long)SHF_ALLOC; | 2166 | sechdrs[infoindex].sh_flags &= ~(unsigned long)SHF_ALLOC; |
2037 | sechdrs[versindex].sh_flags &= ~(unsigned long)SHF_ALLOC; | 2167 | sechdrs[versindex].sh_flags &= ~(unsigned long)SHF_ALLOC; |
2038 | #ifdef CONFIG_KALLSYMS | ||
2039 | /* Keep symbol and string tables for decoding later. */ | ||
2040 | sechdrs[symindex].sh_flags |= SHF_ALLOC; | ||
2041 | sechdrs[strindex].sh_flags |= SHF_ALLOC; | ||
2042 | #endif | ||
2043 | 2168 | ||
2044 | /* Check module struct version now, before we try to use module. */ | 2169 | /* Check module struct version now, before we try to use module. */ |
2045 | if (!check_modstruct_version(sechdrs, versindex, mod)) { | 2170 | if (!check_modstruct_version(sechdrs, versindex, mod)) { |
@@ -2075,6 +2200,13 @@ static noinline struct module *load_module(void __user *umod, | |||
2075 | goto free_hdr; | 2200 | goto free_hdr; |
2076 | } | 2201 | } |
2077 | 2202 | ||
2203 | strmap = kzalloc(BITS_TO_LONGS(sechdrs[strindex].sh_size) | ||
2204 | * sizeof(long), GFP_KERNEL); | ||
2205 | if (!strmap) { | ||
2206 | err = -ENOMEM; | ||
2207 | goto free_mod; | ||
2208 | } | ||
2209 | |||
2078 | if (find_module(mod->name)) { | 2210 | if (find_module(mod->name)) { |
2079 | err = -EEXIST; | 2211 | err = -EEXIST; |
2080 | goto free_mod; | 2212 | goto free_mod; |
@@ -2104,6 +2236,8 @@ static noinline struct module *load_module(void __user *umod, | |||
2104 | this is done generically; there doesn't appear to be any | 2236 | this is done generically; there doesn't appear to be any |
2105 | special cases for the architectures. */ | 2237 | special cases for the architectures. */ |
2106 | layout_sections(mod, hdr, sechdrs, secstrings); | 2238 | layout_sections(mod, hdr, sechdrs, secstrings); |
2239 | symoffs = layout_symtab(mod, sechdrs, symindex, strindex, hdr, | ||
2240 | secstrings, &stroffs, strmap); | ||
2107 | 2241 | ||
2108 | /* Do the allocs. */ | 2242 | /* Do the allocs. */ |
2109 | ptr = module_alloc_update_bounds(mod->core_size); | 2243 | ptr = module_alloc_update_bounds(mod->core_size); |
@@ -2237,10 +2371,6 @@ static noinline struct module *load_module(void __user *umod, | |||
2237 | sizeof(*mod->ctors), &mod->num_ctors); | 2371 | sizeof(*mod->ctors), &mod->num_ctors); |
2238 | #endif | 2372 | #endif |
2239 | 2373 | ||
2240 | #ifdef CONFIG_MARKERS | ||
2241 | mod->markers = section_objs(hdr, sechdrs, secstrings, "__markers", | ||
2242 | sizeof(*mod->markers), &mod->num_markers); | ||
2243 | #endif | ||
2244 | #ifdef CONFIG_TRACEPOINTS | 2374 | #ifdef CONFIG_TRACEPOINTS |
2245 | mod->tracepoints = section_objs(hdr, sechdrs, secstrings, | 2375 | mod->tracepoints = section_objs(hdr, sechdrs, secstrings, |
2246 | "__tracepoints", | 2376 | "__tracepoints", |
@@ -2312,7 +2442,10 @@ static noinline struct module *load_module(void __user *umod, | |||
2312 | percpu_modcopy(mod->percpu, (void *)sechdrs[pcpuindex].sh_addr, | 2442 | percpu_modcopy(mod->percpu, (void *)sechdrs[pcpuindex].sh_addr, |
2313 | sechdrs[pcpuindex].sh_size); | 2443 | sechdrs[pcpuindex].sh_size); |
2314 | 2444 | ||
2315 | add_kallsyms(mod, sechdrs, symindex, strindex, secstrings); | 2445 | add_kallsyms(mod, sechdrs, hdr->e_shnum, symindex, strindex, |
2446 | symoffs, stroffs, secstrings, strmap); | ||
2447 | kfree(strmap); | ||
2448 | strmap = NULL; | ||
2316 | 2449 | ||
2317 | if (!mod->taints) { | 2450 | if (!mod->taints) { |
2318 | struct _ddebug *debug; | 2451 | struct _ddebug *debug; |
@@ -2384,13 +2517,14 @@ static noinline struct module *load_module(void __user *umod, | |||
2384 | synchronize_sched(); | 2517 | synchronize_sched(); |
2385 | module_arch_cleanup(mod); | 2518 | module_arch_cleanup(mod); |
2386 | cleanup: | 2519 | cleanup: |
2520 | free_modinfo(mod); | ||
2387 | kobject_del(&mod->mkobj.kobj); | 2521 | kobject_del(&mod->mkobj.kobj); |
2388 | kobject_put(&mod->mkobj.kobj); | 2522 | kobject_put(&mod->mkobj.kobj); |
2389 | free_unload: | 2523 | free_unload: |
2390 | module_unload_free(mod); | 2524 | module_unload_free(mod); |
2391 | #if defined(CONFIG_MODULE_UNLOAD) && defined(CONFIG_SMP) | 2525 | #if defined(CONFIG_MODULE_UNLOAD) && defined(CONFIG_SMP) |
2392 | free_init: | ||
2393 | percpu_modfree(mod->refptr); | 2526 | percpu_modfree(mod->refptr); |
2527 | free_init: | ||
2394 | #endif | 2528 | #endif |
2395 | module_free(mod, mod->module_init); | 2529 | module_free(mod, mod->module_init); |
2396 | free_core: | 2530 | free_core: |
@@ -2401,6 +2535,7 @@ static noinline struct module *load_module(void __user *umod, | |||
2401 | percpu_modfree(percpu); | 2535 | percpu_modfree(percpu); |
2402 | free_mod: | 2536 | free_mod: |
2403 | kfree(args); | 2537 | kfree(args); |
2538 | kfree(strmap); | ||
2404 | free_hdr: | 2539 | free_hdr: |
2405 | vfree(hdr); | 2540 | vfree(hdr); |
2406 | return ERR_PTR(err); | 2541 | return ERR_PTR(err); |
@@ -2490,6 +2625,11 @@ SYSCALL_DEFINE3(init_module, void __user *, umod, | |||
2490 | /* Drop initial reference. */ | 2625 | /* Drop initial reference. */ |
2491 | module_put(mod); | 2626 | module_put(mod); |
2492 | trim_init_extable(mod); | 2627 | trim_init_extable(mod); |
2628 | #ifdef CONFIG_KALLSYMS | ||
2629 | mod->num_symtab = mod->core_num_syms; | ||
2630 | mod->symtab = mod->core_symtab; | ||
2631 | mod->strtab = mod->core_strtab; | ||
2632 | #endif | ||
2493 | module_free(mod, mod->module_init); | 2633 | module_free(mod, mod->module_init); |
2494 | mod->module_init = NULL; | 2634 | mod->module_init = NULL; |
2495 | mod->init_size = 0; | 2635 | mod->init_size = 0; |
@@ -2951,27 +3091,12 @@ void module_layout(struct module *mod, | |||
2951 | struct modversion_info *ver, | 3091 | struct modversion_info *ver, |
2952 | struct kernel_param *kp, | 3092 | struct kernel_param *kp, |
2953 | struct kernel_symbol *ks, | 3093 | struct kernel_symbol *ks, |
2954 | struct marker *marker, | ||
2955 | struct tracepoint *tp) | 3094 | struct tracepoint *tp) |
2956 | { | 3095 | { |
2957 | } | 3096 | } |
2958 | EXPORT_SYMBOL(module_layout); | 3097 | EXPORT_SYMBOL(module_layout); |
2959 | #endif | 3098 | #endif |
2960 | 3099 | ||
2961 | #ifdef CONFIG_MARKERS | ||
2962 | void module_update_markers(void) | ||
2963 | { | ||
2964 | struct module *mod; | ||
2965 | |||
2966 | mutex_lock(&module_mutex); | ||
2967 | list_for_each_entry(mod, &modules, list) | ||
2968 | if (!mod->taints) | ||
2969 | marker_update_probe_range(mod->markers, | ||
2970 | mod->markers + mod->num_markers); | ||
2971 | mutex_unlock(&module_mutex); | ||
2972 | } | ||
2973 | #endif | ||
2974 | |||
2975 | #ifdef CONFIG_TRACEPOINTS | 3100 | #ifdef CONFIG_TRACEPOINTS |
2976 | void module_update_tracepoints(void) | 3101 | void module_update_tracepoints(void) |
2977 | { | 3102 | { |
diff --git a/kernel/ns_cgroup.c b/kernel/ns_cgroup.c index 5aa854f9e5ae..2a5dfec8efe0 100644 --- a/kernel/ns_cgroup.c +++ b/kernel/ns_cgroup.c | |||
@@ -42,8 +42,8 @@ int ns_cgroup_clone(struct task_struct *task, struct pid *pid) | |||
42 | * (hence either you are in the same cgroup as task, or in an | 42 | * (hence either you are in the same cgroup as task, or in an |
43 | * ancestor cgroup thereof) | 43 | * ancestor cgroup thereof) |
44 | */ | 44 | */ |
45 | static int ns_can_attach(struct cgroup_subsys *ss, | 45 | static int ns_can_attach(struct cgroup_subsys *ss, struct cgroup *new_cgroup, |
46 | struct cgroup *new_cgroup, struct task_struct *task) | 46 | struct task_struct *task, bool threadgroup) |
47 | { | 47 | { |
48 | if (current != task) { | 48 | if (current != task) { |
49 | if (!capable(CAP_SYS_ADMIN)) | 49 | if (!capable(CAP_SYS_ADMIN)) |
@@ -56,6 +56,18 @@ static int ns_can_attach(struct cgroup_subsys *ss, | |||
56 | if (!cgroup_is_descendant(new_cgroup, task)) | 56 | if (!cgroup_is_descendant(new_cgroup, task)) |
57 | return -EPERM; | 57 | return -EPERM; |
58 | 58 | ||
59 | if (threadgroup) { | ||
60 | struct task_struct *c; | ||
61 | rcu_read_lock(); | ||
62 | list_for_each_entry_rcu(c, &task->thread_group, thread_group) { | ||
63 | if (!cgroup_is_descendant(new_cgroup, c)) { | ||
64 | rcu_read_unlock(); | ||
65 | return -EPERM; | ||
66 | } | ||
67 | } | ||
68 | rcu_read_unlock(); | ||
69 | } | ||
70 | |||
59 | return 0; | 71 | return 0; |
60 | } | 72 | } |
61 | 73 | ||
diff --git a/kernel/panic.c b/kernel/panic.c index 512ab73b0ca3..bcdef26e3332 100644 --- a/kernel/panic.c +++ b/kernel/panic.c | |||
@@ -177,7 +177,7 @@ static const struct tnt tnts[] = { | |||
177 | * 'W' - Taint on warning. | 177 | * 'W' - Taint on warning. |
178 | * 'C' - modules from drivers/staging are loaded. | 178 | * 'C' - modules from drivers/staging are loaded. |
179 | * | 179 | * |
180 | * The string is overwritten by the next call to print_taint(). | 180 | * The string is overwritten by the next call to print_tainted(). |
181 | */ | 181 | */ |
182 | const char *print_tainted(void) | 182 | const char *print_tainted(void) |
183 | { | 183 | { |
diff --git a/kernel/params.c b/kernel/params.c index 7f6912ced2ba..9da58eabdcb2 100644 --- a/kernel/params.c +++ b/kernel/params.c | |||
@@ -23,6 +23,7 @@ | |||
23 | #include <linux/device.h> | 23 | #include <linux/device.h> |
24 | #include <linux/err.h> | 24 | #include <linux/err.h> |
25 | #include <linux/slab.h> | 25 | #include <linux/slab.h> |
26 | #include <linux/ctype.h> | ||
26 | 27 | ||
27 | #if 0 | 28 | #if 0 |
28 | #define DEBUGP printk | 29 | #define DEBUGP printk |
@@ -87,7 +88,7 @@ static char *next_arg(char *args, char **param, char **val) | |||
87 | } | 88 | } |
88 | 89 | ||
89 | for (i = 0; args[i]; i++) { | 90 | for (i = 0; args[i]; i++) { |
90 | if (args[i] == ' ' && !in_quote) | 91 | if (isspace(args[i]) && !in_quote) |
91 | break; | 92 | break; |
92 | if (equals == 0) { | 93 | if (equals == 0) { |
93 | if (args[i] == '=') | 94 | if (args[i] == '=') |
@@ -121,7 +122,7 @@ static char *next_arg(char *args, char **param, char **val) | |||
121 | next = args + i; | 122 | next = args + i; |
122 | 123 | ||
123 | /* Chew up trailing spaces. */ | 124 | /* Chew up trailing spaces. */ |
124 | while (*next == ' ') | 125 | while (isspace(*next)) |
125 | next++; | 126 | next++; |
126 | return next; | 127 | return next; |
127 | } | 128 | } |
@@ -138,7 +139,7 @@ int parse_args(const char *name, | |||
138 | DEBUGP("Parsing ARGS: %s\n", args); | 139 | DEBUGP("Parsing ARGS: %s\n", args); |
139 | 140 | ||
140 | /* Chew leading spaces */ | 141 | /* Chew leading spaces */ |
141 | while (*args == ' ') | 142 | while (isspace(*args)) |
142 | args++; | 143 | args++; |
143 | 144 | ||
144 | while (*args) { | 145 | while (*args) { |
diff --git a/kernel/perf_counter.c b/kernel/perf_counter.c deleted file mode 100644 index 8cb94a52d1bb..000000000000 --- a/kernel/perf_counter.c +++ /dev/null | |||
@@ -1,4963 +0,0 @@ | |||
1 | /* | ||
2 | * Performance counter core code | ||
3 | * | ||
4 | * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> | ||
5 | * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar | ||
6 | * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | ||
7 | * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> | ||
8 | * | ||
9 | * For licensing details see kernel-base/COPYING | ||
10 | */ | ||
11 | |||
12 | #include <linux/fs.h> | ||
13 | #include <linux/mm.h> | ||
14 | #include <linux/cpu.h> | ||
15 | #include <linux/smp.h> | ||
16 | #include <linux/file.h> | ||
17 | #include <linux/poll.h> | ||
18 | #include <linux/sysfs.h> | ||
19 | #include <linux/dcache.h> | ||
20 | #include <linux/percpu.h> | ||
21 | #include <linux/ptrace.h> | ||
22 | #include <linux/vmstat.h> | ||
23 | #include <linux/hardirq.h> | ||
24 | #include <linux/rculist.h> | ||
25 | #include <linux/uaccess.h> | ||
26 | #include <linux/syscalls.h> | ||
27 | #include <linux/anon_inodes.h> | ||
28 | #include <linux/kernel_stat.h> | ||
29 | #include <linux/perf_counter.h> | ||
30 | |||
31 | #include <asm/irq_regs.h> | ||
32 | |||
33 | /* | ||
34 | * Each CPU has a list of per CPU counters: | ||
35 | */ | ||
36 | DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); | ||
37 | |||
38 | int perf_max_counters __read_mostly = 1; | ||
39 | static int perf_reserved_percpu __read_mostly; | ||
40 | static int perf_overcommit __read_mostly = 1; | ||
41 | |||
42 | static atomic_t nr_counters __read_mostly; | ||
43 | static atomic_t nr_mmap_counters __read_mostly; | ||
44 | static atomic_t nr_comm_counters __read_mostly; | ||
45 | static atomic_t nr_task_counters __read_mostly; | ||
46 | |||
47 | /* | ||
48 | * perf counter paranoia level: | ||
49 | * -1 - not paranoid at all | ||
50 | * 0 - disallow raw tracepoint access for unpriv | ||
51 | * 1 - disallow cpu counters for unpriv | ||
52 | * 2 - disallow kernel profiling for unpriv | ||
53 | */ | ||
54 | int sysctl_perf_counter_paranoid __read_mostly = 1; | ||
55 | |||
56 | static inline bool perf_paranoid_tracepoint_raw(void) | ||
57 | { | ||
58 | return sysctl_perf_counter_paranoid > -1; | ||
59 | } | ||
60 | |||
61 | static inline bool perf_paranoid_cpu(void) | ||
62 | { | ||
63 | return sysctl_perf_counter_paranoid > 0; | ||
64 | } | ||
65 | |||
66 | static inline bool perf_paranoid_kernel(void) | ||
67 | { | ||
68 | return sysctl_perf_counter_paranoid > 1; | ||
69 | } | ||
70 | |||
71 | int sysctl_perf_counter_mlock __read_mostly = 512; /* 'free' kb per user */ | ||
72 | |||
73 | /* | ||
74 | * max perf counter sample rate | ||
75 | */ | ||
76 | int sysctl_perf_counter_sample_rate __read_mostly = 100000; | ||
77 | |||
78 | static atomic64_t perf_counter_id; | ||
79 | |||
80 | /* | ||
81 | * Lock for (sysadmin-configurable) counter reservations: | ||
82 | */ | ||
83 | static DEFINE_SPINLOCK(perf_resource_lock); | ||
84 | |||
85 | /* | ||
86 | * Architecture provided APIs - weak aliases: | ||
87 | */ | ||
88 | extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter) | ||
89 | { | ||
90 | return NULL; | ||
91 | } | ||
92 | |||
93 | void __weak hw_perf_disable(void) { barrier(); } | ||
94 | void __weak hw_perf_enable(void) { barrier(); } | ||
95 | |||
96 | void __weak hw_perf_counter_setup(int cpu) { barrier(); } | ||
97 | void __weak hw_perf_counter_setup_online(int cpu) { barrier(); } | ||
98 | |||
99 | int __weak | ||
100 | hw_perf_group_sched_in(struct perf_counter *group_leader, | ||
101 | struct perf_cpu_context *cpuctx, | ||
102 | struct perf_counter_context *ctx, int cpu) | ||
103 | { | ||
104 | return 0; | ||
105 | } | ||
106 | |||
107 | void __weak perf_counter_print_debug(void) { } | ||
108 | |||
109 | static DEFINE_PER_CPU(int, perf_disable_count); | ||
110 | |||
111 | void __perf_disable(void) | ||
112 | { | ||
113 | __get_cpu_var(perf_disable_count)++; | ||
114 | } | ||
115 | |||
116 | bool __perf_enable(void) | ||
117 | { | ||
118 | return !--__get_cpu_var(perf_disable_count); | ||
119 | } | ||
120 | |||
121 | void perf_disable(void) | ||
122 | { | ||
123 | __perf_disable(); | ||
124 | hw_perf_disable(); | ||
125 | } | ||
126 | |||
127 | void perf_enable(void) | ||
128 | { | ||
129 | if (__perf_enable()) | ||
130 | hw_perf_enable(); | ||
131 | } | ||
132 | |||
133 | static void get_ctx(struct perf_counter_context *ctx) | ||
134 | { | ||
135 | WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); | ||
136 | } | ||
137 | |||
138 | static void free_ctx(struct rcu_head *head) | ||
139 | { | ||
140 | struct perf_counter_context *ctx; | ||
141 | |||
142 | ctx = container_of(head, struct perf_counter_context, rcu_head); | ||
143 | kfree(ctx); | ||
144 | } | ||
145 | |||
146 | static void put_ctx(struct perf_counter_context *ctx) | ||
147 | { | ||
148 | if (atomic_dec_and_test(&ctx->refcount)) { | ||
149 | if (ctx->parent_ctx) | ||
150 | put_ctx(ctx->parent_ctx); | ||
151 | if (ctx->task) | ||
152 | put_task_struct(ctx->task); | ||
153 | call_rcu(&ctx->rcu_head, free_ctx); | ||
154 | } | ||
155 | } | ||
156 | |||
157 | static void unclone_ctx(struct perf_counter_context *ctx) | ||
158 | { | ||
159 | if (ctx->parent_ctx) { | ||
160 | put_ctx(ctx->parent_ctx); | ||
161 | ctx->parent_ctx = NULL; | ||
162 | } | ||
163 | } | ||
164 | |||
165 | /* | ||
166 | * If we inherit counters we want to return the parent counter id | ||
167 | * to userspace. | ||
168 | */ | ||
169 | static u64 primary_counter_id(struct perf_counter *counter) | ||
170 | { | ||
171 | u64 id = counter->id; | ||
172 | |||
173 | if (counter->parent) | ||
174 | id = counter->parent->id; | ||
175 | |||
176 | return id; | ||
177 | } | ||
178 | |||
179 | /* | ||
180 | * Get the perf_counter_context for a task and lock it. | ||
181 | * This has to cope with with the fact that until it is locked, | ||
182 | * the context could get moved to another task. | ||
183 | */ | ||
184 | static struct perf_counter_context * | ||
185 | perf_lock_task_context(struct task_struct *task, unsigned long *flags) | ||
186 | { | ||
187 | struct perf_counter_context *ctx; | ||
188 | |||
189 | rcu_read_lock(); | ||
190 | retry: | ||
191 | ctx = rcu_dereference(task->perf_counter_ctxp); | ||
192 | if (ctx) { | ||
193 | /* | ||
194 | * If this context is a clone of another, it might | ||
195 | * get swapped for another underneath us by | ||
196 | * perf_counter_task_sched_out, though the | ||
197 | * rcu_read_lock() protects us from any context | ||
198 | * getting freed. Lock the context and check if it | ||
199 | * got swapped before we could get the lock, and retry | ||
200 | * if so. If we locked the right context, then it | ||
201 | * can't get swapped on us any more. | ||
202 | */ | ||
203 | spin_lock_irqsave(&ctx->lock, *flags); | ||
204 | if (ctx != rcu_dereference(task->perf_counter_ctxp)) { | ||
205 | spin_unlock_irqrestore(&ctx->lock, *flags); | ||
206 | goto retry; | ||
207 | } | ||
208 | |||
209 | if (!atomic_inc_not_zero(&ctx->refcount)) { | ||
210 | spin_unlock_irqrestore(&ctx->lock, *flags); | ||
211 | ctx = NULL; | ||
212 | } | ||
213 | } | ||
214 | rcu_read_unlock(); | ||
215 | return ctx; | ||
216 | } | ||
217 | |||
218 | /* | ||
219 | * Get the context for a task and increment its pin_count so it | ||
220 | * can't get swapped to another task. This also increments its | ||
221 | * reference count so that the context can't get freed. | ||
222 | */ | ||
223 | static struct perf_counter_context *perf_pin_task_context(struct task_struct *task) | ||
224 | { | ||
225 | struct perf_counter_context *ctx; | ||
226 | unsigned long flags; | ||
227 | |||
228 | ctx = perf_lock_task_context(task, &flags); | ||
229 | if (ctx) { | ||
230 | ++ctx->pin_count; | ||
231 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
232 | } | ||
233 | return ctx; | ||
234 | } | ||
235 | |||
236 | static void perf_unpin_context(struct perf_counter_context *ctx) | ||
237 | { | ||
238 | unsigned long flags; | ||
239 | |||
240 | spin_lock_irqsave(&ctx->lock, flags); | ||
241 | --ctx->pin_count; | ||
242 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
243 | put_ctx(ctx); | ||
244 | } | ||
245 | |||
246 | /* | ||
247 | * Add a counter from the lists for its context. | ||
248 | * Must be called with ctx->mutex and ctx->lock held. | ||
249 | */ | ||
250 | static void | ||
251 | list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx) | ||
252 | { | ||
253 | struct perf_counter *group_leader = counter->group_leader; | ||
254 | |||
255 | /* | ||
256 | * Depending on whether it is a standalone or sibling counter, | ||
257 | * add it straight to the context's counter list, or to the group | ||
258 | * leader's sibling list: | ||
259 | */ | ||
260 | if (group_leader == counter) | ||
261 | list_add_tail(&counter->list_entry, &ctx->counter_list); | ||
262 | else { | ||
263 | list_add_tail(&counter->list_entry, &group_leader->sibling_list); | ||
264 | group_leader->nr_siblings++; | ||
265 | } | ||
266 | |||
267 | list_add_rcu(&counter->event_entry, &ctx->event_list); | ||
268 | ctx->nr_counters++; | ||
269 | if (counter->attr.inherit_stat) | ||
270 | ctx->nr_stat++; | ||
271 | } | ||
272 | |||
273 | /* | ||
274 | * Remove a counter from the lists for its context. | ||
275 | * Must be called with ctx->mutex and ctx->lock held. | ||
276 | */ | ||
277 | static void | ||
278 | list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx) | ||
279 | { | ||
280 | struct perf_counter *sibling, *tmp; | ||
281 | |||
282 | if (list_empty(&counter->list_entry)) | ||
283 | return; | ||
284 | ctx->nr_counters--; | ||
285 | if (counter->attr.inherit_stat) | ||
286 | ctx->nr_stat--; | ||
287 | |||
288 | list_del_init(&counter->list_entry); | ||
289 | list_del_rcu(&counter->event_entry); | ||
290 | |||
291 | if (counter->group_leader != counter) | ||
292 | counter->group_leader->nr_siblings--; | ||
293 | |||
294 | /* | ||
295 | * If this was a group counter with sibling counters then | ||
296 | * upgrade the siblings to singleton counters by adding them | ||
297 | * to the context list directly: | ||
298 | */ | ||
299 | list_for_each_entry_safe(sibling, tmp, | ||
300 | &counter->sibling_list, list_entry) { | ||
301 | |||
302 | list_move_tail(&sibling->list_entry, &ctx->counter_list); | ||
303 | sibling->group_leader = sibling; | ||
304 | } | ||
305 | } | ||
306 | |||
307 | static void | ||
308 | counter_sched_out(struct perf_counter *counter, | ||
309 | struct perf_cpu_context *cpuctx, | ||
310 | struct perf_counter_context *ctx) | ||
311 | { | ||
312 | if (counter->state != PERF_COUNTER_STATE_ACTIVE) | ||
313 | return; | ||
314 | |||
315 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
316 | if (counter->pending_disable) { | ||
317 | counter->pending_disable = 0; | ||
318 | counter->state = PERF_COUNTER_STATE_OFF; | ||
319 | } | ||
320 | counter->tstamp_stopped = ctx->time; | ||
321 | counter->pmu->disable(counter); | ||
322 | counter->oncpu = -1; | ||
323 | |||
324 | if (!is_software_counter(counter)) | ||
325 | cpuctx->active_oncpu--; | ||
326 | ctx->nr_active--; | ||
327 | if (counter->attr.exclusive || !cpuctx->active_oncpu) | ||
328 | cpuctx->exclusive = 0; | ||
329 | } | ||
330 | |||
331 | static void | ||
332 | group_sched_out(struct perf_counter *group_counter, | ||
333 | struct perf_cpu_context *cpuctx, | ||
334 | struct perf_counter_context *ctx) | ||
335 | { | ||
336 | struct perf_counter *counter; | ||
337 | |||
338 | if (group_counter->state != PERF_COUNTER_STATE_ACTIVE) | ||
339 | return; | ||
340 | |||
341 | counter_sched_out(group_counter, cpuctx, ctx); | ||
342 | |||
343 | /* | ||
344 | * Schedule out siblings (if any): | ||
345 | */ | ||
346 | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) | ||
347 | counter_sched_out(counter, cpuctx, ctx); | ||
348 | |||
349 | if (group_counter->attr.exclusive) | ||
350 | cpuctx->exclusive = 0; | ||
351 | } | ||
352 | |||
353 | /* | ||
354 | * Cross CPU call to remove a performance counter | ||
355 | * | ||
356 | * We disable the counter on the hardware level first. After that we | ||
357 | * remove it from the context list. | ||
358 | */ | ||
359 | static void __perf_counter_remove_from_context(void *info) | ||
360 | { | ||
361 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
362 | struct perf_counter *counter = info; | ||
363 | struct perf_counter_context *ctx = counter->ctx; | ||
364 | |||
365 | /* | ||
366 | * If this is a task context, we need to check whether it is | ||
367 | * the current task context of this cpu. If not it has been | ||
368 | * scheduled out before the smp call arrived. | ||
369 | */ | ||
370 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
371 | return; | ||
372 | |||
373 | spin_lock(&ctx->lock); | ||
374 | /* | ||
375 | * Protect the list operation against NMI by disabling the | ||
376 | * counters on a global level. | ||
377 | */ | ||
378 | perf_disable(); | ||
379 | |||
380 | counter_sched_out(counter, cpuctx, ctx); | ||
381 | |||
382 | list_del_counter(counter, ctx); | ||
383 | |||
384 | if (!ctx->task) { | ||
385 | /* | ||
386 | * Allow more per task counters with respect to the | ||
387 | * reservation: | ||
388 | */ | ||
389 | cpuctx->max_pertask = | ||
390 | min(perf_max_counters - ctx->nr_counters, | ||
391 | perf_max_counters - perf_reserved_percpu); | ||
392 | } | ||
393 | |||
394 | perf_enable(); | ||
395 | spin_unlock(&ctx->lock); | ||
396 | } | ||
397 | |||
398 | |||
399 | /* | ||
400 | * Remove the counter from a task's (or a CPU's) list of counters. | ||
401 | * | ||
402 | * Must be called with ctx->mutex held. | ||
403 | * | ||
404 | * CPU counters are removed with a smp call. For task counters we only | ||
405 | * call when the task is on a CPU. | ||
406 | * | ||
407 | * If counter->ctx is a cloned context, callers must make sure that | ||
408 | * every task struct that counter->ctx->task could possibly point to | ||
409 | * remains valid. This is OK when called from perf_release since | ||
410 | * that only calls us on the top-level context, which can't be a clone. | ||
411 | * When called from perf_counter_exit_task, it's OK because the | ||
412 | * context has been detached from its task. | ||
413 | */ | ||
414 | static void perf_counter_remove_from_context(struct perf_counter *counter) | ||
415 | { | ||
416 | struct perf_counter_context *ctx = counter->ctx; | ||
417 | struct task_struct *task = ctx->task; | ||
418 | |||
419 | if (!task) { | ||
420 | /* | ||
421 | * Per cpu counters are removed via an smp call and | ||
422 | * the removal is always sucessful. | ||
423 | */ | ||
424 | smp_call_function_single(counter->cpu, | ||
425 | __perf_counter_remove_from_context, | ||
426 | counter, 1); | ||
427 | return; | ||
428 | } | ||
429 | |||
430 | retry: | ||
431 | task_oncpu_function_call(task, __perf_counter_remove_from_context, | ||
432 | counter); | ||
433 | |||
434 | spin_lock_irq(&ctx->lock); | ||
435 | /* | ||
436 | * If the context is active we need to retry the smp call. | ||
437 | */ | ||
438 | if (ctx->nr_active && !list_empty(&counter->list_entry)) { | ||
439 | spin_unlock_irq(&ctx->lock); | ||
440 | goto retry; | ||
441 | } | ||
442 | |||
443 | /* | ||
444 | * The lock prevents that this context is scheduled in so we | ||
445 | * can remove the counter safely, if the call above did not | ||
446 | * succeed. | ||
447 | */ | ||
448 | if (!list_empty(&counter->list_entry)) { | ||
449 | list_del_counter(counter, ctx); | ||
450 | } | ||
451 | spin_unlock_irq(&ctx->lock); | ||
452 | } | ||
453 | |||
454 | static inline u64 perf_clock(void) | ||
455 | { | ||
456 | return cpu_clock(smp_processor_id()); | ||
457 | } | ||
458 | |||
459 | /* | ||
460 | * Update the record of the current time in a context. | ||
461 | */ | ||
462 | static void update_context_time(struct perf_counter_context *ctx) | ||
463 | { | ||
464 | u64 now = perf_clock(); | ||
465 | |||
466 | ctx->time += now - ctx->timestamp; | ||
467 | ctx->timestamp = now; | ||
468 | } | ||
469 | |||
470 | /* | ||
471 | * Update the total_time_enabled and total_time_running fields for a counter. | ||
472 | */ | ||
473 | static void update_counter_times(struct perf_counter *counter) | ||
474 | { | ||
475 | struct perf_counter_context *ctx = counter->ctx; | ||
476 | u64 run_end; | ||
477 | |||
478 | if (counter->state < PERF_COUNTER_STATE_INACTIVE || | ||
479 | counter->group_leader->state < PERF_COUNTER_STATE_INACTIVE) | ||
480 | return; | ||
481 | |||
482 | counter->total_time_enabled = ctx->time - counter->tstamp_enabled; | ||
483 | |||
484 | if (counter->state == PERF_COUNTER_STATE_INACTIVE) | ||
485 | run_end = counter->tstamp_stopped; | ||
486 | else | ||
487 | run_end = ctx->time; | ||
488 | |||
489 | counter->total_time_running = run_end - counter->tstamp_running; | ||
490 | } | ||
491 | |||
492 | /* | ||
493 | * Update total_time_enabled and total_time_running for all counters in a group. | ||
494 | */ | ||
495 | static void update_group_times(struct perf_counter *leader) | ||
496 | { | ||
497 | struct perf_counter *counter; | ||
498 | |||
499 | update_counter_times(leader); | ||
500 | list_for_each_entry(counter, &leader->sibling_list, list_entry) | ||
501 | update_counter_times(counter); | ||
502 | } | ||
503 | |||
504 | /* | ||
505 | * Cross CPU call to disable a performance counter | ||
506 | */ | ||
507 | static void __perf_counter_disable(void *info) | ||
508 | { | ||
509 | struct perf_counter *counter = info; | ||
510 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
511 | struct perf_counter_context *ctx = counter->ctx; | ||
512 | |||
513 | /* | ||
514 | * If this is a per-task counter, need to check whether this | ||
515 | * counter's task is the current task on this cpu. | ||
516 | */ | ||
517 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
518 | return; | ||
519 | |||
520 | spin_lock(&ctx->lock); | ||
521 | |||
522 | /* | ||
523 | * If the counter is on, turn it off. | ||
524 | * If it is in error state, leave it in error state. | ||
525 | */ | ||
526 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) { | ||
527 | update_context_time(ctx); | ||
528 | update_group_times(counter); | ||
529 | if (counter == counter->group_leader) | ||
530 | group_sched_out(counter, cpuctx, ctx); | ||
531 | else | ||
532 | counter_sched_out(counter, cpuctx, ctx); | ||
533 | counter->state = PERF_COUNTER_STATE_OFF; | ||
534 | } | ||
535 | |||
536 | spin_unlock(&ctx->lock); | ||
537 | } | ||
538 | |||
539 | /* | ||
540 | * Disable a counter. | ||
541 | * | ||
542 | * If counter->ctx is a cloned context, callers must make sure that | ||
543 | * every task struct that counter->ctx->task could possibly point to | ||
544 | * remains valid. This condition is satisifed when called through | ||
545 | * perf_counter_for_each_child or perf_counter_for_each because they | ||
546 | * hold the top-level counter's child_mutex, so any descendant that | ||
547 | * goes to exit will block in sync_child_counter. | ||
548 | * When called from perf_pending_counter it's OK because counter->ctx | ||
549 | * is the current context on this CPU and preemption is disabled, | ||
550 | * hence we can't get into perf_counter_task_sched_out for this context. | ||
551 | */ | ||
552 | static void perf_counter_disable(struct perf_counter *counter) | ||
553 | { | ||
554 | struct perf_counter_context *ctx = counter->ctx; | ||
555 | struct task_struct *task = ctx->task; | ||
556 | |||
557 | if (!task) { | ||
558 | /* | ||
559 | * Disable the counter on the cpu that it's on | ||
560 | */ | ||
561 | smp_call_function_single(counter->cpu, __perf_counter_disable, | ||
562 | counter, 1); | ||
563 | return; | ||
564 | } | ||
565 | |||
566 | retry: | ||
567 | task_oncpu_function_call(task, __perf_counter_disable, counter); | ||
568 | |||
569 | spin_lock_irq(&ctx->lock); | ||
570 | /* | ||
571 | * If the counter is still active, we need to retry the cross-call. | ||
572 | */ | ||
573 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) { | ||
574 | spin_unlock_irq(&ctx->lock); | ||
575 | goto retry; | ||
576 | } | ||
577 | |||
578 | /* | ||
579 | * Since we have the lock this context can't be scheduled | ||
580 | * in, so we can change the state safely. | ||
581 | */ | ||
582 | if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | ||
583 | update_group_times(counter); | ||
584 | counter->state = PERF_COUNTER_STATE_OFF; | ||
585 | } | ||
586 | |||
587 | spin_unlock_irq(&ctx->lock); | ||
588 | } | ||
589 | |||
590 | static int | ||
591 | counter_sched_in(struct perf_counter *counter, | ||
592 | struct perf_cpu_context *cpuctx, | ||
593 | struct perf_counter_context *ctx, | ||
594 | int cpu) | ||
595 | { | ||
596 | if (counter->state <= PERF_COUNTER_STATE_OFF) | ||
597 | return 0; | ||
598 | |||
599 | counter->state = PERF_COUNTER_STATE_ACTIVE; | ||
600 | counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */ | ||
601 | /* | ||
602 | * The new state must be visible before we turn it on in the hardware: | ||
603 | */ | ||
604 | smp_wmb(); | ||
605 | |||
606 | if (counter->pmu->enable(counter)) { | ||
607 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
608 | counter->oncpu = -1; | ||
609 | return -EAGAIN; | ||
610 | } | ||
611 | |||
612 | counter->tstamp_running += ctx->time - counter->tstamp_stopped; | ||
613 | |||
614 | if (!is_software_counter(counter)) | ||
615 | cpuctx->active_oncpu++; | ||
616 | ctx->nr_active++; | ||
617 | |||
618 | if (counter->attr.exclusive) | ||
619 | cpuctx->exclusive = 1; | ||
620 | |||
621 | return 0; | ||
622 | } | ||
623 | |||
624 | static int | ||
625 | group_sched_in(struct perf_counter *group_counter, | ||
626 | struct perf_cpu_context *cpuctx, | ||
627 | struct perf_counter_context *ctx, | ||
628 | int cpu) | ||
629 | { | ||
630 | struct perf_counter *counter, *partial_group; | ||
631 | int ret; | ||
632 | |||
633 | if (group_counter->state == PERF_COUNTER_STATE_OFF) | ||
634 | return 0; | ||
635 | |||
636 | ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu); | ||
637 | if (ret) | ||
638 | return ret < 0 ? ret : 0; | ||
639 | |||
640 | if (counter_sched_in(group_counter, cpuctx, ctx, cpu)) | ||
641 | return -EAGAIN; | ||
642 | |||
643 | /* | ||
644 | * Schedule in siblings as one group (if any): | ||
645 | */ | ||
646 | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) { | ||
647 | if (counter_sched_in(counter, cpuctx, ctx, cpu)) { | ||
648 | partial_group = counter; | ||
649 | goto group_error; | ||
650 | } | ||
651 | } | ||
652 | |||
653 | return 0; | ||
654 | |||
655 | group_error: | ||
656 | /* | ||
657 | * Groups can be scheduled in as one unit only, so undo any | ||
658 | * partial group before returning: | ||
659 | */ | ||
660 | list_for_each_entry(counter, &group_counter->sibling_list, list_entry) { | ||
661 | if (counter == partial_group) | ||
662 | break; | ||
663 | counter_sched_out(counter, cpuctx, ctx); | ||
664 | } | ||
665 | counter_sched_out(group_counter, cpuctx, ctx); | ||
666 | |||
667 | return -EAGAIN; | ||
668 | } | ||
669 | |||
670 | /* | ||
671 | * Return 1 for a group consisting entirely of software counters, | ||
672 | * 0 if the group contains any hardware counters. | ||
673 | */ | ||
674 | static int is_software_only_group(struct perf_counter *leader) | ||
675 | { | ||
676 | struct perf_counter *counter; | ||
677 | |||
678 | if (!is_software_counter(leader)) | ||
679 | return 0; | ||
680 | |||
681 | list_for_each_entry(counter, &leader->sibling_list, list_entry) | ||
682 | if (!is_software_counter(counter)) | ||
683 | return 0; | ||
684 | |||
685 | return 1; | ||
686 | } | ||
687 | |||
688 | /* | ||
689 | * Work out whether we can put this counter group on the CPU now. | ||
690 | */ | ||
691 | static int group_can_go_on(struct perf_counter *counter, | ||
692 | struct perf_cpu_context *cpuctx, | ||
693 | int can_add_hw) | ||
694 | { | ||
695 | /* | ||
696 | * Groups consisting entirely of software counters can always go on. | ||
697 | */ | ||
698 | if (is_software_only_group(counter)) | ||
699 | return 1; | ||
700 | /* | ||
701 | * If an exclusive group is already on, no other hardware | ||
702 | * counters can go on. | ||
703 | */ | ||
704 | if (cpuctx->exclusive) | ||
705 | return 0; | ||
706 | /* | ||
707 | * If this group is exclusive and there are already | ||
708 | * counters on the CPU, it can't go on. | ||
709 | */ | ||
710 | if (counter->attr.exclusive && cpuctx->active_oncpu) | ||
711 | return 0; | ||
712 | /* | ||
713 | * Otherwise, try to add it if all previous groups were able | ||
714 | * to go on. | ||
715 | */ | ||
716 | return can_add_hw; | ||
717 | } | ||
718 | |||
719 | static void add_counter_to_ctx(struct perf_counter *counter, | ||
720 | struct perf_counter_context *ctx) | ||
721 | { | ||
722 | list_add_counter(counter, ctx); | ||
723 | counter->tstamp_enabled = ctx->time; | ||
724 | counter->tstamp_running = ctx->time; | ||
725 | counter->tstamp_stopped = ctx->time; | ||
726 | } | ||
727 | |||
728 | /* | ||
729 | * Cross CPU call to install and enable a performance counter | ||
730 | * | ||
731 | * Must be called with ctx->mutex held | ||
732 | */ | ||
733 | static void __perf_install_in_context(void *info) | ||
734 | { | ||
735 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
736 | struct perf_counter *counter = info; | ||
737 | struct perf_counter_context *ctx = counter->ctx; | ||
738 | struct perf_counter *leader = counter->group_leader; | ||
739 | int cpu = smp_processor_id(); | ||
740 | int err; | ||
741 | |||
742 | /* | ||
743 | * If this is a task context, we need to check whether it is | ||
744 | * the current task context of this cpu. If not it has been | ||
745 | * scheduled out before the smp call arrived. | ||
746 | * Or possibly this is the right context but it isn't | ||
747 | * on this cpu because it had no counters. | ||
748 | */ | ||
749 | if (ctx->task && cpuctx->task_ctx != ctx) { | ||
750 | if (cpuctx->task_ctx || ctx->task != current) | ||
751 | return; | ||
752 | cpuctx->task_ctx = ctx; | ||
753 | } | ||
754 | |||
755 | spin_lock(&ctx->lock); | ||
756 | ctx->is_active = 1; | ||
757 | update_context_time(ctx); | ||
758 | |||
759 | /* | ||
760 | * Protect the list operation against NMI by disabling the | ||
761 | * counters on a global level. NOP for non NMI based counters. | ||
762 | */ | ||
763 | perf_disable(); | ||
764 | |||
765 | add_counter_to_ctx(counter, ctx); | ||
766 | |||
767 | /* | ||
768 | * Don't put the counter on if it is disabled or if | ||
769 | * it is in a group and the group isn't on. | ||
770 | */ | ||
771 | if (counter->state != PERF_COUNTER_STATE_INACTIVE || | ||
772 | (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)) | ||
773 | goto unlock; | ||
774 | |||
775 | /* | ||
776 | * An exclusive counter can't go on if there are already active | ||
777 | * hardware counters, and no hardware counter can go on if there | ||
778 | * is already an exclusive counter on. | ||
779 | */ | ||
780 | if (!group_can_go_on(counter, cpuctx, 1)) | ||
781 | err = -EEXIST; | ||
782 | else | ||
783 | err = counter_sched_in(counter, cpuctx, ctx, cpu); | ||
784 | |||
785 | if (err) { | ||
786 | /* | ||
787 | * This counter couldn't go on. If it is in a group | ||
788 | * then we have to pull the whole group off. | ||
789 | * If the counter group is pinned then put it in error state. | ||
790 | */ | ||
791 | if (leader != counter) | ||
792 | group_sched_out(leader, cpuctx, ctx); | ||
793 | if (leader->attr.pinned) { | ||
794 | update_group_times(leader); | ||
795 | leader->state = PERF_COUNTER_STATE_ERROR; | ||
796 | } | ||
797 | } | ||
798 | |||
799 | if (!err && !ctx->task && cpuctx->max_pertask) | ||
800 | cpuctx->max_pertask--; | ||
801 | |||
802 | unlock: | ||
803 | perf_enable(); | ||
804 | |||
805 | spin_unlock(&ctx->lock); | ||
806 | } | ||
807 | |||
808 | /* | ||
809 | * Attach a performance counter to a context | ||
810 | * | ||
811 | * First we add the counter to the list with the hardware enable bit | ||
812 | * in counter->hw_config cleared. | ||
813 | * | ||
814 | * If the counter is attached to a task which is on a CPU we use a smp | ||
815 | * call to enable it in the task context. The task might have been | ||
816 | * scheduled away, but we check this in the smp call again. | ||
817 | * | ||
818 | * Must be called with ctx->mutex held. | ||
819 | */ | ||
820 | static void | ||
821 | perf_install_in_context(struct perf_counter_context *ctx, | ||
822 | struct perf_counter *counter, | ||
823 | int cpu) | ||
824 | { | ||
825 | struct task_struct *task = ctx->task; | ||
826 | |||
827 | if (!task) { | ||
828 | /* | ||
829 | * Per cpu counters are installed via an smp call and | ||
830 | * the install is always sucessful. | ||
831 | */ | ||
832 | smp_call_function_single(cpu, __perf_install_in_context, | ||
833 | counter, 1); | ||
834 | return; | ||
835 | } | ||
836 | |||
837 | retry: | ||
838 | task_oncpu_function_call(task, __perf_install_in_context, | ||
839 | counter); | ||
840 | |||
841 | spin_lock_irq(&ctx->lock); | ||
842 | /* | ||
843 | * we need to retry the smp call. | ||
844 | */ | ||
845 | if (ctx->is_active && list_empty(&counter->list_entry)) { | ||
846 | spin_unlock_irq(&ctx->lock); | ||
847 | goto retry; | ||
848 | } | ||
849 | |||
850 | /* | ||
851 | * The lock prevents that this context is scheduled in so we | ||
852 | * can add the counter safely, if it the call above did not | ||
853 | * succeed. | ||
854 | */ | ||
855 | if (list_empty(&counter->list_entry)) | ||
856 | add_counter_to_ctx(counter, ctx); | ||
857 | spin_unlock_irq(&ctx->lock); | ||
858 | } | ||
859 | |||
860 | /* | ||
861 | * Put a counter into inactive state and update time fields. | ||
862 | * Enabling the leader of a group effectively enables all | ||
863 | * the group members that aren't explicitly disabled, so we | ||
864 | * have to update their ->tstamp_enabled also. | ||
865 | * Note: this works for group members as well as group leaders | ||
866 | * since the non-leader members' sibling_lists will be empty. | ||
867 | */ | ||
868 | static void __perf_counter_mark_enabled(struct perf_counter *counter, | ||
869 | struct perf_counter_context *ctx) | ||
870 | { | ||
871 | struct perf_counter *sub; | ||
872 | |||
873 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
874 | counter->tstamp_enabled = ctx->time - counter->total_time_enabled; | ||
875 | list_for_each_entry(sub, &counter->sibling_list, list_entry) | ||
876 | if (sub->state >= PERF_COUNTER_STATE_INACTIVE) | ||
877 | sub->tstamp_enabled = | ||
878 | ctx->time - sub->total_time_enabled; | ||
879 | } | ||
880 | |||
881 | /* | ||
882 | * Cross CPU call to enable a performance counter | ||
883 | */ | ||
884 | static void __perf_counter_enable(void *info) | ||
885 | { | ||
886 | struct perf_counter *counter = info; | ||
887 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
888 | struct perf_counter_context *ctx = counter->ctx; | ||
889 | struct perf_counter *leader = counter->group_leader; | ||
890 | int err; | ||
891 | |||
892 | /* | ||
893 | * If this is a per-task counter, need to check whether this | ||
894 | * counter's task is the current task on this cpu. | ||
895 | */ | ||
896 | if (ctx->task && cpuctx->task_ctx != ctx) { | ||
897 | if (cpuctx->task_ctx || ctx->task != current) | ||
898 | return; | ||
899 | cpuctx->task_ctx = ctx; | ||
900 | } | ||
901 | |||
902 | spin_lock(&ctx->lock); | ||
903 | ctx->is_active = 1; | ||
904 | update_context_time(ctx); | ||
905 | |||
906 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) | ||
907 | goto unlock; | ||
908 | __perf_counter_mark_enabled(counter, ctx); | ||
909 | |||
910 | /* | ||
911 | * If the counter is in a group and isn't the group leader, | ||
912 | * then don't put it on unless the group is on. | ||
913 | */ | ||
914 | if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE) | ||
915 | goto unlock; | ||
916 | |||
917 | if (!group_can_go_on(counter, cpuctx, 1)) { | ||
918 | err = -EEXIST; | ||
919 | } else { | ||
920 | perf_disable(); | ||
921 | if (counter == leader) | ||
922 | err = group_sched_in(counter, cpuctx, ctx, | ||
923 | smp_processor_id()); | ||
924 | else | ||
925 | err = counter_sched_in(counter, cpuctx, ctx, | ||
926 | smp_processor_id()); | ||
927 | perf_enable(); | ||
928 | } | ||
929 | |||
930 | if (err) { | ||
931 | /* | ||
932 | * If this counter can't go on and it's part of a | ||
933 | * group, then the whole group has to come off. | ||
934 | */ | ||
935 | if (leader != counter) | ||
936 | group_sched_out(leader, cpuctx, ctx); | ||
937 | if (leader->attr.pinned) { | ||
938 | update_group_times(leader); | ||
939 | leader->state = PERF_COUNTER_STATE_ERROR; | ||
940 | } | ||
941 | } | ||
942 | |||
943 | unlock: | ||
944 | spin_unlock(&ctx->lock); | ||
945 | } | ||
946 | |||
947 | /* | ||
948 | * Enable a counter. | ||
949 | * | ||
950 | * If counter->ctx is a cloned context, callers must make sure that | ||
951 | * every task struct that counter->ctx->task could possibly point to | ||
952 | * remains valid. This condition is satisfied when called through | ||
953 | * perf_counter_for_each_child or perf_counter_for_each as described | ||
954 | * for perf_counter_disable. | ||
955 | */ | ||
956 | static void perf_counter_enable(struct perf_counter *counter) | ||
957 | { | ||
958 | struct perf_counter_context *ctx = counter->ctx; | ||
959 | struct task_struct *task = ctx->task; | ||
960 | |||
961 | if (!task) { | ||
962 | /* | ||
963 | * Enable the counter on the cpu that it's on | ||
964 | */ | ||
965 | smp_call_function_single(counter->cpu, __perf_counter_enable, | ||
966 | counter, 1); | ||
967 | return; | ||
968 | } | ||
969 | |||
970 | spin_lock_irq(&ctx->lock); | ||
971 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) | ||
972 | goto out; | ||
973 | |||
974 | /* | ||
975 | * If the counter is in error state, clear that first. | ||
976 | * That way, if we see the counter in error state below, we | ||
977 | * know that it has gone back into error state, as distinct | ||
978 | * from the task having been scheduled away before the | ||
979 | * cross-call arrived. | ||
980 | */ | ||
981 | if (counter->state == PERF_COUNTER_STATE_ERROR) | ||
982 | counter->state = PERF_COUNTER_STATE_OFF; | ||
983 | |||
984 | retry: | ||
985 | spin_unlock_irq(&ctx->lock); | ||
986 | task_oncpu_function_call(task, __perf_counter_enable, counter); | ||
987 | |||
988 | spin_lock_irq(&ctx->lock); | ||
989 | |||
990 | /* | ||
991 | * If the context is active and the counter is still off, | ||
992 | * we need to retry the cross-call. | ||
993 | */ | ||
994 | if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF) | ||
995 | goto retry; | ||
996 | |||
997 | /* | ||
998 | * Since we have the lock this context can't be scheduled | ||
999 | * in, so we can change the state safely. | ||
1000 | */ | ||
1001 | if (counter->state == PERF_COUNTER_STATE_OFF) | ||
1002 | __perf_counter_mark_enabled(counter, ctx); | ||
1003 | |||
1004 | out: | ||
1005 | spin_unlock_irq(&ctx->lock); | ||
1006 | } | ||
1007 | |||
1008 | static int perf_counter_refresh(struct perf_counter *counter, int refresh) | ||
1009 | { | ||
1010 | /* | ||
1011 | * not supported on inherited counters | ||
1012 | */ | ||
1013 | if (counter->attr.inherit) | ||
1014 | return -EINVAL; | ||
1015 | |||
1016 | atomic_add(refresh, &counter->event_limit); | ||
1017 | perf_counter_enable(counter); | ||
1018 | |||
1019 | return 0; | ||
1020 | } | ||
1021 | |||
1022 | void __perf_counter_sched_out(struct perf_counter_context *ctx, | ||
1023 | struct perf_cpu_context *cpuctx) | ||
1024 | { | ||
1025 | struct perf_counter *counter; | ||
1026 | |||
1027 | spin_lock(&ctx->lock); | ||
1028 | ctx->is_active = 0; | ||
1029 | if (likely(!ctx->nr_counters)) | ||
1030 | goto out; | ||
1031 | update_context_time(ctx); | ||
1032 | |||
1033 | perf_disable(); | ||
1034 | if (ctx->nr_active) { | ||
1035 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
1036 | if (counter != counter->group_leader) | ||
1037 | counter_sched_out(counter, cpuctx, ctx); | ||
1038 | else | ||
1039 | group_sched_out(counter, cpuctx, ctx); | ||
1040 | } | ||
1041 | } | ||
1042 | perf_enable(); | ||
1043 | out: | ||
1044 | spin_unlock(&ctx->lock); | ||
1045 | } | ||
1046 | |||
1047 | /* | ||
1048 | * Test whether two contexts are equivalent, i.e. whether they | ||
1049 | * have both been cloned from the same version of the same context | ||
1050 | * and they both have the same number of enabled counters. | ||
1051 | * If the number of enabled counters is the same, then the set | ||
1052 | * of enabled counters should be the same, because these are both | ||
1053 | * inherited contexts, therefore we can't access individual counters | ||
1054 | * in them directly with an fd; we can only enable/disable all | ||
1055 | * counters via prctl, or enable/disable all counters in a family | ||
1056 | * via ioctl, which will have the same effect on both contexts. | ||
1057 | */ | ||
1058 | static int context_equiv(struct perf_counter_context *ctx1, | ||
1059 | struct perf_counter_context *ctx2) | ||
1060 | { | ||
1061 | return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx | ||
1062 | && ctx1->parent_gen == ctx2->parent_gen | ||
1063 | && !ctx1->pin_count && !ctx2->pin_count; | ||
1064 | } | ||
1065 | |||
1066 | static void __perf_counter_read(void *counter); | ||
1067 | |||
1068 | static void __perf_counter_sync_stat(struct perf_counter *counter, | ||
1069 | struct perf_counter *next_counter) | ||
1070 | { | ||
1071 | u64 value; | ||
1072 | |||
1073 | if (!counter->attr.inherit_stat) | ||
1074 | return; | ||
1075 | |||
1076 | /* | ||
1077 | * Update the counter value, we cannot use perf_counter_read() | ||
1078 | * because we're in the middle of a context switch and have IRQs | ||
1079 | * disabled, which upsets smp_call_function_single(), however | ||
1080 | * we know the counter must be on the current CPU, therefore we | ||
1081 | * don't need to use it. | ||
1082 | */ | ||
1083 | switch (counter->state) { | ||
1084 | case PERF_COUNTER_STATE_ACTIVE: | ||
1085 | __perf_counter_read(counter); | ||
1086 | break; | ||
1087 | |||
1088 | case PERF_COUNTER_STATE_INACTIVE: | ||
1089 | update_counter_times(counter); | ||
1090 | break; | ||
1091 | |||
1092 | default: | ||
1093 | break; | ||
1094 | } | ||
1095 | |||
1096 | /* | ||
1097 | * In order to keep per-task stats reliable we need to flip the counter | ||
1098 | * values when we flip the contexts. | ||
1099 | */ | ||
1100 | value = atomic64_read(&next_counter->count); | ||
1101 | value = atomic64_xchg(&counter->count, value); | ||
1102 | atomic64_set(&next_counter->count, value); | ||
1103 | |||
1104 | swap(counter->total_time_enabled, next_counter->total_time_enabled); | ||
1105 | swap(counter->total_time_running, next_counter->total_time_running); | ||
1106 | |||
1107 | /* | ||
1108 | * Since we swizzled the values, update the user visible data too. | ||
1109 | */ | ||
1110 | perf_counter_update_userpage(counter); | ||
1111 | perf_counter_update_userpage(next_counter); | ||
1112 | } | ||
1113 | |||
1114 | #define list_next_entry(pos, member) \ | ||
1115 | list_entry(pos->member.next, typeof(*pos), member) | ||
1116 | |||
1117 | static void perf_counter_sync_stat(struct perf_counter_context *ctx, | ||
1118 | struct perf_counter_context *next_ctx) | ||
1119 | { | ||
1120 | struct perf_counter *counter, *next_counter; | ||
1121 | |||
1122 | if (!ctx->nr_stat) | ||
1123 | return; | ||
1124 | |||
1125 | counter = list_first_entry(&ctx->event_list, | ||
1126 | struct perf_counter, event_entry); | ||
1127 | |||
1128 | next_counter = list_first_entry(&next_ctx->event_list, | ||
1129 | struct perf_counter, event_entry); | ||
1130 | |||
1131 | while (&counter->event_entry != &ctx->event_list && | ||
1132 | &next_counter->event_entry != &next_ctx->event_list) { | ||
1133 | |||
1134 | __perf_counter_sync_stat(counter, next_counter); | ||
1135 | |||
1136 | counter = list_next_entry(counter, event_entry); | ||
1137 | next_counter = list_next_entry(next_counter, event_entry); | ||
1138 | } | ||
1139 | } | ||
1140 | |||
1141 | /* | ||
1142 | * Called from scheduler to remove the counters of the current task, | ||
1143 | * with interrupts disabled. | ||
1144 | * | ||
1145 | * We stop each counter and update the counter value in counter->count. | ||
1146 | * | ||
1147 | * This does not protect us against NMI, but disable() | ||
1148 | * sets the disabled bit in the control field of counter _before_ | ||
1149 | * accessing the counter control register. If a NMI hits, then it will | ||
1150 | * not restart the counter. | ||
1151 | */ | ||
1152 | void perf_counter_task_sched_out(struct task_struct *task, | ||
1153 | struct task_struct *next, int cpu) | ||
1154 | { | ||
1155 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
1156 | struct perf_counter_context *ctx = task->perf_counter_ctxp; | ||
1157 | struct perf_counter_context *next_ctx; | ||
1158 | struct perf_counter_context *parent; | ||
1159 | struct pt_regs *regs; | ||
1160 | int do_switch = 1; | ||
1161 | |||
1162 | regs = task_pt_regs(task); | ||
1163 | perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0); | ||
1164 | |||
1165 | if (likely(!ctx || !cpuctx->task_ctx)) | ||
1166 | return; | ||
1167 | |||
1168 | update_context_time(ctx); | ||
1169 | |||
1170 | rcu_read_lock(); | ||
1171 | parent = rcu_dereference(ctx->parent_ctx); | ||
1172 | next_ctx = next->perf_counter_ctxp; | ||
1173 | if (parent && next_ctx && | ||
1174 | rcu_dereference(next_ctx->parent_ctx) == parent) { | ||
1175 | /* | ||
1176 | * Looks like the two contexts are clones, so we might be | ||
1177 | * able to optimize the context switch. We lock both | ||
1178 | * contexts and check that they are clones under the | ||
1179 | * lock (including re-checking that neither has been | ||
1180 | * uncloned in the meantime). It doesn't matter which | ||
1181 | * order we take the locks because no other cpu could | ||
1182 | * be trying to lock both of these tasks. | ||
1183 | */ | ||
1184 | spin_lock(&ctx->lock); | ||
1185 | spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); | ||
1186 | if (context_equiv(ctx, next_ctx)) { | ||
1187 | /* | ||
1188 | * XXX do we need a memory barrier of sorts | ||
1189 | * wrt to rcu_dereference() of perf_counter_ctxp | ||
1190 | */ | ||
1191 | task->perf_counter_ctxp = next_ctx; | ||
1192 | next->perf_counter_ctxp = ctx; | ||
1193 | ctx->task = next; | ||
1194 | next_ctx->task = task; | ||
1195 | do_switch = 0; | ||
1196 | |||
1197 | perf_counter_sync_stat(ctx, next_ctx); | ||
1198 | } | ||
1199 | spin_unlock(&next_ctx->lock); | ||
1200 | spin_unlock(&ctx->lock); | ||
1201 | } | ||
1202 | rcu_read_unlock(); | ||
1203 | |||
1204 | if (do_switch) { | ||
1205 | __perf_counter_sched_out(ctx, cpuctx); | ||
1206 | cpuctx->task_ctx = NULL; | ||
1207 | } | ||
1208 | } | ||
1209 | |||
1210 | /* | ||
1211 | * Called with IRQs disabled | ||
1212 | */ | ||
1213 | static void __perf_counter_task_sched_out(struct perf_counter_context *ctx) | ||
1214 | { | ||
1215 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
1216 | |||
1217 | if (!cpuctx->task_ctx) | ||
1218 | return; | ||
1219 | |||
1220 | if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) | ||
1221 | return; | ||
1222 | |||
1223 | __perf_counter_sched_out(ctx, cpuctx); | ||
1224 | cpuctx->task_ctx = NULL; | ||
1225 | } | ||
1226 | |||
1227 | /* | ||
1228 | * Called with IRQs disabled | ||
1229 | */ | ||
1230 | static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx) | ||
1231 | { | ||
1232 | __perf_counter_sched_out(&cpuctx->ctx, cpuctx); | ||
1233 | } | ||
1234 | |||
1235 | static void | ||
1236 | __perf_counter_sched_in(struct perf_counter_context *ctx, | ||
1237 | struct perf_cpu_context *cpuctx, int cpu) | ||
1238 | { | ||
1239 | struct perf_counter *counter; | ||
1240 | int can_add_hw = 1; | ||
1241 | |||
1242 | spin_lock(&ctx->lock); | ||
1243 | ctx->is_active = 1; | ||
1244 | if (likely(!ctx->nr_counters)) | ||
1245 | goto out; | ||
1246 | |||
1247 | ctx->timestamp = perf_clock(); | ||
1248 | |||
1249 | perf_disable(); | ||
1250 | |||
1251 | /* | ||
1252 | * First go through the list and put on any pinned groups | ||
1253 | * in order to give them the best chance of going on. | ||
1254 | */ | ||
1255 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
1256 | if (counter->state <= PERF_COUNTER_STATE_OFF || | ||
1257 | !counter->attr.pinned) | ||
1258 | continue; | ||
1259 | if (counter->cpu != -1 && counter->cpu != cpu) | ||
1260 | continue; | ||
1261 | |||
1262 | if (counter != counter->group_leader) | ||
1263 | counter_sched_in(counter, cpuctx, ctx, cpu); | ||
1264 | else { | ||
1265 | if (group_can_go_on(counter, cpuctx, 1)) | ||
1266 | group_sched_in(counter, cpuctx, ctx, cpu); | ||
1267 | } | ||
1268 | |||
1269 | /* | ||
1270 | * If this pinned group hasn't been scheduled, | ||
1271 | * put it in error state. | ||
1272 | */ | ||
1273 | if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | ||
1274 | update_group_times(counter); | ||
1275 | counter->state = PERF_COUNTER_STATE_ERROR; | ||
1276 | } | ||
1277 | } | ||
1278 | |||
1279 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
1280 | /* | ||
1281 | * Ignore counters in OFF or ERROR state, and | ||
1282 | * ignore pinned counters since we did them already. | ||
1283 | */ | ||
1284 | if (counter->state <= PERF_COUNTER_STATE_OFF || | ||
1285 | counter->attr.pinned) | ||
1286 | continue; | ||
1287 | |||
1288 | /* | ||
1289 | * Listen to the 'cpu' scheduling filter constraint | ||
1290 | * of counters: | ||
1291 | */ | ||
1292 | if (counter->cpu != -1 && counter->cpu != cpu) | ||
1293 | continue; | ||
1294 | |||
1295 | if (counter != counter->group_leader) { | ||
1296 | if (counter_sched_in(counter, cpuctx, ctx, cpu)) | ||
1297 | can_add_hw = 0; | ||
1298 | } else { | ||
1299 | if (group_can_go_on(counter, cpuctx, can_add_hw)) { | ||
1300 | if (group_sched_in(counter, cpuctx, ctx, cpu)) | ||
1301 | can_add_hw = 0; | ||
1302 | } | ||
1303 | } | ||
1304 | } | ||
1305 | perf_enable(); | ||
1306 | out: | ||
1307 | spin_unlock(&ctx->lock); | ||
1308 | } | ||
1309 | |||
1310 | /* | ||
1311 | * Called from scheduler to add the counters of the current task | ||
1312 | * with interrupts disabled. | ||
1313 | * | ||
1314 | * We restore the counter value and then enable it. | ||
1315 | * | ||
1316 | * This does not protect us against NMI, but enable() | ||
1317 | * sets the enabled bit in the control field of counter _before_ | ||
1318 | * accessing the counter control register. If a NMI hits, then it will | ||
1319 | * keep the counter running. | ||
1320 | */ | ||
1321 | void perf_counter_task_sched_in(struct task_struct *task, int cpu) | ||
1322 | { | ||
1323 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
1324 | struct perf_counter_context *ctx = task->perf_counter_ctxp; | ||
1325 | |||
1326 | if (likely(!ctx)) | ||
1327 | return; | ||
1328 | if (cpuctx->task_ctx == ctx) | ||
1329 | return; | ||
1330 | __perf_counter_sched_in(ctx, cpuctx, cpu); | ||
1331 | cpuctx->task_ctx = ctx; | ||
1332 | } | ||
1333 | |||
1334 | static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu) | ||
1335 | { | ||
1336 | struct perf_counter_context *ctx = &cpuctx->ctx; | ||
1337 | |||
1338 | __perf_counter_sched_in(ctx, cpuctx, cpu); | ||
1339 | } | ||
1340 | |||
1341 | #define MAX_INTERRUPTS (~0ULL) | ||
1342 | |||
1343 | static void perf_log_throttle(struct perf_counter *counter, int enable); | ||
1344 | |||
1345 | static void perf_adjust_period(struct perf_counter *counter, u64 events) | ||
1346 | { | ||
1347 | struct hw_perf_counter *hwc = &counter->hw; | ||
1348 | u64 period, sample_period; | ||
1349 | s64 delta; | ||
1350 | |||
1351 | events *= hwc->sample_period; | ||
1352 | period = div64_u64(events, counter->attr.sample_freq); | ||
1353 | |||
1354 | delta = (s64)(period - hwc->sample_period); | ||
1355 | delta = (delta + 7) / 8; /* low pass filter */ | ||
1356 | |||
1357 | sample_period = hwc->sample_period + delta; | ||
1358 | |||
1359 | if (!sample_period) | ||
1360 | sample_period = 1; | ||
1361 | |||
1362 | hwc->sample_period = sample_period; | ||
1363 | } | ||
1364 | |||
1365 | static void perf_ctx_adjust_freq(struct perf_counter_context *ctx) | ||
1366 | { | ||
1367 | struct perf_counter *counter; | ||
1368 | struct hw_perf_counter *hwc; | ||
1369 | u64 interrupts, freq; | ||
1370 | |||
1371 | spin_lock(&ctx->lock); | ||
1372 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
1373 | if (counter->state != PERF_COUNTER_STATE_ACTIVE) | ||
1374 | continue; | ||
1375 | |||
1376 | hwc = &counter->hw; | ||
1377 | |||
1378 | interrupts = hwc->interrupts; | ||
1379 | hwc->interrupts = 0; | ||
1380 | |||
1381 | /* | ||
1382 | * unthrottle counters on the tick | ||
1383 | */ | ||
1384 | if (interrupts == MAX_INTERRUPTS) { | ||
1385 | perf_log_throttle(counter, 1); | ||
1386 | counter->pmu->unthrottle(counter); | ||
1387 | interrupts = 2*sysctl_perf_counter_sample_rate/HZ; | ||
1388 | } | ||
1389 | |||
1390 | if (!counter->attr.freq || !counter->attr.sample_freq) | ||
1391 | continue; | ||
1392 | |||
1393 | /* | ||
1394 | * if the specified freq < HZ then we need to skip ticks | ||
1395 | */ | ||
1396 | if (counter->attr.sample_freq < HZ) { | ||
1397 | freq = counter->attr.sample_freq; | ||
1398 | |||
1399 | hwc->freq_count += freq; | ||
1400 | hwc->freq_interrupts += interrupts; | ||
1401 | |||
1402 | if (hwc->freq_count < HZ) | ||
1403 | continue; | ||
1404 | |||
1405 | interrupts = hwc->freq_interrupts; | ||
1406 | hwc->freq_interrupts = 0; | ||
1407 | hwc->freq_count -= HZ; | ||
1408 | } else | ||
1409 | freq = HZ; | ||
1410 | |||
1411 | perf_adjust_period(counter, freq * interrupts); | ||
1412 | |||
1413 | /* | ||
1414 | * In order to avoid being stalled by an (accidental) huge | ||
1415 | * sample period, force reset the sample period if we didn't | ||
1416 | * get any events in this freq period. | ||
1417 | */ | ||
1418 | if (!interrupts) { | ||
1419 | perf_disable(); | ||
1420 | counter->pmu->disable(counter); | ||
1421 | atomic64_set(&hwc->period_left, 0); | ||
1422 | counter->pmu->enable(counter); | ||
1423 | perf_enable(); | ||
1424 | } | ||
1425 | } | ||
1426 | spin_unlock(&ctx->lock); | ||
1427 | } | ||
1428 | |||
1429 | /* | ||
1430 | * Round-robin a context's counters: | ||
1431 | */ | ||
1432 | static void rotate_ctx(struct perf_counter_context *ctx) | ||
1433 | { | ||
1434 | struct perf_counter *counter; | ||
1435 | |||
1436 | if (!ctx->nr_counters) | ||
1437 | return; | ||
1438 | |||
1439 | spin_lock(&ctx->lock); | ||
1440 | /* | ||
1441 | * Rotate the first entry last (works just fine for group counters too): | ||
1442 | */ | ||
1443 | perf_disable(); | ||
1444 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
1445 | list_move_tail(&counter->list_entry, &ctx->counter_list); | ||
1446 | break; | ||
1447 | } | ||
1448 | perf_enable(); | ||
1449 | |||
1450 | spin_unlock(&ctx->lock); | ||
1451 | } | ||
1452 | |||
1453 | void perf_counter_task_tick(struct task_struct *curr, int cpu) | ||
1454 | { | ||
1455 | struct perf_cpu_context *cpuctx; | ||
1456 | struct perf_counter_context *ctx; | ||
1457 | |||
1458 | if (!atomic_read(&nr_counters)) | ||
1459 | return; | ||
1460 | |||
1461 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
1462 | ctx = curr->perf_counter_ctxp; | ||
1463 | |||
1464 | perf_ctx_adjust_freq(&cpuctx->ctx); | ||
1465 | if (ctx) | ||
1466 | perf_ctx_adjust_freq(ctx); | ||
1467 | |||
1468 | perf_counter_cpu_sched_out(cpuctx); | ||
1469 | if (ctx) | ||
1470 | __perf_counter_task_sched_out(ctx); | ||
1471 | |||
1472 | rotate_ctx(&cpuctx->ctx); | ||
1473 | if (ctx) | ||
1474 | rotate_ctx(ctx); | ||
1475 | |||
1476 | perf_counter_cpu_sched_in(cpuctx, cpu); | ||
1477 | if (ctx) | ||
1478 | perf_counter_task_sched_in(curr, cpu); | ||
1479 | } | ||
1480 | |||
1481 | /* | ||
1482 | * Enable all of a task's counters that have been marked enable-on-exec. | ||
1483 | * This expects task == current. | ||
1484 | */ | ||
1485 | static void perf_counter_enable_on_exec(struct task_struct *task) | ||
1486 | { | ||
1487 | struct perf_counter_context *ctx; | ||
1488 | struct perf_counter *counter; | ||
1489 | unsigned long flags; | ||
1490 | int enabled = 0; | ||
1491 | |||
1492 | local_irq_save(flags); | ||
1493 | ctx = task->perf_counter_ctxp; | ||
1494 | if (!ctx || !ctx->nr_counters) | ||
1495 | goto out; | ||
1496 | |||
1497 | __perf_counter_task_sched_out(ctx); | ||
1498 | |||
1499 | spin_lock(&ctx->lock); | ||
1500 | |||
1501 | list_for_each_entry(counter, &ctx->counter_list, list_entry) { | ||
1502 | if (!counter->attr.enable_on_exec) | ||
1503 | continue; | ||
1504 | counter->attr.enable_on_exec = 0; | ||
1505 | if (counter->state >= PERF_COUNTER_STATE_INACTIVE) | ||
1506 | continue; | ||
1507 | __perf_counter_mark_enabled(counter, ctx); | ||
1508 | enabled = 1; | ||
1509 | } | ||
1510 | |||
1511 | /* | ||
1512 | * Unclone this context if we enabled any counter. | ||
1513 | */ | ||
1514 | if (enabled) | ||
1515 | unclone_ctx(ctx); | ||
1516 | |||
1517 | spin_unlock(&ctx->lock); | ||
1518 | |||
1519 | perf_counter_task_sched_in(task, smp_processor_id()); | ||
1520 | out: | ||
1521 | local_irq_restore(flags); | ||
1522 | } | ||
1523 | |||
1524 | /* | ||
1525 | * Cross CPU call to read the hardware counter | ||
1526 | */ | ||
1527 | static void __perf_counter_read(void *info) | ||
1528 | { | ||
1529 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
1530 | struct perf_counter *counter = info; | ||
1531 | struct perf_counter_context *ctx = counter->ctx; | ||
1532 | unsigned long flags; | ||
1533 | |||
1534 | /* | ||
1535 | * If this is a task context, we need to check whether it is | ||
1536 | * the current task context of this cpu. If not it has been | ||
1537 | * scheduled out before the smp call arrived. In that case | ||
1538 | * counter->count would have been updated to a recent sample | ||
1539 | * when the counter was scheduled out. | ||
1540 | */ | ||
1541 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
1542 | return; | ||
1543 | |||
1544 | local_irq_save(flags); | ||
1545 | if (ctx->is_active) | ||
1546 | update_context_time(ctx); | ||
1547 | counter->pmu->read(counter); | ||
1548 | update_counter_times(counter); | ||
1549 | local_irq_restore(flags); | ||
1550 | } | ||
1551 | |||
1552 | static u64 perf_counter_read(struct perf_counter *counter) | ||
1553 | { | ||
1554 | /* | ||
1555 | * If counter is enabled and currently active on a CPU, update the | ||
1556 | * value in the counter structure: | ||
1557 | */ | ||
1558 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) { | ||
1559 | smp_call_function_single(counter->oncpu, | ||
1560 | __perf_counter_read, counter, 1); | ||
1561 | } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) { | ||
1562 | update_counter_times(counter); | ||
1563 | } | ||
1564 | |||
1565 | return atomic64_read(&counter->count); | ||
1566 | } | ||
1567 | |||
1568 | /* | ||
1569 | * Initialize the perf_counter context in a task_struct: | ||
1570 | */ | ||
1571 | static void | ||
1572 | __perf_counter_init_context(struct perf_counter_context *ctx, | ||
1573 | struct task_struct *task) | ||
1574 | { | ||
1575 | memset(ctx, 0, sizeof(*ctx)); | ||
1576 | spin_lock_init(&ctx->lock); | ||
1577 | mutex_init(&ctx->mutex); | ||
1578 | INIT_LIST_HEAD(&ctx->counter_list); | ||
1579 | INIT_LIST_HEAD(&ctx->event_list); | ||
1580 | atomic_set(&ctx->refcount, 1); | ||
1581 | ctx->task = task; | ||
1582 | } | ||
1583 | |||
1584 | static struct perf_counter_context *find_get_context(pid_t pid, int cpu) | ||
1585 | { | ||
1586 | struct perf_counter_context *ctx; | ||
1587 | struct perf_cpu_context *cpuctx; | ||
1588 | struct task_struct *task; | ||
1589 | unsigned long flags; | ||
1590 | int err; | ||
1591 | |||
1592 | /* | ||
1593 | * If cpu is not a wildcard then this is a percpu counter: | ||
1594 | */ | ||
1595 | if (cpu != -1) { | ||
1596 | /* Must be root to operate on a CPU counter: */ | ||
1597 | if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) | ||
1598 | return ERR_PTR(-EACCES); | ||
1599 | |||
1600 | if (cpu < 0 || cpu > num_possible_cpus()) | ||
1601 | return ERR_PTR(-EINVAL); | ||
1602 | |||
1603 | /* | ||
1604 | * We could be clever and allow to attach a counter to an | ||
1605 | * offline CPU and activate it when the CPU comes up, but | ||
1606 | * that's for later. | ||
1607 | */ | ||
1608 | if (!cpu_isset(cpu, cpu_online_map)) | ||
1609 | return ERR_PTR(-ENODEV); | ||
1610 | |||
1611 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
1612 | ctx = &cpuctx->ctx; | ||
1613 | get_ctx(ctx); | ||
1614 | |||
1615 | return ctx; | ||
1616 | } | ||
1617 | |||
1618 | rcu_read_lock(); | ||
1619 | if (!pid) | ||
1620 | task = current; | ||
1621 | else | ||
1622 | task = find_task_by_vpid(pid); | ||
1623 | if (task) | ||
1624 | get_task_struct(task); | ||
1625 | rcu_read_unlock(); | ||
1626 | |||
1627 | if (!task) | ||
1628 | return ERR_PTR(-ESRCH); | ||
1629 | |||
1630 | /* | ||
1631 | * Can't attach counters to a dying task. | ||
1632 | */ | ||
1633 | err = -ESRCH; | ||
1634 | if (task->flags & PF_EXITING) | ||
1635 | goto errout; | ||
1636 | |||
1637 | /* Reuse ptrace permission checks for now. */ | ||
1638 | err = -EACCES; | ||
1639 | if (!ptrace_may_access(task, PTRACE_MODE_READ)) | ||
1640 | goto errout; | ||
1641 | |||
1642 | retry: | ||
1643 | ctx = perf_lock_task_context(task, &flags); | ||
1644 | if (ctx) { | ||
1645 | unclone_ctx(ctx); | ||
1646 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
1647 | } | ||
1648 | |||
1649 | if (!ctx) { | ||
1650 | ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL); | ||
1651 | err = -ENOMEM; | ||
1652 | if (!ctx) | ||
1653 | goto errout; | ||
1654 | __perf_counter_init_context(ctx, task); | ||
1655 | get_ctx(ctx); | ||
1656 | if (cmpxchg(&task->perf_counter_ctxp, NULL, ctx)) { | ||
1657 | /* | ||
1658 | * We raced with some other task; use | ||
1659 | * the context they set. | ||
1660 | */ | ||
1661 | kfree(ctx); | ||
1662 | goto retry; | ||
1663 | } | ||
1664 | get_task_struct(task); | ||
1665 | } | ||
1666 | |||
1667 | put_task_struct(task); | ||
1668 | return ctx; | ||
1669 | |||
1670 | errout: | ||
1671 | put_task_struct(task); | ||
1672 | return ERR_PTR(err); | ||
1673 | } | ||
1674 | |||
1675 | static void free_counter_rcu(struct rcu_head *head) | ||
1676 | { | ||
1677 | struct perf_counter *counter; | ||
1678 | |||
1679 | counter = container_of(head, struct perf_counter, rcu_head); | ||
1680 | if (counter->ns) | ||
1681 | put_pid_ns(counter->ns); | ||
1682 | kfree(counter); | ||
1683 | } | ||
1684 | |||
1685 | static void perf_pending_sync(struct perf_counter *counter); | ||
1686 | |||
1687 | static void free_counter(struct perf_counter *counter) | ||
1688 | { | ||
1689 | perf_pending_sync(counter); | ||
1690 | |||
1691 | if (!counter->parent) { | ||
1692 | atomic_dec(&nr_counters); | ||
1693 | if (counter->attr.mmap) | ||
1694 | atomic_dec(&nr_mmap_counters); | ||
1695 | if (counter->attr.comm) | ||
1696 | atomic_dec(&nr_comm_counters); | ||
1697 | if (counter->attr.task) | ||
1698 | atomic_dec(&nr_task_counters); | ||
1699 | } | ||
1700 | |||
1701 | if (counter->output) { | ||
1702 | fput(counter->output->filp); | ||
1703 | counter->output = NULL; | ||
1704 | } | ||
1705 | |||
1706 | if (counter->destroy) | ||
1707 | counter->destroy(counter); | ||
1708 | |||
1709 | put_ctx(counter->ctx); | ||
1710 | call_rcu(&counter->rcu_head, free_counter_rcu); | ||
1711 | } | ||
1712 | |||
1713 | /* | ||
1714 | * Called when the last reference to the file is gone. | ||
1715 | */ | ||
1716 | static int perf_release(struct inode *inode, struct file *file) | ||
1717 | { | ||
1718 | struct perf_counter *counter = file->private_data; | ||
1719 | struct perf_counter_context *ctx = counter->ctx; | ||
1720 | |||
1721 | file->private_data = NULL; | ||
1722 | |||
1723 | WARN_ON_ONCE(ctx->parent_ctx); | ||
1724 | mutex_lock(&ctx->mutex); | ||
1725 | perf_counter_remove_from_context(counter); | ||
1726 | mutex_unlock(&ctx->mutex); | ||
1727 | |||
1728 | mutex_lock(&counter->owner->perf_counter_mutex); | ||
1729 | list_del_init(&counter->owner_entry); | ||
1730 | mutex_unlock(&counter->owner->perf_counter_mutex); | ||
1731 | put_task_struct(counter->owner); | ||
1732 | |||
1733 | free_counter(counter); | ||
1734 | |||
1735 | return 0; | ||
1736 | } | ||
1737 | |||
1738 | static int perf_counter_read_size(struct perf_counter *counter) | ||
1739 | { | ||
1740 | int entry = sizeof(u64); /* value */ | ||
1741 | int size = 0; | ||
1742 | int nr = 1; | ||
1743 | |||
1744 | if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
1745 | size += sizeof(u64); | ||
1746 | |||
1747 | if (counter->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
1748 | size += sizeof(u64); | ||
1749 | |||
1750 | if (counter->attr.read_format & PERF_FORMAT_ID) | ||
1751 | entry += sizeof(u64); | ||
1752 | |||
1753 | if (counter->attr.read_format & PERF_FORMAT_GROUP) { | ||
1754 | nr += counter->group_leader->nr_siblings; | ||
1755 | size += sizeof(u64); | ||
1756 | } | ||
1757 | |||
1758 | size += entry * nr; | ||
1759 | |||
1760 | return size; | ||
1761 | } | ||
1762 | |||
1763 | static u64 perf_counter_read_value(struct perf_counter *counter) | ||
1764 | { | ||
1765 | struct perf_counter *child; | ||
1766 | u64 total = 0; | ||
1767 | |||
1768 | total += perf_counter_read(counter); | ||
1769 | list_for_each_entry(child, &counter->child_list, child_list) | ||
1770 | total += perf_counter_read(child); | ||
1771 | |||
1772 | return total; | ||
1773 | } | ||
1774 | |||
1775 | static int perf_counter_read_entry(struct perf_counter *counter, | ||
1776 | u64 read_format, char __user *buf) | ||
1777 | { | ||
1778 | int n = 0, count = 0; | ||
1779 | u64 values[2]; | ||
1780 | |||
1781 | values[n++] = perf_counter_read_value(counter); | ||
1782 | if (read_format & PERF_FORMAT_ID) | ||
1783 | values[n++] = primary_counter_id(counter); | ||
1784 | |||
1785 | count = n * sizeof(u64); | ||
1786 | |||
1787 | if (copy_to_user(buf, values, count)) | ||
1788 | return -EFAULT; | ||
1789 | |||
1790 | return count; | ||
1791 | } | ||
1792 | |||
1793 | static int perf_counter_read_group(struct perf_counter *counter, | ||
1794 | u64 read_format, char __user *buf) | ||
1795 | { | ||
1796 | struct perf_counter *leader = counter->group_leader, *sub; | ||
1797 | int n = 0, size = 0, err = -EFAULT; | ||
1798 | u64 values[3]; | ||
1799 | |||
1800 | values[n++] = 1 + leader->nr_siblings; | ||
1801 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
1802 | values[n++] = leader->total_time_enabled + | ||
1803 | atomic64_read(&leader->child_total_time_enabled); | ||
1804 | } | ||
1805 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
1806 | values[n++] = leader->total_time_running + | ||
1807 | atomic64_read(&leader->child_total_time_running); | ||
1808 | } | ||
1809 | |||
1810 | size = n * sizeof(u64); | ||
1811 | |||
1812 | if (copy_to_user(buf, values, size)) | ||
1813 | return -EFAULT; | ||
1814 | |||
1815 | err = perf_counter_read_entry(leader, read_format, buf + size); | ||
1816 | if (err < 0) | ||
1817 | return err; | ||
1818 | |||
1819 | size += err; | ||
1820 | |||
1821 | list_for_each_entry(sub, &leader->sibling_list, list_entry) { | ||
1822 | err = perf_counter_read_entry(sub, read_format, | ||
1823 | buf + size); | ||
1824 | if (err < 0) | ||
1825 | return err; | ||
1826 | |||
1827 | size += err; | ||
1828 | } | ||
1829 | |||
1830 | return size; | ||
1831 | } | ||
1832 | |||
1833 | static int perf_counter_read_one(struct perf_counter *counter, | ||
1834 | u64 read_format, char __user *buf) | ||
1835 | { | ||
1836 | u64 values[4]; | ||
1837 | int n = 0; | ||
1838 | |||
1839 | values[n++] = perf_counter_read_value(counter); | ||
1840 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
1841 | values[n++] = counter->total_time_enabled + | ||
1842 | atomic64_read(&counter->child_total_time_enabled); | ||
1843 | } | ||
1844 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
1845 | values[n++] = counter->total_time_running + | ||
1846 | atomic64_read(&counter->child_total_time_running); | ||
1847 | } | ||
1848 | if (read_format & PERF_FORMAT_ID) | ||
1849 | values[n++] = primary_counter_id(counter); | ||
1850 | |||
1851 | if (copy_to_user(buf, values, n * sizeof(u64))) | ||
1852 | return -EFAULT; | ||
1853 | |||
1854 | return n * sizeof(u64); | ||
1855 | } | ||
1856 | |||
1857 | /* | ||
1858 | * Read the performance counter - simple non blocking version for now | ||
1859 | */ | ||
1860 | static ssize_t | ||
1861 | perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count) | ||
1862 | { | ||
1863 | u64 read_format = counter->attr.read_format; | ||
1864 | int ret; | ||
1865 | |||
1866 | /* | ||
1867 | * Return end-of-file for a read on a counter that is in | ||
1868 | * error state (i.e. because it was pinned but it couldn't be | ||
1869 | * scheduled on to the CPU at some point). | ||
1870 | */ | ||
1871 | if (counter->state == PERF_COUNTER_STATE_ERROR) | ||
1872 | return 0; | ||
1873 | |||
1874 | if (count < perf_counter_read_size(counter)) | ||
1875 | return -ENOSPC; | ||
1876 | |||
1877 | WARN_ON_ONCE(counter->ctx->parent_ctx); | ||
1878 | mutex_lock(&counter->child_mutex); | ||
1879 | if (read_format & PERF_FORMAT_GROUP) | ||
1880 | ret = perf_counter_read_group(counter, read_format, buf); | ||
1881 | else | ||
1882 | ret = perf_counter_read_one(counter, read_format, buf); | ||
1883 | mutex_unlock(&counter->child_mutex); | ||
1884 | |||
1885 | return ret; | ||
1886 | } | ||
1887 | |||
1888 | static ssize_t | ||
1889 | perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) | ||
1890 | { | ||
1891 | struct perf_counter *counter = file->private_data; | ||
1892 | |||
1893 | return perf_read_hw(counter, buf, count); | ||
1894 | } | ||
1895 | |||
1896 | static unsigned int perf_poll(struct file *file, poll_table *wait) | ||
1897 | { | ||
1898 | struct perf_counter *counter = file->private_data; | ||
1899 | struct perf_mmap_data *data; | ||
1900 | unsigned int events = POLL_HUP; | ||
1901 | |||
1902 | rcu_read_lock(); | ||
1903 | data = rcu_dereference(counter->data); | ||
1904 | if (data) | ||
1905 | events = atomic_xchg(&data->poll, 0); | ||
1906 | rcu_read_unlock(); | ||
1907 | |||
1908 | poll_wait(file, &counter->waitq, wait); | ||
1909 | |||
1910 | return events; | ||
1911 | } | ||
1912 | |||
1913 | static void perf_counter_reset(struct perf_counter *counter) | ||
1914 | { | ||
1915 | (void)perf_counter_read(counter); | ||
1916 | atomic64_set(&counter->count, 0); | ||
1917 | perf_counter_update_userpage(counter); | ||
1918 | } | ||
1919 | |||
1920 | /* | ||
1921 | * Holding the top-level counter's child_mutex means that any | ||
1922 | * descendant process that has inherited this counter will block | ||
1923 | * in sync_child_counter if it goes to exit, thus satisfying the | ||
1924 | * task existence requirements of perf_counter_enable/disable. | ||
1925 | */ | ||
1926 | static void perf_counter_for_each_child(struct perf_counter *counter, | ||
1927 | void (*func)(struct perf_counter *)) | ||
1928 | { | ||
1929 | struct perf_counter *child; | ||
1930 | |||
1931 | WARN_ON_ONCE(counter->ctx->parent_ctx); | ||
1932 | mutex_lock(&counter->child_mutex); | ||
1933 | func(counter); | ||
1934 | list_for_each_entry(child, &counter->child_list, child_list) | ||
1935 | func(child); | ||
1936 | mutex_unlock(&counter->child_mutex); | ||
1937 | } | ||
1938 | |||
1939 | static void perf_counter_for_each(struct perf_counter *counter, | ||
1940 | void (*func)(struct perf_counter *)) | ||
1941 | { | ||
1942 | struct perf_counter_context *ctx = counter->ctx; | ||
1943 | struct perf_counter *sibling; | ||
1944 | |||
1945 | WARN_ON_ONCE(ctx->parent_ctx); | ||
1946 | mutex_lock(&ctx->mutex); | ||
1947 | counter = counter->group_leader; | ||
1948 | |||
1949 | perf_counter_for_each_child(counter, func); | ||
1950 | func(counter); | ||
1951 | list_for_each_entry(sibling, &counter->sibling_list, list_entry) | ||
1952 | perf_counter_for_each_child(counter, func); | ||
1953 | mutex_unlock(&ctx->mutex); | ||
1954 | } | ||
1955 | |||
1956 | static int perf_counter_period(struct perf_counter *counter, u64 __user *arg) | ||
1957 | { | ||
1958 | struct perf_counter_context *ctx = counter->ctx; | ||
1959 | unsigned long size; | ||
1960 | int ret = 0; | ||
1961 | u64 value; | ||
1962 | |||
1963 | if (!counter->attr.sample_period) | ||
1964 | return -EINVAL; | ||
1965 | |||
1966 | size = copy_from_user(&value, arg, sizeof(value)); | ||
1967 | if (size != sizeof(value)) | ||
1968 | return -EFAULT; | ||
1969 | |||
1970 | if (!value) | ||
1971 | return -EINVAL; | ||
1972 | |||
1973 | spin_lock_irq(&ctx->lock); | ||
1974 | if (counter->attr.freq) { | ||
1975 | if (value > sysctl_perf_counter_sample_rate) { | ||
1976 | ret = -EINVAL; | ||
1977 | goto unlock; | ||
1978 | } | ||
1979 | |||
1980 | counter->attr.sample_freq = value; | ||
1981 | } else { | ||
1982 | counter->attr.sample_period = value; | ||
1983 | counter->hw.sample_period = value; | ||
1984 | } | ||
1985 | unlock: | ||
1986 | spin_unlock_irq(&ctx->lock); | ||
1987 | |||
1988 | return ret; | ||
1989 | } | ||
1990 | |||
1991 | int perf_counter_set_output(struct perf_counter *counter, int output_fd); | ||
1992 | |||
1993 | static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) | ||
1994 | { | ||
1995 | struct perf_counter *counter = file->private_data; | ||
1996 | void (*func)(struct perf_counter *); | ||
1997 | u32 flags = arg; | ||
1998 | |||
1999 | switch (cmd) { | ||
2000 | case PERF_COUNTER_IOC_ENABLE: | ||
2001 | func = perf_counter_enable; | ||
2002 | break; | ||
2003 | case PERF_COUNTER_IOC_DISABLE: | ||
2004 | func = perf_counter_disable; | ||
2005 | break; | ||
2006 | case PERF_COUNTER_IOC_RESET: | ||
2007 | func = perf_counter_reset; | ||
2008 | break; | ||
2009 | |||
2010 | case PERF_COUNTER_IOC_REFRESH: | ||
2011 | return perf_counter_refresh(counter, arg); | ||
2012 | |||
2013 | case PERF_COUNTER_IOC_PERIOD: | ||
2014 | return perf_counter_period(counter, (u64 __user *)arg); | ||
2015 | |||
2016 | case PERF_COUNTER_IOC_SET_OUTPUT: | ||
2017 | return perf_counter_set_output(counter, arg); | ||
2018 | |||
2019 | default: | ||
2020 | return -ENOTTY; | ||
2021 | } | ||
2022 | |||
2023 | if (flags & PERF_IOC_FLAG_GROUP) | ||
2024 | perf_counter_for_each(counter, func); | ||
2025 | else | ||
2026 | perf_counter_for_each_child(counter, func); | ||
2027 | |||
2028 | return 0; | ||
2029 | } | ||
2030 | |||
2031 | int perf_counter_task_enable(void) | ||
2032 | { | ||
2033 | struct perf_counter *counter; | ||
2034 | |||
2035 | mutex_lock(¤t->perf_counter_mutex); | ||
2036 | list_for_each_entry(counter, ¤t->perf_counter_list, owner_entry) | ||
2037 | perf_counter_for_each_child(counter, perf_counter_enable); | ||
2038 | mutex_unlock(¤t->perf_counter_mutex); | ||
2039 | |||
2040 | return 0; | ||
2041 | } | ||
2042 | |||
2043 | int perf_counter_task_disable(void) | ||
2044 | { | ||
2045 | struct perf_counter *counter; | ||
2046 | |||
2047 | mutex_lock(¤t->perf_counter_mutex); | ||
2048 | list_for_each_entry(counter, ¤t->perf_counter_list, owner_entry) | ||
2049 | perf_counter_for_each_child(counter, perf_counter_disable); | ||
2050 | mutex_unlock(¤t->perf_counter_mutex); | ||
2051 | |||
2052 | return 0; | ||
2053 | } | ||
2054 | |||
2055 | #ifndef PERF_COUNTER_INDEX_OFFSET | ||
2056 | # define PERF_COUNTER_INDEX_OFFSET 0 | ||
2057 | #endif | ||
2058 | |||
2059 | static int perf_counter_index(struct perf_counter *counter) | ||
2060 | { | ||
2061 | if (counter->state != PERF_COUNTER_STATE_ACTIVE) | ||
2062 | return 0; | ||
2063 | |||
2064 | return counter->hw.idx + 1 - PERF_COUNTER_INDEX_OFFSET; | ||
2065 | } | ||
2066 | |||
2067 | /* | ||
2068 | * Callers need to ensure there can be no nesting of this function, otherwise | ||
2069 | * the seqlock logic goes bad. We can not serialize this because the arch | ||
2070 | * code calls this from NMI context. | ||
2071 | */ | ||
2072 | void perf_counter_update_userpage(struct perf_counter *counter) | ||
2073 | { | ||
2074 | struct perf_counter_mmap_page *userpg; | ||
2075 | struct perf_mmap_data *data; | ||
2076 | |||
2077 | rcu_read_lock(); | ||
2078 | data = rcu_dereference(counter->data); | ||
2079 | if (!data) | ||
2080 | goto unlock; | ||
2081 | |||
2082 | userpg = data->user_page; | ||
2083 | |||
2084 | /* | ||
2085 | * Disable preemption so as to not let the corresponding user-space | ||
2086 | * spin too long if we get preempted. | ||
2087 | */ | ||
2088 | preempt_disable(); | ||
2089 | ++userpg->lock; | ||
2090 | barrier(); | ||
2091 | userpg->index = perf_counter_index(counter); | ||
2092 | userpg->offset = atomic64_read(&counter->count); | ||
2093 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) | ||
2094 | userpg->offset -= atomic64_read(&counter->hw.prev_count); | ||
2095 | |||
2096 | userpg->time_enabled = counter->total_time_enabled + | ||
2097 | atomic64_read(&counter->child_total_time_enabled); | ||
2098 | |||
2099 | userpg->time_running = counter->total_time_running + | ||
2100 | atomic64_read(&counter->child_total_time_running); | ||
2101 | |||
2102 | barrier(); | ||
2103 | ++userpg->lock; | ||
2104 | preempt_enable(); | ||
2105 | unlock: | ||
2106 | rcu_read_unlock(); | ||
2107 | } | ||
2108 | |||
2109 | static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | ||
2110 | { | ||
2111 | struct perf_counter *counter = vma->vm_file->private_data; | ||
2112 | struct perf_mmap_data *data; | ||
2113 | int ret = VM_FAULT_SIGBUS; | ||
2114 | |||
2115 | if (vmf->flags & FAULT_FLAG_MKWRITE) { | ||
2116 | if (vmf->pgoff == 0) | ||
2117 | ret = 0; | ||
2118 | return ret; | ||
2119 | } | ||
2120 | |||
2121 | rcu_read_lock(); | ||
2122 | data = rcu_dereference(counter->data); | ||
2123 | if (!data) | ||
2124 | goto unlock; | ||
2125 | |||
2126 | if (vmf->pgoff == 0) { | ||
2127 | vmf->page = virt_to_page(data->user_page); | ||
2128 | } else { | ||
2129 | int nr = vmf->pgoff - 1; | ||
2130 | |||
2131 | if ((unsigned)nr > data->nr_pages) | ||
2132 | goto unlock; | ||
2133 | |||
2134 | if (vmf->flags & FAULT_FLAG_WRITE) | ||
2135 | goto unlock; | ||
2136 | |||
2137 | vmf->page = virt_to_page(data->data_pages[nr]); | ||
2138 | } | ||
2139 | |||
2140 | get_page(vmf->page); | ||
2141 | vmf->page->mapping = vma->vm_file->f_mapping; | ||
2142 | vmf->page->index = vmf->pgoff; | ||
2143 | |||
2144 | ret = 0; | ||
2145 | unlock: | ||
2146 | rcu_read_unlock(); | ||
2147 | |||
2148 | return ret; | ||
2149 | } | ||
2150 | |||
2151 | static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages) | ||
2152 | { | ||
2153 | struct perf_mmap_data *data; | ||
2154 | unsigned long size; | ||
2155 | int i; | ||
2156 | |||
2157 | WARN_ON(atomic_read(&counter->mmap_count)); | ||
2158 | |||
2159 | size = sizeof(struct perf_mmap_data); | ||
2160 | size += nr_pages * sizeof(void *); | ||
2161 | |||
2162 | data = kzalloc(size, GFP_KERNEL); | ||
2163 | if (!data) | ||
2164 | goto fail; | ||
2165 | |||
2166 | data->user_page = (void *)get_zeroed_page(GFP_KERNEL); | ||
2167 | if (!data->user_page) | ||
2168 | goto fail_user_page; | ||
2169 | |||
2170 | for (i = 0; i < nr_pages; i++) { | ||
2171 | data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL); | ||
2172 | if (!data->data_pages[i]) | ||
2173 | goto fail_data_pages; | ||
2174 | } | ||
2175 | |||
2176 | data->nr_pages = nr_pages; | ||
2177 | atomic_set(&data->lock, -1); | ||
2178 | |||
2179 | rcu_assign_pointer(counter->data, data); | ||
2180 | |||
2181 | return 0; | ||
2182 | |||
2183 | fail_data_pages: | ||
2184 | for (i--; i >= 0; i--) | ||
2185 | free_page((unsigned long)data->data_pages[i]); | ||
2186 | |||
2187 | free_page((unsigned long)data->user_page); | ||
2188 | |||
2189 | fail_user_page: | ||
2190 | kfree(data); | ||
2191 | |||
2192 | fail: | ||
2193 | return -ENOMEM; | ||
2194 | } | ||
2195 | |||
2196 | static void perf_mmap_free_page(unsigned long addr) | ||
2197 | { | ||
2198 | struct page *page = virt_to_page((void *)addr); | ||
2199 | |||
2200 | page->mapping = NULL; | ||
2201 | __free_page(page); | ||
2202 | } | ||
2203 | |||
2204 | static void __perf_mmap_data_free(struct rcu_head *rcu_head) | ||
2205 | { | ||
2206 | struct perf_mmap_data *data; | ||
2207 | int i; | ||
2208 | |||
2209 | data = container_of(rcu_head, struct perf_mmap_data, rcu_head); | ||
2210 | |||
2211 | perf_mmap_free_page((unsigned long)data->user_page); | ||
2212 | for (i = 0; i < data->nr_pages; i++) | ||
2213 | perf_mmap_free_page((unsigned long)data->data_pages[i]); | ||
2214 | |||
2215 | kfree(data); | ||
2216 | } | ||
2217 | |||
2218 | static void perf_mmap_data_free(struct perf_counter *counter) | ||
2219 | { | ||
2220 | struct perf_mmap_data *data = counter->data; | ||
2221 | |||
2222 | WARN_ON(atomic_read(&counter->mmap_count)); | ||
2223 | |||
2224 | rcu_assign_pointer(counter->data, NULL); | ||
2225 | call_rcu(&data->rcu_head, __perf_mmap_data_free); | ||
2226 | } | ||
2227 | |||
2228 | static void perf_mmap_open(struct vm_area_struct *vma) | ||
2229 | { | ||
2230 | struct perf_counter *counter = vma->vm_file->private_data; | ||
2231 | |||
2232 | atomic_inc(&counter->mmap_count); | ||
2233 | } | ||
2234 | |||
2235 | static void perf_mmap_close(struct vm_area_struct *vma) | ||
2236 | { | ||
2237 | struct perf_counter *counter = vma->vm_file->private_data; | ||
2238 | |||
2239 | WARN_ON_ONCE(counter->ctx->parent_ctx); | ||
2240 | if (atomic_dec_and_mutex_lock(&counter->mmap_count, &counter->mmap_mutex)) { | ||
2241 | struct user_struct *user = current_user(); | ||
2242 | |||
2243 | atomic_long_sub(counter->data->nr_pages + 1, &user->locked_vm); | ||
2244 | vma->vm_mm->locked_vm -= counter->data->nr_locked; | ||
2245 | perf_mmap_data_free(counter); | ||
2246 | mutex_unlock(&counter->mmap_mutex); | ||
2247 | } | ||
2248 | } | ||
2249 | |||
2250 | static struct vm_operations_struct perf_mmap_vmops = { | ||
2251 | .open = perf_mmap_open, | ||
2252 | .close = perf_mmap_close, | ||
2253 | .fault = perf_mmap_fault, | ||
2254 | .page_mkwrite = perf_mmap_fault, | ||
2255 | }; | ||
2256 | |||
2257 | static int perf_mmap(struct file *file, struct vm_area_struct *vma) | ||
2258 | { | ||
2259 | struct perf_counter *counter = file->private_data; | ||
2260 | unsigned long user_locked, user_lock_limit; | ||
2261 | struct user_struct *user = current_user(); | ||
2262 | unsigned long locked, lock_limit; | ||
2263 | unsigned long vma_size; | ||
2264 | unsigned long nr_pages; | ||
2265 | long user_extra, extra; | ||
2266 | int ret = 0; | ||
2267 | |||
2268 | if (!(vma->vm_flags & VM_SHARED)) | ||
2269 | return -EINVAL; | ||
2270 | |||
2271 | vma_size = vma->vm_end - vma->vm_start; | ||
2272 | nr_pages = (vma_size / PAGE_SIZE) - 1; | ||
2273 | |||
2274 | /* | ||
2275 | * If we have data pages ensure they're a power-of-two number, so we | ||
2276 | * can do bitmasks instead of modulo. | ||
2277 | */ | ||
2278 | if (nr_pages != 0 && !is_power_of_2(nr_pages)) | ||
2279 | return -EINVAL; | ||
2280 | |||
2281 | if (vma_size != PAGE_SIZE * (1 + nr_pages)) | ||
2282 | return -EINVAL; | ||
2283 | |||
2284 | if (vma->vm_pgoff != 0) | ||
2285 | return -EINVAL; | ||
2286 | |||
2287 | WARN_ON_ONCE(counter->ctx->parent_ctx); | ||
2288 | mutex_lock(&counter->mmap_mutex); | ||
2289 | if (counter->output) { | ||
2290 | ret = -EINVAL; | ||
2291 | goto unlock; | ||
2292 | } | ||
2293 | |||
2294 | if (atomic_inc_not_zero(&counter->mmap_count)) { | ||
2295 | if (nr_pages != counter->data->nr_pages) | ||
2296 | ret = -EINVAL; | ||
2297 | goto unlock; | ||
2298 | } | ||
2299 | |||
2300 | user_extra = nr_pages + 1; | ||
2301 | user_lock_limit = sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10); | ||
2302 | |||
2303 | /* | ||
2304 | * Increase the limit linearly with more CPUs: | ||
2305 | */ | ||
2306 | user_lock_limit *= num_online_cpus(); | ||
2307 | |||
2308 | user_locked = atomic_long_read(&user->locked_vm) + user_extra; | ||
2309 | |||
2310 | extra = 0; | ||
2311 | if (user_locked > user_lock_limit) | ||
2312 | extra = user_locked - user_lock_limit; | ||
2313 | |||
2314 | lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; | ||
2315 | lock_limit >>= PAGE_SHIFT; | ||
2316 | locked = vma->vm_mm->locked_vm + extra; | ||
2317 | |||
2318 | if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) { | ||
2319 | ret = -EPERM; | ||
2320 | goto unlock; | ||
2321 | } | ||
2322 | |||
2323 | WARN_ON(counter->data); | ||
2324 | ret = perf_mmap_data_alloc(counter, nr_pages); | ||
2325 | if (ret) | ||
2326 | goto unlock; | ||
2327 | |||
2328 | atomic_set(&counter->mmap_count, 1); | ||
2329 | atomic_long_add(user_extra, &user->locked_vm); | ||
2330 | vma->vm_mm->locked_vm += extra; | ||
2331 | counter->data->nr_locked = extra; | ||
2332 | if (vma->vm_flags & VM_WRITE) | ||
2333 | counter->data->writable = 1; | ||
2334 | |||
2335 | unlock: | ||
2336 | mutex_unlock(&counter->mmap_mutex); | ||
2337 | |||
2338 | vma->vm_flags |= VM_RESERVED; | ||
2339 | vma->vm_ops = &perf_mmap_vmops; | ||
2340 | |||
2341 | return ret; | ||
2342 | } | ||
2343 | |||
2344 | static int perf_fasync(int fd, struct file *filp, int on) | ||
2345 | { | ||
2346 | struct inode *inode = filp->f_path.dentry->d_inode; | ||
2347 | struct perf_counter *counter = filp->private_data; | ||
2348 | int retval; | ||
2349 | |||
2350 | mutex_lock(&inode->i_mutex); | ||
2351 | retval = fasync_helper(fd, filp, on, &counter->fasync); | ||
2352 | mutex_unlock(&inode->i_mutex); | ||
2353 | |||
2354 | if (retval < 0) | ||
2355 | return retval; | ||
2356 | |||
2357 | return 0; | ||
2358 | } | ||
2359 | |||
2360 | static const struct file_operations perf_fops = { | ||
2361 | .release = perf_release, | ||
2362 | .read = perf_read, | ||
2363 | .poll = perf_poll, | ||
2364 | .unlocked_ioctl = perf_ioctl, | ||
2365 | .compat_ioctl = perf_ioctl, | ||
2366 | .mmap = perf_mmap, | ||
2367 | .fasync = perf_fasync, | ||
2368 | }; | ||
2369 | |||
2370 | /* | ||
2371 | * Perf counter wakeup | ||
2372 | * | ||
2373 | * If there's data, ensure we set the poll() state and publish everything | ||
2374 | * to user-space before waking everybody up. | ||
2375 | */ | ||
2376 | |||
2377 | void perf_counter_wakeup(struct perf_counter *counter) | ||
2378 | { | ||
2379 | wake_up_all(&counter->waitq); | ||
2380 | |||
2381 | if (counter->pending_kill) { | ||
2382 | kill_fasync(&counter->fasync, SIGIO, counter->pending_kill); | ||
2383 | counter->pending_kill = 0; | ||
2384 | } | ||
2385 | } | ||
2386 | |||
2387 | /* | ||
2388 | * Pending wakeups | ||
2389 | * | ||
2390 | * Handle the case where we need to wakeup up from NMI (or rq->lock) context. | ||
2391 | * | ||
2392 | * The NMI bit means we cannot possibly take locks. Therefore, maintain a | ||
2393 | * single linked list and use cmpxchg() to add entries lockless. | ||
2394 | */ | ||
2395 | |||
2396 | static void perf_pending_counter(struct perf_pending_entry *entry) | ||
2397 | { | ||
2398 | struct perf_counter *counter = container_of(entry, | ||
2399 | struct perf_counter, pending); | ||
2400 | |||
2401 | if (counter->pending_disable) { | ||
2402 | counter->pending_disable = 0; | ||
2403 | __perf_counter_disable(counter); | ||
2404 | } | ||
2405 | |||
2406 | if (counter->pending_wakeup) { | ||
2407 | counter->pending_wakeup = 0; | ||
2408 | perf_counter_wakeup(counter); | ||
2409 | } | ||
2410 | } | ||
2411 | |||
2412 | #define PENDING_TAIL ((struct perf_pending_entry *)-1UL) | ||
2413 | |||
2414 | static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = { | ||
2415 | PENDING_TAIL, | ||
2416 | }; | ||
2417 | |||
2418 | static void perf_pending_queue(struct perf_pending_entry *entry, | ||
2419 | void (*func)(struct perf_pending_entry *)) | ||
2420 | { | ||
2421 | struct perf_pending_entry **head; | ||
2422 | |||
2423 | if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL) | ||
2424 | return; | ||
2425 | |||
2426 | entry->func = func; | ||
2427 | |||
2428 | head = &get_cpu_var(perf_pending_head); | ||
2429 | |||
2430 | do { | ||
2431 | entry->next = *head; | ||
2432 | } while (cmpxchg(head, entry->next, entry) != entry->next); | ||
2433 | |||
2434 | set_perf_counter_pending(); | ||
2435 | |||
2436 | put_cpu_var(perf_pending_head); | ||
2437 | } | ||
2438 | |||
2439 | static int __perf_pending_run(void) | ||
2440 | { | ||
2441 | struct perf_pending_entry *list; | ||
2442 | int nr = 0; | ||
2443 | |||
2444 | list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL); | ||
2445 | while (list != PENDING_TAIL) { | ||
2446 | void (*func)(struct perf_pending_entry *); | ||
2447 | struct perf_pending_entry *entry = list; | ||
2448 | |||
2449 | list = list->next; | ||
2450 | |||
2451 | func = entry->func; | ||
2452 | entry->next = NULL; | ||
2453 | /* | ||
2454 | * Ensure we observe the unqueue before we issue the wakeup, | ||
2455 | * so that we won't be waiting forever. | ||
2456 | * -- see perf_not_pending(). | ||
2457 | */ | ||
2458 | smp_wmb(); | ||
2459 | |||
2460 | func(entry); | ||
2461 | nr++; | ||
2462 | } | ||
2463 | |||
2464 | return nr; | ||
2465 | } | ||
2466 | |||
2467 | static inline int perf_not_pending(struct perf_counter *counter) | ||
2468 | { | ||
2469 | /* | ||
2470 | * If we flush on whatever cpu we run, there is a chance we don't | ||
2471 | * need to wait. | ||
2472 | */ | ||
2473 | get_cpu(); | ||
2474 | __perf_pending_run(); | ||
2475 | put_cpu(); | ||
2476 | |||
2477 | /* | ||
2478 | * Ensure we see the proper queue state before going to sleep | ||
2479 | * so that we do not miss the wakeup. -- see perf_pending_handle() | ||
2480 | */ | ||
2481 | smp_rmb(); | ||
2482 | return counter->pending.next == NULL; | ||
2483 | } | ||
2484 | |||
2485 | static void perf_pending_sync(struct perf_counter *counter) | ||
2486 | { | ||
2487 | wait_event(counter->waitq, perf_not_pending(counter)); | ||
2488 | } | ||
2489 | |||
2490 | void perf_counter_do_pending(void) | ||
2491 | { | ||
2492 | __perf_pending_run(); | ||
2493 | } | ||
2494 | |||
2495 | /* | ||
2496 | * Callchain support -- arch specific | ||
2497 | */ | ||
2498 | |||
2499 | __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs) | ||
2500 | { | ||
2501 | return NULL; | ||
2502 | } | ||
2503 | |||
2504 | /* | ||
2505 | * Output | ||
2506 | */ | ||
2507 | |||
2508 | struct perf_output_handle { | ||
2509 | struct perf_counter *counter; | ||
2510 | struct perf_mmap_data *data; | ||
2511 | unsigned long head; | ||
2512 | unsigned long offset; | ||
2513 | int nmi; | ||
2514 | int sample; | ||
2515 | int locked; | ||
2516 | unsigned long flags; | ||
2517 | }; | ||
2518 | |||
2519 | static bool perf_output_space(struct perf_mmap_data *data, | ||
2520 | unsigned int offset, unsigned int head) | ||
2521 | { | ||
2522 | unsigned long tail; | ||
2523 | unsigned long mask; | ||
2524 | |||
2525 | if (!data->writable) | ||
2526 | return true; | ||
2527 | |||
2528 | mask = (data->nr_pages << PAGE_SHIFT) - 1; | ||
2529 | /* | ||
2530 | * Userspace could choose to issue a mb() before updating the tail | ||
2531 | * pointer. So that all reads will be completed before the write is | ||
2532 | * issued. | ||
2533 | */ | ||
2534 | tail = ACCESS_ONCE(data->user_page->data_tail); | ||
2535 | smp_rmb(); | ||
2536 | |||
2537 | offset = (offset - tail) & mask; | ||
2538 | head = (head - tail) & mask; | ||
2539 | |||
2540 | if ((int)(head - offset) < 0) | ||
2541 | return false; | ||
2542 | |||
2543 | return true; | ||
2544 | } | ||
2545 | |||
2546 | static void perf_output_wakeup(struct perf_output_handle *handle) | ||
2547 | { | ||
2548 | atomic_set(&handle->data->poll, POLL_IN); | ||
2549 | |||
2550 | if (handle->nmi) { | ||
2551 | handle->counter->pending_wakeup = 1; | ||
2552 | perf_pending_queue(&handle->counter->pending, | ||
2553 | perf_pending_counter); | ||
2554 | } else | ||
2555 | perf_counter_wakeup(handle->counter); | ||
2556 | } | ||
2557 | |||
2558 | /* | ||
2559 | * Curious locking construct. | ||
2560 | * | ||
2561 | * We need to ensure a later event doesn't publish a head when a former | ||
2562 | * event isn't done writing. However since we need to deal with NMIs we | ||
2563 | * cannot fully serialize things. | ||
2564 | * | ||
2565 | * What we do is serialize between CPUs so we only have to deal with NMI | ||
2566 | * nesting on a single CPU. | ||
2567 | * | ||
2568 | * We only publish the head (and generate a wakeup) when the outer-most | ||
2569 | * event completes. | ||
2570 | */ | ||
2571 | static void perf_output_lock(struct perf_output_handle *handle) | ||
2572 | { | ||
2573 | struct perf_mmap_data *data = handle->data; | ||
2574 | int cpu; | ||
2575 | |||
2576 | handle->locked = 0; | ||
2577 | |||
2578 | local_irq_save(handle->flags); | ||
2579 | cpu = smp_processor_id(); | ||
2580 | |||
2581 | if (in_nmi() && atomic_read(&data->lock) == cpu) | ||
2582 | return; | ||
2583 | |||
2584 | while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) | ||
2585 | cpu_relax(); | ||
2586 | |||
2587 | handle->locked = 1; | ||
2588 | } | ||
2589 | |||
2590 | static void perf_output_unlock(struct perf_output_handle *handle) | ||
2591 | { | ||
2592 | struct perf_mmap_data *data = handle->data; | ||
2593 | unsigned long head; | ||
2594 | int cpu; | ||
2595 | |||
2596 | data->done_head = data->head; | ||
2597 | |||
2598 | if (!handle->locked) | ||
2599 | goto out; | ||
2600 | |||
2601 | again: | ||
2602 | /* | ||
2603 | * The xchg implies a full barrier that ensures all writes are done | ||
2604 | * before we publish the new head, matched by a rmb() in userspace when | ||
2605 | * reading this position. | ||
2606 | */ | ||
2607 | while ((head = atomic_long_xchg(&data->done_head, 0))) | ||
2608 | data->user_page->data_head = head; | ||
2609 | |||
2610 | /* | ||
2611 | * NMI can happen here, which means we can miss a done_head update. | ||
2612 | */ | ||
2613 | |||
2614 | cpu = atomic_xchg(&data->lock, -1); | ||
2615 | WARN_ON_ONCE(cpu != smp_processor_id()); | ||
2616 | |||
2617 | /* | ||
2618 | * Therefore we have to validate we did not indeed do so. | ||
2619 | */ | ||
2620 | if (unlikely(atomic_long_read(&data->done_head))) { | ||
2621 | /* | ||
2622 | * Since we had it locked, we can lock it again. | ||
2623 | */ | ||
2624 | while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) | ||
2625 | cpu_relax(); | ||
2626 | |||
2627 | goto again; | ||
2628 | } | ||
2629 | |||
2630 | if (atomic_xchg(&data->wakeup, 0)) | ||
2631 | perf_output_wakeup(handle); | ||
2632 | out: | ||
2633 | local_irq_restore(handle->flags); | ||
2634 | } | ||
2635 | |||
2636 | static void perf_output_copy(struct perf_output_handle *handle, | ||
2637 | const void *buf, unsigned int len) | ||
2638 | { | ||
2639 | unsigned int pages_mask; | ||
2640 | unsigned int offset; | ||
2641 | unsigned int size; | ||
2642 | void **pages; | ||
2643 | |||
2644 | offset = handle->offset; | ||
2645 | pages_mask = handle->data->nr_pages - 1; | ||
2646 | pages = handle->data->data_pages; | ||
2647 | |||
2648 | do { | ||
2649 | unsigned int page_offset; | ||
2650 | int nr; | ||
2651 | |||
2652 | nr = (offset >> PAGE_SHIFT) & pages_mask; | ||
2653 | page_offset = offset & (PAGE_SIZE - 1); | ||
2654 | size = min_t(unsigned int, PAGE_SIZE - page_offset, len); | ||
2655 | |||
2656 | memcpy(pages[nr] + page_offset, buf, size); | ||
2657 | |||
2658 | len -= size; | ||
2659 | buf += size; | ||
2660 | offset += size; | ||
2661 | } while (len); | ||
2662 | |||
2663 | handle->offset = offset; | ||
2664 | |||
2665 | /* | ||
2666 | * Check we didn't copy past our reservation window, taking the | ||
2667 | * possible unsigned int wrap into account. | ||
2668 | */ | ||
2669 | WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0); | ||
2670 | } | ||
2671 | |||
2672 | #define perf_output_put(handle, x) \ | ||
2673 | perf_output_copy((handle), &(x), sizeof(x)) | ||
2674 | |||
2675 | static int perf_output_begin(struct perf_output_handle *handle, | ||
2676 | struct perf_counter *counter, unsigned int size, | ||
2677 | int nmi, int sample) | ||
2678 | { | ||
2679 | struct perf_counter *output_counter; | ||
2680 | struct perf_mmap_data *data; | ||
2681 | unsigned int offset, head; | ||
2682 | int have_lost; | ||
2683 | struct { | ||
2684 | struct perf_event_header header; | ||
2685 | u64 id; | ||
2686 | u64 lost; | ||
2687 | } lost_event; | ||
2688 | |||
2689 | rcu_read_lock(); | ||
2690 | /* | ||
2691 | * For inherited counters we send all the output towards the parent. | ||
2692 | */ | ||
2693 | if (counter->parent) | ||
2694 | counter = counter->parent; | ||
2695 | |||
2696 | output_counter = rcu_dereference(counter->output); | ||
2697 | if (output_counter) | ||
2698 | counter = output_counter; | ||
2699 | |||
2700 | data = rcu_dereference(counter->data); | ||
2701 | if (!data) | ||
2702 | goto out; | ||
2703 | |||
2704 | handle->data = data; | ||
2705 | handle->counter = counter; | ||
2706 | handle->nmi = nmi; | ||
2707 | handle->sample = sample; | ||
2708 | |||
2709 | if (!data->nr_pages) | ||
2710 | goto fail; | ||
2711 | |||
2712 | have_lost = atomic_read(&data->lost); | ||
2713 | if (have_lost) | ||
2714 | size += sizeof(lost_event); | ||
2715 | |||
2716 | perf_output_lock(handle); | ||
2717 | |||
2718 | do { | ||
2719 | offset = head = atomic_long_read(&data->head); | ||
2720 | head += size; | ||
2721 | if (unlikely(!perf_output_space(data, offset, head))) | ||
2722 | goto fail; | ||
2723 | } while (atomic_long_cmpxchg(&data->head, offset, head) != offset); | ||
2724 | |||
2725 | handle->offset = offset; | ||
2726 | handle->head = head; | ||
2727 | |||
2728 | if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT)) | ||
2729 | atomic_set(&data->wakeup, 1); | ||
2730 | |||
2731 | if (have_lost) { | ||
2732 | lost_event.header.type = PERF_EVENT_LOST; | ||
2733 | lost_event.header.misc = 0; | ||
2734 | lost_event.header.size = sizeof(lost_event); | ||
2735 | lost_event.id = counter->id; | ||
2736 | lost_event.lost = atomic_xchg(&data->lost, 0); | ||
2737 | |||
2738 | perf_output_put(handle, lost_event); | ||
2739 | } | ||
2740 | |||
2741 | return 0; | ||
2742 | |||
2743 | fail: | ||
2744 | atomic_inc(&data->lost); | ||
2745 | perf_output_unlock(handle); | ||
2746 | out: | ||
2747 | rcu_read_unlock(); | ||
2748 | |||
2749 | return -ENOSPC; | ||
2750 | } | ||
2751 | |||
2752 | static void perf_output_end(struct perf_output_handle *handle) | ||
2753 | { | ||
2754 | struct perf_counter *counter = handle->counter; | ||
2755 | struct perf_mmap_data *data = handle->data; | ||
2756 | |||
2757 | int wakeup_events = counter->attr.wakeup_events; | ||
2758 | |||
2759 | if (handle->sample && wakeup_events) { | ||
2760 | int events = atomic_inc_return(&data->events); | ||
2761 | if (events >= wakeup_events) { | ||
2762 | atomic_sub(wakeup_events, &data->events); | ||
2763 | atomic_set(&data->wakeup, 1); | ||
2764 | } | ||
2765 | } | ||
2766 | |||
2767 | perf_output_unlock(handle); | ||
2768 | rcu_read_unlock(); | ||
2769 | } | ||
2770 | |||
2771 | static u32 perf_counter_pid(struct perf_counter *counter, struct task_struct *p) | ||
2772 | { | ||
2773 | /* | ||
2774 | * only top level counters have the pid namespace they were created in | ||
2775 | */ | ||
2776 | if (counter->parent) | ||
2777 | counter = counter->parent; | ||
2778 | |||
2779 | return task_tgid_nr_ns(p, counter->ns); | ||
2780 | } | ||
2781 | |||
2782 | static u32 perf_counter_tid(struct perf_counter *counter, struct task_struct *p) | ||
2783 | { | ||
2784 | /* | ||
2785 | * only top level counters have the pid namespace they were created in | ||
2786 | */ | ||
2787 | if (counter->parent) | ||
2788 | counter = counter->parent; | ||
2789 | |||
2790 | return task_pid_nr_ns(p, counter->ns); | ||
2791 | } | ||
2792 | |||
2793 | static void perf_output_read_one(struct perf_output_handle *handle, | ||
2794 | struct perf_counter *counter) | ||
2795 | { | ||
2796 | u64 read_format = counter->attr.read_format; | ||
2797 | u64 values[4]; | ||
2798 | int n = 0; | ||
2799 | |||
2800 | values[n++] = atomic64_read(&counter->count); | ||
2801 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
2802 | values[n++] = counter->total_time_enabled + | ||
2803 | atomic64_read(&counter->child_total_time_enabled); | ||
2804 | } | ||
2805 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
2806 | values[n++] = counter->total_time_running + | ||
2807 | atomic64_read(&counter->child_total_time_running); | ||
2808 | } | ||
2809 | if (read_format & PERF_FORMAT_ID) | ||
2810 | values[n++] = primary_counter_id(counter); | ||
2811 | |||
2812 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
2813 | } | ||
2814 | |||
2815 | /* | ||
2816 | * XXX PERF_FORMAT_GROUP vs inherited counters seems difficult. | ||
2817 | */ | ||
2818 | static void perf_output_read_group(struct perf_output_handle *handle, | ||
2819 | struct perf_counter *counter) | ||
2820 | { | ||
2821 | struct perf_counter *leader = counter->group_leader, *sub; | ||
2822 | u64 read_format = counter->attr.read_format; | ||
2823 | u64 values[5]; | ||
2824 | int n = 0; | ||
2825 | |||
2826 | values[n++] = 1 + leader->nr_siblings; | ||
2827 | |||
2828 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
2829 | values[n++] = leader->total_time_enabled; | ||
2830 | |||
2831 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
2832 | values[n++] = leader->total_time_running; | ||
2833 | |||
2834 | if (leader != counter) | ||
2835 | leader->pmu->read(leader); | ||
2836 | |||
2837 | values[n++] = atomic64_read(&leader->count); | ||
2838 | if (read_format & PERF_FORMAT_ID) | ||
2839 | values[n++] = primary_counter_id(leader); | ||
2840 | |||
2841 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
2842 | |||
2843 | list_for_each_entry(sub, &leader->sibling_list, list_entry) { | ||
2844 | n = 0; | ||
2845 | |||
2846 | if (sub != counter) | ||
2847 | sub->pmu->read(sub); | ||
2848 | |||
2849 | values[n++] = atomic64_read(&sub->count); | ||
2850 | if (read_format & PERF_FORMAT_ID) | ||
2851 | values[n++] = primary_counter_id(sub); | ||
2852 | |||
2853 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
2854 | } | ||
2855 | } | ||
2856 | |||
2857 | static void perf_output_read(struct perf_output_handle *handle, | ||
2858 | struct perf_counter *counter) | ||
2859 | { | ||
2860 | if (counter->attr.read_format & PERF_FORMAT_GROUP) | ||
2861 | perf_output_read_group(handle, counter); | ||
2862 | else | ||
2863 | perf_output_read_one(handle, counter); | ||
2864 | } | ||
2865 | |||
2866 | void perf_counter_output(struct perf_counter *counter, int nmi, | ||
2867 | struct perf_sample_data *data) | ||
2868 | { | ||
2869 | int ret; | ||
2870 | u64 sample_type = counter->attr.sample_type; | ||
2871 | struct perf_output_handle handle; | ||
2872 | struct perf_event_header header; | ||
2873 | u64 ip; | ||
2874 | struct { | ||
2875 | u32 pid, tid; | ||
2876 | } tid_entry; | ||
2877 | struct perf_callchain_entry *callchain = NULL; | ||
2878 | int callchain_size = 0; | ||
2879 | u64 time; | ||
2880 | struct { | ||
2881 | u32 cpu, reserved; | ||
2882 | } cpu_entry; | ||
2883 | |||
2884 | header.type = PERF_EVENT_SAMPLE; | ||
2885 | header.size = sizeof(header); | ||
2886 | |||
2887 | header.misc = 0; | ||
2888 | header.misc |= perf_misc_flags(data->regs); | ||
2889 | |||
2890 | if (sample_type & PERF_SAMPLE_IP) { | ||
2891 | ip = perf_instruction_pointer(data->regs); | ||
2892 | header.size += sizeof(ip); | ||
2893 | } | ||
2894 | |||
2895 | if (sample_type & PERF_SAMPLE_TID) { | ||
2896 | /* namespace issues */ | ||
2897 | tid_entry.pid = perf_counter_pid(counter, current); | ||
2898 | tid_entry.tid = perf_counter_tid(counter, current); | ||
2899 | |||
2900 | header.size += sizeof(tid_entry); | ||
2901 | } | ||
2902 | |||
2903 | if (sample_type & PERF_SAMPLE_TIME) { | ||
2904 | /* | ||
2905 | * Maybe do better on x86 and provide cpu_clock_nmi() | ||
2906 | */ | ||
2907 | time = sched_clock(); | ||
2908 | |||
2909 | header.size += sizeof(u64); | ||
2910 | } | ||
2911 | |||
2912 | if (sample_type & PERF_SAMPLE_ADDR) | ||
2913 | header.size += sizeof(u64); | ||
2914 | |||
2915 | if (sample_type & PERF_SAMPLE_ID) | ||
2916 | header.size += sizeof(u64); | ||
2917 | |||
2918 | if (sample_type & PERF_SAMPLE_STREAM_ID) | ||
2919 | header.size += sizeof(u64); | ||
2920 | |||
2921 | if (sample_type & PERF_SAMPLE_CPU) { | ||
2922 | header.size += sizeof(cpu_entry); | ||
2923 | |||
2924 | cpu_entry.cpu = raw_smp_processor_id(); | ||
2925 | cpu_entry.reserved = 0; | ||
2926 | } | ||
2927 | |||
2928 | if (sample_type & PERF_SAMPLE_PERIOD) | ||
2929 | header.size += sizeof(u64); | ||
2930 | |||
2931 | if (sample_type & PERF_SAMPLE_READ) | ||
2932 | header.size += perf_counter_read_size(counter); | ||
2933 | |||
2934 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | ||
2935 | callchain = perf_callchain(data->regs); | ||
2936 | |||
2937 | if (callchain) { | ||
2938 | callchain_size = (1 + callchain->nr) * sizeof(u64); | ||
2939 | header.size += callchain_size; | ||
2940 | } else | ||
2941 | header.size += sizeof(u64); | ||
2942 | } | ||
2943 | |||
2944 | if (sample_type & PERF_SAMPLE_RAW) { | ||
2945 | int size = sizeof(u32); | ||
2946 | |||
2947 | if (data->raw) | ||
2948 | size += data->raw->size; | ||
2949 | else | ||
2950 | size += sizeof(u32); | ||
2951 | |||
2952 | WARN_ON_ONCE(size & (sizeof(u64)-1)); | ||
2953 | header.size += size; | ||
2954 | } | ||
2955 | |||
2956 | ret = perf_output_begin(&handle, counter, header.size, nmi, 1); | ||
2957 | if (ret) | ||
2958 | return; | ||
2959 | |||
2960 | perf_output_put(&handle, header); | ||
2961 | |||
2962 | if (sample_type & PERF_SAMPLE_IP) | ||
2963 | perf_output_put(&handle, ip); | ||
2964 | |||
2965 | if (sample_type & PERF_SAMPLE_TID) | ||
2966 | perf_output_put(&handle, tid_entry); | ||
2967 | |||
2968 | if (sample_type & PERF_SAMPLE_TIME) | ||
2969 | perf_output_put(&handle, time); | ||
2970 | |||
2971 | if (sample_type & PERF_SAMPLE_ADDR) | ||
2972 | perf_output_put(&handle, data->addr); | ||
2973 | |||
2974 | if (sample_type & PERF_SAMPLE_ID) { | ||
2975 | u64 id = primary_counter_id(counter); | ||
2976 | |||
2977 | perf_output_put(&handle, id); | ||
2978 | } | ||
2979 | |||
2980 | if (sample_type & PERF_SAMPLE_STREAM_ID) | ||
2981 | perf_output_put(&handle, counter->id); | ||
2982 | |||
2983 | if (sample_type & PERF_SAMPLE_CPU) | ||
2984 | perf_output_put(&handle, cpu_entry); | ||
2985 | |||
2986 | if (sample_type & PERF_SAMPLE_PERIOD) | ||
2987 | perf_output_put(&handle, data->period); | ||
2988 | |||
2989 | if (sample_type & PERF_SAMPLE_READ) | ||
2990 | perf_output_read(&handle, counter); | ||
2991 | |||
2992 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | ||
2993 | if (callchain) | ||
2994 | perf_output_copy(&handle, callchain, callchain_size); | ||
2995 | else { | ||
2996 | u64 nr = 0; | ||
2997 | perf_output_put(&handle, nr); | ||
2998 | } | ||
2999 | } | ||
3000 | |||
3001 | if (sample_type & PERF_SAMPLE_RAW) { | ||
3002 | if (data->raw) { | ||
3003 | perf_output_put(&handle, data->raw->size); | ||
3004 | perf_output_copy(&handle, data->raw->data, data->raw->size); | ||
3005 | } else { | ||
3006 | struct { | ||
3007 | u32 size; | ||
3008 | u32 data; | ||
3009 | } raw = { | ||
3010 | .size = sizeof(u32), | ||
3011 | .data = 0, | ||
3012 | }; | ||
3013 | perf_output_put(&handle, raw); | ||
3014 | } | ||
3015 | } | ||
3016 | |||
3017 | perf_output_end(&handle); | ||
3018 | } | ||
3019 | |||
3020 | /* | ||
3021 | * read event | ||
3022 | */ | ||
3023 | |||
3024 | struct perf_read_event { | ||
3025 | struct perf_event_header header; | ||
3026 | |||
3027 | u32 pid; | ||
3028 | u32 tid; | ||
3029 | }; | ||
3030 | |||
3031 | static void | ||
3032 | perf_counter_read_event(struct perf_counter *counter, | ||
3033 | struct task_struct *task) | ||
3034 | { | ||
3035 | struct perf_output_handle handle; | ||
3036 | struct perf_read_event event = { | ||
3037 | .header = { | ||
3038 | .type = PERF_EVENT_READ, | ||
3039 | .misc = 0, | ||
3040 | .size = sizeof(event) + perf_counter_read_size(counter), | ||
3041 | }, | ||
3042 | .pid = perf_counter_pid(counter, task), | ||
3043 | .tid = perf_counter_tid(counter, task), | ||
3044 | }; | ||
3045 | int ret; | ||
3046 | |||
3047 | ret = perf_output_begin(&handle, counter, event.header.size, 0, 0); | ||
3048 | if (ret) | ||
3049 | return; | ||
3050 | |||
3051 | perf_output_put(&handle, event); | ||
3052 | perf_output_read(&handle, counter); | ||
3053 | |||
3054 | perf_output_end(&handle); | ||
3055 | } | ||
3056 | |||
3057 | /* | ||
3058 | * task tracking -- fork/exit | ||
3059 | * | ||
3060 | * enabled by: attr.comm | attr.mmap | attr.task | ||
3061 | */ | ||
3062 | |||
3063 | struct perf_task_event { | ||
3064 | struct task_struct *task; | ||
3065 | struct perf_counter_context *task_ctx; | ||
3066 | |||
3067 | struct { | ||
3068 | struct perf_event_header header; | ||
3069 | |||
3070 | u32 pid; | ||
3071 | u32 ppid; | ||
3072 | u32 tid; | ||
3073 | u32 ptid; | ||
3074 | } event; | ||
3075 | }; | ||
3076 | |||
3077 | static void perf_counter_task_output(struct perf_counter *counter, | ||
3078 | struct perf_task_event *task_event) | ||
3079 | { | ||
3080 | struct perf_output_handle handle; | ||
3081 | int size = task_event->event.header.size; | ||
3082 | struct task_struct *task = task_event->task; | ||
3083 | int ret = perf_output_begin(&handle, counter, size, 0, 0); | ||
3084 | |||
3085 | if (ret) | ||
3086 | return; | ||
3087 | |||
3088 | task_event->event.pid = perf_counter_pid(counter, task); | ||
3089 | task_event->event.ppid = perf_counter_pid(counter, current); | ||
3090 | |||
3091 | task_event->event.tid = perf_counter_tid(counter, task); | ||
3092 | task_event->event.ptid = perf_counter_tid(counter, current); | ||
3093 | |||
3094 | perf_output_put(&handle, task_event->event); | ||
3095 | perf_output_end(&handle); | ||
3096 | } | ||
3097 | |||
3098 | static int perf_counter_task_match(struct perf_counter *counter) | ||
3099 | { | ||
3100 | if (counter->attr.comm || counter->attr.mmap || counter->attr.task) | ||
3101 | return 1; | ||
3102 | |||
3103 | return 0; | ||
3104 | } | ||
3105 | |||
3106 | static void perf_counter_task_ctx(struct perf_counter_context *ctx, | ||
3107 | struct perf_task_event *task_event) | ||
3108 | { | ||
3109 | struct perf_counter *counter; | ||
3110 | |||
3111 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
3112 | return; | ||
3113 | |||
3114 | rcu_read_lock(); | ||
3115 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | ||
3116 | if (perf_counter_task_match(counter)) | ||
3117 | perf_counter_task_output(counter, task_event); | ||
3118 | } | ||
3119 | rcu_read_unlock(); | ||
3120 | } | ||
3121 | |||
3122 | static void perf_counter_task_event(struct perf_task_event *task_event) | ||
3123 | { | ||
3124 | struct perf_cpu_context *cpuctx; | ||
3125 | struct perf_counter_context *ctx = task_event->task_ctx; | ||
3126 | |||
3127 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
3128 | perf_counter_task_ctx(&cpuctx->ctx, task_event); | ||
3129 | put_cpu_var(perf_cpu_context); | ||
3130 | |||
3131 | rcu_read_lock(); | ||
3132 | if (!ctx) | ||
3133 | ctx = rcu_dereference(task_event->task->perf_counter_ctxp); | ||
3134 | if (ctx) | ||
3135 | perf_counter_task_ctx(ctx, task_event); | ||
3136 | rcu_read_unlock(); | ||
3137 | } | ||
3138 | |||
3139 | static void perf_counter_task(struct task_struct *task, | ||
3140 | struct perf_counter_context *task_ctx, | ||
3141 | int new) | ||
3142 | { | ||
3143 | struct perf_task_event task_event; | ||
3144 | |||
3145 | if (!atomic_read(&nr_comm_counters) && | ||
3146 | !atomic_read(&nr_mmap_counters) && | ||
3147 | !atomic_read(&nr_task_counters)) | ||
3148 | return; | ||
3149 | |||
3150 | task_event = (struct perf_task_event){ | ||
3151 | .task = task, | ||
3152 | .task_ctx = task_ctx, | ||
3153 | .event = { | ||
3154 | .header = { | ||
3155 | .type = new ? PERF_EVENT_FORK : PERF_EVENT_EXIT, | ||
3156 | .misc = 0, | ||
3157 | .size = sizeof(task_event.event), | ||
3158 | }, | ||
3159 | /* .pid */ | ||
3160 | /* .ppid */ | ||
3161 | /* .tid */ | ||
3162 | /* .ptid */ | ||
3163 | }, | ||
3164 | }; | ||
3165 | |||
3166 | perf_counter_task_event(&task_event); | ||
3167 | } | ||
3168 | |||
3169 | void perf_counter_fork(struct task_struct *task) | ||
3170 | { | ||
3171 | perf_counter_task(task, NULL, 1); | ||
3172 | } | ||
3173 | |||
3174 | /* | ||
3175 | * comm tracking | ||
3176 | */ | ||
3177 | |||
3178 | struct perf_comm_event { | ||
3179 | struct task_struct *task; | ||
3180 | char *comm; | ||
3181 | int comm_size; | ||
3182 | |||
3183 | struct { | ||
3184 | struct perf_event_header header; | ||
3185 | |||
3186 | u32 pid; | ||
3187 | u32 tid; | ||
3188 | } event; | ||
3189 | }; | ||
3190 | |||
3191 | static void perf_counter_comm_output(struct perf_counter *counter, | ||
3192 | struct perf_comm_event *comm_event) | ||
3193 | { | ||
3194 | struct perf_output_handle handle; | ||
3195 | int size = comm_event->event.header.size; | ||
3196 | int ret = perf_output_begin(&handle, counter, size, 0, 0); | ||
3197 | |||
3198 | if (ret) | ||
3199 | return; | ||
3200 | |||
3201 | comm_event->event.pid = perf_counter_pid(counter, comm_event->task); | ||
3202 | comm_event->event.tid = perf_counter_tid(counter, comm_event->task); | ||
3203 | |||
3204 | perf_output_put(&handle, comm_event->event); | ||
3205 | perf_output_copy(&handle, comm_event->comm, | ||
3206 | comm_event->comm_size); | ||
3207 | perf_output_end(&handle); | ||
3208 | } | ||
3209 | |||
3210 | static int perf_counter_comm_match(struct perf_counter *counter) | ||
3211 | { | ||
3212 | if (counter->attr.comm) | ||
3213 | return 1; | ||
3214 | |||
3215 | return 0; | ||
3216 | } | ||
3217 | |||
3218 | static void perf_counter_comm_ctx(struct perf_counter_context *ctx, | ||
3219 | struct perf_comm_event *comm_event) | ||
3220 | { | ||
3221 | struct perf_counter *counter; | ||
3222 | |||
3223 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
3224 | return; | ||
3225 | |||
3226 | rcu_read_lock(); | ||
3227 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | ||
3228 | if (perf_counter_comm_match(counter)) | ||
3229 | perf_counter_comm_output(counter, comm_event); | ||
3230 | } | ||
3231 | rcu_read_unlock(); | ||
3232 | } | ||
3233 | |||
3234 | static void perf_counter_comm_event(struct perf_comm_event *comm_event) | ||
3235 | { | ||
3236 | struct perf_cpu_context *cpuctx; | ||
3237 | struct perf_counter_context *ctx; | ||
3238 | unsigned int size; | ||
3239 | char comm[TASK_COMM_LEN]; | ||
3240 | |||
3241 | memset(comm, 0, sizeof(comm)); | ||
3242 | strncpy(comm, comm_event->task->comm, sizeof(comm)); | ||
3243 | size = ALIGN(strlen(comm)+1, sizeof(u64)); | ||
3244 | |||
3245 | comm_event->comm = comm; | ||
3246 | comm_event->comm_size = size; | ||
3247 | |||
3248 | comm_event->event.header.size = sizeof(comm_event->event) + size; | ||
3249 | |||
3250 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
3251 | perf_counter_comm_ctx(&cpuctx->ctx, comm_event); | ||
3252 | put_cpu_var(perf_cpu_context); | ||
3253 | |||
3254 | rcu_read_lock(); | ||
3255 | /* | ||
3256 | * doesn't really matter which of the child contexts the | ||
3257 | * events ends up in. | ||
3258 | */ | ||
3259 | ctx = rcu_dereference(current->perf_counter_ctxp); | ||
3260 | if (ctx) | ||
3261 | perf_counter_comm_ctx(ctx, comm_event); | ||
3262 | rcu_read_unlock(); | ||
3263 | } | ||
3264 | |||
3265 | void perf_counter_comm(struct task_struct *task) | ||
3266 | { | ||
3267 | struct perf_comm_event comm_event; | ||
3268 | |||
3269 | if (task->perf_counter_ctxp) | ||
3270 | perf_counter_enable_on_exec(task); | ||
3271 | |||
3272 | if (!atomic_read(&nr_comm_counters)) | ||
3273 | return; | ||
3274 | |||
3275 | comm_event = (struct perf_comm_event){ | ||
3276 | .task = task, | ||
3277 | /* .comm */ | ||
3278 | /* .comm_size */ | ||
3279 | .event = { | ||
3280 | .header = { | ||
3281 | .type = PERF_EVENT_COMM, | ||
3282 | .misc = 0, | ||
3283 | /* .size */ | ||
3284 | }, | ||
3285 | /* .pid */ | ||
3286 | /* .tid */ | ||
3287 | }, | ||
3288 | }; | ||
3289 | |||
3290 | perf_counter_comm_event(&comm_event); | ||
3291 | } | ||
3292 | |||
3293 | /* | ||
3294 | * mmap tracking | ||
3295 | */ | ||
3296 | |||
3297 | struct perf_mmap_event { | ||
3298 | struct vm_area_struct *vma; | ||
3299 | |||
3300 | const char *file_name; | ||
3301 | int file_size; | ||
3302 | |||
3303 | struct { | ||
3304 | struct perf_event_header header; | ||
3305 | |||
3306 | u32 pid; | ||
3307 | u32 tid; | ||
3308 | u64 start; | ||
3309 | u64 len; | ||
3310 | u64 pgoff; | ||
3311 | } event; | ||
3312 | }; | ||
3313 | |||
3314 | static void perf_counter_mmap_output(struct perf_counter *counter, | ||
3315 | struct perf_mmap_event *mmap_event) | ||
3316 | { | ||
3317 | struct perf_output_handle handle; | ||
3318 | int size = mmap_event->event.header.size; | ||
3319 | int ret = perf_output_begin(&handle, counter, size, 0, 0); | ||
3320 | |||
3321 | if (ret) | ||
3322 | return; | ||
3323 | |||
3324 | mmap_event->event.pid = perf_counter_pid(counter, current); | ||
3325 | mmap_event->event.tid = perf_counter_tid(counter, current); | ||
3326 | |||
3327 | perf_output_put(&handle, mmap_event->event); | ||
3328 | perf_output_copy(&handle, mmap_event->file_name, | ||
3329 | mmap_event->file_size); | ||
3330 | perf_output_end(&handle); | ||
3331 | } | ||
3332 | |||
3333 | static int perf_counter_mmap_match(struct perf_counter *counter, | ||
3334 | struct perf_mmap_event *mmap_event) | ||
3335 | { | ||
3336 | if (counter->attr.mmap) | ||
3337 | return 1; | ||
3338 | |||
3339 | return 0; | ||
3340 | } | ||
3341 | |||
3342 | static void perf_counter_mmap_ctx(struct perf_counter_context *ctx, | ||
3343 | struct perf_mmap_event *mmap_event) | ||
3344 | { | ||
3345 | struct perf_counter *counter; | ||
3346 | |||
3347 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
3348 | return; | ||
3349 | |||
3350 | rcu_read_lock(); | ||
3351 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | ||
3352 | if (perf_counter_mmap_match(counter, mmap_event)) | ||
3353 | perf_counter_mmap_output(counter, mmap_event); | ||
3354 | } | ||
3355 | rcu_read_unlock(); | ||
3356 | } | ||
3357 | |||
3358 | static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event) | ||
3359 | { | ||
3360 | struct perf_cpu_context *cpuctx; | ||
3361 | struct perf_counter_context *ctx; | ||
3362 | struct vm_area_struct *vma = mmap_event->vma; | ||
3363 | struct file *file = vma->vm_file; | ||
3364 | unsigned int size; | ||
3365 | char tmp[16]; | ||
3366 | char *buf = NULL; | ||
3367 | const char *name; | ||
3368 | |||
3369 | memset(tmp, 0, sizeof(tmp)); | ||
3370 | |||
3371 | if (file) { | ||
3372 | /* | ||
3373 | * d_path works from the end of the buffer backwards, so we | ||
3374 | * need to add enough zero bytes after the string to handle | ||
3375 | * the 64bit alignment we do later. | ||
3376 | */ | ||
3377 | buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); | ||
3378 | if (!buf) { | ||
3379 | name = strncpy(tmp, "//enomem", sizeof(tmp)); | ||
3380 | goto got_name; | ||
3381 | } | ||
3382 | name = d_path(&file->f_path, buf, PATH_MAX); | ||
3383 | if (IS_ERR(name)) { | ||
3384 | name = strncpy(tmp, "//toolong", sizeof(tmp)); | ||
3385 | goto got_name; | ||
3386 | } | ||
3387 | } else { | ||
3388 | if (arch_vma_name(mmap_event->vma)) { | ||
3389 | name = strncpy(tmp, arch_vma_name(mmap_event->vma), | ||
3390 | sizeof(tmp)); | ||
3391 | goto got_name; | ||
3392 | } | ||
3393 | |||
3394 | if (!vma->vm_mm) { | ||
3395 | name = strncpy(tmp, "[vdso]", sizeof(tmp)); | ||
3396 | goto got_name; | ||
3397 | } | ||
3398 | |||
3399 | name = strncpy(tmp, "//anon", sizeof(tmp)); | ||
3400 | goto got_name; | ||
3401 | } | ||
3402 | |||
3403 | got_name: | ||
3404 | size = ALIGN(strlen(name)+1, sizeof(u64)); | ||
3405 | |||
3406 | mmap_event->file_name = name; | ||
3407 | mmap_event->file_size = size; | ||
3408 | |||
3409 | mmap_event->event.header.size = sizeof(mmap_event->event) + size; | ||
3410 | |||
3411 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
3412 | perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event); | ||
3413 | put_cpu_var(perf_cpu_context); | ||
3414 | |||
3415 | rcu_read_lock(); | ||
3416 | /* | ||
3417 | * doesn't really matter which of the child contexts the | ||
3418 | * events ends up in. | ||
3419 | */ | ||
3420 | ctx = rcu_dereference(current->perf_counter_ctxp); | ||
3421 | if (ctx) | ||
3422 | perf_counter_mmap_ctx(ctx, mmap_event); | ||
3423 | rcu_read_unlock(); | ||
3424 | |||
3425 | kfree(buf); | ||
3426 | } | ||
3427 | |||
3428 | void __perf_counter_mmap(struct vm_area_struct *vma) | ||
3429 | { | ||
3430 | struct perf_mmap_event mmap_event; | ||
3431 | |||
3432 | if (!atomic_read(&nr_mmap_counters)) | ||
3433 | return; | ||
3434 | |||
3435 | mmap_event = (struct perf_mmap_event){ | ||
3436 | .vma = vma, | ||
3437 | /* .file_name */ | ||
3438 | /* .file_size */ | ||
3439 | .event = { | ||
3440 | .header = { | ||
3441 | .type = PERF_EVENT_MMAP, | ||
3442 | .misc = 0, | ||
3443 | /* .size */ | ||
3444 | }, | ||
3445 | /* .pid */ | ||
3446 | /* .tid */ | ||
3447 | .start = vma->vm_start, | ||
3448 | .len = vma->vm_end - vma->vm_start, | ||
3449 | .pgoff = vma->vm_pgoff, | ||
3450 | }, | ||
3451 | }; | ||
3452 | |||
3453 | perf_counter_mmap_event(&mmap_event); | ||
3454 | } | ||
3455 | |||
3456 | /* | ||
3457 | * IRQ throttle logging | ||
3458 | */ | ||
3459 | |||
3460 | static void perf_log_throttle(struct perf_counter *counter, int enable) | ||
3461 | { | ||
3462 | struct perf_output_handle handle; | ||
3463 | int ret; | ||
3464 | |||
3465 | struct { | ||
3466 | struct perf_event_header header; | ||
3467 | u64 time; | ||
3468 | u64 id; | ||
3469 | u64 stream_id; | ||
3470 | } throttle_event = { | ||
3471 | .header = { | ||
3472 | .type = PERF_EVENT_THROTTLE, | ||
3473 | .misc = 0, | ||
3474 | .size = sizeof(throttle_event), | ||
3475 | }, | ||
3476 | .time = sched_clock(), | ||
3477 | .id = primary_counter_id(counter), | ||
3478 | .stream_id = counter->id, | ||
3479 | }; | ||
3480 | |||
3481 | if (enable) | ||
3482 | throttle_event.header.type = PERF_EVENT_UNTHROTTLE; | ||
3483 | |||
3484 | ret = perf_output_begin(&handle, counter, sizeof(throttle_event), 1, 0); | ||
3485 | if (ret) | ||
3486 | return; | ||
3487 | |||
3488 | perf_output_put(&handle, throttle_event); | ||
3489 | perf_output_end(&handle); | ||
3490 | } | ||
3491 | |||
3492 | /* | ||
3493 | * Generic counter overflow handling, sampling. | ||
3494 | */ | ||
3495 | |||
3496 | int perf_counter_overflow(struct perf_counter *counter, int nmi, | ||
3497 | struct perf_sample_data *data) | ||
3498 | { | ||
3499 | int events = atomic_read(&counter->event_limit); | ||
3500 | int throttle = counter->pmu->unthrottle != NULL; | ||
3501 | struct hw_perf_counter *hwc = &counter->hw; | ||
3502 | int ret = 0; | ||
3503 | |||
3504 | if (!throttle) { | ||
3505 | hwc->interrupts++; | ||
3506 | } else { | ||
3507 | if (hwc->interrupts != MAX_INTERRUPTS) { | ||
3508 | hwc->interrupts++; | ||
3509 | if (HZ * hwc->interrupts > | ||
3510 | (u64)sysctl_perf_counter_sample_rate) { | ||
3511 | hwc->interrupts = MAX_INTERRUPTS; | ||
3512 | perf_log_throttle(counter, 0); | ||
3513 | ret = 1; | ||
3514 | } | ||
3515 | } else { | ||
3516 | /* | ||
3517 | * Keep re-disabling counters even though on the previous | ||
3518 | * pass we disabled it - just in case we raced with a | ||
3519 | * sched-in and the counter got enabled again: | ||
3520 | */ | ||
3521 | ret = 1; | ||
3522 | } | ||
3523 | } | ||
3524 | |||
3525 | if (counter->attr.freq) { | ||
3526 | u64 now = sched_clock(); | ||
3527 | s64 delta = now - hwc->freq_stamp; | ||
3528 | |||
3529 | hwc->freq_stamp = now; | ||
3530 | |||
3531 | if (delta > 0 && delta < TICK_NSEC) | ||
3532 | perf_adjust_period(counter, NSEC_PER_SEC / (int)delta); | ||
3533 | } | ||
3534 | |||
3535 | /* | ||
3536 | * XXX event_limit might not quite work as expected on inherited | ||
3537 | * counters | ||
3538 | */ | ||
3539 | |||
3540 | counter->pending_kill = POLL_IN; | ||
3541 | if (events && atomic_dec_and_test(&counter->event_limit)) { | ||
3542 | ret = 1; | ||
3543 | counter->pending_kill = POLL_HUP; | ||
3544 | if (nmi) { | ||
3545 | counter->pending_disable = 1; | ||
3546 | perf_pending_queue(&counter->pending, | ||
3547 | perf_pending_counter); | ||
3548 | } else | ||
3549 | perf_counter_disable(counter); | ||
3550 | } | ||
3551 | |||
3552 | perf_counter_output(counter, nmi, data); | ||
3553 | return ret; | ||
3554 | } | ||
3555 | |||
3556 | /* | ||
3557 | * Generic software counter infrastructure | ||
3558 | */ | ||
3559 | |||
3560 | /* | ||
3561 | * We directly increment counter->count and keep a second value in | ||
3562 | * counter->hw.period_left to count intervals. This period counter | ||
3563 | * is kept in the range [-sample_period, 0] so that we can use the | ||
3564 | * sign as trigger. | ||
3565 | */ | ||
3566 | |||
3567 | static u64 perf_swcounter_set_period(struct perf_counter *counter) | ||
3568 | { | ||
3569 | struct hw_perf_counter *hwc = &counter->hw; | ||
3570 | u64 period = hwc->last_period; | ||
3571 | u64 nr, offset; | ||
3572 | s64 old, val; | ||
3573 | |||
3574 | hwc->last_period = hwc->sample_period; | ||
3575 | |||
3576 | again: | ||
3577 | old = val = atomic64_read(&hwc->period_left); | ||
3578 | if (val < 0) | ||
3579 | return 0; | ||
3580 | |||
3581 | nr = div64_u64(period + val, period); | ||
3582 | offset = nr * period; | ||
3583 | val -= offset; | ||
3584 | if (atomic64_cmpxchg(&hwc->period_left, old, val) != old) | ||
3585 | goto again; | ||
3586 | |||
3587 | return nr; | ||
3588 | } | ||
3589 | |||
3590 | static void perf_swcounter_overflow(struct perf_counter *counter, | ||
3591 | int nmi, struct perf_sample_data *data) | ||
3592 | { | ||
3593 | struct hw_perf_counter *hwc = &counter->hw; | ||
3594 | u64 overflow; | ||
3595 | |||
3596 | data->period = counter->hw.last_period; | ||
3597 | overflow = perf_swcounter_set_period(counter); | ||
3598 | |||
3599 | if (hwc->interrupts == MAX_INTERRUPTS) | ||
3600 | return; | ||
3601 | |||
3602 | for (; overflow; overflow--) { | ||
3603 | if (perf_counter_overflow(counter, nmi, data)) { | ||
3604 | /* | ||
3605 | * We inhibit the overflow from happening when | ||
3606 | * hwc->interrupts == MAX_INTERRUPTS. | ||
3607 | */ | ||
3608 | break; | ||
3609 | } | ||
3610 | } | ||
3611 | } | ||
3612 | |||
3613 | static void perf_swcounter_unthrottle(struct perf_counter *counter) | ||
3614 | { | ||
3615 | /* | ||
3616 | * Nothing to do, we already reset hwc->interrupts. | ||
3617 | */ | ||
3618 | } | ||
3619 | |||
3620 | static void perf_swcounter_add(struct perf_counter *counter, u64 nr, | ||
3621 | int nmi, struct perf_sample_data *data) | ||
3622 | { | ||
3623 | struct hw_perf_counter *hwc = &counter->hw; | ||
3624 | |||
3625 | atomic64_add(nr, &counter->count); | ||
3626 | |||
3627 | if (!hwc->sample_period) | ||
3628 | return; | ||
3629 | |||
3630 | if (!data->regs) | ||
3631 | return; | ||
3632 | |||
3633 | if (!atomic64_add_negative(nr, &hwc->period_left)) | ||
3634 | perf_swcounter_overflow(counter, nmi, data); | ||
3635 | } | ||
3636 | |||
3637 | static int perf_swcounter_is_counting(struct perf_counter *counter) | ||
3638 | { | ||
3639 | /* | ||
3640 | * The counter is active, we're good! | ||
3641 | */ | ||
3642 | if (counter->state == PERF_COUNTER_STATE_ACTIVE) | ||
3643 | return 1; | ||
3644 | |||
3645 | /* | ||
3646 | * The counter is off/error, not counting. | ||
3647 | */ | ||
3648 | if (counter->state != PERF_COUNTER_STATE_INACTIVE) | ||
3649 | return 0; | ||
3650 | |||
3651 | /* | ||
3652 | * The counter is inactive, if the context is active | ||
3653 | * we're part of a group that didn't make it on the 'pmu', | ||
3654 | * not counting. | ||
3655 | */ | ||
3656 | if (counter->ctx->is_active) | ||
3657 | return 0; | ||
3658 | |||
3659 | /* | ||
3660 | * We're inactive and the context is too, this means the | ||
3661 | * task is scheduled out, we're counting events that happen | ||
3662 | * to us, like migration events. | ||
3663 | */ | ||
3664 | return 1; | ||
3665 | } | ||
3666 | |||
3667 | static int perf_swcounter_match(struct perf_counter *counter, | ||
3668 | enum perf_type_id type, | ||
3669 | u32 event, struct pt_regs *regs) | ||
3670 | { | ||
3671 | if (!perf_swcounter_is_counting(counter)) | ||
3672 | return 0; | ||
3673 | |||
3674 | if (counter->attr.type != type) | ||
3675 | return 0; | ||
3676 | if (counter->attr.config != event) | ||
3677 | return 0; | ||
3678 | |||
3679 | if (regs) { | ||
3680 | if (counter->attr.exclude_user && user_mode(regs)) | ||
3681 | return 0; | ||
3682 | |||
3683 | if (counter->attr.exclude_kernel && !user_mode(regs)) | ||
3684 | return 0; | ||
3685 | } | ||
3686 | |||
3687 | return 1; | ||
3688 | } | ||
3689 | |||
3690 | static void perf_swcounter_ctx_event(struct perf_counter_context *ctx, | ||
3691 | enum perf_type_id type, | ||
3692 | u32 event, u64 nr, int nmi, | ||
3693 | struct perf_sample_data *data) | ||
3694 | { | ||
3695 | struct perf_counter *counter; | ||
3696 | |||
3697 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
3698 | return; | ||
3699 | |||
3700 | rcu_read_lock(); | ||
3701 | list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) { | ||
3702 | if (perf_swcounter_match(counter, type, event, data->regs)) | ||
3703 | perf_swcounter_add(counter, nr, nmi, data); | ||
3704 | } | ||
3705 | rcu_read_unlock(); | ||
3706 | } | ||
3707 | |||
3708 | static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx) | ||
3709 | { | ||
3710 | if (in_nmi()) | ||
3711 | return &cpuctx->recursion[3]; | ||
3712 | |||
3713 | if (in_irq()) | ||
3714 | return &cpuctx->recursion[2]; | ||
3715 | |||
3716 | if (in_softirq()) | ||
3717 | return &cpuctx->recursion[1]; | ||
3718 | |||
3719 | return &cpuctx->recursion[0]; | ||
3720 | } | ||
3721 | |||
3722 | static void do_perf_swcounter_event(enum perf_type_id type, u32 event, | ||
3723 | u64 nr, int nmi, | ||
3724 | struct perf_sample_data *data) | ||
3725 | { | ||
3726 | struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context); | ||
3727 | int *recursion = perf_swcounter_recursion_context(cpuctx); | ||
3728 | struct perf_counter_context *ctx; | ||
3729 | |||
3730 | if (*recursion) | ||
3731 | goto out; | ||
3732 | |||
3733 | (*recursion)++; | ||
3734 | barrier(); | ||
3735 | |||
3736 | perf_swcounter_ctx_event(&cpuctx->ctx, type, event, | ||
3737 | nr, nmi, data); | ||
3738 | rcu_read_lock(); | ||
3739 | /* | ||
3740 | * doesn't really matter which of the child contexts the | ||
3741 | * events ends up in. | ||
3742 | */ | ||
3743 | ctx = rcu_dereference(current->perf_counter_ctxp); | ||
3744 | if (ctx) | ||
3745 | perf_swcounter_ctx_event(ctx, type, event, nr, nmi, data); | ||
3746 | rcu_read_unlock(); | ||
3747 | |||
3748 | barrier(); | ||
3749 | (*recursion)--; | ||
3750 | |||
3751 | out: | ||
3752 | put_cpu_var(perf_cpu_context); | ||
3753 | } | ||
3754 | |||
3755 | void __perf_swcounter_event(u32 event, u64 nr, int nmi, | ||
3756 | struct pt_regs *regs, u64 addr) | ||
3757 | { | ||
3758 | struct perf_sample_data data = { | ||
3759 | .regs = regs, | ||
3760 | .addr = addr, | ||
3761 | }; | ||
3762 | |||
3763 | do_perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, &data); | ||
3764 | } | ||
3765 | |||
3766 | static void perf_swcounter_read(struct perf_counter *counter) | ||
3767 | { | ||
3768 | } | ||
3769 | |||
3770 | static int perf_swcounter_enable(struct perf_counter *counter) | ||
3771 | { | ||
3772 | struct hw_perf_counter *hwc = &counter->hw; | ||
3773 | |||
3774 | if (hwc->sample_period) { | ||
3775 | hwc->last_period = hwc->sample_period; | ||
3776 | perf_swcounter_set_period(counter); | ||
3777 | } | ||
3778 | return 0; | ||
3779 | } | ||
3780 | |||
3781 | static void perf_swcounter_disable(struct perf_counter *counter) | ||
3782 | { | ||
3783 | } | ||
3784 | |||
3785 | static const struct pmu perf_ops_generic = { | ||
3786 | .enable = perf_swcounter_enable, | ||
3787 | .disable = perf_swcounter_disable, | ||
3788 | .read = perf_swcounter_read, | ||
3789 | .unthrottle = perf_swcounter_unthrottle, | ||
3790 | }; | ||
3791 | |||
3792 | /* | ||
3793 | * hrtimer based swcounter callback | ||
3794 | */ | ||
3795 | |||
3796 | static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer) | ||
3797 | { | ||
3798 | enum hrtimer_restart ret = HRTIMER_RESTART; | ||
3799 | struct perf_sample_data data; | ||
3800 | struct perf_counter *counter; | ||
3801 | u64 period; | ||
3802 | |||
3803 | counter = container_of(hrtimer, struct perf_counter, hw.hrtimer); | ||
3804 | counter->pmu->read(counter); | ||
3805 | |||
3806 | data.addr = 0; | ||
3807 | data.regs = get_irq_regs(); | ||
3808 | /* | ||
3809 | * In case we exclude kernel IPs or are somehow not in interrupt | ||
3810 | * context, provide the next best thing, the user IP. | ||
3811 | */ | ||
3812 | if ((counter->attr.exclude_kernel || !data.regs) && | ||
3813 | !counter->attr.exclude_user) | ||
3814 | data.regs = task_pt_regs(current); | ||
3815 | |||
3816 | if (data.regs) { | ||
3817 | if (perf_counter_overflow(counter, 0, &data)) | ||
3818 | ret = HRTIMER_NORESTART; | ||
3819 | } | ||
3820 | |||
3821 | period = max_t(u64, 10000, counter->hw.sample_period); | ||
3822 | hrtimer_forward_now(hrtimer, ns_to_ktime(period)); | ||
3823 | |||
3824 | return ret; | ||
3825 | } | ||
3826 | |||
3827 | /* | ||
3828 | * Software counter: cpu wall time clock | ||
3829 | */ | ||
3830 | |||
3831 | static void cpu_clock_perf_counter_update(struct perf_counter *counter) | ||
3832 | { | ||
3833 | int cpu = raw_smp_processor_id(); | ||
3834 | s64 prev; | ||
3835 | u64 now; | ||
3836 | |||
3837 | now = cpu_clock(cpu); | ||
3838 | prev = atomic64_read(&counter->hw.prev_count); | ||
3839 | atomic64_set(&counter->hw.prev_count, now); | ||
3840 | atomic64_add(now - prev, &counter->count); | ||
3841 | } | ||
3842 | |||
3843 | static int cpu_clock_perf_counter_enable(struct perf_counter *counter) | ||
3844 | { | ||
3845 | struct hw_perf_counter *hwc = &counter->hw; | ||
3846 | int cpu = raw_smp_processor_id(); | ||
3847 | |||
3848 | atomic64_set(&hwc->prev_count, cpu_clock(cpu)); | ||
3849 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
3850 | hwc->hrtimer.function = perf_swcounter_hrtimer; | ||
3851 | if (hwc->sample_period) { | ||
3852 | u64 period = max_t(u64, 10000, hwc->sample_period); | ||
3853 | __hrtimer_start_range_ns(&hwc->hrtimer, | ||
3854 | ns_to_ktime(period), 0, | ||
3855 | HRTIMER_MODE_REL, 0); | ||
3856 | } | ||
3857 | |||
3858 | return 0; | ||
3859 | } | ||
3860 | |||
3861 | static void cpu_clock_perf_counter_disable(struct perf_counter *counter) | ||
3862 | { | ||
3863 | if (counter->hw.sample_period) | ||
3864 | hrtimer_cancel(&counter->hw.hrtimer); | ||
3865 | cpu_clock_perf_counter_update(counter); | ||
3866 | } | ||
3867 | |||
3868 | static void cpu_clock_perf_counter_read(struct perf_counter *counter) | ||
3869 | { | ||
3870 | cpu_clock_perf_counter_update(counter); | ||
3871 | } | ||
3872 | |||
3873 | static const struct pmu perf_ops_cpu_clock = { | ||
3874 | .enable = cpu_clock_perf_counter_enable, | ||
3875 | .disable = cpu_clock_perf_counter_disable, | ||
3876 | .read = cpu_clock_perf_counter_read, | ||
3877 | }; | ||
3878 | |||
3879 | /* | ||
3880 | * Software counter: task time clock | ||
3881 | */ | ||
3882 | |||
3883 | static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now) | ||
3884 | { | ||
3885 | u64 prev; | ||
3886 | s64 delta; | ||
3887 | |||
3888 | prev = atomic64_xchg(&counter->hw.prev_count, now); | ||
3889 | delta = now - prev; | ||
3890 | atomic64_add(delta, &counter->count); | ||
3891 | } | ||
3892 | |||
3893 | static int task_clock_perf_counter_enable(struct perf_counter *counter) | ||
3894 | { | ||
3895 | struct hw_perf_counter *hwc = &counter->hw; | ||
3896 | u64 now; | ||
3897 | |||
3898 | now = counter->ctx->time; | ||
3899 | |||
3900 | atomic64_set(&hwc->prev_count, now); | ||
3901 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
3902 | hwc->hrtimer.function = perf_swcounter_hrtimer; | ||
3903 | if (hwc->sample_period) { | ||
3904 | u64 period = max_t(u64, 10000, hwc->sample_period); | ||
3905 | __hrtimer_start_range_ns(&hwc->hrtimer, | ||
3906 | ns_to_ktime(period), 0, | ||
3907 | HRTIMER_MODE_REL, 0); | ||
3908 | } | ||
3909 | |||
3910 | return 0; | ||
3911 | } | ||
3912 | |||
3913 | static void task_clock_perf_counter_disable(struct perf_counter *counter) | ||
3914 | { | ||
3915 | if (counter->hw.sample_period) | ||
3916 | hrtimer_cancel(&counter->hw.hrtimer); | ||
3917 | task_clock_perf_counter_update(counter, counter->ctx->time); | ||
3918 | |||
3919 | } | ||
3920 | |||
3921 | static void task_clock_perf_counter_read(struct perf_counter *counter) | ||
3922 | { | ||
3923 | u64 time; | ||
3924 | |||
3925 | if (!in_nmi()) { | ||
3926 | update_context_time(counter->ctx); | ||
3927 | time = counter->ctx->time; | ||
3928 | } else { | ||
3929 | u64 now = perf_clock(); | ||
3930 | u64 delta = now - counter->ctx->timestamp; | ||
3931 | time = counter->ctx->time + delta; | ||
3932 | } | ||
3933 | |||
3934 | task_clock_perf_counter_update(counter, time); | ||
3935 | } | ||
3936 | |||
3937 | static const struct pmu perf_ops_task_clock = { | ||
3938 | .enable = task_clock_perf_counter_enable, | ||
3939 | .disable = task_clock_perf_counter_disable, | ||
3940 | .read = task_clock_perf_counter_read, | ||
3941 | }; | ||
3942 | |||
3943 | #ifdef CONFIG_EVENT_PROFILE | ||
3944 | void perf_tpcounter_event(int event_id, u64 addr, u64 count, void *record, | ||
3945 | int entry_size) | ||
3946 | { | ||
3947 | struct perf_raw_record raw = { | ||
3948 | .size = entry_size, | ||
3949 | .data = record, | ||
3950 | }; | ||
3951 | |||
3952 | struct perf_sample_data data = { | ||
3953 | .regs = get_irq_regs(), | ||
3954 | .addr = addr, | ||
3955 | .raw = &raw, | ||
3956 | }; | ||
3957 | |||
3958 | if (!data.regs) | ||
3959 | data.regs = task_pt_regs(current); | ||
3960 | |||
3961 | do_perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, count, 1, &data); | ||
3962 | } | ||
3963 | EXPORT_SYMBOL_GPL(perf_tpcounter_event); | ||
3964 | |||
3965 | extern int ftrace_profile_enable(int); | ||
3966 | extern void ftrace_profile_disable(int); | ||
3967 | |||
3968 | static void tp_perf_counter_destroy(struct perf_counter *counter) | ||
3969 | { | ||
3970 | ftrace_profile_disable(counter->attr.config); | ||
3971 | } | ||
3972 | |||
3973 | static const struct pmu *tp_perf_counter_init(struct perf_counter *counter) | ||
3974 | { | ||
3975 | /* | ||
3976 | * Raw tracepoint data is a severe data leak, only allow root to | ||
3977 | * have these. | ||
3978 | */ | ||
3979 | if ((counter->attr.sample_type & PERF_SAMPLE_RAW) && | ||
3980 | perf_paranoid_tracepoint_raw() && | ||
3981 | !capable(CAP_SYS_ADMIN)) | ||
3982 | return ERR_PTR(-EPERM); | ||
3983 | |||
3984 | if (ftrace_profile_enable(counter->attr.config)) | ||
3985 | return NULL; | ||
3986 | |||
3987 | counter->destroy = tp_perf_counter_destroy; | ||
3988 | |||
3989 | return &perf_ops_generic; | ||
3990 | } | ||
3991 | #else | ||
3992 | static const struct pmu *tp_perf_counter_init(struct perf_counter *counter) | ||
3993 | { | ||
3994 | return NULL; | ||
3995 | } | ||
3996 | #endif | ||
3997 | |||
3998 | atomic_t perf_swcounter_enabled[PERF_COUNT_SW_MAX]; | ||
3999 | |||
4000 | static void sw_perf_counter_destroy(struct perf_counter *counter) | ||
4001 | { | ||
4002 | u64 event = counter->attr.config; | ||
4003 | |||
4004 | WARN_ON(counter->parent); | ||
4005 | |||
4006 | atomic_dec(&perf_swcounter_enabled[event]); | ||
4007 | } | ||
4008 | |||
4009 | static const struct pmu *sw_perf_counter_init(struct perf_counter *counter) | ||
4010 | { | ||
4011 | const struct pmu *pmu = NULL; | ||
4012 | u64 event = counter->attr.config; | ||
4013 | |||
4014 | /* | ||
4015 | * Software counters (currently) can't in general distinguish | ||
4016 | * between user, kernel and hypervisor events. | ||
4017 | * However, context switches and cpu migrations are considered | ||
4018 | * to be kernel events, and page faults are never hypervisor | ||
4019 | * events. | ||
4020 | */ | ||
4021 | switch (event) { | ||
4022 | case PERF_COUNT_SW_CPU_CLOCK: | ||
4023 | pmu = &perf_ops_cpu_clock; | ||
4024 | |||
4025 | break; | ||
4026 | case PERF_COUNT_SW_TASK_CLOCK: | ||
4027 | /* | ||
4028 | * If the user instantiates this as a per-cpu counter, | ||
4029 | * use the cpu_clock counter instead. | ||
4030 | */ | ||
4031 | if (counter->ctx->task) | ||
4032 | pmu = &perf_ops_task_clock; | ||
4033 | else | ||
4034 | pmu = &perf_ops_cpu_clock; | ||
4035 | |||
4036 | break; | ||
4037 | case PERF_COUNT_SW_PAGE_FAULTS: | ||
4038 | case PERF_COUNT_SW_PAGE_FAULTS_MIN: | ||
4039 | case PERF_COUNT_SW_PAGE_FAULTS_MAJ: | ||
4040 | case PERF_COUNT_SW_CONTEXT_SWITCHES: | ||
4041 | case PERF_COUNT_SW_CPU_MIGRATIONS: | ||
4042 | if (!counter->parent) { | ||
4043 | atomic_inc(&perf_swcounter_enabled[event]); | ||
4044 | counter->destroy = sw_perf_counter_destroy; | ||
4045 | } | ||
4046 | pmu = &perf_ops_generic; | ||
4047 | break; | ||
4048 | } | ||
4049 | |||
4050 | return pmu; | ||
4051 | } | ||
4052 | |||
4053 | /* | ||
4054 | * Allocate and initialize a counter structure | ||
4055 | */ | ||
4056 | static struct perf_counter * | ||
4057 | perf_counter_alloc(struct perf_counter_attr *attr, | ||
4058 | int cpu, | ||
4059 | struct perf_counter_context *ctx, | ||
4060 | struct perf_counter *group_leader, | ||
4061 | struct perf_counter *parent_counter, | ||
4062 | gfp_t gfpflags) | ||
4063 | { | ||
4064 | const struct pmu *pmu; | ||
4065 | struct perf_counter *counter; | ||
4066 | struct hw_perf_counter *hwc; | ||
4067 | long err; | ||
4068 | |||
4069 | counter = kzalloc(sizeof(*counter), gfpflags); | ||
4070 | if (!counter) | ||
4071 | return ERR_PTR(-ENOMEM); | ||
4072 | |||
4073 | /* | ||
4074 | * Single counters are their own group leaders, with an | ||
4075 | * empty sibling list: | ||
4076 | */ | ||
4077 | if (!group_leader) | ||
4078 | group_leader = counter; | ||
4079 | |||
4080 | mutex_init(&counter->child_mutex); | ||
4081 | INIT_LIST_HEAD(&counter->child_list); | ||
4082 | |||
4083 | INIT_LIST_HEAD(&counter->list_entry); | ||
4084 | INIT_LIST_HEAD(&counter->event_entry); | ||
4085 | INIT_LIST_HEAD(&counter->sibling_list); | ||
4086 | init_waitqueue_head(&counter->waitq); | ||
4087 | |||
4088 | mutex_init(&counter->mmap_mutex); | ||
4089 | |||
4090 | counter->cpu = cpu; | ||
4091 | counter->attr = *attr; | ||
4092 | counter->group_leader = group_leader; | ||
4093 | counter->pmu = NULL; | ||
4094 | counter->ctx = ctx; | ||
4095 | counter->oncpu = -1; | ||
4096 | |||
4097 | counter->parent = parent_counter; | ||
4098 | |||
4099 | counter->ns = get_pid_ns(current->nsproxy->pid_ns); | ||
4100 | counter->id = atomic64_inc_return(&perf_counter_id); | ||
4101 | |||
4102 | counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
4103 | |||
4104 | if (attr->disabled) | ||
4105 | counter->state = PERF_COUNTER_STATE_OFF; | ||
4106 | |||
4107 | pmu = NULL; | ||
4108 | |||
4109 | hwc = &counter->hw; | ||
4110 | hwc->sample_period = attr->sample_period; | ||
4111 | if (attr->freq && attr->sample_freq) | ||
4112 | hwc->sample_period = 1; | ||
4113 | hwc->last_period = hwc->sample_period; | ||
4114 | |||
4115 | atomic64_set(&hwc->period_left, hwc->sample_period); | ||
4116 | |||
4117 | /* | ||
4118 | * we currently do not support PERF_FORMAT_GROUP on inherited counters | ||
4119 | */ | ||
4120 | if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) | ||
4121 | goto done; | ||
4122 | |||
4123 | switch (attr->type) { | ||
4124 | case PERF_TYPE_RAW: | ||
4125 | case PERF_TYPE_HARDWARE: | ||
4126 | case PERF_TYPE_HW_CACHE: | ||
4127 | pmu = hw_perf_counter_init(counter); | ||
4128 | break; | ||
4129 | |||
4130 | case PERF_TYPE_SOFTWARE: | ||
4131 | pmu = sw_perf_counter_init(counter); | ||
4132 | break; | ||
4133 | |||
4134 | case PERF_TYPE_TRACEPOINT: | ||
4135 | pmu = tp_perf_counter_init(counter); | ||
4136 | break; | ||
4137 | |||
4138 | default: | ||
4139 | break; | ||
4140 | } | ||
4141 | done: | ||
4142 | err = 0; | ||
4143 | if (!pmu) | ||
4144 | err = -EINVAL; | ||
4145 | else if (IS_ERR(pmu)) | ||
4146 | err = PTR_ERR(pmu); | ||
4147 | |||
4148 | if (err) { | ||
4149 | if (counter->ns) | ||
4150 | put_pid_ns(counter->ns); | ||
4151 | kfree(counter); | ||
4152 | return ERR_PTR(err); | ||
4153 | } | ||
4154 | |||
4155 | counter->pmu = pmu; | ||
4156 | |||
4157 | if (!counter->parent) { | ||
4158 | atomic_inc(&nr_counters); | ||
4159 | if (counter->attr.mmap) | ||
4160 | atomic_inc(&nr_mmap_counters); | ||
4161 | if (counter->attr.comm) | ||
4162 | atomic_inc(&nr_comm_counters); | ||
4163 | if (counter->attr.task) | ||
4164 | atomic_inc(&nr_task_counters); | ||
4165 | } | ||
4166 | |||
4167 | return counter; | ||
4168 | } | ||
4169 | |||
4170 | static int perf_copy_attr(struct perf_counter_attr __user *uattr, | ||
4171 | struct perf_counter_attr *attr) | ||
4172 | { | ||
4173 | int ret; | ||
4174 | u32 size; | ||
4175 | |||
4176 | if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) | ||
4177 | return -EFAULT; | ||
4178 | |||
4179 | /* | ||
4180 | * zero the full structure, so that a short copy will be nice. | ||
4181 | */ | ||
4182 | memset(attr, 0, sizeof(*attr)); | ||
4183 | |||
4184 | ret = get_user(size, &uattr->size); | ||
4185 | if (ret) | ||
4186 | return ret; | ||
4187 | |||
4188 | if (size > PAGE_SIZE) /* silly large */ | ||
4189 | goto err_size; | ||
4190 | |||
4191 | if (!size) /* abi compat */ | ||
4192 | size = PERF_ATTR_SIZE_VER0; | ||
4193 | |||
4194 | if (size < PERF_ATTR_SIZE_VER0) | ||
4195 | goto err_size; | ||
4196 | |||
4197 | /* | ||
4198 | * If we're handed a bigger struct than we know of, | ||
4199 | * ensure all the unknown bits are 0. | ||
4200 | */ | ||
4201 | if (size > sizeof(*attr)) { | ||
4202 | unsigned long val; | ||
4203 | unsigned long __user *addr; | ||
4204 | unsigned long __user *end; | ||
4205 | |||
4206 | addr = PTR_ALIGN((void __user *)uattr + sizeof(*attr), | ||
4207 | sizeof(unsigned long)); | ||
4208 | end = PTR_ALIGN((void __user *)uattr + size, | ||
4209 | sizeof(unsigned long)); | ||
4210 | |||
4211 | for (; addr < end; addr += sizeof(unsigned long)) { | ||
4212 | ret = get_user(val, addr); | ||
4213 | if (ret) | ||
4214 | return ret; | ||
4215 | if (val) | ||
4216 | goto err_size; | ||
4217 | } | ||
4218 | size = sizeof(*attr); | ||
4219 | } | ||
4220 | |||
4221 | ret = copy_from_user(attr, uattr, size); | ||
4222 | if (ret) | ||
4223 | return -EFAULT; | ||
4224 | |||
4225 | /* | ||
4226 | * If the type exists, the corresponding creation will verify | ||
4227 | * the attr->config. | ||
4228 | */ | ||
4229 | if (attr->type >= PERF_TYPE_MAX) | ||
4230 | return -EINVAL; | ||
4231 | |||
4232 | if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) | ||
4233 | return -EINVAL; | ||
4234 | |||
4235 | if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) | ||
4236 | return -EINVAL; | ||
4237 | |||
4238 | if (attr->read_format & ~(PERF_FORMAT_MAX-1)) | ||
4239 | return -EINVAL; | ||
4240 | |||
4241 | out: | ||
4242 | return ret; | ||
4243 | |||
4244 | err_size: | ||
4245 | put_user(sizeof(*attr), &uattr->size); | ||
4246 | ret = -E2BIG; | ||
4247 | goto out; | ||
4248 | } | ||
4249 | |||
4250 | int perf_counter_set_output(struct perf_counter *counter, int output_fd) | ||
4251 | { | ||
4252 | struct perf_counter *output_counter = NULL; | ||
4253 | struct file *output_file = NULL; | ||
4254 | struct perf_counter *old_output; | ||
4255 | int fput_needed = 0; | ||
4256 | int ret = -EINVAL; | ||
4257 | |||
4258 | if (!output_fd) | ||
4259 | goto set; | ||
4260 | |||
4261 | output_file = fget_light(output_fd, &fput_needed); | ||
4262 | if (!output_file) | ||
4263 | return -EBADF; | ||
4264 | |||
4265 | if (output_file->f_op != &perf_fops) | ||
4266 | goto out; | ||
4267 | |||
4268 | output_counter = output_file->private_data; | ||
4269 | |||
4270 | /* Don't chain output fds */ | ||
4271 | if (output_counter->output) | ||
4272 | goto out; | ||
4273 | |||
4274 | /* Don't set an output fd when we already have an output channel */ | ||
4275 | if (counter->data) | ||
4276 | goto out; | ||
4277 | |||
4278 | atomic_long_inc(&output_file->f_count); | ||
4279 | |||
4280 | set: | ||
4281 | mutex_lock(&counter->mmap_mutex); | ||
4282 | old_output = counter->output; | ||
4283 | rcu_assign_pointer(counter->output, output_counter); | ||
4284 | mutex_unlock(&counter->mmap_mutex); | ||
4285 | |||
4286 | if (old_output) { | ||
4287 | /* | ||
4288 | * we need to make sure no existing perf_output_*() | ||
4289 | * is still referencing this counter. | ||
4290 | */ | ||
4291 | synchronize_rcu(); | ||
4292 | fput(old_output->filp); | ||
4293 | } | ||
4294 | |||
4295 | ret = 0; | ||
4296 | out: | ||
4297 | fput_light(output_file, fput_needed); | ||
4298 | return ret; | ||
4299 | } | ||
4300 | |||
4301 | /** | ||
4302 | * sys_perf_counter_open - open a performance counter, associate it to a task/cpu | ||
4303 | * | ||
4304 | * @attr_uptr: event type attributes for monitoring/sampling | ||
4305 | * @pid: target pid | ||
4306 | * @cpu: target cpu | ||
4307 | * @group_fd: group leader counter fd | ||
4308 | */ | ||
4309 | SYSCALL_DEFINE5(perf_counter_open, | ||
4310 | struct perf_counter_attr __user *, attr_uptr, | ||
4311 | pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) | ||
4312 | { | ||
4313 | struct perf_counter *counter, *group_leader; | ||
4314 | struct perf_counter_attr attr; | ||
4315 | struct perf_counter_context *ctx; | ||
4316 | struct file *counter_file = NULL; | ||
4317 | struct file *group_file = NULL; | ||
4318 | int fput_needed = 0; | ||
4319 | int fput_needed2 = 0; | ||
4320 | int err; | ||
4321 | |||
4322 | /* for future expandability... */ | ||
4323 | if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT)) | ||
4324 | return -EINVAL; | ||
4325 | |||
4326 | err = perf_copy_attr(attr_uptr, &attr); | ||
4327 | if (err) | ||
4328 | return err; | ||
4329 | |||
4330 | if (!attr.exclude_kernel) { | ||
4331 | if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) | ||
4332 | return -EACCES; | ||
4333 | } | ||
4334 | |||
4335 | if (attr.freq) { | ||
4336 | if (attr.sample_freq > sysctl_perf_counter_sample_rate) | ||
4337 | return -EINVAL; | ||
4338 | } | ||
4339 | |||
4340 | /* | ||
4341 | * Get the target context (task or percpu): | ||
4342 | */ | ||
4343 | ctx = find_get_context(pid, cpu); | ||
4344 | if (IS_ERR(ctx)) | ||
4345 | return PTR_ERR(ctx); | ||
4346 | |||
4347 | /* | ||
4348 | * Look up the group leader (we will attach this counter to it): | ||
4349 | */ | ||
4350 | group_leader = NULL; | ||
4351 | if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) { | ||
4352 | err = -EINVAL; | ||
4353 | group_file = fget_light(group_fd, &fput_needed); | ||
4354 | if (!group_file) | ||
4355 | goto err_put_context; | ||
4356 | if (group_file->f_op != &perf_fops) | ||
4357 | goto err_put_context; | ||
4358 | |||
4359 | group_leader = group_file->private_data; | ||
4360 | /* | ||
4361 | * Do not allow a recursive hierarchy (this new sibling | ||
4362 | * becoming part of another group-sibling): | ||
4363 | */ | ||
4364 | if (group_leader->group_leader != group_leader) | ||
4365 | goto err_put_context; | ||
4366 | /* | ||
4367 | * Do not allow to attach to a group in a different | ||
4368 | * task or CPU context: | ||
4369 | */ | ||
4370 | if (group_leader->ctx != ctx) | ||
4371 | goto err_put_context; | ||
4372 | /* | ||
4373 | * Only a group leader can be exclusive or pinned | ||
4374 | */ | ||
4375 | if (attr.exclusive || attr.pinned) | ||
4376 | goto err_put_context; | ||
4377 | } | ||
4378 | |||
4379 | counter = perf_counter_alloc(&attr, cpu, ctx, group_leader, | ||
4380 | NULL, GFP_KERNEL); | ||
4381 | err = PTR_ERR(counter); | ||
4382 | if (IS_ERR(counter)) | ||
4383 | goto err_put_context; | ||
4384 | |||
4385 | err = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0); | ||
4386 | if (err < 0) | ||
4387 | goto err_free_put_context; | ||
4388 | |||
4389 | counter_file = fget_light(err, &fput_needed2); | ||
4390 | if (!counter_file) | ||
4391 | goto err_free_put_context; | ||
4392 | |||
4393 | if (flags & PERF_FLAG_FD_OUTPUT) { | ||
4394 | err = perf_counter_set_output(counter, group_fd); | ||
4395 | if (err) | ||
4396 | goto err_fput_free_put_context; | ||
4397 | } | ||
4398 | |||
4399 | counter->filp = counter_file; | ||
4400 | WARN_ON_ONCE(ctx->parent_ctx); | ||
4401 | mutex_lock(&ctx->mutex); | ||
4402 | perf_install_in_context(ctx, counter, cpu); | ||
4403 | ++ctx->generation; | ||
4404 | mutex_unlock(&ctx->mutex); | ||
4405 | |||
4406 | counter->owner = current; | ||
4407 | get_task_struct(current); | ||
4408 | mutex_lock(¤t->perf_counter_mutex); | ||
4409 | list_add_tail(&counter->owner_entry, ¤t->perf_counter_list); | ||
4410 | mutex_unlock(¤t->perf_counter_mutex); | ||
4411 | |||
4412 | err_fput_free_put_context: | ||
4413 | fput_light(counter_file, fput_needed2); | ||
4414 | |||
4415 | err_free_put_context: | ||
4416 | if (err < 0) | ||
4417 | kfree(counter); | ||
4418 | |||
4419 | err_put_context: | ||
4420 | if (err < 0) | ||
4421 | put_ctx(ctx); | ||
4422 | |||
4423 | fput_light(group_file, fput_needed); | ||
4424 | |||
4425 | return err; | ||
4426 | } | ||
4427 | |||
4428 | /* | ||
4429 | * inherit a counter from parent task to child task: | ||
4430 | */ | ||
4431 | static struct perf_counter * | ||
4432 | inherit_counter(struct perf_counter *parent_counter, | ||
4433 | struct task_struct *parent, | ||
4434 | struct perf_counter_context *parent_ctx, | ||
4435 | struct task_struct *child, | ||
4436 | struct perf_counter *group_leader, | ||
4437 | struct perf_counter_context *child_ctx) | ||
4438 | { | ||
4439 | struct perf_counter *child_counter; | ||
4440 | |||
4441 | /* | ||
4442 | * Instead of creating recursive hierarchies of counters, | ||
4443 | * we link inherited counters back to the original parent, | ||
4444 | * which has a filp for sure, which we use as the reference | ||
4445 | * count: | ||
4446 | */ | ||
4447 | if (parent_counter->parent) | ||
4448 | parent_counter = parent_counter->parent; | ||
4449 | |||
4450 | child_counter = perf_counter_alloc(&parent_counter->attr, | ||
4451 | parent_counter->cpu, child_ctx, | ||
4452 | group_leader, parent_counter, | ||
4453 | GFP_KERNEL); | ||
4454 | if (IS_ERR(child_counter)) | ||
4455 | return child_counter; | ||
4456 | get_ctx(child_ctx); | ||
4457 | |||
4458 | /* | ||
4459 | * Make the child state follow the state of the parent counter, | ||
4460 | * not its attr.disabled bit. We hold the parent's mutex, | ||
4461 | * so we won't race with perf_counter_{en, dis}able_family. | ||
4462 | */ | ||
4463 | if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE) | ||
4464 | child_counter->state = PERF_COUNTER_STATE_INACTIVE; | ||
4465 | else | ||
4466 | child_counter->state = PERF_COUNTER_STATE_OFF; | ||
4467 | |||
4468 | if (parent_counter->attr.freq) | ||
4469 | child_counter->hw.sample_period = parent_counter->hw.sample_period; | ||
4470 | |||
4471 | /* | ||
4472 | * Link it up in the child's context: | ||
4473 | */ | ||
4474 | add_counter_to_ctx(child_counter, child_ctx); | ||
4475 | |||
4476 | /* | ||
4477 | * Get a reference to the parent filp - we will fput it | ||
4478 | * when the child counter exits. This is safe to do because | ||
4479 | * we are in the parent and we know that the filp still | ||
4480 | * exists and has a nonzero count: | ||
4481 | */ | ||
4482 | atomic_long_inc(&parent_counter->filp->f_count); | ||
4483 | |||
4484 | /* | ||
4485 | * Link this into the parent counter's child list | ||
4486 | */ | ||
4487 | WARN_ON_ONCE(parent_counter->ctx->parent_ctx); | ||
4488 | mutex_lock(&parent_counter->child_mutex); | ||
4489 | list_add_tail(&child_counter->child_list, &parent_counter->child_list); | ||
4490 | mutex_unlock(&parent_counter->child_mutex); | ||
4491 | |||
4492 | return child_counter; | ||
4493 | } | ||
4494 | |||
4495 | static int inherit_group(struct perf_counter *parent_counter, | ||
4496 | struct task_struct *parent, | ||
4497 | struct perf_counter_context *parent_ctx, | ||
4498 | struct task_struct *child, | ||
4499 | struct perf_counter_context *child_ctx) | ||
4500 | { | ||
4501 | struct perf_counter *leader; | ||
4502 | struct perf_counter *sub; | ||
4503 | struct perf_counter *child_ctr; | ||
4504 | |||
4505 | leader = inherit_counter(parent_counter, parent, parent_ctx, | ||
4506 | child, NULL, child_ctx); | ||
4507 | if (IS_ERR(leader)) | ||
4508 | return PTR_ERR(leader); | ||
4509 | list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) { | ||
4510 | child_ctr = inherit_counter(sub, parent, parent_ctx, | ||
4511 | child, leader, child_ctx); | ||
4512 | if (IS_ERR(child_ctr)) | ||
4513 | return PTR_ERR(child_ctr); | ||
4514 | } | ||
4515 | return 0; | ||
4516 | } | ||
4517 | |||
4518 | static void sync_child_counter(struct perf_counter *child_counter, | ||
4519 | struct task_struct *child) | ||
4520 | { | ||
4521 | struct perf_counter *parent_counter = child_counter->parent; | ||
4522 | u64 child_val; | ||
4523 | |||
4524 | if (child_counter->attr.inherit_stat) | ||
4525 | perf_counter_read_event(child_counter, child); | ||
4526 | |||
4527 | child_val = atomic64_read(&child_counter->count); | ||
4528 | |||
4529 | /* | ||
4530 | * Add back the child's count to the parent's count: | ||
4531 | */ | ||
4532 | atomic64_add(child_val, &parent_counter->count); | ||
4533 | atomic64_add(child_counter->total_time_enabled, | ||
4534 | &parent_counter->child_total_time_enabled); | ||
4535 | atomic64_add(child_counter->total_time_running, | ||
4536 | &parent_counter->child_total_time_running); | ||
4537 | |||
4538 | /* | ||
4539 | * Remove this counter from the parent's list | ||
4540 | */ | ||
4541 | WARN_ON_ONCE(parent_counter->ctx->parent_ctx); | ||
4542 | mutex_lock(&parent_counter->child_mutex); | ||
4543 | list_del_init(&child_counter->child_list); | ||
4544 | mutex_unlock(&parent_counter->child_mutex); | ||
4545 | |||
4546 | /* | ||
4547 | * Release the parent counter, if this was the last | ||
4548 | * reference to it. | ||
4549 | */ | ||
4550 | fput(parent_counter->filp); | ||
4551 | } | ||
4552 | |||
4553 | static void | ||
4554 | __perf_counter_exit_task(struct perf_counter *child_counter, | ||
4555 | struct perf_counter_context *child_ctx, | ||
4556 | struct task_struct *child) | ||
4557 | { | ||
4558 | struct perf_counter *parent_counter; | ||
4559 | |||
4560 | update_counter_times(child_counter); | ||
4561 | perf_counter_remove_from_context(child_counter); | ||
4562 | |||
4563 | parent_counter = child_counter->parent; | ||
4564 | /* | ||
4565 | * It can happen that parent exits first, and has counters | ||
4566 | * that are still around due to the child reference. These | ||
4567 | * counters need to be zapped - but otherwise linger. | ||
4568 | */ | ||
4569 | if (parent_counter) { | ||
4570 | sync_child_counter(child_counter, child); | ||
4571 | free_counter(child_counter); | ||
4572 | } | ||
4573 | } | ||
4574 | |||
4575 | /* | ||
4576 | * When a child task exits, feed back counter values to parent counters. | ||
4577 | */ | ||
4578 | void perf_counter_exit_task(struct task_struct *child) | ||
4579 | { | ||
4580 | struct perf_counter *child_counter, *tmp; | ||
4581 | struct perf_counter_context *child_ctx; | ||
4582 | unsigned long flags; | ||
4583 | |||
4584 | if (likely(!child->perf_counter_ctxp)) { | ||
4585 | perf_counter_task(child, NULL, 0); | ||
4586 | return; | ||
4587 | } | ||
4588 | |||
4589 | local_irq_save(flags); | ||
4590 | /* | ||
4591 | * We can't reschedule here because interrupts are disabled, | ||
4592 | * and either child is current or it is a task that can't be | ||
4593 | * scheduled, so we are now safe from rescheduling changing | ||
4594 | * our context. | ||
4595 | */ | ||
4596 | child_ctx = child->perf_counter_ctxp; | ||
4597 | __perf_counter_task_sched_out(child_ctx); | ||
4598 | |||
4599 | /* | ||
4600 | * Take the context lock here so that if find_get_context is | ||
4601 | * reading child->perf_counter_ctxp, we wait until it has | ||
4602 | * incremented the context's refcount before we do put_ctx below. | ||
4603 | */ | ||
4604 | spin_lock(&child_ctx->lock); | ||
4605 | child->perf_counter_ctxp = NULL; | ||
4606 | /* | ||
4607 | * If this context is a clone; unclone it so it can't get | ||
4608 | * swapped to another process while we're removing all | ||
4609 | * the counters from it. | ||
4610 | */ | ||
4611 | unclone_ctx(child_ctx); | ||
4612 | spin_unlock_irqrestore(&child_ctx->lock, flags); | ||
4613 | |||
4614 | /* | ||
4615 | * Report the task dead after unscheduling the counters so that we | ||
4616 | * won't get any samples after PERF_EVENT_EXIT. We can however still | ||
4617 | * get a few PERF_EVENT_READ events. | ||
4618 | */ | ||
4619 | perf_counter_task(child, child_ctx, 0); | ||
4620 | |||
4621 | /* | ||
4622 | * We can recurse on the same lock type through: | ||
4623 | * | ||
4624 | * __perf_counter_exit_task() | ||
4625 | * sync_child_counter() | ||
4626 | * fput(parent_counter->filp) | ||
4627 | * perf_release() | ||
4628 | * mutex_lock(&ctx->mutex) | ||
4629 | * | ||
4630 | * But since its the parent context it won't be the same instance. | ||
4631 | */ | ||
4632 | mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING); | ||
4633 | |||
4634 | again: | ||
4635 | list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list, | ||
4636 | list_entry) | ||
4637 | __perf_counter_exit_task(child_counter, child_ctx, child); | ||
4638 | |||
4639 | /* | ||
4640 | * If the last counter was a group counter, it will have appended all | ||
4641 | * its siblings to the list, but we obtained 'tmp' before that which | ||
4642 | * will still point to the list head terminating the iteration. | ||
4643 | */ | ||
4644 | if (!list_empty(&child_ctx->counter_list)) | ||
4645 | goto again; | ||
4646 | |||
4647 | mutex_unlock(&child_ctx->mutex); | ||
4648 | |||
4649 | put_ctx(child_ctx); | ||
4650 | } | ||
4651 | |||
4652 | /* | ||
4653 | * free an unexposed, unused context as created by inheritance by | ||
4654 | * init_task below, used by fork() in case of fail. | ||
4655 | */ | ||
4656 | void perf_counter_free_task(struct task_struct *task) | ||
4657 | { | ||
4658 | struct perf_counter_context *ctx = task->perf_counter_ctxp; | ||
4659 | struct perf_counter *counter, *tmp; | ||
4660 | |||
4661 | if (!ctx) | ||
4662 | return; | ||
4663 | |||
4664 | mutex_lock(&ctx->mutex); | ||
4665 | again: | ||
4666 | list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) { | ||
4667 | struct perf_counter *parent = counter->parent; | ||
4668 | |||
4669 | if (WARN_ON_ONCE(!parent)) | ||
4670 | continue; | ||
4671 | |||
4672 | mutex_lock(&parent->child_mutex); | ||
4673 | list_del_init(&counter->child_list); | ||
4674 | mutex_unlock(&parent->child_mutex); | ||
4675 | |||
4676 | fput(parent->filp); | ||
4677 | |||
4678 | list_del_counter(counter, ctx); | ||
4679 | free_counter(counter); | ||
4680 | } | ||
4681 | |||
4682 | if (!list_empty(&ctx->counter_list)) | ||
4683 | goto again; | ||
4684 | |||
4685 | mutex_unlock(&ctx->mutex); | ||
4686 | |||
4687 | put_ctx(ctx); | ||
4688 | } | ||
4689 | |||
4690 | /* | ||
4691 | * Initialize the perf_counter context in task_struct | ||
4692 | */ | ||
4693 | int perf_counter_init_task(struct task_struct *child) | ||
4694 | { | ||
4695 | struct perf_counter_context *child_ctx, *parent_ctx; | ||
4696 | struct perf_counter_context *cloned_ctx; | ||
4697 | struct perf_counter *counter; | ||
4698 | struct task_struct *parent = current; | ||
4699 | int inherited_all = 1; | ||
4700 | int ret = 0; | ||
4701 | |||
4702 | child->perf_counter_ctxp = NULL; | ||
4703 | |||
4704 | mutex_init(&child->perf_counter_mutex); | ||
4705 | INIT_LIST_HEAD(&child->perf_counter_list); | ||
4706 | |||
4707 | if (likely(!parent->perf_counter_ctxp)) | ||
4708 | return 0; | ||
4709 | |||
4710 | /* | ||
4711 | * This is executed from the parent task context, so inherit | ||
4712 | * counters that have been marked for cloning. | ||
4713 | * First allocate and initialize a context for the child. | ||
4714 | */ | ||
4715 | |||
4716 | child_ctx = kmalloc(sizeof(struct perf_counter_context), GFP_KERNEL); | ||
4717 | if (!child_ctx) | ||
4718 | return -ENOMEM; | ||
4719 | |||
4720 | __perf_counter_init_context(child_ctx, child); | ||
4721 | child->perf_counter_ctxp = child_ctx; | ||
4722 | get_task_struct(child); | ||
4723 | |||
4724 | /* | ||
4725 | * If the parent's context is a clone, pin it so it won't get | ||
4726 | * swapped under us. | ||
4727 | */ | ||
4728 | parent_ctx = perf_pin_task_context(parent); | ||
4729 | |||
4730 | /* | ||
4731 | * No need to check if parent_ctx != NULL here; since we saw | ||
4732 | * it non-NULL earlier, the only reason for it to become NULL | ||
4733 | * is if we exit, and since we're currently in the middle of | ||
4734 | * a fork we can't be exiting at the same time. | ||
4735 | */ | ||
4736 | |||
4737 | /* | ||
4738 | * Lock the parent list. No need to lock the child - not PID | ||
4739 | * hashed yet and not running, so nobody can access it. | ||
4740 | */ | ||
4741 | mutex_lock(&parent_ctx->mutex); | ||
4742 | |||
4743 | /* | ||
4744 | * We dont have to disable NMIs - we are only looking at | ||
4745 | * the list, not manipulating it: | ||
4746 | */ | ||
4747 | list_for_each_entry_rcu(counter, &parent_ctx->event_list, event_entry) { | ||
4748 | if (counter != counter->group_leader) | ||
4749 | continue; | ||
4750 | |||
4751 | if (!counter->attr.inherit) { | ||
4752 | inherited_all = 0; | ||
4753 | continue; | ||
4754 | } | ||
4755 | |||
4756 | ret = inherit_group(counter, parent, parent_ctx, | ||
4757 | child, child_ctx); | ||
4758 | if (ret) { | ||
4759 | inherited_all = 0; | ||
4760 | break; | ||
4761 | } | ||
4762 | } | ||
4763 | |||
4764 | if (inherited_all) { | ||
4765 | /* | ||
4766 | * Mark the child context as a clone of the parent | ||
4767 | * context, or of whatever the parent is a clone of. | ||
4768 | * Note that if the parent is a clone, it could get | ||
4769 | * uncloned at any point, but that doesn't matter | ||
4770 | * because the list of counters and the generation | ||
4771 | * count can't have changed since we took the mutex. | ||
4772 | */ | ||
4773 | cloned_ctx = rcu_dereference(parent_ctx->parent_ctx); | ||
4774 | if (cloned_ctx) { | ||
4775 | child_ctx->parent_ctx = cloned_ctx; | ||
4776 | child_ctx->parent_gen = parent_ctx->parent_gen; | ||
4777 | } else { | ||
4778 | child_ctx->parent_ctx = parent_ctx; | ||
4779 | child_ctx->parent_gen = parent_ctx->generation; | ||
4780 | } | ||
4781 | get_ctx(child_ctx->parent_ctx); | ||
4782 | } | ||
4783 | |||
4784 | mutex_unlock(&parent_ctx->mutex); | ||
4785 | |||
4786 | perf_unpin_context(parent_ctx); | ||
4787 | |||
4788 | return ret; | ||
4789 | } | ||
4790 | |||
4791 | static void __cpuinit perf_counter_init_cpu(int cpu) | ||
4792 | { | ||
4793 | struct perf_cpu_context *cpuctx; | ||
4794 | |||
4795 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
4796 | __perf_counter_init_context(&cpuctx->ctx, NULL); | ||
4797 | |||
4798 | spin_lock(&perf_resource_lock); | ||
4799 | cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu; | ||
4800 | spin_unlock(&perf_resource_lock); | ||
4801 | |||
4802 | hw_perf_counter_setup(cpu); | ||
4803 | } | ||
4804 | |||
4805 | #ifdef CONFIG_HOTPLUG_CPU | ||
4806 | static void __perf_counter_exit_cpu(void *info) | ||
4807 | { | ||
4808 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
4809 | struct perf_counter_context *ctx = &cpuctx->ctx; | ||
4810 | struct perf_counter *counter, *tmp; | ||
4811 | |||
4812 | list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) | ||
4813 | __perf_counter_remove_from_context(counter); | ||
4814 | } | ||
4815 | static void perf_counter_exit_cpu(int cpu) | ||
4816 | { | ||
4817 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
4818 | struct perf_counter_context *ctx = &cpuctx->ctx; | ||
4819 | |||
4820 | mutex_lock(&ctx->mutex); | ||
4821 | smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1); | ||
4822 | mutex_unlock(&ctx->mutex); | ||
4823 | } | ||
4824 | #else | ||
4825 | static inline void perf_counter_exit_cpu(int cpu) { } | ||
4826 | #endif | ||
4827 | |||
4828 | static int __cpuinit | ||
4829 | perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) | ||
4830 | { | ||
4831 | unsigned int cpu = (long)hcpu; | ||
4832 | |||
4833 | switch (action) { | ||
4834 | |||
4835 | case CPU_UP_PREPARE: | ||
4836 | case CPU_UP_PREPARE_FROZEN: | ||
4837 | perf_counter_init_cpu(cpu); | ||
4838 | break; | ||
4839 | |||
4840 | case CPU_ONLINE: | ||
4841 | case CPU_ONLINE_FROZEN: | ||
4842 | hw_perf_counter_setup_online(cpu); | ||
4843 | break; | ||
4844 | |||
4845 | case CPU_DOWN_PREPARE: | ||
4846 | case CPU_DOWN_PREPARE_FROZEN: | ||
4847 | perf_counter_exit_cpu(cpu); | ||
4848 | break; | ||
4849 | |||
4850 | default: | ||
4851 | break; | ||
4852 | } | ||
4853 | |||
4854 | return NOTIFY_OK; | ||
4855 | } | ||
4856 | |||
4857 | /* | ||
4858 | * This has to have a higher priority than migration_notifier in sched.c. | ||
4859 | */ | ||
4860 | static struct notifier_block __cpuinitdata perf_cpu_nb = { | ||
4861 | .notifier_call = perf_cpu_notify, | ||
4862 | .priority = 20, | ||
4863 | }; | ||
4864 | |||
4865 | void __init perf_counter_init(void) | ||
4866 | { | ||
4867 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE, | ||
4868 | (void *)(long)smp_processor_id()); | ||
4869 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE, | ||
4870 | (void *)(long)smp_processor_id()); | ||
4871 | register_cpu_notifier(&perf_cpu_nb); | ||
4872 | } | ||
4873 | |||
4874 | static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf) | ||
4875 | { | ||
4876 | return sprintf(buf, "%d\n", perf_reserved_percpu); | ||
4877 | } | ||
4878 | |||
4879 | static ssize_t | ||
4880 | perf_set_reserve_percpu(struct sysdev_class *class, | ||
4881 | const char *buf, | ||
4882 | size_t count) | ||
4883 | { | ||
4884 | struct perf_cpu_context *cpuctx; | ||
4885 | unsigned long val; | ||
4886 | int err, cpu, mpt; | ||
4887 | |||
4888 | err = strict_strtoul(buf, 10, &val); | ||
4889 | if (err) | ||
4890 | return err; | ||
4891 | if (val > perf_max_counters) | ||
4892 | return -EINVAL; | ||
4893 | |||
4894 | spin_lock(&perf_resource_lock); | ||
4895 | perf_reserved_percpu = val; | ||
4896 | for_each_online_cpu(cpu) { | ||
4897 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
4898 | spin_lock_irq(&cpuctx->ctx.lock); | ||
4899 | mpt = min(perf_max_counters - cpuctx->ctx.nr_counters, | ||
4900 | perf_max_counters - perf_reserved_percpu); | ||
4901 | cpuctx->max_pertask = mpt; | ||
4902 | spin_unlock_irq(&cpuctx->ctx.lock); | ||
4903 | } | ||
4904 | spin_unlock(&perf_resource_lock); | ||
4905 | |||
4906 | return count; | ||
4907 | } | ||
4908 | |||
4909 | static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf) | ||
4910 | { | ||
4911 | return sprintf(buf, "%d\n", perf_overcommit); | ||
4912 | } | ||
4913 | |||
4914 | static ssize_t | ||
4915 | perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count) | ||
4916 | { | ||
4917 | unsigned long val; | ||
4918 | int err; | ||
4919 | |||
4920 | err = strict_strtoul(buf, 10, &val); | ||
4921 | if (err) | ||
4922 | return err; | ||
4923 | if (val > 1) | ||
4924 | return -EINVAL; | ||
4925 | |||
4926 | spin_lock(&perf_resource_lock); | ||
4927 | perf_overcommit = val; | ||
4928 | spin_unlock(&perf_resource_lock); | ||
4929 | |||
4930 | return count; | ||
4931 | } | ||
4932 | |||
4933 | static SYSDEV_CLASS_ATTR( | ||
4934 | reserve_percpu, | ||
4935 | 0644, | ||
4936 | perf_show_reserve_percpu, | ||
4937 | perf_set_reserve_percpu | ||
4938 | ); | ||
4939 | |||
4940 | static SYSDEV_CLASS_ATTR( | ||
4941 | overcommit, | ||
4942 | 0644, | ||
4943 | perf_show_overcommit, | ||
4944 | perf_set_overcommit | ||
4945 | ); | ||
4946 | |||
4947 | static struct attribute *perfclass_attrs[] = { | ||
4948 | &attr_reserve_percpu.attr, | ||
4949 | &attr_overcommit.attr, | ||
4950 | NULL | ||
4951 | }; | ||
4952 | |||
4953 | static struct attribute_group perfclass_attr_group = { | ||
4954 | .attrs = perfclass_attrs, | ||
4955 | .name = "perf_counters", | ||
4956 | }; | ||
4957 | |||
4958 | static int __init perf_counter_sysfs_init(void) | ||
4959 | { | ||
4960 | return sysfs_create_group(&cpu_sysdev_class.kset.kobj, | ||
4961 | &perfclass_attr_group); | ||
4962 | } | ||
4963 | device_initcall(perf_counter_sysfs_init); | ||
diff --git a/kernel/perf_event.c b/kernel/perf_event.c new file mode 100644 index 000000000000..0f86feb6db0c --- /dev/null +++ b/kernel/perf_event.c | |||
@@ -0,0 +1,5000 @@ | |||
1 | /* | ||
2 | * Performance events core code: | ||
3 | * | ||
4 | * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> | ||
5 | * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar | ||
6 | * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | ||
7 | * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> | ||
8 | * | ||
9 | * For licensing details see kernel-base/COPYING | ||
10 | */ | ||
11 | |||
12 | #include <linux/fs.h> | ||
13 | #include <linux/mm.h> | ||
14 | #include <linux/cpu.h> | ||
15 | #include <linux/smp.h> | ||
16 | #include <linux/file.h> | ||
17 | #include <linux/poll.h> | ||
18 | #include <linux/sysfs.h> | ||
19 | #include <linux/dcache.h> | ||
20 | #include <linux/percpu.h> | ||
21 | #include <linux/ptrace.h> | ||
22 | #include <linux/vmstat.h> | ||
23 | #include <linux/hardirq.h> | ||
24 | #include <linux/rculist.h> | ||
25 | #include <linux/uaccess.h> | ||
26 | #include <linux/syscalls.h> | ||
27 | #include <linux/anon_inodes.h> | ||
28 | #include <linux/kernel_stat.h> | ||
29 | #include <linux/perf_event.h> | ||
30 | |||
31 | #include <asm/irq_regs.h> | ||
32 | |||
33 | /* | ||
34 | * Each CPU has a list of per CPU events: | ||
35 | */ | ||
36 | DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); | ||
37 | |||
38 | int perf_max_events __read_mostly = 1; | ||
39 | static int perf_reserved_percpu __read_mostly; | ||
40 | static int perf_overcommit __read_mostly = 1; | ||
41 | |||
42 | static atomic_t nr_events __read_mostly; | ||
43 | static atomic_t nr_mmap_events __read_mostly; | ||
44 | static atomic_t nr_comm_events __read_mostly; | ||
45 | static atomic_t nr_task_events __read_mostly; | ||
46 | |||
47 | /* | ||
48 | * perf event paranoia level: | ||
49 | * -1 - not paranoid at all | ||
50 | * 0 - disallow raw tracepoint access for unpriv | ||
51 | * 1 - disallow cpu events for unpriv | ||
52 | * 2 - disallow kernel profiling for unpriv | ||
53 | */ | ||
54 | int sysctl_perf_event_paranoid __read_mostly = 1; | ||
55 | |||
56 | static inline bool perf_paranoid_tracepoint_raw(void) | ||
57 | { | ||
58 | return sysctl_perf_event_paranoid > -1; | ||
59 | } | ||
60 | |||
61 | static inline bool perf_paranoid_cpu(void) | ||
62 | { | ||
63 | return sysctl_perf_event_paranoid > 0; | ||
64 | } | ||
65 | |||
66 | static inline bool perf_paranoid_kernel(void) | ||
67 | { | ||
68 | return sysctl_perf_event_paranoid > 1; | ||
69 | } | ||
70 | |||
71 | int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */ | ||
72 | |||
73 | /* | ||
74 | * max perf event sample rate | ||
75 | */ | ||
76 | int sysctl_perf_event_sample_rate __read_mostly = 100000; | ||
77 | |||
78 | static atomic64_t perf_event_id; | ||
79 | |||
80 | /* | ||
81 | * Lock for (sysadmin-configurable) event reservations: | ||
82 | */ | ||
83 | static DEFINE_SPINLOCK(perf_resource_lock); | ||
84 | |||
85 | /* | ||
86 | * Architecture provided APIs - weak aliases: | ||
87 | */ | ||
88 | extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event) | ||
89 | { | ||
90 | return NULL; | ||
91 | } | ||
92 | |||
93 | void __weak hw_perf_disable(void) { barrier(); } | ||
94 | void __weak hw_perf_enable(void) { barrier(); } | ||
95 | |||
96 | void __weak hw_perf_event_setup(int cpu) { barrier(); } | ||
97 | void __weak hw_perf_event_setup_online(int cpu) { barrier(); } | ||
98 | |||
99 | int __weak | ||
100 | hw_perf_group_sched_in(struct perf_event *group_leader, | ||
101 | struct perf_cpu_context *cpuctx, | ||
102 | struct perf_event_context *ctx, int cpu) | ||
103 | { | ||
104 | return 0; | ||
105 | } | ||
106 | |||
107 | void __weak perf_event_print_debug(void) { } | ||
108 | |||
109 | static DEFINE_PER_CPU(int, perf_disable_count); | ||
110 | |||
111 | void __perf_disable(void) | ||
112 | { | ||
113 | __get_cpu_var(perf_disable_count)++; | ||
114 | } | ||
115 | |||
116 | bool __perf_enable(void) | ||
117 | { | ||
118 | return !--__get_cpu_var(perf_disable_count); | ||
119 | } | ||
120 | |||
121 | void perf_disable(void) | ||
122 | { | ||
123 | __perf_disable(); | ||
124 | hw_perf_disable(); | ||
125 | } | ||
126 | |||
127 | void perf_enable(void) | ||
128 | { | ||
129 | if (__perf_enable()) | ||
130 | hw_perf_enable(); | ||
131 | } | ||
132 | |||
133 | static void get_ctx(struct perf_event_context *ctx) | ||
134 | { | ||
135 | WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); | ||
136 | } | ||
137 | |||
138 | static void free_ctx(struct rcu_head *head) | ||
139 | { | ||
140 | struct perf_event_context *ctx; | ||
141 | |||
142 | ctx = container_of(head, struct perf_event_context, rcu_head); | ||
143 | kfree(ctx); | ||
144 | } | ||
145 | |||
146 | static void put_ctx(struct perf_event_context *ctx) | ||
147 | { | ||
148 | if (atomic_dec_and_test(&ctx->refcount)) { | ||
149 | if (ctx->parent_ctx) | ||
150 | put_ctx(ctx->parent_ctx); | ||
151 | if (ctx->task) | ||
152 | put_task_struct(ctx->task); | ||
153 | call_rcu(&ctx->rcu_head, free_ctx); | ||
154 | } | ||
155 | } | ||
156 | |||
157 | static void unclone_ctx(struct perf_event_context *ctx) | ||
158 | { | ||
159 | if (ctx->parent_ctx) { | ||
160 | put_ctx(ctx->parent_ctx); | ||
161 | ctx->parent_ctx = NULL; | ||
162 | } | ||
163 | } | ||
164 | |||
165 | /* | ||
166 | * If we inherit events we want to return the parent event id | ||
167 | * to userspace. | ||
168 | */ | ||
169 | static u64 primary_event_id(struct perf_event *event) | ||
170 | { | ||
171 | u64 id = event->id; | ||
172 | |||
173 | if (event->parent) | ||
174 | id = event->parent->id; | ||
175 | |||
176 | return id; | ||
177 | } | ||
178 | |||
179 | /* | ||
180 | * Get the perf_event_context for a task and lock it. | ||
181 | * This has to cope with with the fact that until it is locked, | ||
182 | * the context could get moved to another task. | ||
183 | */ | ||
184 | static struct perf_event_context * | ||
185 | perf_lock_task_context(struct task_struct *task, unsigned long *flags) | ||
186 | { | ||
187 | struct perf_event_context *ctx; | ||
188 | |||
189 | rcu_read_lock(); | ||
190 | retry: | ||
191 | ctx = rcu_dereference(task->perf_event_ctxp); | ||
192 | if (ctx) { | ||
193 | /* | ||
194 | * If this context is a clone of another, it might | ||
195 | * get swapped for another underneath us by | ||
196 | * perf_event_task_sched_out, though the | ||
197 | * rcu_read_lock() protects us from any context | ||
198 | * getting freed. Lock the context and check if it | ||
199 | * got swapped before we could get the lock, and retry | ||
200 | * if so. If we locked the right context, then it | ||
201 | * can't get swapped on us any more. | ||
202 | */ | ||
203 | spin_lock_irqsave(&ctx->lock, *flags); | ||
204 | if (ctx != rcu_dereference(task->perf_event_ctxp)) { | ||
205 | spin_unlock_irqrestore(&ctx->lock, *flags); | ||
206 | goto retry; | ||
207 | } | ||
208 | |||
209 | if (!atomic_inc_not_zero(&ctx->refcount)) { | ||
210 | spin_unlock_irqrestore(&ctx->lock, *flags); | ||
211 | ctx = NULL; | ||
212 | } | ||
213 | } | ||
214 | rcu_read_unlock(); | ||
215 | return ctx; | ||
216 | } | ||
217 | |||
218 | /* | ||
219 | * Get the context for a task and increment its pin_count so it | ||
220 | * can't get swapped to another task. This also increments its | ||
221 | * reference count so that the context can't get freed. | ||
222 | */ | ||
223 | static struct perf_event_context *perf_pin_task_context(struct task_struct *task) | ||
224 | { | ||
225 | struct perf_event_context *ctx; | ||
226 | unsigned long flags; | ||
227 | |||
228 | ctx = perf_lock_task_context(task, &flags); | ||
229 | if (ctx) { | ||
230 | ++ctx->pin_count; | ||
231 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
232 | } | ||
233 | return ctx; | ||
234 | } | ||
235 | |||
236 | static void perf_unpin_context(struct perf_event_context *ctx) | ||
237 | { | ||
238 | unsigned long flags; | ||
239 | |||
240 | spin_lock_irqsave(&ctx->lock, flags); | ||
241 | --ctx->pin_count; | ||
242 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
243 | put_ctx(ctx); | ||
244 | } | ||
245 | |||
246 | /* | ||
247 | * Add a event from the lists for its context. | ||
248 | * Must be called with ctx->mutex and ctx->lock held. | ||
249 | */ | ||
250 | static void | ||
251 | list_add_event(struct perf_event *event, struct perf_event_context *ctx) | ||
252 | { | ||
253 | struct perf_event *group_leader = event->group_leader; | ||
254 | |||
255 | /* | ||
256 | * Depending on whether it is a standalone or sibling event, | ||
257 | * add it straight to the context's event list, or to the group | ||
258 | * leader's sibling list: | ||
259 | */ | ||
260 | if (group_leader == event) | ||
261 | list_add_tail(&event->group_entry, &ctx->group_list); | ||
262 | else { | ||
263 | list_add_tail(&event->group_entry, &group_leader->sibling_list); | ||
264 | group_leader->nr_siblings++; | ||
265 | } | ||
266 | |||
267 | list_add_rcu(&event->event_entry, &ctx->event_list); | ||
268 | ctx->nr_events++; | ||
269 | if (event->attr.inherit_stat) | ||
270 | ctx->nr_stat++; | ||
271 | } | ||
272 | |||
273 | /* | ||
274 | * Remove a event from the lists for its context. | ||
275 | * Must be called with ctx->mutex and ctx->lock held. | ||
276 | */ | ||
277 | static void | ||
278 | list_del_event(struct perf_event *event, struct perf_event_context *ctx) | ||
279 | { | ||
280 | struct perf_event *sibling, *tmp; | ||
281 | |||
282 | if (list_empty(&event->group_entry)) | ||
283 | return; | ||
284 | ctx->nr_events--; | ||
285 | if (event->attr.inherit_stat) | ||
286 | ctx->nr_stat--; | ||
287 | |||
288 | list_del_init(&event->group_entry); | ||
289 | list_del_rcu(&event->event_entry); | ||
290 | |||
291 | if (event->group_leader != event) | ||
292 | event->group_leader->nr_siblings--; | ||
293 | |||
294 | /* | ||
295 | * If this was a group event with sibling events then | ||
296 | * upgrade the siblings to singleton events by adding them | ||
297 | * to the context list directly: | ||
298 | */ | ||
299 | list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { | ||
300 | |||
301 | list_move_tail(&sibling->group_entry, &ctx->group_list); | ||
302 | sibling->group_leader = sibling; | ||
303 | } | ||
304 | } | ||
305 | |||
306 | static void | ||
307 | event_sched_out(struct perf_event *event, | ||
308 | struct perf_cpu_context *cpuctx, | ||
309 | struct perf_event_context *ctx) | ||
310 | { | ||
311 | if (event->state != PERF_EVENT_STATE_ACTIVE) | ||
312 | return; | ||
313 | |||
314 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
315 | if (event->pending_disable) { | ||
316 | event->pending_disable = 0; | ||
317 | event->state = PERF_EVENT_STATE_OFF; | ||
318 | } | ||
319 | event->tstamp_stopped = ctx->time; | ||
320 | event->pmu->disable(event); | ||
321 | event->oncpu = -1; | ||
322 | |||
323 | if (!is_software_event(event)) | ||
324 | cpuctx->active_oncpu--; | ||
325 | ctx->nr_active--; | ||
326 | if (event->attr.exclusive || !cpuctx->active_oncpu) | ||
327 | cpuctx->exclusive = 0; | ||
328 | } | ||
329 | |||
330 | static void | ||
331 | group_sched_out(struct perf_event *group_event, | ||
332 | struct perf_cpu_context *cpuctx, | ||
333 | struct perf_event_context *ctx) | ||
334 | { | ||
335 | struct perf_event *event; | ||
336 | |||
337 | if (group_event->state != PERF_EVENT_STATE_ACTIVE) | ||
338 | return; | ||
339 | |||
340 | event_sched_out(group_event, cpuctx, ctx); | ||
341 | |||
342 | /* | ||
343 | * Schedule out siblings (if any): | ||
344 | */ | ||
345 | list_for_each_entry(event, &group_event->sibling_list, group_entry) | ||
346 | event_sched_out(event, cpuctx, ctx); | ||
347 | |||
348 | if (group_event->attr.exclusive) | ||
349 | cpuctx->exclusive = 0; | ||
350 | } | ||
351 | |||
352 | /* | ||
353 | * Cross CPU call to remove a performance event | ||
354 | * | ||
355 | * We disable the event on the hardware level first. After that we | ||
356 | * remove it from the context list. | ||
357 | */ | ||
358 | static void __perf_event_remove_from_context(void *info) | ||
359 | { | ||
360 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
361 | struct perf_event *event = info; | ||
362 | struct perf_event_context *ctx = event->ctx; | ||
363 | |||
364 | /* | ||
365 | * If this is a task context, we need to check whether it is | ||
366 | * the current task context of this cpu. If not it has been | ||
367 | * scheduled out before the smp call arrived. | ||
368 | */ | ||
369 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
370 | return; | ||
371 | |||
372 | spin_lock(&ctx->lock); | ||
373 | /* | ||
374 | * Protect the list operation against NMI by disabling the | ||
375 | * events on a global level. | ||
376 | */ | ||
377 | perf_disable(); | ||
378 | |||
379 | event_sched_out(event, cpuctx, ctx); | ||
380 | |||
381 | list_del_event(event, ctx); | ||
382 | |||
383 | if (!ctx->task) { | ||
384 | /* | ||
385 | * Allow more per task events with respect to the | ||
386 | * reservation: | ||
387 | */ | ||
388 | cpuctx->max_pertask = | ||
389 | min(perf_max_events - ctx->nr_events, | ||
390 | perf_max_events - perf_reserved_percpu); | ||
391 | } | ||
392 | |||
393 | perf_enable(); | ||
394 | spin_unlock(&ctx->lock); | ||
395 | } | ||
396 | |||
397 | |||
398 | /* | ||
399 | * Remove the event from a task's (or a CPU's) list of events. | ||
400 | * | ||
401 | * Must be called with ctx->mutex held. | ||
402 | * | ||
403 | * CPU events are removed with a smp call. For task events we only | ||
404 | * call when the task is on a CPU. | ||
405 | * | ||
406 | * If event->ctx is a cloned context, callers must make sure that | ||
407 | * every task struct that event->ctx->task could possibly point to | ||
408 | * remains valid. This is OK when called from perf_release since | ||
409 | * that only calls us on the top-level context, which can't be a clone. | ||
410 | * When called from perf_event_exit_task, it's OK because the | ||
411 | * context has been detached from its task. | ||
412 | */ | ||
413 | static void perf_event_remove_from_context(struct perf_event *event) | ||
414 | { | ||
415 | struct perf_event_context *ctx = event->ctx; | ||
416 | struct task_struct *task = ctx->task; | ||
417 | |||
418 | if (!task) { | ||
419 | /* | ||
420 | * Per cpu events are removed via an smp call and | ||
421 | * the removal is always sucessful. | ||
422 | */ | ||
423 | smp_call_function_single(event->cpu, | ||
424 | __perf_event_remove_from_context, | ||
425 | event, 1); | ||
426 | return; | ||
427 | } | ||
428 | |||
429 | retry: | ||
430 | task_oncpu_function_call(task, __perf_event_remove_from_context, | ||
431 | event); | ||
432 | |||
433 | spin_lock_irq(&ctx->lock); | ||
434 | /* | ||
435 | * If the context is active we need to retry the smp call. | ||
436 | */ | ||
437 | if (ctx->nr_active && !list_empty(&event->group_entry)) { | ||
438 | spin_unlock_irq(&ctx->lock); | ||
439 | goto retry; | ||
440 | } | ||
441 | |||
442 | /* | ||
443 | * The lock prevents that this context is scheduled in so we | ||
444 | * can remove the event safely, if the call above did not | ||
445 | * succeed. | ||
446 | */ | ||
447 | if (!list_empty(&event->group_entry)) { | ||
448 | list_del_event(event, ctx); | ||
449 | } | ||
450 | spin_unlock_irq(&ctx->lock); | ||
451 | } | ||
452 | |||
453 | static inline u64 perf_clock(void) | ||
454 | { | ||
455 | return cpu_clock(smp_processor_id()); | ||
456 | } | ||
457 | |||
458 | /* | ||
459 | * Update the record of the current time in a context. | ||
460 | */ | ||
461 | static void update_context_time(struct perf_event_context *ctx) | ||
462 | { | ||
463 | u64 now = perf_clock(); | ||
464 | |||
465 | ctx->time += now - ctx->timestamp; | ||
466 | ctx->timestamp = now; | ||
467 | } | ||
468 | |||
469 | /* | ||
470 | * Update the total_time_enabled and total_time_running fields for a event. | ||
471 | */ | ||
472 | static void update_event_times(struct perf_event *event) | ||
473 | { | ||
474 | struct perf_event_context *ctx = event->ctx; | ||
475 | u64 run_end; | ||
476 | |||
477 | if (event->state < PERF_EVENT_STATE_INACTIVE || | ||
478 | event->group_leader->state < PERF_EVENT_STATE_INACTIVE) | ||
479 | return; | ||
480 | |||
481 | event->total_time_enabled = ctx->time - event->tstamp_enabled; | ||
482 | |||
483 | if (event->state == PERF_EVENT_STATE_INACTIVE) | ||
484 | run_end = event->tstamp_stopped; | ||
485 | else | ||
486 | run_end = ctx->time; | ||
487 | |||
488 | event->total_time_running = run_end - event->tstamp_running; | ||
489 | } | ||
490 | |||
491 | /* | ||
492 | * Update total_time_enabled and total_time_running for all events in a group. | ||
493 | */ | ||
494 | static void update_group_times(struct perf_event *leader) | ||
495 | { | ||
496 | struct perf_event *event; | ||
497 | |||
498 | update_event_times(leader); | ||
499 | list_for_each_entry(event, &leader->sibling_list, group_entry) | ||
500 | update_event_times(event); | ||
501 | } | ||
502 | |||
503 | /* | ||
504 | * Cross CPU call to disable a performance event | ||
505 | */ | ||
506 | static void __perf_event_disable(void *info) | ||
507 | { | ||
508 | struct perf_event *event = info; | ||
509 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
510 | struct perf_event_context *ctx = event->ctx; | ||
511 | |||
512 | /* | ||
513 | * If this is a per-task event, need to check whether this | ||
514 | * event's task is the current task on this cpu. | ||
515 | */ | ||
516 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
517 | return; | ||
518 | |||
519 | spin_lock(&ctx->lock); | ||
520 | |||
521 | /* | ||
522 | * If the event is on, turn it off. | ||
523 | * If it is in error state, leave it in error state. | ||
524 | */ | ||
525 | if (event->state >= PERF_EVENT_STATE_INACTIVE) { | ||
526 | update_context_time(ctx); | ||
527 | update_group_times(event); | ||
528 | if (event == event->group_leader) | ||
529 | group_sched_out(event, cpuctx, ctx); | ||
530 | else | ||
531 | event_sched_out(event, cpuctx, ctx); | ||
532 | event->state = PERF_EVENT_STATE_OFF; | ||
533 | } | ||
534 | |||
535 | spin_unlock(&ctx->lock); | ||
536 | } | ||
537 | |||
538 | /* | ||
539 | * Disable a event. | ||
540 | * | ||
541 | * If event->ctx is a cloned context, callers must make sure that | ||
542 | * every task struct that event->ctx->task could possibly point to | ||
543 | * remains valid. This condition is satisifed when called through | ||
544 | * perf_event_for_each_child or perf_event_for_each because they | ||
545 | * hold the top-level event's child_mutex, so any descendant that | ||
546 | * goes to exit will block in sync_child_event. | ||
547 | * When called from perf_pending_event it's OK because event->ctx | ||
548 | * is the current context on this CPU and preemption is disabled, | ||
549 | * hence we can't get into perf_event_task_sched_out for this context. | ||
550 | */ | ||
551 | static void perf_event_disable(struct perf_event *event) | ||
552 | { | ||
553 | struct perf_event_context *ctx = event->ctx; | ||
554 | struct task_struct *task = ctx->task; | ||
555 | |||
556 | if (!task) { | ||
557 | /* | ||
558 | * Disable the event on the cpu that it's on | ||
559 | */ | ||
560 | smp_call_function_single(event->cpu, __perf_event_disable, | ||
561 | event, 1); | ||
562 | return; | ||
563 | } | ||
564 | |||
565 | retry: | ||
566 | task_oncpu_function_call(task, __perf_event_disable, event); | ||
567 | |||
568 | spin_lock_irq(&ctx->lock); | ||
569 | /* | ||
570 | * If the event is still active, we need to retry the cross-call. | ||
571 | */ | ||
572 | if (event->state == PERF_EVENT_STATE_ACTIVE) { | ||
573 | spin_unlock_irq(&ctx->lock); | ||
574 | goto retry; | ||
575 | } | ||
576 | |||
577 | /* | ||
578 | * Since we have the lock this context can't be scheduled | ||
579 | * in, so we can change the state safely. | ||
580 | */ | ||
581 | if (event->state == PERF_EVENT_STATE_INACTIVE) { | ||
582 | update_group_times(event); | ||
583 | event->state = PERF_EVENT_STATE_OFF; | ||
584 | } | ||
585 | |||
586 | spin_unlock_irq(&ctx->lock); | ||
587 | } | ||
588 | |||
589 | static int | ||
590 | event_sched_in(struct perf_event *event, | ||
591 | struct perf_cpu_context *cpuctx, | ||
592 | struct perf_event_context *ctx, | ||
593 | int cpu) | ||
594 | { | ||
595 | if (event->state <= PERF_EVENT_STATE_OFF) | ||
596 | return 0; | ||
597 | |||
598 | event->state = PERF_EVENT_STATE_ACTIVE; | ||
599 | event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */ | ||
600 | /* | ||
601 | * The new state must be visible before we turn it on in the hardware: | ||
602 | */ | ||
603 | smp_wmb(); | ||
604 | |||
605 | if (event->pmu->enable(event)) { | ||
606 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
607 | event->oncpu = -1; | ||
608 | return -EAGAIN; | ||
609 | } | ||
610 | |||
611 | event->tstamp_running += ctx->time - event->tstamp_stopped; | ||
612 | |||
613 | if (!is_software_event(event)) | ||
614 | cpuctx->active_oncpu++; | ||
615 | ctx->nr_active++; | ||
616 | |||
617 | if (event->attr.exclusive) | ||
618 | cpuctx->exclusive = 1; | ||
619 | |||
620 | return 0; | ||
621 | } | ||
622 | |||
623 | static int | ||
624 | group_sched_in(struct perf_event *group_event, | ||
625 | struct perf_cpu_context *cpuctx, | ||
626 | struct perf_event_context *ctx, | ||
627 | int cpu) | ||
628 | { | ||
629 | struct perf_event *event, *partial_group; | ||
630 | int ret; | ||
631 | |||
632 | if (group_event->state == PERF_EVENT_STATE_OFF) | ||
633 | return 0; | ||
634 | |||
635 | ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu); | ||
636 | if (ret) | ||
637 | return ret < 0 ? ret : 0; | ||
638 | |||
639 | if (event_sched_in(group_event, cpuctx, ctx, cpu)) | ||
640 | return -EAGAIN; | ||
641 | |||
642 | /* | ||
643 | * Schedule in siblings as one group (if any): | ||
644 | */ | ||
645 | list_for_each_entry(event, &group_event->sibling_list, group_entry) { | ||
646 | if (event_sched_in(event, cpuctx, ctx, cpu)) { | ||
647 | partial_group = event; | ||
648 | goto group_error; | ||
649 | } | ||
650 | } | ||
651 | |||
652 | return 0; | ||
653 | |||
654 | group_error: | ||
655 | /* | ||
656 | * Groups can be scheduled in as one unit only, so undo any | ||
657 | * partial group before returning: | ||
658 | */ | ||
659 | list_for_each_entry(event, &group_event->sibling_list, group_entry) { | ||
660 | if (event == partial_group) | ||
661 | break; | ||
662 | event_sched_out(event, cpuctx, ctx); | ||
663 | } | ||
664 | event_sched_out(group_event, cpuctx, ctx); | ||
665 | |||
666 | return -EAGAIN; | ||
667 | } | ||
668 | |||
669 | /* | ||
670 | * Return 1 for a group consisting entirely of software events, | ||
671 | * 0 if the group contains any hardware events. | ||
672 | */ | ||
673 | static int is_software_only_group(struct perf_event *leader) | ||
674 | { | ||
675 | struct perf_event *event; | ||
676 | |||
677 | if (!is_software_event(leader)) | ||
678 | return 0; | ||
679 | |||
680 | list_for_each_entry(event, &leader->sibling_list, group_entry) | ||
681 | if (!is_software_event(event)) | ||
682 | return 0; | ||
683 | |||
684 | return 1; | ||
685 | } | ||
686 | |||
687 | /* | ||
688 | * Work out whether we can put this event group on the CPU now. | ||
689 | */ | ||
690 | static int group_can_go_on(struct perf_event *event, | ||
691 | struct perf_cpu_context *cpuctx, | ||
692 | int can_add_hw) | ||
693 | { | ||
694 | /* | ||
695 | * Groups consisting entirely of software events can always go on. | ||
696 | */ | ||
697 | if (is_software_only_group(event)) | ||
698 | return 1; | ||
699 | /* | ||
700 | * If an exclusive group is already on, no other hardware | ||
701 | * events can go on. | ||
702 | */ | ||
703 | if (cpuctx->exclusive) | ||
704 | return 0; | ||
705 | /* | ||
706 | * If this group is exclusive and there are already | ||
707 | * events on the CPU, it can't go on. | ||
708 | */ | ||
709 | if (event->attr.exclusive && cpuctx->active_oncpu) | ||
710 | return 0; | ||
711 | /* | ||
712 | * Otherwise, try to add it if all previous groups were able | ||
713 | * to go on. | ||
714 | */ | ||
715 | return can_add_hw; | ||
716 | } | ||
717 | |||
718 | static void add_event_to_ctx(struct perf_event *event, | ||
719 | struct perf_event_context *ctx) | ||
720 | { | ||
721 | list_add_event(event, ctx); | ||
722 | event->tstamp_enabled = ctx->time; | ||
723 | event->tstamp_running = ctx->time; | ||
724 | event->tstamp_stopped = ctx->time; | ||
725 | } | ||
726 | |||
727 | /* | ||
728 | * Cross CPU call to install and enable a performance event | ||
729 | * | ||
730 | * Must be called with ctx->mutex held | ||
731 | */ | ||
732 | static void __perf_install_in_context(void *info) | ||
733 | { | ||
734 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
735 | struct perf_event *event = info; | ||
736 | struct perf_event_context *ctx = event->ctx; | ||
737 | struct perf_event *leader = event->group_leader; | ||
738 | int cpu = smp_processor_id(); | ||
739 | int err; | ||
740 | |||
741 | /* | ||
742 | * If this is a task context, we need to check whether it is | ||
743 | * the current task context of this cpu. If not it has been | ||
744 | * scheduled out before the smp call arrived. | ||
745 | * Or possibly this is the right context but it isn't | ||
746 | * on this cpu because it had no events. | ||
747 | */ | ||
748 | if (ctx->task && cpuctx->task_ctx != ctx) { | ||
749 | if (cpuctx->task_ctx || ctx->task != current) | ||
750 | return; | ||
751 | cpuctx->task_ctx = ctx; | ||
752 | } | ||
753 | |||
754 | spin_lock(&ctx->lock); | ||
755 | ctx->is_active = 1; | ||
756 | update_context_time(ctx); | ||
757 | |||
758 | /* | ||
759 | * Protect the list operation against NMI by disabling the | ||
760 | * events on a global level. NOP for non NMI based events. | ||
761 | */ | ||
762 | perf_disable(); | ||
763 | |||
764 | add_event_to_ctx(event, ctx); | ||
765 | |||
766 | /* | ||
767 | * Don't put the event on if it is disabled or if | ||
768 | * it is in a group and the group isn't on. | ||
769 | */ | ||
770 | if (event->state != PERF_EVENT_STATE_INACTIVE || | ||
771 | (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)) | ||
772 | goto unlock; | ||
773 | |||
774 | /* | ||
775 | * An exclusive event can't go on if there are already active | ||
776 | * hardware events, and no hardware event can go on if there | ||
777 | * is already an exclusive event on. | ||
778 | */ | ||
779 | if (!group_can_go_on(event, cpuctx, 1)) | ||
780 | err = -EEXIST; | ||
781 | else | ||
782 | err = event_sched_in(event, cpuctx, ctx, cpu); | ||
783 | |||
784 | if (err) { | ||
785 | /* | ||
786 | * This event couldn't go on. If it is in a group | ||
787 | * then we have to pull the whole group off. | ||
788 | * If the event group is pinned then put it in error state. | ||
789 | */ | ||
790 | if (leader != event) | ||
791 | group_sched_out(leader, cpuctx, ctx); | ||
792 | if (leader->attr.pinned) { | ||
793 | update_group_times(leader); | ||
794 | leader->state = PERF_EVENT_STATE_ERROR; | ||
795 | } | ||
796 | } | ||
797 | |||
798 | if (!err && !ctx->task && cpuctx->max_pertask) | ||
799 | cpuctx->max_pertask--; | ||
800 | |||
801 | unlock: | ||
802 | perf_enable(); | ||
803 | |||
804 | spin_unlock(&ctx->lock); | ||
805 | } | ||
806 | |||
807 | /* | ||
808 | * Attach a performance event to a context | ||
809 | * | ||
810 | * First we add the event to the list with the hardware enable bit | ||
811 | * in event->hw_config cleared. | ||
812 | * | ||
813 | * If the event is attached to a task which is on a CPU we use a smp | ||
814 | * call to enable it in the task context. The task might have been | ||
815 | * scheduled away, but we check this in the smp call again. | ||
816 | * | ||
817 | * Must be called with ctx->mutex held. | ||
818 | */ | ||
819 | static void | ||
820 | perf_install_in_context(struct perf_event_context *ctx, | ||
821 | struct perf_event *event, | ||
822 | int cpu) | ||
823 | { | ||
824 | struct task_struct *task = ctx->task; | ||
825 | |||
826 | if (!task) { | ||
827 | /* | ||
828 | * Per cpu events are installed via an smp call and | ||
829 | * the install is always sucessful. | ||
830 | */ | ||
831 | smp_call_function_single(cpu, __perf_install_in_context, | ||
832 | event, 1); | ||
833 | return; | ||
834 | } | ||
835 | |||
836 | retry: | ||
837 | task_oncpu_function_call(task, __perf_install_in_context, | ||
838 | event); | ||
839 | |||
840 | spin_lock_irq(&ctx->lock); | ||
841 | /* | ||
842 | * we need to retry the smp call. | ||
843 | */ | ||
844 | if (ctx->is_active && list_empty(&event->group_entry)) { | ||
845 | spin_unlock_irq(&ctx->lock); | ||
846 | goto retry; | ||
847 | } | ||
848 | |||
849 | /* | ||
850 | * The lock prevents that this context is scheduled in so we | ||
851 | * can add the event safely, if it the call above did not | ||
852 | * succeed. | ||
853 | */ | ||
854 | if (list_empty(&event->group_entry)) | ||
855 | add_event_to_ctx(event, ctx); | ||
856 | spin_unlock_irq(&ctx->lock); | ||
857 | } | ||
858 | |||
859 | /* | ||
860 | * Put a event into inactive state and update time fields. | ||
861 | * Enabling the leader of a group effectively enables all | ||
862 | * the group members that aren't explicitly disabled, so we | ||
863 | * have to update their ->tstamp_enabled also. | ||
864 | * Note: this works for group members as well as group leaders | ||
865 | * since the non-leader members' sibling_lists will be empty. | ||
866 | */ | ||
867 | static void __perf_event_mark_enabled(struct perf_event *event, | ||
868 | struct perf_event_context *ctx) | ||
869 | { | ||
870 | struct perf_event *sub; | ||
871 | |||
872 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
873 | event->tstamp_enabled = ctx->time - event->total_time_enabled; | ||
874 | list_for_each_entry(sub, &event->sibling_list, group_entry) | ||
875 | if (sub->state >= PERF_EVENT_STATE_INACTIVE) | ||
876 | sub->tstamp_enabled = | ||
877 | ctx->time - sub->total_time_enabled; | ||
878 | } | ||
879 | |||
880 | /* | ||
881 | * Cross CPU call to enable a performance event | ||
882 | */ | ||
883 | static void __perf_event_enable(void *info) | ||
884 | { | ||
885 | struct perf_event *event = info; | ||
886 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
887 | struct perf_event_context *ctx = event->ctx; | ||
888 | struct perf_event *leader = event->group_leader; | ||
889 | int err; | ||
890 | |||
891 | /* | ||
892 | * If this is a per-task event, need to check whether this | ||
893 | * event's task is the current task on this cpu. | ||
894 | */ | ||
895 | if (ctx->task && cpuctx->task_ctx != ctx) { | ||
896 | if (cpuctx->task_ctx || ctx->task != current) | ||
897 | return; | ||
898 | cpuctx->task_ctx = ctx; | ||
899 | } | ||
900 | |||
901 | spin_lock(&ctx->lock); | ||
902 | ctx->is_active = 1; | ||
903 | update_context_time(ctx); | ||
904 | |||
905 | if (event->state >= PERF_EVENT_STATE_INACTIVE) | ||
906 | goto unlock; | ||
907 | __perf_event_mark_enabled(event, ctx); | ||
908 | |||
909 | /* | ||
910 | * If the event is in a group and isn't the group leader, | ||
911 | * then don't put it on unless the group is on. | ||
912 | */ | ||
913 | if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) | ||
914 | goto unlock; | ||
915 | |||
916 | if (!group_can_go_on(event, cpuctx, 1)) { | ||
917 | err = -EEXIST; | ||
918 | } else { | ||
919 | perf_disable(); | ||
920 | if (event == leader) | ||
921 | err = group_sched_in(event, cpuctx, ctx, | ||
922 | smp_processor_id()); | ||
923 | else | ||
924 | err = event_sched_in(event, cpuctx, ctx, | ||
925 | smp_processor_id()); | ||
926 | perf_enable(); | ||
927 | } | ||
928 | |||
929 | if (err) { | ||
930 | /* | ||
931 | * If this event can't go on and it's part of a | ||
932 | * group, then the whole group has to come off. | ||
933 | */ | ||
934 | if (leader != event) | ||
935 | group_sched_out(leader, cpuctx, ctx); | ||
936 | if (leader->attr.pinned) { | ||
937 | update_group_times(leader); | ||
938 | leader->state = PERF_EVENT_STATE_ERROR; | ||
939 | } | ||
940 | } | ||
941 | |||
942 | unlock: | ||
943 | spin_unlock(&ctx->lock); | ||
944 | } | ||
945 | |||
946 | /* | ||
947 | * Enable a event. | ||
948 | * | ||
949 | * If event->ctx is a cloned context, callers must make sure that | ||
950 | * every task struct that event->ctx->task could possibly point to | ||
951 | * remains valid. This condition is satisfied when called through | ||
952 | * perf_event_for_each_child or perf_event_for_each as described | ||
953 | * for perf_event_disable. | ||
954 | */ | ||
955 | static void perf_event_enable(struct perf_event *event) | ||
956 | { | ||
957 | struct perf_event_context *ctx = event->ctx; | ||
958 | struct task_struct *task = ctx->task; | ||
959 | |||
960 | if (!task) { | ||
961 | /* | ||
962 | * Enable the event on the cpu that it's on | ||
963 | */ | ||
964 | smp_call_function_single(event->cpu, __perf_event_enable, | ||
965 | event, 1); | ||
966 | return; | ||
967 | } | ||
968 | |||
969 | spin_lock_irq(&ctx->lock); | ||
970 | if (event->state >= PERF_EVENT_STATE_INACTIVE) | ||
971 | goto out; | ||
972 | |||
973 | /* | ||
974 | * If the event is in error state, clear that first. | ||
975 | * That way, if we see the event in error state below, we | ||
976 | * know that it has gone back into error state, as distinct | ||
977 | * from the task having been scheduled away before the | ||
978 | * cross-call arrived. | ||
979 | */ | ||
980 | if (event->state == PERF_EVENT_STATE_ERROR) | ||
981 | event->state = PERF_EVENT_STATE_OFF; | ||
982 | |||
983 | retry: | ||
984 | spin_unlock_irq(&ctx->lock); | ||
985 | task_oncpu_function_call(task, __perf_event_enable, event); | ||
986 | |||
987 | spin_lock_irq(&ctx->lock); | ||
988 | |||
989 | /* | ||
990 | * If the context is active and the event is still off, | ||
991 | * we need to retry the cross-call. | ||
992 | */ | ||
993 | if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) | ||
994 | goto retry; | ||
995 | |||
996 | /* | ||
997 | * Since we have the lock this context can't be scheduled | ||
998 | * in, so we can change the state safely. | ||
999 | */ | ||
1000 | if (event->state == PERF_EVENT_STATE_OFF) | ||
1001 | __perf_event_mark_enabled(event, ctx); | ||
1002 | |||
1003 | out: | ||
1004 | spin_unlock_irq(&ctx->lock); | ||
1005 | } | ||
1006 | |||
1007 | static int perf_event_refresh(struct perf_event *event, int refresh) | ||
1008 | { | ||
1009 | /* | ||
1010 | * not supported on inherited events | ||
1011 | */ | ||
1012 | if (event->attr.inherit) | ||
1013 | return -EINVAL; | ||
1014 | |||
1015 | atomic_add(refresh, &event->event_limit); | ||
1016 | perf_event_enable(event); | ||
1017 | |||
1018 | return 0; | ||
1019 | } | ||
1020 | |||
1021 | void __perf_event_sched_out(struct perf_event_context *ctx, | ||
1022 | struct perf_cpu_context *cpuctx) | ||
1023 | { | ||
1024 | struct perf_event *event; | ||
1025 | |||
1026 | spin_lock(&ctx->lock); | ||
1027 | ctx->is_active = 0; | ||
1028 | if (likely(!ctx->nr_events)) | ||
1029 | goto out; | ||
1030 | update_context_time(ctx); | ||
1031 | |||
1032 | perf_disable(); | ||
1033 | if (ctx->nr_active) { | ||
1034 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
1035 | if (event != event->group_leader) | ||
1036 | event_sched_out(event, cpuctx, ctx); | ||
1037 | else | ||
1038 | group_sched_out(event, cpuctx, ctx); | ||
1039 | } | ||
1040 | } | ||
1041 | perf_enable(); | ||
1042 | out: | ||
1043 | spin_unlock(&ctx->lock); | ||
1044 | } | ||
1045 | |||
1046 | /* | ||
1047 | * Test whether two contexts are equivalent, i.e. whether they | ||
1048 | * have both been cloned from the same version of the same context | ||
1049 | * and they both have the same number of enabled events. | ||
1050 | * If the number of enabled events is the same, then the set | ||
1051 | * of enabled events should be the same, because these are both | ||
1052 | * inherited contexts, therefore we can't access individual events | ||
1053 | * in them directly with an fd; we can only enable/disable all | ||
1054 | * events via prctl, or enable/disable all events in a family | ||
1055 | * via ioctl, which will have the same effect on both contexts. | ||
1056 | */ | ||
1057 | static int context_equiv(struct perf_event_context *ctx1, | ||
1058 | struct perf_event_context *ctx2) | ||
1059 | { | ||
1060 | return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx | ||
1061 | && ctx1->parent_gen == ctx2->parent_gen | ||
1062 | && !ctx1->pin_count && !ctx2->pin_count; | ||
1063 | } | ||
1064 | |||
1065 | static void __perf_event_read(void *event); | ||
1066 | |||
1067 | static void __perf_event_sync_stat(struct perf_event *event, | ||
1068 | struct perf_event *next_event) | ||
1069 | { | ||
1070 | u64 value; | ||
1071 | |||
1072 | if (!event->attr.inherit_stat) | ||
1073 | return; | ||
1074 | |||
1075 | /* | ||
1076 | * Update the event value, we cannot use perf_event_read() | ||
1077 | * because we're in the middle of a context switch and have IRQs | ||
1078 | * disabled, which upsets smp_call_function_single(), however | ||
1079 | * we know the event must be on the current CPU, therefore we | ||
1080 | * don't need to use it. | ||
1081 | */ | ||
1082 | switch (event->state) { | ||
1083 | case PERF_EVENT_STATE_ACTIVE: | ||
1084 | __perf_event_read(event); | ||
1085 | break; | ||
1086 | |||
1087 | case PERF_EVENT_STATE_INACTIVE: | ||
1088 | update_event_times(event); | ||
1089 | break; | ||
1090 | |||
1091 | default: | ||
1092 | break; | ||
1093 | } | ||
1094 | |||
1095 | /* | ||
1096 | * In order to keep per-task stats reliable we need to flip the event | ||
1097 | * values when we flip the contexts. | ||
1098 | */ | ||
1099 | value = atomic64_read(&next_event->count); | ||
1100 | value = atomic64_xchg(&event->count, value); | ||
1101 | atomic64_set(&next_event->count, value); | ||
1102 | |||
1103 | swap(event->total_time_enabled, next_event->total_time_enabled); | ||
1104 | swap(event->total_time_running, next_event->total_time_running); | ||
1105 | |||
1106 | /* | ||
1107 | * Since we swizzled the values, update the user visible data too. | ||
1108 | */ | ||
1109 | perf_event_update_userpage(event); | ||
1110 | perf_event_update_userpage(next_event); | ||
1111 | } | ||
1112 | |||
1113 | #define list_next_entry(pos, member) \ | ||
1114 | list_entry(pos->member.next, typeof(*pos), member) | ||
1115 | |||
1116 | static void perf_event_sync_stat(struct perf_event_context *ctx, | ||
1117 | struct perf_event_context *next_ctx) | ||
1118 | { | ||
1119 | struct perf_event *event, *next_event; | ||
1120 | |||
1121 | if (!ctx->nr_stat) | ||
1122 | return; | ||
1123 | |||
1124 | event = list_first_entry(&ctx->event_list, | ||
1125 | struct perf_event, event_entry); | ||
1126 | |||
1127 | next_event = list_first_entry(&next_ctx->event_list, | ||
1128 | struct perf_event, event_entry); | ||
1129 | |||
1130 | while (&event->event_entry != &ctx->event_list && | ||
1131 | &next_event->event_entry != &next_ctx->event_list) { | ||
1132 | |||
1133 | __perf_event_sync_stat(event, next_event); | ||
1134 | |||
1135 | event = list_next_entry(event, event_entry); | ||
1136 | next_event = list_next_entry(next_event, event_entry); | ||
1137 | } | ||
1138 | } | ||
1139 | |||
1140 | /* | ||
1141 | * Called from scheduler to remove the events of the current task, | ||
1142 | * with interrupts disabled. | ||
1143 | * | ||
1144 | * We stop each event and update the event value in event->count. | ||
1145 | * | ||
1146 | * This does not protect us against NMI, but disable() | ||
1147 | * sets the disabled bit in the control field of event _before_ | ||
1148 | * accessing the event control register. If a NMI hits, then it will | ||
1149 | * not restart the event. | ||
1150 | */ | ||
1151 | void perf_event_task_sched_out(struct task_struct *task, | ||
1152 | struct task_struct *next, int cpu) | ||
1153 | { | ||
1154 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
1155 | struct perf_event_context *ctx = task->perf_event_ctxp; | ||
1156 | struct perf_event_context *next_ctx; | ||
1157 | struct perf_event_context *parent; | ||
1158 | struct pt_regs *regs; | ||
1159 | int do_switch = 1; | ||
1160 | |||
1161 | regs = task_pt_regs(task); | ||
1162 | perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0); | ||
1163 | |||
1164 | if (likely(!ctx || !cpuctx->task_ctx)) | ||
1165 | return; | ||
1166 | |||
1167 | update_context_time(ctx); | ||
1168 | |||
1169 | rcu_read_lock(); | ||
1170 | parent = rcu_dereference(ctx->parent_ctx); | ||
1171 | next_ctx = next->perf_event_ctxp; | ||
1172 | if (parent && next_ctx && | ||
1173 | rcu_dereference(next_ctx->parent_ctx) == parent) { | ||
1174 | /* | ||
1175 | * Looks like the two contexts are clones, so we might be | ||
1176 | * able to optimize the context switch. We lock both | ||
1177 | * contexts and check that they are clones under the | ||
1178 | * lock (including re-checking that neither has been | ||
1179 | * uncloned in the meantime). It doesn't matter which | ||
1180 | * order we take the locks because no other cpu could | ||
1181 | * be trying to lock both of these tasks. | ||
1182 | */ | ||
1183 | spin_lock(&ctx->lock); | ||
1184 | spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); | ||
1185 | if (context_equiv(ctx, next_ctx)) { | ||
1186 | /* | ||
1187 | * XXX do we need a memory barrier of sorts | ||
1188 | * wrt to rcu_dereference() of perf_event_ctxp | ||
1189 | */ | ||
1190 | task->perf_event_ctxp = next_ctx; | ||
1191 | next->perf_event_ctxp = ctx; | ||
1192 | ctx->task = next; | ||
1193 | next_ctx->task = task; | ||
1194 | do_switch = 0; | ||
1195 | |||
1196 | perf_event_sync_stat(ctx, next_ctx); | ||
1197 | } | ||
1198 | spin_unlock(&next_ctx->lock); | ||
1199 | spin_unlock(&ctx->lock); | ||
1200 | } | ||
1201 | rcu_read_unlock(); | ||
1202 | |||
1203 | if (do_switch) { | ||
1204 | __perf_event_sched_out(ctx, cpuctx); | ||
1205 | cpuctx->task_ctx = NULL; | ||
1206 | } | ||
1207 | } | ||
1208 | |||
1209 | /* | ||
1210 | * Called with IRQs disabled | ||
1211 | */ | ||
1212 | static void __perf_event_task_sched_out(struct perf_event_context *ctx) | ||
1213 | { | ||
1214 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
1215 | |||
1216 | if (!cpuctx->task_ctx) | ||
1217 | return; | ||
1218 | |||
1219 | if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) | ||
1220 | return; | ||
1221 | |||
1222 | __perf_event_sched_out(ctx, cpuctx); | ||
1223 | cpuctx->task_ctx = NULL; | ||
1224 | } | ||
1225 | |||
1226 | /* | ||
1227 | * Called with IRQs disabled | ||
1228 | */ | ||
1229 | static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx) | ||
1230 | { | ||
1231 | __perf_event_sched_out(&cpuctx->ctx, cpuctx); | ||
1232 | } | ||
1233 | |||
1234 | static void | ||
1235 | __perf_event_sched_in(struct perf_event_context *ctx, | ||
1236 | struct perf_cpu_context *cpuctx, int cpu) | ||
1237 | { | ||
1238 | struct perf_event *event; | ||
1239 | int can_add_hw = 1; | ||
1240 | |||
1241 | spin_lock(&ctx->lock); | ||
1242 | ctx->is_active = 1; | ||
1243 | if (likely(!ctx->nr_events)) | ||
1244 | goto out; | ||
1245 | |||
1246 | ctx->timestamp = perf_clock(); | ||
1247 | |||
1248 | perf_disable(); | ||
1249 | |||
1250 | /* | ||
1251 | * First go through the list and put on any pinned groups | ||
1252 | * in order to give them the best chance of going on. | ||
1253 | */ | ||
1254 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
1255 | if (event->state <= PERF_EVENT_STATE_OFF || | ||
1256 | !event->attr.pinned) | ||
1257 | continue; | ||
1258 | if (event->cpu != -1 && event->cpu != cpu) | ||
1259 | continue; | ||
1260 | |||
1261 | if (event != event->group_leader) | ||
1262 | event_sched_in(event, cpuctx, ctx, cpu); | ||
1263 | else { | ||
1264 | if (group_can_go_on(event, cpuctx, 1)) | ||
1265 | group_sched_in(event, cpuctx, ctx, cpu); | ||
1266 | } | ||
1267 | |||
1268 | /* | ||
1269 | * If this pinned group hasn't been scheduled, | ||
1270 | * put it in error state. | ||
1271 | */ | ||
1272 | if (event->state == PERF_EVENT_STATE_INACTIVE) { | ||
1273 | update_group_times(event); | ||
1274 | event->state = PERF_EVENT_STATE_ERROR; | ||
1275 | } | ||
1276 | } | ||
1277 | |||
1278 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
1279 | /* | ||
1280 | * Ignore events in OFF or ERROR state, and | ||
1281 | * ignore pinned events since we did them already. | ||
1282 | */ | ||
1283 | if (event->state <= PERF_EVENT_STATE_OFF || | ||
1284 | event->attr.pinned) | ||
1285 | continue; | ||
1286 | |||
1287 | /* | ||
1288 | * Listen to the 'cpu' scheduling filter constraint | ||
1289 | * of events: | ||
1290 | */ | ||
1291 | if (event->cpu != -1 && event->cpu != cpu) | ||
1292 | continue; | ||
1293 | |||
1294 | if (event != event->group_leader) { | ||
1295 | if (event_sched_in(event, cpuctx, ctx, cpu)) | ||
1296 | can_add_hw = 0; | ||
1297 | } else { | ||
1298 | if (group_can_go_on(event, cpuctx, can_add_hw)) { | ||
1299 | if (group_sched_in(event, cpuctx, ctx, cpu)) | ||
1300 | can_add_hw = 0; | ||
1301 | } | ||
1302 | } | ||
1303 | } | ||
1304 | perf_enable(); | ||
1305 | out: | ||
1306 | spin_unlock(&ctx->lock); | ||
1307 | } | ||
1308 | |||
1309 | /* | ||
1310 | * Called from scheduler to add the events of the current task | ||
1311 | * with interrupts disabled. | ||
1312 | * | ||
1313 | * We restore the event value and then enable it. | ||
1314 | * | ||
1315 | * This does not protect us against NMI, but enable() | ||
1316 | * sets the enabled bit in the control field of event _before_ | ||
1317 | * accessing the event control register. If a NMI hits, then it will | ||
1318 | * keep the event running. | ||
1319 | */ | ||
1320 | void perf_event_task_sched_in(struct task_struct *task, int cpu) | ||
1321 | { | ||
1322 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
1323 | struct perf_event_context *ctx = task->perf_event_ctxp; | ||
1324 | |||
1325 | if (likely(!ctx)) | ||
1326 | return; | ||
1327 | if (cpuctx->task_ctx == ctx) | ||
1328 | return; | ||
1329 | __perf_event_sched_in(ctx, cpuctx, cpu); | ||
1330 | cpuctx->task_ctx = ctx; | ||
1331 | } | ||
1332 | |||
1333 | static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu) | ||
1334 | { | ||
1335 | struct perf_event_context *ctx = &cpuctx->ctx; | ||
1336 | |||
1337 | __perf_event_sched_in(ctx, cpuctx, cpu); | ||
1338 | } | ||
1339 | |||
1340 | #define MAX_INTERRUPTS (~0ULL) | ||
1341 | |||
1342 | static void perf_log_throttle(struct perf_event *event, int enable); | ||
1343 | |||
1344 | static void perf_adjust_period(struct perf_event *event, u64 events) | ||
1345 | { | ||
1346 | struct hw_perf_event *hwc = &event->hw; | ||
1347 | u64 period, sample_period; | ||
1348 | s64 delta; | ||
1349 | |||
1350 | events *= hwc->sample_period; | ||
1351 | period = div64_u64(events, event->attr.sample_freq); | ||
1352 | |||
1353 | delta = (s64)(period - hwc->sample_period); | ||
1354 | delta = (delta + 7) / 8; /* low pass filter */ | ||
1355 | |||
1356 | sample_period = hwc->sample_period + delta; | ||
1357 | |||
1358 | if (!sample_period) | ||
1359 | sample_period = 1; | ||
1360 | |||
1361 | hwc->sample_period = sample_period; | ||
1362 | } | ||
1363 | |||
1364 | static void perf_ctx_adjust_freq(struct perf_event_context *ctx) | ||
1365 | { | ||
1366 | struct perf_event *event; | ||
1367 | struct hw_perf_event *hwc; | ||
1368 | u64 interrupts, freq; | ||
1369 | |||
1370 | spin_lock(&ctx->lock); | ||
1371 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
1372 | if (event->state != PERF_EVENT_STATE_ACTIVE) | ||
1373 | continue; | ||
1374 | |||
1375 | hwc = &event->hw; | ||
1376 | |||
1377 | interrupts = hwc->interrupts; | ||
1378 | hwc->interrupts = 0; | ||
1379 | |||
1380 | /* | ||
1381 | * unthrottle events on the tick | ||
1382 | */ | ||
1383 | if (interrupts == MAX_INTERRUPTS) { | ||
1384 | perf_log_throttle(event, 1); | ||
1385 | event->pmu->unthrottle(event); | ||
1386 | interrupts = 2*sysctl_perf_event_sample_rate/HZ; | ||
1387 | } | ||
1388 | |||
1389 | if (!event->attr.freq || !event->attr.sample_freq) | ||
1390 | continue; | ||
1391 | |||
1392 | /* | ||
1393 | * if the specified freq < HZ then we need to skip ticks | ||
1394 | */ | ||
1395 | if (event->attr.sample_freq < HZ) { | ||
1396 | freq = event->attr.sample_freq; | ||
1397 | |||
1398 | hwc->freq_count += freq; | ||
1399 | hwc->freq_interrupts += interrupts; | ||
1400 | |||
1401 | if (hwc->freq_count < HZ) | ||
1402 | continue; | ||
1403 | |||
1404 | interrupts = hwc->freq_interrupts; | ||
1405 | hwc->freq_interrupts = 0; | ||
1406 | hwc->freq_count -= HZ; | ||
1407 | } else | ||
1408 | freq = HZ; | ||
1409 | |||
1410 | perf_adjust_period(event, freq * interrupts); | ||
1411 | |||
1412 | /* | ||
1413 | * In order to avoid being stalled by an (accidental) huge | ||
1414 | * sample period, force reset the sample period if we didn't | ||
1415 | * get any events in this freq period. | ||
1416 | */ | ||
1417 | if (!interrupts) { | ||
1418 | perf_disable(); | ||
1419 | event->pmu->disable(event); | ||
1420 | atomic64_set(&hwc->period_left, 0); | ||
1421 | event->pmu->enable(event); | ||
1422 | perf_enable(); | ||
1423 | } | ||
1424 | } | ||
1425 | spin_unlock(&ctx->lock); | ||
1426 | } | ||
1427 | |||
1428 | /* | ||
1429 | * Round-robin a context's events: | ||
1430 | */ | ||
1431 | static void rotate_ctx(struct perf_event_context *ctx) | ||
1432 | { | ||
1433 | struct perf_event *event; | ||
1434 | |||
1435 | if (!ctx->nr_events) | ||
1436 | return; | ||
1437 | |||
1438 | spin_lock(&ctx->lock); | ||
1439 | /* | ||
1440 | * Rotate the first entry last (works just fine for group events too): | ||
1441 | */ | ||
1442 | perf_disable(); | ||
1443 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
1444 | list_move_tail(&event->group_entry, &ctx->group_list); | ||
1445 | break; | ||
1446 | } | ||
1447 | perf_enable(); | ||
1448 | |||
1449 | spin_unlock(&ctx->lock); | ||
1450 | } | ||
1451 | |||
1452 | void perf_event_task_tick(struct task_struct *curr, int cpu) | ||
1453 | { | ||
1454 | struct perf_cpu_context *cpuctx; | ||
1455 | struct perf_event_context *ctx; | ||
1456 | |||
1457 | if (!atomic_read(&nr_events)) | ||
1458 | return; | ||
1459 | |||
1460 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
1461 | ctx = curr->perf_event_ctxp; | ||
1462 | |||
1463 | perf_ctx_adjust_freq(&cpuctx->ctx); | ||
1464 | if (ctx) | ||
1465 | perf_ctx_adjust_freq(ctx); | ||
1466 | |||
1467 | perf_event_cpu_sched_out(cpuctx); | ||
1468 | if (ctx) | ||
1469 | __perf_event_task_sched_out(ctx); | ||
1470 | |||
1471 | rotate_ctx(&cpuctx->ctx); | ||
1472 | if (ctx) | ||
1473 | rotate_ctx(ctx); | ||
1474 | |||
1475 | perf_event_cpu_sched_in(cpuctx, cpu); | ||
1476 | if (ctx) | ||
1477 | perf_event_task_sched_in(curr, cpu); | ||
1478 | } | ||
1479 | |||
1480 | /* | ||
1481 | * Enable all of a task's events that have been marked enable-on-exec. | ||
1482 | * This expects task == current. | ||
1483 | */ | ||
1484 | static void perf_event_enable_on_exec(struct task_struct *task) | ||
1485 | { | ||
1486 | struct perf_event_context *ctx; | ||
1487 | struct perf_event *event; | ||
1488 | unsigned long flags; | ||
1489 | int enabled = 0; | ||
1490 | |||
1491 | local_irq_save(flags); | ||
1492 | ctx = task->perf_event_ctxp; | ||
1493 | if (!ctx || !ctx->nr_events) | ||
1494 | goto out; | ||
1495 | |||
1496 | __perf_event_task_sched_out(ctx); | ||
1497 | |||
1498 | spin_lock(&ctx->lock); | ||
1499 | |||
1500 | list_for_each_entry(event, &ctx->group_list, group_entry) { | ||
1501 | if (!event->attr.enable_on_exec) | ||
1502 | continue; | ||
1503 | event->attr.enable_on_exec = 0; | ||
1504 | if (event->state >= PERF_EVENT_STATE_INACTIVE) | ||
1505 | continue; | ||
1506 | __perf_event_mark_enabled(event, ctx); | ||
1507 | enabled = 1; | ||
1508 | } | ||
1509 | |||
1510 | /* | ||
1511 | * Unclone this context if we enabled any event. | ||
1512 | */ | ||
1513 | if (enabled) | ||
1514 | unclone_ctx(ctx); | ||
1515 | |||
1516 | spin_unlock(&ctx->lock); | ||
1517 | |||
1518 | perf_event_task_sched_in(task, smp_processor_id()); | ||
1519 | out: | ||
1520 | local_irq_restore(flags); | ||
1521 | } | ||
1522 | |||
1523 | /* | ||
1524 | * Cross CPU call to read the hardware event | ||
1525 | */ | ||
1526 | static void __perf_event_read(void *info) | ||
1527 | { | ||
1528 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
1529 | struct perf_event *event = info; | ||
1530 | struct perf_event_context *ctx = event->ctx; | ||
1531 | unsigned long flags; | ||
1532 | |||
1533 | /* | ||
1534 | * If this is a task context, we need to check whether it is | ||
1535 | * the current task context of this cpu. If not it has been | ||
1536 | * scheduled out before the smp call arrived. In that case | ||
1537 | * event->count would have been updated to a recent sample | ||
1538 | * when the event was scheduled out. | ||
1539 | */ | ||
1540 | if (ctx->task && cpuctx->task_ctx != ctx) | ||
1541 | return; | ||
1542 | |||
1543 | local_irq_save(flags); | ||
1544 | if (ctx->is_active) | ||
1545 | update_context_time(ctx); | ||
1546 | event->pmu->read(event); | ||
1547 | update_event_times(event); | ||
1548 | local_irq_restore(flags); | ||
1549 | } | ||
1550 | |||
1551 | static u64 perf_event_read(struct perf_event *event) | ||
1552 | { | ||
1553 | /* | ||
1554 | * If event is enabled and currently active on a CPU, update the | ||
1555 | * value in the event structure: | ||
1556 | */ | ||
1557 | if (event->state == PERF_EVENT_STATE_ACTIVE) { | ||
1558 | smp_call_function_single(event->oncpu, | ||
1559 | __perf_event_read, event, 1); | ||
1560 | } else if (event->state == PERF_EVENT_STATE_INACTIVE) { | ||
1561 | update_event_times(event); | ||
1562 | } | ||
1563 | |||
1564 | return atomic64_read(&event->count); | ||
1565 | } | ||
1566 | |||
1567 | /* | ||
1568 | * Initialize the perf_event context in a task_struct: | ||
1569 | */ | ||
1570 | static void | ||
1571 | __perf_event_init_context(struct perf_event_context *ctx, | ||
1572 | struct task_struct *task) | ||
1573 | { | ||
1574 | memset(ctx, 0, sizeof(*ctx)); | ||
1575 | spin_lock_init(&ctx->lock); | ||
1576 | mutex_init(&ctx->mutex); | ||
1577 | INIT_LIST_HEAD(&ctx->group_list); | ||
1578 | INIT_LIST_HEAD(&ctx->event_list); | ||
1579 | atomic_set(&ctx->refcount, 1); | ||
1580 | ctx->task = task; | ||
1581 | } | ||
1582 | |||
1583 | static struct perf_event_context *find_get_context(pid_t pid, int cpu) | ||
1584 | { | ||
1585 | struct perf_event_context *ctx; | ||
1586 | struct perf_cpu_context *cpuctx; | ||
1587 | struct task_struct *task; | ||
1588 | unsigned long flags; | ||
1589 | int err; | ||
1590 | |||
1591 | /* | ||
1592 | * If cpu is not a wildcard then this is a percpu event: | ||
1593 | */ | ||
1594 | if (cpu != -1) { | ||
1595 | /* Must be root to operate on a CPU event: */ | ||
1596 | if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) | ||
1597 | return ERR_PTR(-EACCES); | ||
1598 | |||
1599 | if (cpu < 0 || cpu > num_possible_cpus()) | ||
1600 | return ERR_PTR(-EINVAL); | ||
1601 | |||
1602 | /* | ||
1603 | * We could be clever and allow to attach a event to an | ||
1604 | * offline CPU and activate it when the CPU comes up, but | ||
1605 | * that's for later. | ||
1606 | */ | ||
1607 | if (!cpu_isset(cpu, cpu_online_map)) | ||
1608 | return ERR_PTR(-ENODEV); | ||
1609 | |||
1610 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
1611 | ctx = &cpuctx->ctx; | ||
1612 | get_ctx(ctx); | ||
1613 | |||
1614 | return ctx; | ||
1615 | } | ||
1616 | |||
1617 | rcu_read_lock(); | ||
1618 | if (!pid) | ||
1619 | task = current; | ||
1620 | else | ||
1621 | task = find_task_by_vpid(pid); | ||
1622 | if (task) | ||
1623 | get_task_struct(task); | ||
1624 | rcu_read_unlock(); | ||
1625 | |||
1626 | if (!task) | ||
1627 | return ERR_PTR(-ESRCH); | ||
1628 | |||
1629 | /* | ||
1630 | * Can't attach events to a dying task. | ||
1631 | */ | ||
1632 | err = -ESRCH; | ||
1633 | if (task->flags & PF_EXITING) | ||
1634 | goto errout; | ||
1635 | |||
1636 | /* Reuse ptrace permission checks for now. */ | ||
1637 | err = -EACCES; | ||
1638 | if (!ptrace_may_access(task, PTRACE_MODE_READ)) | ||
1639 | goto errout; | ||
1640 | |||
1641 | retry: | ||
1642 | ctx = perf_lock_task_context(task, &flags); | ||
1643 | if (ctx) { | ||
1644 | unclone_ctx(ctx); | ||
1645 | spin_unlock_irqrestore(&ctx->lock, flags); | ||
1646 | } | ||
1647 | |||
1648 | if (!ctx) { | ||
1649 | ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL); | ||
1650 | err = -ENOMEM; | ||
1651 | if (!ctx) | ||
1652 | goto errout; | ||
1653 | __perf_event_init_context(ctx, task); | ||
1654 | get_ctx(ctx); | ||
1655 | if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) { | ||
1656 | /* | ||
1657 | * We raced with some other task; use | ||
1658 | * the context they set. | ||
1659 | */ | ||
1660 | kfree(ctx); | ||
1661 | goto retry; | ||
1662 | } | ||
1663 | get_task_struct(task); | ||
1664 | } | ||
1665 | |||
1666 | put_task_struct(task); | ||
1667 | return ctx; | ||
1668 | |||
1669 | errout: | ||
1670 | put_task_struct(task); | ||
1671 | return ERR_PTR(err); | ||
1672 | } | ||
1673 | |||
1674 | static void free_event_rcu(struct rcu_head *head) | ||
1675 | { | ||
1676 | struct perf_event *event; | ||
1677 | |||
1678 | event = container_of(head, struct perf_event, rcu_head); | ||
1679 | if (event->ns) | ||
1680 | put_pid_ns(event->ns); | ||
1681 | kfree(event); | ||
1682 | } | ||
1683 | |||
1684 | static void perf_pending_sync(struct perf_event *event); | ||
1685 | |||
1686 | static void free_event(struct perf_event *event) | ||
1687 | { | ||
1688 | perf_pending_sync(event); | ||
1689 | |||
1690 | if (!event->parent) { | ||
1691 | atomic_dec(&nr_events); | ||
1692 | if (event->attr.mmap) | ||
1693 | atomic_dec(&nr_mmap_events); | ||
1694 | if (event->attr.comm) | ||
1695 | atomic_dec(&nr_comm_events); | ||
1696 | if (event->attr.task) | ||
1697 | atomic_dec(&nr_task_events); | ||
1698 | } | ||
1699 | |||
1700 | if (event->output) { | ||
1701 | fput(event->output->filp); | ||
1702 | event->output = NULL; | ||
1703 | } | ||
1704 | |||
1705 | if (event->destroy) | ||
1706 | event->destroy(event); | ||
1707 | |||
1708 | put_ctx(event->ctx); | ||
1709 | call_rcu(&event->rcu_head, free_event_rcu); | ||
1710 | } | ||
1711 | |||
1712 | /* | ||
1713 | * Called when the last reference to the file is gone. | ||
1714 | */ | ||
1715 | static int perf_release(struct inode *inode, struct file *file) | ||
1716 | { | ||
1717 | struct perf_event *event = file->private_data; | ||
1718 | struct perf_event_context *ctx = event->ctx; | ||
1719 | |||
1720 | file->private_data = NULL; | ||
1721 | |||
1722 | WARN_ON_ONCE(ctx->parent_ctx); | ||
1723 | mutex_lock(&ctx->mutex); | ||
1724 | perf_event_remove_from_context(event); | ||
1725 | mutex_unlock(&ctx->mutex); | ||
1726 | |||
1727 | mutex_lock(&event->owner->perf_event_mutex); | ||
1728 | list_del_init(&event->owner_entry); | ||
1729 | mutex_unlock(&event->owner->perf_event_mutex); | ||
1730 | put_task_struct(event->owner); | ||
1731 | |||
1732 | free_event(event); | ||
1733 | |||
1734 | return 0; | ||
1735 | } | ||
1736 | |||
1737 | static int perf_event_read_size(struct perf_event *event) | ||
1738 | { | ||
1739 | int entry = sizeof(u64); /* value */ | ||
1740 | int size = 0; | ||
1741 | int nr = 1; | ||
1742 | |||
1743 | if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
1744 | size += sizeof(u64); | ||
1745 | |||
1746 | if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
1747 | size += sizeof(u64); | ||
1748 | |||
1749 | if (event->attr.read_format & PERF_FORMAT_ID) | ||
1750 | entry += sizeof(u64); | ||
1751 | |||
1752 | if (event->attr.read_format & PERF_FORMAT_GROUP) { | ||
1753 | nr += event->group_leader->nr_siblings; | ||
1754 | size += sizeof(u64); | ||
1755 | } | ||
1756 | |||
1757 | size += entry * nr; | ||
1758 | |||
1759 | return size; | ||
1760 | } | ||
1761 | |||
1762 | static u64 perf_event_read_value(struct perf_event *event) | ||
1763 | { | ||
1764 | struct perf_event *child; | ||
1765 | u64 total = 0; | ||
1766 | |||
1767 | total += perf_event_read(event); | ||
1768 | list_for_each_entry(child, &event->child_list, child_list) | ||
1769 | total += perf_event_read(child); | ||
1770 | |||
1771 | return total; | ||
1772 | } | ||
1773 | |||
1774 | static int perf_event_read_entry(struct perf_event *event, | ||
1775 | u64 read_format, char __user *buf) | ||
1776 | { | ||
1777 | int n = 0, count = 0; | ||
1778 | u64 values[2]; | ||
1779 | |||
1780 | values[n++] = perf_event_read_value(event); | ||
1781 | if (read_format & PERF_FORMAT_ID) | ||
1782 | values[n++] = primary_event_id(event); | ||
1783 | |||
1784 | count = n * sizeof(u64); | ||
1785 | |||
1786 | if (copy_to_user(buf, values, count)) | ||
1787 | return -EFAULT; | ||
1788 | |||
1789 | return count; | ||
1790 | } | ||
1791 | |||
1792 | static int perf_event_read_group(struct perf_event *event, | ||
1793 | u64 read_format, char __user *buf) | ||
1794 | { | ||
1795 | struct perf_event *leader = event->group_leader, *sub; | ||
1796 | int n = 0, size = 0, err = -EFAULT; | ||
1797 | u64 values[3]; | ||
1798 | |||
1799 | values[n++] = 1 + leader->nr_siblings; | ||
1800 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
1801 | values[n++] = leader->total_time_enabled + | ||
1802 | atomic64_read(&leader->child_total_time_enabled); | ||
1803 | } | ||
1804 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
1805 | values[n++] = leader->total_time_running + | ||
1806 | atomic64_read(&leader->child_total_time_running); | ||
1807 | } | ||
1808 | |||
1809 | size = n * sizeof(u64); | ||
1810 | |||
1811 | if (copy_to_user(buf, values, size)) | ||
1812 | return -EFAULT; | ||
1813 | |||
1814 | err = perf_event_read_entry(leader, read_format, buf + size); | ||
1815 | if (err < 0) | ||
1816 | return err; | ||
1817 | |||
1818 | size += err; | ||
1819 | |||
1820 | list_for_each_entry(sub, &leader->sibling_list, group_entry) { | ||
1821 | err = perf_event_read_entry(sub, read_format, | ||
1822 | buf + size); | ||
1823 | if (err < 0) | ||
1824 | return err; | ||
1825 | |||
1826 | size += err; | ||
1827 | } | ||
1828 | |||
1829 | return size; | ||
1830 | } | ||
1831 | |||
1832 | static int perf_event_read_one(struct perf_event *event, | ||
1833 | u64 read_format, char __user *buf) | ||
1834 | { | ||
1835 | u64 values[4]; | ||
1836 | int n = 0; | ||
1837 | |||
1838 | values[n++] = perf_event_read_value(event); | ||
1839 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
1840 | values[n++] = event->total_time_enabled + | ||
1841 | atomic64_read(&event->child_total_time_enabled); | ||
1842 | } | ||
1843 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
1844 | values[n++] = event->total_time_running + | ||
1845 | atomic64_read(&event->child_total_time_running); | ||
1846 | } | ||
1847 | if (read_format & PERF_FORMAT_ID) | ||
1848 | values[n++] = primary_event_id(event); | ||
1849 | |||
1850 | if (copy_to_user(buf, values, n * sizeof(u64))) | ||
1851 | return -EFAULT; | ||
1852 | |||
1853 | return n * sizeof(u64); | ||
1854 | } | ||
1855 | |||
1856 | /* | ||
1857 | * Read the performance event - simple non blocking version for now | ||
1858 | */ | ||
1859 | static ssize_t | ||
1860 | perf_read_hw(struct perf_event *event, char __user *buf, size_t count) | ||
1861 | { | ||
1862 | u64 read_format = event->attr.read_format; | ||
1863 | int ret; | ||
1864 | |||
1865 | /* | ||
1866 | * Return end-of-file for a read on a event that is in | ||
1867 | * error state (i.e. because it was pinned but it couldn't be | ||
1868 | * scheduled on to the CPU at some point). | ||
1869 | */ | ||
1870 | if (event->state == PERF_EVENT_STATE_ERROR) | ||
1871 | return 0; | ||
1872 | |||
1873 | if (count < perf_event_read_size(event)) | ||
1874 | return -ENOSPC; | ||
1875 | |||
1876 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
1877 | mutex_lock(&event->child_mutex); | ||
1878 | if (read_format & PERF_FORMAT_GROUP) | ||
1879 | ret = perf_event_read_group(event, read_format, buf); | ||
1880 | else | ||
1881 | ret = perf_event_read_one(event, read_format, buf); | ||
1882 | mutex_unlock(&event->child_mutex); | ||
1883 | |||
1884 | return ret; | ||
1885 | } | ||
1886 | |||
1887 | static ssize_t | ||
1888 | perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) | ||
1889 | { | ||
1890 | struct perf_event *event = file->private_data; | ||
1891 | |||
1892 | return perf_read_hw(event, buf, count); | ||
1893 | } | ||
1894 | |||
1895 | static unsigned int perf_poll(struct file *file, poll_table *wait) | ||
1896 | { | ||
1897 | struct perf_event *event = file->private_data; | ||
1898 | struct perf_mmap_data *data; | ||
1899 | unsigned int events = POLL_HUP; | ||
1900 | |||
1901 | rcu_read_lock(); | ||
1902 | data = rcu_dereference(event->data); | ||
1903 | if (data) | ||
1904 | events = atomic_xchg(&data->poll, 0); | ||
1905 | rcu_read_unlock(); | ||
1906 | |||
1907 | poll_wait(file, &event->waitq, wait); | ||
1908 | |||
1909 | return events; | ||
1910 | } | ||
1911 | |||
1912 | static void perf_event_reset(struct perf_event *event) | ||
1913 | { | ||
1914 | (void)perf_event_read(event); | ||
1915 | atomic64_set(&event->count, 0); | ||
1916 | perf_event_update_userpage(event); | ||
1917 | } | ||
1918 | |||
1919 | /* | ||
1920 | * Holding the top-level event's child_mutex means that any | ||
1921 | * descendant process that has inherited this event will block | ||
1922 | * in sync_child_event if it goes to exit, thus satisfying the | ||
1923 | * task existence requirements of perf_event_enable/disable. | ||
1924 | */ | ||
1925 | static void perf_event_for_each_child(struct perf_event *event, | ||
1926 | void (*func)(struct perf_event *)) | ||
1927 | { | ||
1928 | struct perf_event *child; | ||
1929 | |||
1930 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
1931 | mutex_lock(&event->child_mutex); | ||
1932 | func(event); | ||
1933 | list_for_each_entry(child, &event->child_list, child_list) | ||
1934 | func(child); | ||
1935 | mutex_unlock(&event->child_mutex); | ||
1936 | } | ||
1937 | |||
1938 | static void perf_event_for_each(struct perf_event *event, | ||
1939 | void (*func)(struct perf_event *)) | ||
1940 | { | ||
1941 | struct perf_event_context *ctx = event->ctx; | ||
1942 | struct perf_event *sibling; | ||
1943 | |||
1944 | WARN_ON_ONCE(ctx->parent_ctx); | ||
1945 | mutex_lock(&ctx->mutex); | ||
1946 | event = event->group_leader; | ||
1947 | |||
1948 | perf_event_for_each_child(event, func); | ||
1949 | func(event); | ||
1950 | list_for_each_entry(sibling, &event->sibling_list, group_entry) | ||
1951 | perf_event_for_each_child(event, func); | ||
1952 | mutex_unlock(&ctx->mutex); | ||
1953 | } | ||
1954 | |||
1955 | static int perf_event_period(struct perf_event *event, u64 __user *arg) | ||
1956 | { | ||
1957 | struct perf_event_context *ctx = event->ctx; | ||
1958 | unsigned long size; | ||
1959 | int ret = 0; | ||
1960 | u64 value; | ||
1961 | |||
1962 | if (!event->attr.sample_period) | ||
1963 | return -EINVAL; | ||
1964 | |||
1965 | size = copy_from_user(&value, arg, sizeof(value)); | ||
1966 | if (size != sizeof(value)) | ||
1967 | return -EFAULT; | ||
1968 | |||
1969 | if (!value) | ||
1970 | return -EINVAL; | ||
1971 | |||
1972 | spin_lock_irq(&ctx->lock); | ||
1973 | if (event->attr.freq) { | ||
1974 | if (value > sysctl_perf_event_sample_rate) { | ||
1975 | ret = -EINVAL; | ||
1976 | goto unlock; | ||
1977 | } | ||
1978 | |||
1979 | event->attr.sample_freq = value; | ||
1980 | } else { | ||
1981 | event->attr.sample_period = value; | ||
1982 | event->hw.sample_period = value; | ||
1983 | } | ||
1984 | unlock: | ||
1985 | spin_unlock_irq(&ctx->lock); | ||
1986 | |||
1987 | return ret; | ||
1988 | } | ||
1989 | |||
1990 | int perf_event_set_output(struct perf_event *event, int output_fd); | ||
1991 | |||
1992 | static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) | ||
1993 | { | ||
1994 | struct perf_event *event = file->private_data; | ||
1995 | void (*func)(struct perf_event *); | ||
1996 | u32 flags = arg; | ||
1997 | |||
1998 | switch (cmd) { | ||
1999 | case PERF_EVENT_IOC_ENABLE: | ||
2000 | func = perf_event_enable; | ||
2001 | break; | ||
2002 | case PERF_EVENT_IOC_DISABLE: | ||
2003 | func = perf_event_disable; | ||
2004 | break; | ||
2005 | case PERF_EVENT_IOC_RESET: | ||
2006 | func = perf_event_reset; | ||
2007 | break; | ||
2008 | |||
2009 | case PERF_EVENT_IOC_REFRESH: | ||
2010 | return perf_event_refresh(event, arg); | ||
2011 | |||
2012 | case PERF_EVENT_IOC_PERIOD: | ||
2013 | return perf_event_period(event, (u64 __user *)arg); | ||
2014 | |||
2015 | case PERF_EVENT_IOC_SET_OUTPUT: | ||
2016 | return perf_event_set_output(event, arg); | ||
2017 | |||
2018 | default: | ||
2019 | return -ENOTTY; | ||
2020 | } | ||
2021 | |||
2022 | if (flags & PERF_IOC_FLAG_GROUP) | ||
2023 | perf_event_for_each(event, func); | ||
2024 | else | ||
2025 | perf_event_for_each_child(event, func); | ||
2026 | |||
2027 | return 0; | ||
2028 | } | ||
2029 | |||
2030 | int perf_event_task_enable(void) | ||
2031 | { | ||
2032 | struct perf_event *event; | ||
2033 | |||
2034 | mutex_lock(¤t->perf_event_mutex); | ||
2035 | list_for_each_entry(event, ¤t->perf_event_list, owner_entry) | ||
2036 | perf_event_for_each_child(event, perf_event_enable); | ||
2037 | mutex_unlock(¤t->perf_event_mutex); | ||
2038 | |||
2039 | return 0; | ||
2040 | } | ||
2041 | |||
2042 | int perf_event_task_disable(void) | ||
2043 | { | ||
2044 | struct perf_event *event; | ||
2045 | |||
2046 | mutex_lock(¤t->perf_event_mutex); | ||
2047 | list_for_each_entry(event, ¤t->perf_event_list, owner_entry) | ||
2048 | perf_event_for_each_child(event, perf_event_disable); | ||
2049 | mutex_unlock(¤t->perf_event_mutex); | ||
2050 | |||
2051 | return 0; | ||
2052 | } | ||
2053 | |||
2054 | #ifndef PERF_EVENT_INDEX_OFFSET | ||
2055 | # define PERF_EVENT_INDEX_OFFSET 0 | ||
2056 | #endif | ||
2057 | |||
2058 | static int perf_event_index(struct perf_event *event) | ||
2059 | { | ||
2060 | if (event->state != PERF_EVENT_STATE_ACTIVE) | ||
2061 | return 0; | ||
2062 | |||
2063 | return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET; | ||
2064 | } | ||
2065 | |||
2066 | /* | ||
2067 | * Callers need to ensure there can be no nesting of this function, otherwise | ||
2068 | * the seqlock logic goes bad. We can not serialize this because the arch | ||
2069 | * code calls this from NMI context. | ||
2070 | */ | ||
2071 | void perf_event_update_userpage(struct perf_event *event) | ||
2072 | { | ||
2073 | struct perf_event_mmap_page *userpg; | ||
2074 | struct perf_mmap_data *data; | ||
2075 | |||
2076 | rcu_read_lock(); | ||
2077 | data = rcu_dereference(event->data); | ||
2078 | if (!data) | ||
2079 | goto unlock; | ||
2080 | |||
2081 | userpg = data->user_page; | ||
2082 | |||
2083 | /* | ||
2084 | * Disable preemption so as to not let the corresponding user-space | ||
2085 | * spin too long if we get preempted. | ||
2086 | */ | ||
2087 | preempt_disable(); | ||
2088 | ++userpg->lock; | ||
2089 | barrier(); | ||
2090 | userpg->index = perf_event_index(event); | ||
2091 | userpg->offset = atomic64_read(&event->count); | ||
2092 | if (event->state == PERF_EVENT_STATE_ACTIVE) | ||
2093 | userpg->offset -= atomic64_read(&event->hw.prev_count); | ||
2094 | |||
2095 | userpg->time_enabled = event->total_time_enabled + | ||
2096 | atomic64_read(&event->child_total_time_enabled); | ||
2097 | |||
2098 | userpg->time_running = event->total_time_running + | ||
2099 | atomic64_read(&event->child_total_time_running); | ||
2100 | |||
2101 | barrier(); | ||
2102 | ++userpg->lock; | ||
2103 | preempt_enable(); | ||
2104 | unlock: | ||
2105 | rcu_read_unlock(); | ||
2106 | } | ||
2107 | |||
2108 | static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | ||
2109 | { | ||
2110 | struct perf_event *event = vma->vm_file->private_data; | ||
2111 | struct perf_mmap_data *data; | ||
2112 | int ret = VM_FAULT_SIGBUS; | ||
2113 | |||
2114 | if (vmf->flags & FAULT_FLAG_MKWRITE) { | ||
2115 | if (vmf->pgoff == 0) | ||
2116 | ret = 0; | ||
2117 | return ret; | ||
2118 | } | ||
2119 | |||
2120 | rcu_read_lock(); | ||
2121 | data = rcu_dereference(event->data); | ||
2122 | if (!data) | ||
2123 | goto unlock; | ||
2124 | |||
2125 | if (vmf->pgoff == 0) { | ||
2126 | vmf->page = virt_to_page(data->user_page); | ||
2127 | } else { | ||
2128 | int nr = vmf->pgoff - 1; | ||
2129 | |||
2130 | if ((unsigned)nr > data->nr_pages) | ||
2131 | goto unlock; | ||
2132 | |||
2133 | if (vmf->flags & FAULT_FLAG_WRITE) | ||
2134 | goto unlock; | ||
2135 | |||
2136 | vmf->page = virt_to_page(data->data_pages[nr]); | ||
2137 | } | ||
2138 | |||
2139 | get_page(vmf->page); | ||
2140 | vmf->page->mapping = vma->vm_file->f_mapping; | ||
2141 | vmf->page->index = vmf->pgoff; | ||
2142 | |||
2143 | ret = 0; | ||
2144 | unlock: | ||
2145 | rcu_read_unlock(); | ||
2146 | |||
2147 | return ret; | ||
2148 | } | ||
2149 | |||
2150 | static int perf_mmap_data_alloc(struct perf_event *event, int nr_pages) | ||
2151 | { | ||
2152 | struct perf_mmap_data *data; | ||
2153 | unsigned long size; | ||
2154 | int i; | ||
2155 | |||
2156 | WARN_ON(atomic_read(&event->mmap_count)); | ||
2157 | |||
2158 | size = sizeof(struct perf_mmap_data); | ||
2159 | size += nr_pages * sizeof(void *); | ||
2160 | |||
2161 | data = kzalloc(size, GFP_KERNEL); | ||
2162 | if (!data) | ||
2163 | goto fail; | ||
2164 | |||
2165 | data->user_page = (void *)get_zeroed_page(GFP_KERNEL); | ||
2166 | if (!data->user_page) | ||
2167 | goto fail_user_page; | ||
2168 | |||
2169 | for (i = 0; i < nr_pages; i++) { | ||
2170 | data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL); | ||
2171 | if (!data->data_pages[i]) | ||
2172 | goto fail_data_pages; | ||
2173 | } | ||
2174 | |||
2175 | data->nr_pages = nr_pages; | ||
2176 | atomic_set(&data->lock, -1); | ||
2177 | |||
2178 | if (event->attr.watermark) { | ||
2179 | data->watermark = min_t(long, PAGE_SIZE * nr_pages, | ||
2180 | event->attr.wakeup_watermark); | ||
2181 | } | ||
2182 | if (!data->watermark) | ||
2183 | data->watermark = max(PAGE_SIZE, PAGE_SIZE * nr_pages / 4); | ||
2184 | |||
2185 | rcu_assign_pointer(event->data, data); | ||
2186 | |||
2187 | return 0; | ||
2188 | |||
2189 | fail_data_pages: | ||
2190 | for (i--; i >= 0; i--) | ||
2191 | free_page((unsigned long)data->data_pages[i]); | ||
2192 | |||
2193 | free_page((unsigned long)data->user_page); | ||
2194 | |||
2195 | fail_user_page: | ||
2196 | kfree(data); | ||
2197 | |||
2198 | fail: | ||
2199 | return -ENOMEM; | ||
2200 | } | ||
2201 | |||
2202 | static void perf_mmap_free_page(unsigned long addr) | ||
2203 | { | ||
2204 | struct page *page = virt_to_page((void *)addr); | ||
2205 | |||
2206 | page->mapping = NULL; | ||
2207 | __free_page(page); | ||
2208 | } | ||
2209 | |||
2210 | static void __perf_mmap_data_free(struct rcu_head *rcu_head) | ||
2211 | { | ||
2212 | struct perf_mmap_data *data; | ||
2213 | int i; | ||
2214 | |||
2215 | data = container_of(rcu_head, struct perf_mmap_data, rcu_head); | ||
2216 | |||
2217 | perf_mmap_free_page((unsigned long)data->user_page); | ||
2218 | for (i = 0; i < data->nr_pages; i++) | ||
2219 | perf_mmap_free_page((unsigned long)data->data_pages[i]); | ||
2220 | |||
2221 | kfree(data); | ||
2222 | } | ||
2223 | |||
2224 | static void perf_mmap_data_free(struct perf_event *event) | ||
2225 | { | ||
2226 | struct perf_mmap_data *data = event->data; | ||
2227 | |||
2228 | WARN_ON(atomic_read(&event->mmap_count)); | ||
2229 | |||
2230 | rcu_assign_pointer(event->data, NULL); | ||
2231 | call_rcu(&data->rcu_head, __perf_mmap_data_free); | ||
2232 | } | ||
2233 | |||
2234 | static void perf_mmap_open(struct vm_area_struct *vma) | ||
2235 | { | ||
2236 | struct perf_event *event = vma->vm_file->private_data; | ||
2237 | |||
2238 | atomic_inc(&event->mmap_count); | ||
2239 | } | ||
2240 | |||
2241 | static void perf_mmap_close(struct vm_area_struct *vma) | ||
2242 | { | ||
2243 | struct perf_event *event = vma->vm_file->private_data; | ||
2244 | |||
2245 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
2246 | if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) { | ||
2247 | struct user_struct *user = current_user(); | ||
2248 | |||
2249 | atomic_long_sub(event->data->nr_pages + 1, &user->locked_vm); | ||
2250 | vma->vm_mm->locked_vm -= event->data->nr_locked; | ||
2251 | perf_mmap_data_free(event); | ||
2252 | mutex_unlock(&event->mmap_mutex); | ||
2253 | } | ||
2254 | } | ||
2255 | |||
2256 | static const struct vm_operations_struct perf_mmap_vmops = { | ||
2257 | .open = perf_mmap_open, | ||
2258 | .close = perf_mmap_close, | ||
2259 | .fault = perf_mmap_fault, | ||
2260 | .page_mkwrite = perf_mmap_fault, | ||
2261 | }; | ||
2262 | |||
2263 | static int perf_mmap(struct file *file, struct vm_area_struct *vma) | ||
2264 | { | ||
2265 | struct perf_event *event = file->private_data; | ||
2266 | unsigned long user_locked, user_lock_limit; | ||
2267 | struct user_struct *user = current_user(); | ||
2268 | unsigned long locked, lock_limit; | ||
2269 | unsigned long vma_size; | ||
2270 | unsigned long nr_pages; | ||
2271 | long user_extra, extra; | ||
2272 | int ret = 0; | ||
2273 | |||
2274 | if (!(vma->vm_flags & VM_SHARED)) | ||
2275 | return -EINVAL; | ||
2276 | |||
2277 | vma_size = vma->vm_end - vma->vm_start; | ||
2278 | nr_pages = (vma_size / PAGE_SIZE) - 1; | ||
2279 | |||
2280 | /* | ||
2281 | * If we have data pages ensure they're a power-of-two number, so we | ||
2282 | * can do bitmasks instead of modulo. | ||
2283 | */ | ||
2284 | if (nr_pages != 0 && !is_power_of_2(nr_pages)) | ||
2285 | return -EINVAL; | ||
2286 | |||
2287 | if (vma_size != PAGE_SIZE * (1 + nr_pages)) | ||
2288 | return -EINVAL; | ||
2289 | |||
2290 | if (vma->vm_pgoff != 0) | ||
2291 | return -EINVAL; | ||
2292 | |||
2293 | WARN_ON_ONCE(event->ctx->parent_ctx); | ||
2294 | mutex_lock(&event->mmap_mutex); | ||
2295 | if (event->output) { | ||
2296 | ret = -EINVAL; | ||
2297 | goto unlock; | ||
2298 | } | ||
2299 | |||
2300 | if (atomic_inc_not_zero(&event->mmap_count)) { | ||
2301 | if (nr_pages != event->data->nr_pages) | ||
2302 | ret = -EINVAL; | ||
2303 | goto unlock; | ||
2304 | } | ||
2305 | |||
2306 | user_extra = nr_pages + 1; | ||
2307 | user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); | ||
2308 | |||
2309 | /* | ||
2310 | * Increase the limit linearly with more CPUs: | ||
2311 | */ | ||
2312 | user_lock_limit *= num_online_cpus(); | ||
2313 | |||
2314 | user_locked = atomic_long_read(&user->locked_vm) + user_extra; | ||
2315 | |||
2316 | extra = 0; | ||
2317 | if (user_locked > user_lock_limit) | ||
2318 | extra = user_locked - user_lock_limit; | ||
2319 | |||
2320 | lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur; | ||
2321 | lock_limit >>= PAGE_SHIFT; | ||
2322 | locked = vma->vm_mm->locked_vm + extra; | ||
2323 | |||
2324 | if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && | ||
2325 | !capable(CAP_IPC_LOCK)) { | ||
2326 | ret = -EPERM; | ||
2327 | goto unlock; | ||
2328 | } | ||
2329 | |||
2330 | WARN_ON(event->data); | ||
2331 | ret = perf_mmap_data_alloc(event, nr_pages); | ||
2332 | if (ret) | ||
2333 | goto unlock; | ||
2334 | |||
2335 | atomic_set(&event->mmap_count, 1); | ||
2336 | atomic_long_add(user_extra, &user->locked_vm); | ||
2337 | vma->vm_mm->locked_vm += extra; | ||
2338 | event->data->nr_locked = extra; | ||
2339 | if (vma->vm_flags & VM_WRITE) | ||
2340 | event->data->writable = 1; | ||
2341 | |||
2342 | unlock: | ||
2343 | mutex_unlock(&event->mmap_mutex); | ||
2344 | |||
2345 | vma->vm_flags |= VM_RESERVED; | ||
2346 | vma->vm_ops = &perf_mmap_vmops; | ||
2347 | |||
2348 | return ret; | ||
2349 | } | ||
2350 | |||
2351 | static int perf_fasync(int fd, struct file *filp, int on) | ||
2352 | { | ||
2353 | struct inode *inode = filp->f_path.dentry->d_inode; | ||
2354 | struct perf_event *event = filp->private_data; | ||
2355 | int retval; | ||
2356 | |||
2357 | mutex_lock(&inode->i_mutex); | ||
2358 | retval = fasync_helper(fd, filp, on, &event->fasync); | ||
2359 | mutex_unlock(&inode->i_mutex); | ||
2360 | |||
2361 | if (retval < 0) | ||
2362 | return retval; | ||
2363 | |||
2364 | return 0; | ||
2365 | } | ||
2366 | |||
2367 | static const struct file_operations perf_fops = { | ||
2368 | .release = perf_release, | ||
2369 | .read = perf_read, | ||
2370 | .poll = perf_poll, | ||
2371 | .unlocked_ioctl = perf_ioctl, | ||
2372 | .compat_ioctl = perf_ioctl, | ||
2373 | .mmap = perf_mmap, | ||
2374 | .fasync = perf_fasync, | ||
2375 | }; | ||
2376 | |||
2377 | /* | ||
2378 | * Perf event wakeup | ||
2379 | * | ||
2380 | * If there's data, ensure we set the poll() state and publish everything | ||
2381 | * to user-space before waking everybody up. | ||
2382 | */ | ||
2383 | |||
2384 | void perf_event_wakeup(struct perf_event *event) | ||
2385 | { | ||
2386 | wake_up_all(&event->waitq); | ||
2387 | |||
2388 | if (event->pending_kill) { | ||
2389 | kill_fasync(&event->fasync, SIGIO, event->pending_kill); | ||
2390 | event->pending_kill = 0; | ||
2391 | } | ||
2392 | } | ||
2393 | |||
2394 | /* | ||
2395 | * Pending wakeups | ||
2396 | * | ||
2397 | * Handle the case where we need to wakeup up from NMI (or rq->lock) context. | ||
2398 | * | ||
2399 | * The NMI bit means we cannot possibly take locks. Therefore, maintain a | ||
2400 | * single linked list and use cmpxchg() to add entries lockless. | ||
2401 | */ | ||
2402 | |||
2403 | static void perf_pending_event(struct perf_pending_entry *entry) | ||
2404 | { | ||
2405 | struct perf_event *event = container_of(entry, | ||
2406 | struct perf_event, pending); | ||
2407 | |||
2408 | if (event->pending_disable) { | ||
2409 | event->pending_disable = 0; | ||
2410 | __perf_event_disable(event); | ||
2411 | } | ||
2412 | |||
2413 | if (event->pending_wakeup) { | ||
2414 | event->pending_wakeup = 0; | ||
2415 | perf_event_wakeup(event); | ||
2416 | } | ||
2417 | } | ||
2418 | |||
2419 | #define PENDING_TAIL ((struct perf_pending_entry *)-1UL) | ||
2420 | |||
2421 | static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = { | ||
2422 | PENDING_TAIL, | ||
2423 | }; | ||
2424 | |||
2425 | static void perf_pending_queue(struct perf_pending_entry *entry, | ||
2426 | void (*func)(struct perf_pending_entry *)) | ||
2427 | { | ||
2428 | struct perf_pending_entry **head; | ||
2429 | |||
2430 | if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL) | ||
2431 | return; | ||
2432 | |||
2433 | entry->func = func; | ||
2434 | |||
2435 | head = &get_cpu_var(perf_pending_head); | ||
2436 | |||
2437 | do { | ||
2438 | entry->next = *head; | ||
2439 | } while (cmpxchg(head, entry->next, entry) != entry->next); | ||
2440 | |||
2441 | set_perf_event_pending(); | ||
2442 | |||
2443 | put_cpu_var(perf_pending_head); | ||
2444 | } | ||
2445 | |||
2446 | static int __perf_pending_run(void) | ||
2447 | { | ||
2448 | struct perf_pending_entry *list; | ||
2449 | int nr = 0; | ||
2450 | |||
2451 | list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL); | ||
2452 | while (list != PENDING_TAIL) { | ||
2453 | void (*func)(struct perf_pending_entry *); | ||
2454 | struct perf_pending_entry *entry = list; | ||
2455 | |||
2456 | list = list->next; | ||
2457 | |||
2458 | func = entry->func; | ||
2459 | entry->next = NULL; | ||
2460 | /* | ||
2461 | * Ensure we observe the unqueue before we issue the wakeup, | ||
2462 | * so that we won't be waiting forever. | ||
2463 | * -- see perf_not_pending(). | ||
2464 | */ | ||
2465 | smp_wmb(); | ||
2466 | |||
2467 | func(entry); | ||
2468 | nr++; | ||
2469 | } | ||
2470 | |||
2471 | return nr; | ||
2472 | } | ||
2473 | |||
2474 | static inline int perf_not_pending(struct perf_event *event) | ||
2475 | { | ||
2476 | /* | ||
2477 | * If we flush on whatever cpu we run, there is a chance we don't | ||
2478 | * need to wait. | ||
2479 | */ | ||
2480 | get_cpu(); | ||
2481 | __perf_pending_run(); | ||
2482 | put_cpu(); | ||
2483 | |||
2484 | /* | ||
2485 | * Ensure we see the proper queue state before going to sleep | ||
2486 | * so that we do not miss the wakeup. -- see perf_pending_handle() | ||
2487 | */ | ||
2488 | smp_rmb(); | ||
2489 | return event->pending.next == NULL; | ||
2490 | } | ||
2491 | |||
2492 | static void perf_pending_sync(struct perf_event *event) | ||
2493 | { | ||
2494 | wait_event(event->waitq, perf_not_pending(event)); | ||
2495 | } | ||
2496 | |||
2497 | void perf_event_do_pending(void) | ||
2498 | { | ||
2499 | __perf_pending_run(); | ||
2500 | } | ||
2501 | |||
2502 | /* | ||
2503 | * Callchain support -- arch specific | ||
2504 | */ | ||
2505 | |||
2506 | __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs) | ||
2507 | { | ||
2508 | return NULL; | ||
2509 | } | ||
2510 | |||
2511 | /* | ||
2512 | * Output | ||
2513 | */ | ||
2514 | static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail, | ||
2515 | unsigned long offset, unsigned long head) | ||
2516 | { | ||
2517 | unsigned long mask; | ||
2518 | |||
2519 | if (!data->writable) | ||
2520 | return true; | ||
2521 | |||
2522 | mask = (data->nr_pages << PAGE_SHIFT) - 1; | ||
2523 | |||
2524 | offset = (offset - tail) & mask; | ||
2525 | head = (head - tail) & mask; | ||
2526 | |||
2527 | if ((int)(head - offset) < 0) | ||
2528 | return false; | ||
2529 | |||
2530 | return true; | ||
2531 | } | ||
2532 | |||
2533 | static void perf_output_wakeup(struct perf_output_handle *handle) | ||
2534 | { | ||
2535 | atomic_set(&handle->data->poll, POLL_IN); | ||
2536 | |||
2537 | if (handle->nmi) { | ||
2538 | handle->event->pending_wakeup = 1; | ||
2539 | perf_pending_queue(&handle->event->pending, | ||
2540 | perf_pending_event); | ||
2541 | } else | ||
2542 | perf_event_wakeup(handle->event); | ||
2543 | } | ||
2544 | |||
2545 | /* | ||
2546 | * Curious locking construct. | ||
2547 | * | ||
2548 | * We need to ensure a later event_id doesn't publish a head when a former | ||
2549 | * event_id isn't done writing. However since we need to deal with NMIs we | ||
2550 | * cannot fully serialize things. | ||
2551 | * | ||
2552 | * What we do is serialize between CPUs so we only have to deal with NMI | ||
2553 | * nesting on a single CPU. | ||
2554 | * | ||
2555 | * We only publish the head (and generate a wakeup) when the outer-most | ||
2556 | * event_id completes. | ||
2557 | */ | ||
2558 | static void perf_output_lock(struct perf_output_handle *handle) | ||
2559 | { | ||
2560 | struct perf_mmap_data *data = handle->data; | ||
2561 | int cpu; | ||
2562 | |||
2563 | handle->locked = 0; | ||
2564 | |||
2565 | local_irq_save(handle->flags); | ||
2566 | cpu = smp_processor_id(); | ||
2567 | |||
2568 | if (in_nmi() && atomic_read(&data->lock) == cpu) | ||
2569 | return; | ||
2570 | |||
2571 | while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) | ||
2572 | cpu_relax(); | ||
2573 | |||
2574 | handle->locked = 1; | ||
2575 | } | ||
2576 | |||
2577 | static void perf_output_unlock(struct perf_output_handle *handle) | ||
2578 | { | ||
2579 | struct perf_mmap_data *data = handle->data; | ||
2580 | unsigned long head; | ||
2581 | int cpu; | ||
2582 | |||
2583 | data->done_head = data->head; | ||
2584 | |||
2585 | if (!handle->locked) | ||
2586 | goto out; | ||
2587 | |||
2588 | again: | ||
2589 | /* | ||
2590 | * The xchg implies a full barrier that ensures all writes are done | ||
2591 | * before we publish the new head, matched by a rmb() in userspace when | ||
2592 | * reading this position. | ||
2593 | */ | ||
2594 | while ((head = atomic_long_xchg(&data->done_head, 0))) | ||
2595 | data->user_page->data_head = head; | ||
2596 | |||
2597 | /* | ||
2598 | * NMI can happen here, which means we can miss a done_head update. | ||
2599 | */ | ||
2600 | |||
2601 | cpu = atomic_xchg(&data->lock, -1); | ||
2602 | WARN_ON_ONCE(cpu != smp_processor_id()); | ||
2603 | |||
2604 | /* | ||
2605 | * Therefore we have to validate we did not indeed do so. | ||
2606 | */ | ||
2607 | if (unlikely(atomic_long_read(&data->done_head))) { | ||
2608 | /* | ||
2609 | * Since we had it locked, we can lock it again. | ||
2610 | */ | ||
2611 | while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) | ||
2612 | cpu_relax(); | ||
2613 | |||
2614 | goto again; | ||
2615 | } | ||
2616 | |||
2617 | if (atomic_xchg(&data->wakeup, 0)) | ||
2618 | perf_output_wakeup(handle); | ||
2619 | out: | ||
2620 | local_irq_restore(handle->flags); | ||
2621 | } | ||
2622 | |||
2623 | void perf_output_copy(struct perf_output_handle *handle, | ||
2624 | const void *buf, unsigned int len) | ||
2625 | { | ||
2626 | unsigned int pages_mask; | ||
2627 | unsigned int offset; | ||
2628 | unsigned int size; | ||
2629 | void **pages; | ||
2630 | |||
2631 | offset = handle->offset; | ||
2632 | pages_mask = handle->data->nr_pages - 1; | ||
2633 | pages = handle->data->data_pages; | ||
2634 | |||
2635 | do { | ||
2636 | unsigned int page_offset; | ||
2637 | int nr; | ||
2638 | |||
2639 | nr = (offset >> PAGE_SHIFT) & pages_mask; | ||
2640 | page_offset = offset & (PAGE_SIZE - 1); | ||
2641 | size = min_t(unsigned int, PAGE_SIZE - page_offset, len); | ||
2642 | |||
2643 | memcpy(pages[nr] + page_offset, buf, size); | ||
2644 | |||
2645 | len -= size; | ||
2646 | buf += size; | ||
2647 | offset += size; | ||
2648 | } while (len); | ||
2649 | |||
2650 | handle->offset = offset; | ||
2651 | |||
2652 | /* | ||
2653 | * Check we didn't copy past our reservation window, taking the | ||
2654 | * possible unsigned int wrap into account. | ||
2655 | */ | ||
2656 | WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0); | ||
2657 | } | ||
2658 | |||
2659 | int perf_output_begin(struct perf_output_handle *handle, | ||
2660 | struct perf_event *event, unsigned int size, | ||
2661 | int nmi, int sample) | ||
2662 | { | ||
2663 | struct perf_event *output_event; | ||
2664 | struct perf_mmap_data *data; | ||
2665 | unsigned long tail, offset, head; | ||
2666 | int have_lost; | ||
2667 | struct { | ||
2668 | struct perf_event_header header; | ||
2669 | u64 id; | ||
2670 | u64 lost; | ||
2671 | } lost_event; | ||
2672 | |||
2673 | rcu_read_lock(); | ||
2674 | /* | ||
2675 | * For inherited events we send all the output towards the parent. | ||
2676 | */ | ||
2677 | if (event->parent) | ||
2678 | event = event->parent; | ||
2679 | |||
2680 | output_event = rcu_dereference(event->output); | ||
2681 | if (output_event) | ||
2682 | event = output_event; | ||
2683 | |||
2684 | data = rcu_dereference(event->data); | ||
2685 | if (!data) | ||
2686 | goto out; | ||
2687 | |||
2688 | handle->data = data; | ||
2689 | handle->event = event; | ||
2690 | handle->nmi = nmi; | ||
2691 | handle->sample = sample; | ||
2692 | |||
2693 | if (!data->nr_pages) | ||
2694 | goto fail; | ||
2695 | |||
2696 | have_lost = atomic_read(&data->lost); | ||
2697 | if (have_lost) | ||
2698 | size += sizeof(lost_event); | ||
2699 | |||
2700 | perf_output_lock(handle); | ||
2701 | |||
2702 | do { | ||
2703 | /* | ||
2704 | * Userspace could choose to issue a mb() before updating the | ||
2705 | * tail pointer. So that all reads will be completed before the | ||
2706 | * write is issued. | ||
2707 | */ | ||
2708 | tail = ACCESS_ONCE(data->user_page->data_tail); | ||
2709 | smp_rmb(); | ||
2710 | offset = head = atomic_long_read(&data->head); | ||
2711 | head += size; | ||
2712 | if (unlikely(!perf_output_space(data, tail, offset, head))) | ||
2713 | goto fail; | ||
2714 | } while (atomic_long_cmpxchg(&data->head, offset, head) != offset); | ||
2715 | |||
2716 | handle->offset = offset; | ||
2717 | handle->head = head; | ||
2718 | |||
2719 | if (head - tail > data->watermark) | ||
2720 | atomic_set(&data->wakeup, 1); | ||
2721 | |||
2722 | if (have_lost) { | ||
2723 | lost_event.header.type = PERF_RECORD_LOST; | ||
2724 | lost_event.header.misc = 0; | ||
2725 | lost_event.header.size = sizeof(lost_event); | ||
2726 | lost_event.id = event->id; | ||
2727 | lost_event.lost = atomic_xchg(&data->lost, 0); | ||
2728 | |||
2729 | perf_output_put(handle, lost_event); | ||
2730 | } | ||
2731 | |||
2732 | return 0; | ||
2733 | |||
2734 | fail: | ||
2735 | atomic_inc(&data->lost); | ||
2736 | perf_output_unlock(handle); | ||
2737 | out: | ||
2738 | rcu_read_unlock(); | ||
2739 | |||
2740 | return -ENOSPC; | ||
2741 | } | ||
2742 | |||
2743 | void perf_output_end(struct perf_output_handle *handle) | ||
2744 | { | ||
2745 | struct perf_event *event = handle->event; | ||
2746 | struct perf_mmap_data *data = handle->data; | ||
2747 | |||
2748 | int wakeup_events = event->attr.wakeup_events; | ||
2749 | |||
2750 | if (handle->sample && wakeup_events) { | ||
2751 | int events = atomic_inc_return(&data->events); | ||
2752 | if (events >= wakeup_events) { | ||
2753 | atomic_sub(wakeup_events, &data->events); | ||
2754 | atomic_set(&data->wakeup, 1); | ||
2755 | } | ||
2756 | } | ||
2757 | |||
2758 | perf_output_unlock(handle); | ||
2759 | rcu_read_unlock(); | ||
2760 | } | ||
2761 | |||
2762 | static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) | ||
2763 | { | ||
2764 | /* | ||
2765 | * only top level events have the pid namespace they were created in | ||
2766 | */ | ||
2767 | if (event->parent) | ||
2768 | event = event->parent; | ||
2769 | |||
2770 | return task_tgid_nr_ns(p, event->ns); | ||
2771 | } | ||
2772 | |||
2773 | static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) | ||
2774 | { | ||
2775 | /* | ||
2776 | * only top level events have the pid namespace they were created in | ||
2777 | */ | ||
2778 | if (event->parent) | ||
2779 | event = event->parent; | ||
2780 | |||
2781 | return task_pid_nr_ns(p, event->ns); | ||
2782 | } | ||
2783 | |||
2784 | static void perf_output_read_one(struct perf_output_handle *handle, | ||
2785 | struct perf_event *event) | ||
2786 | { | ||
2787 | u64 read_format = event->attr.read_format; | ||
2788 | u64 values[4]; | ||
2789 | int n = 0; | ||
2790 | |||
2791 | values[n++] = atomic64_read(&event->count); | ||
2792 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { | ||
2793 | values[n++] = event->total_time_enabled + | ||
2794 | atomic64_read(&event->child_total_time_enabled); | ||
2795 | } | ||
2796 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { | ||
2797 | values[n++] = event->total_time_running + | ||
2798 | atomic64_read(&event->child_total_time_running); | ||
2799 | } | ||
2800 | if (read_format & PERF_FORMAT_ID) | ||
2801 | values[n++] = primary_event_id(event); | ||
2802 | |||
2803 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
2804 | } | ||
2805 | |||
2806 | /* | ||
2807 | * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. | ||
2808 | */ | ||
2809 | static void perf_output_read_group(struct perf_output_handle *handle, | ||
2810 | struct perf_event *event) | ||
2811 | { | ||
2812 | struct perf_event *leader = event->group_leader, *sub; | ||
2813 | u64 read_format = event->attr.read_format; | ||
2814 | u64 values[5]; | ||
2815 | int n = 0; | ||
2816 | |||
2817 | values[n++] = 1 + leader->nr_siblings; | ||
2818 | |||
2819 | if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) | ||
2820 | values[n++] = leader->total_time_enabled; | ||
2821 | |||
2822 | if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) | ||
2823 | values[n++] = leader->total_time_running; | ||
2824 | |||
2825 | if (leader != event) | ||
2826 | leader->pmu->read(leader); | ||
2827 | |||
2828 | values[n++] = atomic64_read(&leader->count); | ||
2829 | if (read_format & PERF_FORMAT_ID) | ||
2830 | values[n++] = primary_event_id(leader); | ||
2831 | |||
2832 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
2833 | |||
2834 | list_for_each_entry(sub, &leader->sibling_list, group_entry) { | ||
2835 | n = 0; | ||
2836 | |||
2837 | if (sub != event) | ||
2838 | sub->pmu->read(sub); | ||
2839 | |||
2840 | values[n++] = atomic64_read(&sub->count); | ||
2841 | if (read_format & PERF_FORMAT_ID) | ||
2842 | values[n++] = primary_event_id(sub); | ||
2843 | |||
2844 | perf_output_copy(handle, values, n * sizeof(u64)); | ||
2845 | } | ||
2846 | } | ||
2847 | |||
2848 | static void perf_output_read(struct perf_output_handle *handle, | ||
2849 | struct perf_event *event) | ||
2850 | { | ||
2851 | if (event->attr.read_format & PERF_FORMAT_GROUP) | ||
2852 | perf_output_read_group(handle, event); | ||
2853 | else | ||
2854 | perf_output_read_one(handle, event); | ||
2855 | } | ||
2856 | |||
2857 | void perf_output_sample(struct perf_output_handle *handle, | ||
2858 | struct perf_event_header *header, | ||
2859 | struct perf_sample_data *data, | ||
2860 | struct perf_event *event) | ||
2861 | { | ||
2862 | u64 sample_type = data->type; | ||
2863 | |||
2864 | perf_output_put(handle, *header); | ||
2865 | |||
2866 | if (sample_type & PERF_SAMPLE_IP) | ||
2867 | perf_output_put(handle, data->ip); | ||
2868 | |||
2869 | if (sample_type & PERF_SAMPLE_TID) | ||
2870 | perf_output_put(handle, data->tid_entry); | ||
2871 | |||
2872 | if (sample_type & PERF_SAMPLE_TIME) | ||
2873 | perf_output_put(handle, data->time); | ||
2874 | |||
2875 | if (sample_type & PERF_SAMPLE_ADDR) | ||
2876 | perf_output_put(handle, data->addr); | ||
2877 | |||
2878 | if (sample_type & PERF_SAMPLE_ID) | ||
2879 | perf_output_put(handle, data->id); | ||
2880 | |||
2881 | if (sample_type & PERF_SAMPLE_STREAM_ID) | ||
2882 | perf_output_put(handle, data->stream_id); | ||
2883 | |||
2884 | if (sample_type & PERF_SAMPLE_CPU) | ||
2885 | perf_output_put(handle, data->cpu_entry); | ||
2886 | |||
2887 | if (sample_type & PERF_SAMPLE_PERIOD) | ||
2888 | perf_output_put(handle, data->period); | ||
2889 | |||
2890 | if (sample_type & PERF_SAMPLE_READ) | ||
2891 | perf_output_read(handle, event); | ||
2892 | |||
2893 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | ||
2894 | if (data->callchain) { | ||
2895 | int size = 1; | ||
2896 | |||
2897 | if (data->callchain) | ||
2898 | size += data->callchain->nr; | ||
2899 | |||
2900 | size *= sizeof(u64); | ||
2901 | |||
2902 | perf_output_copy(handle, data->callchain, size); | ||
2903 | } else { | ||
2904 | u64 nr = 0; | ||
2905 | perf_output_put(handle, nr); | ||
2906 | } | ||
2907 | } | ||
2908 | |||
2909 | if (sample_type & PERF_SAMPLE_RAW) { | ||
2910 | if (data->raw) { | ||
2911 | perf_output_put(handle, data->raw->size); | ||
2912 | perf_output_copy(handle, data->raw->data, | ||
2913 | data->raw->size); | ||
2914 | } else { | ||
2915 | struct { | ||
2916 | u32 size; | ||
2917 | u32 data; | ||
2918 | } raw = { | ||
2919 | .size = sizeof(u32), | ||
2920 | .data = 0, | ||
2921 | }; | ||
2922 | perf_output_put(handle, raw); | ||
2923 | } | ||
2924 | } | ||
2925 | } | ||
2926 | |||
2927 | void perf_prepare_sample(struct perf_event_header *header, | ||
2928 | struct perf_sample_data *data, | ||
2929 | struct perf_event *event, | ||
2930 | struct pt_regs *regs) | ||
2931 | { | ||
2932 | u64 sample_type = event->attr.sample_type; | ||
2933 | |||
2934 | data->type = sample_type; | ||
2935 | |||
2936 | header->type = PERF_RECORD_SAMPLE; | ||
2937 | header->size = sizeof(*header); | ||
2938 | |||
2939 | header->misc = 0; | ||
2940 | header->misc |= perf_misc_flags(regs); | ||
2941 | |||
2942 | if (sample_type & PERF_SAMPLE_IP) { | ||
2943 | data->ip = perf_instruction_pointer(regs); | ||
2944 | |||
2945 | header->size += sizeof(data->ip); | ||
2946 | } | ||
2947 | |||
2948 | if (sample_type & PERF_SAMPLE_TID) { | ||
2949 | /* namespace issues */ | ||
2950 | data->tid_entry.pid = perf_event_pid(event, current); | ||
2951 | data->tid_entry.tid = perf_event_tid(event, current); | ||
2952 | |||
2953 | header->size += sizeof(data->tid_entry); | ||
2954 | } | ||
2955 | |||
2956 | if (sample_type & PERF_SAMPLE_TIME) { | ||
2957 | data->time = perf_clock(); | ||
2958 | |||
2959 | header->size += sizeof(data->time); | ||
2960 | } | ||
2961 | |||
2962 | if (sample_type & PERF_SAMPLE_ADDR) | ||
2963 | header->size += sizeof(data->addr); | ||
2964 | |||
2965 | if (sample_type & PERF_SAMPLE_ID) { | ||
2966 | data->id = primary_event_id(event); | ||
2967 | |||
2968 | header->size += sizeof(data->id); | ||
2969 | } | ||
2970 | |||
2971 | if (sample_type & PERF_SAMPLE_STREAM_ID) { | ||
2972 | data->stream_id = event->id; | ||
2973 | |||
2974 | header->size += sizeof(data->stream_id); | ||
2975 | } | ||
2976 | |||
2977 | if (sample_type & PERF_SAMPLE_CPU) { | ||
2978 | data->cpu_entry.cpu = raw_smp_processor_id(); | ||
2979 | data->cpu_entry.reserved = 0; | ||
2980 | |||
2981 | header->size += sizeof(data->cpu_entry); | ||
2982 | } | ||
2983 | |||
2984 | if (sample_type & PERF_SAMPLE_PERIOD) | ||
2985 | header->size += sizeof(data->period); | ||
2986 | |||
2987 | if (sample_type & PERF_SAMPLE_READ) | ||
2988 | header->size += perf_event_read_size(event); | ||
2989 | |||
2990 | if (sample_type & PERF_SAMPLE_CALLCHAIN) { | ||
2991 | int size = 1; | ||
2992 | |||
2993 | data->callchain = perf_callchain(regs); | ||
2994 | |||
2995 | if (data->callchain) | ||
2996 | size += data->callchain->nr; | ||
2997 | |||
2998 | header->size += size * sizeof(u64); | ||
2999 | } | ||
3000 | |||
3001 | if (sample_type & PERF_SAMPLE_RAW) { | ||
3002 | int size = sizeof(u32); | ||
3003 | |||
3004 | if (data->raw) | ||
3005 | size += data->raw->size; | ||
3006 | else | ||
3007 | size += sizeof(u32); | ||
3008 | |||
3009 | WARN_ON_ONCE(size & (sizeof(u64)-1)); | ||
3010 | header->size += size; | ||
3011 | } | ||
3012 | } | ||
3013 | |||
3014 | static void perf_event_output(struct perf_event *event, int nmi, | ||
3015 | struct perf_sample_data *data, | ||
3016 | struct pt_regs *regs) | ||
3017 | { | ||
3018 | struct perf_output_handle handle; | ||
3019 | struct perf_event_header header; | ||
3020 | |||
3021 | perf_prepare_sample(&header, data, event, regs); | ||
3022 | |||
3023 | if (perf_output_begin(&handle, event, header.size, nmi, 1)) | ||
3024 | return; | ||
3025 | |||
3026 | perf_output_sample(&handle, &header, data, event); | ||
3027 | |||
3028 | perf_output_end(&handle); | ||
3029 | } | ||
3030 | |||
3031 | /* | ||
3032 | * read event_id | ||
3033 | */ | ||
3034 | |||
3035 | struct perf_read_event { | ||
3036 | struct perf_event_header header; | ||
3037 | |||
3038 | u32 pid; | ||
3039 | u32 tid; | ||
3040 | }; | ||
3041 | |||
3042 | static void | ||
3043 | perf_event_read_event(struct perf_event *event, | ||
3044 | struct task_struct *task) | ||
3045 | { | ||
3046 | struct perf_output_handle handle; | ||
3047 | struct perf_read_event read_event = { | ||
3048 | .header = { | ||
3049 | .type = PERF_RECORD_READ, | ||
3050 | .misc = 0, | ||
3051 | .size = sizeof(read_event) + perf_event_read_size(event), | ||
3052 | }, | ||
3053 | .pid = perf_event_pid(event, task), | ||
3054 | .tid = perf_event_tid(event, task), | ||
3055 | }; | ||
3056 | int ret; | ||
3057 | |||
3058 | ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0); | ||
3059 | if (ret) | ||
3060 | return; | ||
3061 | |||
3062 | perf_output_put(&handle, read_event); | ||
3063 | perf_output_read(&handle, event); | ||
3064 | |||
3065 | perf_output_end(&handle); | ||
3066 | } | ||
3067 | |||
3068 | /* | ||
3069 | * task tracking -- fork/exit | ||
3070 | * | ||
3071 | * enabled by: attr.comm | attr.mmap | attr.task | ||
3072 | */ | ||
3073 | |||
3074 | struct perf_task_event { | ||
3075 | struct task_struct *task; | ||
3076 | struct perf_event_context *task_ctx; | ||
3077 | |||
3078 | struct { | ||
3079 | struct perf_event_header header; | ||
3080 | |||
3081 | u32 pid; | ||
3082 | u32 ppid; | ||
3083 | u32 tid; | ||
3084 | u32 ptid; | ||
3085 | u64 time; | ||
3086 | } event_id; | ||
3087 | }; | ||
3088 | |||
3089 | static void perf_event_task_output(struct perf_event *event, | ||
3090 | struct perf_task_event *task_event) | ||
3091 | { | ||
3092 | struct perf_output_handle handle; | ||
3093 | int size; | ||
3094 | struct task_struct *task = task_event->task; | ||
3095 | int ret; | ||
3096 | |||
3097 | size = task_event->event_id.header.size; | ||
3098 | ret = perf_output_begin(&handle, event, size, 0, 0); | ||
3099 | |||
3100 | if (ret) | ||
3101 | return; | ||
3102 | |||
3103 | task_event->event_id.pid = perf_event_pid(event, task); | ||
3104 | task_event->event_id.ppid = perf_event_pid(event, current); | ||
3105 | |||
3106 | task_event->event_id.tid = perf_event_tid(event, task); | ||
3107 | task_event->event_id.ptid = perf_event_tid(event, current); | ||
3108 | |||
3109 | task_event->event_id.time = perf_clock(); | ||
3110 | |||
3111 | perf_output_put(&handle, task_event->event_id); | ||
3112 | |||
3113 | perf_output_end(&handle); | ||
3114 | } | ||
3115 | |||
3116 | static int perf_event_task_match(struct perf_event *event) | ||
3117 | { | ||
3118 | if (event->attr.comm || event->attr.mmap || event->attr.task) | ||
3119 | return 1; | ||
3120 | |||
3121 | return 0; | ||
3122 | } | ||
3123 | |||
3124 | static void perf_event_task_ctx(struct perf_event_context *ctx, | ||
3125 | struct perf_task_event *task_event) | ||
3126 | { | ||
3127 | struct perf_event *event; | ||
3128 | |||
3129 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
3130 | return; | ||
3131 | |||
3132 | rcu_read_lock(); | ||
3133 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
3134 | if (perf_event_task_match(event)) | ||
3135 | perf_event_task_output(event, task_event); | ||
3136 | } | ||
3137 | rcu_read_unlock(); | ||
3138 | } | ||
3139 | |||
3140 | static void perf_event_task_event(struct perf_task_event *task_event) | ||
3141 | { | ||
3142 | struct perf_cpu_context *cpuctx; | ||
3143 | struct perf_event_context *ctx = task_event->task_ctx; | ||
3144 | |||
3145 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
3146 | perf_event_task_ctx(&cpuctx->ctx, task_event); | ||
3147 | put_cpu_var(perf_cpu_context); | ||
3148 | |||
3149 | rcu_read_lock(); | ||
3150 | if (!ctx) | ||
3151 | ctx = rcu_dereference(task_event->task->perf_event_ctxp); | ||
3152 | if (ctx) | ||
3153 | perf_event_task_ctx(ctx, task_event); | ||
3154 | rcu_read_unlock(); | ||
3155 | } | ||
3156 | |||
3157 | static void perf_event_task(struct task_struct *task, | ||
3158 | struct perf_event_context *task_ctx, | ||
3159 | int new) | ||
3160 | { | ||
3161 | struct perf_task_event task_event; | ||
3162 | |||
3163 | if (!atomic_read(&nr_comm_events) && | ||
3164 | !atomic_read(&nr_mmap_events) && | ||
3165 | !atomic_read(&nr_task_events)) | ||
3166 | return; | ||
3167 | |||
3168 | task_event = (struct perf_task_event){ | ||
3169 | .task = task, | ||
3170 | .task_ctx = task_ctx, | ||
3171 | .event_id = { | ||
3172 | .header = { | ||
3173 | .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, | ||
3174 | .misc = 0, | ||
3175 | .size = sizeof(task_event.event_id), | ||
3176 | }, | ||
3177 | /* .pid */ | ||
3178 | /* .ppid */ | ||
3179 | /* .tid */ | ||
3180 | /* .ptid */ | ||
3181 | }, | ||
3182 | }; | ||
3183 | |||
3184 | perf_event_task_event(&task_event); | ||
3185 | } | ||
3186 | |||
3187 | void perf_event_fork(struct task_struct *task) | ||
3188 | { | ||
3189 | perf_event_task(task, NULL, 1); | ||
3190 | } | ||
3191 | |||
3192 | /* | ||
3193 | * comm tracking | ||
3194 | */ | ||
3195 | |||
3196 | struct perf_comm_event { | ||
3197 | struct task_struct *task; | ||
3198 | char *comm; | ||
3199 | int comm_size; | ||
3200 | |||
3201 | struct { | ||
3202 | struct perf_event_header header; | ||
3203 | |||
3204 | u32 pid; | ||
3205 | u32 tid; | ||
3206 | } event_id; | ||
3207 | }; | ||
3208 | |||
3209 | static void perf_event_comm_output(struct perf_event *event, | ||
3210 | struct perf_comm_event *comm_event) | ||
3211 | { | ||
3212 | struct perf_output_handle handle; | ||
3213 | int size = comm_event->event_id.header.size; | ||
3214 | int ret = perf_output_begin(&handle, event, size, 0, 0); | ||
3215 | |||
3216 | if (ret) | ||
3217 | return; | ||
3218 | |||
3219 | comm_event->event_id.pid = perf_event_pid(event, comm_event->task); | ||
3220 | comm_event->event_id.tid = perf_event_tid(event, comm_event->task); | ||
3221 | |||
3222 | perf_output_put(&handle, comm_event->event_id); | ||
3223 | perf_output_copy(&handle, comm_event->comm, | ||
3224 | comm_event->comm_size); | ||
3225 | perf_output_end(&handle); | ||
3226 | } | ||
3227 | |||
3228 | static int perf_event_comm_match(struct perf_event *event) | ||
3229 | { | ||
3230 | if (event->attr.comm) | ||
3231 | return 1; | ||
3232 | |||
3233 | return 0; | ||
3234 | } | ||
3235 | |||
3236 | static void perf_event_comm_ctx(struct perf_event_context *ctx, | ||
3237 | struct perf_comm_event *comm_event) | ||
3238 | { | ||
3239 | struct perf_event *event; | ||
3240 | |||
3241 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
3242 | return; | ||
3243 | |||
3244 | rcu_read_lock(); | ||
3245 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
3246 | if (perf_event_comm_match(event)) | ||
3247 | perf_event_comm_output(event, comm_event); | ||
3248 | } | ||
3249 | rcu_read_unlock(); | ||
3250 | } | ||
3251 | |||
3252 | static void perf_event_comm_event(struct perf_comm_event *comm_event) | ||
3253 | { | ||
3254 | struct perf_cpu_context *cpuctx; | ||
3255 | struct perf_event_context *ctx; | ||
3256 | unsigned int size; | ||
3257 | char comm[TASK_COMM_LEN]; | ||
3258 | |||
3259 | memset(comm, 0, sizeof(comm)); | ||
3260 | strncpy(comm, comm_event->task->comm, sizeof(comm)); | ||
3261 | size = ALIGN(strlen(comm)+1, sizeof(u64)); | ||
3262 | |||
3263 | comm_event->comm = comm; | ||
3264 | comm_event->comm_size = size; | ||
3265 | |||
3266 | comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; | ||
3267 | |||
3268 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
3269 | perf_event_comm_ctx(&cpuctx->ctx, comm_event); | ||
3270 | put_cpu_var(perf_cpu_context); | ||
3271 | |||
3272 | rcu_read_lock(); | ||
3273 | /* | ||
3274 | * doesn't really matter which of the child contexts the | ||
3275 | * events ends up in. | ||
3276 | */ | ||
3277 | ctx = rcu_dereference(current->perf_event_ctxp); | ||
3278 | if (ctx) | ||
3279 | perf_event_comm_ctx(ctx, comm_event); | ||
3280 | rcu_read_unlock(); | ||
3281 | } | ||
3282 | |||
3283 | void perf_event_comm(struct task_struct *task) | ||
3284 | { | ||
3285 | struct perf_comm_event comm_event; | ||
3286 | |||
3287 | if (task->perf_event_ctxp) | ||
3288 | perf_event_enable_on_exec(task); | ||
3289 | |||
3290 | if (!atomic_read(&nr_comm_events)) | ||
3291 | return; | ||
3292 | |||
3293 | comm_event = (struct perf_comm_event){ | ||
3294 | .task = task, | ||
3295 | /* .comm */ | ||
3296 | /* .comm_size */ | ||
3297 | .event_id = { | ||
3298 | .header = { | ||
3299 | .type = PERF_RECORD_COMM, | ||
3300 | .misc = 0, | ||
3301 | /* .size */ | ||
3302 | }, | ||
3303 | /* .pid */ | ||
3304 | /* .tid */ | ||
3305 | }, | ||
3306 | }; | ||
3307 | |||
3308 | perf_event_comm_event(&comm_event); | ||
3309 | } | ||
3310 | |||
3311 | /* | ||
3312 | * mmap tracking | ||
3313 | */ | ||
3314 | |||
3315 | struct perf_mmap_event { | ||
3316 | struct vm_area_struct *vma; | ||
3317 | |||
3318 | const char *file_name; | ||
3319 | int file_size; | ||
3320 | |||
3321 | struct { | ||
3322 | struct perf_event_header header; | ||
3323 | |||
3324 | u32 pid; | ||
3325 | u32 tid; | ||
3326 | u64 start; | ||
3327 | u64 len; | ||
3328 | u64 pgoff; | ||
3329 | } event_id; | ||
3330 | }; | ||
3331 | |||
3332 | static void perf_event_mmap_output(struct perf_event *event, | ||
3333 | struct perf_mmap_event *mmap_event) | ||
3334 | { | ||
3335 | struct perf_output_handle handle; | ||
3336 | int size = mmap_event->event_id.header.size; | ||
3337 | int ret = perf_output_begin(&handle, event, size, 0, 0); | ||
3338 | |||
3339 | if (ret) | ||
3340 | return; | ||
3341 | |||
3342 | mmap_event->event_id.pid = perf_event_pid(event, current); | ||
3343 | mmap_event->event_id.tid = perf_event_tid(event, current); | ||
3344 | |||
3345 | perf_output_put(&handle, mmap_event->event_id); | ||
3346 | perf_output_copy(&handle, mmap_event->file_name, | ||
3347 | mmap_event->file_size); | ||
3348 | perf_output_end(&handle); | ||
3349 | } | ||
3350 | |||
3351 | static int perf_event_mmap_match(struct perf_event *event, | ||
3352 | struct perf_mmap_event *mmap_event) | ||
3353 | { | ||
3354 | if (event->attr.mmap) | ||
3355 | return 1; | ||
3356 | |||
3357 | return 0; | ||
3358 | } | ||
3359 | |||
3360 | static void perf_event_mmap_ctx(struct perf_event_context *ctx, | ||
3361 | struct perf_mmap_event *mmap_event) | ||
3362 | { | ||
3363 | struct perf_event *event; | ||
3364 | |||
3365 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
3366 | return; | ||
3367 | |||
3368 | rcu_read_lock(); | ||
3369 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
3370 | if (perf_event_mmap_match(event, mmap_event)) | ||
3371 | perf_event_mmap_output(event, mmap_event); | ||
3372 | } | ||
3373 | rcu_read_unlock(); | ||
3374 | } | ||
3375 | |||
3376 | static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) | ||
3377 | { | ||
3378 | struct perf_cpu_context *cpuctx; | ||
3379 | struct perf_event_context *ctx; | ||
3380 | struct vm_area_struct *vma = mmap_event->vma; | ||
3381 | struct file *file = vma->vm_file; | ||
3382 | unsigned int size; | ||
3383 | char tmp[16]; | ||
3384 | char *buf = NULL; | ||
3385 | const char *name; | ||
3386 | |||
3387 | memset(tmp, 0, sizeof(tmp)); | ||
3388 | |||
3389 | if (file) { | ||
3390 | /* | ||
3391 | * d_path works from the end of the buffer backwards, so we | ||
3392 | * need to add enough zero bytes after the string to handle | ||
3393 | * the 64bit alignment we do later. | ||
3394 | */ | ||
3395 | buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); | ||
3396 | if (!buf) { | ||
3397 | name = strncpy(tmp, "//enomem", sizeof(tmp)); | ||
3398 | goto got_name; | ||
3399 | } | ||
3400 | name = d_path(&file->f_path, buf, PATH_MAX); | ||
3401 | if (IS_ERR(name)) { | ||
3402 | name = strncpy(tmp, "//toolong", sizeof(tmp)); | ||
3403 | goto got_name; | ||
3404 | } | ||
3405 | } else { | ||
3406 | if (arch_vma_name(mmap_event->vma)) { | ||
3407 | name = strncpy(tmp, arch_vma_name(mmap_event->vma), | ||
3408 | sizeof(tmp)); | ||
3409 | goto got_name; | ||
3410 | } | ||
3411 | |||
3412 | if (!vma->vm_mm) { | ||
3413 | name = strncpy(tmp, "[vdso]", sizeof(tmp)); | ||
3414 | goto got_name; | ||
3415 | } | ||
3416 | |||
3417 | name = strncpy(tmp, "//anon", sizeof(tmp)); | ||
3418 | goto got_name; | ||
3419 | } | ||
3420 | |||
3421 | got_name: | ||
3422 | size = ALIGN(strlen(name)+1, sizeof(u64)); | ||
3423 | |||
3424 | mmap_event->file_name = name; | ||
3425 | mmap_event->file_size = size; | ||
3426 | |||
3427 | mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; | ||
3428 | |||
3429 | cpuctx = &get_cpu_var(perf_cpu_context); | ||
3430 | perf_event_mmap_ctx(&cpuctx->ctx, mmap_event); | ||
3431 | put_cpu_var(perf_cpu_context); | ||
3432 | |||
3433 | rcu_read_lock(); | ||
3434 | /* | ||
3435 | * doesn't really matter which of the child contexts the | ||
3436 | * events ends up in. | ||
3437 | */ | ||
3438 | ctx = rcu_dereference(current->perf_event_ctxp); | ||
3439 | if (ctx) | ||
3440 | perf_event_mmap_ctx(ctx, mmap_event); | ||
3441 | rcu_read_unlock(); | ||
3442 | |||
3443 | kfree(buf); | ||
3444 | } | ||
3445 | |||
3446 | void __perf_event_mmap(struct vm_area_struct *vma) | ||
3447 | { | ||
3448 | struct perf_mmap_event mmap_event; | ||
3449 | |||
3450 | if (!atomic_read(&nr_mmap_events)) | ||
3451 | return; | ||
3452 | |||
3453 | mmap_event = (struct perf_mmap_event){ | ||
3454 | .vma = vma, | ||
3455 | /* .file_name */ | ||
3456 | /* .file_size */ | ||
3457 | .event_id = { | ||
3458 | .header = { | ||
3459 | .type = PERF_RECORD_MMAP, | ||
3460 | .misc = 0, | ||
3461 | /* .size */ | ||
3462 | }, | ||
3463 | /* .pid */ | ||
3464 | /* .tid */ | ||
3465 | .start = vma->vm_start, | ||
3466 | .len = vma->vm_end - vma->vm_start, | ||
3467 | .pgoff = vma->vm_pgoff, | ||
3468 | }, | ||
3469 | }; | ||
3470 | |||
3471 | perf_event_mmap_event(&mmap_event); | ||
3472 | } | ||
3473 | |||
3474 | /* | ||
3475 | * IRQ throttle logging | ||
3476 | */ | ||
3477 | |||
3478 | static void perf_log_throttle(struct perf_event *event, int enable) | ||
3479 | { | ||
3480 | struct perf_output_handle handle; | ||
3481 | int ret; | ||
3482 | |||
3483 | struct { | ||
3484 | struct perf_event_header header; | ||
3485 | u64 time; | ||
3486 | u64 id; | ||
3487 | u64 stream_id; | ||
3488 | } throttle_event = { | ||
3489 | .header = { | ||
3490 | .type = PERF_RECORD_THROTTLE, | ||
3491 | .misc = 0, | ||
3492 | .size = sizeof(throttle_event), | ||
3493 | }, | ||
3494 | .time = perf_clock(), | ||
3495 | .id = primary_event_id(event), | ||
3496 | .stream_id = event->id, | ||
3497 | }; | ||
3498 | |||
3499 | if (enable) | ||
3500 | throttle_event.header.type = PERF_RECORD_UNTHROTTLE; | ||
3501 | |||
3502 | ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0); | ||
3503 | if (ret) | ||
3504 | return; | ||
3505 | |||
3506 | perf_output_put(&handle, throttle_event); | ||
3507 | perf_output_end(&handle); | ||
3508 | } | ||
3509 | |||
3510 | /* | ||
3511 | * Generic event overflow handling, sampling. | ||
3512 | */ | ||
3513 | |||
3514 | static int __perf_event_overflow(struct perf_event *event, int nmi, | ||
3515 | int throttle, struct perf_sample_data *data, | ||
3516 | struct pt_regs *regs) | ||
3517 | { | ||
3518 | int events = atomic_read(&event->event_limit); | ||
3519 | struct hw_perf_event *hwc = &event->hw; | ||
3520 | int ret = 0; | ||
3521 | |||
3522 | throttle = (throttle && event->pmu->unthrottle != NULL); | ||
3523 | |||
3524 | if (!throttle) { | ||
3525 | hwc->interrupts++; | ||
3526 | } else { | ||
3527 | if (hwc->interrupts != MAX_INTERRUPTS) { | ||
3528 | hwc->interrupts++; | ||
3529 | if (HZ * hwc->interrupts > | ||
3530 | (u64)sysctl_perf_event_sample_rate) { | ||
3531 | hwc->interrupts = MAX_INTERRUPTS; | ||
3532 | perf_log_throttle(event, 0); | ||
3533 | ret = 1; | ||
3534 | } | ||
3535 | } else { | ||
3536 | /* | ||
3537 | * Keep re-disabling events even though on the previous | ||
3538 | * pass we disabled it - just in case we raced with a | ||
3539 | * sched-in and the event got enabled again: | ||
3540 | */ | ||
3541 | ret = 1; | ||
3542 | } | ||
3543 | } | ||
3544 | |||
3545 | if (event->attr.freq) { | ||
3546 | u64 now = perf_clock(); | ||
3547 | s64 delta = now - hwc->freq_stamp; | ||
3548 | |||
3549 | hwc->freq_stamp = now; | ||
3550 | |||
3551 | if (delta > 0 && delta < TICK_NSEC) | ||
3552 | perf_adjust_period(event, NSEC_PER_SEC / (int)delta); | ||
3553 | } | ||
3554 | |||
3555 | /* | ||
3556 | * XXX event_limit might not quite work as expected on inherited | ||
3557 | * events | ||
3558 | */ | ||
3559 | |||
3560 | event->pending_kill = POLL_IN; | ||
3561 | if (events && atomic_dec_and_test(&event->event_limit)) { | ||
3562 | ret = 1; | ||
3563 | event->pending_kill = POLL_HUP; | ||
3564 | if (nmi) { | ||
3565 | event->pending_disable = 1; | ||
3566 | perf_pending_queue(&event->pending, | ||
3567 | perf_pending_event); | ||
3568 | } else | ||
3569 | perf_event_disable(event); | ||
3570 | } | ||
3571 | |||
3572 | perf_event_output(event, nmi, data, regs); | ||
3573 | return ret; | ||
3574 | } | ||
3575 | |||
3576 | int perf_event_overflow(struct perf_event *event, int nmi, | ||
3577 | struct perf_sample_data *data, | ||
3578 | struct pt_regs *regs) | ||
3579 | { | ||
3580 | return __perf_event_overflow(event, nmi, 1, data, regs); | ||
3581 | } | ||
3582 | |||
3583 | /* | ||
3584 | * Generic software event infrastructure | ||
3585 | */ | ||
3586 | |||
3587 | /* | ||
3588 | * We directly increment event->count and keep a second value in | ||
3589 | * event->hw.period_left to count intervals. This period event | ||
3590 | * is kept in the range [-sample_period, 0] so that we can use the | ||
3591 | * sign as trigger. | ||
3592 | */ | ||
3593 | |||
3594 | static u64 perf_swevent_set_period(struct perf_event *event) | ||
3595 | { | ||
3596 | struct hw_perf_event *hwc = &event->hw; | ||
3597 | u64 period = hwc->last_period; | ||
3598 | u64 nr, offset; | ||
3599 | s64 old, val; | ||
3600 | |||
3601 | hwc->last_period = hwc->sample_period; | ||
3602 | |||
3603 | again: | ||
3604 | old = val = atomic64_read(&hwc->period_left); | ||
3605 | if (val < 0) | ||
3606 | return 0; | ||
3607 | |||
3608 | nr = div64_u64(period + val, period); | ||
3609 | offset = nr * period; | ||
3610 | val -= offset; | ||
3611 | if (atomic64_cmpxchg(&hwc->period_left, old, val) != old) | ||
3612 | goto again; | ||
3613 | |||
3614 | return nr; | ||
3615 | } | ||
3616 | |||
3617 | static void perf_swevent_overflow(struct perf_event *event, | ||
3618 | int nmi, struct perf_sample_data *data, | ||
3619 | struct pt_regs *regs) | ||
3620 | { | ||
3621 | struct hw_perf_event *hwc = &event->hw; | ||
3622 | int throttle = 0; | ||
3623 | u64 overflow; | ||
3624 | |||
3625 | data->period = event->hw.last_period; | ||
3626 | overflow = perf_swevent_set_period(event); | ||
3627 | |||
3628 | if (hwc->interrupts == MAX_INTERRUPTS) | ||
3629 | return; | ||
3630 | |||
3631 | for (; overflow; overflow--) { | ||
3632 | if (__perf_event_overflow(event, nmi, throttle, | ||
3633 | data, regs)) { | ||
3634 | /* | ||
3635 | * We inhibit the overflow from happening when | ||
3636 | * hwc->interrupts == MAX_INTERRUPTS. | ||
3637 | */ | ||
3638 | break; | ||
3639 | } | ||
3640 | throttle = 1; | ||
3641 | } | ||
3642 | } | ||
3643 | |||
3644 | static void perf_swevent_unthrottle(struct perf_event *event) | ||
3645 | { | ||
3646 | /* | ||
3647 | * Nothing to do, we already reset hwc->interrupts. | ||
3648 | */ | ||
3649 | } | ||
3650 | |||
3651 | static void perf_swevent_add(struct perf_event *event, u64 nr, | ||
3652 | int nmi, struct perf_sample_data *data, | ||
3653 | struct pt_regs *regs) | ||
3654 | { | ||
3655 | struct hw_perf_event *hwc = &event->hw; | ||
3656 | |||
3657 | atomic64_add(nr, &event->count); | ||
3658 | |||
3659 | if (!hwc->sample_period) | ||
3660 | return; | ||
3661 | |||
3662 | if (!regs) | ||
3663 | return; | ||
3664 | |||
3665 | if (!atomic64_add_negative(nr, &hwc->period_left)) | ||
3666 | perf_swevent_overflow(event, nmi, data, regs); | ||
3667 | } | ||
3668 | |||
3669 | static int perf_swevent_is_counting(struct perf_event *event) | ||
3670 | { | ||
3671 | /* | ||
3672 | * The event is active, we're good! | ||
3673 | */ | ||
3674 | if (event->state == PERF_EVENT_STATE_ACTIVE) | ||
3675 | return 1; | ||
3676 | |||
3677 | /* | ||
3678 | * The event is off/error, not counting. | ||
3679 | */ | ||
3680 | if (event->state != PERF_EVENT_STATE_INACTIVE) | ||
3681 | return 0; | ||
3682 | |||
3683 | /* | ||
3684 | * The event is inactive, if the context is active | ||
3685 | * we're part of a group that didn't make it on the 'pmu', | ||
3686 | * not counting. | ||
3687 | */ | ||
3688 | if (event->ctx->is_active) | ||
3689 | return 0; | ||
3690 | |||
3691 | /* | ||
3692 | * We're inactive and the context is too, this means the | ||
3693 | * task is scheduled out, we're counting events that happen | ||
3694 | * to us, like migration events. | ||
3695 | */ | ||
3696 | return 1; | ||
3697 | } | ||
3698 | |||
3699 | static int perf_swevent_match(struct perf_event *event, | ||
3700 | enum perf_type_id type, | ||
3701 | u32 event_id, struct pt_regs *regs) | ||
3702 | { | ||
3703 | if (!perf_swevent_is_counting(event)) | ||
3704 | return 0; | ||
3705 | |||
3706 | if (event->attr.type != type) | ||
3707 | return 0; | ||
3708 | if (event->attr.config != event_id) | ||
3709 | return 0; | ||
3710 | |||
3711 | if (regs) { | ||
3712 | if (event->attr.exclude_user && user_mode(regs)) | ||
3713 | return 0; | ||
3714 | |||
3715 | if (event->attr.exclude_kernel && !user_mode(regs)) | ||
3716 | return 0; | ||
3717 | } | ||
3718 | |||
3719 | return 1; | ||
3720 | } | ||
3721 | |||
3722 | static void perf_swevent_ctx_event(struct perf_event_context *ctx, | ||
3723 | enum perf_type_id type, | ||
3724 | u32 event_id, u64 nr, int nmi, | ||
3725 | struct perf_sample_data *data, | ||
3726 | struct pt_regs *regs) | ||
3727 | { | ||
3728 | struct perf_event *event; | ||
3729 | |||
3730 | if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list)) | ||
3731 | return; | ||
3732 | |||
3733 | rcu_read_lock(); | ||
3734 | list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { | ||
3735 | if (perf_swevent_match(event, type, event_id, regs)) | ||
3736 | perf_swevent_add(event, nr, nmi, data, regs); | ||
3737 | } | ||
3738 | rcu_read_unlock(); | ||
3739 | } | ||
3740 | |||
3741 | static int *perf_swevent_recursion_context(struct perf_cpu_context *cpuctx) | ||
3742 | { | ||
3743 | if (in_nmi()) | ||
3744 | return &cpuctx->recursion[3]; | ||
3745 | |||
3746 | if (in_irq()) | ||
3747 | return &cpuctx->recursion[2]; | ||
3748 | |||
3749 | if (in_softirq()) | ||
3750 | return &cpuctx->recursion[1]; | ||
3751 | |||
3752 | return &cpuctx->recursion[0]; | ||
3753 | } | ||
3754 | |||
3755 | static void do_perf_sw_event(enum perf_type_id type, u32 event_id, | ||
3756 | u64 nr, int nmi, | ||
3757 | struct perf_sample_data *data, | ||
3758 | struct pt_regs *regs) | ||
3759 | { | ||
3760 | struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context); | ||
3761 | int *recursion = perf_swevent_recursion_context(cpuctx); | ||
3762 | struct perf_event_context *ctx; | ||
3763 | |||
3764 | if (*recursion) | ||
3765 | goto out; | ||
3766 | |||
3767 | (*recursion)++; | ||
3768 | barrier(); | ||
3769 | |||
3770 | perf_swevent_ctx_event(&cpuctx->ctx, type, event_id, | ||
3771 | nr, nmi, data, regs); | ||
3772 | rcu_read_lock(); | ||
3773 | /* | ||
3774 | * doesn't really matter which of the child contexts the | ||
3775 | * events ends up in. | ||
3776 | */ | ||
3777 | ctx = rcu_dereference(current->perf_event_ctxp); | ||
3778 | if (ctx) | ||
3779 | perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs); | ||
3780 | rcu_read_unlock(); | ||
3781 | |||
3782 | barrier(); | ||
3783 | (*recursion)--; | ||
3784 | |||
3785 | out: | ||
3786 | put_cpu_var(perf_cpu_context); | ||
3787 | } | ||
3788 | |||
3789 | void __perf_sw_event(u32 event_id, u64 nr, int nmi, | ||
3790 | struct pt_regs *regs, u64 addr) | ||
3791 | { | ||
3792 | struct perf_sample_data data = { | ||
3793 | .addr = addr, | ||
3794 | }; | ||
3795 | |||
3796 | do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, | ||
3797 | &data, regs); | ||
3798 | } | ||
3799 | |||
3800 | static void perf_swevent_read(struct perf_event *event) | ||
3801 | { | ||
3802 | } | ||
3803 | |||
3804 | static int perf_swevent_enable(struct perf_event *event) | ||
3805 | { | ||
3806 | struct hw_perf_event *hwc = &event->hw; | ||
3807 | |||
3808 | if (hwc->sample_period) { | ||
3809 | hwc->last_period = hwc->sample_period; | ||
3810 | perf_swevent_set_period(event); | ||
3811 | } | ||
3812 | return 0; | ||
3813 | } | ||
3814 | |||
3815 | static void perf_swevent_disable(struct perf_event *event) | ||
3816 | { | ||
3817 | } | ||
3818 | |||
3819 | static const struct pmu perf_ops_generic = { | ||
3820 | .enable = perf_swevent_enable, | ||
3821 | .disable = perf_swevent_disable, | ||
3822 | .read = perf_swevent_read, | ||
3823 | .unthrottle = perf_swevent_unthrottle, | ||
3824 | }; | ||
3825 | |||
3826 | /* | ||
3827 | * hrtimer based swevent callback | ||
3828 | */ | ||
3829 | |||
3830 | static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) | ||
3831 | { | ||
3832 | enum hrtimer_restart ret = HRTIMER_RESTART; | ||
3833 | struct perf_sample_data data; | ||
3834 | struct pt_regs *regs; | ||
3835 | struct perf_event *event; | ||
3836 | u64 period; | ||
3837 | |||
3838 | event = container_of(hrtimer, struct perf_event, hw.hrtimer); | ||
3839 | event->pmu->read(event); | ||
3840 | |||
3841 | data.addr = 0; | ||
3842 | regs = get_irq_regs(); | ||
3843 | /* | ||
3844 | * In case we exclude kernel IPs or are somehow not in interrupt | ||
3845 | * context, provide the next best thing, the user IP. | ||
3846 | */ | ||
3847 | if ((event->attr.exclude_kernel || !regs) && | ||
3848 | !event->attr.exclude_user) | ||
3849 | regs = task_pt_regs(current); | ||
3850 | |||
3851 | if (regs) { | ||
3852 | if (perf_event_overflow(event, 0, &data, regs)) | ||
3853 | ret = HRTIMER_NORESTART; | ||
3854 | } | ||
3855 | |||
3856 | period = max_t(u64, 10000, event->hw.sample_period); | ||
3857 | hrtimer_forward_now(hrtimer, ns_to_ktime(period)); | ||
3858 | |||
3859 | return ret; | ||
3860 | } | ||
3861 | |||
3862 | /* | ||
3863 | * Software event: cpu wall time clock | ||
3864 | */ | ||
3865 | |||
3866 | static void cpu_clock_perf_event_update(struct perf_event *event) | ||
3867 | { | ||
3868 | int cpu = raw_smp_processor_id(); | ||
3869 | s64 prev; | ||
3870 | u64 now; | ||
3871 | |||
3872 | now = cpu_clock(cpu); | ||
3873 | prev = atomic64_read(&event->hw.prev_count); | ||
3874 | atomic64_set(&event->hw.prev_count, now); | ||
3875 | atomic64_add(now - prev, &event->count); | ||
3876 | } | ||
3877 | |||
3878 | static int cpu_clock_perf_event_enable(struct perf_event *event) | ||
3879 | { | ||
3880 | struct hw_perf_event *hwc = &event->hw; | ||
3881 | int cpu = raw_smp_processor_id(); | ||
3882 | |||
3883 | atomic64_set(&hwc->prev_count, cpu_clock(cpu)); | ||
3884 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
3885 | hwc->hrtimer.function = perf_swevent_hrtimer; | ||
3886 | if (hwc->sample_period) { | ||
3887 | u64 period = max_t(u64, 10000, hwc->sample_period); | ||
3888 | __hrtimer_start_range_ns(&hwc->hrtimer, | ||
3889 | ns_to_ktime(period), 0, | ||
3890 | HRTIMER_MODE_REL, 0); | ||
3891 | } | ||
3892 | |||
3893 | return 0; | ||
3894 | } | ||
3895 | |||
3896 | static void cpu_clock_perf_event_disable(struct perf_event *event) | ||
3897 | { | ||
3898 | if (event->hw.sample_period) | ||
3899 | hrtimer_cancel(&event->hw.hrtimer); | ||
3900 | cpu_clock_perf_event_update(event); | ||
3901 | } | ||
3902 | |||
3903 | static void cpu_clock_perf_event_read(struct perf_event *event) | ||
3904 | { | ||
3905 | cpu_clock_perf_event_update(event); | ||
3906 | } | ||
3907 | |||
3908 | static const struct pmu perf_ops_cpu_clock = { | ||
3909 | .enable = cpu_clock_perf_event_enable, | ||
3910 | .disable = cpu_clock_perf_event_disable, | ||
3911 | .read = cpu_clock_perf_event_read, | ||
3912 | }; | ||
3913 | |||
3914 | /* | ||
3915 | * Software event: task time clock | ||
3916 | */ | ||
3917 | |||
3918 | static void task_clock_perf_event_update(struct perf_event *event, u64 now) | ||
3919 | { | ||
3920 | u64 prev; | ||
3921 | s64 delta; | ||
3922 | |||
3923 | prev = atomic64_xchg(&event->hw.prev_count, now); | ||
3924 | delta = now - prev; | ||
3925 | atomic64_add(delta, &event->count); | ||
3926 | } | ||
3927 | |||
3928 | static int task_clock_perf_event_enable(struct perf_event *event) | ||
3929 | { | ||
3930 | struct hw_perf_event *hwc = &event->hw; | ||
3931 | u64 now; | ||
3932 | |||
3933 | now = event->ctx->time; | ||
3934 | |||
3935 | atomic64_set(&hwc->prev_count, now); | ||
3936 | hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | ||
3937 | hwc->hrtimer.function = perf_swevent_hrtimer; | ||
3938 | if (hwc->sample_period) { | ||
3939 | u64 period = max_t(u64, 10000, hwc->sample_period); | ||
3940 | __hrtimer_start_range_ns(&hwc->hrtimer, | ||
3941 | ns_to_ktime(period), 0, | ||
3942 | HRTIMER_MODE_REL, 0); | ||
3943 | } | ||
3944 | |||
3945 | return 0; | ||
3946 | } | ||
3947 | |||
3948 | static void task_clock_perf_event_disable(struct perf_event *event) | ||
3949 | { | ||
3950 | if (event->hw.sample_period) | ||
3951 | hrtimer_cancel(&event->hw.hrtimer); | ||
3952 | task_clock_perf_event_update(event, event->ctx->time); | ||
3953 | |||
3954 | } | ||
3955 | |||
3956 | static void task_clock_perf_event_read(struct perf_event *event) | ||
3957 | { | ||
3958 | u64 time; | ||
3959 | |||
3960 | if (!in_nmi()) { | ||
3961 | update_context_time(event->ctx); | ||
3962 | time = event->ctx->time; | ||
3963 | } else { | ||
3964 | u64 now = perf_clock(); | ||
3965 | u64 delta = now - event->ctx->timestamp; | ||
3966 | time = event->ctx->time + delta; | ||
3967 | } | ||
3968 | |||
3969 | task_clock_perf_event_update(event, time); | ||
3970 | } | ||
3971 | |||
3972 | static const struct pmu perf_ops_task_clock = { | ||
3973 | .enable = task_clock_perf_event_enable, | ||
3974 | .disable = task_clock_perf_event_disable, | ||
3975 | .read = task_clock_perf_event_read, | ||
3976 | }; | ||
3977 | |||
3978 | #ifdef CONFIG_EVENT_PROFILE | ||
3979 | void perf_tp_event(int event_id, u64 addr, u64 count, void *record, | ||
3980 | int entry_size) | ||
3981 | { | ||
3982 | struct perf_raw_record raw = { | ||
3983 | .size = entry_size, | ||
3984 | .data = record, | ||
3985 | }; | ||
3986 | |||
3987 | struct perf_sample_data data = { | ||
3988 | .addr = addr, | ||
3989 | .raw = &raw, | ||
3990 | }; | ||
3991 | |||
3992 | struct pt_regs *regs = get_irq_regs(); | ||
3993 | |||
3994 | if (!regs) | ||
3995 | regs = task_pt_regs(current); | ||
3996 | |||
3997 | do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1, | ||
3998 | &data, regs); | ||
3999 | } | ||
4000 | EXPORT_SYMBOL_GPL(perf_tp_event); | ||
4001 | |||
4002 | extern int ftrace_profile_enable(int); | ||
4003 | extern void ftrace_profile_disable(int); | ||
4004 | |||
4005 | static void tp_perf_event_destroy(struct perf_event *event) | ||
4006 | { | ||
4007 | ftrace_profile_disable(event->attr.config); | ||
4008 | } | ||
4009 | |||
4010 | static const struct pmu *tp_perf_event_init(struct perf_event *event) | ||
4011 | { | ||
4012 | /* | ||
4013 | * Raw tracepoint data is a severe data leak, only allow root to | ||
4014 | * have these. | ||
4015 | */ | ||
4016 | if ((event->attr.sample_type & PERF_SAMPLE_RAW) && | ||
4017 | perf_paranoid_tracepoint_raw() && | ||
4018 | !capable(CAP_SYS_ADMIN)) | ||
4019 | return ERR_PTR(-EPERM); | ||
4020 | |||
4021 | if (ftrace_profile_enable(event->attr.config)) | ||
4022 | return NULL; | ||
4023 | |||
4024 | event->destroy = tp_perf_event_destroy; | ||
4025 | |||
4026 | return &perf_ops_generic; | ||
4027 | } | ||
4028 | #else | ||
4029 | static const struct pmu *tp_perf_event_init(struct perf_event *event) | ||
4030 | { | ||
4031 | return NULL; | ||
4032 | } | ||
4033 | #endif | ||
4034 | |||
4035 | atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX]; | ||
4036 | |||
4037 | static void sw_perf_event_destroy(struct perf_event *event) | ||
4038 | { | ||
4039 | u64 event_id = event->attr.config; | ||
4040 | |||
4041 | WARN_ON(event->parent); | ||
4042 | |||
4043 | atomic_dec(&perf_swevent_enabled[event_id]); | ||
4044 | } | ||
4045 | |||
4046 | static const struct pmu *sw_perf_event_init(struct perf_event *event) | ||
4047 | { | ||
4048 | const struct pmu *pmu = NULL; | ||
4049 | u64 event_id = event->attr.config; | ||
4050 | |||
4051 | /* | ||
4052 | * Software events (currently) can't in general distinguish | ||
4053 | * between user, kernel and hypervisor events. | ||
4054 | * However, context switches and cpu migrations are considered | ||
4055 | * to be kernel events, and page faults are never hypervisor | ||
4056 | * events. | ||
4057 | */ | ||
4058 | switch (event_id) { | ||
4059 | case PERF_COUNT_SW_CPU_CLOCK: | ||
4060 | pmu = &perf_ops_cpu_clock; | ||
4061 | |||
4062 | break; | ||
4063 | case PERF_COUNT_SW_TASK_CLOCK: | ||
4064 | /* | ||
4065 | * If the user instantiates this as a per-cpu event, | ||
4066 | * use the cpu_clock event instead. | ||
4067 | */ | ||
4068 | if (event->ctx->task) | ||
4069 | pmu = &perf_ops_task_clock; | ||
4070 | else | ||
4071 | pmu = &perf_ops_cpu_clock; | ||
4072 | |||
4073 | break; | ||
4074 | case PERF_COUNT_SW_PAGE_FAULTS: | ||
4075 | case PERF_COUNT_SW_PAGE_FAULTS_MIN: | ||
4076 | case PERF_COUNT_SW_PAGE_FAULTS_MAJ: | ||
4077 | case PERF_COUNT_SW_CONTEXT_SWITCHES: | ||
4078 | case PERF_COUNT_SW_CPU_MIGRATIONS: | ||
4079 | if (!event->parent) { | ||
4080 | atomic_inc(&perf_swevent_enabled[event_id]); | ||
4081 | event->destroy = sw_perf_event_destroy; | ||
4082 | } | ||
4083 | pmu = &perf_ops_generic; | ||
4084 | break; | ||
4085 | } | ||
4086 | |||
4087 | return pmu; | ||
4088 | } | ||
4089 | |||
4090 | /* | ||
4091 | * Allocate and initialize a event structure | ||
4092 | */ | ||
4093 | static struct perf_event * | ||
4094 | perf_event_alloc(struct perf_event_attr *attr, | ||
4095 | int cpu, | ||
4096 | struct perf_event_context *ctx, | ||
4097 | struct perf_event *group_leader, | ||
4098 | struct perf_event *parent_event, | ||
4099 | gfp_t gfpflags) | ||
4100 | { | ||
4101 | const struct pmu *pmu; | ||
4102 | struct perf_event *event; | ||
4103 | struct hw_perf_event *hwc; | ||
4104 | long err; | ||
4105 | |||
4106 | event = kzalloc(sizeof(*event), gfpflags); | ||
4107 | if (!event) | ||
4108 | return ERR_PTR(-ENOMEM); | ||
4109 | |||
4110 | /* | ||
4111 | * Single events are their own group leaders, with an | ||
4112 | * empty sibling list: | ||
4113 | */ | ||
4114 | if (!group_leader) | ||
4115 | group_leader = event; | ||
4116 | |||
4117 | mutex_init(&event->child_mutex); | ||
4118 | INIT_LIST_HEAD(&event->child_list); | ||
4119 | |||
4120 | INIT_LIST_HEAD(&event->group_entry); | ||
4121 | INIT_LIST_HEAD(&event->event_entry); | ||
4122 | INIT_LIST_HEAD(&event->sibling_list); | ||
4123 | init_waitqueue_head(&event->waitq); | ||
4124 | |||
4125 | mutex_init(&event->mmap_mutex); | ||
4126 | |||
4127 | event->cpu = cpu; | ||
4128 | event->attr = *attr; | ||
4129 | event->group_leader = group_leader; | ||
4130 | event->pmu = NULL; | ||
4131 | event->ctx = ctx; | ||
4132 | event->oncpu = -1; | ||
4133 | |||
4134 | event->parent = parent_event; | ||
4135 | |||
4136 | event->ns = get_pid_ns(current->nsproxy->pid_ns); | ||
4137 | event->id = atomic64_inc_return(&perf_event_id); | ||
4138 | |||
4139 | event->state = PERF_EVENT_STATE_INACTIVE; | ||
4140 | |||
4141 | if (attr->disabled) | ||
4142 | event->state = PERF_EVENT_STATE_OFF; | ||
4143 | |||
4144 | pmu = NULL; | ||
4145 | |||
4146 | hwc = &event->hw; | ||
4147 | hwc->sample_period = attr->sample_period; | ||
4148 | if (attr->freq && attr->sample_freq) | ||
4149 | hwc->sample_period = 1; | ||
4150 | hwc->last_period = hwc->sample_period; | ||
4151 | |||
4152 | atomic64_set(&hwc->period_left, hwc->sample_period); | ||
4153 | |||
4154 | /* | ||
4155 | * we currently do not support PERF_FORMAT_GROUP on inherited events | ||
4156 | */ | ||
4157 | if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) | ||
4158 | goto done; | ||
4159 | |||
4160 | switch (attr->type) { | ||
4161 | case PERF_TYPE_RAW: | ||
4162 | case PERF_TYPE_HARDWARE: | ||
4163 | case PERF_TYPE_HW_CACHE: | ||
4164 | pmu = hw_perf_event_init(event); | ||
4165 | break; | ||
4166 | |||
4167 | case PERF_TYPE_SOFTWARE: | ||
4168 | pmu = sw_perf_event_init(event); | ||
4169 | break; | ||
4170 | |||
4171 | case PERF_TYPE_TRACEPOINT: | ||
4172 | pmu = tp_perf_event_init(event); | ||
4173 | break; | ||
4174 | |||
4175 | default: | ||
4176 | break; | ||
4177 | } | ||
4178 | done: | ||
4179 | err = 0; | ||
4180 | if (!pmu) | ||
4181 | err = -EINVAL; | ||
4182 | else if (IS_ERR(pmu)) | ||
4183 | err = PTR_ERR(pmu); | ||
4184 | |||
4185 | if (err) { | ||
4186 | if (event->ns) | ||
4187 | put_pid_ns(event->ns); | ||
4188 | kfree(event); | ||
4189 | return ERR_PTR(err); | ||
4190 | } | ||
4191 | |||
4192 | event->pmu = pmu; | ||
4193 | |||
4194 | if (!event->parent) { | ||
4195 | atomic_inc(&nr_events); | ||
4196 | if (event->attr.mmap) | ||
4197 | atomic_inc(&nr_mmap_events); | ||
4198 | if (event->attr.comm) | ||
4199 | atomic_inc(&nr_comm_events); | ||
4200 | if (event->attr.task) | ||
4201 | atomic_inc(&nr_task_events); | ||
4202 | } | ||
4203 | |||
4204 | return event; | ||
4205 | } | ||
4206 | |||
4207 | static int perf_copy_attr(struct perf_event_attr __user *uattr, | ||
4208 | struct perf_event_attr *attr) | ||
4209 | { | ||
4210 | u32 size; | ||
4211 | int ret; | ||
4212 | |||
4213 | if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) | ||
4214 | return -EFAULT; | ||
4215 | |||
4216 | /* | ||
4217 | * zero the full structure, so that a short copy will be nice. | ||
4218 | */ | ||
4219 | memset(attr, 0, sizeof(*attr)); | ||
4220 | |||
4221 | ret = get_user(size, &uattr->size); | ||
4222 | if (ret) | ||
4223 | return ret; | ||
4224 | |||
4225 | if (size > PAGE_SIZE) /* silly large */ | ||
4226 | goto err_size; | ||
4227 | |||
4228 | if (!size) /* abi compat */ | ||
4229 | size = PERF_ATTR_SIZE_VER0; | ||
4230 | |||
4231 | if (size < PERF_ATTR_SIZE_VER0) | ||
4232 | goto err_size; | ||
4233 | |||
4234 | /* | ||
4235 | * If we're handed a bigger struct than we know of, | ||
4236 | * ensure all the unknown bits are 0 - i.e. new | ||
4237 | * user-space does not rely on any kernel feature | ||
4238 | * extensions we dont know about yet. | ||
4239 | */ | ||
4240 | if (size > sizeof(*attr)) { | ||
4241 | unsigned char __user *addr; | ||
4242 | unsigned char __user *end; | ||
4243 | unsigned char val; | ||
4244 | |||
4245 | addr = (void __user *)uattr + sizeof(*attr); | ||
4246 | end = (void __user *)uattr + size; | ||
4247 | |||
4248 | for (; addr < end; addr++) { | ||
4249 | ret = get_user(val, addr); | ||
4250 | if (ret) | ||
4251 | return ret; | ||
4252 | if (val) | ||
4253 | goto err_size; | ||
4254 | } | ||
4255 | size = sizeof(*attr); | ||
4256 | } | ||
4257 | |||
4258 | ret = copy_from_user(attr, uattr, size); | ||
4259 | if (ret) | ||
4260 | return -EFAULT; | ||
4261 | |||
4262 | /* | ||
4263 | * If the type exists, the corresponding creation will verify | ||
4264 | * the attr->config. | ||
4265 | */ | ||
4266 | if (attr->type >= PERF_TYPE_MAX) | ||
4267 | return -EINVAL; | ||
4268 | |||
4269 | if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) | ||
4270 | return -EINVAL; | ||
4271 | |||
4272 | if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) | ||
4273 | return -EINVAL; | ||
4274 | |||
4275 | if (attr->read_format & ~(PERF_FORMAT_MAX-1)) | ||
4276 | return -EINVAL; | ||
4277 | |||
4278 | out: | ||
4279 | return ret; | ||
4280 | |||
4281 | err_size: | ||
4282 | put_user(sizeof(*attr), &uattr->size); | ||
4283 | ret = -E2BIG; | ||
4284 | goto out; | ||
4285 | } | ||
4286 | |||
4287 | int perf_event_set_output(struct perf_event *event, int output_fd) | ||
4288 | { | ||
4289 | struct perf_event *output_event = NULL; | ||
4290 | struct file *output_file = NULL; | ||
4291 | struct perf_event *old_output; | ||
4292 | int fput_needed = 0; | ||
4293 | int ret = -EINVAL; | ||
4294 | |||
4295 | if (!output_fd) | ||
4296 | goto set; | ||
4297 | |||
4298 | output_file = fget_light(output_fd, &fput_needed); | ||
4299 | if (!output_file) | ||
4300 | return -EBADF; | ||
4301 | |||
4302 | if (output_file->f_op != &perf_fops) | ||
4303 | goto out; | ||
4304 | |||
4305 | output_event = output_file->private_data; | ||
4306 | |||
4307 | /* Don't chain output fds */ | ||
4308 | if (output_event->output) | ||
4309 | goto out; | ||
4310 | |||
4311 | /* Don't set an output fd when we already have an output channel */ | ||
4312 | if (event->data) | ||
4313 | goto out; | ||
4314 | |||
4315 | atomic_long_inc(&output_file->f_count); | ||
4316 | |||
4317 | set: | ||
4318 | mutex_lock(&event->mmap_mutex); | ||
4319 | old_output = event->output; | ||
4320 | rcu_assign_pointer(event->output, output_event); | ||
4321 | mutex_unlock(&event->mmap_mutex); | ||
4322 | |||
4323 | if (old_output) { | ||
4324 | /* | ||
4325 | * we need to make sure no existing perf_output_*() | ||
4326 | * is still referencing this event. | ||
4327 | */ | ||
4328 | synchronize_rcu(); | ||
4329 | fput(old_output->filp); | ||
4330 | } | ||
4331 | |||
4332 | ret = 0; | ||
4333 | out: | ||
4334 | fput_light(output_file, fput_needed); | ||
4335 | return ret; | ||
4336 | } | ||
4337 | |||
4338 | /** | ||
4339 | * sys_perf_event_open - open a performance event, associate it to a task/cpu | ||
4340 | * | ||
4341 | * @attr_uptr: event_id type attributes for monitoring/sampling | ||
4342 | * @pid: target pid | ||
4343 | * @cpu: target cpu | ||
4344 | * @group_fd: group leader event fd | ||
4345 | */ | ||
4346 | SYSCALL_DEFINE5(perf_event_open, | ||
4347 | struct perf_event_attr __user *, attr_uptr, | ||
4348 | pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) | ||
4349 | { | ||
4350 | struct perf_event *event, *group_leader; | ||
4351 | struct perf_event_attr attr; | ||
4352 | struct perf_event_context *ctx; | ||
4353 | struct file *event_file = NULL; | ||
4354 | struct file *group_file = NULL; | ||
4355 | int fput_needed = 0; | ||
4356 | int fput_needed2 = 0; | ||
4357 | int err; | ||
4358 | |||
4359 | /* for future expandability... */ | ||
4360 | if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT)) | ||
4361 | return -EINVAL; | ||
4362 | |||
4363 | err = perf_copy_attr(attr_uptr, &attr); | ||
4364 | if (err) | ||
4365 | return err; | ||
4366 | |||
4367 | if (!attr.exclude_kernel) { | ||
4368 | if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) | ||
4369 | return -EACCES; | ||
4370 | } | ||
4371 | |||
4372 | if (attr.freq) { | ||
4373 | if (attr.sample_freq > sysctl_perf_event_sample_rate) | ||
4374 | return -EINVAL; | ||
4375 | } | ||
4376 | |||
4377 | /* | ||
4378 | * Get the target context (task or percpu): | ||
4379 | */ | ||
4380 | ctx = find_get_context(pid, cpu); | ||
4381 | if (IS_ERR(ctx)) | ||
4382 | return PTR_ERR(ctx); | ||
4383 | |||
4384 | /* | ||
4385 | * Look up the group leader (we will attach this event to it): | ||
4386 | */ | ||
4387 | group_leader = NULL; | ||
4388 | if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) { | ||
4389 | err = -EINVAL; | ||
4390 | group_file = fget_light(group_fd, &fput_needed); | ||
4391 | if (!group_file) | ||
4392 | goto err_put_context; | ||
4393 | if (group_file->f_op != &perf_fops) | ||
4394 | goto err_put_context; | ||
4395 | |||
4396 | group_leader = group_file->private_data; | ||
4397 | /* | ||
4398 | * Do not allow a recursive hierarchy (this new sibling | ||
4399 | * becoming part of another group-sibling): | ||
4400 | */ | ||
4401 | if (group_leader->group_leader != group_leader) | ||
4402 | goto err_put_context; | ||
4403 | /* | ||
4404 | * Do not allow to attach to a group in a different | ||
4405 | * task or CPU context: | ||
4406 | */ | ||
4407 | if (group_leader->ctx != ctx) | ||
4408 | goto err_put_context; | ||
4409 | /* | ||
4410 | * Only a group leader can be exclusive or pinned | ||
4411 | */ | ||
4412 | if (attr.exclusive || attr.pinned) | ||
4413 | goto err_put_context; | ||
4414 | } | ||
4415 | |||
4416 | event = perf_event_alloc(&attr, cpu, ctx, group_leader, | ||
4417 | NULL, GFP_KERNEL); | ||
4418 | err = PTR_ERR(event); | ||
4419 | if (IS_ERR(event)) | ||
4420 | goto err_put_context; | ||
4421 | |||
4422 | err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0); | ||
4423 | if (err < 0) | ||
4424 | goto err_free_put_context; | ||
4425 | |||
4426 | event_file = fget_light(err, &fput_needed2); | ||
4427 | if (!event_file) | ||
4428 | goto err_free_put_context; | ||
4429 | |||
4430 | if (flags & PERF_FLAG_FD_OUTPUT) { | ||
4431 | err = perf_event_set_output(event, group_fd); | ||
4432 | if (err) | ||
4433 | goto err_fput_free_put_context; | ||
4434 | } | ||
4435 | |||
4436 | event->filp = event_file; | ||
4437 | WARN_ON_ONCE(ctx->parent_ctx); | ||
4438 | mutex_lock(&ctx->mutex); | ||
4439 | perf_install_in_context(ctx, event, cpu); | ||
4440 | ++ctx->generation; | ||
4441 | mutex_unlock(&ctx->mutex); | ||
4442 | |||
4443 | event->owner = current; | ||
4444 | get_task_struct(current); | ||
4445 | mutex_lock(¤t->perf_event_mutex); | ||
4446 | list_add_tail(&event->owner_entry, ¤t->perf_event_list); | ||
4447 | mutex_unlock(¤t->perf_event_mutex); | ||
4448 | |||
4449 | err_fput_free_put_context: | ||
4450 | fput_light(event_file, fput_needed2); | ||
4451 | |||
4452 | err_free_put_context: | ||
4453 | if (err < 0) | ||
4454 | kfree(event); | ||
4455 | |||
4456 | err_put_context: | ||
4457 | if (err < 0) | ||
4458 | put_ctx(ctx); | ||
4459 | |||
4460 | fput_light(group_file, fput_needed); | ||
4461 | |||
4462 | return err; | ||
4463 | } | ||
4464 | |||
4465 | /* | ||
4466 | * inherit a event from parent task to child task: | ||
4467 | */ | ||
4468 | static struct perf_event * | ||
4469 | inherit_event(struct perf_event *parent_event, | ||
4470 | struct task_struct *parent, | ||
4471 | struct perf_event_context *parent_ctx, | ||
4472 | struct task_struct *child, | ||
4473 | struct perf_event *group_leader, | ||
4474 | struct perf_event_context *child_ctx) | ||
4475 | { | ||
4476 | struct perf_event *child_event; | ||
4477 | |||
4478 | /* | ||
4479 | * Instead of creating recursive hierarchies of events, | ||
4480 | * we link inherited events back to the original parent, | ||
4481 | * which has a filp for sure, which we use as the reference | ||
4482 | * count: | ||
4483 | */ | ||
4484 | if (parent_event->parent) | ||
4485 | parent_event = parent_event->parent; | ||
4486 | |||
4487 | child_event = perf_event_alloc(&parent_event->attr, | ||
4488 | parent_event->cpu, child_ctx, | ||
4489 | group_leader, parent_event, | ||
4490 | GFP_KERNEL); | ||
4491 | if (IS_ERR(child_event)) | ||
4492 | return child_event; | ||
4493 | get_ctx(child_ctx); | ||
4494 | |||
4495 | /* | ||
4496 | * Make the child state follow the state of the parent event, | ||
4497 | * not its attr.disabled bit. We hold the parent's mutex, | ||
4498 | * so we won't race with perf_event_{en, dis}able_family. | ||
4499 | */ | ||
4500 | if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) | ||
4501 | child_event->state = PERF_EVENT_STATE_INACTIVE; | ||
4502 | else | ||
4503 | child_event->state = PERF_EVENT_STATE_OFF; | ||
4504 | |||
4505 | if (parent_event->attr.freq) | ||
4506 | child_event->hw.sample_period = parent_event->hw.sample_period; | ||
4507 | |||
4508 | /* | ||
4509 | * Link it up in the child's context: | ||
4510 | */ | ||
4511 | add_event_to_ctx(child_event, child_ctx); | ||
4512 | |||
4513 | /* | ||
4514 | * Get a reference to the parent filp - we will fput it | ||
4515 | * when the child event exits. This is safe to do because | ||
4516 | * we are in the parent and we know that the filp still | ||
4517 | * exists and has a nonzero count: | ||
4518 | */ | ||
4519 | atomic_long_inc(&parent_event->filp->f_count); | ||
4520 | |||
4521 | /* | ||
4522 | * Link this into the parent event's child list | ||
4523 | */ | ||
4524 | WARN_ON_ONCE(parent_event->ctx->parent_ctx); | ||
4525 | mutex_lock(&parent_event->child_mutex); | ||
4526 | list_add_tail(&child_event->child_list, &parent_event->child_list); | ||
4527 | mutex_unlock(&parent_event->child_mutex); | ||
4528 | |||
4529 | return child_event; | ||
4530 | } | ||
4531 | |||
4532 | static int inherit_group(struct perf_event *parent_event, | ||
4533 | struct task_struct *parent, | ||
4534 | struct perf_event_context *parent_ctx, | ||
4535 | struct task_struct *child, | ||
4536 | struct perf_event_context *child_ctx) | ||
4537 | { | ||
4538 | struct perf_event *leader; | ||
4539 | struct perf_event *sub; | ||
4540 | struct perf_event *child_ctr; | ||
4541 | |||
4542 | leader = inherit_event(parent_event, parent, parent_ctx, | ||
4543 | child, NULL, child_ctx); | ||
4544 | if (IS_ERR(leader)) | ||
4545 | return PTR_ERR(leader); | ||
4546 | list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { | ||
4547 | child_ctr = inherit_event(sub, parent, parent_ctx, | ||
4548 | child, leader, child_ctx); | ||
4549 | if (IS_ERR(child_ctr)) | ||
4550 | return PTR_ERR(child_ctr); | ||
4551 | } | ||
4552 | return 0; | ||
4553 | } | ||
4554 | |||
4555 | static void sync_child_event(struct perf_event *child_event, | ||
4556 | struct task_struct *child) | ||
4557 | { | ||
4558 | struct perf_event *parent_event = child_event->parent; | ||
4559 | u64 child_val; | ||
4560 | |||
4561 | if (child_event->attr.inherit_stat) | ||
4562 | perf_event_read_event(child_event, child); | ||
4563 | |||
4564 | child_val = atomic64_read(&child_event->count); | ||
4565 | |||
4566 | /* | ||
4567 | * Add back the child's count to the parent's count: | ||
4568 | */ | ||
4569 | atomic64_add(child_val, &parent_event->count); | ||
4570 | atomic64_add(child_event->total_time_enabled, | ||
4571 | &parent_event->child_total_time_enabled); | ||
4572 | atomic64_add(child_event->total_time_running, | ||
4573 | &parent_event->child_total_time_running); | ||
4574 | |||
4575 | /* | ||
4576 | * Remove this event from the parent's list | ||
4577 | */ | ||
4578 | WARN_ON_ONCE(parent_event->ctx->parent_ctx); | ||
4579 | mutex_lock(&parent_event->child_mutex); | ||
4580 | list_del_init(&child_event->child_list); | ||
4581 | mutex_unlock(&parent_event->child_mutex); | ||
4582 | |||
4583 | /* | ||
4584 | * Release the parent event, if this was the last | ||
4585 | * reference to it. | ||
4586 | */ | ||
4587 | fput(parent_event->filp); | ||
4588 | } | ||
4589 | |||
4590 | static void | ||
4591 | __perf_event_exit_task(struct perf_event *child_event, | ||
4592 | struct perf_event_context *child_ctx, | ||
4593 | struct task_struct *child) | ||
4594 | { | ||
4595 | struct perf_event *parent_event; | ||
4596 | |||
4597 | update_event_times(child_event); | ||
4598 | perf_event_remove_from_context(child_event); | ||
4599 | |||
4600 | parent_event = child_event->parent; | ||
4601 | /* | ||
4602 | * It can happen that parent exits first, and has events | ||
4603 | * that are still around due to the child reference. These | ||
4604 | * events need to be zapped - but otherwise linger. | ||
4605 | */ | ||
4606 | if (parent_event) { | ||
4607 | sync_child_event(child_event, child); | ||
4608 | free_event(child_event); | ||
4609 | } | ||
4610 | } | ||
4611 | |||
4612 | /* | ||
4613 | * When a child task exits, feed back event values to parent events. | ||
4614 | */ | ||
4615 | void perf_event_exit_task(struct task_struct *child) | ||
4616 | { | ||
4617 | struct perf_event *child_event, *tmp; | ||
4618 | struct perf_event_context *child_ctx; | ||
4619 | unsigned long flags; | ||
4620 | |||
4621 | if (likely(!child->perf_event_ctxp)) { | ||
4622 | perf_event_task(child, NULL, 0); | ||
4623 | return; | ||
4624 | } | ||
4625 | |||
4626 | local_irq_save(flags); | ||
4627 | /* | ||
4628 | * We can't reschedule here because interrupts are disabled, | ||
4629 | * and either child is current or it is a task that can't be | ||
4630 | * scheduled, so we are now safe from rescheduling changing | ||
4631 | * our context. | ||
4632 | */ | ||
4633 | child_ctx = child->perf_event_ctxp; | ||
4634 | __perf_event_task_sched_out(child_ctx); | ||
4635 | |||
4636 | /* | ||
4637 | * Take the context lock here so that if find_get_context is | ||
4638 | * reading child->perf_event_ctxp, we wait until it has | ||
4639 | * incremented the context's refcount before we do put_ctx below. | ||
4640 | */ | ||
4641 | spin_lock(&child_ctx->lock); | ||
4642 | child->perf_event_ctxp = NULL; | ||
4643 | /* | ||
4644 | * If this context is a clone; unclone it so it can't get | ||
4645 | * swapped to another process while we're removing all | ||
4646 | * the events from it. | ||
4647 | */ | ||
4648 | unclone_ctx(child_ctx); | ||
4649 | spin_unlock_irqrestore(&child_ctx->lock, flags); | ||
4650 | |||
4651 | /* | ||
4652 | * Report the task dead after unscheduling the events so that we | ||
4653 | * won't get any samples after PERF_RECORD_EXIT. We can however still | ||
4654 | * get a few PERF_RECORD_READ events. | ||
4655 | */ | ||
4656 | perf_event_task(child, child_ctx, 0); | ||
4657 | |||
4658 | /* | ||
4659 | * We can recurse on the same lock type through: | ||
4660 | * | ||
4661 | * __perf_event_exit_task() | ||
4662 | * sync_child_event() | ||
4663 | * fput(parent_event->filp) | ||
4664 | * perf_release() | ||
4665 | * mutex_lock(&ctx->mutex) | ||
4666 | * | ||
4667 | * But since its the parent context it won't be the same instance. | ||
4668 | */ | ||
4669 | mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING); | ||
4670 | |||
4671 | again: | ||
4672 | list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list, | ||
4673 | group_entry) | ||
4674 | __perf_event_exit_task(child_event, child_ctx, child); | ||
4675 | |||
4676 | /* | ||
4677 | * If the last event was a group event, it will have appended all | ||
4678 | * its siblings to the list, but we obtained 'tmp' before that which | ||
4679 | * will still point to the list head terminating the iteration. | ||
4680 | */ | ||
4681 | if (!list_empty(&child_ctx->group_list)) | ||
4682 | goto again; | ||
4683 | |||
4684 | mutex_unlock(&child_ctx->mutex); | ||
4685 | |||
4686 | put_ctx(child_ctx); | ||
4687 | } | ||
4688 | |||
4689 | /* | ||
4690 | * free an unexposed, unused context as created by inheritance by | ||
4691 | * init_task below, used by fork() in case of fail. | ||
4692 | */ | ||
4693 | void perf_event_free_task(struct task_struct *task) | ||
4694 | { | ||
4695 | struct perf_event_context *ctx = task->perf_event_ctxp; | ||
4696 | struct perf_event *event, *tmp; | ||
4697 | |||
4698 | if (!ctx) | ||
4699 | return; | ||
4700 | |||
4701 | mutex_lock(&ctx->mutex); | ||
4702 | again: | ||
4703 | list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) { | ||
4704 | struct perf_event *parent = event->parent; | ||
4705 | |||
4706 | if (WARN_ON_ONCE(!parent)) | ||
4707 | continue; | ||
4708 | |||
4709 | mutex_lock(&parent->child_mutex); | ||
4710 | list_del_init(&event->child_list); | ||
4711 | mutex_unlock(&parent->child_mutex); | ||
4712 | |||
4713 | fput(parent->filp); | ||
4714 | |||
4715 | list_del_event(event, ctx); | ||
4716 | free_event(event); | ||
4717 | } | ||
4718 | |||
4719 | if (!list_empty(&ctx->group_list)) | ||
4720 | goto again; | ||
4721 | |||
4722 | mutex_unlock(&ctx->mutex); | ||
4723 | |||
4724 | put_ctx(ctx); | ||
4725 | } | ||
4726 | |||
4727 | /* | ||
4728 | * Initialize the perf_event context in task_struct | ||
4729 | */ | ||
4730 | int perf_event_init_task(struct task_struct *child) | ||
4731 | { | ||
4732 | struct perf_event_context *child_ctx, *parent_ctx; | ||
4733 | struct perf_event_context *cloned_ctx; | ||
4734 | struct perf_event *event; | ||
4735 | struct task_struct *parent = current; | ||
4736 | int inherited_all = 1; | ||
4737 | int ret = 0; | ||
4738 | |||
4739 | child->perf_event_ctxp = NULL; | ||
4740 | |||
4741 | mutex_init(&child->perf_event_mutex); | ||
4742 | INIT_LIST_HEAD(&child->perf_event_list); | ||
4743 | |||
4744 | if (likely(!parent->perf_event_ctxp)) | ||
4745 | return 0; | ||
4746 | |||
4747 | /* | ||
4748 | * This is executed from the parent task context, so inherit | ||
4749 | * events that have been marked for cloning. | ||
4750 | * First allocate and initialize a context for the child. | ||
4751 | */ | ||
4752 | |||
4753 | child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL); | ||
4754 | if (!child_ctx) | ||
4755 | return -ENOMEM; | ||
4756 | |||
4757 | __perf_event_init_context(child_ctx, child); | ||
4758 | child->perf_event_ctxp = child_ctx; | ||
4759 | get_task_struct(child); | ||
4760 | |||
4761 | /* | ||
4762 | * If the parent's context is a clone, pin it so it won't get | ||
4763 | * swapped under us. | ||
4764 | */ | ||
4765 | parent_ctx = perf_pin_task_context(parent); | ||
4766 | |||
4767 | /* | ||
4768 | * No need to check if parent_ctx != NULL here; since we saw | ||
4769 | * it non-NULL earlier, the only reason for it to become NULL | ||
4770 | * is if we exit, and since we're currently in the middle of | ||
4771 | * a fork we can't be exiting at the same time. | ||
4772 | */ | ||
4773 | |||
4774 | /* | ||
4775 | * Lock the parent list. No need to lock the child - not PID | ||
4776 | * hashed yet and not running, so nobody can access it. | ||
4777 | */ | ||
4778 | mutex_lock(&parent_ctx->mutex); | ||
4779 | |||
4780 | /* | ||
4781 | * We dont have to disable NMIs - we are only looking at | ||
4782 | * the list, not manipulating it: | ||
4783 | */ | ||
4784 | list_for_each_entry_rcu(event, &parent_ctx->event_list, event_entry) { | ||
4785 | if (event != event->group_leader) | ||
4786 | continue; | ||
4787 | |||
4788 | if (!event->attr.inherit) { | ||
4789 | inherited_all = 0; | ||
4790 | continue; | ||
4791 | } | ||
4792 | |||
4793 | ret = inherit_group(event, parent, parent_ctx, | ||
4794 | child, child_ctx); | ||
4795 | if (ret) { | ||
4796 | inherited_all = 0; | ||
4797 | break; | ||
4798 | } | ||
4799 | } | ||
4800 | |||
4801 | if (inherited_all) { | ||
4802 | /* | ||
4803 | * Mark the child context as a clone of the parent | ||
4804 | * context, or of whatever the parent is a clone of. | ||
4805 | * Note that if the parent is a clone, it could get | ||
4806 | * uncloned at any point, but that doesn't matter | ||
4807 | * because the list of events and the generation | ||
4808 | * count can't have changed since we took the mutex. | ||
4809 | */ | ||
4810 | cloned_ctx = rcu_dereference(parent_ctx->parent_ctx); | ||
4811 | if (cloned_ctx) { | ||
4812 | child_ctx->parent_ctx = cloned_ctx; | ||
4813 | child_ctx->parent_gen = parent_ctx->parent_gen; | ||
4814 | } else { | ||
4815 | child_ctx->parent_ctx = parent_ctx; | ||
4816 | child_ctx->parent_gen = parent_ctx->generation; | ||
4817 | } | ||
4818 | get_ctx(child_ctx->parent_ctx); | ||
4819 | } | ||
4820 | |||
4821 | mutex_unlock(&parent_ctx->mutex); | ||
4822 | |||
4823 | perf_unpin_context(parent_ctx); | ||
4824 | |||
4825 | return ret; | ||
4826 | } | ||
4827 | |||
4828 | static void __cpuinit perf_event_init_cpu(int cpu) | ||
4829 | { | ||
4830 | struct perf_cpu_context *cpuctx; | ||
4831 | |||
4832 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
4833 | __perf_event_init_context(&cpuctx->ctx, NULL); | ||
4834 | |||
4835 | spin_lock(&perf_resource_lock); | ||
4836 | cpuctx->max_pertask = perf_max_events - perf_reserved_percpu; | ||
4837 | spin_unlock(&perf_resource_lock); | ||
4838 | |||
4839 | hw_perf_event_setup(cpu); | ||
4840 | } | ||
4841 | |||
4842 | #ifdef CONFIG_HOTPLUG_CPU | ||
4843 | static void __perf_event_exit_cpu(void *info) | ||
4844 | { | ||
4845 | struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); | ||
4846 | struct perf_event_context *ctx = &cpuctx->ctx; | ||
4847 | struct perf_event *event, *tmp; | ||
4848 | |||
4849 | list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) | ||
4850 | __perf_event_remove_from_context(event); | ||
4851 | } | ||
4852 | static void perf_event_exit_cpu(int cpu) | ||
4853 | { | ||
4854 | struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
4855 | struct perf_event_context *ctx = &cpuctx->ctx; | ||
4856 | |||
4857 | mutex_lock(&ctx->mutex); | ||
4858 | smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1); | ||
4859 | mutex_unlock(&ctx->mutex); | ||
4860 | } | ||
4861 | #else | ||
4862 | static inline void perf_event_exit_cpu(int cpu) { } | ||
4863 | #endif | ||
4864 | |||
4865 | static int __cpuinit | ||
4866 | perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) | ||
4867 | { | ||
4868 | unsigned int cpu = (long)hcpu; | ||
4869 | |||
4870 | switch (action) { | ||
4871 | |||
4872 | case CPU_UP_PREPARE: | ||
4873 | case CPU_UP_PREPARE_FROZEN: | ||
4874 | perf_event_init_cpu(cpu); | ||
4875 | break; | ||
4876 | |||
4877 | case CPU_ONLINE: | ||
4878 | case CPU_ONLINE_FROZEN: | ||
4879 | hw_perf_event_setup_online(cpu); | ||
4880 | break; | ||
4881 | |||
4882 | case CPU_DOWN_PREPARE: | ||
4883 | case CPU_DOWN_PREPARE_FROZEN: | ||
4884 | perf_event_exit_cpu(cpu); | ||
4885 | break; | ||
4886 | |||
4887 | default: | ||
4888 | break; | ||
4889 | } | ||
4890 | |||
4891 | return NOTIFY_OK; | ||
4892 | } | ||
4893 | |||
4894 | /* | ||
4895 | * This has to have a higher priority than migration_notifier in sched.c. | ||
4896 | */ | ||
4897 | static struct notifier_block __cpuinitdata perf_cpu_nb = { | ||
4898 | .notifier_call = perf_cpu_notify, | ||
4899 | .priority = 20, | ||
4900 | }; | ||
4901 | |||
4902 | void __init perf_event_init(void) | ||
4903 | { | ||
4904 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE, | ||
4905 | (void *)(long)smp_processor_id()); | ||
4906 | perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE, | ||
4907 | (void *)(long)smp_processor_id()); | ||
4908 | register_cpu_notifier(&perf_cpu_nb); | ||
4909 | } | ||
4910 | |||
4911 | static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf) | ||
4912 | { | ||
4913 | return sprintf(buf, "%d\n", perf_reserved_percpu); | ||
4914 | } | ||
4915 | |||
4916 | static ssize_t | ||
4917 | perf_set_reserve_percpu(struct sysdev_class *class, | ||
4918 | const char *buf, | ||
4919 | size_t count) | ||
4920 | { | ||
4921 | struct perf_cpu_context *cpuctx; | ||
4922 | unsigned long val; | ||
4923 | int err, cpu, mpt; | ||
4924 | |||
4925 | err = strict_strtoul(buf, 10, &val); | ||
4926 | if (err) | ||
4927 | return err; | ||
4928 | if (val > perf_max_events) | ||
4929 | return -EINVAL; | ||
4930 | |||
4931 | spin_lock(&perf_resource_lock); | ||
4932 | perf_reserved_percpu = val; | ||
4933 | for_each_online_cpu(cpu) { | ||
4934 | cpuctx = &per_cpu(perf_cpu_context, cpu); | ||
4935 | spin_lock_irq(&cpuctx->ctx.lock); | ||
4936 | mpt = min(perf_max_events - cpuctx->ctx.nr_events, | ||
4937 | perf_max_events - perf_reserved_percpu); | ||
4938 | cpuctx->max_pertask = mpt; | ||
4939 | spin_unlock_irq(&cpuctx->ctx.lock); | ||
4940 | } | ||
4941 | spin_unlock(&perf_resource_lock); | ||
4942 | |||
4943 | return count; | ||
4944 | } | ||
4945 | |||
4946 | static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf) | ||
4947 | { | ||
4948 | return sprintf(buf, "%d\n", perf_overcommit); | ||
4949 | } | ||
4950 | |||
4951 | static ssize_t | ||
4952 | perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count) | ||
4953 | { | ||
4954 | unsigned long val; | ||
4955 | int err; | ||
4956 | |||
4957 | err = strict_strtoul(buf, 10, &val); | ||
4958 | if (err) | ||
4959 | return err; | ||
4960 | if (val > 1) | ||
4961 | return -EINVAL; | ||
4962 | |||
4963 | spin_lock(&perf_resource_lock); | ||
4964 | perf_overcommit = val; | ||
4965 | spin_unlock(&perf_resource_lock); | ||
4966 | |||
4967 | return count; | ||
4968 | } | ||
4969 | |||
4970 | static SYSDEV_CLASS_ATTR( | ||
4971 | reserve_percpu, | ||
4972 | 0644, | ||
4973 | perf_show_reserve_percpu, | ||
4974 | perf_set_reserve_percpu | ||
4975 | ); | ||
4976 | |||
4977 | static SYSDEV_CLASS_ATTR( | ||
4978 | overcommit, | ||
4979 | 0644, | ||
4980 | perf_show_overcommit, | ||
4981 | perf_set_overcommit | ||
4982 | ); | ||
4983 | |||
4984 | static struct attribute *perfclass_attrs[] = { | ||
4985 | &attr_reserve_percpu.attr, | ||
4986 | &attr_overcommit.attr, | ||
4987 | NULL | ||
4988 | }; | ||
4989 | |||
4990 | static struct attribute_group perfclass_attr_group = { | ||
4991 | .attrs = perfclass_attrs, | ||
4992 | .name = "perf_events", | ||
4993 | }; | ||
4994 | |||
4995 | static int __init perf_event_sysfs_init(void) | ||
4996 | { | ||
4997 | return sysfs_create_group(&cpu_sysdev_class.kset.kobj, | ||
4998 | &perfclass_attr_group); | ||
4999 | } | ||
5000 | device_initcall(perf_event_sysfs_init); | ||
diff --git a/kernel/pid.c b/kernel/pid.c index 31310b5d3f50..d3f722d20f9c 100644 --- a/kernel/pid.c +++ b/kernel/pid.c | |||
@@ -40,7 +40,7 @@ | |||
40 | #define pid_hashfn(nr, ns) \ | 40 | #define pid_hashfn(nr, ns) \ |
41 | hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift) | 41 | hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift) |
42 | static struct hlist_head *pid_hash; | 42 | static struct hlist_head *pid_hash; |
43 | static int pidhash_shift; | 43 | static unsigned int pidhash_shift = 4; |
44 | struct pid init_struct_pid = INIT_STRUCT_PID; | 44 | struct pid init_struct_pid = INIT_STRUCT_PID; |
45 | 45 | ||
46 | int pid_max = PID_MAX_DEFAULT; | 46 | int pid_max = PID_MAX_DEFAULT; |
@@ -499,19 +499,12 @@ struct pid *find_ge_pid(int nr, struct pid_namespace *ns) | |||
499 | void __init pidhash_init(void) | 499 | void __init pidhash_init(void) |
500 | { | 500 | { |
501 | int i, pidhash_size; | 501 | int i, pidhash_size; |
502 | unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT); | ||
503 | 502 | ||
504 | pidhash_shift = max(4, fls(megabytes * 4)); | 503 | pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18, |
505 | pidhash_shift = min(12, pidhash_shift); | 504 | HASH_EARLY | HASH_SMALL, |
505 | &pidhash_shift, NULL, 4096); | ||
506 | pidhash_size = 1 << pidhash_shift; | 506 | pidhash_size = 1 << pidhash_shift; |
507 | 507 | ||
508 | printk("PID hash table entries: %d (order: %d, %Zd bytes)\n", | ||
509 | pidhash_size, pidhash_shift, | ||
510 | pidhash_size * sizeof(struct hlist_head)); | ||
511 | |||
512 | pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash))); | ||
513 | if (!pid_hash) | ||
514 | panic("Could not alloc pidhash!\n"); | ||
515 | for (i = 0; i < pidhash_size; i++) | 508 | for (i = 0; i < pidhash_size; i++) |
516 | INIT_HLIST_HEAD(&pid_hash[i]); | 509 | INIT_HLIST_HEAD(&pid_hash[i]); |
517 | } | 510 | } |
diff --git a/kernel/pid_namespace.c b/kernel/pid_namespace.c index 821722ae58a7..86b3796b0436 100644 --- a/kernel/pid_namespace.c +++ b/kernel/pid_namespace.c | |||
@@ -118,7 +118,7 @@ struct pid_namespace *copy_pid_ns(unsigned long flags, struct pid_namespace *old | |||
118 | { | 118 | { |
119 | if (!(flags & CLONE_NEWPID)) | 119 | if (!(flags & CLONE_NEWPID)) |
120 | return get_pid_ns(old_ns); | 120 | return get_pid_ns(old_ns); |
121 | if (flags & CLONE_THREAD) | 121 | if (flags & (CLONE_THREAD|CLONE_PARENT)) |
122 | return ERR_PTR(-EINVAL); | 122 | return ERR_PTR(-EINVAL); |
123 | return create_pid_namespace(old_ns); | 123 | return create_pid_namespace(old_ns); |
124 | } | 124 | } |
diff --git a/kernel/posix-cpu-timers.c b/kernel/posix-cpu-timers.c index e33a21cb9407..5c9dc228747b 100644 --- a/kernel/posix-cpu-timers.c +++ b/kernel/posix-cpu-timers.c | |||
@@ -8,17 +8,18 @@ | |||
8 | #include <linux/math64.h> | 8 | #include <linux/math64.h> |
9 | #include <asm/uaccess.h> | 9 | #include <asm/uaccess.h> |
10 | #include <linux/kernel_stat.h> | 10 | #include <linux/kernel_stat.h> |
11 | #include <trace/events/timer.h> | ||
11 | 12 | ||
12 | /* | 13 | /* |
13 | * Called after updating RLIMIT_CPU to set timer expiration if necessary. | 14 | * Called after updating RLIMIT_CPU to set timer expiration if necessary. |
14 | */ | 15 | */ |
15 | void update_rlimit_cpu(unsigned long rlim_new) | 16 | void update_rlimit_cpu(unsigned long rlim_new) |
16 | { | 17 | { |
17 | cputime_t cputime; | 18 | cputime_t cputime = secs_to_cputime(rlim_new); |
19 | struct signal_struct *const sig = current->signal; | ||
18 | 20 | ||
19 | cputime = secs_to_cputime(rlim_new); | 21 | if (cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) || |
20 | if (cputime_eq(current->signal->it_prof_expires, cputime_zero) || | 22 | cputime_gt(sig->it[CPUCLOCK_PROF].expires, cputime)) { |
21 | cputime_gt(current->signal->it_prof_expires, cputime)) { | ||
22 | spin_lock_irq(¤t->sighand->siglock); | 23 | spin_lock_irq(¤t->sighand->siglock); |
23 | set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL); | 24 | set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL); |
24 | spin_unlock_irq(¤t->sighand->siglock); | 25 | spin_unlock_irq(¤t->sighand->siglock); |
@@ -542,6 +543,17 @@ static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now) | |||
542 | now); | 543 | now); |
543 | } | 544 | } |
544 | 545 | ||
546 | static inline int expires_gt(cputime_t expires, cputime_t new_exp) | ||
547 | { | ||
548 | return cputime_eq(expires, cputime_zero) || | ||
549 | cputime_gt(expires, new_exp); | ||
550 | } | ||
551 | |||
552 | static inline int expires_le(cputime_t expires, cputime_t new_exp) | ||
553 | { | ||
554 | return !cputime_eq(expires, cputime_zero) && | ||
555 | cputime_le(expires, new_exp); | ||
556 | } | ||
545 | /* | 557 | /* |
546 | * Insert the timer on the appropriate list before any timers that | 558 | * Insert the timer on the appropriate list before any timers that |
547 | * expire later. This must be called with the tasklist_lock held | 559 | * expire later. This must be called with the tasklist_lock held |
@@ -586,34 +598,32 @@ static void arm_timer(struct k_itimer *timer, union cpu_time_count now) | |||
586 | */ | 598 | */ |
587 | 599 | ||
588 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | 600 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { |
601 | union cpu_time_count *exp = &nt->expires; | ||
602 | |||
589 | switch (CPUCLOCK_WHICH(timer->it_clock)) { | 603 | switch (CPUCLOCK_WHICH(timer->it_clock)) { |
590 | default: | 604 | default: |
591 | BUG(); | 605 | BUG(); |
592 | case CPUCLOCK_PROF: | 606 | case CPUCLOCK_PROF: |
593 | if (cputime_eq(p->cputime_expires.prof_exp, | 607 | if (expires_gt(p->cputime_expires.prof_exp, |
594 | cputime_zero) || | 608 | exp->cpu)) |
595 | cputime_gt(p->cputime_expires.prof_exp, | 609 | p->cputime_expires.prof_exp = exp->cpu; |
596 | nt->expires.cpu)) | ||
597 | p->cputime_expires.prof_exp = | ||
598 | nt->expires.cpu; | ||
599 | break; | 610 | break; |
600 | case CPUCLOCK_VIRT: | 611 | case CPUCLOCK_VIRT: |
601 | if (cputime_eq(p->cputime_expires.virt_exp, | 612 | if (expires_gt(p->cputime_expires.virt_exp, |
602 | cputime_zero) || | 613 | exp->cpu)) |
603 | cputime_gt(p->cputime_expires.virt_exp, | 614 | p->cputime_expires.virt_exp = exp->cpu; |
604 | nt->expires.cpu)) | ||
605 | p->cputime_expires.virt_exp = | ||
606 | nt->expires.cpu; | ||
607 | break; | 615 | break; |
608 | case CPUCLOCK_SCHED: | 616 | case CPUCLOCK_SCHED: |
609 | if (p->cputime_expires.sched_exp == 0 || | 617 | if (p->cputime_expires.sched_exp == 0 || |
610 | p->cputime_expires.sched_exp > | 618 | p->cputime_expires.sched_exp > exp->sched) |
611 | nt->expires.sched) | ||
612 | p->cputime_expires.sched_exp = | 619 | p->cputime_expires.sched_exp = |
613 | nt->expires.sched; | 620 | exp->sched; |
614 | break; | 621 | break; |
615 | } | 622 | } |
616 | } else { | 623 | } else { |
624 | struct signal_struct *const sig = p->signal; | ||
625 | union cpu_time_count *exp = &timer->it.cpu.expires; | ||
626 | |||
617 | /* | 627 | /* |
618 | * For a process timer, set the cached expiration time. | 628 | * For a process timer, set the cached expiration time. |
619 | */ | 629 | */ |
@@ -621,30 +631,23 @@ static void arm_timer(struct k_itimer *timer, union cpu_time_count now) | |||
621 | default: | 631 | default: |
622 | BUG(); | 632 | BUG(); |
623 | case CPUCLOCK_VIRT: | 633 | case CPUCLOCK_VIRT: |
624 | if (!cputime_eq(p->signal->it_virt_expires, | 634 | if (expires_le(sig->it[CPUCLOCK_VIRT].expires, |
625 | cputime_zero) && | 635 | exp->cpu)) |
626 | cputime_lt(p->signal->it_virt_expires, | ||
627 | timer->it.cpu.expires.cpu)) | ||
628 | break; | 636 | break; |
629 | p->signal->cputime_expires.virt_exp = | 637 | sig->cputime_expires.virt_exp = exp->cpu; |
630 | timer->it.cpu.expires.cpu; | ||
631 | break; | 638 | break; |
632 | case CPUCLOCK_PROF: | 639 | case CPUCLOCK_PROF: |
633 | if (!cputime_eq(p->signal->it_prof_expires, | 640 | if (expires_le(sig->it[CPUCLOCK_PROF].expires, |
634 | cputime_zero) && | 641 | exp->cpu)) |
635 | cputime_lt(p->signal->it_prof_expires, | ||
636 | timer->it.cpu.expires.cpu)) | ||
637 | break; | 642 | break; |
638 | i = p->signal->rlim[RLIMIT_CPU].rlim_cur; | 643 | i = sig->rlim[RLIMIT_CPU].rlim_cur; |
639 | if (i != RLIM_INFINITY && | 644 | if (i != RLIM_INFINITY && |
640 | i <= cputime_to_secs(timer->it.cpu.expires.cpu)) | 645 | i <= cputime_to_secs(exp->cpu)) |
641 | break; | 646 | break; |
642 | p->signal->cputime_expires.prof_exp = | 647 | sig->cputime_expires.prof_exp = exp->cpu; |
643 | timer->it.cpu.expires.cpu; | ||
644 | break; | 648 | break; |
645 | case CPUCLOCK_SCHED: | 649 | case CPUCLOCK_SCHED: |
646 | p->signal->cputime_expires.sched_exp = | 650 | sig->cputime_expires.sched_exp = exp->sched; |
647 | timer->it.cpu.expires.sched; | ||
648 | break; | 651 | break; |
649 | } | 652 | } |
650 | } | 653 | } |
@@ -1071,6 +1074,40 @@ static void stop_process_timers(struct task_struct *tsk) | |||
1071 | spin_unlock_irqrestore(&cputimer->lock, flags); | 1074 | spin_unlock_irqrestore(&cputimer->lock, flags); |
1072 | } | 1075 | } |
1073 | 1076 | ||
1077 | static u32 onecputick; | ||
1078 | |||
1079 | static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, | ||
1080 | cputime_t *expires, cputime_t cur_time, int signo) | ||
1081 | { | ||
1082 | if (cputime_eq(it->expires, cputime_zero)) | ||
1083 | return; | ||
1084 | |||
1085 | if (cputime_ge(cur_time, it->expires)) { | ||
1086 | if (!cputime_eq(it->incr, cputime_zero)) { | ||
1087 | it->expires = cputime_add(it->expires, it->incr); | ||
1088 | it->error += it->incr_error; | ||
1089 | if (it->error >= onecputick) { | ||
1090 | it->expires = cputime_sub(it->expires, | ||
1091 | cputime_one_jiffy); | ||
1092 | it->error -= onecputick; | ||
1093 | } | ||
1094 | } else { | ||
1095 | it->expires = cputime_zero; | ||
1096 | } | ||
1097 | |||
1098 | trace_itimer_expire(signo == SIGPROF ? | ||
1099 | ITIMER_PROF : ITIMER_VIRTUAL, | ||
1100 | tsk->signal->leader_pid, cur_time); | ||
1101 | __group_send_sig_info(signo, SEND_SIG_PRIV, tsk); | ||
1102 | } | ||
1103 | |||
1104 | if (!cputime_eq(it->expires, cputime_zero) && | ||
1105 | (cputime_eq(*expires, cputime_zero) || | ||
1106 | cputime_lt(it->expires, *expires))) { | ||
1107 | *expires = it->expires; | ||
1108 | } | ||
1109 | } | ||
1110 | |||
1074 | /* | 1111 | /* |
1075 | * Check for any per-thread CPU timers that have fired and move them | 1112 | * Check for any per-thread CPU timers that have fired and move them |
1076 | * off the tsk->*_timers list onto the firing list. Per-thread timers | 1113 | * off the tsk->*_timers list onto the firing list. Per-thread timers |
@@ -1090,10 +1127,10 @@ static void check_process_timers(struct task_struct *tsk, | |||
1090 | * Don't sample the current process CPU clocks if there are no timers. | 1127 | * Don't sample the current process CPU clocks if there are no timers. |
1091 | */ | 1128 | */ |
1092 | if (list_empty(&timers[CPUCLOCK_PROF]) && | 1129 | if (list_empty(&timers[CPUCLOCK_PROF]) && |
1093 | cputime_eq(sig->it_prof_expires, cputime_zero) && | 1130 | cputime_eq(sig->it[CPUCLOCK_PROF].expires, cputime_zero) && |
1094 | sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY && | 1131 | sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY && |
1095 | list_empty(&timers[CPUCLOCK_VIRT]) && | 1132 | list_empty(&timers[CPUCLOCK_VIRT]) && |
1096 | cputime_eq(sig->it_virt_expires, cputime_zero) && | 1133 | cputime_eq(sig->it[CPUCLOCK_VIRT].expires, cputime_zero) && |
1097 | list_empty(&timers[CPUCLOCK_SCHED])) { | 1134 | list_empty(&timers[CPUCLOCK_SCHED])) { |
1098 | stop_process_timers(tsk); | 1135 | stop_process_timers(tsk); |
1099 | return; | 1136 | return; |
@@ -1153,38 +1190,11 @@ static void check_process_timers(struct task_struct *tsk, | |||
1153 | /* | 1190 | /* |
1154 | * Check for the special case process timers. | 1191 | * Check for the special case process timers. |
1155 | */ | 1192 | */ |
1156 | if (!cputime_eq(sig->it_prof_expires, cputime_zero)) { | 1193 | check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime, |
1157 | if (cputime_ge(ptime, sig->it_prof_expires)) { | 1194 | SIGPROF); |
1158 | /* ITIMER_PROF fires and reloads. */ | 1195 | check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime, |
1159 | sig->it_prof_expires = sig->it_prof_incr; | 1196 | SIGVTALRM); |
1160 | if (!cputime_eq(sig->it_prof_expires, cputime_zero)) { | 1197 | |
1161 | sig->it_prof_expires = cputime_add( | ||
1162 | sig->it_prof_expires, ptime); | ||
1163 | } | ||
1164 | __group_send_sig_info(SIGPROF, SEND_SIG_PRIV, tsk); | ||
1165 | } | ||
1166 | if (!cputime_eq(sig->it_prof_expires, cputime_zero) && | ||
1167 | (cputime_eq(prof_expires, cputime_zero) || | ||
1168 | cputime_lt(sig->it_prof_expires, prof_expires))) { | ||
1169 | prof_expires = sig->it_prof_expires; | ||
1170 | } | ||
1171 | } | ||
1172 | if (!cputime_eq(sig->it_virt_expires, cputime_zero)) { | ||
1173 | if (cputime_ge(utime, sig->it_virt_expires)) { | ||
1174 | /* ITIMER_VIRTUAL fires and reloads. */ | ||
1175 | sig->it_virt_expires = sig->it_virt_incr; | ||
1176 | if (!cputime_eq(sig->it_virt_expires, cputime_zero)) { | ||
1177 | sig->it_virt_expires = cputime_add( | ||
1178 | sig->it_virt_expires, utime); | ||
1179 | } | ||
1180 | __group_send_sig_info(SIGVTALRM, SEND_SIG_PRIV, tsk); | ||
1181 | } | ||
1182 | if (!cputime_eq(sig->it_virt_expires, cputime_zero) && | ||
1183 | (cputime_eq(virt_expires, cputime_zero) || | ||
1184 | cputime_lt(sig->it_virt_expires, virt_expires))) { | ||
1185 | virt_expires = sig->it_virt_expires; | ||
1186 | } | ||
1187 | } | ||
1188 | if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { | 1198 | if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { |
1189 | unsigned long psecs = cputime_to_secs(ptime); | 1199 | unsigned long psecs = cputime_to_secs(ptime); |
1190 | cputime_t x; | 1200 | cputime_t x; |
@@ -1457,7 +1467,7 @@ void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, | |||
1457 | if (!cputime_eq(*oldval, cputime_zero)) { | 1467 | if (!cputime_eq(*oldval, cputime_zero)) { |
1458 | if (cputime_le(*oldval, now.cpu)) { | 1468 | if (cputime_le(*oldval, now.cpu)) { |
1459 | /* Just about to fire. */ | 1469 | /* Just about to fire. */ |
1460 | *oldval = jiffies_to_cputime(1); | 1470 | *oldval = cputime_one_jiffy; |
1461 | } else { | 1471 | } else { |
1462 | *oldval = cputime_sub(*oldval, now.cpu); | 1472 | *oldval = cputime_sub(*oldval, now.cpu); |
1463 | } | 1473 | } |
@@ -1703,10 +1713,15 @@ static __init int init_posix_cpu_timers(void) | |||
1703 | .nsleep = thread_cpu_nsleep, | 1713 | .nsleep = thread_cpu_nsleep, |
1704 | .nsleep_restart = thread_cpu_nsleep_restart, | 1714 | .nsleep_restart = thread_cpu_nsleep_restart, |
1705 | }; | 1715 | }; |
1716 | struct timespec ts; | ||
1706 | 1717 | ||
1707 | register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process); | 1718 | register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process); |
1708 | register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread); | 1719 | register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread); |
1709 | 1720 | ||
1721 | cputime_to_timespec(cputime_one_jiffy, &ts); | ||
1722 | onecputick = ts.tv_nsec; | ||
1723 | WARN_ON(ts.tv_sec != 0); | ||
1724 | |||
1710 | return 0; | 1725 | return 0; |
1711 | } | 1726 | } |
1712 | __initcall(init_posix_cpu_timers); | 1727 | __initcall(init_posix_cpu_timers); |
diff --git a/kernel/posix-timers.c b/kernel/posix-timers.c index d089d052c4a9..495440779ce3 100644 --- a/kernel/posix-timers.c +++ b/kernel/posix-timers.c | |||
@@ -242,6 +242,25 @@ static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp) | |||
242 | return 0; | 242 | return 0; |
243 | } | 243 | } |
244 | 244 | ||
245 | |||
246 | static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp) | ||
247 | { | ||
248 | *tp = current_kernel_time(); | ||
249 | return 0; | ||
250 | } | ||
251 | |||
252 | static int posix_get_monotonic_coarse(clockid_t which_clock, | ||
253 | struct timespec *tp) | ||
254 | { | ||
255 | *tp = get_monotonic_coarse(); | ||
256 | return 0; | ||
257 | } | ||
258 | |||
259 | int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp) | ||
260 | { | ||
261 | *tp = ktime_to_timespec(KTIME_LOW_RES); | ||
262 | return 0; | ||
263 | } | ||
245 | /* | 264 | /* |
246 | * Initialize everything, well, just everything in Posix clocks/timers ;) | 265 | * Initialize everything, well, just everything in Posix clocks/timers ;) |
247 | */ | 266 | */ |
@@ -262,10 +281,26 @@ static __init int init_posix_timers(void) | |||
262 | .timer_create = no_timer_create, | 281 | .timer_create = no_timer_create, |
263 | .nsleep = no_nsleep, | 282 | .nsleep = no_nsleep, |
264 | }; | 283 | }; |
284 | struct k_clock clock_realtime_coarse = { | ||
285 | .clock_getres = posix_get_coarse_res, | ||
286 | .clock_get = posix_get_realtime_coarse, | ||
287 | .clock_set = do_posix_clock_nosettime, | ||
288 | .timer_create = no_timer_create, | ||
289 | .nsleep = no_nsleep, | ||
290 | }; | ||
291 | struct k_clock clock_monotonic_coarse = { | ||
292 | .clock_getres = posix_get_coarse_res, | ||
293 | .clock_get = posix_get_monotonic_coarse, | ||
294 | .clock_set = do_posix_clock_nosettime, | ||
295 | .timer_create = no_timer_create, | ||
296 | .nsleep = no_nsleep, | ||
297 | }; | ||
265 | 298 | ||
266 | register_posix_clock(CLOCK_REALTIME, &clock_realtime); | 299 | register_posix_clock(CLOCK_REALTIME, &clock_realtime); |
267 | register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic); | 300 | register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic); |
268 | register_posix_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw); | 301 | register_posix_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw); |
302 | register_posix_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse); | ||
303 | register_posix_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse); | ||
269 | 304 | ||
270 | posix_timers_cache = kmem_cache_create("posix_timers_cache", | 305 | posix_timers_cache = kmem_cache_create("posix_timers_cache", |
271 | sizeof (struct k_itimer), 0, SLAB_PANIC, | 306 | sizeof (struct k_itimer), 0, SLAB_PANIC, |
diff --git a/kernel/power/console.c b/kernel/power/console.c index a3961b205de7..5187136fe1de 100644 --- a/kernel/power/console.c +++ b/kernel/power/console.c | |||
@@ -14,56 +14,13 @@ | |||
14 | #define SUSPEND_CONSOLE (MAX_NR_CONSOLES-1) | 14 | #define SUSPEND_CONSOLE (MAX_NR_CONSOLES-1) |
15 | 15 | ||
16 | static int orig_fgconsole, orig_kmsg; | 16 | static int orig_fgconsole, orig_kmsg; |
17 | static int disable_vt_switch; | ||
18 | |||
19 | /* | ||
20 | * Normally during a suspend, we allocate a new console and switch to it. | ||
21 | * When we resume, we switch back to the original console. This switch | ||
22 | * can be slow, so on systems where the framebuffer can handle restoration | ||
23 | * of video registers anyways, there's little point in doing the console | ||
24 | * switch. This function allows you to disable it by passing it '0'. | ||
25 | */ | ||
26 | void pm_set_vt_switch(int do_switch) | ||
27 | { | ||
28 | acquire_console_sem(); | ||
29 | disable_vt_switch = !do_switch; | ||
30 | release_console_sem(); | ||
31 | } | ||
32 | EXPORT_SYMBOL(pm_set_vt_switch); | ||
33 | 17 | ||
34 | int pm_prepare_console(void) | 18 | int pm_prepare_console(void) |
35 | { | 19 | { |
36 | acquire_console_sem(); | 20 | orig_fgconsole = vt_move_to_console(SUSPEND_CONSOLE, 1); |
37 | 21 | if (orig_fgconsole < 0) | |
38 | if (disable_vt_switch) { | ||
39 | release_console_sem(); | ||
40 | return 0; | ||
41 | } | ||
42 | |||
43 | orig_fgconsole = fg_console; | ||
44 | |||
45 | if (vc_allocate(SUSPEND_CONSOLE)) { | ||
46 | /* we can't have a free VC for now. Too bad, | ||
47 | * we don't want to mess the screen for now. */ | ||
48 | release_console_sem(); | ||
49 | return 1; | 22 | return 1; |
50 | } | ||
51 | 23 | ||
52 | if (set_console(SUSPEND_CONSOLE)) { | ||
53 | /* | ||
54 | * We're unable to switch to the SUSPEND_CONSOLE. | ||
55 | * Let the calling function know so it can decide | ||
56 | * what to do. | ||
57 | */ | ||
58 | release_console_sem(); | ||
59 | return 1; | ||
60 | } | ||
61 | release_console_sem(); | ||
62 | |||
63 | if (vt_waitactive(SUSPEND_CONSOLE)) { | ||
64 | pr_debug("Suspend: Can't switch VCs."); | ||
65 | return 1; | ||
66 | } | ||
67 | orig_kmsg = kmsg_redirect; | 24 | orig_kmsg = kmsg_redirect; |
68 | kmsg_redirect = SUSPEND_CONSOLE; | 25 | kmsg_redirect = SUSPEND_CONSOLE; |
69 | return 0; | 26 | return 0; |
@@ -71,19 +28,9 @@ int pm_prepare_console(void) | |||
71 | 28 | ||
72 | void pm_restore_console(void) | 29 | void pm_restore_console(void) |
73 | { | 30 | { |
74 | acquire_console_sem(); | 31 | if (orig_fgconsole >= 0) { |
75 | if (disable_vt_switch) { | 32 | vt_move_to_console(orig_fgconsole, 0); |
76 | release_console_sem(); | 33 | kmsg_redirect = orig_kmsg; |
77 | return; | ||
78 | } | ||
79 | set_console(orig_fgconsole); | ||
80 | release_console_sem(); | ||
81 | |||
82 | if (vt_waitactive(orig_fgconsole)) { | ||
83 | pr_debug("Resume: Can't switch VCs."); | ||
84 | return; | ||
85 | } | 34 | } |
86 | |||
87 | kmsg_redirect = orig_kmsg; | ||
88 | } | 35 | } |
89 | #endif | 36 | #endif |
diff --git a/kernel/power/process.c b/kernel/power/process.c index da2072d73811..cc2e55373b68 100644 --- a/kernel/power/process.c +++ b/kernel/power/process.c | |||
@@ -9,6 +9,7 @@ | |||
9 | #undef DEBUG | 9 | #undef DEBUG |
10 | 10 | ||
11 | #include <linux/interrupt.h> | 11 | #include <linux/interrupt.h> |
12 | #include <linux/oom.h> | ||
12 | #include <linux/suspend.h> | 13 | #include <linux/suspend.h> |
13 | #include <linux/module.h> | 14 | #include <linux/module.h> |
14 | #include <linux/syscalls.h> | 15 | #include <linux/syscalls.h> |
diff --git a/kernel/power/snapshot.c b/kernel/power/snapshot.c index 97955b0e44f4..36cb168e4330 100644 --- a/kernel/power/snapshot.c +++ b/kernel/power/snapshot.c | |||
@@ -619,7 +619,7 @@ __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn, | |||
619 | BUG_ON(!region); | 619 | BUG_ON(!region); |
620 | } else | 620 | } else |
621 | /* This allocation cannot fail */ | 621 | /* This allocation cannot fail */ |
622 | region = alloc_bootmem_low(sizeof(struct nosave_region)); | 622 | region = alloc_bootmem(sizeof(struct nosave_region)); |
623 | region->start_pfn = start_pfn; | 623 | region->start_pfn = start_pfn; |
624 | region->end_pfn = end_pfn; | 624 | region->end_pfn = end_pfn; |
625 | list_add_tail(®ion->list, &nosave_regions); | 625 | list_add_tail(®ion->list, &nosave_regions); |
diff --git a/kernel/power/swap.c b/kernel/power/swap.c index 8ba052c86d48..b101cdc4df3f 100644 --- a/kernel/power/swap.c +++ b/kernel/power/swap.c | |||
@@ -13,7 +13,6 @@ | |||
13 | 13 | ||
14 | #include <linux/module.h> | 14 | #include <linux/module.h> |
15 | #include <linux/file.h> | 15 | #include <linux/file.h> |
16 | #include <linux/utsname.h> | ||
17 | #include <linux/delay.h> | 16 | #include <linux/delay.h> |
18 | #include <linux/bitops.h> | 17 | #include <linux/bitops.h> |
19 | #include <linux/genhd.h> | 18 | #include <linux/genhd.h> |
diff --git a/kernel/printk.c b/kernel/printk.c index 602033acd6c7..f38b07f78a4e 100644 --- a/kernel/printk.c +++ b/kernel/printk.c | |||
@@ -206,12 +206,11 @@ __setup("log_buf_len=", log_buf_len_setup); | |||
206 | #ifdef CONFIG_BOOT_PRINTK_DELAY | 206 | #ifdef CONFIG_BOOT_PRINTK_DELAY |
207 | 207 | ||
208 | static unsigned int boot_delay; /* msecs delay after each printk during bootup */ | 208 | static unsigned int boot_delay; /* msecs delay after each printk during bootup */ |
209 | static unsigned long long printk_delay_msec; /* per msec, based on boot_delay */ | 209 | static unsigned long long loops_per_msec; /* based on boot_delay */ |
210 | 210 | ||
211 | static int __init boot_delay_setup(char *str) | 211 | static int __init boot_delay_setup(char *str) |
212 | { | 212 | { |
213 | unsigned long lpj; | 213 | unsigned long lpj; |
214 | unsigned long long loops_per_msec; | ||
215 | 214 | ||
216 | lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ | 215 | lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ |
217 | loops_per_msec = (unsigned long long)lpj / 1000 * HZ; | 216 | loops_per_msec = (unsigned long long)lpj / 1000 * HZ; |
@@ -220,10 +219,9 @@ static int __init boot_delay_setup(char *str) | |||
220 | if (boot_delay > 10 * 1000) | 219 | if (boot_delay > 10 * 1000) |
221 | boot_delay = 0; | 220 | boot_delay = 0; |
222 | 221 | ||
223 | printk_delay_msec = loops_per_msec; | 222 | pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " |
224 | printk(KERN_DEBUG "boot_delay: %u, preset_lpj: %ld, lpj: %lu, " | 223 | "HZ: %d, loops_per_msec: %llu\n", |
225 | "HZ: %d, printk_delay_msec: %llu\n", | 224 | boot_delay, preset_lpj, lpj, HZ, loops_per_msec); |
226 | boot_delay, preset_lpj, lpj, HZ, printk_delay_msec); | ||
227 | return 1; | 225 | return 1; |
228 | } | 226 | } |
229 | __setup("boot_delay=", boot_delay_setup); | 227 | __setup("boot_delay=", boot_delay_setup); |
@@ -236,7 +234,7 @@ static void boot_delay_msec(void) | |||
236 | if (boot_delay == 0 || system_state != SYSTEM_BOOTING) | 234 | if (boot_delay == 0 || system_state != SYSTEM_BOOTING) |
237 | return; | 235 | return; |
238 | 236 | ||
239 | k = (unsigned long long)printk_delay_msec * boot_delay; | 237 | k = (unsigned long long)loops_per_msec * boot_delay; |
240 | 238 | ||
241 | timeout = jiffies + msecs_to_jiffies(boot_delay); | 239 | timeout = jiffies + msecs_to_jiffies(boot_delay); |
242 | while (k) { | 240 | while (k) { |
@@ -655,6 +653,20 @@ static int recursion_bug; | |||
655 | static int new_text_line = 1; | 653 | static int new_text_line = 1; |
656 | static char printk_buf[1024]; | 654 | static char printk_buf[1024]; |
657 | 655 | ||
656 | int printk_delay_msec __read_mostly; | ||
657 | |||
658 | static inline void printk_delay(void) | ||
659 | { | ||
660 | if (unlikely(printk_delay_msec)) { | ||
661 | int m = printk_delay_msec; | ||
662 | |||
663 | while (m--) { | ||
664 | mdelay(1); | ||
665 | touch_nmi_watchdog(); | ||
666 | } | ||
667 | } | ||
668 | } | ||
669 | |||
658 | asmlinkage int vprintk(const char *fmt, va_list args) | 670 | asmlinkage int vprintk(const char *fmt, va_list args) |
659 | { | 671 | { |
660 | int printed_len = 0; | 672 | int printed_len = 0; |
@@ -664,6 +676,7 @@ asmlinkage int vprintk(const char *fmt, va_list args) | |||
664 | char *p; | 676 | char *p; |
665 | 677 | ||
666 | boot_delay_msec(); | 678 | boot_delay_msec(); |
679 | printk_delay(); | ||
667 | 680 | ||
668 | preempt_disable(); | 681 | preempt_disable(); |
669 | /* This stops the holder of console_sem just where we want him */ | 682 | /* This stops the holder of console_sem just where we want him */ |
diff --git a/kernel/profile.c b/kernel/profile.c index 419250ebec4d..a55d3a367ae8 100644 --- a/kernel/profile.c +++ b/kernel/profile.c | |||
@@ -442,48 +442,51 @@ void profile_tick(int type) | |||
442 | 442 | ||
443 | #ifdef CONFIG_PROC_FS | 443 | #ifdef CONFIG_PROC_FS |
444 | #include <linux/proc_fs.h> | 444 | #include <linux/proc_fs.h> |
445 | #include <linux/seq_file.h> | ||
445 | #include <asm/uaccess.h> | 446 | #include <asm/uaccess.h> |
446 | 447 | ||
447 | static int prof_cpu_mask_read_proc(char *page, char **start, off_t off, | 448 | static int prof_cpu_mask_proc_show(struct seq_file *m, void *v) |
448 | int count, int *eof, void *data) | ||
449 | { | 449 | { |
450 | int len = cpumask_scnprintf(page, count, data); | 450 | seq_cpumask(m, prof_cpu_mask); |
451 | if (count - len < 2) | 451 | seq_putc(m, '\n'); |
452 | return -EINVAL; | 452 | return 0; |
453 | len += sprintf(page + len, "\n"); | ||
454 | return len; | ||
455 | } | 453 | } |
456 | 454 | ||
457 | static int prof_cpu_mask_write_proc(struct file *file, | 455 | static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file) |
458 | const char __user *buffer, unsigned long count, void *data) | 456 | { |
457 | return single_open(file, prof_cpu_mask_proc_show, NULL); | ||
458 | } | ||
459 | |||
460 | static ssize_t prof_cpu_mask_proc_write(struct file *file, | ||
461 | const char __user *buffer, size_t count, loff_t *pos) | ||
459 | { | 462 | { |
460 | struct cpumask *mask = data; | ||
461 | unsigned long full_count = count, err; | ||
462 | cpumask_var_t new_value; | 463 | cpumask_var_t new_value; |
464 | int err; | ||
463 | 465 | ||
464 | if (!alloc_cpumask_var(&new_value, GFP_KERNEL)) | 466 | if (!alloc_cpumask_var(&new_value, GFP_KERNEL)) |
465 | return -ENOMEM; | 467 | return -ENOMEM; |
466 | 468 | ||
467 | err = cpumask_parse_user(buffer, count, new_value); | 469 | err = cpumask_parse_user(buffer, count, new_value); |
468 | if (!err) { | 470 | if (!err) { |
469 | cpumask_copy(mask, new_value); | 471 | cpumask_copy(prof_cpu_mask, new_value); |
470 | err = full_count; | 472 | err = count; |
471 | } | 473 | } |
472 | free_cpumask_var(new_value); | 474 | free_cpumask_var(new_value); |
473 | return err; | 475 | return err; |
474 | } | 476 | } |
475 | 477 | ||
478 | static const struct file_operations prof_cpu_mask_proc_fops = { | ||
479 | .open = prof_cpu_mask_proc_open, | ||
480 | .read = seq_read, | ||
481 | .llseek = seq_lseek, | ||
482 | .release = single_release, | ||
483 | .write = prof_cpu_mask_proc_write, | ||
484 | }; | ||
485 | |||
476 | void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir) | 486 | void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir) |
477 | { | 487 | { |
478 | struct proc_dir_entry *entry; | ||
479 | |||
480 | /* create /proc/irq/prof_cpu_mask */ | 488 | /* create /proc/irq/prof_cpu_mask */ |
481 | entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir); | 489 | proc_create("prof_cpu_mask", 0600, root_irq_dir, &prof_cpu_mask_proc_fops); |
482 | if (!entry) | ||
483 | return; | ||
484 | entry->data = prof_cpu_mask; | ||
485 | entry->read_proc = prof_cpu_mask_read_proc; | ||
486 | entry->write_proc = prof_cpu_mask_write_proc; | ||
487 | } | 490 | } |
488 | 491 | ||
489 | /* | 492 | /* |
diff --git a/kernel/ptrace.c b/kernel/ptrace.c index 307c285af59e..23bd09cd042e 100644 --- a/kernel/ptrace.c +++ b/kernel/ptrace.c | |||
@@ -266,9 +266,10 @@ static int ignoring_children(struct sighand_struct *sigh) | |||
266 | * or self-reaping. Do notification now if it would have happened earlier. | 266 | * or self-reaping. Do notification now if it would have happened earlier. |
267 | * If it should reap itself, return true. | 267 | * If it should reap itself, return true. |
268 | * | 268 | * |
269 | * If it's our own child, there is no notification to do. | 269 | * If it's our own child, there is no notification to do. But if our normal |
270 | * But if our normal children self-reap, then this child | 270 | * children self-reap, then this child was prevented by ptrace and we must |
271 | * was prevented by ptrace and we must reap it now. | 271 | * reap it now, in that case we must also wake up sub-threads sleeping in |
272 | * do_wait(). | ||
272 | */ | 273 | */ |
273 | static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p) | 274 | static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p) |
274 | { | 275 | { |
@@ -278,8 +279,10 @@ static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p) | |||
278 | if (!task_detached(p) && thread_group_empty(p)) { | 279 | if (!task_detached(p) && thread_group_empty(p)) { |
279 | if (!same_thread_group(p->real_parent, tracer)) | 280 | if (!same_thread_group(p->real_parent, tracer)) |
280 | do_notify_parent(p, p->exit_signal); | 281 | do_notify_parent(p, p->exit_signal); |
281 | else if (ignoring_children(tracer->sighand)) | 282 | else if (ignoring_children(tracer->sighand)) { |
283 | __wake_up_parent(p, tracer); | ||
282 | p->exit_signal = -1; | 284 | p->exit_signal = -1; |
285 | } | ||
283 | } | 286 | } |
284 | if (task_detached(p)) { | 287 | if (task_detached(p)) { |
285 | /* Mark it as in the process of being reaped. */ | 288 | /* Mark it as in the process of being reaped. */ |
diff --git a/kernel/rcupdate.c b/kernel/rcupdate.c index bd5d5c8e5140..37ac45483082 100644 --- a/kernel/rcupdate.c +++ b/kernel/rcupdate.c | |||
@@ -19,7 +19,7 @@ | |||
19 | * | 19 | * |
20 | * Authors: Dipankar Sarma <dipankar@in.ibm.com> | 20 | * Authors: Dipankar Sarma <dipankar@in.ibm.com> |
21 | * Manfred Spraul <manfred@colorfullife.com> | 21 | * Manfred Spraul <manfred@colorfullife.com> |
22 | * | 22 | * |
23 | * Based on the original work by Paul McKenney <paulmck@us.ibm.com> | 23 | * Based on the original work by Paul McKenney <paulmck@us.ibm.com> |
24 | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. | 24 | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. |
25 | * Papers: | 25 | * Papers: |
@@ -27,7 +27,7 @@ | |||
27 | * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) | 27 | * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) |
28 | * | 28 | * |
29 | * For detailed explanation of Read-Copy Update mechanism see - | 29 | * For detailed explanation of Read-Copy Update mechanism see - |
30 | * http://lse.sourceforge.net/locking/rcupdate.html | 30 | * http://lse.sourceforge.net/locking/rcupdate.html |
31 | * | 31 | * |
32 | */ | 32 | */ |
33 | #include <linux/types.h> | 33 | #include <linux/types.h> |
@@ -74,6 +74,8 @@ void wakeme_after_rcu(struct rcu_head *head) | |||
74 | complete(&rcu->completion); | 74 | complete(&rcu->completion); |
75 | } | 75 | } |
76 | 76 | ||
77 | #ifdef CONFIG_TREE_PREEMPT_RCU | ||
78 | |||
77 | /** | 79 | /** |
78 | * synchronize_rcu - wait until a grace period has elapsed. | 80 | * synchronize_rcu - wait until a grace period has elapsed. |
79 | * | 81 | * |
@@ -87,7 +89,7 @@ void synchronize_rcu(void) | |||
87 | { | 89 | { |
88 | struct rcu_synchronize rcu; | 90 | struct rcu_synchronize rcu; |
89 | 91 | ||
90 | if (rcu_blocking_is_gp()) | 92 | if (!rcu_scheduler_active) |
91 | return; | 93 | return; |
92 | 94 | ||
93 | init_completion(&rcu.completion); | 95 | init_completion(&rcu.completion); |
@@ -98,6 +100,46 @@ void synchronize_rcu(void) | |||
98 | } | 100 | } |
99 | EXPORT_SYMBOL_GPL(synchronize_rcu); | 101 | EXPORT_SYMBOL_GPL(synchronize_rcu); |
100 | 102 | ||
103 | #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ | ||
104 | |||
105 | /** | ||
106 | * synchronize_sched - wait until an rcu-sched grace period has elapsed. | ||
107 | * | ||
108 | * Control will return to the caller some time after a full rcu-sched | ||
109 | * grace period has elapsed, in other words after all currently executing | ||
110 | * rcu-sched read-side critical sections have completed. These read-side | ||
111 | * critical sections are delimited by rcu_read_lock_sched() and | ||
112 | * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(), | ||
113 | * local_irq_disable(), and so on may be used in place of | ||
114 | * rcu_read_lock_sched(). | ||
115 | * | ||
116 | * This means that all preempt_disable code sequences, including NMI and | ||
117 | * hardware-interrupt handlers, in progress on entry will have completed | ||
118 | * before this primitive returns. However, this does not guarantee that | ||
119 | * softirq handlers will have completed, since in some kernels, these | ||
120 | * handlers can run in process context, and can block. | ||
121 | * | ||
122 | * This primitive provides the guarantees made by the (now removed) | ||
123 | * synchronize_kernel() API. In contrast, synchronize_rcu() only | ||
124 | * guarantees that rcu_read_lock() sections will have completed. | ||
125 | * In "classic RCU", these two guarantees happen to be one and | ||
126 | * the same, but can differ in realtime RCU implementations. | ||
127 | */ | ||
128 | void synchronize_sched(void) | ||
129 | { | ||
130 | struct rcu_synchronize rcu; | ||
131 | |||
132 | if (rcu_blocking_is_gp()) | ||
133 | return; | ||
134 | |||
135 | init_completion(&rcu.completion); | ||
136 | /* Will wake me after RCU finished. */ | ||
137 | call_rcu_sched(&rcu.head, wakeme_after_rcu); | ||
138 | /* Wait for it. */ | ||
139 | wait_for_completion(&rcu.completion); | ||
140 | } | ||
141 | EXPORT_SYMBOL_GPL(synchronize_sched); | ||
142 | |||
101 | /** | 143 | /** |
102 | * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. | 144 | * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. |
103 | * | 145 | * |
diff --git a/kernel/rcutorture.c b/kernel/rcutorture.c index b33db539a8ad..233768f21f97 100644 --- a/kernel/rcutorture.c +++ b/kernel/rcutorture.c | |||
@@ -18,7 +18,7 @@ | |||
18 | * Copyright (C) IBM Corporation, 2005, 2006 | 18 | * Copyright (C) IBM Corporation, 2005, 2006 |
19 | * | 19 | * |
20 | * Authors: Paul E. McKenney <paulmck@us.ibm.com> | 20 | * Authors: Paul E. McKenney <paulmck@us.ibm.com> |
21 | * Josh Triplett <josh@freedesktop.org> | 21 | * Josh Triplett <josh@freedesktop.org> |
22 | * | 22 | * |
23 | * See also: Documentation/RCU/torture.txt | 23 | * See also: Documentation/RCU/torture.txt |
24 | */ | 24 | */ |
@@ -50,7 +50,7 @@ | |||
50 | 50 | ||
51 | MODULE_LICENSE("GPL"); | 51 | MODULE_LICENSE("GPL"); |
52 | MODULE_AUTHOR("Paul E. McKenney <paulmck@us.ibm.com> and " | 52 | MODULE_AUTHOR("Paul E. McKenney <paulmck@us.ibm.com> and " |
53 | "Josh Triplett <josh@freedesktop.org>"); | 53 | "Josh Triplett <josh@freedesktop.org>"); |
54 | 54 | ||
55 | static int nreaders = -1; /* # reader threads, defaults to 2*ncpus */ | 55 | static int nreaders = -1; /* # reader threads, defaults to 2*ncpus */ |
56 | static int nfakewriters = 4; /* # fake writer threads */ | 56 | static int nfakewriters = 4; /* # fake writer threads */ |
@@ -110,8 +110,8 @@ struct rcu_torture { | |||
110 | }; | 110 | }; |
111 | 111 | ||
112 | static LIST_HEAD(rcu_torture_freelist); | 112 | static LIST_HEAD(rcu_torture_freelist); |
113 | static struct rcu_torture *rcu_torture_current = NULL; | 113 | static struct rcu_torture *rcu_torture_current; |
114 | static long rcu_torture_current_version = 0; | 114 | static long rcu_torture_current_version; |
115 | static struct rcu_torture rcu_tortures[10 * RCU_TORTURE_PIPE_LEN]; | 115 | static struct rcu_torture rcu_tortures[10 * RCU_TORTURE_PIPE_LEN]; |
116 | static DEFINE_SPINLOCK(rcu_torture_lock); | 116 | static DEFINE_SPINLOCK(rcu_torture_lock); |
117 | static DEFINE_PER_CPU(long [RCU_TORTURE_PIPE_LEN + 1], rcu_torture_count) = | 117 | static DEFINE_PER_CPU(long [RCU_TORTURE_PIPE_LEN + 1], rcu_torture_count) = |
@@ -124,11 +124,11 @@ static atomic_t n_rcu_torture_alloc_fail; | |||
124 | static atomic_t n_rcu_torture_free; | 124 | static atomic_t n_rcu_torture_free; |
125 | static atomic_t n_rcu_torture_mberror; | 125 | static atomic_t n_rcu_torture_mberror; |
126 | static atomic_t n_rcu_torture_error; | 126 | static atomic_t n_rcu_torture_error; |
127 | static long n_rcu_torture_timers = 0; | 127 | static long n_rcu_torture_timers; |
128 | static struct list_head rcu_torture_removed; | 128 | static struct list_head rcu_torture_removed; |
129 | static cpumask_var_t shuffle_tmp_mask; | 129 | static cpumask_var_t shuffle_tmp_mask; |
130 | 130 | ||
131 | static int stutter_pause_test = 0; | 131 | static int stutter_pause_test; |
132 | 132 | ||
133 | #if defined(MODULE) || defined(CONFIG_RCU_TORTURE_TEST_RUNNABLE) | 133 | #if defined(MODULE) || defined(CONFIG_RCU_TORTURE_TEST_RUNNABLE) |
134 | #define RCUTORTURE_RUNNABLE_INIT 1 | 134 | #define RCUTORTURE_RUNNABLE_INIT 1 |
@@ -267,7 +267,8 @@ struct rcu_torture_ops { | |||
267 | int irq_capable; | 267 | int irq_capable; |
268 | char *name; | 268 | char *name; |
269 | }; | 269 | }; |
270 | static struct rcu_torture_ops *cur_ops = NULL; | 270 | |
271 | static struct rcu_torture_ops *cur_ops; | ||
271 | 272 | ||
272 | /* | 273 | /* |
273 | * Definitions for rcu torture testing. | 274 | * Definitions for rcu torture testing. |
@@ -281,14 +282,17 @@ static int rcu_torture_read_lock(void) __acquires(RCU) | |||
281 | 282 | ||
282 | static void rcu_read_delay(struct rcu_random_state *rrsp) | 283 | static void rcu_read_delay(struct rcu_random_state *rrsp) |
283 | { | 284 | { |
284 | long delay; | 285 | const unsigned long shortdelay_us = 200; |
285 | const long longdelay = 200; | 286 | const unsigned long longdelay_ms = 50; |
286 | 287 | ||
287 | /* We want there to be long-running readers, but not all the time. */ | 288 | /* We want a short delay sometimes to make a reader delay the grace |
289 | * period, and we want a long delay occasionally to trigger | ||
290 | * force_quiescent_state. */ | ||
288 | 291 | ||
289 | delay = rcu_random(rrsp) % (nrealreaders * 2 * longdelay); | 292 | if (!(rcu_random(rrsp) % (nrealreaders * 2000 * longdelay_ms))) |
290 | if (!delay) | 293 | mdelay(longdelay_ms); |
291 | udelay(longdelay); | 294 | if (!(rcu_random(rrsp) % (nrealreaders * 2 * shortdelay_us))) |
295 | udelay(shortdelay_us); | ||
292 | } | 296 | } |
293 | 297 | ||
294 | static void rcu_torture_read_unlock(int idx) __releases(RCU) | 298 | static void rcu_torture_read_unlock(int idx) __releases(RCU) |
@@ -339,8 +343,8 @@ static struct rcu_torture_ops rcu_ops = { | |||
339 | .sync = synchronize_rcu, | 343 | .sync = synchronize_rcu, |
340 | .cb_barrier = rcu_barrier, | 344 | .cb_barrier = rcu_barrier, |
341 | .stats = NULL, | 345 | .stats = NULL, |
342 | .irq_capable = 1, | 346 | .irq_capable = 1, |
343 | .name = "rcu" | 347 | .name = "rcu" |
344 | }; | 348 | }; |
345 | 349 | ||
346 | static void rcu_sync_torture_deferred_free(struct rcu_torture *p) | 350 | static void rcu_sync_torture_deferred_free(struct rcu_torture *p) |
@@ -638,7 +642,8 @@ rcu_torture_writer(void *arg) | |||
638 | 642 | ||
639 | do { | 643 | do { |
640 | schedule_timeout_uninterruptible(1); | 644 | schedule_timeout_uninterruptible(1); |
641 | if ((rp = rcu_torture_alloc()) == NULL) | 645 | rp = rcu_torture_alloc(); |
646 | if (rp == NULL) | ||
642 | continue; | 647 | continue; |
643 | rp->rtort_pipe_count = 0; | 648 | rp->rtort_pipe_count = 0; |
644 | udelay(rcu_random(&rand) & 0x3ff); | 649 | udelay(rcu_random(&rand) & 0x3ff); |
@@ -1110,7 +1115,7 @@ rcu_torture_init(void) | |||
1110 | printk(KERN_ALERT "rcutorture: invalid torture type: \"%s\"\n", | 1115 | printk(KERN_ALERT "rcutorture: invalid torture type: \"%s\"\n", |
1111 | torture_type); | 1116 | torture_type); |
1112 | mutex_unlock(&fullstop_mutex); | 1117 | mutex_unlock(&fullstop_mutex); |
1113 | return (-EINVAL); | 1118 | return -EINVAL; |
1114 | } | 1119 | } |
1115 | if (cur_ops->init) | 1120 | if (cur_ops->init) |
1116 | cur_ops->init(); /* no "goto unwind" prior to this point!!! */ | 1121 | cur_ops->init(); /* no "goto unwind" prior to this point!!! */ |
@@ -1161,7 +1166,7 @@ rcu_torture_init(void) | |||
1161 | goto unwind; | 1166 | goto unwind; |
1162 | } | 1167 | } |
1163 | fakewriter_tasks = kzalloc(nfakewriters * sizeof(fakewriter_tasks[0]), | 1168 | fakewriter_tasks = kzalloc(nfakewriters * sizeof(fakewriter_tasks[0]), |
1164 | GFP_KERNEL); | 1169 | GFP_KERNEL); |
1165 | if (fakewriter_tasks == NULL) { | 1170 | if (fakewriter_tasks == NULL) { |
1166 | VERBOSE_PRINTK_ERRSTRING("out of memory"); | 1171 | VERBOSE_PRINTK_ERRSTRING("out of memory"); |
1167 | firsterr = -ENOMEM; | 1172 | firsterr = -ENOMEM; |
@@ -1170,7 +1175,7 @@ rcu_torture_init(void) | |||
1170 | for (i = 0; i < nfakewriters; i++) { | 1175 | for (i = 0; i < nfakewriters; i++) { |
1171 | VERBOSE_PRINTK_STRING("Creating rcu_torture_fakewriter task"); | 1176 | VERBOSE_PRINTK_STRING("Creating rcu_torture_fakewriter task"); |
1172 | fakewriter_tasks[i] = kthread_run(rcu_torture_fakewriter, NULL, | 1177 | fakewriter_tasks[i] = kthread_run(rcu_torture_fakewriter, NULL, |
1173 | "rcu_torture_fakewriter"); | 1178 | "rcu_torture_fakewriter"); |
1174 | if (IS_ERR(fakewriter_tasks[i])) { | 1179 | if (IS_ERR(fakewriter_tasks[i])) { |
1175 | firsterr = PTR_ERR(fakewriter_tasks[i]); | 1180 | firsterr = PTR_ERR(fakewriter_tasks[i]); |
1176 | VERBOSE_PRINTK_ERRSTRING("Failed to create fakewriter"); | 1181 | VERBOSE_PRINTK_ERRSTRING("Failed to create fakewriter"); |
diff --git a/kernel/rcutree.c b/kernel/rcutree.c index 6b11b07cfe7f..52b06f6e158c 100644 --- a/kernel/rcutree.c +++ b/kernel/rcutree.c | |||
@@ -25,7 +25,7 @@ | |||
25 | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. | 25 | * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. |
26 | * | 26 | * |
27 | * For detailed explanation of Read-Copy Update mechanism see - | 27 | * For detailed explanation of Read-Copy Update mechanism see - |
28 | * Documentation/RCU | 28 | * Documentation/RCU |
29 | */ | 29 | */ |
30 | #include <linux/types.h> | 30 | #include <linux/types.h> |
31 | #include <linux/kernel.h> | 31 | #include <linux/kernel.h> |
@@ -107,27 +107,23 @@ static void __cpuinit rcu_init_percpu_data(int cpu, struct rcu_state *rsp, | |||
107 | */ | 107 | */ |
108 | void rcu_sched_qs(int cpu) | 108 | void rcu_sched_qs(int cpu) |
109 | { | 109 | { |
110 | unsigned long flags; | ||
111 | struct rcu_data *rdp; | 110 | struct rcu_data *rdp; |
112 | 111 | ||
113 | local_irq_save(flags); | ||
114 | rdp = &per_cpu(rcu_sched_data, cpu); | 112 | rdp = &per_cpu(rcu_sched_data, cpu); |
115 | rdp->passed_quiesc = 1; | ||
116 | rdp->passed_quiesc_completed = rdp->completed; | 113 | rdp->passed_quiesc_completed = rdp->completed; |
117 | rcu_preempt_qs(cpu); | 114 | barrier(); |
118 | local_irq_restore(flags); | 115 | rdp->passed_quiesc = 1; |
116 | rcu_preempt_note_context_switch(cpu); | ||
119 | } | 117 | } |
120 | 118 | ||
121 | void rcu_bh_qs(int cpu) | 119 | void rcu_bh_qs(int cpu) |
122 | { | 120 | { |
123 | unsigned long flags; | ||
124 | struct rcu_data *rdp; | 121 | struct rcu_data *rdp; |
125 | 122 | ||
126 | local_irq_save(flags); | ||
127 | rdp = &per_cpu(rcu_bh_data, cpu); | 123 | rdp = &per_cpu(rcu_bh_data, cpu); |
128 | rdp->passed_quiesc = 1; | ||
129 | rdp->passed_quiesc_completed = rdp->completed; | 124 | rdp->passed_quiesc_completed = rdp->completed; |
130 | local_irq_restore(flags); | 125 | barrier(); |
126 | rdp->passed_quiesc = 1; | ||
131 | } | 127 | } |
132 | 128 | ||
133 | #ifdef CONFIG_NO_HZ | 129 | #ifdef CONFIG_NO_HZ |
@@ -605,8 +601,6 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags) | |||
605 | { | 601 | { |
606 | struct rcu_data *rdp = rsp->rda[smp_processor_id()]; | 602 | struct rcu_data *rdp = rsp->rda[smp_processor_id()]; |
607 | struct rcu_node *rnp = rcu_get_root(rsp); | 603 | struct rcu_node *rnp = rcu_get_root(rsp); |
608 | struct rcu_node *rnp_cur; | ||
609 | struct rcu_node *rnp_end; | ||
610 | 604 | ||
611 | if (!cpu_needs_another_gp(rsp, rdp)) { | 605 | if (!cpu_needs_another_gp(rsp, rdp)) { |
612 | spin_unlock_irqrestore(&rnp->lock, flags); | 606 | spin_unlock_irqrestore(&rnp->lock, flags); |
@@ -615,6 +609,7 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags) | |||
615 | 609 | ||
616 | /* Advance to a new grace period and initialize state. */ | 610 | /* Advance to a new grace period and initialize state. */ |
617 | rsp->gpnum++; | 611 | rsp->gpnum++; |
612 | WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT); | ||
618 | rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */ | 613 | rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */ |
619 | rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS; | 614 | rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS; |
620 | record_gp_stall_check_time(rsp); | 615 | record_gp_stall_check_time(rsp); |
@@ -631,7 +626,9 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags) | |||
631 | 626 | ||
632 | /* Special-case the common single-level case. */ | 627 | /* Special-case the common single-level case. */ |
633 | if (NUM_RCU_NODES == 1) { | 628 | if (NUM_RCU_NODES == 1) { |
629 | rcu_preempt_check_blocked_tasks(rnp); | ||
634 | rnp->qsmask = rnp->qsmaskinit; | 630 | rnp->qsmask = rnp->qsmaskinit; |
631 | rnp->gpnum = rsp->gpnum; | ||
635 | rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */ | 632 | rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */ |
636 | spin_unlock_irqrestore(&rnp->lock, flags); | 633 | spin_unlock_irqrestore(&rnp->lock, flags); |
637 | return; | 634 | return; |
@@ -644,42 +641,28 @@ rcu_start_gp(struct rcu_state *rsp, unsigned long flags) | |||
644 | spin_lock(&rsp->onofflock); /* irqs already disabled. */ | 641 | spin_lock(&rsp->onofflock); /* irqs already disabled. */ |
645 | 642 | ||
646 | /* | 643 | /* |
647 | * Set the quiescent-state-needed bits in all the non-leaf RCU | 644 | * Set the quiescent-state-needed bits in all the rcu_node |
648 | * nodes for all currently online CPUs. This operation relies | 645 | * structures for all currently online CPUs in breadth-first |
649 | * on the layout of the hierarchy within the rsp->node[] array. | 646 | * order, starting from the root rcu_node structure. This |
650 | * Note that other CPUs will access only the leaves of the | 647 | * operation relies on the layout of the hierarchy within the |
651 | * hierarchy, which still indicate that no grace period is in | 648 | * rsp->node[] array. Note that other CPUs will access only |
652 | * progress. In addition, we have excluded CPU-hotplug operations. | 649 | * the leaves of the hierarchy, which still indicate that no |
653 | * | 650 | * grace period is in progress, at least until the corresponding |
654 | * We therefore do not need to hold any locks. Any required | 651 | * leaf node has been initialized. In addition, we have excluded |
655 | * memory barriers will be supplied by the locks guarding the | 652 | * CPU-hotplug operations. |
656 | * leaf rcu_nodes in the hierarchy. | ||
657 | */ | ||
658 | |||
659 | rnp_end = rsp->level[NUM_RCU_LVLS - 1]; | ||
660 | for (rnp_cur = &rsp->node[0]; rnp_cur < rnp_end; rnp_cur++) | ||
661 | rnp_cur->qsmask = rnp_cur->qsmaskinit; | ||
662 | |||
663 | /* | ||
664 | * Now set up the leaf nodes. Here we must be careful. First, | ||
665 | * we need to hold the lock in order to exclude other CPUs, which | ||
666 | * might be contending for the leaf nodes' locks. Second, as | ||
667 | * soon as we initialize a given leaf node, its CPUs might run | ||
668 | * up the rest of the hierarchy. We must therefore acquire locks | ||
669 | * for each node that we touch during this stage. (But we still | ||
670 | * are excluding CPU-hotplug operations.) | ||
671 | * | 653 | * |
672 | * Note that the grace period cannot complete until we finish | 654 | * Note that the grace period cannot complete until we finish |
673 | * the initialization process, as there will be at least one | 655 | * the initialization process, as there will be at least one |
674 | * qsmask bit set in the root node until that time, namely the | 656 | * qsmask bit set in the root node until that time, namely the |
675 | * one corresponding to this CPU. | 657 | * one corresponding to this CPU, due to the fact that we have |
658 | * irqs disabled. | ||
676 | */ | 659 | */ |
677 | rnp_end = &rsp->node[NUM_RCU_NODES]; | 660 | for (rnp = &rsp->node[0]; rnp < &rsp->node[NUM_RCU_NODES]; rnp++) { |
678 | rnp_cur = rsp->level[NUM_RCU_LVLS - 1]; | 661 | spin_lock(&rnp->lock); /* irqs already disabled. */ |
679 | for (; rnp_cur < rnp_end; rnp_cur++) { | 662 | rcu_preempt_check_blocked_tasks(rnp); |
680 | spin_lock(&rnp_cur->lock); /* irqs already disabled. */ | 663 | rnp->qsmask = rnp->qsmaskinit; |
681 | rnp_cur->qsmask = rnp_cur->qsmaskinit; | 664 | rnp->gpnum = rsp->gpnum; |
682 | spin_unlock(&rnp_cur->lock); /* irqs already disabled. */ | 665 | spin_unlock(&rnp->lock); /* irqs already disabled. */ |
683 | } | 666 | } |
684 | 667 | ||
685 | rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */ | 668 | rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */ |
@@ -722,6 +705,7 @@ rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp) | |||
722 | static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags) | 705 | static void cpu_quiet_msk_finish(struct rcu_state *rsp, unsigned long flags) |
723 | __releases(rnp->lock) | 706 | __releases(rnp->lock) |
724 | { | 707 | { |
708 | WARN_ON_ONCE(rsp->completed == rsp->gpnum); | ||
725 | rsp->completed = rsp->gpnum; | 709 | rsp->completed = rsp->gpnum; |
726 | rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]); | 710 | rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]); |
727 | rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */ | 711 | rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */ |
@@ -739,6 +723,8 @@ cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp, | |||
739 | unsigned long flags) | 723 | unsigned long flags) |
740 | __releases(rnp->lock) | 724 | __releases(rnp->lock) |
741 | { | 725 | { |
726 | struct rcu_node *rnp_c; | ||
727 | |||
742 | /* Walk up the rcu_node hierarchy. */ | 728 | /* Walk up the rcu_node hierarchy. */ |
743 | for (;;) { | 729 | for (;;) { |
744 | if (!(rnp->qsmask & mask)) { | 730 | if (!(rnp->qsmask & mask)) { |
@@ -762,8 +748,10 @@ cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp, | |||
762 | break; | 748 | break; |
763 | } | 749 | } |
764 | spin_unlock_irqrestore(&rnp->lock, flags); | 750 | spin_unlock_irqrestore(&rnp->lock, flags); |
751 | rnp_c = rnp; | ||
765 | rnp = rnp->parent; | 752 | rnp = rnp->parent; |
766 | spin_lock_irqsave(&rnp->lock, flags); | 753 | spin_lock_irqsave(&rnp->lock, flags); |
754 | WARN_ON_ONCE(rnp_c->qsmask); | ||
767 | } | 755 | } |
768 | 756 | ||
769 | /* | 757 | /* |
@@ -776,10 +764,10 @@ cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp, | |||
776 | 764 | ||
777 | /* | 765 | /* |
778 | * Record a quiescent state for the specified CPU, which must either be | 766 | * Record a quiescent state for the specified CPU, which must either be |
779 | * the current CPU or an offline CPU. The lastcomp argument is used to | 767 | * the current CPU. The lastcomp argument is used to make sure we are |
780 | * make sure we are still in the grace period of interest. We don't want | 768 | * still in the grace period of interest. We don't want to end the current |
781 | * to end the current grace period based on quiescent states detected in | 769 | * grace period based on quiescent states detected in an earlier grace |
782 | * an earlier grace period! | 770 | * period! |
783 | */ | 771 | */ |
784 | static void | 772 | static void |
785 | cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp) | 773 | cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp) |
@@ -814,7 +802,6 @@ cpu_quiet(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp) | |||
814 | * This GP can't end until cpu checks in, so all of our | 802 | * This GP can't end until cpu checks in, so all of our |
815 | * callbacks can be processed during the next GP. | 803 | * callbacks can be processed during the next GP. |
816 | */ | 804 | */ |
817 | rdp = rsp->rda[smp_processor_id()]; | ||
818 | rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; | 805 | rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL]; |
819 | 806 | ||
820 | cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */ | 807 | cpu_quiet_msk(mask, rsp, rnp, flags); /* releases rnp->lock */ |
@@ -872,7 +859,7 @@ static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp) | |||
872 | spin_lock_irqsave(&rsp->onofflock, flags); | 859 | spin_lock_irqsave(&rsp->onofflock, flags); |
873 | 860 | ||
874 | /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */ | 861 | /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */ |
875 | rnp = rdp->mynode; | 862 | rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */ |
876 | mask = rdp->grpmask; /* rnp->grplo is constant. */ | 863 | mask = rdp->grpmask; /* rnp->grplo is constant. */ |
877 | do { | 864 | do { |
878 | spin_lock(&rnp->lock); /* irqs already disabled. */ | 865 | spin_lock(&rnp->lock); /* irqs already disabled. */ |
@@ -881,7 +868,7 @@ static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp) | |||
881 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ | 868 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ |
882 | break; | 869 | break; |
883 | } | 870 | } |
884 | rcu_preempt_offline_tasks(rsp, rnp); | 871 | rcu_preempt_offline_tasks(rsp, rnp, rdp); |
885 | mask = rnp->grpmask; | 872 | mask = rnp->grpmask; |
886 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ | 873 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ |
887 | rnp = rnp->parent; | 874 | rnp = rnp->parent; |
@@ -890,9 +877,6 @@ static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp) | |||
890 | 877 | ||
891 | spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ | 878 | spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ |
892 | 879 | ||
893 | /* Being offline is a quiescent state, so go record it. */ | ||
894 | cpu_quiet(cpu, rsp, rdp, lastcomp); | ||
895 | |||
896 | /* | 880 | /* |
897 | * Move callbacks from the outgoing CPU to the running CPU. | 881 | * Move callbacks from the outgoing CPU to the running CPU. |
898 | * Note that the outgoing CPU is now quiscent, so it is now | 882 | * Note that the outgoing CPU is now quiscent, so it is now |
@@ -1457,20 +1441,7 @@ rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable) | |||
1457 | rnp = rnp->parent; | 1441 | rnp = rnp->parent; |
1458 | } while (rnp != NULL && !(rnp->qsmaskinit & mask)); | 1442 | } while (rnp != NULL && !(rnp->qsmaskinit & mask)); |
1459 | 1443 | ||
1460 | spin_unlock(&rsp->onofflock); /* irqs remain disabled. */ | 1444 | spin_unlock_irqrestore(&rsp->onofflock, flags); |
1461 | |||
1462 | /* | ||
1463 | * A new grace period might start here. If so, we will be part of | ||
1464 | * it, and its gpnum will be greater than ours, so we will | ||
1465 | * participate. It is also possible for the gpnum to have been | ||
1466 | * incremented before this function was called, and the bitmasks | ||
1467 | * to not be filled out until now, in which case we will also | ||
1468 | * participate due to our gpnum being behind. | ||
1469 | */ | ||
1470 | |||
1471 | /* Since it is coming online, the CPU is in a quiescent state. */ | ||
1472 | cpu_quiet(cpu, rsp, rdp, lastcomp); | ||
1473 | local_irq_restore(flags); | ||
1474 | } | 1445 | } |
1475 | 1446 | ||
1476 | static void __cpuinit rcu_online_cpu(int cpu) | 1447 | static void __cpuinit rcu_online_cpu(int cpu) |
diff --git a/kernel/rcutree.h b/kernel/rcutree.h index bf8a6f9f134d..8e8287a983c2 100644 --- a/kernel/rcutree.h +++ b/kernel/rcutree.h | |||
@@ -142,7 +142,7 @@ struct rcu_data { | |||
142 | */ | 142 | */ |
143 | struct rcu_head *nxtlist; | 143 | struct rcu_head *nxtlist; |
144 | struct rcu_head **nxttail[RCU_NEXT_SIZE]; | 144 | struct rcu_head **nxttail[RCU_NEXT_SIZE]; |
145 | long qlen; /* # of queued callbacks */ | 145 | long qlen; /* # of queued callbacks */ |
146 | long blimit; /* Upper limit on a processed batch */ | 146 | long blimit; /* Upper limit on a processed batch */ |
147 | 147 | ||
148 | #ifdef CONFIG_NO_HZ | 148 | #ifdef CONFIG_NO_HZ |
diff --git a/kernel/rcutree_plugin.h b/kernel/rcutree_plugin.h index 47789369ea59..1cee04f627eb 100644 --- a/kernel/rcutree_plugin.h +++ b/kernel/rcutree_plugin.h | |||
@@ -64,22 +64,31 @@ EXPORT_SYMBOL_GPL(rcu_batches_completed); | |||
64 | * not in a quiescent state. There might be any number of tasks blocked | 64 | * not in a quiescent state. There might be any number of tasks blocked |
65 | * while in an RCU read-side critical section. | 65 | * while in an RCU read-side critical section. |
66 | */ | 66 | */ |
67 | static void rcu_preempt_qs_record(int cpu) | 67 | static void rcu_preempt_qs(int cpu) |
68 | { | 68 | { |
69 | struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu); | 69 | struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu); |
70 | rdp->passed_quiesc = 1; | ||
71 | rdp->passed_quiesc_completed = rdp->completed; | 70 | rdp->passed_quiesc_completed = rdp->completed; |
71 | barrier(); | ||
72 | rdp->passed_quiesc = 1; | ||
72 | } | 73 | } |
73 | 74 | ||
74 | /* | 75 | /* |
75 | * We have entered the scheduler or are between softirqs in ksoftirqd. | 76 | * We have entered the scheduler, and the current task might soon be |
76 | * If we are in an RCU read-side critical section, we need to reflect | 77 | * context-switched away from. If this task is in an RCU read-side |
77 | * that in the state of the rcu_node structure corresponding to this CPU. | 78 | * critical section, we will no longer be able to rely on the CPU to |
78 | * Caller must disable hardirqs. | 79 | * record that fact, so we enqueue the task on the appropriate entry |
80 | * of the blocked_tasks[] array. The task will dequeue itself when | ||
81 | * it exits the outermost enclosing RCU read-side critical section. | ||
82 | * Therefore, the current grace period cannot be permitted to complete | ||
83 | * until the blocked_tasks[] entry indexed by the low-order bit of | ||
84 | * rnp->gpnum empties. | ||
85 | * | ||
86 | * Caller must disable preemption. | ||
79 | */ | 87 | */ |
80 | static void rcu_preempt_qs(int cpu) | 88 | static void rcu_preempt_note_context_switch(int cpu) |
81 | { | 89 | { |
82 | struct task_struct *t = current; | 90 | struct task_struct *t = current; |
91 | unsigned long flags; | ||
83 | int phase; | 92 | int phase; |
84 | struct rcu_data *rdp; | 93 | struct rcu_data *rdp; |
85 | struct rcu_node *rnp; | 94 | struct rcu_node *rnp; |
@@ -90,7 +99,7 @@ static void rcu_preempt_qs(int cpu) | |||
90 | /* Possibly blocking in an RCU read-side critical section. */ | 99 | /* Possibly blocking in an RCU read-side critical section. */ |
91 | rdp = rcu_preempt_state.rda[cpu]; | 100 | rdp = rcu_preempt_state.rda[cpu]; |
92 | rnp = rdp->mynode; | 101 | rnp = rdp->mynode; |
93 | spin_lock(&rnp->lock); | 102 | spin_lock_irqsave(&rnp->lock, flags); |
94 | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED; | 103 | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED; |
95 | t->rcu_blocked_node = rnp; | 104 | t->rcu_blocked_node = rnp; |
96 | 105 | ||
@@ -103,11 +112,15 @@ static void rcu_preempt_qs(int cpu) | |||
103 | * state for the current grace period), then as long | 112 | * state for the current grace period), then as long |
104 | * as that task remains queued, the current grace period | 113 | * as that task remains queued, the current grace period |
105 | * cannot end. | 114 | * cannot end. |
115 | * | ||
116 | * But first, note that the current CPU must still be | ||
117 | * on line! | ||
106 | */ | 118 | */ |
107 | phase = !(rnp->qsmask & rdp->grpmask) ^ (rnp->gpnum & 0x1); | 119 | WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0); |
120 | WARN_ON_ONCE(!list_empty(&t->rcu_node_entry)); | ||
121 | phase = (rnp->gpnum + !(rnp->qsmask & rdp->grpmask)) & 0x1; | ||
108 | list_add(&t->rcu_node_entry, &rnp->blocked_tasks[phase]); | 122 | list_add(&t->rcu_node_entry, &rnp->blocked_tasks[phase]); |
109 | smp_mb(); /* Ensure later ctxt swtch seen after above. */ | 123 | spin_unlock_irqrestore(&rnp->lock, flags); |
110 | spin_unlock(&rnp->lock); | ||
111 | } | 124 | } |
112 | 125 | ||
113 | /* | 126 | /* |
@@ -119,9 +132,10 @@ static void rcu_preempt_qs(int cpu) | |||
119 | * grace period, then the fact that the task has been enqueued | 132 | * grace period, then the fact that the task has been enqueued |
120 | * means that we continue to block the current grace period. | 133 | * means that we continue to block the current grace period. |
121 | */ | 134 | */ |
122 | rcu_preempt_qs_record(cpu); | 135 | rcu_preempt_qs(cpu); |
123 | t->rcu_read_unlock_special &= ~(RCU_READ_UNLOCK_NEED_QS | | 136 | local_irq_save(flags); |
124 | RCU_READ_UNLOCK_GOT_QS); | 137 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS; |
138 | local_irq_restore(flags); | ||
125 | } | 139 | } |
126 | 140 | ||
127 | /* | 141 | /* |
@@ -157,7 +171,7 @@ static void rcu_read_unlock_special(struct task_struct *t) | |||
157 | special = t->rcu_read_unlock_special; | 171 | special = t->rcu_read_unlock_special; |
158 | if (special & RCU_READ_UNLOCK_NEED_QS) { | 172 | if (special & RCU_READ_UNLOCK_NEED_QS) { |
159 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS; | 173 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS; |
160 | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_GOT_QS; | 174 | rcu_preempt_qs(smp_processor_id()); |
161 | } | 175 | } |
162 | 176 | ||
163 | /* Hardware IRQ handlers cannot block. */ | 177 | /* Hardware IRQ handlers cannot block. */ |
@@ -177,10 +191,10 @@ static void rcu_read_unlock_special(struct task_struct *t) | |||
177 | */ | 191 | */ |
178 | for (;;) { | 192 | for (;;) { |
179 | rnp = t->rcu_blocked_node; | 193 | rnp = t->rcu_blocked_node; |
180 | spin_lock(&rnp->lock); | 194 | spin_lock(&rnp->lock); /* irqs already disabled. */ |
181 | if (rnp == t->rcu_blocked_node) | 195 | if (rnp == t->rcu_blocked_node) |
182 | break; | 196 | break; |
183 | spin_unlock(&rnp->lock); | 197 | spin_unlock(&rnp->lock); /* irqs remain disabled. */ |
184 | } | 198 | } |
185 | empty = list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]); | 199 | empty = list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]); |
186 | list_del_init(&t->rcu_node_entry); | 200 | list_del_init(&t->rcu_node_entry); |
@@ -194,9 +208,8 @@ static void rcu_read_unlock_special(struct task_struct *t) | |||
194 | */ | 208 | */ |
195 | if (!empty && rnp->qsmask == 0 && | 209 | if (!empty && rnp->qsmask == 0 && |
196 | list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1])) { | 210 | list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1])) { |
197 | t->rcu_read_unlock_special &= | 211 | struct rcu_node *rnp_p; |
198 | ~(RCU_READ_UNLOCK_NEED_QS | | 212 | |
199 | RCU_READ_UNLOCK_GOT_QS); | ||
200 | if (rnp->parent == NULL) { | 213 | if (rnp->parent == NULL) { |
201 | /* Only one rcu_node in the tree. */ | 214 | /* Only one rcu_node in the tree. */ |
202 | cpu_quiet_msk_finish(&rcu_preempt_state, flags); | 215 | cpu_quiet_msk_finish(&rcu_preempt_state, flags); |
@@ -205,9 +218,10 @@ static void rcu_read_unlock_special(struct task_struct *t) | |||
205 | /* Report up the rest of the hierarchy. */ | 218 | /* Report up the rest of the hierarchy. */ |
206 | mask = rnp->grpmask; | 219 | mask = rnp->grpmask; |
207 | spin_unlock_irqrestore(&rnp->lock, flags); | 220 | spin_unlock_irqrestore(&rnp->lock, flags); |
208 | rnp = rnp->parent; | 221 | rnp_p = rnp->parent; |
209 | spin_lock_irqsave(&rnp->lock, flags); | 222 | spin_lock_irqsave(&rnp_p->lock, flags); |
210 | cpu_quiet_msk(mask, &rcu_preempt_state, rnp, flags); | 223 | WARN_ON_ONCE(rnp->qsmask); |
224 | cpu_quiet_msk(mask, &rcu_preempt_state, rnp_p, flags); | ||
211 | return; | 225 | return; |
212 | } | 226 | } |
213 | spin_unlock(&rnp->lock); | 227 | spin_unlock(&rnp->lock); |
@@ -259,6 +273,19 @@ static void rcu_print_task_stall(struct rcu_node *rnp) | |||
259 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | 273 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ |
260 | 274 | ||
261 | /* | 275 | /* |
276 | * Check that the list of blocked tasks for the newly completed grace | ||
277 | * period is in fact empty. It is a serious bug to complete a grace | ||
278 | * period that still has RCU readers blocked! This function must be | ||
279 | * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock | ||
280 | * must be held by the caller. | ||
281 | */ | ||
282 | static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) | ||
283 | { | ||
284 | WARN_ON_ONCE(!list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1])); | ||
285 | WARN_ON_ONCE(rnp->qsmask); | ||
286 | } | ||
287 | |||
288 | /* | ||
262 | * Check for preempted RCU readers for the specified rcu_node structure. | 289 | * Check for preempted RCU readers for the specified rcu_node structure. |
263 | * If the caller needs a reliable answer, it must hold the rcu_node's | 290 | * If the caller needs a reliable answer, it must hold the rcu_node's |
264 | * >lock. | 291 | * >lock. |
@@ -280,7 +307,8 @@ static int rcu_preempted_readers(struct rcu_node *rnp) | |||
280 | * The caller must hold rnp->lock with irqs disabled. | 307 | * The caller must hold rnp->lock with irqs disabled. |
281 | */ | 308 | */ |
282 | static void rcu_preempt_offline_tasks(struct rcu_state *rsp, | 309 | static void rcu_preempt_offline_tasks(struct rcu_state *rsp, |
283 | struct rcu_node *rnp) | 310 | struct rcu_node *rnp, |
311 | struct rcu_data *rdp) | ||
284 | { | 312 | { |
285 | int i; | 313 | int i; |
286 | struct list_head *lp; | 314 | struct list_head *lp; |
@@ -292,6 +320,9 @@ static void rcu_preempt_offline_tasks(struct rcu_state *rsp, | |||
292 | WARN_ONCE(1, "Last CPU thought to be offlined?"); | 320 | WARN_ONCE(1, "Last CPU thought to be offlined?"); |
293 | return; /* Shouldn't happen: at least one CPU online. */ | 321 | return; /* Shouldn't happen: at least one CPU online. */ |
294 | } | 322 | } |
323 | WARN_ON_ONCE(rnp != rdp->mynode && | ||
324 | (!list_empty(&rnp->blocked_tasks[0]) || | ||
325 | !list_empty(&rnp->blocked_tasks[1]))); | ||
295 | 326 | ||
296 | /* | 327 | /* |
297 | * Move tasks up to root rcu_node. Rely on the fact that the | 328 | * Move tasks up to root rcu_node. Rely on the fact that the |
@@ -335,20 +366,12 @@ static void rcu_preempt_check_callbacks(int cpu) | |||
335 | struct task_struct *t = current; | 366 | struct task_struct *t = current; |
336 | 367 | ||
337 | if (t->rcu_read_lock_nesting == 0) { | 368 | if (t->rcu_read_lock_nesting == 0) { |
338 | t->rcu_read_unlock_special &= | 369 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS; |
339 | ~(RCU_READ_UNLOCK_NEED_QS | RCU_READ_UNLOCK_GOT_QS); | 370 | rcu_preempt_qs(cpu); |
340 | rcu_preempt_qs_record(cpu); | ||
341 | return; | 371 | return; |
342 | } | 372 | } |
343 | if (per_cpu(rcu_preempt_data, cpu).qs_pending) { | 373 | if (per_cpu(rcu_preempt_data, cpu).qs_pending) |
344 | if (t->rcu_read_unlock_special & RCU_READ_UNLOCK_GOT_QS) { | 374 | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS; |
345 | rcu_preempt_qs_record(cpu); | ||
346 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_GOT_QS; | ||
347 | } else if (!(t->rcu_read_unlock_special & | ||
348 | RCU_READ_UNLOCK_NEED_QS)) { | ||
349 | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS; | ||
350 | } | ||
351 | } | ||
352 | } | 375 | } |
353 | 376 | ||
354 | /* | 377 | /* |
@@ -434,7 +457,7 @@ EXPORT_SYMBOL_GPL(rcu_batches_completed); | |||
434 | * Because preemptable RCU does not exist, we never have to check for | 457 | * Because preemptable RCU does not exist, we never have to check for |
435 | * CPUs being in quiescent states. | 458 | * CPUs being in quiescent states. |
436 | */ | 459 | */ |
437 | static void rcu_preempt_qs(int cpu) | 460 | static void rcu_preempt_note_context_switch(int cpu) |
438 | { | 461 | { |
439 | } | 462 | } |
440 | 463 | ||
@@ -451,6 +474,16 @@ static void rcu_print_task_stall(struct rcu_node *rnp) | |||
451 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | 474 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ |
452 | 475 | ||
453 | /* | 476 | /* |
477 | * Because there is no preemptable RCU, there can be no readers blocked, | ||
478 | * so there is no need to check for blocked tasks. So check only for | ||
479 | * bogus qsmask values. | ||
480 | */ | ||
481 | static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp) | ||
482 | { | ||
483 | WARN_ON_ONCE(rnp->qsmask); | ||
484 | } | ||
485 | |||
486 | /* | ||
454 | * Because preemptable RCU does not exist, there are never any preempted | 487 | * Because preemptable RCU does not exist, there are never any preempted |
455 | * RCU readers. | 488 | * RCU readers. |
456 | */ | 489 | */ |
@@ -466,7 +499,8 @@ static int rcu_preempted_readers(struct rcu_node *rnp) | |||
466 | * tasks that were blocked within RCU read-side critical sections. | 499 | * tasks that were blocked within RCU read-side critical sections. |
467 | */ | 500 | */ |
468 | static void rcu_preempt_offline_tasks(struct rcu_state *rsp, | 501 | static void rcu_preempt_offline_tasks(struct rcu_state *rsp, |
469 | struct rcu_node *rnp) | 502 | struct rcu_node *rnp, |
503 | struct rcu_data *rdp) | ||
470 | { | 504 | { |
471 | } | 505 | } |
472 | 506 | ||
diff --git a/kernel/rcutree_trace.c b/kernel/rcutree_trace.c index 0ea1bff69727..c89f5e9fd173 100644 --- a/kernel/rcutree_trace.c +++ b/kernel/rcutree_trace.c | |||
@@ -20,7 +20,7 @@ | |||
20 | * Papers: http://www.rdrop.com/users/paulmck/RCU | 20 | * Papers: http://www.rdrop.com/users/paulmck/RCU |
21 | * | 21 | * |
22 | * For detailed explanation of Read-Copy Update mechanism see - | 22 | * For detailed explanation of Read-Copy Update mechanism see - |
23 | * Documentation/RCU | 23 | * Documentation/RCU |
24 | * | 24 | * |
25 | */ | 25 | */ |
26 | #include <linux/types.h> | 26 | #include <linux/types.h> |
diff --git a/kernel/relay.c b/kernel/relay.c index bc188549788f..760c26209a3c 100644 --- a/kernel/relay.c +++ b/kernel/relay.c | |||
@@ -60,7 +60,7 @@ static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf) | |||
60 | /* | 60 | /* |
61 | * vm_ops for relay file mappings. | 61 | * vm_ops for relay file mappings. |
62 | */ | 62 | */ |
63 | static struct vm_operations_struct relay_file_mmap_ops = { | 63 | static const struct vm_operations_struct relay_file_mmap_ops = { |
64 | .fault = relay_buf_fault, | 64 | .fault = relay_buf_fault, |
65 | .close = relay_file_mmap_close, | 65 | .close = relay_file_mmap_close, |
66 | }; | 66 | }; |
diff --git a/kernel/res_counter.c b/kernel/res_counter.c index e1338f074314..88faec23e833 100644 --- a/kernel/res_counter.c +++ b/kernel/res_counter.c | |||
@@ -19,6 +19,7 @@ void res_counter_init(struct res_counter *counter, struct res_counter *parent) | |||
19 | { | 19 | { |
20 | spin_lock_init(&counter->lock); | 20 | spin_lock_init(&counter->lock); |
21 | counter->limit = RESOURCE_MAX; | 21 | counter->limit = RESOURCE_MAX; |
22 | counter->soft_limit = RESOURCE_MAX; | ||
22 | counter->parent = parent; | 23 | counter->parent = parent; |
23 | } | 24 | } |
24 | 25 | ||
@@ -36,17 +37,27 @@ int res_counter_charge_locked(struct res_counter *counter, unsigned long val) | |||
36 | } | 37 | } |
37 | 38 | ||
38 | int res_counter_charge(struct res_counter *counter, unsigned long val, | 39 | int res_counter_charge(struct res_counter *counter, unsigned long val, |
39 | struct res_counter **limit_fail_at) | 40 | struct res_counter **limit_fail_at, |
41 | struct res_counter **soft_limit_fail_at) | ||
40 | { | 42 | { |
41 | int ret; | 43 | int ret; |
42 | unsigned long flags; | 44 | unsigned long flags; |
43 | struct res_counter *c, *u; | 45 | struct res_counter *c, *u; |
44 | 46 | ||
45 | *limit_fail_at = NULL; | 47 | *limit_fail_at = NULL; |
48 | if (soft_limit_fail_at) | ||
49 | *soft_limit_fail_at = NULL; | ||
46 | local_irq_save(flags); | 50 | local_irq_save(flags); |
47 | for (c = counter; c != NULL; c = c->parent) { | 51 | for (c = counter; c != NULL; c = c->parent) { |
48 | spin_lock(&c->lock); | 52 | spin_lock(&c->lock); |
49 | ret = res_counter_charge_locked(c, val); | 53 | ret = res_counter_charge_locked(c, val); |
54 | /* | ||
55 | * With soft limits, we return the highest ancestor | ||
56 | * that exceeds its soft limit | ||
57 | */ | ||
58 | if (soft_limit_fail_at && | ||
59 | !res_counter_soft_limit_check_locked(c)) | ||
60 | *soft_limit_fail_at = c; | ||
50 | spin_unlock(&c->lock); | 61 | spin_unlock(&c->lock); |
51 | if (ret < 0) { | 62 | if (ret < 0) { |
52 | *limit_fail_at = c; | 63 | *limit_fail_at = c; |
@@ -74,7 +85,8 @@ void res_counter_uncharge_locked(struct res_counter *counter, unsigned long val) | |||
74 | counter->usage -= val; | 85 | counter->usage -= val; |
75 | } | 86 | } |
76 | 87 | ||
77 | void res_counter_uncharge(struct res_counter *counter, unsigned long val) | 88 | void res_counter_uncharge(struct res_counter *counter, unsigned long val, |
89 | bool *was_soft_limit_excess) | ||
78 | { | 90 | { |
79 | unsigned long flags; | 91 | unsigned long flags; |
80 | struct res_counter *c; | 92 | struct res_counter *c; |
@@ -82,6 +94,9 @@ void res_counter_uncharge(struct res_counter *counter, unsigned long val) | |||
82 | local_irq_save(flags); | 94 | local_irq_save(flags); |
83 | for (c = counter; c != NULL; c = c->parent) { | 95 | for (c = counter; c != NULL; c = c->parent) { |
84 | spin_lock(&c->lock); | 96 | spin_lock(&c->lock); |
97 | if (was_soft_limit_excess) | ||
98 | *was_soft_limit_excess = | ||
99 | !res_counter_soft_limit_check_locked(c); | ||
85 | res_counter_uncharge_locked(c, val); | 100 | res_counter_uncharge_locked(c, val); |
86 | spin_unlock(&c->lock); | 101 | spin_unlock(&c->lock); |
87 | } | 102 | } |
@@ -101,6 +116,8 @@ res_counter_member(struct res_counter *counter, int member) | |||
101 | return &counter->limit; | 116 | return &counter->limit; |
102 | case RES_FAILCNT: | 117 | case RES_FAILCNT: |
103 | return &counter->failcnt; | 118 | return &counter->failcnt; |
119 | case RES_SOFT_LIMIT: | ||
120 | return &counter->soft_limit; | ||
104 | }; | 121 | }; |
105 | 122 | ||
106 | BUG(); | 123 | BUG(); |
diff --git a/kernel/resource.c b/kernel/resource.c index 78b087221c15..fb11a58b9594 100644 --- a/kernel/resource.c +++ b/kernel/resource.c | |||
@@ -223,13 +223,13 @@ int release_resource(struct resource *old) | |||
223 | 223 | ||
224 | EXPORT_SYMBOL(release_resource); | 224 | EXPORT_SYMBOL(release_resource); |
225 | 225 | ||
226 | #if defined(CONFIG_MEMORY_HOTPLUG) && !defined(CONFIG_ARCH_HAS_WALK_MEMORY) | 226 | #if !defined(CONFIG_ARCH_HAS_WALK_MEMORY) |
227 | /* | 227 | /* |
228 | * Finds the lowest memory reosurce exists within [res->start.res->end) | 228 | * Finds the lowest memory reosurce exists within [res->start.res->end) |
229 | * the caller must specify res->start, res->end, res->flags. | 229 | * the caller must specify res->start, res->end, res->flags and "name". |
230 | * If found, returns 0, res is overwritten, if not found, returns -1. | 230 | * If found, returns 0, res is overwritten, if not found, returns -1. |
231 | */ | 231 | */ |
232 | static int find_next_system_ram(struct resource *res) | 232 | static int find_next_system_ram(struct resource *res, char *name) |
233 | { | 233 | { |
234 | resource_size_t start, end; | 234 | resource_size_t start, end; |
235 | struct resource *p; | 235 | struct resource *p; |
@@ -245,6 +245,8 @@ static int find_next_system_ram(struct resource *res) | |||
245 | /* system ram is just marked as IORESOURCE_MEM */ | 245 | /* system ram is just marked as IORESOURCE_MEM */ |
246 | if (p->flags != res->flags) | 246 | if (p->flags != res->flags) |
247 | continue; | 247 | continue; |
248 | if (name && strcmp(p->name, name)) | ||
249 | continue; | ||
248 | if (p->start > end) { | 250 | if (p->start > end) { |
249 | p = NULL; | 251 | p = NULL; |
250 | break; | 252 | break; |
@@ -262,19 +264,26 @@ static int find_next_system_ram(struct resource *res) | |||
262 | res->end = p->end; | 264 | res->end = p->end; |
263 | return 0; | 265 | return 0; |
264 | } | 266 | } |
265 | int | 267 | |
266 | walk_memory_resource(unsigned long start_pfn, unsigned long nr_pages, void *arg, | 268 | /* |
267 | int (*func)(unsigned long, unsigned long, void *)) | 269 | * This function calls callback against all memory range of "System RAM" |
270 | * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY. | ||
271 | * Now, this function is only for "System RAM". | ||
272 | */ | ||
273 | int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, | ||
274 | void *arg, int (*func)(unsigned long, unsigned long, void *)) | ||
268 | { | 275 | { |
269 | struct resource res; | 276 | struct resource res; |
270 | unsigned long pfn, len; | 277 | unsigned long pfn, len; |
271 | u64 orig_end; | 278 | u64 orig_end; |
272 | int ret = -1; | 279 | int ret = -1; |
280 | |||
273 | res.start = (u64) start_pfn << PAGE_SHIFT; | 281 | res.start = (u64) start_pfn << PAGE_SHIFT; |
274 | res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; | 282 | res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; |
275 | res.flags = IORESOURCE_MEM | IORESOURCE_BUSY; | 283 | res.flags = IORESOURCE_MEM | IORESOURCE_BUSY; |
276 | orig_end = res.end; | 284 | orig_end = res.end; |
277 | while ((res.start < res.end) && (find_next_system_ram(&res) >= 0)) { | 285 | while ((res.start < res.end) && |
286 | (find_next_system_ram(&res, "System RAM") >= 0)) { | ||
278 | pfn = (unsigned long)(res.start >> PAGE_SHIFT); | 287 | pfn = (unsigned long)(res.start >> PAGE_SHIFT); |
279 | len = (unsigned long)((res.end + 1 - res.start) >> PAGE_SHIFT); | 288 | len = (unsigned long)((res.end + 1 - res.start) >> PAGE_SHIFT); |
280 | ret = (*func)(pfn, len, arg); | 289 | ret = (*func)(pfn, len, arg); |
diff --git a/kernel/sched.c b/kernel/sched.c index d9db3fb17573..ee61f454a98b 100644 --- a/kernel/sched.c +++ b/kernel/sched.c | |||
@@ -39,7 +39,7 @@ | |||
39 | #include <linux/completion.h> | 39 | #include <linux/completion.h> |
40 | #include <linux/kernel_stat.h> | 40 | #include <linux/kernel_stat.h> |
41 | #include <linux/debug_locks.h> | 41 | #include <linux/debug_locks.h> |
42 | #include <linux/perf_counter.h> | 42 | #include <linux/perf_event.h> |
43 | #include <linux/security.h> | 43 | #include <linux/security.h> |
44 | #include <linux/notifier.h> | 44 | #include <linux/notifier.h> |
45 | #include <linux/profile.h> | 45 | #include <linux/profile.h> |
@@ -119,8 +119,6 @@ | |||
119 | */ | 119 | */ |
120 | #define RUNTIME_INF ((u64)~0ULL) | 120 | #define RUNTIME_INF ((u64)~0ULL) |
121 | 121 | ||
122 | static void double_rq_lock(struct rq *rq1, struct rq *rq2); | ||
123 | |||
124 | static inline int rt_policy(int policy) | 122 | static inline int rt_policy(int policy) |
125 | { | 123 | { |
126 | if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR)) | 124 | if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR)) |
@@ -378,13 +376,6 @@ static inline void set_task_rq(struct task_struct *p, unsigned int cpu) | |||
378 | 376 | ||
379 | #else | 377 | #else |
380 | 378 | ||
381 | #ifdef CONFIG_SMP | ||
382 | static int root_task_group_empty(void) | ||
383 | { | ||
384 | return 1; | ||
385 | } | ||
386 | #endif | ||
387 | |||
388 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } | 379 | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } |
389 | static inline struct task_group *task_group(struct task_struct *p) | 380 | static inline struct task_group *task_group(struct task_struct *p) |
390 | { | 381 | { |
@@ -514,14 +505,6 @@ struct root_domain { | |||
514 | #ifdef CONFIG_SMP | 505 | #ifdef CONFIG_SMP |
515 | struct cpupri cpupri; | 506 | struct cpupri cpupri; |
516 | #endif | 507 | #endif |
517 | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | ||
518 | /* | ||
519 | * Preferred wake up cpu nominated by sched_mc balance that will be | ||
520 | * used when most cpus are idle in the system indicating overall very | ||
521 | * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2) | ||
522 | */ | ||
523 | unsigned int sched_mc_preferred_wakeup_cpu; | ||
524 | #endif | ||
525 | }; | 508 | }; |
526 | 509 | ||
527 | /* | 510 | /* |
@@ -646,9 +629,10 @@ struct rq { | |||
646 | 629 | ||
647 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); | 630 | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); |
648 | 631 | ||
649 | static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync) | 632 | static inline |
633 | void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) | ||
650 | { | 634 | { |
651 | rq->curr->sched_class->check_preempt_curr(rq, p, sync); | 635 | rq->curr->sched_class->check_preempt_curr(rq, p, flags); |
652 | } | 636 | } |
653 | 637 | ||
654 | static inline int cpu_of(struct rq *rq) | 638 | static inline int cpu_of(struct rq *rq) |
@@ -697,15 +681,9 @@ inline void update_rq_clock(struct rq *rq) | |||
697 | * This interface allows printk to be called with the runqueue lock | 681 | * This interface allows printk to be called with the runqueue lock |
698 | * held and know whether or not it is OK to wake up the klogd. | 682 | * held and know whether or not it is OK to wake up the klogd. |
699 | */ | 683 | */ |
700 | int runqueue_is_locked(void) | 684 | int runqueue_is_locked(int cpu) |
701 | { | 685 | { |
702 | int cpu = get_cpu(); | 686 | return spin_is_locked(&cpu_rq(cpu)->lock); |
703 | struct rq *rq = cpu_rq(cpu); | ||
704 | int ret; | ||
705 | |||
706 | ret = spin_is_locked(&rq->lock); | ||
707 | put_cpu(); | ||
708 | return ret; | ||
709 | } | 687 | } |
710 | 688 | ||
711 | /* | 689 | /* |
@@ -1509,8 +1487,65 @@ static int tg_nop(struct task_group *tg, void *data) | |||
1509 | #endif | 1487 | #endif |
1510 | 1488 | ||
1511 | #ifdef CONFIG_SMP | 1489 | #ifdef CONFIG_SMP |
1512 | static unsigned long source_load(int cpu, int type); | 1490 | /* Used instead of source_load when we know the type == 0 */ |
1513 | static unsigned long target_load(int cpu, int type); | 1491 | static unsigned long weighted_cpuload(const int cpu) |
1492 | { | ||
1493 | return cpu_rq(cpu)->load.weight; | ||
1494 | } | ||
1495 | |||
1496 | /* | ||
1497 | * Return a low guess at the load of a migration-source cpu weighted | ||
1498 | * according to the scheduling class and "nice" value. | ||
1499 | * | ||
1500 | * We want to under-estimate the load of migration sources, to | ||
1501 | * balance conservatively. | ||
1502 | */ | ||
1503 | static unsigned long source_load(int cpu, int type) | ||
1504 | { | ||
1505 | struct rq *rq = cpu_rq(cpu); | ||
1506 | unsigned long total = weighted_cpuload(cpu); | ||
1507 | |||
1508 | if (type == 0 || !sched_feat(LB_BIAS)) | ||
1509 | return total; | ||
1510 | |||
1511 | return min(rq->cpu_load[type-1], total); | ||
1512 | } | ||
1513 | |||
1514 | /* | ||
1515 | * Return a high guess at the load of a migration-target cpu weighted | ||
1516 | * according to the scheduling class and "nice" value. | ||
1517 | */ | ||
1518 | static unsigned long target_load(int cpu, int type) | ||
1519 | { | ||
1520 | struct rq *rq = cpu_rq(cpu); | ||
1521 | unsigned long total = weighted_cpuload(cpu); | ||
1522 | |||
1523 | if (type == 0 || !sched_feat(LB_BIAS)) | ||
1524 | return total; | ||
1525 | |||
1526 | return max(rq->cpu_load[type-1], total); | ||
1527 | } | ||
1528 | |||
1529 | static struct sched_group *group_of(int cpu) | ||
1530 | { | ||
1531 | struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd); | ||
1532 | |||
1533 | if (!sd) | ||
1534 | return NULL; | ||
1535 | |||
1536 | return sd->groups; | ||
1537 | } | ||
1538 | |||
1539 | static unsigned long power_of(int cpu) | ||
1540 | { | ||
1541 | struct sched_group *group = group_of(cpu); | ||
1542 | |||
1543 | if (!group) | ||
1544 | return SCHED_LOAD_SCALE; | ||
1545 | |||
1546 | return group->cpu_power; | ||
1547 | } | ||
1548 | |||
1514 | static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); | 1549 | static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); |
1515 | 1550 | ||
1516 | static unsigned long cpu_avg_load_per_task(int cpu) | 1551 | static unsigned long cpu_avg_load_per_task(int cpu) |
@@ -1695,6 +1730,8 @@ static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd) | |||
1695 | 1730 | ||
1696 | #ifdef CONFIG_PREEMPT | 1731 | #ifdef CONFIG_PREEMPT |
1697 | 1732 | ||
1733 | static void double_rq_lock(struct rq *rq1, struct rq *rq2); | ||
1734 | |||
1698 | /* | 1735 | /* |
1699 | * fair double_lock_balance: Safely acquires both rq->locks in a fair | 1736 | * fair double_lock_balance: Safely acquires both rq->locks in a fair |
1700 | * way at the expense of forcing extra atomic operations in all | 1737 | * way at the expense of forcing extra atomic operations in all |
@@ -1959,13 +1996,6 @@ static inline void check_class_changed(struct rq *rq, struct task_struct *p, | |||
1959 | } | 1996 | } |
1960 | 1997 | ||
1961 | #ifdef CONFIG_SMP | 1998 | #ifdef CONFIG_SMP |
1962 | |||
1963 | /* Used instead of source_load when we know the type == 0 */ | ||
1964 | static unsigned long weighted_cpuload(const int cpu) | ||
1965 | { | ||
1966 | return cpu_rq(cpu)->load.weight; | ||
1967 | } | ||
1968 | |||
1969 | /* | 1999 | /* |
1970 | * Is this task likely cache-hot: | 2000 | * Is this task likely cache-hot: |
1971 | */ | 2001 | */ |
@@ -2023,7 +2053,7 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu) | |||
2023 | if (task_hot(p, old_rq->clock, NULL)) | 2053 | if (task_hot(p, old_rq->clock, NULL)) |
2024 | schedstat_inc(p, se.nr_forced2_migrations); | 2054 | schedstat_inc(p, se.nr_forced2_migrations); |
2025 | #endif | 2055 | #endif |
2026 | perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS, | 2056 | perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, |
2027 | 1, 1, NULL, 0); | 2057 | 1, 1, NULL, 0); |
2028 | } | 2058 | } |
2029 | p->se.vruntime -= old_cfsrq->min_vruntime - | 2059 | p->se.vruntime -= old_cfsrq->min_vruntime - |
@@ -2239,185 +2269,6 @@ void kick_process(struct task_struct *p) | |||
2239 | preempt_enable(); | 2269 | preempt_enable(); |
2240 | } | 2270 | } |
2241 | EXPORT_SYMBOL_GPL(kick_process); | 2271 | EXPORT_SYMBOL_GPL(kick_process); |
2242 | |||
2243 | /* | ||
2244 | * Return a low guess at the load of a migration-source cpu weighted | ||
2245 | * according to the scheduling class and "nice" value. | ||
2246 | * | ||
2247 | * We want to under-estimate the load of migration sources, to | ||
2248 | * balance conservatively. | ||
2249 | */ | ||
2250 | static unsigned long source_load(int cpu, int type) | ||
2251 | { | ||
2252 | struct rq *rq = cpu_rq(cpu); | ||
2253 | unsigned long total = weighted_cpuload(cpu); | ||
2254 | |||
2255 | if (type == 0 || !sched_feat(LB_BIAS)) | ||
2256 | return total; | ||
2257 | |||
2258 | return min(rq->cpu_load[type-1], total); | ||
2259 | } | ||
2260 | |||
2261 | /* | ||
2262 | * Return a high guess at the load of a migration-target cpu weighted | ||
2263 | * according to the scheduling class and "nice" value. | ||
2264 | */ | ||
2265 | static unsigned long target_load(int cpu, int type) | ||
2266 | { | ||
2267 | struct rq *rq = cpu_rq(cpu); | ||
2268 | unsigned long total = weighted_cpuload(cpu); | ||
2269 | |||
2270 | if (type == 0 || !sched_feat(LB_BIAS)) | ||
2271 | return total; | ||
2272 | |||
2273 | return max(rq->cpu_load[type-1], total); | ||
2274 | } | ||
2275 | |||
2276 | /* | ||
2277 | * find_idlest_group finds and returns the least busy CPU group within the | ||
2278 | * domain. | ||
2279 | */ | ||
2280 | static struct sched_group * | ||
2281 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) | ||
2282 | { | ||
2283 | struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups; | ||
2284 | unsigned long min_load = ULONG_MAX, this_load = 0; | ||
2285 | int load_idx = sd->forkexec_idx; | ||
2286 | int imbalance = 100 + (sd->imbalance_pct-100)/2; | ||
2287 | |||
2288 | do { | ||
2289 | unsigned long load, avg_load; | ||
2290 | int local_group; | ||
2291 | int i; | ||
2292 | |||
2293 | /* Skip over this group if it has no CPUs allowed */ | ||
2294 | if (!cpumask_intersects(sched_group_cpus(group), | ||
2295 | &p->cpus_allowed)) | ||
2296 | continue; | ||
2297 | |||
2298 | local_group = cpumask_test_cpu(this_cpu, | ||
2299 | sched_group_cpus(group)); | ||
2300 | |||
2301 | /* Tally up the load of all CPUs in the group */ | ||
2302 | avg_load = 0; | ||
2303 | |||
2304 | for_each_cpu(i, sched_group_cpus(group)) { | ||
2305 | /* Bias balancing toward cpus of our domain */ | ||
2306 | if (local_group) | ||
2307 | load = source_load(i, load_idx); | ||
2308 | else | ||
2309 | load = target_load(i, load_idx); | ||
2310 | |||
2311 | avg_load += load; | ||
2312 | } | ||
2313 | |||
2314 | /* Adjust by relative CPU power of the group */ | ||
2315 | avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power; | ||
2316 | |||
2317 | if (local_group) { | ||
2318 | this_load = avg_load; | ||
2319 | this = group; | ||
2320 | } else if (avg_load < min_load) { | ||
2321 | min_load = avg_load; | ||
2322 | idlest = group; | ||
2323 | } | ||
2324 | } while (group = group->next, group != sd->groups); | ||
2325 | |||
2326 | if (!idlest || 100*this_load < imbalance*min_load) | ||
2327 | return NULL; | ||
2328 | return idlest; | ||
2329 | } | ||
2330 | |||
2331 | /* | ||
2332 | * find_idlest_cpu - find the idlest cpu among the cpus in group. | ||
2333 | */ | ||
2334 | static int | ||
2335 | find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) | ||
2336 | { | ||
2337 | unsigned long load, min_load = ULONG_MAX; | ||
2338 | int idlest = -1; | ||
2339 | int i; | ||
2340 | |||
2341 | /* Traverse only the allowed CPUs */ | ||
2342 | for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) { | ||
2343 | load = weighted_cpuload(i); | ||
2344 | |||
2345 | if (load < min_load || (load == min_load && i == this_cpu)) { | ||
2346 | min_load = load; | ||
2347 | idlest = i; | ||
2348 | } | ||
2349 | } | ||
2350 | |||
2351 | return idlest; | ||
2352 | } | ||
2353 | |||
2354 | /* | ||
2355 | * sched_balance_self: balance the current task (running on cpu) in domains | ||
2356 | * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and | ||
2357 | * SD_BALANCE_EXEC. | ||
2358 | * | ||
2359 | * Balance, ie. select the least loaded group. | ||
2360 | * | ||
2361 | * Returns the target CPU number, or the same CPU if no balancing is needed. | ||
2362 | * | ||
2363 | * preempt must be disabled. | ||
2364 | */ | ||
2365 | static int sched_balance_self(int cpu, int flag) | ||
2366 | { | ||
2367 | struct task_struct *t = current; | ||
2368 | struct sched_domain *tmp, *sd = NULL; | ||
2369 | |||
2370 | for_each_domain(cpu, tmp) { | ||
2371 | /* | ||
2372 | * If power savings logic is enabled for a domain, stop there. | ||
2373 | */ | ||
2374 | if (tmp->flags & SD_POWERSAVINGS_BALANCE) | ||
2375 | break; | ||
2376 | if (tmp->flags & flag) | ||
2377 | sd = tmp; | ||
2378 | } | ||
2379 | |||
2380 | if (sd) | ||
2381 | update_shares(sd); | ||
2382 | |||
2383 | while (sd) { | ||
2384 | struct sched_group *group; | ||
2385 | int new_cpu, weight; | ||
2386 | |||
2387 | if (!(sd->flags & flag)) { | ||
2388 | sd = sd->child; | ||
2389 | continue; | ||
2390 | } | ||
2391 | |||
2392 | group = find_idlest_group(sd, t, cpu); | ||
2393 | if (!group) { | ||
2394 | sd = sd->child; | ||
2395 | continue; | ||
2396 | } | ||
2397 | |||
2398 | new_cpu = find_idlest_cpu(group, t, cpu); | ||
2399 | if (new_cpu == -1 || new_cpu == cpu) { | ||
2400 | /* Now try balancing at a lower domain level of cpu */ | ||
2401 | sd = sd->child; | ||
2402 | continue; | ||
2403 | } | ||
2404 | |||
2405 | /* Now try balancing at a lower domain level of new_cpu */ | ||
2406 | cpu = new_cpu; | ||
2407 | weight = cpumask_weight(sched_domain_span(sd)); | ||
2408 | sd = NULL; | ||
2409 | for_each_domain(cpu, tmp) { | ||
2410 | if (weight <= cpumask_weight(sched_domain_span(tmp))) | ||
2411 | break; | ||
2412 | if (tmp->flags & flag) | ||
2413 | sd = tmp; | ||
2414 | } | ||
2415 | /* while loop will break here if sd == NULL */ | ||
2416 | } | ||
2417 | |||
2418 | return cpu; | ||
2419 | } | ||
2420 | |||
2421 | #endif /* CONFIG_SMP */ | 2272 | #endif /* CONFIG_SMP */ |
2422 | 2273 | ||
2423 | /** | 2274 | /** |
@@ -2455,37 +2306,22 @@ void task_oncpu_function_call(struct task_struct *p, | |||
2455 | * | 2306 | * |
2456 | * returns failure only if the task is already active. | 2307 | * returns failure only if the task is already active. |
2457 | */ | 2308 | */ |
2458 | static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) | 2309 | static int try_to_wake_up(struct task_struct *p, unsigned int state, |
2310 | int wake_flags) | ||
2459 | { | 2311 | { |
2460 | int cpu, orig_cpu, this_cpu, success = 0; | 2312 | int cpu, orig_cpu, this_cpu, success = 0; |
2461 | unsigned long flags; | 2313 | unsigned long flags; |
2462 | long old_state; | ||
2463 | struct rq *rq; | 2314 | struct rq *rq; |
2464 | 2315 | ||
2465 | if (!sched_feat(SYNC_WAKEUPS)) | 2316 | if (!sched_feat(SYNC_WAKEUPS)) |
2466 | sync = 0; | 2317 | wake_flags &= ~WF_SYNC; |
2467 | |||
2468 | #ifdef CONFIG_SMP | ||
2469 | if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) { | ||
2470 | struct sched_domain *sd; | ||
2471 | 2318 | ||
2472 | this_cpu = raw_smp_processor_id(); | 2319 | this_cpu = get_cpu(); |
2473 | cpu = task_cpu(p); | ||
2474 | |||
2475 | for_each_domain(this_cpu, sd) { | ||
2476 | if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { | ||
2477 | update_shares(sd); | ||
2478 | break; | ||
2479 | } | ||
2480 | } | ||
2481 | } | ||
2482 | #endif | ||
2483 | 2320 | ||
2484 | smp_wmb(); | 2321 | smp_wmb(); |
2485 | rq = task_rq_lock(p, &flags); | 2322 | rq = task_rq_lock(p, &flags); |
2486 | update_rq_clock(rq); | 2323 | update_rq_clock(rq); |
2487 | old_state = p->state; | 2324 | if (!(p->state & state)) |
2488 | if (!(old_state & state)) | ||
2489 | goto out; | 2325 | goto out; |
2490 | 2326 | ||
2491 | if (p->se.on_rq) | 2327 | if (p->se.on_rq) |
@@ -2493,27 +2329,29 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) | |||
2493 | 2329 | ||
2494 | cpu = task_cpu(p); | 2330 | cpu = task_cpu(p); |
2495 | orig_cpu = cpu; | 2331 | orig_cpu = cpu; |
2496 | this_cpu = smp_processor_id(); | ||
2497 | 2332 | ||
2498 | #ifdef CONFIG_SMP | 2333 | #ifdef CONFIG_SMP |
2499 | if (unlikely(task_running(rq, p))) | 2334 | if (unlikely(task_running(rq, p))) |
2500 | goto out_activate; | 2335 | goto out_activate; |
2501 | 2336 | ||
2502 | cpu = p->sched_class->select_task_rq(p, sync); | 2337 | /* |
2503 | if (cpu != orig_cpu) { | 2338 | * In order to handle concurrent wakeups and release the rq->lock |
2339 | * we put the task in TASK_WAKING state. | ||
2340 | * | ||
2341 | * First fix up the nr_uninterruptible count: | ||
2342 | */ | ||
2343 | if (task_contributes_to_load(p)) | ||
2344 | rq->nr_uninterruptible--; | ||
2345 | p->state = TASK_WAKING; | ||
2346 | task_rq_unlock(rq, &flags); | ||
2347 | |||
2348 | cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags); | ||
2349 | if (cpu != orig_cpu) | ||
2504 | set_task_cpu(p, cpu); | 2350 | set_task_cpu(p, cpu); |
2505 | task_rq_unlock(rq, &flags); | ||
2506 | /* might preempt at this point */ | ||
2507 | rq = task_rq_lock(p, &flags); | ||
2508 | old_state = p->state; | ||
2509 | if (!(old_state & state)) | ||
2510 | goto out; | ||
2511 | if (p->se.on_rq) | ||
2512 | goto out_running; | ||
2513 | 2351 | ||
2514 | this_cpu = smp_processor_id(); | 2352 | rq = task_rq_lock(p, &flags); |
2515 | cpu = task_cpu(p); | 2353 | WARN_ON(p->state != TASK_WAKING); |
2516 | } | 2354 | cpu = task_cpu(p); |
2517 | 2355 | ||
2518 | #ifdef CONFIG_SCHEDSTATS | 2356 | #ifdef CONFIG_SCHEDSTATS |
2519 | schedstat_inc(rq, ttwu_count); | 2357 | schedstat_inc(rq, ttwu_count); |
@@ -2533,7 +2371,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) | |||
2533 | out_activate: | 2371 | out_activate: |
2534 | #endif /* CONFIG_SMP */ | 2372 | #endif /* CONFIG_SMP */ |
2535 | schedstat_inc(p, se.nr_wakeups); | 2373 | schedstat_inc(p, se.nr_wakeups); |
2536 | if (sync) | 2374 | if (wake_flags & WF_SYNC) |
2537 | schedstat_inc(p, se.nr_wakeups_sync); | 2375 | schedstat_inc(p, se.nr_wakeups_sync); |
2538 | if (orig_cpu != cpu) | 2376 | if (orig_cpu != cpu) |
2539 | schedstat_inc(p, se.nr_wakeups_migrate); | 2377 | schedstat_inc(p, se.nr_wakeups_migrate); |
@@ -2562,7 +2400,7 @@ out_activate: | |||
2562 | 2400 | ||
2563 | out_running: | 2401 | out_running: |
2564 | trace_sched_wakeup(rq, p, success); | 2402 | trace_sched_wakeup(rq, p, success); |
2565 | check_preempt_curr(rq, p, sync); | 2403 | check_preempt_curr(rq, p, wake_flags); |
2566 | 2404 | ||
2567 | p->state = TASK_RUNNING; | 2405 | p->state = TASK_RUNNING; |
2568 | #ifdef CONFIG_SMP | 2406 | #ifdef CONFIG_SMP |
@@ -2571,6 +2409,7 @@ out_running: | |||
2571 | #endif | 2409 | #endif |
2572 | out: | 2410 | out: |
2573 | task_rq_unlock(rq, &flags); | 2411 | task_rq_unlock(rq, &flags); |
2412 | put_cpu(); | ||
2574 | 2413 | ||
2575 | return success; | 2414 | return success; |
2576 | } | 2415 | } |
@@ -2613,6 +2452,7 @@ static void __sched_fork(struct task_struct *p) | |||
2613 | p->se.avg_overlap = 0; | 2452 | p->se.avg_overlap = 0; |
2614 | p->se.start_runtime = 0; | 2453 | p->se.start_runtime = 0; |
2615 | p->se.avg_wakeup = sysctl_sched_wakeup_granularity; | 2454 | p->se.avg_wakeup = sysctl_sched_wakeup_granularity; |
2455 | p->se.avg_running = 0; | ||
2616 | 2456 | ||
2617 | #ifdef CONFIG_SCHEDSTATS | 2457 | #ifdef CONFIG_SCHEDSTATS |
2618 | p->se.wait_start = 0; | 2458 | p->se.wait_start = 0; |
@@ -2674,11 +2514,6 @@ void sched_fork(struct task_struct *p, int clone_flags) | |||
2674 | 2514 | ||
2675 | __sched_fork(p); | 2515 | __sched_fork(p); |
2676 | 2516 | ||
2677 | #ifdef CONFIG_SMP | ||
2678 | cpu = sched_balance_self(cpu, SD_BALANCE_FORK); | ||
2679 | #endif | ||
2680 | set_task_cpu(p, cpu); | ||
2681 | |||
2682 | /* | 2517 | /* |
2683 | * Make sure we do not leak PI boosting priority to the child. | 2518 | * Make sure we do not leak PI boosting priority to the child. |
2684 | */ | 2519 | */ |
@@ -2709,6 +2544,11 @@ void sched_fork(struct task_struct *p, int clone_flags) | |||
2709 | if (!rt_prio(p->prio)) | 2544 | if (!rt_prio(p->prio)) |
2710 | p->sched_class = &fair_sched_class; | 2545 | p->sched_class = &fair_sched_class; |
2711 | 2546 | ||
2547 | #ifdef CONFIG_SMP | ||
2548 | cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0); | ||
2549 | #endif | ||
2550 | set_task_cpu(p, cpu); | ||
2551 | |||
2712 | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) | 2552 | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) |
2713 | if (likely(sched_info_on())) | 2553 | if (likely(sched_info_on())) |
2714 | memset(&p->sched_info, 0, sizeof(p->sched_info)); | 2554 | memset(&p->sched_info, 0, sizeof(p->sched_info)); |
@@ -2754,7 +2594,7 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) | |||
2754 | inc_nr_running(rq); | 2594 | inc_nr_running(rq); |
2755 | } | 2595 | } |
2756 | trace_sched_wakeup_new(rq, p, 1); | 2596 | trace_sched_wakeup_new(rq, p, 1); |
2757 | check_preempt_curr(rq, p, 0); | 2597 | check_preempt_curr(rq, p, WF_FORK); |
2758 | #ifdef CONFIG_SMP | 2598 | #ifdef CONFIG_SMP |
2759 | if (p->sched_class->task_wake_up) | 2599 | if (p->sched_class->task_wake_up) |
2760 | p->sched_class->task_wake_up(rq, p); | 2600 | p->sched_class->task_wake_up(rq, p); |
@@ -2878,7 +2718,7 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) | |||
2878 | */ | 2718 | */ |
2879 | prev_state = prev->state; | 2719 | prev_state = prev->state; |
2880 | finish_arch_switch(prev); | 2720 | finish_arch_switch(prev); |
2881 | perf_counter_task_sched_in(current, cpu_of(rq)); | 2721 | perf_event_task_sched_in(current, cpu_of(rq)); |
2882 | finish_lock_switch(rq, prev); | 2722 | finish_lock_switch(rq, prev); |
2883 | 2723 | ||
2884 | fire_sched_in_preempt_notifiers(current); | 2724 | fire_sched_in_preempt_notifiers(current); |
@@ -3064,6 +2904,19 @@ unsigned long nr_iowait(void) | |||
3064 | return sum; | 2904 | return sum; |
3065 | } | 2905 | } |
3066 | 2906 | ||
2907 | unsigned long nr_iowait_cpu(void) | ||
2908 | { | ||
2909 | struct rq *this = this_rq(); | ||
2910 | return atomic_read(&this->nr_iowait); | ||
2911 | } | ||
2912 | |||
2913 | unsigned long this_cpu_load(void) | ||
2914 | { | ||
2915 | struct rq *this = this_rq(); | ||
2916 | return this->cpu_load[0]; | ||
2917 | } | ||
2918 | |||
2919 | |||
3067 | /* Variables and functions for calc_load */ | 2920 | /* Variables and functions for calc_load */ |
3068 | static atomic_long_t calc_load_tasks; | 2921 | static atomic_long_t calc_load_tasks; |
3069 | static unsigned long calc_load_update; | 2922 | static unsigned long calc_load_update; |
@@ -3263,7 +3116,7 @@ out: | |||
3263 | void sched_exec(void) | 3116 | void sched_exec(void) |
3264 | { | 3117 | { |
3265 | int new_cpu, this_cpu = get_cpu(); | 3118 | int new_cpu, this_cpu = get_cpu(); |
3266 | new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC); | 3119 | new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0); |
3267 | put_cpu(); | 3120 | put_cpu(); |
3268 | if (new_cpu != this_cpu) | 3121 | if (new_cpu != this_cpu) |
3269 | sched_migrate_task(current, new_cpu); | 3122 | sched_migrate_task(current, new_cpu); |
@@ -3683,11 +3536,6 @@ static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | |||
3683 | *imbalance = sds->min_load_per_task; | 3536 | *imbalance = sds->min_load_per_task; |
3684 | sds->busiest = sds->group_min; | 3537 | sds->busiest = sds->group_min; |
3685 | 3538 | ||
3686 | if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) { | ||
3687 | cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu = | ||
3688 | group_first_cpu(sds->group_leader); | ||
3689 | } | ||
3690 | |||
3691 | return 1; | 3539 | return 1; |
3692 | 3540 | ||
3693 | } | 3541 | } |
@@ -3711,7 +3559,18 @@ static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, | |||
3711 | } | 3559 | } |
3712 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | 3560 | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ |
3713 | 3561 | ||
3714 | unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) | 3562 | |
3563 | unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) | ||
3564 | { | ||
3565 | return SCHED_LOAD_SCALE; | ||
3566 | } | ||
3567 | |||
3568 | unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) | ||
3569 | { | ||
3570 | return default_scale_freq_power(sd, cpu); | ||
3571 | } | ||
3572 | |||
3573 | unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) | ||
3715 | { | 3574 | { |
3716 | unsigned long weight = cpumask_weight(sched_domain_span(sd)); | 3575 | unsigned long weight = cpumask_weight(sched_domain_span(sd)); |
3717 | unsigned long smt_gain = sd->smt_gain; | 3576 | unsigned long smt_gain = sd->smt_gain; |
@@ -3721,6 +3580,11 @@ unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) | |||
3721 | return smt_gain; | 3580 | return smt_gain; |
3722 | } | 3581 | } |
3723 | 3582 | ||
3583 | unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) | ||
3584 | { | ||
3585 | return default_scale_smt_power(sd, cpu); | ||
3586 | } | ||
3587 | |||
3724 | unsigned long scale_rt_power(int cpu) | 3588 | unsigned long scale_rt_power(int cpu) |
3725 | { | 3589 | { |
3726 | struct rq *rq = cpu_rq(cpu); | 3590 | struct rq *rq = cpu_rq(cpu); |
@@ -3745,10 +3609,19 @@ static void update_cpu_power(struct sched_domain *sd, int cpu) | |||
3745 | unsigned long power = SCHED_LOAD_SCALE; | 3609 | unsigned long power = SCHED_LOAD_SCALE; |
3746 | struct sched_group *sdg = sd->groups; | 3610 | struct sched_group *sdg = sd->groups; |
3747 | 3611 | ||
3748 | /* here we could scale based on cpufreq */ | 3612 | if (sched_feat(ARCH_POWER)) |
3613 | power *= arch_scale_freq_power(sd, cpu); | ||
3614 | else | ||
3615 | power *= default_scale_freq_power(sd, cpu); | ||
3616 | |||
3617 | power >>= SCHED_LOAD_SHIFT; | ||
3749 | 3618 | ||
3750 | if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { | 3619 | if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { |
3751 | power *= arch_scale_smt_power(sd, cpu); | 3620 | if (sched_feat(ARCH_POWER)) |
3621 | power *= arch_scale_smt_power(sd, cpu); | ||
3622 | else | ||
3623 | power *= default_scale_smt_power(sd, cpu); | ||
3624 | |||
3752 | power >>= SCHED_LOAD_SHIFT; | 3625 | power >>= SCHED_LOAD_SHIFT; |
3753 | } | 3626 | } |
3754 | 3627 | ||
@@ -4161,26 +4034,6 @@ ret: | |||
4161 | return NULL; | 4034 | return NULL; |
4162 | } | 4035 | } |
4163 | 4036 | ||
4164 | static struct sched_group *group_of(int cpu) | ||
4165 | { | ||
4166 | struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd); | ||
4167 | |||
4168 | if (!sd) | ||
4169 | return NULL; | ||
4170 | |||
4171 | return sd->groups; | ||
4172 | } | ||
4173 | |||
4174 | static unsigned long power_of(int cpu) | ||
4175 | { | ||
4176 | struct sched_group *group = group_of(cpu); | ||
4177 | |||
4178 | if (!group) | ||
4179 | return SCHED_LOAD_SCALE; | ||
4180 | |||
4181 | return group->cpu_power; | ||
4182 | } | ||
4183 | |||
4184 | /* | 4037 | /* |
4185 | * find_busiest_queue - find the busiest runqueue among the cpus in group. | 4038 | * find_busiest_queue - find the busiest runqueue among the cpus in group. |
4186 | */ | 4039 | */ |
@@ -5239,17 +5092,16 @@ void account_idle_time(cputime_t cputime) | |||
5239 | */ | 5092 | */ |
5240 | void account_process_tick(struct task_struct *p, int user_tick) | 5093 | void account_process_tick(struct task_struct *p, int user_tick) |
5241 | { | 5094 | { |
5242 | cputime_t one_jiffy = jiffies_to_cputime(1); | 5095 | cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy); |
5243 | cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy); | ||
5244 | struct rq *rq = this_rq(); | 5096 | struct rq *rq = this_rq(); |
5245 | 5097 | ||
5246 | if (user_tick) | 5098 | if (user_tick) |
5247 | account_user_time(p, one_jiffy, one_jiffy_scaled); | 5099 | account_user_time(p, cputime_one_jiffy, one_jiffy_scaled); |
5248 | else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) | 5100 | else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET)) |
5249 | account_system_time(p, HARDIRQ_OFFSET, one_jiffy, | 5101 | account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy, |
5250 | one_jiffy_scaled); | 5102 | one_jiffy_scaled); |
5251 | else | 5103 | else |
5252 | account_idle_time(one_jiffy); | 5104 | account_idle_time(cputime_one_jiffy); |
5253 | } | 5105 | } |
5254 | 5106 | ||
5255 | /* | 5107 | /* |
@@ -5353,7 +5205,7 @@ void scheduler_tick(void) | |||
5353 | curr->sched_class->task_tick(rq, curr, 0); | 5205 | curr->sched_class->task_tick(rq, curr, 0); |
5354 | spin_unlock(&rq->lock); | 5206 | spin_unlock(&rq->lock); |
5355 | 5207 | ||
5356 | perf_counter_task_tick(curr, cpu); | 5208 | perf_event_task_tick(curr, cpu); |
5357 | 5209 | ||
5358 | #ifdef CONFIG_SMP | 5210 | #ifdef CONFIG_SMP |
5359 | rq->idle_at_tick = idle_cpu(cpu); | 5211 | rq->idle_at_tick = idle_cpu(cpu); |
@@ -5465,14 +5317,13 @@ static inline void schedule_debug(struct task_struct *prev) | |||
5465 | #endif | 5317 | #endif |
5466 | } | 5318 | } |
5467 | 5319 | ||
5468 | static void put_prev_task(struct rq *rq, struct task_struct *prev) | 5320 | static void put_prev_task(struct rq *rq, struct task_struct *p) |
5469 | { | 5321 | { |
5470 | if (prev->state == TASK_RUNNING) { | 5322 | u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime; |
5471 | u64 runtime = prev->se.sum_exec_runtime; | ||
5472 | 5323 | ||
5473 | runtime -= prev->se.prev_sum_exec_runtime; | 5324 | update_avg(&p->se.avg_running, runtime); |
5474 | runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost); | ||
5475 | 5325 | ||
5326 | if (p->state == TASK_RUNNING) { | ||
5476 | /* | 5327 | /* |
5477 | * In order to avoid avg_overlap growing stale when we are | 5328 | * In order to avoid avg_overlap growing stale when we are |
5478 | * indeed overlapping and hence not getting put to sleep, grow | 5329 | * indeed overlapping and hence not getting put to sleep, grow |
@@ -5482,9 +5333,12 @@ static void put_prev_task(struct rq *rq, struct task_struct *prev) | |||
5482 | * correlates to the amount of cache footprint a task can | 5333 | * correlates to the amount of cache footprint a task can |
5483 | * build up. | 5334 | * build up. |
5484 | */ | 5335 | */ |
5485 | update_avg(&prev->se.avg_overlap, runtime); | 5336 | runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost); |
5337 | update_avg(&p->se.avg_overlap, runtime); | ||
5338 | } else { | ||
5339 | update_avg(&p->se.avg_running, 0); | ||
5486 | } | 5340 | } |
5487 | prev->sched_class->put_prev_task(rq, prev); | 5341 | p->sched_class->put_prev_task(rq, p); |
5488 | } | 5342 | } |
5489 | 5343 | ||
5490 | /* | 5344 | /* |
@@ -5567,7 +5421,7 @@ need_resched_nonpreemptible: | |||
5567 | 5421 | ||
5568 | if (likely(prev != next)) { | 5422 | if (likely(prev != next)) { |
5569 | sched_info_switch(prev, next); | 5423 | sched_info_switch(prev, next); |
5570 | perf_counter_task_sched_out(prev, next, cpu); | 5424 | perf_event_task_sched_out(prev, next, cpu); |
5571 | 5425 | ||
5572 | rq->nr_switches++; | 5426 | rq->nr_switches++; |
5573 | rq->curr = next; | 5427 | rq->curr = next; |
@@ -5716,10 +5570,10 @@ asmlinkage void __sched preempt_schedule_irq(void) | |||
5716 | 5570 | ||
5717 | #endif /* CONFIG_PREEMPT */ | 5571 | #endif /* CONFIG_PREEMPT */ |
5718 | 5572 | ||
5719 | int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, | 5573 | int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, |
5720 | void *key) | 5574 | void *key) |
5721 | { | 5575 | { |
5722 | return try_to_wake_up(curr->private, mode, sync); | 5576 | return try_to_wake_up(curr->private, mode, wake_flags); |
5723 | } | 5577 | } |
5724 | EXPORT_SYMBOL(default_wake_function); | 5578 | EXPORT_SYMBOL(default_wake_function); |
5725 | 5579 | ||
@@ -5733,14 +5587,14 @@ EXPORT_SYMBOL(default_wake_function); | |||
5733 | * zero in this (rare) case, and we handle it by continuing to scan the queue. | 5587 | * zero in this (rare) case, and we handle it by continuing to scan the queue. |
5734 | */ | 5588 | */ |
5735 | static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, | 5589 | static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, |
5736 | int nr_exclusive, int sync, void *key) | 5590 | int nr_exclusive, int wake_flags, void *key) |
5737 | { | 5591 | { |
5738 | wait_queue_t *curr, *next; | 5592 | wait_queue_t *curr, *next; |
5739 | 5593 | ||
5740 | list_for_each_entry_safe(curr, next, &q->task_list, task_list) { | 5594 | list_for_each_entry_safe(curr, next, &q->task_list, task_list) { |
5741 | unsigned flags = curr->flags; | 5595 | unsigned flags = curr->flags; |
5742 | 5596 | ||
5743 | if (curr->func(curr, mode, sync, key) && | 5597 | if (curr->func(curr, mode, wake_flags, key) && |
5744 | (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) | 5598 | (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) |
5745 | break; | 5599 | break; |
5746 | } | 5600 | } |
@@ -5801,16 +5655,16 @@ void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, | |||
5801 | int nr_exclusive, void *key) | 5655 | int nr_exclusive, void *key) |
5802 | { | 5656 | { |
5803 | unsigned long flags; | 5657 | unsigned long flags; |
5804 | int sync = 1; | 5658 | int wake_flags = WF_SYNC; |
5805 | 5659 | ||
5806 | if (unlikely(!q)) | 5660 | if (unlikely(!q)) |
5807 | return; | 5661 | return; |
5808 | 5662 | ||
5809 | if (unlikely(!nr_exclusive)) | 5663 | if (unlikely(!nr_exclusive)) |
5810 | sync = 0; | 5664 | wake_flags = 0; |
5811 | 5665 | ||
5812 | spin_lock_irqsave(&q->lock, flags); | 5666 | spin_lock_irqsave(&q->lock, flags); |
5813 | __wake_up_common(q, mode, nr_exclusive, sync, key); | 5667 | __wake_up_common(q, mode, nr_exclusive, wake_flags, key); |
5814 | spin_unlock_irqrestore(&q->lock, flags); | 5668 | spin_unlock_irqrestore(&q->lock, flags); |
5815 | } | 5669 | } |
5816 | EXPORT_SYMBOL_GPL(__wake_up_sync_key); | 5670 | EXPORT_SYMBOL_GPL(__wake_up_sync_key); |
@@ -6977,23 +6831,8 @@ SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, | |||
6977 | if (retval) | 6831 | if (retval) |
6978 | goto out_unlock; | 6832 | goto out_unlock; |
6979 | 6833 | ||
6980 | /* | 6834 | time_slice = p->sched_class->get_rr_interval(p); |
6981 | * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER | ||
6982 | * tasks that are on an otherwise idle runqueue: | ||
6983 | */ | ||
6984 | time_slice = 0; | ||
6985 | if (p->policy == SCHED_RR) { | ||
6986 | time_slice = DEF_TIMESLICE; | ||
6987 | } else if (p->policy != SCHED_FIFO) { | ||
6988 | struct sched_entity *se = &p->se; | ||
6989 | unsigned long flags; | ||
6990 | struct rq *rq; | ||
6991 | 6835 | ||
6992 | rq = task_rq_lock(p, &flags); | ||
6993 | if (rq->cfs.load.weight) | ||
6994 | time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se)); | ||
6995 | task_rq_unlock(rq, &flags); | ||
6996 | } | ||
6997 | read_unlock(&tasklist_lock); | 6836 | read_unlock(&tasklist_lock); |
6998 | jiffies_to_timespec(time_slice, &t); | 6837 | jiffies_to_timespec(time_slice, &t); |
6999 | retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; | 6838 | retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; |
@@ -7844,7 +7683,7 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) | |||
7844 | /* | 7683 | /* |
7845 | * Register at high priority so that task migration (migrate_all_tasks) | 7684 | * Register at high priority so that task migration (migrate_all_tasks) |
7846 | * happens before everything else. This has to be lower priority than | 7685 | * happens before everything else. This has to be lower priority than |
7847 | * the notifier in the perf_counter subsystem, though. | 7686 | * the notifier in the perf_event subsystem, though. |
7848 | */ | 7687 | */ |
7849 | static struct notifier_block __cpuinitdata migration_notifier = { | 7688 | static struct notifier_block __cpuinitdata migration_notifier = { |
7850 | .notifier_call = migration_call, | 7689 | .notifier_call = migration_call, |
@@ -8000,9 +7839,7 @@ static int sd_degenerate(struct sched_domain *sd) | |||
8000 | } | 7839 | } |
8001 | 7840 | ||
8002 | /* Following flags don't use groups */ | 7841 | /* Following flags don't use groups */ |
8003 | if (sd->flags & (SD_WAKE_IDLE | | 7842 | if (sd->flags & (SD_WAKE_AFFINE)) |
8004 | SD_WAKE_AFFINE | | ||
8005 | SD_WAKE_BALANCE)) | ||
8006 | return 0; | 7843 | return 0; |
8007 | 7844 | ||
8008 | return 1; | 7845 | return 1; |
@@ -8019,10 +7856,6 @@ sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) | |||
8019 | if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) | 7856 | if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) |
8020 | return 0; | 7857 | return 0; |
8021 | 7858 | ||
8022 | /* Does parent contain flags not in child? */ | ||
8023 | /* WAKE_BALANCE is a subset of WAKE_AFFINE */ | ||
8024 | if (cflags & SD_WAKE_AFFINE) | ||
8025 | pflags &= ~SD_WAKE_BALANCE; | ||
8026 | /* Flags needing groups don't count if only 1 group in parent */ | 7859 | /* Flags needing groups don't count if only 1 group in parent */ |
8027 | if (parent->groups == parent->groups->next) { | 7860 | if (parent->groups == parent->groups->next) { |
8028 | pflags &= ~(SD_LOAD_BALANCE | | 7861 | pflags &= ~(SD_LOAD_BALANCE | |
@@ -8708,10 +8541,10 @@ static void set_domain_attribute(struct sched_domain *sd, | |||
8708 | request = attr->relax_domain_level; | 8541 | request = attr->relax_domain_level; |
8709 | if (request < sd->level) { | 8542 | if (request < sd->level) { |
8710 | /* turn off idle balance on this domain */ | 8543 | /* turn off idle balance on this domain */ |
8711 | sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE); | 8544 | sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); |
8712 | } else { | 8545 | } else { |
8713 | /* turn on idle balance on this domain */ | 8546 | /* turn on idle balance on this domain */ |
8714 | sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE); | 8547 | sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); |
8715 | } | 8548 | } |
8716 | } | 8549 | } |
8717 | 8550 | ||
@@ -9329,6 +9162,7 @@ void __init sched_init_smp(void) | |||
9329 | cpumask_var_t non_isolated_cpus; | 9162 | cpumask_var_t non_isolated_cpus; |
9330 | 9163 | ||
9331 | alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); | 9164 | alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL); |
9165 | alloc_cpumask_var(&fallback_doms, GFP_KERNEL); | ||
9332 | 9166 | ||
9333 | #if defined(CONFIG_NUMA) | 9167 | #if defined(CONFIG_NUMA) |
9334 | sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **), | 9168 | sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **), |
@@ -9360,7 +9194,6 @@ void __init sched_init_smp(void) | |||
9360 | sched_init_granularity(); | 9194 | sched_init_granularity(); |
9361 | free_cpumask_var(non_isolated_cpus); | 9195 | free_cpumask_var(non_isolated_cpus); |
9362 | 9196 | ||
9363 | alloc_cpumask_var(&fallback_doms, GFP_KERNEL); | ||
9364 | init_sched_rt_class(); | 9197 | init_sched_rt_class(); |
9365 | } | 9198 | } |
9366 | #else | 9199 | #else |
@@ -9707,7 +9540,7 @@ void __init sched_init(void) | |||
9707 | alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); | 9540 | alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT); |
9708 | #endif /* SMP */ | 9541 | #endif /* SMP */ |
9709 | 9542 | ||
9710 | perf_counter_init(); | 9543 | perf_event_init(); |
9711 | 9544 | ||
9712 | scheduler_running = 1; | 9545 | scheduler_running = 1; |
9713 | } | 9546 | } |
@@ -10479,7 +10312,7 @@ static int sched_rt_global_constraints(void) | |||
10479 | #endif /* CONFIG_RT_GROUP_SCHED */ | 10312 | #endif /* CONFIG_RT_GROUP_SCHED */ |
10480 | 10313 | ||
10481 | int sched_rt_handler(struct ctl_table *table, int write, | 10314 | int sched_rt_handler(struct ctl_table *table, int write, |
10482 | struct file *filp, void __user *buffer, size_t *lenp, | 10315 | void __user *buffer, size_t *lenp, |
10483 | loff_t *ppos) | 10316 | loff_t *ppos) |
10484 | { | 10317 | { |
10485 | int ret; | 10318 | int ret; |
@@ -10490,7 +10323,7 @@ int sched_rt_handler(struct ctl_table *table, int write, | |||
10490 | old_period = sysctl_sched_rt_period; | 10323 | old_period = sysctl_sched_rt_period; |
10491 | old_runtime = sysctl_sched_rt_runtime; | 10324 | old_runtime = sysctl_sched_rt_runtime; |
10492 | 10325 | ||
10493 | ret = proc_dointvec(table, write, filp, buffer, lenp, ppos); | 10326 | ret = proc_dointvec(table, write, buffer, lenp, ppos); |
10494 | 10327 | ||
10495 | if (!ret && write) { | 10328 | if (!ret && write) { |
10496 | ret = sched_rt_global_constraints(); | 10329 | ret = sched_rt_global_constraints(); |
@@ -10544,8 +10377,7 @@ cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) | |||
10544 | } | 10377 | } |
10545 | 10378 | ||
10546 | static int | 10379 | static int |
10547 | cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, | 10380 | cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk) |
10548 | struct task_struct *tsk) | ||
10549 | { | 10381 | { |
10550 | #ifdef CONFIG_RT_GROUP_SCHED | 10382 | #ifdef CONFIG_RT_GROUP_SCHED |
10551 | if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk)) | 10383 | if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk)) |
@@ -10555,15 +10387,45 @@ cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, | |||
10555 | if (tsk->sched_class != &fair_sched_class) | 10387 | if (tsk->sched_class != &fair_sched_class) |
10556 | return -EINVAL; | 10388 | return -EINVAL; |
10557 | #endif | 10389 | #endif |
10390 | return 0; | ||
10391 | } | ||
10558 | 10392 | ||
10393 | static int | ||
10394 | cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, | ||
10395 | struct task_struct *tsk, bool threadgroup) | ||
10396 | { | ||
10397 | int retval = cpu_cgroup_can_attach_task(cgrp, tsk); | ||
10398 | if (retval) | ||
10399 | return retval; | ||
10400 | if (threadgroup) { | ||
10401 | struct task_struct *c; | ||
10402 | rcu_read_lock(); | ||
10403 | list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { | ||
10404 | retval = cpu_cgroup_can_attach_task(cgrp, c); | ||
10405 | if (retval) { | ||
10406 | rcu_read_unlock(); | ||
10407 | return retval; | ||
10408 | } | ||
10409 | } | ||
10410 | rcu_read_unlock(); | ||
10411 | } | ||
10559 | return 0; | 10412 | return 0; |
10560 | } | 10413 | } |
10561 | 10414 | ||
10562 | static void | 10415 | static void |
10563 | cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, | 10416 | cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, |
10564 | struct cgroup *old_cont, struct task_struct *tsk) | 10417 | struct cgroup *old_cont, struct task_struct *tsk, |
10418 | bool threadgroup) | ||
10565 | { | 10419 | { |
10566 | sched_move_task(tsk); | 10420 | sched_move_task(tsk); |
10421 | if (threadgroup) { | ||
10422 | struct task_struct *c; | ||
10423 | rcu_read_lock(); | ||
10424 | list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) { | ||
10425 | sched_move_task(c); | ||
10426 | } | ||
10427 | rcu_read_unlock(); | ||
10428 | } | ||
10567 | } | 10429 | } |
10568 | 10430 | ||
10569 | #ifdef CONFIG_FAIR_GROUP_SCHED | 10431 | #ifdef CONFIG_FAIR_GROUP_SCHED |
diff --git a/kernel/sched_clock.c b/kernel/sched_clock.c index e1d16c9a7680..479ce5682d7c 100644 --- a/kernel/sched_clock.c +++ b/kernel/sched_clock.c | |||
@@ -48,13 +48,6 @@ static __read_mostly int sched_clock_running; | |||
48 | __read_mostly int sched_clock_stable; | 48 | __read_mostly int sched_clock_stable; |
49 | 49 | ||
50 | struct sched_clock_data { | 50 | struct sched_clock_data { |
51 | /* | ||
52 | * Raw spinlock - this is a special case: this might be called | ||
53 | * from within instrumentation code so we dont want to do any | ||
54 | * instrumentation ourselves. | ||
55 | */ | ||
56 | raw_spinlock_t lock; | ||
57 | |||
58 | u64 tick_raw; | 51 | u64 tick_raw; |
59 | u64 tick_gtod; | 52 | u64 tick_gtod; |
60 | u64 clock; | 53 | u64 clock; |
@@ -80,7 +73,6 @@ void sched_clock_init(void) | |||
80 | for_each_possible_cpu(cpu) { | 73 | for_each_possible_cpu(cpu) { |
81 | struct sched_clock_data *scd = cpu_sdc(cpu); | 74 | struct sched_clock_data *scd = cpu_sdc(cpu); |
82 | 75 | ||
83 | scd->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED; | ||
84 | scd->tick_raw = 0; | 76 | scd->tick_raw = 0; |
85 | scd->tick_gtod = ktime_now; | 77 | scd->tick_gtod = ktime_now; |
86 | scd->clock = ktime_now; | 78 | scd->clock = ktime_now; |
@@ -109,14 +101,19 @@ static inline u64 wrap_max(u64 x, u64 y) | |||
109 | * - filter out backward motion | 101 | * - filter out backward motion |
110 | * - use the GTOD tick value to create a window to filter crazy TSC values | 102 | * - use the GTOD tick value to create a window to filter crazy TSC values |
111 | */ | 103 | */ |
112 | static u64 __update_sched_clock(struct sched_clock_data *scd, u64 now) | 104 | static u64 sched_clock_local(struct sched_clock_data *scd) |
113 | { | 105 | { |
114 | s64 delta = now - scd->tick_raw; | 106 | u64 now, clock, old_clock, min_clock, max_clock; |
115 | u64 clock, min_clock, max_clock; | 107 | s64 delta; |
116 | 108 | ||
109 | again: | ||
110 | now = sched_clock(); | ||
111 | delta = now - scd->tick_raw; | ||
117 | if (unlikely(delta < 0)) | 112 | if (unlikely(delta < 0)) |
118 | delta = 0; | 113 | delta = 0; |
119 | 114 | ||
115 | old_clock = scd->clock; | ||
116 | |||
120 | /* | 117 | /* |
121 | * scd->clock = clamp(scd->tick_gtod + delta, | 118 | * scd->clock = clamp(scd->tick_gtod + delta, |
122 | * max(scd->tick_gtod, scd->clock), | 119 | * max(scd->tick_gtod, scd->clock), |
@@ -124,84 +121,73 @@ static u64 __update_sched_clock(struct sched_clock_data *scd, u64 now) | |||
124 | */ | 121 | */ |
125 | 122 | ||
126 | clock = scd->tick_gtod + delta; | 123 | clock = scd->tick_gtod + delta; |
127 | min_clock = wrap_max(scd->tick_gtod, scd->clock); | 124 | min_clock = wrap_max(scd->tick_gtod, old_clock); |
128 | max_clock = wrap_max(scd->clock, scd->tick_gtod + TICK_NSEC); | 125 | max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC); |
129 | 126 | ||
130 | clock = wrap_max(clock, min_clock); | 127 | clock = wrap_max(clock, min_clock); |
131 | clock = wrap_min(clock, max_clock); | 128 | clock = wrap_min(clock, max_clock); |
132 | 129 | ||
133 | scd->clock = clock; | 130 | if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock) |
131 | goto again; | ||
134 | 132 | ||
135 | return scd->clock; | 133 | return clock; |
136 | } | 134 | } |
137 | 135 | ||
138 | static void lock_double_clock(struct sched_clock_data *data1, | 136 | static u64 sched_clock_remote(struct sched_clock_data *scd) |
139 | struct sched_clock_data *data2) | ||
140 | { | 137 | { |
141 | if (data1 < data2) { | 138 | struct sched_clock_data *my_scd = this_scd(); |
142 | __raw_spin_lock(&data1->lock); | 139 | u64 this_clock, remote_clock; |
143 | __raw_spin_lock(&data2->lock); | 140 | u64 *ptr, old_val, val; |
141 | |||
142 | sched_clock_local(my_scd); | ||
143 | again: | ||
144 | this_clock = my_scd->clock; | ||
145 | remote_clock = scd->clock; | ||
146 | |||
147 | /* | ||
148 | * Use the opportunity that we have both locks | ||
149 | * taken to couple the two clocks: we take the | ||
150 | * larger time as the latest time for both | ||
151 | * runqueues. (this creates monotonic movement) | ||
152 | */ | ||
153 | if (likely((s64)(remote_clock - this_clock) < 0)) { | ||
154 | ptr = &scd->clock; | ||
155 | old_val = remote_clock; | ||
156 | val = this_clock; | ||
144 | } else { | 157 | } else { |
145 | __raw_spin_lock(&data2->lock); | 158 | /* |
146 | __raw_spin_lock(&data1->lock); | 159 | * Should be rare, but possible: |
160 | */ | ||
161 | ptr = &my_scd->clock; | ||
162 | old_val = this_clock; | ||
163 | val = remote_clock; | ||
147 | } | 164 | } |
165 | |||
166 | if (cmpxchg64(ptr, old_val, val) != old_val) | ||
167 | goto again; | ||
168 | |||
169 | return val; | ||
148 | } | 170 | } |
149 | 171 | ||
150 | u64 sched_clock_cpu(int cpu) | 172 | u64 sched_clock_cpu(int cpu) |
151 | { | 173 | { |
152 | u64 now, clock, this_clock, remote_clock; | ||
153 | struct sched_clock_data *scd; | 174 | struct sched_clock_data *scd; |
175 | u64 clock; | ||
176 | |||
177 | WARN_ON_ONCE(!irqs_disabled()); | ||
154 | 178 | ||
155 | if (sched_clock_stable) | 179 | if (sched_clock_stable) |
156 | return sched_clock(); | 180 | return sched_clock(); |
157 | 181 | ||
158 | scd = cpu_sdc(cpu); | ||
159 | |||
160 | /* | ||
161 | * Normally this is not called in NMI context - but if it is, | ||
162 | * trying to do any locking here is totally lethal. | ||
163 | */ | ||
164 | if (unlikely(in_nmi())) | ||
165 | return scd->clock; | ||
166 | |||
167 | if (unlikely(!sched_clock_running)) | 182 | if (unlikely(!sched_clock_running)) |
168 | return 0ull; | 183 | return 0ull; |
169 | 184 | ||
170 | WARN_ON_ONCE(!irqs_disabled()); | 185 | scd = cpu_sdc(cpu); |
171 | now = sched_clock(); | ||
172 | |||
173 | if (cpu != raw_smp_processor_id()) { | ||
174 | struct sched_clock_data *my_scd = this_scd(); | ||
175 | |||
176 | lock_double_clock(scd, my_scd); | ||
177 | |||
178 | this_clock = __update_sched_clock(my_scd, now); | ||
179 | remote_clock = scd->clock; | ||
180 | |||
181 | /* | ||
182 | * Use the opportunity that we have both locks | ||
183 | * taken to couple the two clocks: we take the | ||
184 | * larger time as the latest time for both | ||
185 | * runqueues. (this creates monotonic movement) | ||
186 | */ | ||
187 | if (likely((s64)(remote_clock - this_clock) < 0)) { | ||
188 | clock = this_clock; | ||
189 | scd->clock = clock; | ||
190 | } else { | ||
191 | /* | ||
192 | * Should be rare, but possible: | ||
193 | */ | ||
194 | clock = remote_clock; | ||
195 | my_scd->clock = remote_clock; | ||
196 | } | ||
197 | |||
198 | __raw_spin_unlock(&my_scd->lock); | ||
199 | } else { | ||
200 | __raw_spin_lock(&scd->lock); | ||
201 | clock = __update_sched_clock(scd, now); | ||
202 | } | ||
203 | 186 | ||
204 | __raw_spin_unlock(&scd->lock); | 187 | if (cpu != smp_processor_id()) |
188 | clock = sched_clock_remote(scd); | ||
189 | else | ||
190 | clock = sched_clock_local(scd); | ||
205 | 191 | ||
206 | return clock; | 192 | return clock; |
207 | } | 193 | } |
@@ -223,11 +209,9 @@ void sched_clock_tick(void) | |||
223 | now_gtod = ktime_to_ns(ktime_get()); | 209 | now_gtod = ktime_to_ns(ktime_get()); |
224 | now = sched_clock(); | 210 | now = sched_clock(); |
225 | 211 | ||
226 | __raw_spin_lock(&scd->lock); | ||
227 | scd->tick_raw = now; | 212 | scd->tick_raw = now; |
228 | scd->tick_gtod = now_gtod; | 213 | scd->tick_gtod = now_gtod; |
229 | __update_sched_clock(scd, now); | 214 | sched_clock_local(scd); |
230 | __raw_spin_unlock(&scd->lock); | ||
231 | } | 215 | } |
232 | 216 | ||
233 | /* | 217 | /* |
diff --git a/kernel/sched_debug.c b/kernel/sched_debug.c index 5ddbd0891267..efb84409bc43 100644 --- a/kernel/sched_debug.c +++ b/kernel/sched_debug.c | |||
@@ -395,6 +395,7 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m) | |||
395 | PN(se.sum_exec_runtime); | 395 | PN(se.sum_exec_runtime); |
396 | PN(se.avg_overlap); | 396 | PN(se.avg_overlap); |
397 | PN(se.avg_wakeup); | 397 | PN(se.avg_wakeup); |
398 | PN(se.avg_running); | ||
398 | 399 | ||
399 | nr_switches = p->nvcsw + p->nivcsw; | 400 | nr_switches = p->nvcsw + p->nivcsw; |
400 | 401 | ||
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c index aa7f84121016..4e777b47eeda 100644 --- a/kernel/sched_fair.c +++ b/kernel/sched_fair.c | |||
@@ -384,10 +384,10 @@ static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) | |||
384 | 384 | ||
385 | #ifdef CONFIG_SCHED_DEBUG | 385 | #ifdef CONFIG_SCHED_DEBUG |
386 | int sched_nr_latency_handler(struct ctl_table *table, int write, | 386 | int sched_nr_latency_handler(struct ctl_table *table, int write, |
387 | struct file *filp, void __user *buffer, size_t *lenp, | 387 | void __user *buffer, size_t *lenp, |
388 | loff_t *ppos) | 388 | loff_t *ppos) |
389 | { | 389 | { |
390 | int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); | 390 | int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
391 | 391 | ||
392 | if (ret || !write) | 392 | if (ret || !write) |
393 | return ret; | 393 | return ret; |
@@ -513,6 +513,7 @@ static void update_curr(struct cfs_rq *cfs_rq) | |||
513 | if (entity_is_task(curr)) { | 513 | if (entity_is_task(curr)) { |
514 | struct task_struct *curtask = task_of(curr); | 514 | struct task_struct *curtask = task_of(curr); |
515 | 515 | ||
516 | trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); | ||
516 | cpuacct_charge(curtask, delta_exec); | 517 | cpuacct_charge(curtask, delta_exec); |
517 | account_group_exec_runtime(curtask, delta_exec); | 518 | account_group_exec_runtime(curtask, delta_exec); |
518 | } | 519 | } |
@@ -709,24 +710,28 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) | |||
709 | if (initial && sched_feat(START_DEBIT)) | 710 | if (initial && sched_feat(START_DEBIT)) |
710 | vruntime += sched_vslice(cfs_rq, se); | 711 | vruntime += sched_vslice(cfs_rq, se); |
711 | 712 | ||
712 | if (!initial) { | 713 | /* sleeps up to a single latency don't count. */ |
713 | /* sleeps upto a single latency don't count. */ | 714 | if (!initial && sched_feat(FAIR_SLEEPERS)) { |
714 | if (sched_feat(NEW_FAIR_SLEEPERS)) { | 715 | unsigned long thresh = sysctl_sched_latency; |
715 | unsigned long thresh = sysctl_sched_latency; | ||
716 | 716 | ||
717 | /* | 717 | /* |
718 | * Convert the sleeper threshold into virtual time. | 718 | * Convert the sleeper threshold into virtual time. |
719 | * SCHED_IDLE is a special sub-class. We care about | 719 | * SCHED_IDLE is a special sub-class. We care about |
720 | * fairness only relative to other SCHED_IDLE tasks, | 720 | * fairness only relative to other SCHED_IDLE tasks, |
721 | * all of which have the same weight. | 721 | * all of which have the same weight. |
722 | */ | 722 | */ |
723 | if (sched_feat(NORMALIZED_SLEEPER) && | 723 | if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) || |
724 | (!entity_is_task(se) || | 724 | task_of(se)->policy != SCHED_IDLE)) |
725 | task_of(se)->policy != SCHED_IDLE)) | 725 | thresh = calc_delta_fair(thresh, se); |
726 | thresh = calc_delta_fair(thresh, se); | ||
727 | 726 | ||
728 | vruntime -= thresh; | 727 | /* |
729 | } | 728 | * Halve their sleep time's effect, to allow |
729 | * for a gentler effect of sleepers: | ||
730 | */ | ||
731 | if (sched_feat(GENTLE_FAIR_SLEEPERS)) | ||
732 | thresh >>= 1; | ||
733 | |||
734 | vruntime -= thresh; | ||
730 | } | 735 | } |
731 | 736 | ||
732 | /* ensure we never gain time by being placed backwards. */ | 737 | /* ensure we never gain time by being placed backwards. */ |
@@ -757,10 +762,10 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup) | |||
757 | 762 | ||
758 | static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) | 763 | static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) |
759 | { | 764 | { |
760 | if (cfs_rq->last == se) | 765 | if (!se || cfs_rq->last == se) |
761 | cfs_rq->last = NULL; | 766 | cfs_rq->last = NULL; |
762 | 767 | ||
763 | if (cfs_rq->next == se) | 768 | if (!se || cfs_rq->next == se) |
764 | cfs_rq->next = NULL; | 769 | cfs_rq->next = NULL; |
765 | } | 770 | } |
766 | 771 | ||
@@ -1062,83 +1067,6 @@ static void yield_task_fair(struct rq *rq) | |||
1062 | se->vruntime = rightmost->vruntime + 1; | 1067 | se->vruntime = rightmost->vruntime + 1; |
1063 | } | 1068 | } |
1064 | 1069 | ||
1065 | /* | ||
1066 | * wake_idle() will wake a task on an idle cpu if task->cpu is | ||
1067 | * not idle and an idle cpu is available. The span of cpus to | ||
1068 | * search starts with cpus closest then further out as needed, | ||
1069 | * so we always favor a closer, idle cpu. | ||
1070 | * Domains may include CPUs that are not usable for migration, | ||
1071 | * hence we need to mask them out (rq->rd->online) | ||
1072 | * | ||
1073 | * Returns the CPU we should wake onto. | ||
1074 | */ | ||
1075 | #if defined(ARCH_HAS_SCHED_WAKE_IDLE) | ||
1076 | |||
1077 | #define cpu_rd_active(cpu, rq) cpumask_test_cpu(cpu, rq->rd->online) | ||
1078 | |||
1079 | static int wake_idle(int cpu, struct task_struct *p) | ||
1080 | { | ||
1081 | struct sched_domain *sd; | ||
1082 | int i; | ||
1083 | unsigned int chosen_wakeup_cpu; | ||
1084 | int this_cpu; | ||
1085 | struct rq *task_rq = task_rq(p); | ||
1086 | |||
1087 | /* | ||
1088 | * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu | ||
1089 | * are idle and this is not a kernel thread and this task's affinity | ||
1090 | * allows it to be moved to preferred cpu, then just move! | ||
1091 | */ | ||
1092 | |||
1093 | this_cpu = smp_processor_id(); | ||
1094 | chosen_wakeup_cpu = | ||
1095 | cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu; | ||
1096 | |||
1097 | if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP && | ||
1098 | idle_cpu(cpu) && idle_cpu(this_cpu) && | ||
1099 | p->mm && !(p->flags & PF_KTHREAD) && | ||
1100 | cpu_isset(chosen_wakeup_cpu, p->cpus_allowed)) | ||
1101 | return chosen_wakeup_cpu; | ||
1102 | |||
1103 | /* | ||
1104 | * If it is idle, then it is the best cpu to run this task. | ||
1105 | * | ||
1106 | * This cpu is also the best, if it has more than one task already. | ||
1107 | * Siblings must be also busy(in most cases) as they didn't already | ||
1108 | * pickup the extra load from this cpu and hence we need not check | ||
1109 | * sibling runqueue info. This will avoid the checks and cache miss | ||
1110 | * penalities associated with that. | ||
1111 | */ | ||
1112 | if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1) | ||
1113 | return cpu; | ||
1114 | |||
1115 | for_each_domain(cpu, sd) { | ||
1116 | if ((sd->flags & SD_WAKE_IDLE) | ||
1117 | || ((sd->flags & SD_WAKE_IDLE_FAR) | ||
1118 | && !task_hot(p, task_rq->clock, sd))) { | ||
1119 | for_each_cpu_and(i, sched_domain_span(sd), | ||
1120 | &p->cpus_allowed) { | ||
1121 | if (cpu_rd_active(i, task_rq) && idle_cpu(i)) { | ||
1122 | if (i != task_cpu(p)) { | ||
1123 | schedstat_inc(p, | ||
1124 | se.nr_wakeups_idle); | ||
1125 | } | ||
1126 | return i; | ||
1127 | } | ||
1128 | } | ||
1129 | } else { | ||
1130 | break; | ||
1131 | } | ||
1132 | } | ||
1133 | return cpu; | ||
1134 | } | ||
1135 | #else /* !ARCH_HAS_SCHED_WAKE_IDLE*/ | ||
1136 | static inline int wake_idle(int cpu, struct task_struct *p) | ||
1137 | { | ||
1138 | return cpu; | ||
1139 | } | ||
1140 | #endif | ||
1141 | |||
1142 | #ifdef CONFIG_SMP | 1070 | #ifdef CONFIG_SMP |
1143 | 1071 | ||
1144 | #ifdef CONFIG_FAIR_GROUP_SCHED | 1072 | #ifdef CONFIG_FAIR_GROUP_SCHED |
@@ -1225,25 +1153,34 @@ static inline unsigned long effective_load(struct task_group *tg, int cpu, | |||
1225 | 1153 | ||
1226 | #endif | 1154 | #endif |
1227 | 1155 | ||
1228 | static int | 1156 | static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) |
1229 | wake_affine(struct sched_domain *this_sd, struct rq *this_rq, | ||
1230 | struct task_struct *p, int prev_cpu, int this_cpu, int sync, | ||
1231 | int idx, unsigned long load, unsigned long this_load, | ||
1232 | unsigned int imbalance) | ||
1233 | { | 1157 | { |
1234 | struct task_struct *curr = this_rq->curr; | 1158 | struct task_struct *curr = current; |
1235 | struct task_group *tg; | 1159 | unsigned long this_load, load; |
1236 | unsigned long tl = this_load; | 1160 | int idx, this_cpu, prev_cpu; |
1237 | unsigned long tl_per_task; | 1161 | unsigned long tl_per_task; |
1162 | unsigned int imbalance; | ||
1163 | struct task_group *tg; | ||
1238 | unsigned long weight; | 1164 | unsigned long weight; |
1239 | int balanced; | 1165 | int balanced; |
1240 | 1166 | ||
1241 | if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS)) | 1167 | idx = sd->wake_idx; |
1242 | return 0; | 1168 | this_cpu = smp_processor_id(); |
1169 | prev_cpu = task_cpu(p); | ||
1170 | load = source_load(prev_cpu, idx); | ||
1171 | this_load = target_load(this_cpu, idx); | ||
1243 | 1172 | ||
1244 | if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost || | 1173 | if (sync) { |
1245 | p->se.avg_overlap > sysctl_sched_migration_cost)) | 1174 | if (sched_feat(SYNC_LESS) && |
1246 | sync = 0; | 1175 | (curr->se.avg_overlap > sysctl_sched_migration_cost || |
1176 | p->se.avg_overlap > sysctl_sched_migration_cost)) | ||
1177 | sync = 0; | ||
1178 | } else { | ||
1179 | if (sched_feat(SYNC_MORE) && | ||
1180 | (curr->se.avg_overlap < sysctl_sched_migration_cost && | ||
1181 | p->se.avg_overlap < sysctl_sched_migration_cost)) | ||
1182 | sync = 1; | ||
1183 | } | ||
1247 | 1184 | ||
1248 | /* | 1185 | /* |
1249 | * If sync wakeup then subtract the (maximum possible) | 1186 | * If sync wakeup then subtract the (maximum possible) |
@@ -1254,24 +1191,26 @@ wake_affine(struct sched_domain *this_sd, struct rq *this_rq, | |||
1254 | tg = task_group(current); | 1191 | tg = task_group(current); |
1255 | weight = current->se.load.weight; | 1192 | weight = current->se.load.weight; |
1256 | 1193 | ||
1257 | tl += effective_load(tg, this_cpu, -weight, -weight); | 1194 | this_load += effective_load(tg, this_cpu, -weight, -weight); |
1258 | load += effective_load(tg, prev_cpu, 0, -weight); | 1195 | load += effective_load(tg, prev_cpu, 0, -weight); |
1259 | } | 1196 | } |
1260 | 1197 | ||
1261 | tg = task_group(p); | 1198 | tg = task_group(p); |
1262 | weight = p->se.load.weight; | 1199 | weight = p->se.load.weight; |
1263 | 1200 | ||
1201 | imbalance = 100 + (sd->imbalance_pct - 100) / 2; | ||
1202 | |||
1264 | /* | 1203 | /* |
1265 | * In low-load situations, where prev_cpu is idle and this_cpu is idle | 1204 | * In low-load situations, where prev_cpu is idle and this_cpu is idle |
1266 | * due to the sync cause above having dropped tl to 0, we'll always have | 1205 | * due to the sync cause above having dropped this_load to 0, we'll |
1267 | * an imbalance, but there's really nothing you can do about that, so | 1206 | * always have an imbalance, but there's really nothing you can do |
1268 | * that's good too. | 1207 | * about that, so that's good too. |
1269 | * | 1208 | * |
1270 | * Otherwise check if either cpus are near enough in load to allow this | 1209 | * Otherwise check if either cpus are near enough in load to allow this |
1271 | * task to be woken on this_cpu. | 1210 | * task to be woken on this_cpu. |
1272 | */ | 1211 | */ |
1273 | balanced = !tl || | 1212 | balanced = !this_load || |
1274 | 100*(tl + effective_load(tg, this_cpu, weight, weight)) <= | 1213 | 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <= |
1275 | imbalance*(load + effective_load(tg, prev_cpu, 0, weight)); | 1214 | imbalance*(load + effective_load(tg, prev_cpu, 0, weight)); |
1276 | 1215 | ||
1277 | /* | 1216 | /* |
@@ -1285,14 +1224,15 @@ wake_affine(struct sched_domain *this_sd, struct rq *this_rq, | |||
1285 | schedstat_inc(p, se.nr_wakeups_affine_attempts); | 1224 | schedstat_inc(p, se.nr_wakeups_affine_attempts); |
1286 | tl_per_task = cpu_avg_load_per_task(this_cpu); | 1225 | tl_per_task = cpu_avg_load_per_task(this_cpu); |
1287 | 1226 | ||
1288 | if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <= | 1227 | if (balanced || |
1289 | tl_per_task)) { | 1228 | (this_load <= load && |
1229 | this_load + target_load(prev_cpu, idx) <= tl_per_task)) { | ||
1290 | /* | 1230 | /* |
1291 | * This domain has SD_WAKE_AFFINE and | 1231 | * This domain has SD_WAKE_AFFINE and |
1292 | * p is cache cold in this domain, and | 1232 | * p is cache cold in this domain, and |
1293 | * there is no bad imbalance. | 1233 | * there is no bad imbalance. |
1294 | */ | 1234 | */ |
1295 | schedstat_inc(this_sd, ttwu_move_affine); | 1235 | schedstat_inc(sd, ttwu_move_affine); |
1296 | schedstat_inc(p, se.nr_wakeups_affine); | 1236 | schedstat_inc(p, se.nr_wakeups_affine); |
1297 | 1237 | ||
1298 | return 1; | 1238 | return 1; |
@@ -1300,65 +1240,216 @@ wake_affine(struct sched_domain *this_sd, struct rq *this_rq, | |||
1300 | return 0; | 1240 | return 0; |
1301 | } | 1241 | } |
1302 | 1242 | ||
1303 | static int select_task_rq_fair(struct task_struct *p, int sync) | 1243 | /* |
1244 | * find_idlest_group finds and returns the least busy CPU group within the | ||
1245 | * domain. | ||
1246 | */ | ||
1247 | static struct sched_group * | ||
1248 | find_idlest_group(struct sched_domain *sd, struct task_struct *p, | ||
1249 | int this_cpu, int load_idx) | ||
1304 | { | 1250 | { |
1305 | struct sched_domain *sd, *this_sd = NULL; | 1251 | struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups; |
1306 | int prev_cpu, this_cpu, new_cpu; | 1252 | unsigned long min_load = ULONG_MAX, this_load = 0; |
1307 | unsigned long load, this_load; | 1253 | int imbalance = 100 + (sd->imbalance_pct-100)/2; |
1308 | struct rq *this_rq; | ||
1309 | unsigned int imbalance; | ||
1310 | int idx; | ||
1311 | 1254 | ||
1312 | prev_cpu = task_cpu(p); | 1255 | do { |
1313 | this_cpu = smp_processor_id(); | 1256 | unsigned long load, avg_load; |
1314 | this_rq = cpu_rq(this_cpu); | 1257 | int local_group; |
1315 | new_cpu = prev_cpu; | 1258 | int i; |
1316 | 1259 | ||
1317 | /* | 1260 | /* Skip over this group if it has no CPUs allowed */ |
1318 | * 'this_sd' is the first domain that both | 1261 | if (!cpumask_intersects(sched_group_cpus(group), |
1319 | * this_cpu and prev_cpu are present in: | 1262 | &p->cpus_allowed)) |
1320 | */ | 1263 | continue; |
1321 | for_each_domain(this_cpu, sd) { | 1264 | |
1322 | if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) { | 1265 | local_group = cpumask_test_cpu(this_cpu, |
1323 | this_sd = sd; | 1266 | sched_group_cpus(group)); |
1324 | break; | 1267 | |
1268 | /* Tally up the load of all CPUs in the group */ | ||
1269 | avg_load = 0; | ||
1270 | |||
1271 | for_each_cpu(i, sched_group_cpus(group)) { | ||
1272 | /* Bias balancing toward cpus of our domain */ | ||
1273 | if (local_group) | ||
1274 | load = source_load(i, load_idx); | ||
1275 | else | ||
1276 | load = target_load(i, load_idx); | ||
1277 | |||
1278 | avg_load += load; | ||
1279 | } | ||
1280 | |||
1281 | /* Adjust by relative CPU power of the group */ | ||
1282 | avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power; | ||
1283 | |||
1284 | if (local_group) { | ||
1285 | this_load = avg_load; | ||
1286 | this = group; | ||
1287 | } else if (avg_load < min_load) { | ||
1288 | min_load = avg_load; | ||
1289 | idlest = group; | ||
1290 | } | ||
1291 | } while (group = group->next, group != sd->groups); | ||
1292 | |||
1293 | if (!idlest || 100*this_load < imbalance*min_load) | ||
1294 | return NULL; | ||
1295 | return idlest; | ||
1296 | } | ||
1297 | |||
1298 | /* | ||
1299 | * find_idlest_cpu - find the idlest cpu among the cpus in group. | ||
1300 | */ | ||
1301 | static int | ||
1302 | find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) | ||
1303 | { | ||
1304 | unsigned long load, min_load = ULONG_MAX; | ||
1305 | int idlest = -1; | ||
1306 | int i; | ||
1307 | |||
1308 | /* Traverse only the allowed CPUs */ | ||
1309 | for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) { | ||
1310 | load = weighted_cpuload(i); | ||
1311 | |||
1312 | if (load < min_load || (load == min_load && i == this_cpu)) { | ||
1313 | min_load = load; | ||
1314 | idlest = i; | ||
1325 | } | 1315 | } |
1326 | } | 1316 | } |
1327 | 1317 | ||
1328 | if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed))) | 1318 | return idlest; |
1329 | goto out; | 1319 | } |
1330 | 1320 | ||
1331 | /* | 1321 | /* |
1332 | * Check for affine wakeup and passive balancing possibilities. | 1322 | * sched_balance_self: balance the current task (running on cpu) in domains |
1333 | */ | 1323 | * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and |
1334 | if (!this_sd) | 1324 | * SD_BALANCE_EXEC. |
1325 | * | ||
1326 | * Balance, ie. select the least loaded group. | ||
1327 | * | ||
1328 | * Returns the target CPU number, or the same CPU if no balancing is needed. | ||
1329 | * | ||
1330 | * preempt must be disabled. | ||
1331 | */ | ||
1332 | static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags) | ||
1333 | { | ||
1334 | struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; | ||
1335 | int cpu = smp_processor_id(); | ||
1336 | int prev_cpu = task_cpu(p); | ||
1337 | int new_cpu = cpu; | ||
1338 | int want_affine = 0; | ||
1339 | int want_sd = 1; | ||
1340 | int sync = wake_flags & WF_SYNC; | ||
1341 | |||
1342 | if (sd_flag & SD_BALANCE_WAKE) { | ||
1343 | if (sched_feat(AFFINE_WAKEUPS) && | ||
1344 | cpumask_test_cpu(cpu, &p->cpus_allowed)) | ||
1345 | want_affine = 1; | ||
1346 | new_cpu = prev_cpu; | ||
1347 | } | ||
1348 | |||
1349 | rcu_read_lock(); | ||
1350 | for_each_domain(cpu, tmp) { | ||
1351 | /* | ||
1352 | * If power savings logic is enabled for a domain, see if we | ||
1353 | * are not overloaded, if so, don't balance wider. | ||
1354 | */ | ||
1355 | if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) { | ||
1356 | unsigned long power = 0; | ||
1357 | unsigned long nr_running = 0; | ||
1358 | unsigned long capacity; | ||
1359 | int i; | ||
1360 | |||
1361 | for_each_cpu(i, sched_domain_span(tmp)) { | ||
1362 | power += power_of(i); | ||
1363 | nr_running += cpu_rq(i)->cfs.nr_running; | ||
1364 | } | ||
1365 | |||
1366 | capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE); | ||
1367 | |||
1368 | if (tmp->flags & SD_POWERSAVINGS_BALANCE) | ||
1369 | nr_running /= 2; | ||
1370 | |||
1371 | if (nr_running < capacity) | ||
1372 | want_sd = 0; | ||
1373 | } | ||
1374 | |||
1375 | if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && | ||
1376 | cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { | ||
1377 | |||
1378 | affine_sd = tmp; | ||
1379 | want_affine = 0; | ||
1380 | } | ||
1381 | |||
1382 | if (!want_sd && !want_affine) | ||
1383 | break; | ||
1384 | |||
1385 | if (!(tmp->flags & sd_flag)) | ||
1386 | continue; | ||
1387 | |||
1388 | if (want_sd) | ||
1389 | sd = tmp; | ||
1390 | } | ||
1391 | |||
1392 | if (sched_feat(LB_SHARES_UPDATE)) { | ||
1393 | /* | ||
1394 | * Pick the largest domain to update shares over | ||
1395 | */ | ||
1396 | tmp = sd; | ||
1397 | if (affine_sd && (!tmp || | ||
1398 | cpumask_weight(sched_domain_span(affine_sd)) > | ||
1399 | cpumask_weight(sched_domain_span(sd)))) | ||
1400 | tmp = affine_sd; | ||
1401 | |||
1402 | if (tmp) | ||
1403 | update_shares(tmp); | ||
1404 | } | ||
1405 | |||
1406 | if (affine_sd && wake_affine(affine_sd, p, sync)) { | ||
1407 | new_cpu = cpu; | ||
1335 | goto out; | 1408 | goto out; |
1409 | } | ||
1336 | 1410 | ||
1337 | idx = this_sd->wake_idx; | 1411 | while (sd) { |
1412 | int load_idx = sd->forkexec_idx; | ||
1413 | struct sched_group *group; | ||
1414 | int weight; | ||
1338 | 1415 | ||
1339 | imbalance = 100 + (this_sd->imbalance_pct - 100) / 2; | 1416 | if (!(sd->flags & sd_flag)) { |
1417 | sd = sd->child; | ||
1418 | continue; | ||
1419 | } | ||
1340 | 1420 | ||
1341 | load = source_load(prev_cpu, idx); | 1421 | if (sd_flag & SD_BALANCE_WAKE) |
1342 | this_load = target_load(this_cpu, idx); | 1422 | load_idx = sd->wake_idx; |
1343 | 1423 | ||
1344 | if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx, | 1424 | group = find_idlest_group(sd, p, cpu, load_idx); |
1345 | load, this_load, imbalance)) | 1425 | if (!group) { |
1346 | return this_cpu; | 1426 | sd = sd->child; |
1427 | continue; | ||
1428 | } | ||
1347 | 1429 | ||
1348 | /* | 1430 | new_cpu = find_idlest_cpu(group, p, cpu); |
1349 | * Start passive balancing when half the imbalance_pct | 1431 | if (new_cpu == -1 || new_cpu == cpu) { |
1350 | * limit is reached. | 1432 | /* Now try balancing at a lower domain level of cpu */ |
1351 | */ | 1433 | sd = sd->child; |
1352 | if (this_sd->flags & SD_WAKE_BALANCE) { | 1434 | continue; |
1353 | if (imbalance*this_load <= 100*load) { | 1435 | } |
1354 | schedstat_inc(this_sd, ttwu_move_balance); | 1436 | |
1355 | schedstat_inc(p, se.nr_wakeups_passive); | 1437 | /* Now try balancing at a lower domain level of new_cpu */ |
1356 | return this_cpu; | 1438 | cpu = new_cpu; |
1439 | weight = cpumask_weight(sched_domain_span(sd)); | ||
1440 | sd = NULL; | ||
1441 | for_each_domain(cpu, tmp) { | ||
1442 | if (weight <= cpumask_weight(sched_domain_span(tmp))) | ||
1443 | break; | ||
1444 | if (tmp->flags & sd_flag) | ||
1445 | sd = tmp; | ||
1357 | } | 1446 | } |
1447 | /* while loop will break here if sd == NULL */ | ||
1358 | } | 1448 | } |
1359 | 1449 | ||
1360 | out: | 1450 | out: |
1361 | return wake_idle(new_cpu, p); | 1451 | rcu_read_unlock(); |
1452 | return new_cpu; | ||
1362 | } | 1453 | } |
1363 | #endif /* CONFIG_SMP */ | 1454 | #endif /* CONFIG_SMP */ |
1364 | 1455 | ||
@@ -1471,11 +1562,12 @@ static void set_next_buddy(struct sched_entity *se) | |||
1471 | /* | 1562 | /* |
1472 | * Preempt the current task with a newly woken task if needed: | 1563 | * Preempt the current task with a newly woken task if needed: |
1473 | */ | 1564 | */ |
1474 | static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync) | 1565 | static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) |
1475 | { | 1566 | { |
1476 | struct task_struct *curr = rq->curr; | 1567 | struct task_struct *curr = rq->curr; |
1477 | struct sched_entity *se = &curr->se, *pse = &p->se; | 1568 | struct sched_entity *se = &curr->se, *pse = &p->se; |
1478 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); | 1569 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); |
1570 | int sync = wake_flags & WF_SYNC; | ||
1479 | 1571 | ||
1480 | update_curr(cfs_rq); | 1572 | update_curr(cfs_rq); |
1481 | 1573 | ||
@@ -1501,7 +1593,8 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync) | |||
1501 | */ | 1593 | */ |
1502 | if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle)) | 1594 | if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle)) |
1503 | set_last_buddy(se); | 1595 | set_last_buddy(se); |
1504 | set_next_buddy(pse); | 1596 | if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) |
1597 | set_next_buddy(pse); | ||
1505 | 1598 | ||
1506 | /* | 1599 | /* |
1507 | * We can come here with TIF_NEED_RESCHED already set from new task | 1600 | * We can come here with TIF_NEED_RESCHED already set from new task |
@@ -1523,16 +1616,25 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync) | |||
1523 | return; | 1616 | return; |
1524 | } | 1617 | } |
1525 | 1618 | ||
1526 | if (!sched_feat(WAKEUP_PREEMPT)) | 1619 | if ((sched_feat(WAKEUP_SYNC) && sync) || |
1527 | return; | 1620 | (sched_feat(WAKEUP_OVERLAP) && |
1528 | 1621 | (se->avg_overlap < sysctl_sched_migration_cost && | |
1529 | if (sched_feat(WAKEUP_OVERLAP) && (sync || | 1622 | pse->avg_overlap < sysctl_sched_migration_cost))) { |
1530 | (se->avg_overlap < sysctl_sched_migration_cost && | ||
1531 | pse->avg_overlap < sysctl_sched_migration_cost))) { | ||
1532 | resched_task(curr); | 1623 | resched_task(curr); |
1533 | return; | 1624 | return; |
1534 | } | 1625 | } |
1535 | 1626 | ||
1627 | if (sched_feat(WAKEUP_RUNNING)) { | ||
1628 | if (pse->avg_running < se->avg_running) { | ||
1629 | set_next_buddy(pse); | ||
1630 | resched_task(curr); | ||
1631 | return; | ||
1632 | } | ||
1633 | } | ||
1634 | |||
1635 | if (!sched_feat(WAKEUP_PREEMPT)) | ||
1636 | return; | ||
1637 | |||
1536 | find_matching_se(&se, &pse); | 1638 | find_matching_se(&se, &pse); |
1537 | 1639 | ||
1538 | BUG_ON(!pse); | 1640 | BUG_ON(!pse); |
@@ -1555,8 +1657,13 @@ static struct task_struct *pick_next_task_fair(struct rq *rq) | |||
1555 | /* | 1657 | /* |
1556 | * If se was a buddy, clear it so that it will have to earn | 1658 | * If se was a buddy, clear it so that it will have to earn |
1557 | * the favour again. | 1659 | * the favour again. |
1660 | * | ||
1661 | * If se was not a buddy, clear the buddies because neither | ||
1662 | * was elegible to run, let them earn it again. | ||
1663 | * | ||
1664 | * IOW. unconditionally clear buddies. | ||
1558 | */ | 1665 | */ |
1559 | __clear_buddies(cfs_rq, se); | 1666 | __clear_buddies(cfs_rq, NULL); |
1560 | set_next_entity(cfs_rq, se); | 1667 | set_next_entity(cfs_rq, se); |
1561 | cfs_rq = group_cfs_rq(se); | 1668 | cfs_rq = group_cfs_rq(se); |
1562 | } while (cfs_rq); | 1669 | } while (cfs_rq); |
@@ -1832,6 +1939,25 @@ static void moved_group_fair(struct task_struct *p) | |||
1832 | } | 1939 | } |
1833 | #endif | 1940 | #endif |
1834 | 1941 | ||
1942 | unsigned int get_rr_interval_fair(struct task_struct *task) | ||
1943 | { | ||
1944 | struct sched_entity *se = &task->se; | ||
1945 | unsigned long flags; | ||
1946 | struct rq *rq; | ||
1947 | unsigned int rr_interval = 0; | ||
1948 | |||
1949 | /* | ||
1950 | * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise | ||
1951 | * idle runqueue: | ||
1952 | */ | ||
1953 | rq = task_rq_lock(task, &flags); | ||
1954 | if (rq->cfs.load.weight) | ||
1955 | rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se)); | ||
1956 | task_rq_unlock(rq, &flags); | ||
1957 | |||
1958 | return rr_interval; | ||
1959 | } | ||
1960 | |||
1835 | /* | 1961 | /* |
1836 | * All the scheduling class methods: | 1962 | * All the scheduling class methods: |
1837 | */ | 1963 | */ |
@@ -1860,6 +1986,8 @@ static const struct sched_class fair_sched_class = { | |||
1860 | .prio_changed = prio_changed_fair, | 1986 | .prio_changed = prio_changed_fair, |
1861 | .switched_to = switched_to_fair, | 1987 | .switched_to = switched_to_fair, |
1862 | 1988 | ||
1989 | .get_rr_interval = get_rr_interval_fair, | ||
1990 | |||
1863 | #ifdef CONFIG_FAIR_GROUP_SCHED | 1991 | #ifdef CONFIG_FAIR_GROUP_SCHED |
1864 | .moved_group = moved_group_fair, | 1992 | .moved_group = moved_group_fair, |
1865 | #endif | 1993 | #endif |
diff --git a/kernel/sched_features.h b/kernel/sched_features.h index e2dc63a5815d..0d94083582c7 100644 --- a/kernel/sched_features.h +++ b/kernel/sched_features.h | |||
@@ -1,17 +1,123 @@ | |||
1 | SCHED_FEAT(NEW_FAIR_SLEEPERS, 0) | 1 | /* |
2 | * Disregards a certain amount of sleep time (sched_latency_ns) and | ||
3 | * considers the task to be running during that period. This gives it | ||
4 | * a service deficit on wakeup, allowing it to run sooner. | ||
5 | */ | ||
6 | SCHED_FEAT(FAIR_SLEEPERS, 1) | ||
7 | |||
8 | /* | ||
9 | * Only give sleepers 50% of their service deficit. This allows | ||
10 | * them to run sooner, but does not allow tons of sleepers to | ||
11 | * rip the spread apart. | ||
12 | */ | ||
13 | SCHED_FEAT(GENTLE_FAIR_SLEEPERS, 1) | ||
14 | |||
15 | /* | ||
16 | * By not normalizing the sleep time, heavy tasks get an effective | ||
17 | * longer period, and lighter task an effective shorter period they | ||
18 | * are considered running. | ||
19 | */ | ||
2 | SCHED_FEAT(NORMALIZED_SLEEPER, 0) | 20 | SCHED_FEAT(NORMALIZED_SLEEPER, 0) |
3 | SCHED_FEAT(ADAPTIVE_GRAN, 1) | 21 | |
4 | SCHED_FEAT(WAKEUP_PREEMPT, 1) | 22 | /* |
23 | * Place new tasks ahead so that they do not starve already running | ||
24 | * tasks | ||
25 | */ | ||
5 | SCHED_FEAT(START_DEBIT, 1) | 26 | SCHED_FEAT(START_DEBIT, 1) |
27 | |||
28 | /* | ||
29 | * Should wakeups try to preempt running tasks. | ||
30 | */ | ||
31 | SCHED_FEAT(WAKEUP_PREEMPT, 1) | ||
32 | |||
33 | /* | ||
34 | * Compute wakeup_gran based on task behaviour, clipped to | ||
35 | * [0, sched_wakeup_gran_ns] | ||
36 | */ | ||
37 | SCHED_FEAT(ADAPTIVE_GRAN, 1) | ||
38 | |||
39 | /* | ||
40 | * When converting the wakeup granularity to virtual time, do it such | ||
41 | * that heavier tasks preempting a lighter task have an edge. | ||
42 | */ | ||
43 | SCHED_FEAT(ASYM_GRAN, 1) | ||
44 | |||
45 | /* | ||
46 | * Always wakeup-preempt SYNC wakeups, see SYNC_WAKEUPS. | ||
47 | */ | ||
48 | SCHED_FEAT(WAKEUP_SYNC, 0) | ||
49 | |||
50 | /* | ||
51 | * Wakeup preempt based on task behaviour. Tasks that do not overlap | ||
52 | * don't get preempted. | ||
53 | */ | ||
54 | SCHED_FEAT(WAKEUP_OVERLAP, 0) | ||
55 | |||
56 | /* | ||
57 | * Wakeup preemption towards tasks that run short | ||
58 | */ | ||
59 | SCHED_FEAT(WAKEUP_RUNNING, 0) | ||
60 | |||
61 | /* | ||
62 | * Use the SYNC wakeup hint, pipes and the likes use this to indicate | ||
63 | * the remote end is likely to consume the data we just wrote, and | ||
64 | * therefore has cache benefit from being placed on the same cpu, see | ||
65 | * also AFFINE_WAKEUPS. | ||
66 | */ | ||
67 | SCHED_FEAT(SYNC_WAKEUPS, 1) | ||
68 | |||
69 | /* | ||
70 | * Based on load and program behaviour, see if it makes sense to place | ||
71 | * a newly woken task on the same cpu as the task that woke it -- | ||
72 | * improve cache locality. Typically used with SYNC wakeups as | ||
73 | * generated by pipes and the like, see also SYNC_WAKEUPS. | ||
74 | */ | ||
6 | SCHED_FEAT(AFFINE_WAKEUPS, 1) | 75 | SCHED_FEAT(AFFINE_WAKEUPS, 1) |
76 | |||
77 | /* | ||
78 | * Weaken SYNC hint based on overlap | ||
79 | */ | ||
80 | SCHED_FEAT(SYNC_LESS, 1) | ||
81 | |||
82 | /* | ||
83 | * Add SYNC hint based on overlap | ||
84 | */ | ||
85 | SCHED_FEAT(SYNC_MORE, 0) | ||
86 | |||
87 | /* | ||
88 | * Prefer to schedule the task we woke last (assuming it failed | ||
89 | * wakeup-preemption), since its likely going to consume data we | ||
90 | * touched, increases cache locality. | ||
91 | */ | ||
92 | SCHED_FEAT(NEXT_BUDDY, 0) | ||
93 | |||
94 | /* | ||
95 | * Prefer to schedule the task that ran last (when we did | ||
96 | * wake-preempt) as that likely will touch the same data, increases | ||
97 | * cache locality. | ||
98 | */ | ||
99 | SCHED_FEAT(LAST_BUDDY, 1) | ||
100 | |||
101 | /* | ||
102 | * Consider buddies to be cache hot, decreases the likelyness of a | ||
103 | * cache buddy being migrated away, increases cache locality. | ||
104 | */ | ||
7 | SCHED_FEAT(CACHE_HOT_BUDDY, 1) | 105 | SCHED_FEAT(CACHE_HOT_BUDDY, 1) |
8 | SCHED_FEAT(SYNC_WAKEUPS, 1) | 106 | |
107 | /* | ||
108 | * Use arch dependent cpu power functions | ||
109 | */ | ||
110 | SCHED_FEAT(ARCH_POWER, 0) | ||
111 | |||
9 | SCHED_FEAT(HRTICK, 0) | 112 | SCHED_FEAT(HRTICK, 0) |
10 | SCHED_FEAT(DOUBLE_TICK, 0) | 113 | SCHED_FEAT(DOUBLE_TICK, 0) |
11 | SCHED_FEAT(ASYM_GRAN, 1) | ||
12 | SCHED_FEAT(LB_BIAS, 1) | 114 | SCHED_FEAT(LB_BIAS, 1) |
13 | SCHED_FEAT(LB_WAKEUP_UPDATE, 1) | 115 | SCHED_FEAT(LB_SHARES_UPDATE, 1) |
14 | SCHED_FEAT(ASYM_EFF_LOAD, 1) | 116 | SCHED_FEAT(ASYM_EFF_LOAD, 1) |
15 | SCHED_FEAT(WAKEUP_OVERLAP, 0) | 117 | |
16 | SCHED_FEAT(LAST_BUDDY, 1) | 118 | /* |
119 | * Spin-wait on mutex acquisition when the mutex owner is running on | ||
120 | * another cpu -- assumes that when the owner is running, it will soon | ||
121 | * release the lock. Decreases scheduling overhead. | ||
122 | */ | ||
17 | SCHED_FEAT(OWNER_SPIN, 1) | 123 | SCHED_FEAT(OWNER_SPIN, 1) |
diff --git a/kernel/sched_idletask.c b/kernel/sched_idletask.c index 499672c10cbd..b133a28fcde3 100644 --- a/kernel/sched_idletask.c +++ b/kernel/sched_idletask.c | |||
@@ -6,7 +6,7 @@ | |||
6 | */ | 6 | */ |
7 | 7 | ||
8 | #ifdef CONFIG_SMP | 8 | #ifdef CONFIG_SMP |
9 | static int select_task_rq_idle(struct task_struct *p, int sync) | 9 | static int select_task_rq_idle(struct task_struct *p, int sd_flag, int flags) |
10 | { | 10 | { |
11 | return task_cpu(p); /* IDLE tasks as never migrated */ | 11 | return task_cpu(p); /* IDLE tasks as never migrated */ |
12 | } | 12 | } |
@@ -14,7 +14,7 @@ static int select_task_rq_idle(struct task_struct *p, int sync) | |||
14 | /* | 14 | /* |
15 | * Idle tasks are unconditionally rescheduled: | 15 | * Idle tasks are unconditionally rescheduled: |
16 | */ | 16 | */ |
17 | static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p, int sync) | 17 | static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p, int flags) |
18 | { | 18 | { |
19 | resched_task(rq->idle); | 19 | resched_task(rq->idle); |
20 | } | 20 | } |
@@ -97,6 +97,11 @@ static void prio_changed_idle(struct rq *rq, struct task_struct *p, | |||
97 | check_preempt_curr(rq, p, 0); | 97 | check_preempt_curr(rq, p, 0); |
98 | } | 98 | } |
99 | 99 | ||
100 | unsigned int get_rr_interval_idle(struct task_struct *task) | ||
101 | { | ||
102 | return 0; | ||
103 | } | ||
104 | |||
100 | /* | 105 | /* |
101 | * Simple, special scheduling class for the per-CPU idle tasks: | 106 | * Simple, special scheduling class for the per-CPU idle tasks: |
102 | */ | 107 | */ |
@@ -122,6 +127,8 @@ static const struct sched_class idle_sched_class = { | |||
122 | .set_curr_task = set_curr_task_idle, | 127 | .set_curr_task = set_curr_task_idle, |
123 | .task_tick = task_tick_idle, | 128 | .task_tick = task_tick_idle, |
124 | 129 | ||
130 | .get_rr_interval = get_rr_interval_idle, | ||
131 | |||
125 | .prio_changed = prio_changed_idle, | 132 | .prio_changed = prio_changed_idle, |
126 | .switched_to = switched_to_idle, | 133 | .switched_to = switched_to_idle, |
127 | 134 | ||
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c index 2eb4bd6a526c..a4d790cddb19 100644 --- a/kernel/sched_rt.c +++ b/kernel/sched_rt.c | |||
@@ -938,10 +938,13 @@ static void yield_task_rt(struct rq *rq) | |||
938 | #ifdef CONFIG_SMP | 938 | #ifdef CONFIG_SMP |
939 | static int find_lowest_rq(struct task_struct *task); | 939 | static int find_lowest_rq(struct task_struct *task); |
940 | 940 | ||
941 | static int select_task_rq_rt(struct task_struct *p, int sync) | 941 | static int select_task_rq_rt(struct task_struct *p, int sd_flag, int flags) |
942 | { | 942 | { |
943 | struct rq *rq = task_rq(p); | 943 | struct rq *rq = task_rq(p); |
944 | 944 | ||
945 | if (sd_flag != SD_BALANCE_WAKE) | ||
946 | return smp_processor_id(); | ||
947 | |||
945 | /* | 948 | /* |
946 | * If the current task is an RT task, then | 949 | * If the current task is an RT task, then |
947 | * try to see if we can wake this RT task up on another | 950 | * try to see if we can wake this RT task up on another |
@@ -999,7 +1002,7 @@ static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) | |||
999 | /* | 1002 | /* |
1000 | * Preempt the current task with a newly woken task if needed: | 1003 | * Preempt the current task with a newly woken task if needed: |
1001 | */ | 1004 | */ |
1002 | static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync) | 1005 | static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) |
1003 | { | 1006 | { |
1004 | if (p->prio < rq->curr->prio) { | 1007 | if (p->prio < rq->curr->prio) { |
1005 | resched_task(rq->curr); | 1008 | resched_task(rq->curr); |
@@ -1731,6 +1734,17 @@ static void set_curr_task_rt(struct rq *rq) | |||
1731 | dequeue_pushable_task(rq, p); | 1734 | dequeue_pushable_task(rq, p); |
1732 | } | 1735 | } |
1733 | 1736 | ||
1737 | unsigned int get_rr_interval_rt(struct task_struct *task) | ||
1738 | { | ||
1739 | /* | ||
1740 | * Time slice is 0 for SCHED_FIFO tasks | ||
1741 | */ | ||
1742 | if (task->policy == SCHED_RR) | ||
1743 | return DEF_TIMESLICE; | ||
1744 | else | ||
1745 | return 0; | ||
1746 | } | ||
1747 | |||
1734 | static const struct sched_class rt_sched_class = { | 1748 | static const struct sched_class rt_sched_class = { |
1735 | .next = &fair_sched_class, | 1749 | .next = &fair_sched_class, |
1736 | .enqueue_task = enqueue_task_rt, | 1750 | .enqueue_task = enqueue_task_rt, |
@@ -1759,6 +1773,8 @@ static const struct sched_class rt_sched_class = { | |||
1759 | .set_curr_task = set_curr_task_rt, | 1773 | .set_curr_task = set_curr_task_rt, |
1760 | .task_tick = task_tick_rt, | 1774 | .task_tick = task_tick_rt, |
1761 | 1775 | ||
1776 | .get_rr_interval = get_rr_interval_rt, | ||
1777 | |||
1762 | .prio_changed = prio_changed_rt, | 1778 | .prio_changed = prio_changed_rt, |
1763 | .switched_to = switched_to_rt, | 1779 | .switched_to = switched_to_rt, |
1764 | }; | 1780 | }; |
diff --git a/kernel/signal.c b/kernel/signal.c index 64c5deeaca5d..6705320784fd 100644 --- a/kernel/signal.c +++ b/kernel/signal.c | |||
@@ -705,7 +705,7 @@ static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns) | |||
705 | 705 | ||
706 | if (why) { | 706 | if (why) { |
707 | /* | 707 | /* |
708 | * The first thread which returns from finish_stop() | 708 | * The first thread which returns from do_signal_stop() |
709 | * will take ->siglock, notice SIGNAL_CLD_MASK, and | 709 | * will take ->siglock, notice SIGNAL_CLD_MASK, and |
710 | * notify its parent. See get_signal_to_deliver(). | 710 | * notify its parent. See get_signal_to_deliver(). |
711 | */ | 711 | */ |
@@ -971,6 +971,20 @@ specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) | |||
971 | return send_signal(sig, info, t, 0); | 971 | return send_signal(sig, info, t, 0); |
972 | } | 972 | } |
973 | 973 | ||
974 | int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p, | ||
975 | bool group) | ||
976 | { | ||
977 | unsigned long flags; | ||
978 | int ret = -ESRCH; | ||
979 | |||
980 | if (lock_task_sighand(p, &flags)) { | ||
981 | ret = send_signal(sig, info, p, group); | ||
982 | unlock_task_sighand(p, &flags); | ||
983 | } | ||
984 | |||
985 | return ret; | ||
986 | } | ||
987 | |||
974 | /* | 988 | /* |
975 | * Force a signal that the process can't ignore: if necessary | 989 | * Force a signal that the process can't ignore: if necessary |
976 | * we unblock the signal and change any SIG_IGN to SIG_DFL. | 990 | * we unblock the signal and change any SIG_IGN to SIG_DFL. |
@@ -1036,12 +1050,6 @@ void zap_other_threads(struct task_struct *p) | |||
1036 | } | 1050 | } |
1037 | } | 1051 | } |
1038 | 1052 | ||
1039 | int __fatal_signal_pending(struct task_struct *tsk) | ||
1040 | { | ||
1041 | return sigismember(&tsk->pending.signal, SIGKILL); | ||
1042 | } | ||
1043 | EXPORT_SYMBOL(__fatal_signal_pending); | ||
1044 | |||
1045 | struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags) | 1053 | struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags) |
1046 | { | 1054 | { |
1047 | struct sighand_struct *sighand; | 1055 | struct sighand_struct *sighand; |
@@ -1068,18 +1076,10 @@ struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long | |||
1068 | */ | 1076 | */ |
1069 | int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) | 1077 | int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) |
1070 | { | 1078 | { |
1071 | unsigned long flags; | 1079 | int ret = check_kill_permission(sig, info, p); |
1072 | int ret; | ||
1073 | 1080 | ||
1074 | ret = check_kill_permission(sig, info, p); | 1081 | if (!ret && sig) |
1075 | 1082 | ret = do_send_sig_info(sig, info, p, true); | |
1076 | if (!ret && sig) { | ||
1077 | ret = -ESRCH; | ||
1078 | if (lock_task_sighand(p, &flags)) { | ||
1079 | ret = __group_send_sig_info(sig, info, p); | ||
1080 | unlock_task_sighand(p, &flags); | ||
1081 | } | ||
1082 | } | ||
1083 | 1083 | ||
1084 | return ret; | 1084 | return ret; |
1085 | } | 1085 | } |
@@ -1224,15 +1224,9 @@ static int kill_something_info(int sig, struct siginfo *info, pid_t pid) | |||
1224 | * These are for backward compatibility with the rest of the kernel source. | 1224 | * These are for backward compatibility with the rest of the kernel source. |
1225 | */ | 1225 | */ |
1226 | 1226 | ||
1227 | /* | ||
1228 | * The caller must ensure the task can't exit. | ||
1229 | */ | ||
1230 | int | 1227 | int |
1231 | send_sig_info(int sig, struct siginfo *info, struct task_struct *p) | 1228 | send_sig_info(int sig, struct siginfo *info, struct task_struct *p) |
1232 | { | 1229 | { |
1233 | int ret; | ||
1234 | unsigned long flags; | ||
1235 | |||
1236 | /* | 1230 | /* |
1237 | * Make sure legacy kernel users don't send in bad values | 1231 | * Make sure legacy kernel users don't send in bad values |
1238 | * (normal paths check this in check_kill_permission). | 1232 | * (normal paths check this in check_kill_permission). |
@@ -1240,10 +1234,7 @@ send_sig_info(int sig, struct siginfo *info, struct task_struct *p) | |||
1240 | if (!valid_signal(sig)) | 1234 | if (!valid_signal(sig)) |
1241 | return -EINVAL; | 1235 | return -EINVAL; |
1242 | 1236 | ||
1243 | spin_lock_irqsave(&p->sighand->siglock, flags); | 1237 | return do_send_sig_info(sig, info, p, false); |
1244 | ret = specific_send_sig_info(sig, info, p); | ||
1245 | spin_unlock_irqrestore(&p->sighand->siglock, flags); | ||
1246 | return ret; | ||
1247 | } | 1238 | } |
1248 | 1239 | ||
1249 | #define __si_special(priv) \ | 1240 | #define __si_special(priv) \ |
@@ -1383,15 +1374,6 @@ ret: | |||
1383 | } | 1374 | } |
1384 | 1375 | ||
1385 | /* | 1376 | /* |
1386 | * Wake up any threads in the parent blocked in wait* syscalls. | ||
1387 | */ | ||
1388 | static inline void __wake_up_parent(struct task_struct *p, | ||
1389 | struct task_struct *parent) | ||
1390 | { | ||
1391 | wake_up_interruptible_sync(&parent->signal->wait_chldexit); | ||
1392 | } | ||
1393 | |||
1394 | /* | ||
1395 | * Let a parent know about the death of a child. | 1377 | * Let a parent know about the death of a child. |
1396 | * For a stopped/continued status change, use do_notify_parent_cldstop instead. | 1378 | * For a stopped/continued status change, use do_notify_parent_cldstop instead. |
1397 | * | 1379 | * |
@@ -1673,29 +1655,6 @@ void ptrace_notify(int exit_code) | |||
1673 | spin_unlock_irq(¤t->sighand->siglock); | 1655 | spin_unlock_irq(¤t->sighand->siglock); |
1674 | } | 1656 | } |
1675 | 1657 | ||
1676 | static void | ||
1677 | finish_stop(int stop_count) | ||
1678 | { | ||
1679 | /* | ||
1680 | * If there are no other threads in the group, or if there is | ||
1681 | * a group stop in progress and we are the last to stop, | ||
1682 | * report to the parent. When ptraced, every thread reports itself. | ||
1683 | */ | ||
1684 | if (tracehook_notify_jctl(stop_count == 0, CLD_STOPPED)) { | ||
1685 | read_lock(&tasklist_lock); | ||
1686 | do_notify_parent_cldstop(current, CLD_STOPPED); | ||
1687 | read_unlock(&tasklist_lock); | ||
1688 | } | ||
1689 | |||
1690 | do { | ||
1691 | schedule(); | ||
1692 | } while (try_to_freeze()); | ||
1693 | /* | ||
1694 | * Now we don't run again until continued. | ||
1695 | */ | ||
1696 | current->exit_code = 0; | ||
1697 | } | ||
1698 | |||
1699 | /* | 1658 | /* |
1700 | * This performs the stopping for SIGSTOP and other stop signals. | 1659 | * This performs the stopping for SIGSTOP and other stop signals. |
1701 | * We have to stop all threads in the thread group. | 1660 | * We have to stop all threads in the thread group. |
@@ -1705,15 +1664,9 @@ finish_stop(int stop_count) | |||
1705 | static int do_signal_stop(int signr) | 1664 | static int do_signal_stop(int signr) |
1706 | { | 1665 | { |
1707 | struct signal_struct *sig = current->signal; | 1666 | struct signal_struct *sig = current->signal; |
1708 | int stop_count; | 1667 | int notify; |
1709 | 1668 | ||
1710 | if (sig->group_stop_count > 0) { | 1669 | if (!sig->group_stop_count) { |
1711 | /* | ||
1712 | * There is a group stop in progress. We don't need to | ||
1713 | * start another one. | ||
1714 | */ | ||
1715 | stop_count = --sig->group_stop_count; | ||
1716 | } else { | ||
1717 | struct task_struct *t; | 1670 | struct task_struct *t; |
1718 | 1671 | ||
1719 | if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) || | 1672 | if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) || |
@@ -1725,7 +1678,7 @@ static int do_signal_stop(int signr) | |||
1725 | */ | 1678 | */ |
1726 | sig->group_exit_code = signr; | 1679 | sig->group_exit_code = signr; |
1727 | 1680 | ||
1728 | stop_count = 0; | 1681 | sig->group_stop_count = 1; |
1729 | for (t = next_thread(current); t != current; t = next_thread(t)) | 1682 | for (t = next_thread(current); t != current; t = next_thread(t)) |
1730 | /* | 1683 | /* |
1731 | * Setting state to TASK_STOPPED for a group | 1684 | * Setting state to TASK_STOPPED for a group |
@@ -1734,19 +1687,44 @@ static int do_signal_stop(int signr) | |||
1734 | */ | 1687 | */ |
1735 | if (!(t->flags & PF_EXITING) && | 1688 | if (!(t->flags & PF_EXITING) && |
1736 | !task_is_stopped_or_traced(t)) { | 1689 | !task_is_stopped_or_traced(t)) { |
1737 | stop_count++; | 1690 | sig->group_stop_count++; |
1738 | signal_wake_up(t, 0); | 1691 | signal_wake_up(t, 0); |
1739 | } | 1692 | } |
1740 | sig->group_stop_count = stop_count; | ||
1741 | } | 1693 | } |
1694 | /* | ||
1695 | * If there are no other threads in the group, or if there is | ||
1696 | * a group stop in progress and we are the last to stop, report | ||
1697 | * to the parent. When ptraced, every thread reports itself. | ||
1698 | */ | ||
1699 | notify = sig->group_stop_count == 1 ? CLD_STOPPED : 0; | ||
1700 | notify = tracehook_notify_jctl(notify, CLD_STOPPED); | ||
1701 | /* | ||
1702 | * tracehook_notify_jctl() can drop and reacquire siglock, so | ||
1703 | * we keep ->group_stop_count != 0 before the call. If SIGCONT | ||
1704 | * or SIGKILL comes in between ->group_stop_count == 0. | ||
1705 | */ | ||
1706 | if (sig->group_stop_count) { | ||
1707 | if (!--sig->group_stop_count) | ||
1708 | sig->flags = SIGNAL_STOP_STOPPED; | ||
1709 | current->exit_code = sig->group_exit_code; | ||
1710 | __set_current_state(TASK_STOPPED); | ||
1711 | } | ||
1712 | spin_unlock_irq(¤t->sighand->siglock); | ||
1742 | 1713 | ||
1743 | if (stop_count == 0) | 1714 | if (notify) { |
1744 | sig->flags = SIGNAL_STOP_STOPPED; | 1715 | read_lock(&tasklist_lock); |
1745 | current->exit_code = sig->group_exit_code; | 1716 | do_notify_parent_cldstop(current, notify); |
1746 | __set_current_state(TASK_STOPPED); | 1717 | read_unlock(&tasklist_lock); |
1718 | } | ||
1719 | |||
1720 | /* Now we don't run again until woken by SIGCONT or SIGKILL */ | ||
1721 | do { | ||
1722 | schedule(); | ||
1723 | } while (try_to_freeze()); | ||
1724 | |||
1725 | tracehook_finish_jctl(); | ||
1726 | current->exit_code = 0; | ||
1747 | 1727 | ||
1748 | spin_unlock_irq(¤t->sighand->siglock); | ||
1749 | finish_stop(stop_count); | ||
1750 | return 1; | 1728 | return 1; |
1751 | } | 1729 | } |
1752 | 1730 | ||
@@ -1815,14 +1793,15 @@ relock: | |||
1815 | int why = (signal->flags & SIGNAL_STOP_CONTINUED) | 1793 | int why = (signal->flags & SIGNAL_STOP_CONTINUED) |
1816 | ? CLD_CONTINUED : CLD_STOPPED; | 1794 | ? CLD_CONTINUED : CLD_STOPPED; |
1817 | signal->flags &= ~SIGNAL_CLD_MASK; | 1795 | signal->flags &= ~SIGNAL_CLD_MASK; |
1818 | spin_unlock_irq(&sighand->siglock); | ||
1819 | 1796 | ||
1820 | if (unlikely(!tracehook_notify_jctl(1, why))) | 1797 | why = tracehook_notify_jctl(why, CLD_CONTINUED); |
1821 | goto relock; | 1798 | spin_unlock_irq(&sighand->siglock); |
1822 | 1799 | ||
1823 | read_lock(&tasklist_lock); | 1800 | if (why) { |
1824 | do_notify_parent_cldstop(current->group_leader, why); | 1801 | read_lock(&tasklist_lock); |
1825 | read_unlock(&tasklist_lock); | 1802 | do_notify_parent_cldstop(current->group_leader, why); |
1803 | read_unlock(&tasklist_lock); | ||
1804 | } | ||
1826 | goto relock; | 1805 | goto relock; |
1827 | } | 1806 | } |
1828 | 1807 | ||
@@ -1987,14 +1966,14 @@ void exit_signals(struct task_struct *tsk) | |||
1987 | if (unlikely(tsk->signal->group_stop_count) && | 1966 | if (unlikely(tsk->signal->group_stop_count) && |
1988 | !--tsk->signal->group_stop_count) { | 1967 | !--tsk->signal->group_stop_count) { |
1989 | tsk->signal->flags = SIGNAL_STOP_STOPPED; | 1968 | tsk->signal->flags = SIGNAL_STOP_STOPPED; |
1990 | group_stop = 1; | 1969 | group_stop = tracehook_notify_jctl(CLD_STOPPED, CLD_STOPPED); |
1991 | } | 1970 | } |
1992 | out: | 1971 | out: |
1993 | spin_unlock_irq(&tsk->sighand->siglock); | 1972 | spin_unlock_irq(&tsk->sighand->siglock); |
1994 | 1973 | ||
1995 | if (unlikely(group_stop) && tracehook_notify_jctl(1, CLD_STOPPED)) { | 1974 | if (unlikely(group_stop)) { |
1996 | read_lock(&tasklist_lock); | 1975 | read_lock(&tasklist_lock); |
1997 | do_notify_parent_cldstop(tsk, CLD_STOPPED); | 1976 | do_notify_parent_cldstop(tsk, group_stop); |
1998 | read_unlock(&tasklist_lock); | 1977 | read_unlock(&tasklist_lock); |
1999 | } | 1978 | } |
2000 | } | 1979 | } |
@@ -2290,7 +2269,6 @@ static int | |||
2290 | do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) | 2269 | do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) |
2291 | { | 2270 | { |
2292 | struct task_struct *p; | 2271 | struct task_struct *p; |
2293 | unsigned long flags; | ||
2294 | int error = -ESRCH; | 2272 | int error = -ESRCH; |
2295 | 2273 | ||
2296 | rcu_read_lock(); | 2274 | rcu_read_lock(); |
@@ -2300,14 +2278,16 @@ do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) | |||
2300 | /* | 2278 | /* |
2301 | * The null signal is a permissions and process existence | 2279 | * The null signal is a permissions and process existence |
2302 | * probe. No signal is actually delivered. | 2280 | * probe. No signal is actually delivered. |
2303 | * | ||
2304 | * If lock_task_sighand() fails we pretend the task dies | ||
2305 | * after receiving the signal. The window is tiny, and the | ||
2306 | * signal is private anyway. | ||
2307 | */ | 2281 | */ |
2308 | if (!error && sig && lock_task_sighand(p, &flags)) { | 2282 | if (!error && sig) { |
2309 | error = specific_send_sig_info(sig, info, p); | 2283 | error = do_send_sig_info(sig, info, p, false); |
2310 | unlock_task_sighand(p, &flags); | 2284 | /* |
2285 | * If lock_task_sighand() failed we pretend the task | ||
2286 | * dies after receiving the signal. The window is tiny, | ||
2287 | * and the signal is private anyway. | ||
2288 | */ | ||
2289 | if (unlikely(error == -ESRCH)) | ||
2290 | error = 0; | ||
2311 | } | 2291 | } |
2312 | } | 2292 | } |
2313 | rcu_read_unlock(); | 2293 | rcu_read_unlock(); |
diff --git a/kernel/slow-work.c b/kernel/slow-work.c index 09d7519557d3..0d31135efbf4 100644 --- a/kernel/slow-work.c +++ b/kernel/slow-work.c | |||
@@ -26,10 +26,10 @@ static void slow_work_cull_timeout(unsigned long); | |||
26 | static void slow_work_oom_timeout(unsigned long); | 26 | static void slow_work_oom_timeout(unsigned long); |
27 | 27 | ||
28 | #ifdef CONFIG_SYSCTL | 28 | #ifdef CONFIG_SYSCTL |
29 | static int slow_work_min_threads_sysctl(struct ctl_table *, int, struct file *, | 29 | static int slow_work_min_threads_sysctl(struct ctl_table *, int, |
30 | void __user *, size_t *, loff_t *); | 30 | void __user *, size_t *, loff_t *); |
31 | 31 | ||
32 | static int slow_work_max_threads_sysctl(struct ctl_table *, int , struct file *, | 32 | static int slow_work_max_threads_sysctl(struct ctl_table *, int , |
33 | void __user *, size_t *, loff_t *); | 33 | void __user *, size_t *, loff_t *); |
34 | #endif | 34 | #endif |
35 | 35 | ||
@@ -493,10 +493,10 @@ static void slow_work_oom_timeout(unsigned long data) | |||
493 | * Handle adjustment of the minimum number of threads | 493 | * Handle adjustment of the minimum number of threads |
494 | */ | 494 | */ |
495 | static int slow_work_min_threads_sysctl(struct ctl_table *table, int write, | 495 | static int slow_work_min_threads_sysctl(struct ctl_table *table, int write, |
496 | struct file *filp, void __user *buffer, | 496 | void __user *buffer, |
497 | size_t *lenp, loff_t *ppos) | 497 | size_t *lenp, loff_t *ppos) |
498 | { | 498 | { |
499 | int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); | 499 | int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
500 | int n; | 500 | int n; |
501 | 501 | ||
502 | if (ret == 0) { | 502 | if (ret == 0) { |
@@ -521,10 +521,10 @@ static int slow_work_min_threads_sysctl(struct ctl_table *table, int write, | |||
521 | * Handle adjustment of the maximum number of threads | 521 | * Handle adjustment of the maximum number of threads |
522 | */ | 522 | */ |
523 | static int slow_work_max_threads_sysctl(struct ctl_table *table, int write, | 523 | static int slow_work_max_threads_sysctl(struct ctl_table *table, int write, |
524 | struct file *filp, void __user *buffer, | 524 | void __user *buffer, |
525 | size_t *lenp, loff_t *ppos) | 525 | size_t *lenp, loff_t *ppos) |
526 | { | 526 | { |
527 | int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); | 527 | int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
528 | int n; | 528 | int n; |
529 | 529 | ||
530 | if (ret == 0) { | 530 | if (ret == 0) { |
diff --git a/kernel/smp.c b/kernel/smp.c index 8e218500ab14..c9d1c7835c2f 100644 --- a/kernel/smp.c +++ b/kernel/smp.c | |||
@@ -29,8 +29,7 @@ enum { | |||
29 | 29 | ||
30 | struct call_function_data { | 30 | struct call_function_data { |
31 | struct call_single_data csd; | 31 | struct call_single_data csd; |
32 | spinlock_t lock; | 32 | atomic_t refs; |
33 | unsigned int refs; | ||
34 | cpumask_var_t cpumask; | 33 | cpumask_var_t cpumask; |
35 | }; | 34 | }; |
36 | 35 | ||
@@ -39,9 +38,7 @@ struct call_single_queue { | |||
39 | spinlock_t lock; | 38 | spinlock_t lock; |
40 | }; | 39 | }; |
41 | 40 | ||
42 | static DEFINE_PER_CPU(struct call_function_data, cfd_data) = { | 41 | static DEFINE_PER_CPU(struct call_function_data, cfd_data); |
43 | .lock = __SPIN_LOCK_UNLOCKED(cfd_data.lock), | ||
44 | }; | ||
45 | 42 | ||
46 | static int | 43 | static int |
47 | hotplug_cfd(struct notifier_block *nfb, unsigned long action, void *hcpu) | 44 | hotplug_cfd(struct notifier_block *nfb, unsigned long action, void *hcpu) |
@@ -196,25 +193,18 @@ void generic_smp_call_function_interrupt(void) | |||
196 | list_for_each_entry_rcu(data, &call_function.queue, csd.list) { | 193 | list_for_each_entry_rcu(data, &call_function.queue, csd.list) { |
197 | int refs; | 194 | int refs; |
198 | 195 | ||
199 | spin_lock(&data->lock); | 196 | if (!cpumask_test_and_clear_cpu(cpu, data->cpumask)) |
200 | if (!cpumask_test_cpu(cpu, data->cpumask)) { | ||
201 | spin_unlock(&data->lock); | ||
202 | continue; | 197 | continue; |
203 | } | ||
204 | cpumask_clear_cpu(cpu, data->cpumask); | ||
205 | spin_unlock(&data->lock); | ||
206 | 198 | ||
207 | data->csd.func(data->csd.info); | 199 | data->csd.func(data->csd.info); |
208 | 200 | ||
209 | spin_lock(&data->lock); | 201 | refs = atomic_dec_return(&data->refs); |
210 | WARN_ON(data->refs == 0); | 202 | WARN_ON(refs < 0); |
211 | refs = --data->refs; | ||
212 | if (!refs) { | 203 | if (!refs) { |
213 | spin_lock(&call_function.lock); | 204 | spin_lock(&call_function.lock); |
214 | list_del_rcu(&data->csd.list); | 205 | list_del_rcu(&data->csd.list); |
215 | spin_unlock(&call_function.lock); | 206 | spin_unlock(&call_function.lock); |
216 | } | 207 | } |
217 | spin_unlock(&data->lock); | ||
218 | 208 | ||
219 | if (refs) | 209 | if (refs) |
220 | continue; | 210 | continue; |
@@ -357,13 +347,6 @@ void __smp_call_function_single(int cpu, struct call_single_data *data, | |||
357 | generic_exec_single(cpu, data, wait); | 347 | generic_exec_single(cpu, data, wait); |
358 | } | 348 | } |
359 | 349 | ||
360 | /* Deprecated: shim for archs using old arch_send_call_function_ipi API. */ | ||
361 | |||
362 | #ifndef arch_send_call_function_ipi_mask | ||
363 | # define arch_send_call_function_ipi_mask(maskp) \ | ||
364 | arch_send_call_function_ipi(*(maskp)) | ||
365 | #endif | ||
366 | |||
367 | /** | 350 | /** |
368 | * smp_call_function_many(): Run a function on a set of other CPUs. | 351 | * smp_call_function_many(): Run a function on a set of other CPUs. |
369 | * @mask: The set of cpus to run on (only runs on online subset). | 352 | * @mask: The set of cpus to run on (only runs on online subset). |
@@ -419,23 +402,20 @@ void smp_call_function_many(const struct cpumask *mask, | |||
419 | data = &__get_cpu_var(cfd_data); | 402 | data = &__get_cpu_var(cfd_data); |
420 | csd_lock(&data->csd); | 403 | csd_lock(&data->csd); |
421 | 404 | ||
422 | spin_lock_irqsave(&data->lock, flags); | ||
423 | data->csd.func = func; | 405 | data->csd.func = func; |
424 | data->csd.info = info; | 406 | data->csd.info = info; |
425 | cpumask_and(data->cpumask, mask, cpu_online_mask); | 407 | cpumask_and(data->cpumask, mask, cpu_online_mask); |
426 | cpumask_clear_cpu(this_cpu, data->cpumask); | 408 | cpumask_clear_cpu(this_cpu, data->cpumask); |
427 | data->refs = cpumask_weight(data->cpumask); | 409 | atomic_set(&data->refs, cpumask_weight(data->cpumask)); |
428 | 410 | ||
429 | spin_lock(&call_function.lock); | 411 | spin_lock_irqsave(&call_function.lock, flags); |
430 | /* | 412 | /* |
431 | * Place entry at the _HEAD_ of the list, so that any cpu still | 413 | * Place entry at the _HEAD_ of the list, so that any cpu still |
432 | * observing the entry in generic_smp_call_function_interrupt() | 414 | * observing the entry in generic_smp_call_function_interrupt() |
433 | * will not miss any other list entries: | 415 | * will not miss any other list entries: |
434 | */ | 416 | */ |
435 | list_add_rcu(&data->csd.list, &call_function.queue); | 417 | list_add_rcu(&data->csd.list, &call_function.queue); |
436 | spin_unlock(&call_function.lock); | 418 | spin_unlock_irqrestore(&call_function.lock, flags); |
437 | |||
438 | spin_unlock_irqrestore(&data->lock, flags); | ||
439 | 419 | ||
440 | /* | 420 | /* |
441 | * Make the list addition visible before sending the ipi. | 421 | * Make the list addition visible before sending the ipi. |
diff --git a/kernel/softlockup.c b/kernel/softlockup.c index 88796c330838..81324d12eb35 100644 --- a/kernel/softlockup.c +++ b/kernel/softlockup.c | |||
@@ -90,11 +90,11 @@ void touch_all_softlockup_watchdogs(void) | |||
90 | EXPORT_SYMBOL(touch_all_softlockup_watchdogs); | 90 | EXPORT_SYMBOL(touch_all_softlockup_watchdogs); |
91 | 91 | ||
92 | int proc_dosoftlockup_thresh(struct ctl_table *table, int write, | 92 | int proc_dosoftlockup_thresh(struct ctl_table *table, int write, |
93 | struct file *filp, void __user *buffer, | 93 | void __user *buffer, |
94 | size_t *lenp, loff_t *ppos) | 94 | size_t *lenp, loff_t *ppos) |
95 | { | 95 | { |
96 | touch_all_softlockup_watchdogs(); | 96 | touch_all_softlockup_watchdogs(); |
97 | return proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); | 97 | return proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
98 | } | 98 | } |
99 | 99 | ||
100 | /* | 100 | /* |
diff --git a/kernel/sys.c b/kernel/sys.c index b3f1097c76fa..255475d163e0 100644 --- a/kernel/sys.c +++ b/kernel/sys.c | |||
@@ -14,7 +14,7 @@ | |||
14 | #include <linux/prctl.h> | 14 | #include <linux/prctl.h> |
15 | #include <linux/highuid.h> | 15 | #include <linux/highuid.h> |
16 | #include <linux/fs.h> | 16 | #include <linux/fs.h> |
17 | #include <linux/perf_counter.h> | 17 | #include <linux/perf_event.h> |
18 | #include <linux/resource.h> | 18 | #include <linux/resource.h> |
19 | #include <linux/kernel.h> | 19 | #include <linux/kernel.h> |
20 | #include <linux/kexec.h> | 20 | #include <linux/kexec.h> |
@@ -1338,6 +1338,7 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r) | |||
1338 | unsigned long flags; | 1338 | unsigned long flags; |
1339 | cputime_t utime, stime; | 1339 | cputime_t utime, stime; |
1340 | struct task_cputime cputime; | 1340 | struct task_cputime cputime; |
1341 | unsigned long maxrss = 0; | ||
1341 | 1342 | ||
1342 | memset((char *) r, 0, sizeof *r); | 1343 | memset((char *) r, 0, sizeof *r); |
1343 | utime = stime = cputime_zero; | 1344 | utime = stime = cputime_zero; |
@@ -1346,6 +1347,7 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r) | |||
1346 | utime = task_utime(current); | 1347 | utime = task_utime(current); |
1347 | stime = task_stime(current); | 1348 | stime = task_stime(current); |
1348 | accumulate_thread_rusage(p, r); | 1349 | accumulate_thread_rusage(p, r); |
1350 | maxrss = p->signal->maxrss; | ||
1349 | goto out; | 1351 | goto out; |
1350 | } | 1352 | } |
1351 | 1353 | ||
@@ -1363,6 +1365,7 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r) | |||
1363 | r->ru_majflt = p->signal->cmaj_flt; | 1365 | r->ru_majflt = p->signal->cmaj_flt; |
1364 | r->ru_inblock = p->signal->cinblock; | 1366 | r->ru_inblock = p->signal->cinblock; |
1365 | r->ru_oublock = p->signal->coublock; | 1367 | r->ru_oublock = p->signal->coublock; |
1368 | maxrss = p->signal->cmaxrss; | ||
1366 | 1369 | ||
1367 | if (who == RUSAGE_CHILDREN) | 1370 | if (who == RUSAGE_CHILDREN) |
1368 | break; | 1371 | break; |
@@ -1377,6 +1380,8 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r) | |||
1377 | r->ru_majflt += p->signal->maj_flt; | 1380 | r->ru_majflt += p->signal->maj_flt; |
1378 | r->ru_inblock += p->signal->inblock; | 1381 | r->ru_inblock += p->signal->inblock; |
1379 | r->ru_oublock += p->signal->oublock; | 1382 | r->ru_oublock += p->signal->oublock; |
1383 | if (maxrss < p->signal->maxrss) | ||
1384 | maxrss = p->signal->maxrss; | ||
1380 | t = p; | 1385 | t = p; |
1381 | do { | 1386 | do { |
1382 | accumulate_thread_rusage(t, r); | 1387 | accumulate_thread_rusage(t, r); |
@@ -1392,6 +1397,15 @@ static void k_getrusage(struct task_struct *p, int who, struct rusage *r) | |||
1392 | out: | 1397 | out: |
1393 | cputime_to_timeval(utime, &r->ru_utime); | 1398 | cputime_to_timeval(utime, &r->ru_utime); |
1394 | cputime_to_timeval(stime, &r->ru_stime); | 1399 | cputime_to_timeval(stime, &r->ru_stime); |
1400 | |||
1401 | if (who != RUSAGE_CHILDREN) { | ||
1402 | struct mm_struct *mm = get_task_mm(p); | ||
1403 | if (mm) { | ||
1404 | setmax_mm_hiwater_rss(&maxrss, mm); | ||
1405 | mmput(mm); | ||
1406 | } | ||
1407 | } | ||
1408 | r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */ | ||
1395 | } | 1409 | } |
1396 | 1410 | ||
1397 | int getrusage(struct task_struct *p, int who, struct rusage __user *ru) | 1411 | int getrusage(struct task_struct *p, int who, struct rusage __user *ru) |
@@ -1511,11 +1525,11 @@ SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3, | |||
1511 | case PR_SET_TSC: | 1525 | case PR_SET_TSC: |
1512 | error = SET_TSC_CTL(arg2); | 1526 | error = SET_TSC_CTL(arg2); |
1513 | break; | 1527 | break; |
1514 | case PR_TASK_PERF_COUNTERS_DISABLE: | 1528 | case PR_TASK_PERF_EVENTS_DISABLE: |
1515 | error = perf_counter_task_disable(); | 1529 | error = perf_event_task_disable(); |
1516 | break; | 1530 | break; |
1517 | case PR_TASK_PERF_COUNTERS_ENABLE: | 1531 | case PR_TASK_PERF_EVENTS_ENABLE: |
1518 | error = perf_counter_task_enable(); | 1532 | error = perf_event_task_enable(); |
1519 | break; | 1533 | break; |
1520 | case PR_GET_TIMERSLACK: | 1534 | case PR_GET_TIMERSLACK: |
1521 | error = current->timer_slack_ns; | 1535 | error = current->timer_slack_ns; |
@@ -1528,6 +1542,28 @@ SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3, | |||
1528 | current->timer_slack_ns = arg2; | 1542 | current->timer_slack_ns = arg2; |
1529 | error = 0; | 1543 | error = 0; |
1530 | break; | 1544 | break; |
1545 | case PR_MCE_KILL: | ||
1546 | if (arg4 | arg5) | ||
1547 | return -EINVAL; | ||
1548 | switch (arg2) { | ||
1549 | case 0: | ||
1550 | if (arg3 != 0) | ||
1551 | return -EINVAL; | ||
1552 | current->flags &= ~PF_MCE_PROCESS; | ||
1553 | break; | ||
1554 | case 1: | ||
1555 | current->flags |= PF_MCE_PROCESS; | ||
1556 | if (arg3 != 0) | ||
1557 | current->flags |= PF_MCE_EARLY; | ||
1558 | else | ||
1559 | current->flags &= ~PF_MCE_EARLY; | ||
1560 | break; | ||
1561 | default: | ||
1562 | return -EINVAL; | ||
1563 | } | ||
1564 | error = 0; | ||
1565 | break; | ||
1566 | |||
1531 | default: | 1567 | default: |
1532 | error = -EINVAL; | 1568 | error = -EINVAL; |
1533 | break; | 1569 | break; |
diff --git a/kernel/sys_ni.c b/kernel/sys_ni.c index 68320f6b07b5..e06d0b8d1951 100644 --- a/kernel/sys_ni.c +++ b/kernel/sys_ni.c | |||
@@ -49,6 +49,7 @@ cond_syscall(sys_sendmsg); | |||
49 | cond_syscall(compat_sys_sendmsg); | 49 | cond_syscall(compat_sys_sendmsg); |
50 | cond_syscall(sys_recvmsg); | 50 | cond_syscall(sys_recvmsg); |
51 | cond_syscall(compat_sys_recvmsg); | 51 | cond_syscall(compat_sys_recvmsg); |
52 | cond_syscall(compat_sys_recvfrom); | ||
52 | cond_syscall(sys_socketcall); | 53 | cond_syscall(sys_socketcall); |
53 | cond_syscall(sys_futex); | 54 | cond_syscall(sys_futex); |
54 | cond_syscall(compat_sys_futex); | 55 | cond_syscall(compat_sys_futex); |
@@ -177,4 +178,4 @@ cond_syscall(sys_eventfd); | |||
177 | cond_syscall(sys_eventfd2); | 178 | cond_syscall(sys_eventfd2); |
178 | 179 | ||
179 | /* performance counters: */ | 180 | /* performance counters: */ |
180 | cond_syscall(sys_perf_counter_open); | 181 | cond_syscall(sys_perf_event_open); |
diff --git a/kernel/sysctl.c b/kernel/sysctl.c index 1a631ba684a4..0d949c517412 100644 --- a/kernel/sysctl.c +++ b/kernel/sysctl.c | |||
@@ -26,7 +26,6 @@ | |||
26 | #include <linux/proc_fs.h> | 26 | #include <linux/proc_fs.h> |
27 | #include <linux/security.h> | 27 | #include <linux/security.h> |
28 | #include <linux/ctype.h> | 28 | #include <linux/ctype.h> |
29 | #include <linux/utsname.h> | ||
30 | #include <linux/kmemcheck.h> | 29 | #include <linux/kmemcheck.h> |
31 | #include <linux/smp_lock.h> | 30 | #include <linux/smp_lock.h> |
32 | #include <linux/fs.h> | 31 | #include <linux/fs.h> |
@@ -50,7 +49,7 @@ | |||
50 | #include <linux/reboot.h> | 49 | #include <linux/reboot.h> |
51 | #include <linux/ftrace.h> | 50 | #include <linux/ftrace.h> |
52 | #include <linux/slow-work.h> | 51 | #include <linux/slow-work.h> |
53 | #include <linux/perf_counter.h> | 52 | #include <linux/perf_event.h> |
54 | 53 | ||
55 | #include <asm/uaccess.h> | 54 | #include <asm/uaccess.h> |
56 | #include <asm/processor.h> | 55 | #include <asm/processor.h> |
@@ -77,6 +76,7 @@ extern int max_threads; | |||
77 | extern int core_uses_pid; | 76 | extern int core_uses_pid; |
78 | extern int suid_dumpable; | 77 | extern int suid_dumpable; |
79 | extern char core_pattern[]; | 78 | extern char core_pattern[]; |
79 | extern unsigned int core_pipe_limit; | ||
80 | extern int pid_max; | 80 | extern int pid_max; |
81 | extern int min_free_kbytes; | 81 | extern int min_free_kbytes; |
82 | extern int pid_max_min, pid_max_max; | 82 | extern int pid_max_min, pid_max_max; |
@@ -106,6 +106,9 @@ static int __maybe_unused one = 1; | |||
106 | static int __maybe_unused two = 2; | 106 | static int __maybe_unused two = 2; |
107 | static unsigned long one_ul = 1; | 107 | static unsigned long one_ul = 1; |
108 | static int one_hundred = 100; | 108 | static int one_hundred = 100; |
109 | #ifdef CONFIG_PRINTK | ||
110 | static int ten_thousand = 10000; | ||
111 | #endif | ||
109 | 112 | ||
110 | /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */ | 113 | /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */ |
111 | static unsigned long dirty_bytes_min = 2 * PAGE_SIZE; | 114 | static unsigned long dirty_bytes_min = 2 * PAGE_SIZE; |
@@ -160,9 +163,9 @@ extern int max_lock_depth; | |||
160 | #endif | 163 | #endif |
161 | 164 | ||
162 | #ifdef CONFIG_PROC_SYSCTL | 165 | #ifdef CONFIG_PROC_SYSCTL |
163 | static int proc_do_cad_pid(struct ctl_table *table, int write, struct file *filp, | 166 | static int proc_do_cad_pid(struct ctl_table *table, int write, |
164 | void __user *buffer, size_t *lenp, loff_t *ppos); | 167 | void __user *buffer, size_t *lenp, loff_t *ppos); |
165 | static int proc_taint(struct ctl_table *table, int write, struct file *filp, | 168 | static int proc_taint(struct ctl_table *table, int write, |
166 | void __user *buffer, size_t *lenp, loff_t *ppos); | 169 | void __user *buffer, size_t *lenp, loff_t *ppos); |
167 | #endif | 170 | #endif |
168 | 171 | ||
@@ -421,6 +424,14 @@ static struct ctl_table kern_table[] = { | |||
421 | .proc_handler = &proc_dostring, | 424 | .proc_handler = &proc_dostring, |
422 | .strategy = &sysctl_string, | 425 | .strategy = &sysctl_string, |
423 | }, | 426 | }, |
427 | { | ||
428 | .ctl_name = CTL_UNNUMBERED, | ||
429 | .procname = "core_pipe_limit", | ||
430 | .data = &core_pipe_limit, | ||
431 | .maxlen = sizeof(unsigned int), | ||
432 | .mode = 0644, | ||
433 | .proc_handler = &proc_dointvec, | ||
434 | }, | ||
424 | #ifdef CONFIG_PROC_SYSCTL | 435 | #ifdef CONFIG_PROC_SYSCTL |
425 | { | 436 | { |
426 | .procname = "tainted", | 437 | .procname = "tainted", |
@@ -722,6 +733,17 @@ static struct ctl_table kern_table[] = { | |||
722 | .mode = 0644, | 733 | .mode = 0644, |
723 | .proc_handler = &proc_dointvec, | 734 | .proc_handler = &proc_dointvec, |
724 | }, | 735 | }, |
736 | { | ||
737 | .ctl_name = CTL_UNNUMBERED, | ||
738 | .procname = "printk_delay", | ||
739 | .data = &printk_delay_msec, | ||
740 | .maxlen = sizeof(int), | ||
741 | .mode = 0644, | ||
742 | .proc_handler = &proc_dointvec_minmax, | ||
743 | .strategy = &sysctl_intvec, | ||
744 | .extra1 = &zero, | ||
745 | .extra2 = &ten_thousand, | ||
746 | }, | ||
725 | #endif | 747 | #endif |
726 | { | 748 | { |
727 | .ctl_name = KERN_NGROUPS_MAX, | 749 | .ctl_name = KERN_NGROUPS_MAX, |
@@ -964,28 +986,28 @@ static struct ctl_table kern_table[] = { | |||
964 | .child = slow_work_sysctls, | 986 | .child = slow_work_sysctls, |
965 | }, | 987 | }, |
966 | #endif | 988 | #endif |
967 | #ifdef CONFIG_PERF_COUNTERS | 989 | #ifdef CONFIG_PERF_EVENTS |
968 | { | 990 | { |
969 | .ctl_name = CTL_UNNUMBERED, | 991 | .ctl_name = CTL_UNNUMBERED, |
970 | .procname = "perf_counter_paranoid", | 992 | .procname = "perf_event_paranoid", |
971 | .data = &sysctl_perf_counter_paranoid, | 993 | .data = &sysctl_perf_event_paranoid, |
972 | .maxlen = sizeof(sysctl_perf_counter_paranoid), | 994 | .maxlen = sizeof(sysctl_perf_event_paranoid), |
973 | .mode = 0644, | 995 | .mode = 0644, |
974 | .proc_handler = &proc_dointvec, | 996 | .proc_handler = &proc_dointvec, |
975 | }, | 997 | }, |
976 | { | 998 | { |
977 | .ctl_name = CTL_UNNUMBERED, | 999 | .ctl_name = CTL_UNNUMBERED, |
978 | .procname = "perf_counter_mlock_kb", | 1000 | .procname = "perf_event_mlock_kb", |
979 | .data = &sysctl_perf_counter_mlock, | 1001 | .data = &sysctl_perf_event_mlock, |
980 | .maxlen = sizeof(sysctl_perf_counter_mlock), | 1002 | .maxlen = sizeof(sysctl_perf_event_mlock), |
981 | .mode = 0644, | 1003 | .mode = 0644, |
982 | .proc_handler = &proc_dointvec, | 1004 | .proc_handler = &proc_dointvec, |
983 | }, | 1005 | }, |
984 | { | 1006 | { |
985 | .ctl_name = CTL_UNNUMBERED, | 1007 | .ctl_name = CTL_UNNUMBERED, |
986 | .procname = "perf_counter_max_sample_rate", | 1008 | .procname = "perf_event_max_sample_rate", |
987 | .data = &sysctl_perf_counter_sample_rate, | 1009 | .data = &sysctl_perf_event_sample_rate, |
988 | .maxlen = sizeof(sysctl_perf_counter_sample_rate), | 1010 | .maxlen = sizeof(sysctl_perf_event_sample_rate), |
989 | .mode = 0644, | 1011 | .mode = 0644, |
990 | .proc_handler = &proc_dointvec, | 1012 | .proc_handler = &proc_dointvec, |
991 | }, | 1013 | }, |
@@ -1376,6 +1398,31 @@ static struct ctl_table vm_table[] = { | |||
1376 | .mode = 0644, | 1398 | .mode = 0644, |
1377 | .proc_handler = &scan_unevictable_handler, | 1399 | .proc_handler = &scan_unevictable_handler, |
1378 | }, | 1400 | }, |
1401 | #ifdef CONFIG_MEMORY_FAILURE | ||
1402 | { | ||
1403 | .ctl_name = CTL_UNNUMBERED, | ||
1404 | .procname = "memory_failure_early_kill", | ||
1405 | .data = &sysctl_memory_failure_early_kill, | ||
1406 | .maxlen = sizeof(sysctl_memory_failure_early_kill), | ||
1407 | .mode = 0644, | ||
1408 | .proc_handler = &proc_dointvec_minmax, | ||
1409 | .strategy = &sysctl_intvec, | ||
1410 | .extra1 = &zero, | ||
1411 | .extra2 = &one, | ||
1412 | }, | ||
1413 | { | ||
1414 | .ctl_name = CTL_UNNUMBERED, | ||
1415 | .procname = "memory_failure_recovery", | ||
1416 | .data = &sysctl_memory_failure_recovery, | ||
1417 | .maxlen = sizeof(sysctl_memory_failure_recovery), | ||
1418 | .mode = 0644, | ||
1419 | .proc_handler = &proc_dointvec_minmax, | ||
1420 | .strategy = &sysctl_intvec, | ||
1421 | .extra1 = &zero, | ||
1422 | .extra2 = &one, | ||
1423 | }, | ||
1424 | #endif | ||
1425 | |||
1379 | /* | 1426 | /* |
1380 | * NOTE: do not add new entries to this table unless you have read | 1427 | * NOTE: do not add new entries to this table unless you have read |
1381 | * Documentation/sysctl/ctl_unnumbered.txt | 1428 | * Documentation/sysctl/ctl_unnumbered.txt |
@@ -2204,7 +2251,7 @@ void sysctl_head_put(struct ctl_table_header *head) | |||
2204 | #ifdef CONFIG_PROC_SYSCTL | 2251 | #ifdef CONFIG_PROC_SYSCTL |
2205 | 2252 | ||
2206 | static int _proc_do_string(void* data, int maxlen, int write, | 2253 | static int _proc_do_string(void* data, int maxlen, int write, |
2207 | struct file *filp, void __user *buffer, | 2254 | void __user *buffer, |
2208 | size_t *lenp, loff_t *ppos) | 2255 | size_t *lenp, loff_t *ppos) |
2209 | { | 2256 | { |
2210 | size_t len; | 2257 | size_t len; |
@@ -2265,7 +2312,6 @@ static int _proc_do_string(void* data, int maxlen, int write, | |||
2265 | * proc_dostring - read a string sysctl | 2312 | * proc_dostring - read a string sysctl |
2266 | * @table: the sysctl table | 2313 | * @table: the sysctl table |
2267 | * @write: %TRUE if this is a write to the sysctl file | 2314 | * @write: %TRUE if this is a write to the sysctl file |
2268 | * @filp: the file structure | ||
2269 | * @buffer: the user buffer | 2315 | * @buffer: the user buffer |
2270 | * @lenp: the size of the user buffer | 2316 | * @lenp: the size of the user buffer |
2271 | * @ppos: file position | 2317 | * @ppos: file position |
@@ -2279,10 +2325,10 @@ static int _proc_do_string(void* data, int maxlen, int write, | |||
2279 | * | 2325 | * |
2280 | * Returns 0 on success. | 2326 | * Returns 0 on success. |
2281 | */ | 2327 | */ |
2282 | int proc_dostring(struct ctl_table *table, int write, struct file *filp, | 2328 | int proc_dostring(struct ctl_table *table, int write, |
2283 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2329 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2284 | { | 2330 | { |
2285 | return _proc_do_string(table->data, table->maxlen, write, filp, | 2331 | return _proc_do_string(table->data, table->maxlen, write, |
2286 | buffer, lenp, ppos); | 2332 | buffer, lenp, ppos); |
2287 | } | 2333 | } |
2288 | 2334 | ||
@@ -2307,7 +2353,7 @@ static int do_proc_dointvec_conv(int *negp, unsigned long *lvalp, | |||
2307 | } | 2353 | } |
2308 | 2354 | ||
2309 | static int __do_proc_dointvec(void *tbl_data, struct ctl_table *table, | 2355 | static int __do_proc_dointvec(void *tbl_data, struct ctl_table *table, |
2310 | int write, struct file *filp, void __user *buffer, | 2356 | int write, void __user *buffer, |
2311 | size_t *lenp, loff_t *ppos, | 2357 | size_t *lenp, loff_t *ppos, |
2312 | int (*conv)(int *negp, unsigned long *lvalp, int *valp, | 2358 | int (*conv)(int *negp, unsigned long *lvalp, int *valp, |
2313 | int write, void *data), | 2359 | int write, void *data), |
@@ -2414,13 +2460,13 @@ static int __do_proc_dointvec(void *tbl_data, struct ctl_table *table, | |||
2414 | #undef TMPBUFLEN | 2460 | #undef TMPBUFLEN |
2415 | } | 2461 | } |
2416 | 2462 | ||
2417 | static int do_proc_dointvec(struct ctl_table *table, int write, struct file *filp, | 2463 | static int do_proc_dointvec(struct ctl_table *table, int write, |
2418 | void __user *buffer, size_t *lenp, loff_t *ppos, | 2464 | void __user *buffer, size_t *lenp, loff_t *ppos, |
2419 | int (*conv)(int *negp, unsigned long *lvalp, int *valp, | 2465 | int (*conv)(int *negp, unsigned long *lvalp, int *valp, |
2420 | int write, void *data), | 2466 | int write, void *data), |
2421 | void *data) | 2467 | void *data) |
2422 | { | 2468 | { |
2423 | return __do_proc_dointvec(table->data, table, write, filp, | 2469 | return __do_proc_dointvec(table->data, table, write, |
2424 | buffer, lenp, ppos, conv, data); | 2470 | buffer, lenp, ppos, conv, data); |
2425 | } | 2471 | } |
2426 | 2472 | ||
@@ -2428,7 +2474,6 @@ static int do_proc_dointvec(struct ctl_table *table, int write, struct file *fil | |||
2428 | * proc_dointvec - read a vector of integers | 2474 | * proc_dointvec - read a vector of integers |
2429 | * @table: the sysctl table | 2475 | * @table: the sysctl table |
2430 | * @write: %TRUE if this is a write to the sysctl file | 2476 | * @write: %TRUE if this is a write to the sysctl file |
2431 | * @filp: the file structure | ||
2432 | * @buffer: the user buffer | 2477 | * @buffer: the user buffer |
2433 | * @lenp: the size of the user buffer | 2478 | * @lenp: the size of the user buffer |
2434 | * @ppos: file position | 2479 | * @ppos: file position |
@@ -2438,10 +2483,10 @@ static int do_proc_dointvec(struct ctl_table *table, int write, struct file *fil | |||
2438 | * | 2483 | * |
2439 | * Returns 0 on success. | 2484 | * Returns 0 on success. |
2440 | */ | 2485 | */ |
2441 | int proc_dointvec(struct ctl_table *table, int write, struct file *filp, | 2486 | int proc_dointvec(struct ctl_table *table, int write, |
2442 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2487 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2443 | { | 2488 | { |
2444 | return do_proc_dointvec(table,write,filp,buffer,lenp,ppos, | 2489 | return do_proc_dointvec(table,write,buffer,lenp,ppos, |
2445 | NULL,NULL); | 2490 | NULL,NULL); |
2446 | } | 2491 | } |
2447 | 2492 | ||
@@ -2449,7 +2494,7 @@ int proc_dointvec(struct ctl_table *table, int write, struct file *filp, | |||
2449 | * Taint values can only be increased | 2494 | * Taint values can only be increased |
2450 | * This means we can safely use a temporary. | 2495 | * This means we can safely use a temporary. |
2451 | */ | 2496 | */ |
2452 | static int proc_taint(struct ctl_table *table, int write, struct file *filp, | 2497 | static int proc_taint(struct ctl_table *table, int write, |
2453 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2498 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2454 | { | 2499 | { |
2455 | struct ctl_table t; | 2500 | struct ctl_table t; |
@@ -2461,7 +2506,7 @@ static int proc_taint(struct ctl_table *table, int write, struct file *filp, | |||
2461 | 2506 | ||
2462 | t = *table; | 2507 | t = *table; |
2463 | t.data = &tmptaint; | 2508 | t.data = &tmptaint; |
2464 | err = proc_doulongvec_minmax(&t, write, filp, buffer, lenp, ppos); | 2509 | err = proc_doulongvec_minmax(&t, write, buffer, lenp, ppos); |
2465 | if (err < 0) | 2510 | if (err < 0) |
2466 | return err; | 2511 | return err; |
2467 | 2512 | ||
@@ -2513,7 +2558,6 @@ static int do_proc_dointvec_minmax_conv(int *negp, unsigned long *lvalp, | |||
2513 | * proc_dointvec_minmax - read a vector of integers with min/max values | 2558 | * proc_dointvec_minmax - read a vector of integers with min/max values |
2514 | * @table: the sysctl table | 2559 | * @table: the sysctl table |
2515 | * @write: %TRUE if this is a write to the sysctl file | 2560 | * @write: %TRUE if this is a write to the sysctl file |
2516 | * @filp: the file structure | ||
2517 | * @buffer: the user buffer | 2561 | * @buffer: the user buffer |
2518 | * @lenp: the size of the user buffer | 2562 | * @lenp: the size of the user buffer |
2519 | * @ppos: file position | 2563 | * @ppos: file position |
@@ -2526,19 +2570,18 @@ static int do_proc_dointvec_minmax_conv(int *negp, unsigned long *lvalp, | |||
2526 | * | 2570 | * |
2527 | * Returns 0 on success. | 2571 | * Returns 0 on success. |
2528 | */ | 2572 | */ |
2529 | int proc_dointvec_minmax(struct ctl_table *table, int write, struct file *filp, | 2573 | int proc_dointvec_minmax(struct ctl_table *table, int write, |
2530 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2574 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2531 | { | 2575 | { |
2532 | struct do_proc_dointvec_minmax_conv_param param = { | 2576 | struct do_proc_dointvec_minmax_conv_param param = { |
2533 | .min = (int *) table->extra1, | 2577 | .min = (int *) table->extra1, |
2534 | .max = (int *) table->extra2, | 2578 | .max = (int *) table->extra2, |
2535 | }; | 2579 | }; |
2536 | return do_proc_dointvec(table, write, filp, buffer, lenp, ppos, | 2580 | return do_proc_dointvec(table, write, buffer, lenp, ppos, |
2537 | do_proc_dointvec_minmax_conv, ¶m); | 2581 | do_proc_dointvec_minmax_conv, ¶m); |
2538 | } | 2582 | } |
2539 | 2583 | ||
2540 | static int __do_proc_doulongvec_minmax(void *data, struct ctl_table *table, int write, | 2584 | static int __do_proc_doulongvec_minmax(void *data, struct ctl_table *table, int write, |
2541 | struct file *filp, | ||
2542 | void __user *buffer, | 2585 | void __user *buffer, |
2543 | size_t *lenp, loff_t *ppos, | 2586 | size_t *lenp, loff_t *ppos, |
2544 | unsigned long convmul, | 2587 | unsigned long convmul, |
@@ -2643,21 +2686,19 @@ static int __do_proc_doulongvec_minmax(void *data, struct ctl_table *table, int | |||
2643 | } | 2686 | } |
2644 | 2687 | ||
2645 | static int do_proc_doulongvec_minmax(struct ctl_table *table, int write, | 2688 | static int do_proc_doulongvec_minmax(struct ctl_table *table, int write, |
2646 | struct file *filp, | ||
2647 | void __user *buffer, | 2689 | void __user *buffer, |
2648 | size_t *lenp, loff_t *ppos, | 2690 | size_t *lenp, loff_t *ppos, |
2649 | unsigned long convmul, | 2691 | unsigned long convmul, |
2650 | unsigned long convdiv) | 2692 | unsigned long convdiv) |
2651 | { | 2693 | { |
2652 | return __do_proc_doulongvec_minmax(table->data, table, write, | 2694 | return __do_proc_doulongvec_minmax(table->data, table, write, |
2653 | filp, buffer, lenp, ppos, convmul, convdiv); | 2695 | buffer, lenp, ppos, convmul, convdiv); |
2654 | } | 2696 | } |
2655 | 2697 | ||
2656 | /** | 2698 | /** |
2657 | * proc_doulongvec_minmax - read a vector of long integers with min/max values | 2699 | * proc_doulongvec_minmax - read a vector of long integers with min/max values |
2658 | * @table: the sysctl table | 2700 | * @table: the sysctl table |
2659 | * @write: %TRUE if this is a write to the sysctl file | 2701 | * @write: %TRUE if this is a write to the sysctl file |
2660 | * @filp: the file structure | ||
2661 | * @buffer: the user buffer | 2702 | * @buffer: the user buffer |
2662 | * @lenp: the size of the user buffer | 2703 | * @lenp: the size of the user buffer |
2663 | * @ppos: file position | 2704 | * @ppos: file position |
@@ -2670,17 +2711,16 @@ static int do_proc_doulongvec_minmax(struct ctl_table *table, int write, | |||
2670 | * | 2711 | * |
2671 | * Returns 0 on success. | 2712 | * Returns 0 on success. |
2672 | */ | 2713 | */ |
2673 | int proc_doulongvec_minmax(struct ctl_table *table, int write, struct file *filp, | 2714 | int proc_doulongvec_minmax(struct ctl_table *table, int write, |
2674 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2715 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2675 | { | 2716 | { |
2676 | return do_proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos, 1l, 1l); | 2717 | return do_proc_doulongvec_minmax(table, write, buffer, lenp, ppos, 1l, 1l); |
2677 | } | 2718 | } |
2678 | 2719 | ||
2679 | /** | 2720 | /** |
2680 | * proc_doulongvec_ms_jiffies_minmax - read a vector of millisecond values with min/max values | 2721 | * proc_doulongvec_ms_jiffies_minmax - read a vector of millisecond values with min/max values |
2681 | * @table: the sysctl table | 2722 | * @table: the sysctl table |
2682 | * @write: %TRUE if this is a write to the sysctl file | 2723 | * @write: %TRUE if this is a write to the sysctl file |
2683 | * @filp: the file structure | ||
2684 | * @buffer: the user buffer | 2724 | * @buffer: the user buffer |
2685 | * @lenp: the size of the user buffer | 2725 | * @lenp: the size of the user buffer |
2686 | * @ppos: file position | 2726 | * @ppos: file position |
@@ -2695,11 +2735,10 @@ int proc_doulongvec_minmax(struct ctl_table *table, int write, struct file *filp | |||
2695 | * Returns 0 on success. | 2735 | * Returns 0 on success. |
2696 | */ | 2736 | */ |
2697 | int proc_doulongvec_ms_jiffies_minmax(struct ctl_table *table, int write, | 2737 | int proc_doulongvec_ms_jiffies_minmax(struct ctl_table *table, int write, |
2698 | struct file *filp, | ||
2699 | void __user *buffer, | 2738 | void __user *buffer, |
2700 | size_t *lenp, loff_t *ppos) | 2739 | size_t *lenp, loff_t *ppos) |
2701 | { | 2740 | { |
2702 | return do_proc_doulongvec_minmax(table, write, filp, buffer, | 2741 | return do_proc_doulongvec_minmax(table, write, buffer, |
2703 | lenp, ppos, HZ, 1000l); | 2742 | lenp, ppos, HZ, 1000l); |
2704 | } | 2743 | } |
2705 | 2744 | ||
@@ -2775,7 +2814,6 @@ static int do_proc_dointvec_ms_jiffies_conv(int *negp, unsigned long *lvalp, | |||
2775 | * proc_dointvec_jiffies - read a vector of integers as seconds | 2814 | * proc_dointvec_jiffies - read a vector of integers as seconds |
2776 | * @table: the sysctl table | 2815 | * @table: the sysctl table |
2777 | * @write: %TRUE if this is a write to the sysctl file | 2816 | * @write: %TRUE if this is a write to the sysctl file |
2778 | * @filp: the file structure | ||
2779 | * @buffer: the user buffer | 2817 | * @buffer: the user buffer |
2780 | * @lenp: the size of the user buffer | 2818 | * @lenp: the size of the user buffer |
2781 | * @ppos: file position | 2819 | * @ppos: file position |
@@ -2787,10 +2825,10 @@ static int do_proc_dointvec_ms_jiffies_conv(int *negp, unsigned long *lvalp, | |||
2787 | * | 2825 | * |
2788 | * Returns 0 on success. | 2826 | * Returns 0 on success. |
2789 | */ | 2827 | */ |
2790 | int proc_dointvec_jiffies(struct ctl_table *table, int write, struct file *filp, | 2828 | int proc_dointvec_jiffies(struct ctl_table *table, int write, |
2791 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2829 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2792 | { | 2830 | { |
2793 | return do_proc_dointvec(table,write,filp,buffer,lenp,ppos, | 2831 | return do_proc_dointvec(table,write,buffer,lenp,ppos, |
2794 | do_proc_dointvec_jiffies_conv,NULL); | 2832 | do_proc_dointvec_jiffies_conv,NULL); |
2795 | } | 2833 | } |
2796 | 2834 | ||
@@ -2798,7 +2836,6 @@ int proc_dointvec_jiffies(struct ctl_table *table, int write, struct file *filp, | |||
2798 | * proc_dointvec_userhz_jiffies - read a vector of integers as 1/USER_HZ seconds | 2836 | * proc_dointvec_userhz_jiffies - read a vector of integers as 1/USER_HZ seconds |
2799 | * @table: the sysctl table | 2837 | * @table: the sysctl table |
2800 | * @write: %TRUE if this is a write to the sysctl file | 2838 | * @write: %TRUE if this is a write to the sysctl file |
2801 | * @filp: the file structure | ||
2802 | * @buffer: the user buffer | 2839 | * @buffer: the user buffer |
2803 | * @lenp: the size of the user buffer | 2840 | * @lenp: the size of the user buffer |
2804 | * @ppos: pointer to the file position | 2841 | * @ppos: pointer to the file position |
@@ -2810,10 +2847,10 @@ int proc_dointvec_jiffies(struct ctl_table *table, int write, struct file *filp, | |||
2810 | * | 2847 | * |
2811 | * Returns 0 on success. | 2848 | * Returns 0 on success. |
2812 | */ | 2849 | */ |
2813 | int proc_dointvec_userhz_jiffies(struct ctl_table *table, int write, struct file *filp, | 2850 | int proc_dointvec_userhz_jiffies(struct ctl_table *table, int write, |
2814 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2851 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2815 | { | 2852 | { |
2816 | return do_proc_dointvec(table,write,filp,buffer,lenp,ppos, | 2853 | return do_proc_dointvec(table,write,buffer,lenp,ppos, |
2817 | do_proc_dointvec_userhz_jiffies_conv,NULL); | 2854 | do_proc_dointvec_userhz_jiffies_conv,NULL); |
2818 | } | 2855 | } |
2819 | 2856 | ||
@@ -2821,7 +2858,6 @@ int proc_dointvec_userhz_jiffies(struct ctl_table *table, int write, struct file | |||
2821 | * proc_dointvec_ms_jiffies - read a vector of integers as 1 milliseconds | 2858 | * proc_dointvec_ms_jiffies - read a vector of integers as 1 milliseconds |
2822 | * @table: the sysctl table | 2859 | * @table: the sysctl table |
2823 | * @write: %TRUE if this is a write to the sysctl file | 2860 | * @write: %TRUE if this is a write to the sysctl file |
2824 | * @filp: the file structure | ||
2825 | * @buffer: the user buffer | 2861 | * @buffer: the user buffer |
2826 | * @lenp: the size of the user buffer | 2862 | * @lenp: the size of the user buffer |
2827 | * @ppos: file position | 2863 | * @ppos: file position |
@@ -2834,14 +2870,14 @@ int proc_dointvec_userhz_jiffies(struct ctl_table *table, int write, struct file | |||
2834 | * | 2870 | * |
2835 | * Returns 0 on success. | 2871 | * Returns 0 on success. |
2836 | */ | 2872 | */ |
2837 | int proc_dointvec_ms_jiffies(struct ctl_table *table, int write, struct file *filp, | 2873 | int proc_dointvec_ms_jiffies(struct ctl_table *table, int write, |
2838 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2874 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2839 | { | 2875 | { |
2840 | return do_proc_dointvec(table, write, filp, buffer, lenp, ppos, | 2876 | return do_proc_dointvec(table, write, buffer, lenp, ppos, |
2841 | do_proc_dointvec_ms_jiffies_conv, NULL); | 2877 | do_proc_dointvec_ms_jiffies_conv, NULL); |
2842 | } | 2878 | } |
2843 | 2879 | ||
2844 | static int proc_do_cad_pid(struct ctl_table *table, int write, struct file *filp, | 2880 | static int proc_do_cad_pid(struct ctl_table *table, int write, |
2845 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2881 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2846 | { | 2882 | { |
2847 | struct pid *new_pid; | 2883 | struct pid *new_pid; |
@@ -2850,7 +2886,7 @@ static int proc_do_cad_pid(struct ctl_table *table, int write, struct file *filp | |||
2850 | 2886 | ||
2851 | tmp = pid_vnr(cad_pid); | 2887 | tmp = pid_vnr(cad_pid); |
2852 | 2888 | ||
2853 | r = __do_proc_dointvec(&tmp, table, write, filp, buffer, | 2889 | r = __do_proc_dointvec(&tmp, table, write, buffer, |
2854 | lenp, ppos, NULL, NULL); | 2890 | lenp, ppos, NULL, NULL); |
2855 | if (r || !write) | 2891 | if (r || !write) |
2856 | return r; | 2892 | return r; |
@@ -2865,50 +2901,49 @@ static int proc_do_cad_pid(struct ctl_table *table, int write, struct file *filp | |||
2865 | 2901 | ||
2866 | #else /* CONFIG_PROC_FS */ | 2902 | #else /* CONFIG_PROC_FS */ |
2867 | 2903 | ||
2868 | int proc_dostring(struct ctl_table *table, int write, struct file *filp, | 2904 | int proc_dostring(struct ctl_table *table, int write, |
2869 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2905 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2870 | { | 2906 | { |
2871 | return -ENOSYS; | 2907 | return -ENOSYS; |
2872 | } | 2908 | } |
2873 | 2909 | ||
2874 | int proc_dointvec(struct ctl_table *table, int write, struct file *filp, | 2910 | int proc_dointvec(struct ctl_table *table, int write, |
2875 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2911 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2876 | { | 2912 | { |
2877 | return -ENOSYS; | 2913 | return -ENOSYS; |
2878 | } | 2914 | } |
2879 | 2915 | ||
2880 | int proc_dointvec_minmax(struct ctl_table *table, int write, struct file *filp, | 2916 | int proc_dointvec_minmax(struct ctl_table *table, int write, |
2881 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2917 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2882 | { | 2918 | { |
2883 | return -ENOSYS; | 2919 | return -ENOSYS; |
2884 | } | 2920 | } |
2885 | 2921 | ||
2886 | int proc_dointvec_jiffies(struct ctl_table *table, int write, struct file *filp, | 2922 | int proc_dointvec_jiffies(struct ctl_table *table, int write, |
2887 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2923 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2888 | { | 2924 | { |
2889 | return -ENOSYS; | 2925 | return -ENOSYS; |
2890 | } | 2926 | } |
2891 | 2927 | ||
2892 | int proc_dointvec_userhz_jiffies(struct ctl_table *table, int write, struct file *filp, | 2928 | int proc_dointvec_userhz_jiffies(struct ctl_table *table, int write, |
2893 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2929 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2894 | { | 2930 | { |
2895 | return -ENOSYS; | 2931 | return -ENOSYS; |
2896 | } | 2932 | } |
2897 | 2933 | ||
2898 | int proc_dointvec_ms_jiffies(struct ctl_table *table, int write, struct file *filp, | 2934 | int proc_dointvec_ms_jiffies(struct ctl_table *table, int write, |
2899 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2935 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2900 | { | 2936 | { |
2901 | return -ENOSYS; | 2937 | return -ENOSYS; |
2902 | } | 2938 | } |
2903 | 2939 | ||
2904 | int proc_doulongvec_minmax(struct ctl_table *table, int write, struct file *filp, | 2940 | int proc_doulongvec_minmax(struct ctl_table *table, int write, |
2905 | void __user *buffer, size_t *lenp, loff_t *ppos) | 2941 | void __user *buffer, size_t *lenp, loff_t *ppos) |
2906 | { | 2942 | { |
2907 | return -ENOSYS; | 2943 | return -ENOSYS; |
2908 | } | 2944 | } |
2909 | 2945 | ||
2910 | int proc_doulongvec_ms_jiffies_minmax(struct ctl_table *table, int write, | 2946 | int proc_doulongvec_ms_jiffies_minmax(struct ctl_table *table, int write, |
2911 | struct file *filp, | ||
2912 | void __user *buffer, | 2947 | void __user *buffer, |
2913 | size_t *lenp, loff_t *ppos) | 2948 | size_t *lenp, loff_t *ppos) |
2914 | { | 2949 | { |
diff --git a/kernel/time.c b/kernel/time.c index 29511943871a..2e2e469a7fec 100644 --- a/kernel/time.c +++ b/kernel/time.c | |||
@@ -370,13 +370,20 @@ EXPORT_SYMBOL(mktime); | |||
370 | * 0 <= tv_nsec < NSEC_PER_SEC | 370 | * 0 <= tv_nsec < NSEC_PER_SEC |
371 | * For negative values only the tv_sec field is negative ! | 371 | * For negative values only the tv_sec field is negative ! |
372 | */ | 372 | */ |
373 | void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec) | 373 | void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec) |
374 | { | 374 | { |
375 | while (nsec >= NSEC_PER_SEC) { | 375 | while (nsec >= NSEC_PER_SEC) { |
376 | /* | ||
377 | * The following asm() prevents the compiler from | ||
378 | * optimising this loop into a modulo operation. See | ||
379 | * also __iter_div_u64_rem() in include/linux/time.h | ||
380 | */ | ||
381 | asm("" : "+rm"(nsec)); | ||
376 | nsec -= NSEC_PER_SEC; | 382 | nsec -= NSEC_PER_SEC; |
377 | ++sec; | 383 | ++sec; |
378 | } | 384 | } |
379 | while (nsec < 0) { | 385 | while (nsec < 0) { |
386 | asm("" : "+rm"(nsec)); | ||
380 | nsec += NSEC_PER_SEC; | 387 | nsec += NSEC_PER_SEC; |
381 | --sec; | 388 | --sec; |
382 | } | 389 | } |
diff --git a/kernel/time/Makefile b/kernel/time/Makefile index 0b0a6366c9d4..ee266620b06c 100644 --- a/kernel/time/Makefile +++ b/kernel/time/Makefile | |||
@@ -1,4 +1,4 @@ | |||
1 | obj-y += timekeeping.o ntp.o clocksource.o jiffies.o timer_list.o timecompare.o | 1 | obj-y += timekeeping.o ntp.o clocksource.o jiffies.o timer_list.o timecompare.o timeconv.o |
2 | 2 | ||
3 | obj-$(CONFIG_GENERIC_CLOCKEVENTS_BUILD) += clockevents.o | 3 | obj-$(CONFIG_GENERIC_CLOCKEVENTS_BUILD) += clockevents.o |
4 | obj-$(CONFIG_GENERIC_CLOCKEVENTS) += tick-common.o | 4 | obj-$(CONFIG_GENERIC_CLOCKEVENTS) += tick-common.o |
diff --git a/kernel/time/clocksource.c b/kernel/time/clocksource.c index 7466cb811251..5e18c6ab2c6a 100644 --- a/kernel/time/clocksource.c +++ b/kernel/time/clocksource.c | |||
@@ -21,7 +21,6 @@ | |||
21 | * | 21 | * |
22 | * TODO WishList: | 22 | * TODO WishList: |
23 | * o Allow clocksource drivers to be unregistered | 23 | * o Allow clocksource drivers to be unregistered |
24 | * o get rid of clocksource_jiffies extern | ||
25 | */ | 24 | */ |
26 | 25 | ||
27 | #include <linux/clocksource.h> | 26 | #include <linux/clocksource.h> |
@@ -30,6 +29,7 @@ | |||
30 | #include <linux/module.h> | 29 | #include <linux/module.h> |
31 | #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */ | 30 | #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */ |
32 | #include <linux/tick.h> | 31 | #include <linux/tick.h> |
32 | #include <linux/kthread.h> | ||
33 | 33 | ||
34 | void timecounter_init(struct timecounter *tc, | 34 | void timecounter_init(struct timecounter *tc, |
35 | const struct cyclecounter *cc, | 35 | const struct cyclecounter *cc, |
@@ -107,50 +107,35 @@ u64 timecounter_cyc2time(struct timecounter *tc, | |||
107 | } | 107 | } |
108 | EXPORT_SYMBOL(timecounter_cyc2time); | 108 | EXPORT_SYMBOL(timecounter_cyc2time); |
109 | 109 | ||
110 | /* XXX - Would like a better way for initializing curr_clocksource */ | ||
111 | extern struct clocksource clocksource_jiffies; | ||
112 | |||
113 | /*[Clocksource internal variables]--------- | 110 | /*[Clocksource internal variables]--------- |
114 | * curr_clocksource: | 111 | * curr_clocksource: |
115 | * currently selected clocksource. Initialized to clocksource_jiffies. | 112 | * currently selected clocksource. |
116 | * next_clocksource: | ||
117 | * pending next selected clocksource. | ||
118 | * clocksource_list: | 113 | * clocksource_list: |
119 | * linked list with the registered clocksources | 114 | * linked list with the registered clocksources |
120 | * clocksource_lock: | 115 | * clocksource_mutex: |
121 | * protects manipulations to curr_clocksource and next_clocksource | 116 | * protects manipulations to curr_clocksource and the clocksource_list |
122 | * and the clocksource_list | ||
123 | * override_name: | 117 | * override_name: |
124 | * Name of the user-specified clocksource. | 118 | * Name of the user-specified clocksource. |
125 | */ | 119 | */ |
126 | static struct clocksource *curr_clocksource = &clocksource_jiffies; | 120 | static struct clocksource *curr_clocksource; |
127 | static struct clocksource *next_clocksource; | ||
128 | static struct clocksource *clocksource_override; | ||
129 | static LIST_HEAD(clocksource_list); | 121 | static LIST_HEAD(clocksource_list); |
130 | static DEFINE_SPINLOCK(clocksource_lock); | 122 | static DEFINE_MUTEX(clocksource_mutex); |
131 | static char override_name[32]; | 123 | static char override_name[32]; |
132 | static int finished_booting; | 124 | static int finished_booting; |
133 | 125 | ||
134 | /* clocksource_done_booting - Called near the end of core bootup | ||
135 | * | ||
136 | * Hack to avoid lots of clocksource churn at boot time. | ||
137 | * We use fs_initcall because we want this to start before | ||
138 | * device_initcall but after subsys_initcall. | ||
139 | */ | ||
140 | static int __init clocksource_done_booting(void) | ||
141 | { | ||
142 | finished_booting = 1; | ||
143 | return 0; | ||
144 | } | ||
145 | fs_initcall(clocksource_done_booting); | ||
146 | |||
147 | #ifdef CONFIG_CLOCKSOURCE_WATCHDOG | 126 | #ifdef CONFIG_CLOCKSOURCE_WATCHDOG |
127 | static void clocksource_watchdog_work(struct work_struct *work); | ||
128 | |||
148 | static LIST_HEAD(watchdog_list); | 129 | static LIST_HEAD(watchdog_list); |
149 | static struct clocksource *watchdog; | 130 | static struct clocksource *watchdog; |
150 | static struct timer_list watchdog_timer; | 131 | static struct timer_list watchdog_timer; |
132 | static DECLARE_WORK(watchdog_work, clocksource_watchdog_work); | ||
151 | static DEFINE_SPINLOCK(watchdog_lock); | 133 | static DEFINE_SPINLOCK(watchdog_lock); |
152 | static cycle_t watchdog_last; | 134 | static cycle_t watchdog_last; |
153 | static unsigned long watchdog_resumed; | 135 | static int watchdog_running; |
136 | |||
137 | static int clocksource_watchdog_kthread(void *data); | ||
138 | static void __clocksource_change_rating(struct clocksource *cs, int rating); | ||
154 | 139 | ||
155 | /* | 140 | /* |
156 | * Interval: 0.5sec Threshold: 0.0625s | 141 | * Interval: 0.5sec Threshold: 0.0625s |
@@ -158,135 +143,249 @@ static unsigned long watchdog_resumed; | |||
158 | #define WATCHDOG_INTERVAL (HZ >> 1) | 143 | #define WATCHDOG_INTERVAL (HZ >> 1) |
159 | #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4) | 144 | #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4) |
160 | 145 | ||
161 | static void clocksource_ratewd(struct clocksource *cs, int64_t delta) | 146 | static void clocksource_watchdog_work(struct work_struct *work) |
162 | { | 147 | { |
163 | if (delta > -WATCHDOG_THRESHOLD && delta < WATCHDOG_THRESHOLD) | 148 | /* |
164 | return; | 149 | * If kthread_run fails the next watchdog scan over the |
150 | * watchdog_list will find the unstable clock again. | ||
151 | */ | ||
152 | kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog"); | ||
153 | } | ||
154 | |||
155 | static void __clocksource_unstable(struct clocksource *cs) | ||
156 | { | ||
157 | cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG); | ||
158 | cs->flags |= CLOCK_SOURCE_UNSTABLE; | ||
159 | if (finished_booting) | ||
160 | schedule_work(&watchdog_work); | ||
161 | } | ||
165 | 162 | ||
163 | static void clocksource_unstable(struct clocksource *cs, int64_t delta) | ||
164 | { | ||
166 | printk(KERN_WARNING "Clocksource %s unstable (delta = %Ld ns)\n", | 165 | printk(KERN_WARNING "Clocksource %s unstable (delta = %Ld ns)\n", |
167 | cs->name, delta); | 166 | cs->name, delta); |
168 | cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG); | 167 | __clocksource_unstable(cs); |
169 | clocksource_change_rating(cs, 0); | 168 | } |
170 | list_del(&cs->wd_list); | 169 | |
170 | /** | ||
171 | * clocksource_mark_unstable - mark clocksource unstable via watchdog | ||
172 | * @cs: clocksource to be marked unstable | ||
173 | * | ||
174 | * This function is called instead of clocksource_change_rating from | ||
175 | * cpu hotplug code to avoid a deadlock between the clocksource mutex | ||
176 | * and the cpu hotplug mutex. It defers the update of the clocksource | ||
177 | * to the watchdog thread. | ||
178 | */ | ||
179 | void clocksource_mark_unstable(struct clocksource *cs) | ||
180 | { | ||
181 | unsigned long flags; | ||
182 | |||
183 | spin_lock_irqsave(&watchdog_lock, flags); | ||
184 | if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) { | ||
185 | if (list_empty(&cs->wd_list)) | ||
186 | list_add(&cs->wd_list, &watchdog_list); | ||
187 | __clocksource_unstable(cs); | ||
188 | } | ||
189 | spin_unlock_irqrestore(&watchdog_lock, flags); | ||
171 | } | 190 | } |
172 | 191 | ||
173 | static void clocksource_watchdog(unsigned long data) | 192 | static void clocksource_watchdog(unsigned long data) |
174 | { | 193 | { |
175 | struct clocksource *cs, *tmp; | 194 | struct clocksource *cs; |
176 | cycle_t csnow, wdnow; | 195 | cycle_t csnow, wdnow; |
177 | int64_t wd_nsec, cs_nsec; | 196 | int64_t wd_nsec, cs_nsec; |
178 | int resumed; | 197 | int next_cpu; |
179 | 198 | ||
180 | spin_lock(&watchdog_lock); | 199 | spin_lock(&watchdog_lock); |
181 | 200 | if (!watchdog_running) | |
182 | resumed = test_and_clear_bit(0, &watchdog_resumed); | 201 | goto out; |
183 | 202 | ||
184 | wdnow = watchdog->read(watchdog); | 203 | wdnow = watchdog->read(watchdog); |
185 | wd_nsec = cyc2ns(watchdog, (wdnow - watchdog_last) & watchdog->mask); | 204 | wd_nsec = clocksource_cyc2ns((wdnow - watchdog_last) & watchdog->mask, |
205 | watchdog->mult, watchdog->shift); | ||
186 | watchdog_last = wdnow; | 206 | watchdog_last = wdnow; |
187 | 207 | ||
188 | list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) { | 208 | list_for_each_entry(cs, &watchdog_list, wd_list) { |
189 | csnow = cs->read(cs); | ||
190 | 209 | ||
191 | if (unlikely(resumed)) { | 210 | /* Clocksource already marked unstable? */ |
192 | cs->wd_last = csnow; | 211 | if (cs->flags & CLOCK_SOURCE_UNSTABLE) { |
212 | if (finished_booting) | ||
213 | schedule_work(&watchdog_work); | ||
193 | continue; | 214 | continue; |
194 | } | 215 | } |
195 | 216 | ||
196 | /* Initialized ? */ | 217 | csnow = cs->read(cs); |
218 | |||
219 | /* Clocksource initialized ? */ | ||
197 | if (!(cs->flags & CLOCK_SOURCE_WATCHDOG)) { | 220 | if (!(cs->flags & CLOCK_SOURCE_WATCHDOG)) { |
198 | if ((cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) && | ||
199 | (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) { | ||
200 | cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; | ||
201 | /* | ||
202 | * We just marked the clocksource as | ||
203 | * highres-capable, notify the rest of the | ||
204 | * system as well so that we transition | ||
205 | * into high-res mode: | ||
206 | */ | ||
207 | tick_clock_notify(); | ||
208 | } | ||
209 | cs->flags |= CLOCK_SOURCE_WATCHDOG; | 221 | cs->flags |= CLOCK_SOURCE_WATCHDOG; |
210 | cs->wd_last = csnow; | 222 | cs->wd_last = csnow; |
211 | } else { | 223 | continue; |
212 | cs_nsec = cyc2ns(cs, (csnow - cs->wd_last) & cs->mask); | ||
213 | cs->wd_last = csnow; | ||
214 | /* Check the delta. Might remove from the list ! */ | ||
215 | clocksource_ratewd(cs, cs_nsec - wd_nsec); | ||
216 | } | 224 | } |
217 | } | ||
218 | 225 | ||
219 | if (!list_empty(&watchdog_list)) { | 226 | /* Check the deviation from the watchdog clocksource. */ |
220 | /* | 227 | cs_nsec = clocksource_cyc2ns((csnow - cs->wd_last) & |
221 | * Cycle through CPUs to check if the CPUs stay | 228 | cs->mask, cs->mult, cs->shift); |
222 | * synchronized to each other. | 229 | cs->wd_last = csnow; |
223 | */ | 230 | if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) { |
224 | int next_cpu = cpumask_next(raw_smp_processor_id(), | 231 | clocksource_unstable(cs, cs_nsec - wd_nsec); |
225 | cpu_online_mask); | 232 | continue; |
233 | } | ||
226 | 234 | ||
227 | if (next_cpu >= nr_cpu_ids) | 235 | if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && |
228 | next_cpu = cpumask_first(cpu_online_mask); | 236 | (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) && |
229 | watchdog_timer.expires += WATCHDOG_INTERVAL; | 237 | (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) { |
230 | add_timer_on(&watchdog_timer, next_cpu); | 238 | cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; |
239 | /* | ||
240 | * We just marked the clocksource as highres-capable, | ||
241 | * notify the rest of the system as well so that we | ||
242 | * transition into high-res mode: | ||
243 | */ | ||
244 | tick_clock_notify(); | ||
245 | } | ||
231 | } | 246 | } |
247 | |||
248 | /* | ||
249 | * Cycle through CPUs to check if the CPUs stay synchronized | ||
250 | * to each other. | ||
251 | */ | ||
252 | next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask); | ||
253 | if (next_cpu >= nr_cpu_ids) | ||
254 | next_cpu = cpumask_first(cpu_online_mask); | ||
255 | watchdog_timer.expires += WATCHDOG_INTERVAL; | ||
256 | add_timer_on(&watchdog_timer, next_cpu); | ||
257 | out: | ||
232 | spin_unlock(&watchdog_lock); | 258 | spin_unlock(&watchdog_lock); |
233 | } | 259 | } |
260 | |||
261 | static inline void clocksource_start_watchdog(void) | ||
262 | { | ||
263 | if (watchdog_running || !watchdog || list_empty(&watchdog_list)) | ||
264 | return; | ||
265 | init_timer(&watchdog_timer); | ||
266 | watchdog_timer.function = clocksource_watchdog; | ||
267 | watchdog_last = watchdog->read(watchdog); | ||
268 | watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL; | ||
269 | add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask)); | ||
270 | watchdog_running = 1; | ||
271 | } | ||
272 | |||
273 | static inline void clocksource_stop_watchdog(void) | ||
274 | { | ||
275 | if (!watchdog_running || (watchdog && !list_empty(&watchdog_list))) | ||
276 | return; | ||
277 | del_timer(&watchdog_timer); | ||
278 | watchdog_running = 0; | ||
279 | } | ||
280 | |||
281 | static inline void clocksource_reset_watchdog(void) | ||
282 | { | ||
283 | struct clocksource *cs; | ||
284 | |||
285 | list_for_each_entry(cs, &watchdog_list, wd_list) | ||
286 | cs->flags &= ~CLOCK_SOURCE_WATCHDOG; | ||
287 | } | ||
288 | |||
234 | static void clocksource_resume_watchdog(void) | 289 | static void clocksource_resume_watchdog(void) |
235 | { | 290 | { |
236 | set_bit(0, &watchdog_resumed); | 291 | unsigned long flags; |
292 | |||
293 | spin_lock_irqsave(&watchdog_lock, flags); | ||
294 | clocksource_reset_watchdog(); | ||
295 | spin_unlock_irqrestore(&watchdog_lock, flags); | ||
237 | } | 296 | } |
238 | 297 | ||
239 | static void clocksource_check_watchdog(struct clocksource *cs) | 298 | static void clocksource_enqueue_watchdog(struct clocksource *cs) |
240 | { | 299 | { |
241 | struct clocksource *cse; | ||
242 | unsigned long flags; | 300 | unsigned long flags; |
243 | 301 | ||
244 | spin_lock_irqsave(&watchdog_lock, flags); | 302 | spin_lock_irqsave(&watchdog_lock, flags); |
245 | if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) { | 303 | if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) { |
246 | int started = !list_empty(&watchdog_list); | 304 | /* cs is a clocksource to be watched. */ |
247 | |||
248 | list_add(&cs->wd_list, &watchdog_list); | 305 | list_add(&cs->wd_list, &watchdog_list); |
249 | if (!started && watchdog) { | 306 | cs->flags &= ~CLOCK_SOURCE_WATCHDOG; |
250 | watchdog_last = watchdog->read(watchdog); | ||
251 | watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL; | ||
252 | add_timer_on(&watchdog_timer, | ||
253 | cpumask_first(cpu_online_mask)); | ||
254 | } | ||
255 | } else { | 307 | } else { |
308 | /* cs is a watchdog. */ | ||
256 | if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) | 309 | if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) |
257 | cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; | 310 | cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; |
258 | 311 | /* Pick the best watchdog. */ | |
259 | if (!watchdog || cs->rating > watchdog->rating) { | 312 | if (!watchdog || cs->rating > watchdog->rating) { |
260 | if (watchdog) | ||
261 | del_timer(&watchdog_timer); | ||
262 | watchdog = cs; | 313 | watchdog = cs; |
263 | init_timer(&watchdog_timer); | ||
264 | watchdog_timer.function = clocksource_watchdog; | ||
265 | |||
266 | /* Reset watchdog cycles */ | 314 | /* Reset watchdog cycles */ |
267 | list_for_each_entry(cse, &watchdog_list, wd_list) | 315 | clocksource_reset_watchdog(); |
268 | cse->flags &= ~CLOCK_SOURCE_WATCHDOG; | 316 | } |
269 | /* Start if list is not empty */ | 317 | } |
270 | if (!list_empty(&watchdog_list)) { | 318 | /* Check if the watchdog timer needs to be started. */ |
271 | watchdog_last = watchdog->read(watchdog); | 319 | clocksource_start_watchdog(); |
272 | watchdog_timer.expires = | 320 | spin_unlock_irqrestore(&watchdog_lock, flags); |
273 | jiffies + WATCHDOG_INTERVAL; | 321 | } |
274 | add_timer_on(&watchdog_timer, | 322 | |
275 | cpumask_first(cpu_online_mask)); | 323 | static void clocksource_dequeue_watchdog(struct clocksource *cs) |
276 | } | 324 | { |
325 | struct clocksource *tmp; | ||
326 | unsigned long flags; | ||
327 | |||
328 | spin_lock_irqsave(&watchdog_lock, flags); | ||
329 | if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) { | ||
330 | /* cs is a watched clocksource. */ | ||
331 | list_del_init(&cs->wd_list); | ||
332 | } else if (cs == watchdog) { | ||
333 | /* Reset watchdog cycles */ | ||
334 | clocksource_reset_watchdog(); | ||
335 | /* Current watchdog is removed. Find an alternative. */ | ||
336 | watchdog = NULL; | ||
337 | list_for_each_entry(tmp, &clocksource_list, list) { | ||
338 | if (tmp == cs || tmp->flags & CLOCK_SOURCE_MUST_VERIFY) | ||
339 | continue; | ||
340 | if (!watchdog || tmp->rating > watchdog->rating) | ||
341 | watchdog = tmp; | ||
277 | } | 342 | } |
278 | } | 343 | } |
344 | cs->flags &= ~CLOCK_SOURCE_WATCHDOG; | ||
345 | /* Check if the watchdog timer needs to be stopped. */ | ||
346 | clocksource_stop_watchdog(); | ||
279 | spin_unlock_irqrestore(&watchdog_lock, flags); | 347 | spin_unlock_irqrestore(&watchdog_lock, flags); |
280 | } | 348 | } |
281 | #else | 349 | |
282 | static void clocksource_check_watchdog(struct clocksource *cs) | 350 | static int clocksource_watchdog_kthread(void *data) |
351 | { | ||
352 | struct clocksource *cs, *tmp; | ||
353 | unsigned long flags; | ||
354 | LIST_HEAD(unstable); | ||
355 | |||
356 | mutex_lock(&clocksource_mutex); | ||
357 | spin_lock_irqsave(&watchdog_lock, flags); | ||
358 | list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) | ||
359 | if (cs->flags & CLOCK_SOURCE_UNSTABLE) { | ||
360 | list_del_init(&cs->wd_list); | ||
361 | list_add(&cs->wd_list, &unstable); | ||
362 | } | ||
363 | /* Check if the watchdog timer needs to be stopped. */ | ||
364 | clocksource_stop_watchdog(); | ||
365 | spin_unlock_irqrestore(&watchdog_lock, flags); | ||
366 | |||
367 | /* Needs to be done outside of watchdog lock */ | ||
368 | list_for_each_entry_safe(cs, tmp, &unstable, wd_list) { | ||
369 | list_del_init(&cs->wd_list); | ||
370 | __clocksource_change_rating(cs, 0); | ||
371 | } | ||
372 | mutex_unlock(&clocksource_mutex); | ||
373 | return 0; | ||
374 | } | ||
375 | |||
376 | #else /* CONFIG_CLOCKSOURCE_WATCHDOG */ | ||
377 | |||
378 | static void clocksource_enqueue_watchdog(struct clocksource *cs) | ||
283 | { | 379 | { |
284 | if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) | 380 | if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) |
285 | cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; | 381 | cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; |
286 | } | 382 | } |
287 | 383 | ||
384 | static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { } | ||
288 | static inline void clocksource_resume_watchdog(void) { } | 385 | static inline void clocksource_resume_watchdog(void) { } |
289 | #endif | 386 | static inline int clocksource_watchdog_kthread(void *data) { return 0; } |
387 | |||
388 | #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */ | ||
290 | 389 | ||
291 | /** | 390 | /** |
292 | * clocksource_resume - resume the clocksource(s) | 391 | * clocksource_resume - resume the clocksource(s) |
@@ -294,18 +393,12 @@ static inline void clocksource_resume_watchdog(void) { } | |||
294 | void clocksource_resume(void) | 393 | void clocksource_resume(void) |
295 | { | 394 | { |
296 | struct clocksource *cs; | 395 | struct clocksource *cs; |
297 | unsigned long flags; | ||
298 | 396 | ||
299 | spin_lock_irqsave(&clocksource_lock, flags); | 397 | list_for_each_entry(cs, &clocksource_list, list) |
300 | |||
301 | list_for_each_entry(cs, &clocksource_list, list) { | ||
302 | if (cs->resume) | 398 | if (cs->resume) |
303 | cs->resume(); | 399 | cs->resume(); |
304 | } | ||
305 | 400 | ||
306 | clocksource_resume_watchdog(); | 401 | clocksource_resume_watchdog(); |
307 | |||
308 | spin_unlock_irqrestore(&clocksource_lock, flags); | ||
309 | } | 402 | } |
310 | 403 | ||
311 | /** | 404 | /** |
@@ -320,75 +413,94 @@ void clocksource_touch_watchdog(void) | |||
320 | clocksource_resume_watchdog(); | 413 | clocksource_resume_watchdog(); |
321 | } | 414 | } |
322 | 415 | ||
416 | #ifdef CONFIG_GENERIC_TIME | ||
417 | |||
323 | /** | 418 | /** |
324 | * clocksource_get_next - Returns the selected clocksource | 419 | * clocksource_select - Select the best clocksource available |
325 | * | 420 | * |
421 | * Private function. Must hold clocksource_mutex when called. | ||
422 | * | ||
423 | * Select the clocksource with the best rating, or the clocksource, | ||
424 | * which is selected by userspace override. | ||
326 | */ | 425 | */ |
327 | struct clocksource *clocksource_get_next(void) | 426 | static void clocksource_select(void) |
328 | { | 427 | { |
329 | unsigned long flags; | 428 | struct clocksource *best, *cs; |
330 | 429 | ||
331 | spin_lock_irqsave(&clocksource_lock, flags); | 430 | if (!finished_booting || list_empty(&clocksource_list)) |
332 | if (next_clocksource && finished_booting) { | 431 | return; |
333 | curr_clocksource = next_clocksource; | 432 | /* First clocksource on the list has the best rating. */ |
334 | next_clocksource = NULL; | 433 | best = list_first_entry(&clocksource_list, struct clocksource, list); |
434 | /* Check for the override clocksource. */ | ||
435 | list_for_each_entry(cs, &clocksource_list, list) { | ||
436 | if (strcmp(cs->name, override_name) != 0) | ||
437 | continue; | ||
438 | /* | ||
439 | * Check to make sure we don't switch to a non-highres | ||
440 | * capable clocksource if the tick code is in oneshot | ||
441 | * mode (highres or nohz) | ||
442 | */ | ||
443 | if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && | ||
444 | tick_oneshot_mode_active()) { | ||
445 | /* Override clocksource cannot be used. */ | ||
446 | printk(KERN_WARNING "Override clocksource %s is not " | ||
447 | "HRT compatible. Cannot switch while in " | ||
448 | "HRT/NOHZ mode\n", cs->name); | ||
449 | override_name[0] = 0; | ||
450 | } else | ||
451 | /* Override clocksource can be used. */ | ||
452 | best = cs; | ||
453 | break; | ||
454 | } | ||
455 | if (curr_clocksource != best) { | ||
456 | printk(KERN_INFO "Switching to clocksource %s\n", best->name); | ||
457 | curr_clocksource = best; | ||
458 | timekeeping_notify(curr_clocksource); | ||
335 | } | 459 | } |
336 | spin_unlock_irqrestore(&clocksource_lock, flags); | ||
337 | |||
338 | return curr_clocksource; | ||
339 | } | 460 | } |
340 | 461 | ||
341 | /** | 462 | #else /* CONFIG_GENERIC_TIME */ |
342 | * select_clocksource - Selects the best registered clocksource. | 463 | |
343 | * | 464 | static inline void clocksource_select(void) { } |
344 | * Private function. Must hold clocksource_lock when called. | 465 | |
466 | #endif | ||
467 | |||
468 | /* | ||
469 | * clocksource_done_booting - Called near the end of core bootup | ||
345 | * | 470 | * |
346 | * Select the clocksource with the best rating, or the clocksource, | 471 | * Hack to avoid lots of clocksource churn at boot time. |
347 | * which is selected by userspace override. | 472 | * We use fs_initcall because we want this to start before |
473 | * device_initcall but after subsys_initcall. | ||
348 | */ | 474 | */ |
349 | static struct clocksource *select_clocksource(void) | 475 | static int __init clocksource_done_booting(void) |
350 | { | 476 | { |
351 | struct clocksource *next; | 477 | finished_booting = 1; |
352 | |||
353 | if (list_empty(&clocksource_list)) | ||
354 | return NULL; | ||
355 | |||
356 | if (clocksource_override) | ||
357 | next = clocksource_override; | ||
358 | else | ||
359 | next = list_entry(clocksource_list.next, struct clocksource, | ||
360 | list); | ||
361 | 478 | ||
362 | if (next == curr_clocksource) | 479 | /* |
363 | return NULL; | 480 | * Run the watchdog first to eliminate unstable clock sources |
481 | */ | ||
482 | clocksource_watchdog_kthread(NULL); | ||
364 | 483 | ||
365 | return next; | 484 | mutex_lock(&clocksource_mutex); |
485 | clocksource_select(); | ||
486 | mutex_unlock(&clocksource_mutex); | ||
487 | return 0; | ||
366 | } | 488 | } |
489 | fs_initcall(clocksource_done_booting); | ||
367 | 490 | ||
368 | /* | 491 | /* |
369 | * Enqueue the clocksource sorted by rating | 492 | * Enqueue the clocksource sorted by rating |
370 | */ | 493 | */ |
371 | static int clocksource_enqueue(struct clocksource *c) | 494 | static void clocksource_enqueue(struct clocksource *cs) |
372 | { | 495 | { |
373 | struct list_head *tmp, *entry = &clocksource_list; | 496 | struct list_head *entry = &clocksource_list; |
497 | struct clocksource *tmp; | ||
374 | 498 | ||
375 | list_for_each(tmp, &clocksource_list) { | 499 | list_for_each_entry(tmp, &clocksource_list, list) |
376 | struct clocksource *cs; | ||
377 | |||
378 | cs = list_entry(tmp, struct clocksource, list); | ||
379 | if (cs == c) | ||
380 | return -EBUSY; | ||
381 | /* Keep track of the place, where to insert */ | 500 | /* Keep track of the place, where to insert */ |
382 | if (cs->rating >= c->rating) | 501 | if (tmp->rating >= cs->rating) |
383 | entry = tmp; | 502 | entry = &tmp->list; |
384 | } | 503 | list_add(&cs->list, entry); |
385 | list_add(&c->list, entry); | ||
386 | |||
387 | if (strlen(c->name) == strlen(override_name) && | ||
388 | !strcmp(c->name, override_name)) | ||
389 | clocksource_override = c; | ||
390 | |||
391 | return 0; | ||
392 | } | 504 | } |
393 | 505 | ||
394 | /** | 506 | /** |
@@ -397,52 +509,48 @@ static int clocksource_enqueue(struct clocksource *c) | |||
397 | * | 509 | * |
398 | * Returns -EBUSY if registration fails, zero otherwise. | 510 | * Returns -EBUSY if registration fails, zero otherwise. |
399 | */ | 511 | */ |
400 | int clocksource_register(struct clocksource *c) | 512 | int clocksource_register(struct clocksource *cs) |
401 | { | 513 | { |
402 | unsigned long flags; | 514 | mutex_lock(&clocksource_mutex); |
403 | int ret; | 515 | clocksource_enqueue(cs); |
404 | 516 | clocksource_select(); | |
405 | spin_lock_irqsave(&clocksource_lock, flags); | 517 | clocksource_enqueue_watchdog(cs); |
406 | ret = clocksource_enqueue(c); | 518 | mutex_unlock(&clocksource_mutex); |
407 | if (!ret) | 519 | return 0; |
408 | next_clocksource = select_clocksource(); | ||
409 | spin_unlock_irqrestore(&clocksource_lock, flags); | ||
410 | if (!ret) | ||
411 | clocksource_check_watchdog(c); | ||
412 | return ret; | ||
413 | } | 520 | } |
414 | EXPORT_SYMBOL(clocksource_register); | 521 | EXPORT_SYMBOL(clocksource_register); |
415 | 522 | ||
523 | static void __clocksource_change_rating(struct clocksource *cs, int rating) | ||
524 | { | ||
525 | list_del(&cs->list); | ||
526 | cs->rating = rating; | ||
527 | clocksource_enqueue(cs); | ||
528 | clocksource_select(); | ||
529 | } | ||
530 | |||
416 | /** | 531 | /** |
417 | * clocksource_change_rating - Change the rating of a registered clocksource | 532 | * clocksource_change_rating - Change the rating of a registered clocksource |
418 | * | ||
419 | */ | 533 | */ |
420 | void clocksource_change_rating(struct clocksource *cs, int rating) | 534 | void clocksource_change_rating(struct clocksource *cs, int rating) |
421 | { | 535 | { |
422 | unsigned long flags; | 536 | mutex_lock(&clocksource_mutex); |
423 | 537 | __clocksource_change_rating(cs, rating); | |
424 | spin_lock_irqsave(&clocksource_lock, flags); | 538 | mutex_unlock(&clocksource_mutex); |
425 | list_del(&cs->list); | ||
426 | cs->rating = rating; | ||
427 | clocksource_enqueue(cs); | ||
428 | next_clocksource = select_clocksource(); | ||
429 | spin_unlock_irqrestore(&clocksource_lock, flags); | ||
430 | } | 539 | } |
540 | EXPORT_SYMBOL(clocksource_change_rating); | ||
431 | 541 | ||
432 | /** | 542 | /** |
433 | * clocksource_unregister - remove a registered clocksource | 543 | * clocksource_unregister - remove a registered clocksource |
434 | */ | 544 | */ |
435 | void clocksource_unregister(struct clocksource *cs) | 545 | void clocksource_unregister(struct clocksource *cs) |
436 | { | 546 | { |
437 | unsigned long flags; | 547 | mutex_lock(&clocksource_mutex); |
438 | 548 | clocksource_dequeue_watchdog(cs); | |
439 | spin_lock_irqsave(&clocksource_lock, flags); | ||
440 | list_del(&cs->list); | 549 | list_del(&cs->list); |
441 | if (clocksource_override == cs) | 550 | clocksource_select(); |
442 | clocksource_override = NULL; | 551 | mutex_unlock(&clocksource_mutex); |
443 | next_clocksource = select_clocksource(); | ||
444 | spin_unlock_irqrestore(&clocksource_lock, flags); | ||
445 | } | 552 | } |
553 | EXPORT_SYMBOL(clocksource_unregister); | ||
446 | 554 | ||
447 | #ifdef CONFIG_SYSFS | 555 | #ifdef CONFIG_SYSFS |
448 | /** | 556 | /** |
@@ -458,9 +566,9 @@ sysfs_show_current_clocksources(struct sys_device *dev, | |||
458 | { | 566 | { |
459 | ssize_t count = 0; | 567 | ssize_t count = 0; |
460 | 568 | ||
461 | spin_lock_irq(&clocksource_lock); | 569 | mutex_lock(&clocksource_mutex); |
462 | count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name); | 570 | count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name); |
463 | spin_unlock_irq(&clocksource_lock); | 571 | mutex_unlock(&clocksource_mutex); |
464 | 572 | ||
465 | return count; | 573 | return count; |
466 | } | 574 | } |
@@ -478,9 +586,7 @@ static ssize_t sysfs_override_clocksource(struct sys_device *dev, | |||
478 | struct sysdev_attribute *attr, | 586 | struct sysdev_attribute *attr, |
479 | const char *buf, size_t count) | 587 | const char *buf, size_t count) |
480 | { | 588 | { |
481 | struct clocksource *ovr = NULL; | ||
482 | size_t ret = count; | 589 | size_t ret = count; |
483 | int len; | ||
484 | 590 | ||
485 | /* strings from sysfs write are not 0 terminated! */ | 591 | /* strings from sysfs write are not 0 terminated! */ |
486 | if (count >= sizeof(override_name)) | 592 | if (count >= sizeof(override_name)) |
@@ -490,44 +596,14 @@ static ssize_t sysfs_override_clocksource(struct sys_device *dev, | |||
490 | if (buf[count-1] == '\n') | 596 | if (buf[count-1] == '\n') |
491 | count--; | 597 | count--; |
492 | 598 | ||
493 | spin_lock_irq(&clocksource_lock); | 599 | mutex_lock(&clocksource_mutex); |
494 | 600 | ||
495 | if (count > 0) | 601 | if (count > 0) |
496 | memcpy(override_name, buf, count); | 602 | memcpy(override_name, buf, count); |
497 | override_name[count] = 0; | 603 | override_name[count] = 0; |
604 | clocksource_select(); | ||
498 | 605 | ||
499 | len = strlen(override_name); | 606 | mutex_unlock(&clocksource_mutex); |
500 | if (len) { | ||
501 | struct clocksource *cs; | ||
502 | |||
503 | ovr = clocksource_override; | ||
504 | /* try to select it: */ | ||
505 | list_for_each_entry(cs, &clocksource_list, list) { | ||
506 | if (strlen(cs->name) == len && | ||
507 | !strcmp(cs->name, override_name)) | ||
508 | ovr = cs; | ||
509 | } | ||
510 | } | ||
511 | |||
512 | /* | ||
513 | * Check to make sure we don't switch to a non-highres capable | ||
514 | * clocksource if the tick code is in oneshot mode (highres or nohz) | ||
515 | */ | ||
516 | if (tick_oneshot_mode_active() && ovr && | ||
517 | !(ovr->flags & CLOCK_SOURCE_VALID_FOR_HRES)) { | ||
518 | printk(KERN_WARNING "%s clocksource is not HRT compatible. " | ||
519 | "Cannot switch while in HRT/NOHZ mode\n", ovr->name); | ||
520 | ovr = NULL; | ||
521 | override_name[0] = 0; | ||
522 | } | ||
523 | |||
524 | /* Reselect, when the override name has changed */ | ||
525 | if (ovr != clocksource_override) { | ||
526 | clocksource_override = ovr; | ||
527 | next_clocksource = select_clocksource(); | ||
528 | } | ||
529 | |||
530 | spin_unlock_irq(&clocksource_lock); | ||
531 | 607 | ||
532 | return ret; | 608 | return ret; |
533 | } | 609 | } |
@@ -547,7 +623,7 @@ sysfs_show_available_clocksources(struct sys_device *dev, | |||
547 | struct clocksource *src; | 623 | struct clocksource *src; |
548 | ssize_t count = 0; | 624 | ssize_t count = 0; |
549 | 625 | ||
550 | spin_lock_irq(&clocksource_lock); | 626 | mutex_lock(&clocksource_mutex); |
551 | list_for_each_entry(src, &clocksource_list, list) { | 627 | list_for_each_entry(src, &clocksource_list, list) { |
552 | /* | 628 | /* |
553 | * Don't show non-HRES clocksource if the tick code is | 629 | * Don't show non-HRES clocksource if the tick code is |
@@ -559,7 +635,7 @@ sysfs_show_available_clocksources(struct sys_device *dev, | |||
559 | max((ssize_t)PAGE_SIZE - count, (ssize_t)0), | 635 | max((ssize_t)PAGE_SIZE - count, (ssize_t)0), |
560 | "%s ", src->name); | 636 | "%s ", src->name); |
561 | } | 637 | } |
562 | spin_unlock_irq(&clocksource_lock); | 638 | mutex_unlock(&clocksource_mutex); |
563 | 639 | ||
564 | count += snprintf(buf + count, | 640 | count += snprintf(buf + count, |
565 | max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n"); | 641 | max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n"); |
@@ -614,11 +690,10 @@ device_initcall(init_clocksource_sysfs); | |||
614 | */ | 690 | */ |
615 | static int __init boot_override_clocksource(char* str) | 691 | static int __init boot_override_clocksource(char* str) |
616 | { | 692 | { |
617 | unsigned long flags; | 693 | mutex_lock(&clocksource_mutex); |
618 | spin_lock_irqsave(&clocksource_lock, flags); | ||
619 | if (str) | 694 | if (str) |
620 | strlcpy(override_name, str, sizeof(override_name)); | 695 | strlcpy(override_name, str, sizeof(override_name)); |
621 | spin_unlock_irqrestore(&clocksource_lock, flags); | 696 | mutex_unlock(&clocksource_mutex); |
622 | return 1; | 697 | return 1; |
623 | } | 698 | } |
624 | 699 | ||
diff --git a/kernel/time/jiffies.c b/kernel/time/jiffies.c index c3f6c30816e3..5404a8456909 100644 --- a/kernel/time/jiffies.c +++ b/kernel/time/jiffies.c | |||
@@ -61,7 +61,6 @@ struct clocksource clocksource_jiffies = { | |||
61 | .read = jiffies_read, | 61 | .read = jiffies_read, |
62 | .mask = 0xffffffff, /*32bits*/ | 62 | .mask = 0xffffffff, /*32bits*/ |
63 | .mult = NSEC_PER_JIFFY << JIFFIES_SHIFT, /* details above */ | 63 | .mult = NSEC_PER_JIFFY << JIFFIES_SHIFT, /* details above */ |
64 | .mult_orig = NSEC_PER_JIFFY << JIFFIES_SHIFT, | ||
65 | .shift = JIFFIES_SHIFT, | 64 | .shift = JIFFIES_SHIFT, |
66 | }; | 65 | }; |
67 | 66 | ||
@@ -71,3 +70,8 @@ static int __init init_jiffies_clocksource(void) | |||
71 | } | 70 | } |
72 | 71 | ||
73 | core_initcall(init_jiffies_clocksource); | 72 | core_initcall(init_jiffies_clocksource); |
73 | |||
74 | struct clocksource * __init __weak clocksource_default_clock(void) | ||
75 | { | ||
76 | return &clocksource_jiffies; | ||
77 | } | ||
diff --git a/kernel/time/ntp.c b/kernel/time/ntp.c index 7fc64375ff43..4800f933910e 100644 --- a/kernel/time/ntp.c +++ b/kernel/time/ntp.c | |||
@@ -194,8 +194,7 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer) | |||
194 | case TIME_OK: | 194 | case TIME_OK: |
195 | break; | 195 | break; |
196 | case TIME_INS: | 196 | case TIME_INS: |
197 | xtime.tv_sec--; | 197 | timekeeping_leap_insert(-1); |
198 | wall_to_monotonic.tv_sec++; | ||
199 | time_state = TIME_OOP; | 198 | time_state = TIME_OOP; |
200 | printk(KERN_NOTICE | 199 | printk(KERN_NOTICE |
201 | "Clock: inserting leap second 23:59:60 UTC\n"); | 200 | "Clock: inserting leap second 23:59:60 UTC\n"); |
@@ -203,9 +202,8 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer) | |||
203 | res = HRTIMER_RESTART; | 202 | res = HRTIMER_RESTART; |
204 | break; | 203 | break; |
205 | case TIME_DEL: | 204 | case TIME_DEL: |
206 | xtime.tv_sec++; | 205 | timekeeping_leap_insert(1); |
207 | time_tai--; | 206 | time_tai--; |
208 | wall_to_monotonic.tv_sec--; | ||
209 | time_state = TIME_WAIT; | 207 | time_state = TIME_WAIT; |
210 | printk(KERN_NOTICE | 208 | printk(KERN_NOTICE |
211 | "Clock: deleting leap second 23:59:59 UTC\n"); | 209 | "Clock: deleting leap second 23:59:59 UTC\n"); |
@@ -219,7 +217,6 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer) | |||
219 | time_state = TIME_OK; | 217 | time_state = TIME_OK; |
220 | break; | 218 | break; |
221 | } | 219 | } |
222 | update_vsyscall(&xtime, clock); | ||
223 | 220 | ||
224 | write_sequnlock(&xtime_lock); | 221 | write_sequnlock(&xtime_lock); |
225 | 222 | ||
diff --git a/kernel/time/timeconv.c b/kernel/time/timeconv.c new file mode 100644 index 000000000000..86628e755f38 --- /dev/null +++ b/kernel/time/timeconv.c | |||
@@ -0,0 +1,127 @@ | |||
1 | /* | ||
2 | * Copyright (C) 1993, 1994, 1995, 1996, 1997 Free Software Foundation, Inc. | ||
3 | * This file is part of the GNU C Library. | ||
4 | * Contributed by Paul Eggert (eggert@twinsun.com). | ||
5 | * | ||
6 | * The GNU C Library is free software; you can redistribute it and/or | ||
7 | * modify it under the terms of the GNU Library General Public License as | ||
8 | * published by the Free Software Foundation; either version 2 of the | ||
9 | * License, or (at your option) any later version. | ||
10 | * | ||
11 | * The GNU C Library is distributed in the hope that it will be useful, | ||
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
14 | * Library General Public License for more details. | ||
15 | * | ||
16 | * You should have received a copy of the GNU Library General Public | ||
17 | * License along with the GNU C Library; see the file COPYING.LIB. If not, | ||
18 | * write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, | ||
19 | * Boston, MA 02111-1307, USA. | ||
20 | */ | ||
21 | |||
22 | /* | ||
23 | * Converts the calendar time to broken-down time representation | ||
24 | * Based on code from glibc-2.6 | ||
25 | * | ||
26 | * 2009-7-14: | ||
27 | * Moved from glibc-2.6 to kernel by Zhaolei<zhaolei@cn.fujitsu.com> | ||
28 | */ | ||
29 | |||
30 | #include <linux/time.h> | ||
31 | #include <linux/module.h> | ||
32 | |||
33 | /* | ||
34 | * Nonzero if YEAR is a leap year (every 4 years, | ||
35 | * except every 100th isn't, and every 400th is). | ||
36 | */ | ||
37 | static int __isleap(long year) | ||
38 | { | ||
39 | return (year) % 4 == 0 && ((year) % 100 != 0 || (year) % 400 == 0); | ||
40 | } | ||
41 | |||
42 | /* do a mathdiv for long type */ | ||
43 | static long math_div(long a, long b) | ||
44 | { | ||
45 | return a / b - (a % b < 0); | ||
46 | } | ||
47 | |||
48 | /* How many leap years between y1 and y2, y1 must less or equal to y2 */ | ||
49 | static long leaps_between(long y1, long y2) | ||
50 | { | ||
51 | long leaps1 = math_div(y1 - 1, 4) - math_div(y1 - 1, 100) | ||
52 | + math_div(y1 - 1, 400); | ||
53 | long leaps2 = math_div(y2 - 1, 4) - math_div(y2 - 1, 100) | ||
54 | + math_div(y2 - 1, 400); | ||
55 | return leaps2 - leaps1; | ||
56 | } | ||
57 | |||
58 | /* How many days come before each month (0-12). */ | ||
59 | static const unsigned short __mon_yday[2][13] = { | ||
60 | /* Normal years. */ | ||
61 | {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365}, | ||
62 | /* Leap years. */ | ||
63 | {0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366} | ||
64 | }; | ||
65 | |||
66 | #define SECS_PER_HOUR (60 * 60) | ||
67 | #define SECS_PER_DAY (SECS_PER_HOUR * 24) | ||
68 | |||
69 | /** | ||
70 | * time_to_tm - converts the calendar time to local broken-down time | ||
71 | * | ||
72 | * @totalsecs the number of seconds elapsed since 00:00:00 on January 1, 1970, | ||
73 | * Coordinated Universal Time (UTC). | ||
74 | * @offset offset seconds adding to totalsecs. | ||
75 | * @result pointer to struct tm variable to receive broken-down time | ||
76 | */ | ||
77 | void time_to_tm(time_t totalsecs, int offset, struct tm *result) | ||
78 | { | ||
79 | long days, rem, y; | ||
80 | const unsigned short *ip; | ||
81 | |||
82 | days = totalsecs / SECS_PER_DAY; | ||
83 | rem = totalsecs % SECS_PER_DAY; | ||
84 | rem += offset; | ||
85 | while (rem < 0) { | ||
86 | rem += SECS_PER_DAY; | ||
87 | --days; | ||
88 | } | ||
89 | while (rem >= SECS_PER_DAY) { | ||
90 | rem -= SECS_PER_DAY; | ||
91 | ++days; | ||
92 | } | ||
93 | |||
94 | result->tm_hour = rem / SECS_PER_HOUR; | ||
95 | rem %= SECS_PER_HOUR; | ||
96 | result->tm_min = rem / 60; | ||
97 | result->tm_sec = rem % 60; | ||
98 | |||
99 | /* January 1, 1970 was a Thursday. */ | ||
100 | result->tm_wday = (4 + days) % 7; | ||
101 | if (result->tm_wday < 0) | ||
102 | result->tm_wday += 7; | ||
103 | |||
104 | y = 1970; | ||
105 | |||
106 | while (days < 0 || days >= (__isleap(y) ? 366 : 365)) { | ||
107 | /* Guess a corrected year, assuming 365 days per year. */ | ||
108 | long yg = y + math_div(days, 365); | ||
109 | |||
110 | /* Adjust DAYS and Y to match the guessed year. */ | ||
111 | days -= (yg - y) * 365 + leaps_between(y, yg); | ||
112 | y = yg; | ||
113 | } | ||
114 | |||
115 | result->tm_year = y - 1900; | ||
116 | |||
117 | result->tm_yday = days; | ||
118 | |||
119 | ip = __mon_yday[__isleap(y)]; | ||
120 | for (y = 11; days < ip[y]; y--) | ||
121 | continue; | ||
122 | days -= ip[y]; | ||
123 | |||
124 | result->tm_mon = y; | ||
125 | result->tm_mday = days + 1; | ||
126 | } | ||
127 | EXPORT_SYMBOL(time_to_tm); | ||
diff --git a/kernel/time/timekeeping.c b/kernel/time/timekeeping.c index e8c77d9c633a..fb0f46fa1ecd 100644 --- a/kernel/time/timekeeping.c +++ b/kernel/time/timekeeping.c | |||
@@ -18,7 +18,117 @@ | |||
18 | #include <linux/jiffies.h> | 18 | #include <linux/jiffies.h> |
19 | #include <linux/time.h> | 19 | #include <linux/time.h> |
20 | #include <linux/tick.h> | 20 | #include <linux/tick.h> |
21 | #include <linux/stop_machine.h> | ||
22 | |||
23 | /* Structure holding internal timekeeping values. */ | ||
24 | struct timekeeper { | ||
25 | /* Current clocksource used for timekeeping. */ | ||
26 | struct clocksource *clock; | ||
27 | /* The shift value of the current clocksource. */ | ||
28 | int shift; | ||
29 | |||
30 | /* Number of clock cycles in one NTP interval. */ | ||
31 | cycle_t cycle_interval; | ||
32 | /* Number of clock shifted nano seconds in one NTP interval. */ | ||
33 | u64 xtime_interval; | ||
34 | /* Raw nano seconds accumulated per NTP interval. */ | ||
35 | u32 raw_interval; | ||
36 | |||
37 | /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */ | ||
38 | u64 xtime_nsec; | ||
39 | /* Difference between accumulated time and NTP time in ntp | ||
40 | * shifted nano seconds. */ | ||
41 | s64 ntp_error; | ||
42 | /* Shift conversion between clock shifted nano seconds and | ||
43 | * ntp shifted nano seconds. */ | ||
44 | int ntp_error_shift; | ||
45 | /* NTP adjusted clock multiplier */ | ||
46 | u32 mult; | ||
47 | }; | ||
48 | |||
49 | struct timekeeper timekeeper; | ||
50 | |||
51 | /** | ||
52 | * timekeeper_setup_internals - Set up internals to use clocksource clock. | ||
53 | * | ||
54 | * @clock: Pointer to clocksource. | ||
55 | * | ||
56 | * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment | ||
57 | * pair and interval request. | ||
58 | * | ||
59 | * Unless you're the timekeeping code, you should not be using this! | ||
60 | */ | ||
61 | static void timekeeper_setup_internals(struct clocksource *clock) | ||
62 | { | ||
63 | cycle_t interval; | ||
64 | u64 tmp; | ||
65 | |||
66 | timekeeper.clock = clock; | ||
67 | clock->cycle_last = clock->read(clock); | ||
21 | 68 | ||
69 | /* Do the ns -> cycle conversion first, using original mult */ | ||
70 | tmp = NTP_INTERVAL_LENGTH; | ||
71 | tmp <<= clock->shift; | ||
72 | tmp += clock->mult/2; | ||
73 | do_div(tmp, clock->mult); | ||
74 | if (tmp == 0) | ||
75 | tmp = 1; | ||
76 | |||
77 | interval = (cycle_t) tmp; | ||
78 | timekeeper.cycle_interval = interval; | ||
79 | |||
80 | /* Go back from cycles -> shifted ns */ | ||
81 | timekeeper.xtime_interval = (u64) interval * clock->mult; | ||
82 | timekeeper.raw_interval = | ||
83 | ((u64) interval * clock->mult) >> clock->shift; | ||
84 | |||
85 | timekeeper.xtime_nsec = 0; | ||
86 | timekeeper.shift = clock->shift; | ||
87 | |||
88 | timekeeper.ntp_error = 0; | ||
89 | timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; | ||
90 | |||
91 | /* | ||
92 | * The timekeeper keeps its own mult values for the currently | ||
93 | * active clocksource. These value will be adjusted via NTP | ||
94 | * to counteract clock drifting. | ||
95 | */ | ||
96 | timekeeper.mult = clock->mult; | ||
97 | } | ||
98 | |||
99 | /* Timekeeper helper functions. */ | ||
100 | static inline s64 timekeeping_get_ns(void) | ||
101 | { | ||
102 | cycle_t cycle_now, cycle_delta; | ||
103 | struct clocksource *clock; | ||
104 | |||
105 | /* read clocksource: */ | ||
106 | clock = timekeeper.clock; | ||
107 | cycle_now = clock->read(clock); | ||
108 | |||
109 | /* calculate the delta since the last update_wall_time: */ | ||
110 | cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; | ||
111 | |||
112 | /* return delta convert to nanoseconds using ntp adjusted mult. */ | ||
113 | return clocksource_cyc2ns(cycle_delta, timekeeper.mult, | ||
114 | timekeeper.shift); | ||
115 | } | ||
116 | |||
117 | static inline s64 timekeeping_get_ns_raw(void) | ||
118 | { | ||
119 | cycle_t cycle_now, cycle_delta; | ||
120 | struct clocksource *clock; | ||
121 | |||
122 | /* read clocksource: */ | ||
123 | clock = timekeeper.clock; | ||
124 | cycle_now = clock->read(clock); | ||
125 | |||
126 | /* calculate the delta since the last update_wall_time: */ | ||
127 | cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; | ||
128 | |||
129 | /* return delta convert to nanoseconds using ntp adjusted mult. */ | ||
130 | return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); | ||
131 | } | ||
22 | 132 | ||
23 | /* | 133 | /* |
24 | * This read-write spinlock protects us from races in SMP while | 134 | * This read-write spinlock protects us from races in SMP while |
@@ -44,7 +154,12 @@ __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock); | |||
44 | */ | 154 | */ |
45 | struct timespec xtime __attribute__ ((aligned (16))); | 155 | struct timespec xtime __attribute__ ((aligned (16))); |
46 | struct timespec wall_to_monotonic __attribute__ ((aligned (16))); | 156 | struct timespec wall_to_monotonic __attribute__ ((aligned (16))); |
47 | static unsigned long total_sleep_time; /* seconds */ | 157 | static struct timespec total_sleep_time; |
158 | |||
159 | /* | ||
160 | * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. | ||
161 | */ | ||
162 | struct timespec raw_time; | ||
48 | 163 | ||
49 | /* flag for if timekeeping is suspended */ | 164 | /* flag for if timekeeping is suspended */ |
50 | int __read_mostly timekeeping_suspended; | 165 | int __read_mostly timekeeping_suspended; |
@@ -56,35 +171,44 @@ void update_xtime_cache(u64 nsec) | |||
56 | timespec_add_ns(&xtime_cache, nsec); | 171 | timespec_add_ns(&xtime_cache, nsec); |
57 | } | 172 | } |
58 | 173 | ||
59 | struct clocksource *clock; | 174 | /* must hold xtime_lock */ |
60 | 175 | void timekeeping_leap_insert(int leapsecond) | |
176 | { | ||
177 | xtime.tv_sec += leapsecond; | ||
178 | wall_to_monotonic.tv_sec -= leapsecond; | ||
179 | update_vsyscall(&xtime, timekeeper.clock); | ||
180 | } | ||
61 | 181 | ||
62 | #ifdef CONFIG_GENERIC_TIME | 182 | #ifdef CONFIG_GENERIC_TIME |
183 | |||
63 | /** | 184 | /** |
64 | * clocksource_forward_now - update clock to the current time | 185 | * timekeeping_forward_now - update clock to the current time |
65 | * | 186 | * |
66 | * Forward the current clock to update its state since the last call to | 187 | * Forward the current clock to update its state since the last call to |
67 | * update_wall_time(). This is useful before significant clock changes, | 188 | * update_wall_time(). This is useful before significant clock changes, |
68 | * as it avoids having to deal with this time offset explicitly. | 189 | * as it avoids having to deal with this time offset explicitly. |
69 | */ | 190 | */ |
70 | static void clocksource_forward_now(void) | 191 | static void timekeeping_forward_now(void) |
71 | { | 192 | { |
72 | cycle_t cycle_now, cycle_delta; | 193 | cycle_t cycle_now, cycle_delta; |
194 | struct clocksource *clock; | ||
73 | s64 nsec; | 195 | s64 nsec; |
74 | 196 | ||
75 | cycle_now = clocksource_read(clock); | 197 | clock = timekeeper.clock; |
198 | cycle_now = clock->read(clock); | ||
76 | cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; | 199 | cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; |
77 | clock->cycle_last = cycle_now; | 200 | clock->cycle_last = cycle_now; |
78 | 201 | ||
79 | nsec = cyc2ns(clock, cycle_delta); | 202 | nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult, |
203 | timekeeper.shift); | ||
80 | 204 | ||
81 | /* If arch requires, add in gettimeoffset() */ | 205 | /* If arch requires, add in gettimeoffset() */ |
82 | nsec += arch_gettimeoffset(); | 206 | nsec += arch_gettimeoffset(); |
83 | 207 | ||
84 | timespec_add_ns(&xtime, nsec); | 208 | timespec_add_ns(&xtime, nsec); |
85 | 209 | ||
86 | nsec = ((s64)cycle_delta * clock->mult_orig) >> clock->shift; | 210 | nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); |
87 | clock->raw_time.tv_nsec += nsec; | 211 | timespec_add_ns(&raw_time, nsec); |
88 | } | 212 | } |
89 | 213 | ||
90 | /** | 214 | /** |
@@ -95,7 +219,6 @@ static void clocksource_forward_now(void) | |||
95 | */ | 219 | */ |
96 | void getnstimeofday(struct timespec *ts) | 220 | void getnstimeofday(struct timespec *ts) |
97 | { | 221 | { |
98 | cycle_t cycle_now, cycle_delta; | ||
99 | unsigned long seq; | 222 | unsigned long seq; |
100 | s64 nsecs; | 223 | s64 nsecs; |
101 | 224 | ||
@@ -105,15 +228,7 @@ void getnstimeofday(struct timespec *ts) | |||
105 | seq = read_seqbegin(&xtime_lock); | 228 | seq = read_seqbegin(&xtime_lock); |
106 | 229 | ||
107 | *ts = xtime; | 230 | *ts = xtime; |
108 | 231 | nsecs = timekeeping_get_ns(); | |
109 | /* read clocksource: */ | ||
110 | cycle_now = clocksource_read(clock); | ||
111 | |||
112 | /* calculate the delta since the last update_wall_time: */ | ||
113 | cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; | ||
114 | |||
115 | /* convert to nanoseconds: */ | ||
116 | nsecs = cyc2ns(clock, cycle_delta); | ||
117 | 232 | ||
118 | /* If arch requires, add in gettimeoffset() */ | 233 | /* If arch requires, add in gettimeoffset() */ |
119 | nsecs += arch_gettimeoffset(); | 234 | nsecs += arch_gettimeoffset(); |
@@ -125,6 +240,57 @@ void getnstimeofday(struct timespec *ts) | |||
125 | 240 | ||
126 | EXPORT_SYMBOL(getnstimeofday); | 241 | EXPORT_SYMBOL(getnstimeofday); |
127 | 242 | ||
243 | ktime_t ktime_get(void) | ||
244 | { | ||
245 | unsigned int seq; | ||
246 | s64 secs, nsecs; | ||
247 | |||
248 | WARN_ON(timekeeping_suspended); | ||
249 | |||
250 | do { | ||
251 | seq = read_seqbegin(&xtime_lock); | ||
252 | secs = xtime.tv_sec + wall_to_monotonic.tv_sec; | ||
253 | nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec; | ||
254 | nsecs += timekeeping_get_ns(); | ||
255 | |||
256 | } while (read_seqretry(&xtime_lock, seq)); | ||
257 | /* | ||
258 | * Use ktime_set/ktime_add_ns to create a proper ktime on | ||
259 | * 32-bit architectures without CONFIG_KTIME_SCALAR. | ||
260 | */ | ||
261 | return ktime_add_ns(ktime_set(secs, 0), nsecs); | ||
262 | } | ||
263 | EXPORT_SYMBOL_GPL(ktime_get); | ||
264 | |||
265 | /** | ||
266 | * ktime_get_ts - get the monotonic clock in timespec format | ||
267 | * @ts: pointer to timespec variable | ||
268 | * | ||
269 | * The function calculates the monotonic clock from the realtime | ||
270 | * clock and the wall_to_monotonic offset and stores the result | ||
271 | * in normalized timespec format in the variable pointed to by @ts. | ||
272 | */ | ||
273 | void ktime_get_ts(struct timespec *ts) | ||
274 | { | ||
275 | struct timespec tomono; | ||
276 | unsigned int seq; | ||
277 | s64 nsecs; | ||
278 | |||
279 | WARN_ON(timekeeping_suspended); | ||
280 | |||
281 | do { | ||
282 | seq = read_seqbegin(&xtime_lock); | ||
283 | *ts = xtime; | ||
284 | tomono = wall_to_monotonic; | ||
285 | nsecs = timekeeping_get_ns(); | ||
286 | |||
287 | } while (read_seqretry(&xtime_lock, seq)); | ||
288 | |||
289 | set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, | ||
290 | ts->tv_nsec + tomono.tv_nsec + nsecs); | ||
291 | } | ||
292 | EXPORT_SYMBOL_GPL(ktime_get_ts); | ||
293 | |||
128 | /** | 294 | /** |
129 | * do_gettimeofday - Returns the time of day in a timeval | 295 | * do_gettimeofday - Returns the time of day in a timeval |
130 | * @tv: pointer to the timeval to be set | 296 | * @tv: pointer to the timeval to be set |
@@ -157,7 +323,7 @@ int do_settimeofday(struct timespec *tv) | |||
157 | 323 | ||
158 | write_seqlock_irqsave(&xtime_lock, flags); | 324 | write_seqlock_irqsave(&xtime_lock, flags); |
159 | 325 | ||
160 | clocksource_forward_now(); | 326 | timekeeping_forward_now(); |
161 | 327 | ||
162 | ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec; | 328 | ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec; |
163 | ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec; | 329 | ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec; |
@@ -167,10 +333,10 @@ int do_settimeofday(struct timespec *tv) | |||
167 | 333 | ||
168 | update_xtime_cache(0); | 334 | update_xtime_cache(0); |
169 | 335 | ||
170 | clock->error = 0; | 336 | timekeeper.ntp_error = 0; |
171 | ntp_clear(); | 337 | ntp_clear(); |
172 | 338 | ||
173 | update_vsyscall(&xtime, clock); | 339 | update_vsyscall(&xtime, timekeeper.clock); |
174 | 340 | ||
175 | write_sequnlock_irqrestore(&xtime_lock, flags); | 341 | write_sequnlock_irqrestore(&xtime_lock, flags); |
176 | 342 | ||
@@ -187,44 +353,97 @@ EXPORT_SYMBOL(do_settimeofday); | |||
187 | * | 353 | * |
188 | * Accumulates current time interval and initializes new clocksource | 354 | * Accumulates current time interval and initializes new clocksource |
189 | */ | 355 | */ |
190 | static void change_clocksource(void) | 356 | static int change_clocksource(void *data) |
191 | { | 357 | { |
192 | struct clocksource *new, *old; | 358 | struct clocksource *new, *old; |
193 | 359 | ||
194 | new = clocksource_get_next(); | 360 | new = (struct clocksource *) data; |
361 | |||
362 | timekeeping_forward_now(); | ||
363 | if (!new->enable || new->enable(new) == 0) { | ||
364 | old = timekeeper.clock; | ||
365 | timekeeper_setup_internals(new); | ||
366 | if (old->disable) | ||
367 | old->disable(old); | ||
368 | } | ||
369 | return 0; | ||
370 | } | ||
195 | 371 | ||
196 | if (clock == new) | 372 | /** |
373 | * timekeeping_notify - Install a new clock source | ||
374 | * @clock: pointer to the clock source | ||
375 | * | ||
376 | * This function is called from clocksource.c after a new, better clock | ||
377 | * source has been registered. The caller holds the clocksource_mutex. | ||
378 | */ | ||
379 | void timekeeping_notify(struct clocksource *clock) | ||
380 | { | ||
381 | if (timekeeper.clock == clock) | ||
197 | return; | 382 | return; |
383 | stop_machine(change_clocksource, clock, NULL); | ||
384 | tick_clock_notify(); | ||
385 | } | ||
198 | 386 | ||
199 | clocksource_forward_now(); | 387 | #else /* GENERIC_TIME */ |
200 | 388 | ||
201 | if (clocksource_enable(new)) | 389 | static inline void timekeeping_forward_now(void) { } |
202 | return; | ||
203 | 390 | ||
204 | new->raw_time = clock->raw_time; | 391 | /** |
205 | old = clock; | 392 | * ktime_get - get the monotonic time in ktime_t format |
206 | clock = new; | 393 | * |
207 | clocksource_disable(old); | 394 | * returns the time in ktime_t format |
395 | */ | ||
396 | ktime_t ktime_get(void) | ||
397 | { | ||
398 | struct timespec now; | ||
208 | 399 | ||
209 | clock->cycle_last = 0; | 400 | ktime_get_ts(&now); |
210 | clock->cycle_last = clocksource_read(clock); | ||
211 | clock->error = 0; | ||
212 | clock->xtime_nsec = 0; | ||
213 | clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH); | ||
214 | 401 | ||
215 | tick_clock_notify(); | 402 | return timespec_to_ktime(now); |
403 | } | ||
404 | EXPORT_SYMBOL_GPL(ktime_get); | ||
216 | 405 | ||
217 | /* | 406 | /** |
218 | * We're holding xtime lock and waking up klogd would deadlock | 407 | * ktime_get_ts - get the monotonic clock in timespec format |
219 | * us on enqueue. So no printing! | 408 | * @ts: pointer to timespec variable |
220 | printk(KERN_INFO "Time: %s clocksource has been installed.\n", | 409 | * |
221 | clock->name); | 410 | * The function calculates the monotonic clock from the realtime |
222 | */ | 411 | * clock and the wall_to_monotonic offset and stores the result |
412 | * in normalized timespec format in the variable pointed to by @ts. | ||
413 | */ | ||
414 | void ktime_get_ts(struct timespec *ts) | ||
415 | { | ||
416 | struct timespec tomono; | ||
417 | unsigned long seq; | ||
418 | |||
419 | do { | ||
420 | seq = read_seqbegin(&xtime_lock); | ||
421 | getnstimeofday(ts); | ||
422 | tomono = wall_to_monotonic; | ||
423 | |||
424 | } while (read_seqretry(&xtime_lock, seq)); | ||
425 | |||
426 | set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, | ||
427 | ts->tv_nsec + tomono.tv_nsec); | ||
223 | } | 428 | } |
224 | #else | 429 | EXPORT_SYMBOL_GPL(ktime_get_ts); |
225 | static inline void clocksource_forward_now(void) { } | 430 | |
226 | static inline void change_clocksource(void) { } | 431 | #endif /* !GENERIC_TIME */ |
227 | #endif | 432 | |
433 | /** | ||
434 | * ktime_get_real - get the real (wall-) time in ktime_t format | ||
435 | * | ||
436 | * returns the time in ktime_t format | ||
437 | */ | ||
438 | ktime_t ktime_get_real(void) | ||
439 | { | ||
440 | struct timespec now; | ||
441 | |||
442 | getnstimeofday(&now); | ||
443 | |||
444 | return timespec_to_ktime(now); | ||
445 | } | ||
446 | EXPORT_SYMBOL_GPL(ktime_get_real); | ||
228 | 447 | ||
229 | /** | 448 | /** |
230 | * getrawmonotonic - Returns the raw monotonic time in a timespec | 449 | * getrawmonotonic - Returns the raw monotonic time in a timespec |
@@ -236,21 +455,11 @@ void getrawmonotonic(struct timespec *ts) | |||
236 | { | 455 | { |
237 | unsigned long seq; | 456 | unsigned long seq; |
238 | s64 nsecs; | 457 | s64 nsecs; |
239 | cycle_t cycle_now, cycle_delta; | ||
240 | 458 | ||
241 | do { | 459 | do { |
242 | seq = read_seqbegin(&xtime_lock); | 460 | seq = read_seqbegin(&xtime_lock); |
243 | 461 | nsecs = timekeeping_get_ns_raw(); | |
244 | /* read clocksource: */ | 462 | *ts = raw_time; |
245 | cycle_now = clocksource_read(clock); | ||
246 | |||
247 | /* calculate the delta since the last update_wall_time: */ | ||
248 | cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; | ||
249 | |||
250 | /* convert to nanoseconds: */ | ||
251 | nsecs = ((s64)cycle_delta * clock->mult_orig) >> clock->shift; | ||
252 | |||
253 | *ts = clock->raw_time; | ||
254 | 463 | ||
255 | } while (read_seqretry(&xtime_lock, seq)); | 464 | } while (read_seqretry(&xtime_lock, seq)); |
256 | 465 | ||
@@ -270,7 +479,7 @@ int timekeeping_valid_for_hres(void) | |||
270 | do { | 479 | do { |
271 | seq = read_seqbegin(&xtime_lock); | 480 | seq = read_seqbegin(&xtime_lock); |
272 | 481 | ||
273 | ret = clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; | 482 | ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; |
274 | 483 | ||
275 | } while (read_seqretry(&xtime_lock, seq)); | 484 | } while (read_seqretry(&xtime_lock, seq)); |
276 | 485 | ||
@@ -278,17 +487,33 @@ int timekeeping_valid_for_hres(void) | |||
278 | } | 487 | } |
279 | 488 | ||
280 | /** | 489 | /** |
281 | * read_persistent_clock - Return time in seconds from the persistent clock. | 490 | * read_persistent_clock - Return time from the persistent clock. |
282 | * | 491 | * |
283 | * Weak dummy function for arches that do not yet support it. | 492 | * Weak dummy function for arches that do not yet support it. |
284 | * Returns seconds from epoch using the battery backed persistent clock. | 493 | * Reads the time from the battery backed persistent clock. |
285 | * Returns zero if unsupported. | 494 | * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. |
286 | * | 495 | * |
287 | * XXX - Do be sure to remove it once all arches implement it. | 496 | * XXX - Do be sure to remove it once all arches implement it. |
288 | */ | 497 | */ |
289 | unsigned long __attribute__((weak)) read_persistent_clock(void) | 498 | void __attribute__((weak)) read_persistent_clock(struct timespec *ts) |
290 | { | 499 | { |
291 | return 0; | 500 | ts->tv_sec = 0; |
501 | ts->tv_nsec = 0; | ||
502 | } | ||
503 | |||
504 | /** | ||
505 | * read_boot_clock - Return time of the system start. | ||
506 | * | ||
507 | * Weak dummy function for arches that do not yet support it. | ||
508 | * Function to read the exact time the system has been started. | ||
509 | * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. | ||
510 | * | ||
511 | * XXX - Do be sure to remove it once all arches implement it. | ||
512 | */ | ||
513 | void __attribute__((weak)) read_boot_clock(struct timespec *ts) | ||
514 | { | ||
515 | ts->tv_sec = 0; | ||
516 | ts->tv_nsec = 0; | ||
292 | } | 517 | } |
293 | 518 | ||
294 | /* | 519 | /* |
@@ -296,29 +521,40 @@ unsigned long __attribute__((weak)) read_persistent_clock(void) | |||
296 | */ | 521 | */ |
297 | void __init timekeeping_init(void) | 522 | void __init timekeeping_init(void) |
298 | { | 523 | { |
524 | struct clocksource *clock; | ||
299 | unsigned long flags; | 525 | unsigned long flags; |
300 | unsigned long sec = read_persistent_clock(); | 526 | struct timespec now, boot; |
527 | |||
528 | read_persistent_clock(&now); | ||
529 | read_boot_clock(&boot); | ||
301 | 530 | ||
302 | write_seqlock_irqsave(&xtime_lock, flags); | 531 | write_seqlock_irqsave(&xtime_lock, flags); |
303 | 532 | ||
304 | ntp_init(); | 533 | ntp_init(); |
305 | 534 | ||
306 | clock = clocksource_get_next(); | 535 | clock = clocksource_default_clock(); |
307 | clocksource_enable(clock); | 536 | if (clock->enable) |
308 | clocksource_calculate_interval(clock, NTP_INTERVAL_LENGTH); | 537 | clock->enable(clock); |
309 | clock->cycle_last = clocksource_read(clock); | 538 | timekeeper_setup_internals(clock); |
310 | 539 | ||
311 | xtime.tv_sec = sec; | 540 | xtime.tv_sec = now.tv_sec; |
312 | xtime.tv_nsec = 0; | 541 | xtime.tv_nsec = now.tv_nsec; |
542 | raw_time.tv_sec = 0; | ||
543 | raw_time.tv_nsec = 0; | ||
544 | if (boot.tv_sec == 0 && boot.tv_nsec == 0) { | ||
545 | boot.tv_sec = xtime.tv_sec; | ||
546 | boot.tv_nsec = xtime.tv_nsec; | ||
547 | } | ||
313 | set_normalized_timespec(&wall_to_monotonic, | 548 | set_normalized_timespec(&wall_to_monotonic, |
314 | -xtime.tv_sec, -xtime.tv_nsec); | 549 | -boot.tv_sec, -boot.tv_nsec); |
315 | update_xtime_cache(0); | 550 | update_xtime_cache(0); |
316 | total_sleep_time = 0; | 551 | total_sleep_time.tv_sec = 0; |
552 | total_sleep_time.tv_nsec = 0; | ||
317 | write_sequnlock_irqrestore(&xtime_lock, flags); | 553 | write_sequnlock_irqrestore(&xtime_lock, flags); |
318 | } | 554 | } |
319 | 555 | ||
320 | /* time in seconds when suspend began */ | 556 | /* time in seconds when suspend began */ |
321 | static unsigned long timekeeping_suspend_time; | 557 | static struct timespec timekeeping_suspend_time; |
322 | 558 | ||
323 | /** | 559 | /** |
324 | * timekeeping_resume - Resumes the generic timekeeping subsystem. | 560 | * timekeeping_resume - Resumes the generic timekeeping subsystem. |
@@ -331,24 +567,24 @@ static unsigned long timekeeping_suspend_time; | |||
331 | static int timekeeping_resume(struct sys_device *dev) | 567 | static int timekeeping_resume(struct sys_device *dev) |
332 | { | 568 | { |
333 | unsigned long flags; | 569 | unsigned long flags; |
334 | unsigned long now = read_persistent_clock(); | 570 | struct timespec ts; |
571 | |||
572 | read_persistent_clock(&ts); | ||
335 | 573 | ||
336 | clocksource_resume(); | 574 | clocksource_resume(); |
337 | 575 | ||
338 | write_seqlock_irqsave(&xtime_lock, flags); | 576 | write_seqlock_irqsave(&xtime_lock, flags); |
339 | 577 | ||
340 | if (now && (now > timekeeping_suspend_time)) { | 578 | if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) { |
341 | unsigned long sleep_length = now - timekeeping_suspend_time; | 579 | ts = timespec_sub(ts, timekeeping_suspend_time); |
342 | 580 | xtime = timespec_add_safe(xtime, ts); | |
343 | xtime.tv_sec += sleep_length; | 581 | wall_to_monotonic = timespec_sub(wall_to_monotonic, ts); |
344 | wall_to_monotonic.tv_sec -= sleep_length; | 582 | total_sleep_time = timespec_add_safe(total_sleep_time, ts); |
345 | total_sleep_time += sleep_length; | ||
346 | } | 583 | } |
347 | update_xtime_cache(0); | 584 | update_xtime_cache(0); |
348 | /* re-base the last cycle value */ | 585 | /* re-base the last cycle value */ |
349 | clock->cycle_last = 0; | 586 | timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock); |
350 | clock->cycle_last = clocksource_read(clock); | 587 | timekeeper.ntp_error = 0; |
351 | clock->error = 0; | ||
352 | timekeeping_suspended = 0; | 588 | timekeeping_suspended = 0; |
353 | write_sequnlock_irqrestore(&xtime_lock, flags); | 589 | write_sequnlock_irqrestore(&xtime_lock, flags); |
354 | 590 | ||
@@ -366,10 +602,10 @@ static int timekeeping_suspend(struct sys_device *dev, pm_message_t state) | |||
366 | { | 602 | { |
367 | unsigned long flags; | 603 | unsigned long flags; |
368 | 604 | ||
369 | timekeeping_suspend_time = read_persistent_clock(); | 605 | read_persistent_clock(&timekeeping_suspend_time); |
370 | 606 | ||
371 | write_seqlock_irqsave(&xtime_lock, flags); | 607 | write_seqlock_irqsave(&xtime_lock, flags); |
372 | clocksource_forward_now(); | 608 | timekeeping_forward_now(); |
373 | timekeeping_suspended = 1; | 609 | timekeeping_suspended = 1; |
374 | write_sequnlock_irqrestore(&xtime_lock, flags); | 610 | write_sequnlock_irqrestore(&xtime_lock, flags); |
375 | 611 | ||
@@ -404,7 +640,7 @@ device_initcall(timekeeping_init_device); | |||
404 | * If the error is already larger, we look ahead even further | 640 | * If the error is already larger, we look ahead even further |
405 | * to compensate for late or lost adjustments. | 641 | * to compensate for late or lost adjustments. |
406 | */ | 642 | */ |
407 | static __always_inline int clocksource_bigadjust(s64 error, s64 *interval, | 643 | static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval, |
408 | s64 *offset) | 644 | s64 *offset) |
409 | { | 645 | { |
410 | s64 tick_error, i; | 646 | s64 tick_error, i; |
@@ -420,7 +656,7 @@ static __always_inline int clocksource_bigadjust(s64 error, s64 *interval, | |||
420 | * here. This is tuned so that an error of about 1 msec is adjusted | 656 | * here. This is tuned so that an error of about 1 msec is adjusted |
421 | * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks). | 657 | * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks). |
422 | */ | 658 | */ |
423 | error2 = clock->error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ); | 659 | error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ); |
424 | error2 = abs(error2); | 660 | error2 = abs(error2); |
425 | for (look_ahead = 0; error2 > 0; look_ahead++) | 661 | for (look_ahead = 0; error2 > 0; look_ahead++) |
426 | error2 >>= 2; | 662 | error2 >>= 2; |
@@ -429,8 +665,8 @@ static __always_inline int clocksource_bigadjust(s64 error, s64 *interval, | |||
429 | * Now calculate the error in (1 << look_ahead) ticks, but first | 665 | * Now calculate the error in (1 << look_ahead) ticks, but first |
430 | * remove the single look ahead already included in the error. | 666 | * remove the single look ahead already included in the error. |
431 | */ | 667 | */ |
432 | tick_error = tick_length >> (NTP_SCALE_SHIFT - clock->shift + 1); | 668 | tick_error = tick_length >> (timekeeper.ntp_error_shift + 1); |
433 | tick_error -= clock->xtime_interval >> 1; | 669 | tick_error -= timekeeper.xtime_interval >> 1; |
434 | error = ((error - tick_error) >> look_ahead) + tick_error; | 670 | error = ((error - tick_error) >> look_ahead) + tick_error; |
435 | 671 | ||
436 | /* Finally calculate the adjustment shift value. */ | 672 | /* Finally calculate the adjustment shift value. */ |
@@ -455,18 +691,18 @@ static __always_inline int clocksource_bigadjust(s64 error, s64 *interval, | |||
455 | * this is optimized for the most common adjustments of -1,0,1, | 691 | * this is optimized for the most common adjustments of -1,0,1, |
456 | * for other values we can do a bit more work. | 692 | * for other values we can do a bit more work. |
457 | */ | 693 | */ |
458 | static void clocksource_adjust(s64 offset) | 694 | static void timekeeping_adjust(s64 offset) |
459 | { | 695 | { |
460 | s64 error, interval = clock->cycle_interval; | 696 | s64 error, interval = timekeeper.cycle_interval; |
461 | int adj; | 697 | int adj; |
462 | 698 | ||
463 | error = clock->error >> (NTP_SCALE_SHIFT - clock->shift - 1); | 699 | error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1); |
464 | if (error > interval) { | 700 | if (error > interval) { |
465 | error >>= 2; | 701 | error >>= 2; |
466 | if (likely(error <= interval)) | 702 | if (likely(error <= interval)) |
467 | adj = 1; | 703 | adj = 1; |
468 | else | 704 | else |
469 | adj = clocksource_bigadjust(error, &interval, &offset); | 705 | adj = timekeeping_bigadjust(error, &interval, &offset); |
470 | } else if (error < -interval) { | 706 | } else if (error < -interval) { |
471 | error >>= 2; | 707 | error >>= 2; |
472 | if (likely(error >= -interval)) { | 708 | if (likely(error >= -interval)) { |
@@ -474,15 +710,15 @@ static void clocksource_adjust(s64 offset) | |||
474 | interval = -interval; | 710 | interval = -interval; |
475 | offset = -offset; | 711 | offset = -offset; |
476 | } else | 712 | } else |
477 | adj = clocksource_bigadjust(error, &interval, &offset); | 713 | adj = timekeeping_bigadjust(error, &interval, &offset); |
478 | } else | 714 | } else |
479 | return; | 715 | return; |
480 | 716 | ||
481 | clock->mult += adj; | 717 | timekeeper.mult += adj; |
482 | clock->xtime_interval += interval; | 718 | timekeeper.xtime_interval += interval; |
483 | clock->xtime_nsec -= offset; | 719 | timekeeper.xtime_nsec -= offset; |
484 | clock->error -= (interval - offset) << | 720 | timekeeper.ntp_error -= (interval - offset) << |
485 | (NTP_SCALE_SHIFT - clock->shift); | 721 | timekeeper.ntp_error_shift; |
486 | } | 722 | } |
487 | 723 | ||
488 | /** | 724 | /** |
@@ -492,53 +728,59 @@ static void clocksource_adjust(s64 offset) | |||
492 | */ | 728 | */ |
493 | void update_wall_time(void) | 729 | void update_wall_time(void) |
494 | { | 730 | { |
731 | struct clocksource *clock; | ||
495 | cycle_t offset; | 732 | cycle_t offset; |
733 | u64 nsecs; | ||
496 | 734 | ||
497 | /* Make sure we're fully resumed: */ | 735 | /* Make sure we're fully resumed: */ |
498 | if (unlikely(timekeeping_suspended)) | 736 | if (unlikely(timekeeping_suspended)) |
499 | return; | 737 | return; |
500 | 738 | ||
739 | clock = timekeeper.clock; | ||
501 | #ifdef CONFIG_GENERIC_TIME | 740 | #ifdef CONFIG_GENERIC_TIME |
502 | offset = (clocksource_read(clock) - clock->cycle_last) & clock->mask; | 741 | offset = (clock->read(clock) - clock->cycle_last) & clock->mask; |
503 | #else | 742 | #else |
504 | offset = clock->cycle_interval; | 743 | offset = timekeeper.cycle_interval; |
505 | #endif | 744 | #endif |
506 | clock->xtime_nsec = (s64)xtime.tv_nsec << clock->shift; | 745 | timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift; |
507 | 746 | ||
508 | /* normally this loop will run just once, however in the | 747 | /* normally this loop will run just once, however in the |
509 | * case of lost or late ticks, it will accumulate correctly. | 748 | * case of lost or late ticks, it will accumulate correctly. |
510 | */ | 749 | */ |
511 | while (offset >= clock->cycle_interval) { | 750 | while (offset >= timekeeper.cycle_interval) { |
751 | u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift; | ||
752 | |||
512 | /* accumulate one interval */ | 753 | /* accumulate one interval */ |
513 | offset -= clock->cycle_interval; | 754 | offset -= timekeeper.cycle_interval; |
514 | clock->cycle_last += clock->cycle_interval; | 755 | clock->cycle_last += timekeeper.cycle_interval; |
515 | 756 | ||
516 | clock->xtime_nsec += clock->xtime_interval; | 757 | timekeeper.xtime_nsec += timekeeper.xtime_interval; |
517 | if (clock->xtime_nsec >= (u64)NSEC_PER_SEC << clock->shift) { | 758 | if (timekeeper.xtime_nsec >= nsecps) { |
518 | clock->xtime_nsec -= (u64)NSEC_PER_SEC << clock->shift; | 759 | timekeeper.xtime_nsec -= nsecps; |
519 | xtime.tv_sec++; | 760 | xtime.tv_sec++; |
520 | second_overflow(); | 761 | second_overflow(); |
521 | } | 762 | } |
522 | 763 | ||
523 | clock->raw_time.tv_nsec += clock->raw_interval; | 764 | raw_time.tv_nsec += timekeeper.raw_interval; |
524 | if (clock->raw_time.tv_nsec >= NSEC_PER_SEC) { | 765 | if (raw_time.tv_nsec >= NSEC_PER_SEC) { |
525 | clock->raw_time.tv_nsec -= NSEC_PER_SEC; | 766 | raw_time.tv_nsec -= NSEC_PER_SEC; |
526 | clock->raw_time.tv_sec++; | 767 | raw_time.tv_sec++; |
527 | } | 768 | } |
528 | 769 | ||
529 | /* accumulate error between NTP and clock interval */ | 770 | /* accumulate error between NTP and clock interval */ |
530 | clock->error += tick_length; | 771 | timekeeper.ntp_error += tick_length; |
531 | clock->error -= clock->xtime_interval << (NTP_SCALE_SHIFT - clock->shift); | 772 | timekeeper.ntp_error -= timekeeper.xtime_interval << |
773 | timekeeper.ntp_error_shift; | ||
532 | } | 774 | } |
533 | 775 | ||
534 | /* correct the clock when NTP error is too big */ | 776 | /* correct the clock when NTP error is too big */ |
535 | clocksource_adjust(offset); | 777 | timekeeping_adjust(offset); |
536 | 778 | ||
537 | /* | 779 | /* |
538 | * Since in the loop above, we accumulate any amount of time | 780 | * Since in the loop above, we accumulate any amount of time |
539 | * in xtime_nsec over a second into xtime.tv_sec, its possible for | 781 | * in xtime_nsec over a second into xtime.tv_sec, its possible for |
540 | * xtime_nsec to be fairly small after the loop. Further, if we're | 782 | * xtime_nsec to be fairly small after the loop. Further, if we're |
541 | * slightly speeding the clocksource up in clocksource_adjust(), | 783 | * slightly speeding the clocksource up in timekeeping_adjust(), |
542 | * its possible the required corrective factor to xtime_nsec could | 784 | * its possible the required corrective factor to xtime_nsec could |
543 | * cause it to underflow. | 785 | * cause it to underflow. |
544 | * | 786 | * |
@@ -550,24 +792,25 @@ void update_wall_time(void) | |||
550 | * We'll correct this error next time through this function, when | 792 | * We'll correct this error next time through this function, when |
551 | * xtime_nsec is not as small. | 793 | * xtime_nsec is not as small. |
552 | */ | 794 | */ |
553 | if (unlikely((s64)clock->xtime_nsec < 0)) { | 795 | if (unlikely((s64)timekeeper.xtime_nsec < 0)) { |
554 | s64 neg = -(s64)clock->xtime_nsec; | 796 | s64 neg = -(s64)timekeeper.xtime_nsec; |
555 | clock->xtime_nsec = 0; | 797 | timekeeper.xtime_nsec = 0; |
556 | clock->error += neg << (NTP_SCALE_SHIFT - clock->shift); | 798 | timekeeper.ntp_error += neg << timekeeper.ntp_error_shift; |
557 | } | 799 | } |
558 | 800 | ||
559 | /* store full nanoseconds into xtime after rounding it up and | 801 | /* store full nanoseconds into xtime after rounding it up and |
560 | * add the remainder to the error difference. | 802 | * add the remainder to the error difference. |
561 | */ | 803 | */ |
562 | xtime.tv_nsec = ((s64)clock->xtime_nsec >> clock->shift) + 1; | 804 | xtime.tv_nsec = ((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1; |
563 | clock->xtime_nsec -= (s64)xtime.tv_nsec << clock->shift; | 805 | timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift; |
564 | clock->error += clock->xtime_nsec << (NTP_SCALE_SHIFT - clock->shift); | 806 | timekeeper.ntp_error += timekeeper.xtime_nsec << |
807 | timekeeper.ntp_error_shift; | ||
565 | 808 | ||
566 | update_xtime_cache(cyc2ns(clock, offset)); | 809 | nsecs = clocksource_cyc2ns(offset, timekeeper.mult, timekeeper.shift); |
810 | update_xtime_cache(nsecs); | ||
567 | 811 | ||
568 | /* check to see if there is a new clocksource to use */ | 812 | /* check to see if there is a new clocksource to use */ |
569 | change_clocksource(); | 813 | update_vsyscall(&xtime, timekeeper.clock); |
570 | update_vsyscall(&xtime, clock); | ||
571 | } | 814 | } |
572 | 815 | ||
573 | /** | 816 | /** |
@@ -583,9 +826,12 @@ void update_wall_time(void) | |||
583 | */ | 826 | */ |
584 | void getboottime(struct timespec *ts) | 827 | void getboottime(struct timespec *ts) |
585 | { | 828 | { |
586 | set_normalized_timespec(ts, | 829 | struct timespec boottime = { |
587 | - (wall_to_monotonic.tv_sec + total_sleep_time), | 830 | .tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec, |
588 | - wall_to_monotonic.tv_nsec); | 831 | .tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec |
832 | }; | ||
833 | |||
834 | set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec); | ||
589 | } | 835 | } |
590 | 836 | ||
591 | /** | 837 | /** |
@@ -594,7 +840,7 @@ void getboottime(struct timespec *ts) | |||
594 | */ | 840 | */ |
595 | void monotonic_to_bootbased(struct timespec *ts) | 841 | void monotonic_to_bootbased(struct timespec *ts) |
596 | { | 842 | { |
597 | ts->tv_sec += total_sleep_time; | 843 | *ts = timespec_add_safe(*ts, total_sleep_time); |
598 | } | 844 | } |
599 | 845 | ||
600 | unsigned long get_seconds(void) | 846 | unsigned long get_seconds(void) |
@@ -603,6 +849,10 @@ unsigned long get_seconds(void) | |||
603 | } | 849 | } |
604 | EXPORT_SYMBOL(get_seconds); | 850 | EXPORT_SYMBOL(get_seconds); |
605 | 851 | ||
852 | struct timespec __current_kernel_time(void) | ||
853 | { | ||
854 | return xtime_cache; | ||
855 | } | ||
606 | 856 | ||
607 | struct timespec current_kernel_time(void) | 857 | struct timespec current_kernel_time(void) |
608 | { | 858 | { |
@@ -618,3 +868,20 @@ struct timespec current_kernel_time(void) | |||
618 | return now; | 868 | return now; |
619 | } | 869 | } |
620 | EXPORT_SYMBOL(current_kernel_time); | 870 | EXPORT_SYMBOL(current_kernel_time); |
871 | |||
872 | struct timespec get_monotonic_coarse(void) | ||
873 | { | ||
874 | struct timespec now, mono; | ||
875 | unsigned long seq; | ||
876 | |||
877 | do { | ||
878 | seq = read_seqbegin(&xtime_lock); | ||
879 | |||
880 | now = xtime_cache; | ||
881 | mono = wall_to_monotonic; | ||
882 | } while (read_seqretry(&xtime_lock, seq)); | ||
883 | |||
884 | set_normalized_timespec(&now, now.tv_sec + mono.tv_sec, | ||
885 | now.tv_nsec + mono.tv_nsec); | ||
886 | return now; | ||
887 | } | ||
diff --git a/kernel/timer.c b/kernel/timer.c index a3d25f415019..5db5a8d26811 100644 --- a/kernel/timer.c +++ b/kernel/timer.c | |||
@@ -37,7 +37,7 @@ | |||
37 | #include <linux/delay.h> | 37 | #include <linux/delay.h> |
38 | #include <linux/tick.h> | 38 | #include <linux/tick.h> |
39 | #include <linux/kallsyms.h> | 39 | #include <linux/kallsyms.h> |
40 | #include <linux/perf_counter.h> | 40 | #include <linux/perf_event.h> |
41 | #include <linux/sched.h> | 41 | #include <linux/sched.h> |
42 | 42 | ||
43 | #include <asm/uaccess.h> | 43 | #include <asm/uaccess.h> |
@@ -46,6 +46,9 @@ | |||
46 | #include <asm/timex.h> | 46 | #include <asm/timex.h> |
47 | #include <asm/io.h> | 47 | #include <asm/io.h> |
48 | 48 | ||
49 | #define CREATE_TRACE_POINTS | ||
50 | #include <trace/events/timer.h> | ||
51 | |||
49 | u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; | 52 | u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; |
50 | 53 | ||
51 | EXPORT_SYMBOL(jiffies_64); | 54 | EXPORT_SYMBOL(jiffies_64); |
@@ -72,6 +75,7 @@ struct tvec_base { | |||
72 | spinlock_t lock; | 75 | spinlock_t lock; |
73 | struct timer_list *running_timer; | 76 | struct timer_list *running_timer; |
74 | unsigned long timer_jiffies; | 77 | unsigned long timer_jiffies; |
78 | unsigned long next_timer; | ||
75 | struct tvec_root tv1; | 79 | struct tvec_root tv1; |
76 | struct tvec tv2; | 80 | struct tvec tv2; |
77 | struct tvec tv3; | 81 | struct tvec tv3; |
@@ -520,6 +524,25 @@ static inline void debug_timer_activate(struct timer_list *timer) { } | |||
520 | static inline void debug_timer_deactivate(struct timer_list *timer) { } | 524 | static inline void debug_timer_deactivate(struct timer_list *timer) { } |
521 | #endif | 525 | #endif |
522 | 526 | ||
527 | static inline void debug_init(struct timer_list *timer) | ||
528 | { | ||
529 | debug_timer_init(timer); | ||
530 | trace_timer_init(timer); | ||
531 | } | ||
532 | |||
533 | static inline void | ||
534 | debug_activate(struct timer_list *timer, unsigned long expires) | ||
535 | { | ||
536 | debug_timer_activate(timer); | ||
537 | trace_timer_start(timer, expires); | ||
538 | } | ||
539 | |||
540 | static inline void debug_deactivate(struct timer_list *timer) | ||
541 | { | ||
542 | debug_timer_deactivate(timer); | ||
543 | trace_timer_cancel(timer); | ||
544 | } | ||
545 | |||
523 | static void __init_timer(struct timer_list *timer, | 546 | static void __init_timer(struct timer_list *timer, |
524 | const char *name, | 547 | const char *name, |
525 | struct lock_class_key *key) | 548 | struct lock_class_key *key) |
@@ -548,7 +571,7 @@ void init_timer_key(struct timer_list *timer, | |||
548 | const char *name, | 571 | const char *name, |
549 | struct lock_class_key *key) | 572 | struct lock_class_key *key) |
550 | { | 573 | { |
551 | debug_timer_init(timer); | 574 | debug_init(timer); |
552 | __init_timer(timer, name, key); | 575 | __init_timer(timer, name, key); |
553 | } | 576 | } |
554 | EXPORT_SYMBOL(init_timer_key); | 577 | EXPORT_SYMBOL(init_timer_key); |
@@ -567,7 +590,7 @@ static inline void detach_timer(struct timer_list *timer, | |||
567 | { | 590 | { |
568 | struct list_head *entry = &timer->entry; | 591 | struct list_head *entry = &timer->entry; |
569 | 592 | ||
570 | debug_timer_deactivate(timer); | 593 | debug_deactivate(timer); |
571 | 594 | ||
572 | __list_del(entry->prev, entry->next); | 595 | __list_del(entry->prev, entry->next); |
573 | if (clear_pending) | 596 | if (clear_pending) |
@@ -622,13 +645,16 @@ __mod_timer(struct timer_list *timer, unsigned long expires, | |||
622 | 645 | ||
623 | if (timer_pending(timer)) { | 646 | if (timer_pending(timer)) { |
624 | detach_timer(timer, 0); | 647 | detach_timer(timer, 0); |
648 | if (timer->expires == base->next_timer && | ||
649 | !tbase_get_deferrable(timer->base)) | ||
650 | base->next_timer = base->timer_jiffies; | ||
625 | ret = 1; | 651 | ret = 1; |
626 | } else { | 652 | } else { |
627 | if (pending_only) | 653 | if (pending_only) |
628 | goto out_unlock; | 654 | goto out_unlock; |
629 | } | 655 | } |
630 | 656 | ||
631 | debug_timer_activate(timer); | 657 | debug_activate(timer, expires); |
632 | 658 | ||
633 | new_base = __get_cpu_var(tvec_bases); | 659 | new_base = __get_cpu_var(tvec_bases); |
634 | 660 | ||
@@ -663,6 +689,9 @@ __mod_timer(struct timer_list *timer, unsigned long expires, | |||
663 | } | 689 | } |
664 | 690 | ||
665 | timer->expires = expires; | 691 | timer->expires = expires; |
692 | if (time_before(timer->expires, base->next_timer) && | ||
693 | !tbase_get_deferrable(timer->base)) | ||
694 | base->next_timer = timer->expires; | ||
666 | internal_add_timer(base, timer); | 695 | internal_add_timer(base, timer); |
667 | 696 | ||
668 | out_unlock: | 697 | out_unlock: |
@@ -780,7 +809,10 @@ void add_timer_on(struct timer_list *timer, int cpu) | |||
780 | BUG_ON(timer_pending(timer) || !timer->function); | 809 | BUG_ON(timer_pending(timer) || !timer->function); |
781 | spin_lock_irqsave(&base->lock, flags); | 810 | spin_lock_irqsave(&base->lock, flags); |
782 | timer_set_base(timer, base); | 811 | timer_set_base(timer, base); |
783 | debug_timer_activate(timer); | 812 | debug_activate(timer, timer->expires); |
813 | if (time_before(timer->expires, base->next_timer) && | ||
814 | !tbase_get_deferrable(timer->base)) | ||
815 | base->next_timer = timer->expires; | ||
784 | internal_add_timer(base, timer); | 816 | internal_add_timer(base, timer); |
785 | /* | 817 | /* |
786 | * Check whether the other CPU is idle and needs to be | 818 | * Check whether the other CPU is idle and needs to be |
@@ -817,6 +849,9 @@ int del_timer(struct timer_list *timer) | |||
817 | base = lock_timer_base(timer, &flags); | 849 | base = lock_timer_base(timer, &flags); |
818 | if (timer_pending(timer)) { | 850 | if (timer_pending(timer)) { |
819 | detach_timer(timer, 1); | 851 | detach_timer(timer, 1); |
852 | if (timer->expires == base->next_timer && | ||
853 | !tbase_get_deferrable(timer->base)) | ||
854 | base->next_timer = base->timer_jiffies; | ||
820 | ret = 1; | 855 | ret = 1; |
821 | } | 856 | } |
822 | spin_unlock_irqrestore(&base->lock, flags); | 857 | spin_unlock_irqrestore(&base->lock, flags); |
@@ -850,6 +885,9 @@ int try_to_del_timer_sync(struct timer_list *timer) | |||
850 | ret = 0; | 885 | ret = 0; |
851 | if (timer_pending(timer)) { | 886 | if (timer_pending(timer)) { |
852 | detach_timer(timer, 1); | 887 | detach_timer(timer, 1); |
888 | if (timer->expires == base->next_timer && | ||
889 | !tbase_get_deferrable(timer->base)) | ||
890 | base->next_timer = base->timer_jiffies; | ||
853 | ret = 1; | 891 | ret = 1; |
854 | } | 892 | } |
855 | out: | 893 | out: |
@@ -984,7 +1022,9 @@ static inline void __run_timers(struct tvec_base *base) | |||
984 | */ | 1022 | */ |
985 | lock_map_acquire(&lockdep_map); | 1023 | lock_map_acquire(&lockdep_map); |
986 | 1024 | ||
1025 | trace_timer_expire_entry(timer); | ||
987 | fn(data); | 1026 | fn(data); |
1027 | trace_timer_expire_exit(timer); | ||
988 | 1028 | ||
989 | lock_map_release(&lockdep_map); | 1029 | lock_map_release(&lockdep_map); |
990 | 1030 | ||
@@ -1007,8 +1047,8 @@ static inline void __run_timers(struct tvec_base *base) | |||
1007 | #ifdef CONFIG_NO_HZ | 1047 | #ifdef CONFIG_NO_HZ |
1008 | /* | 1048 | /* |
1009 | * Find out when the next timer event is due to happen. This | 1049 | * Find out when the next timer event is due to happen. This |
1010 | * is used on S/390 to stop all activity when a cpus is idle. | 1050 | * is used on S/390 to stop all activity when a CPU is idle. |
1011 | * This functions needs to be called disabled. | 1051 | * This function needs to be called with interrupts disabled. |
1012 | */ | 1052 | */ |
1013 | static unsigned long __next_timer_interrupt(struct tvec_base *base) | 1053 | static unsigned long __next_timer_interrupt(struct tvec_base *base) |
1014 | { | 1054 | { |
@@ -1134,7 +1174,9 @@ unsigned long get_next_timer_interrupt(unsigned long now) | |||
1134 | unsigned long expires; | 1174 | unsigned long expires; |
1135 | 1175 | ||
1136 | spin_lock(&base->lock); | 1176 | spin_lock(&base->lock); |
1137 | expires = __next_timer_interrupt(base); | 1177 | if (time_before_eq(base->next_timer, base->timer_jiffies)) |
1178 | base->next_timer = __next_timer_interrupt(base); | ||
1179 | expires = base->next_timer; | ||
1138 | spin_unlock(&base->lock); | 1180 | spin_unlock(&base->lock); |
1139 | 1181 | ||
1140 | if (time_before_eq(expires, now)) | 1182 | if (time_before_eq(expires, now)) |
@@ -1169,7 +1211,7 @@ static void run_timer_softirq(struct softirq_action *h) | |||
1169 | { | 1211 | { |
1170 | struct tvec_base *base = __get_cpu_var(tvec_bases); | 1212 | struct tvec_base *base = __get_cpu_var(tvec_bases); |
1171 | 1213 | ||
1172 | perf_counter_do_pending(); | 1214 | perf_event_do_pending(); |
1173 | 1215 | ||
1174 | hrtimer_run_pending(); | 1216 | hrtimer_run_pending(); |
1175 | 1217 | ||
@@ -1522,6 +1564,7 @@ static int __cpuinit init_timers_cpu(int cpu) | |||
1522 | INIT_LIST_HEAD(base->tv1.vec + j); | 1564 | INIT_LIST_HEAD(base->tv1.vec + j); |
1523 | 1565 | ||
1524 | base->timer_jiffies = jiffies; | 1566 | base->timer_jiffies = jiffies; |
1567 | base->next_timer = base->timer_jiffies; | ||
1525 | return 0; | 1568 | return 0; |
1526 | } | 1569 | } |
1527 | 1570 | ||
@@ -1534,6 +1577,9 @@ static void migrate_timer_list(struct tvec_base *new_base, struct list_head *hea | |||
1534 | timer = list_first_entry(head, struct timer_list, entry); | 1577 | timer = list_first_entry(head, struct timer_list, entry); |
1535 | detach_timer(timer, 0); | 1578 | detach_timer(timer, 0); |
1536 | timer_set_base(timer, new_base); | 1579 | timer_set_base(timer, new_base); |
1580 | if (time_before(timer->expires, new_base->next_timer) && | ||
1581 | !tbase_get_deferrable(timer->base)) | ||
1582 | new_base->next_timer = timer->expires; | ||
1537 | internal_add_timer(new_base, timer); | 1583 | internal_add_timer(new_base, timer); |
1538 | } | 1584 | } |
1539 | } | 1585 | } |
diff --git a/kernel/trace/Kconfig b/kernel/trace/Kconfig index e71634604400..b416512ad17f 100644 --- a/kernel/trace/Kconfig +++ b/kernel/trace/Kconfig | |||
@@ -83,7 +83,7 @@ config RING_BUFFER_ALLOW_SWAP | |||
83 | # This allows those options to appear when no other tracer is selected. But the | 83 | # This allows those options to appear when no other tracer is selected. But the |
84 | # options do not appear when something else selects it. We need the two options | 84 | # options do not appear when something else selects it. We need the two options |
85 | # GENERIC_TRACER and TRACING to avoid circular dependencies to accomplish the | 85 | # GENERIC_TRACER and TRACING to avoid circular dependencies to accomplish the |
86 | # hidding of the automatic options options. | 86 | # hidding of the automatic options. |
87 | 87 | ||
88 | config TRACING | 88 | config TRACING |
89 | bool | 89 | bool |
diff --git a/kernel/trace/Makefile b/kernel/trace/Makefile index 844164dca90a..26f03ac07c2b 100644 --- a/kernel/trace/Makefile +++ b/kernel/trace/Makefile | |||
@@ -42,7 +42,6 @@ obj-$(CONFIG_BOOT_TRACER) += trace_boot.o | |||
42 | obj-$(CONFIG_FUNCTION_GRAPH_TRACER) += trace_functions_graph.o | 42 | obj-$(CONFIG_FUNCTION_GRAPH_TRACER) += trace_functions_graph.o |
43 | obj-$(CONFIG_TRACE_BRANCH_PROFILING) += trace_branch.o | 43 | obj-$(CONFIG_TRACE_BRANCH_PROFILING) += trace_branch.o |
44 | obj-$(CONFIG_HW_BRANCH_TRACER) += trace_hw_branches.o | 44 | obj-$(CONFIG_HW_BRANCH_TRACER) += trace_hw_branches.o |
45 | obj-$(CONFIG_POWER_TRACER) += trace_power.o | ||
46 | obj-$(CONFIG_KMEMTRACE) += kmemtrace.o | 45 | obj-$(CONFIG_KMEMTRACE) += kmemtrace.o |
47 | obj-$(CONFIG_WORKQUEUE_TRACER) += trace_workqueue.o | 46 | obj-$(CONFIG_WORKQUEUE_TRACER) += trace_workqueue.o |
48 | obj-$(CONFIG_BLK_DEV_IO_TRACE) += blktrace.o | 47 | obj-$(CONFIG_BLK_DEV_IO_TRACE) += blktrace.o |
@@ -54,5 +53,6 @@ obj-$(CONFIG_EVENT_TRACING) += trace_export.o | |||
54 | obj-$(CONFIG_FTRACE_SYSCALLS) += trace_syscalls.o | 53 | obj-$(CONFIG_FTRACE_SYSCALLS) += trace_syscalls.o |
55 | obj-$(CONFIG_EVENT_PROFILE) += trace_event_profile.o | 54 | obj-$(CONFIG_EVENT_PROFILE) += trace_event_profile.o |
56 | obj-$(CONFIG_EVENT_TRACING) += trace_events_filter.o | 55 | obj-$(CONFIG_EVENT_TRACING) += trace_events_filter.o |
56 | obj-$(CONFIG_EVENT_TRACING) += power-traces.o | ||
57 | 57 | ||
58 | libftrace-y := ftrace.o | 58 | libftrace-y := ftrace.o |
diff --git a/kernel/trace/ftrace.c b/kernel/trace/ftrace.c index ddf23a225b52..9a72853a8f0a 100644 --- a/kernel/trace/ftrace.c +++ b/kernel/trace/ftrace.c | |||
@@ -225,7 +225,11 @@ static void ftrace_update_pid_func(void) | |||
225 | if (ftrace_trace_function == ftrace_stub) | 225 | if (ftrace_trace_function == ftrace_stub) |
226 | return; | 226 | return; |
227 | 227 | ||
228 | #ifdef CONFIG_HAVE_FUNCTION_TRACE_MCOUNT_TEST | ||
228 | func = ftrace_trace_function; | 229 | func = ftrace_trace_function; |
230 | #else | ||
231 | func = __ftrace_trace_function; | ||
232 | #endif | ||
229 | 233 | ||
230 | if (ftrace_pid_trace) { | 234 | if (ftrace_pid_trace) { |
231 | set_ftrace_pid_function(func); | 235 | set_ftrace_pid_function(func); |
@@ -1520,7 +1524,7 @@ static int t_show(struct seq_file *m, void *v) | |||
1520 | return 0; | 1524 | return 0; |
1521 | } | 1525 | } |
1522 | 1526 | ||
1523 | static struct seq_operations show_ftrace_seq_ops = { | 1527 | static const struct seq_operations show_ftrace_seq_ops = { |
1524 | .start = t_start, | 1528 | .start = t_start, |
1525 | .next = t_next, | 1529 | .next = t_next, |
1526 | .stop = t_stop, | 1530 | .stop = t_stop, |
@@ -1621,8 +1625,10 @@ ftrace_regex_open(struct inode *inode, struct file *file, int enable) | |||
1621 | if (!ret) { | 1625 | if (!ret) { |
1622 | struct seq_file *m = file->private_data; | 1626 | struct seq_file *m = file->private_data; |
1623 | m->private = iter; | 1627 | m->private = iter; |
1624 | } else | 1628 | } else { |
1629 | trace_parser_put(&iter->parser); | ||
1625 | kfree(iter); | 1630 | kfree(iter); |
1631 | } | ||
1626 | } else | 1632 | } else |
1627 | file->private_data = iter; | 1633 | file->private_data = iter; |
1628 | mutex_unlock(&ftrace_regex_lock); | 1634 | mutex_unlock(&ftrace_regex_lock); |
@@ -2148,7 +2154,7 @@ ftrace_regex_write(struct file *file, const char __user *ubuf, | |||
2148 | struct trace_parser *parser; | 2154 | struct trace_parser *parser; |
2149 | ssize_t ret, read; | 2155 | ssize_t ret, read; |
2150 | 2156 | ||
2151 | if (!cnt || cnt < 0) | 2157 | if (!cnt) |
2152 | return 0; | 2158 | return 0; |
2153 | 2159 | ||
2154 | mutex_lock(&ftrace_regex_lock); | 2160 | mutex_lock(&ftrace_regex_lock); |
@@ -2162,7 +2168,7 @@ ftrace_regex_write(struct file *file, const char __user *ubuf, | |||
2162 | parser = &iter->parser; | 2168 | parser = &iter->parser; |
2163 | read = trace_get_user(parser, ubuf, cnt, ppos); | 2169 | read = trace_get_user(parser, ubuf, cnt, ppos); |
2164 | 2170 | ||
2165 | if (trace_parser_loaded(parser) && | 2171 | if (read >= 0 && trace_parser_loaded(parser) && |
2166 | !trace_parser_cont(parser)) { | 2172 | !trace_parser_cont(parser)) { |
2167 | ret = ftrace_process_regex(parser->buffer, | 2173 | ret = ftrace_process_regex(parser->buffer, |
2168 | parser->idx, enable); | 2174 | parser->idx, enable); |
@@ -2360,11 +2366,9 @@ unsigned long ftrace_graph_funcs[FTRACE_GRAPH_MAX_FUNCS] __read_mostly; | |||
2360 | static void * | 2366 | static void * |
2361 | __g_next(struct seq_file *m, loff_t *pos) | 2367 | __g_next(struct seq_file *m, loff_t *pos) |
2362 | { | 2368 | { |
2363 | unsigned long *array = m->private; | ||
2364 | |||
2365 | if (*pos >= ftrace_graph_count) | 2369 | if (*pos >= ftrace_graph_count) |
2366 | return NULL; | 2370 | return NULL; |
2367 | return &array[*pos]; | 2371 | return &ftrace_graph_funcs[*pos]; |
2368 | } | 2372 | } |
2369 | 2373 | ||
2370 | static void * | 2374 | static void * |
@@ -2407,7 +2411,7 @@ static int g_show(struct seq_file *m, void *v) | |||
2407 | return 0; | 2411 | return 0; |
2408 | } | 2412 | } |
2409 | 2413 | ||
2410 | static struct seq_operations ftrace_graph_seq_ops = { | 2414 | static const struct seq_operations ftrace_graph_seq_ops = { |
2411 | .start = g_start, | 2415 | .start = g_start, |
2412 | .next = g_next, | 2416 | .next = g_next, |
2413 | .stop = g_stop, | 2417 | .stop = g_stop, |
@@ -2428,16 +2432,10 @@ ftrace_graph_open(struct inode *inode, struct file *file) | |||
2428 | ftrace_graph_count = 0; | 2432 | ftrace_graph_count = 0; |
2429 | memset(ftrace_graph_funcs, 0, sizeof(ftrace_graph_funcs)); | 2433 | memset(ftrace_graph_funcs, 0, sizeof(ftrace_graph_funcs)); |
2430 | } | 2434 | } |
2435 | mutex_unlock(&graph_lock); | ||
2431 | 2436 | ||
2432 | if (file->f_mode & FMODE_READ) { | 2437 | if (file->f_mode & FMODE_READ) |
2433 | ret = seq_open(file, &ftrace_graph_seq_ops); | 2438 | ret = seq_open(file, &ftrace_graph_seq_ops); |
2434 | if (!ret) { | ||
2435 | struct seq_file *m = file->private_data; | ||
2436 | m->private = ftrace_graph_funcs; | ||
2437 | } | ||
2438 | } else | ||
2439 | file->private_data = ftrace_graph_funcs; | ||
2440 | mutex_unlock(&graph_lock); | ||
2441 | 2439 | ||
2442 | return ret; | 2440 | return ret; |
2443 | } | 2441 | } |
@@ -2506,9 +2504,7 @@ ftrace_graph_write(struct file *file, const char __user *ubuf, | |||
2506 | size_t cnt, loff_t *ppos) | 2504 | size_t cnt, loff_t *ppos) |
2507 | { | 2505 | { |
2508 | struct trace_parser parser; | 2506 | struct trace_parser parser; |
2509 | unsigned long *array; | 2507 | ssize_t read, ret; |
2510 | size_t read = 0; | ||
2511 | ssize_t ret; | ||
2512 | 2508 | ||
2513 | if (!cnt || cnt < 0) | 2509 | if (!cnt || cnt < 0) |
2514 | return 0; | 2510 | return 0; |
@@ -2517,35 +2513,31 @@ ftrace_graph_write(struct file *file, const char __user *ubuf, | |||
2517 | 2513 | ||
2518 | if (ftrace_graph_count >= FTRACE_GRAPH_MAX_FUNCS) { | 2514 | if (ftrace_graph_count >= FTRACE_GRAPH_MAX_FUNCS) { |
2519 | ret = -EBUSY; | 2515 | ret = -EBUSY; |
2520 | goto out; | 2516 | goto out_unlock; |
2521 | } | 2517 | } |
2522 | 2518 | ||
2523 | if (file->f_mode & FMODE_READ) { | ||
2524 | struct seq_file *m = file->private_data; | ||
2525 | array = m->private; | ||
2526 | } else | ||
2527 | array = file->private_data; | ||
2528 | |||
2529 | if (trace_parser_get_init(&parser, FTRACE_BUFF_MAX)) { | 2519 | if (trace_parser_get_init(&parser, FTRACE_BUFF_MAX)) { |
2530 | ret = -ENOMEM; | 2520 | ret = -ENOMEM; |
2531 | goto out; | 2521 | goto out_unlock; |
2532 | } | 2522 | } |
2533 | 2523 | ||
2534 | read = trace_get_user(&parser, ubuf, cnt, ppos); | 2524 | read = trace_get_user(&parser, ubuf, cnt, ppos); |
2535 | 2525 | ||
2536 | if (trace_parser_loaded((&parser))) { | 2526 | if (read >= 0 && trace_parser_loaded((&parser))) { |
2537 | parser.buffer[parser.idx] = 0; | 2527 | parser.buffer[parser.idx] = 0; |
2538 | 2528 | ||
2539 | /* we allow only one expression at a time */ | 2529 | /* we allow only one expression at a time */ |
2540 | ret = ftrace_set_func(array, &ftrace_graph_count, | 2530 | ret = ftrace_set_func(ftrace_graph_funcs, &ftrace_graph_count, |
2541 | parser.buffer); | 2531 | parser.buffer); |
2542 | if (ret) | 2532 | if (ret) |
2543 | goto out; | 2533 | goto out_free; |
2544 | } | 2534 | } |
2545 | 2535 | ||
2546 | ret = read; | 2536 | ret = read; |
2547 | out: | 2537 | |
2538 | out_free: | ||
2548 | trace_parser_put(&parser); | 2539 | trace_parser_put(&parser); |
2540 | out_unlock: | ||
2549 | mutex_unlock(&graph_lock); | 2541 | mutex_unlock(&graph_lock); |
2550 | 2542 | ||
2551 | return ret; | 2543 | return ret; |
@@ -2976,7 +2968,7 @@ int unregister_ftrace_function(struct ftrace_ops *ops) | |||
2976 | 2968 | ||
2977 | int | 2969 | int |
2978 | ftrace_enable_sysctl(struct ctl_table *table, int write, | 2970 | ftrace_enable_sysctl(struct ctl_table *table, int write, |
2979 | struct file *file, void __user *buffer, size_t *lenp, | 2971 | void __user *buffer, size_t *lenp, |
2980 | loff_t *ppos) | 2972 | loff_t *ppos) |
2981 | { | 2973 | { |
2982 | int ret; | 2974 | int ret; |
@@ -2986,7 +2978,7 @@ ftrace_enable_sysctl(struct ctl_table *table, int write, | |||
2986 | 2978 | ||
2987 | mutex_lock(&ftrace_lock); | 2979 | mutex_lock(&ftrace_lock); |
2988 | 2980 | ||
2989 | ret = proc_dointvec(table, write, file, buffer, lenp, ppos); | 2981 | ret = proc_dointvec(table, write, buffer, lenp, ppos); |
2990 | 2982 | ||
2991 | if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled)) | 2983 | if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled)) |
2992 | goto out; | 2984 | goto out; |
diff --git a/kernel/trace/power-traces.c b/kernel/trace/power-traces.c new file mode 100644 index 000000000000..e06c6e3d56a3 --- /dev/null +++ b/kernel/trace/power-traces.c | |||
@@ -0,0 +1,20 @@ | |||
1 | /* | ||
2 | * Power trace points | ||
3 | * | ||
4 | * Copyright (C) 2009 Arjan van de Ven <arjan@linux.intel.com> | ||
5 | */ | ||
6 | |||
7 | #include <linux/string.h> | ||
8 | #include <linux/types.h> | ||
9 | #include <linux/workqueue.h> | ||
10 | #include <linux/sched.h> | ||
11 | #include <linux/module.h> | ||
12 | #include <linux/slab.h> | ||
13 | |||
14 | #define CREATE_TRACE_POINTS | ||
15 | #include <trace/events/power.h> | ||
16 | |||
17 | EXPORT_TRACEPOINT_SYMBOL_GPL(power_start); | ||
18 | EXPORT_TRACEPOINT_SYMBOL_GPL(power_end); | ||
19 | EXPORT_TRACEPOINT_SYMBOL_GPL(power_frequency); | ||
20 | |||
diff --git a/kernel/trace/ring_buffer.c b/kernel/trace/ring_buffer.c index 6eef38923b07..d4ff01970547 100644 --- a/kernel/trace/ring_buffer.c +++ b/kernel/trace/ring_buffer.c | |||
@@ -201,8 +201,6 @@ int tracing_is_on(void) | |||
201 | } | 201 | } |
202 | EXPORT_SYMBOL_GPL(tracing_is_on); | 202 | EXPORT_SYMBOL_GPL(tracing_is_on); |
203 | 203 | ||
204 | #include "trace.h" | ||
205 | |||
206 | #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) | 204 | #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) |
207 | #define RB_ALIGNMENT 4U | 205 | #define RB_ALIGNMENT 4U |
208 | #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) | 206 | #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) |
diff --git a/kernel/trace/trace.c b/kernel/trace/trace.c index fd52a19dd172..45068269ebb1 100644 --- a/kernel/trace/trace.c +++ b/kernel/trace/trace.c | |||
@@ -125,13 +125,13 @@ int ftrace_dump_on_oops; | |||
125 | 125 | ||
126 | static int tracing_set_tracer(const char *buf); | 126 | static int tracing_set_tracer(const char *buf); |
127 | 127 | ||
128 | #define BOOTUP_TRACER_SIZE 100 | 128 | #define MAX_TRACER_SIZE 100 |
129 | static char bootup_tracer_buf[BOOTUP_TRACER_SIZE] __initdata; | 129 | static char bootup_tracer_buf[MAX_TRACER_SIZE] __initdata; |
130 | static char *default_bootup_tracer; | 130 | static char *default_bootup_tracer; |
131 | 131 | ||
132 | static int __init set_ftrace(char *str) | 132 | static int __init set_ftrace(char *str) |
133 | { | 133 | { |
134 | strncpy(bootup_tracer_buf, str, BOOTUP_TRACER_SIZE); | 134 | strncpy(bootup_tracer_buf, str, MAX_TRACER_SIZE); |
135 | default_bootup_tracer = bootup_tracer_buf; | 135 | default_bootup_tracer = bootup_tracer_buf; |
136 | /* We are using ftrace early, expand it */ | 136 | /* We are using ftrace early, expand it */ |
137 | ring_buffer_expanded = 1; | 137 | ring_buffer_expanded = 1; |
@@ -242,13 +242,6 @@ static struct tracer *trace_types __read_mostly; | |||
242 | static struct tracer *current_trace __read_mostly; | 242 | static struct tracer *current_trace __read_mostly; |
243 | 243 | ||
244 | /* | 244 | /* |
245 | * max_tracer_type_len is used to simplify the allocating of | ||
246 | * buffers to read userspace tracer names. We keep track of | ||
247 | * the longest tracer name registered. | ||
248 | */ | ||
249 | static int max_tracer_type_len; | ||
250 | |||
251 | /* | ||
252 | * trace_types_lock is used to protect the trace_types list. | 245 | * trace_types_lock is used to protect the trace_types list. |
253 | * This lock is also used to keep user access serialized. | 246 | * This lock is also used to keep user access serialized. |
254 | * Accesses from userspace will grab this lock while userspace | 247 | * Accesses from userspace will grab this lock while userspace |
@@ -275,12 +268,18 @@ static DEFINE_SPINLOCK(tracing_start_lock); | |||
275 | */ | 268 | */ |
276 | void trace_wake_up(void) | 269 | void trace_wake_up(void) |
277 | { | 270 | { |
271 | int cpu; | ||
272 | |||
273 | if (trace_flags & TRACE_ITER_BLOCK) | ||
274 | return; | ||
278 | /* | 275 | /* |
279 | * The runqueue_is_locked() can fail, but this is the best we | 276 | * The runqueue_is_locked() can fail, but this is the best we |
280 | * have for now: | 277 | * have for now: |
281 | */ | 278 | */ |
282 | if (!(trace_flags & TRACE_ITER_BLOCK) && !runqueue_is_locked()) | 279 | cpu = get_cpu(); |
280 | if (!runqueue_is_locked(cpu)) | ||
283 | wake_up(&trace_wait); | 281 | wake_up(&trace_wait); |
282 | put_cpu(); | ||
284 | } | 283 | } |
285 | 284 | ||
286 | static int __init set_buf_size(char *str) | 285 | static int __init set_buf_size(char *str) |
@@ -416,7 +415,7 @@ int trace_get_user(struct trace_parser *parser, const char __user *ubuf, | |||
416 | 415 | ||
417 | /* read the non-space input */ | 416 | /* read the non-space input */ |
418 | while (cnt && !isspace(ch)) { | 417 | while (cnt && !isspace(ch)) { |
419 | if (parser->idx < parser->size) | 418 | if (parser->idx < parser->size - 1) |
420 | parser->buffer[parser->idx++] = ch; | 419 | parser->buffer[parser->idx++] = ch; |
421 | else { | 420 | else { |
422 | ret = -EINVAL; | 421 | ret = -EINVAL; |
@@ -619,7 +618,6 @@ __releases(kernel_lock) | |||
619 | __acquires(kernel_lock) | 618 | __acquires(kernel_lock) |
620 | { | 619 | { |
621 | struct tracer *t; | 620 | struct tracer *t; |
622 | int len; | ||
623 | int ret = 0; | 621 | int ret = 0; |
624 | 622 | ||
625 | if (!type->name) { | 623 | if (!type->name) { |
@@ -627,6 +625,11 @@ __acquires(kernel_lock) | |||
627 | return -1; | 625 | return -1; |
628 | } | 626 | } |
629 | 627 | ||
628 | if (strlen(type->name) > MAX_TRACER_SIZE) { | ||
629 | pr_info("Tracer has a name longer than %d\n", MAX_TRACER_SIZE); | ||
630 | return -1; | ||
631 | } | ||
632 | |||
630 | /* | 633 | /* |
631 | * When this gets called we hold the BKL which means that | 634 | * When this gets called we hold the BKL which means that |
632 | * preemption is disabled. Various trace selftests however | 635 | * preemption is disabled. Various trace selftests however |
@@ -641,7 +644,7 @@ __acquires(kernel_lock) | |||
641 | for (t = trace_types; t; t = t->next) { | 644 | for (t = trace_types; t; t = t->next) { |
642 | if (strcmp(type->name, t->name) == 0) { | 645 | if (strcmp(type->name, t->name) == 0) { |
643 | /* already found */ | 646 | /* already found */ |
644 | pr_info("Trace %s already registered\n", | 647 | pr_info("Tracer %s already registered\n", |
645 | type->name); | 648 | type->name); |
646 | ret = -1; | 649 | ret = -1; |
647 | goto out; | 650 | goto out; |
@@ -692,9 +695,6 @@ __acquires(kernel_lock) | |||
692 | 695 | ||
693 | type->next = trace_types; | 696 | type->next = trace_types; |
694 | trace_types = type; | 697 | trace_types = type; |
695 | len = strlen(type->name); | ||
696 | if (len > max_tracer_type_len) | ||
697 | max_tracer_type_len = len; | ||
698 | 698 | ||
699 | out: | 699 | out: |
700 | tracing_selftest_running = false; | 700 | tracing_selftest_running = false; |
@@ -703,7 +703,7 @@ __acquires(kernel_lock) | |||
703 | if (ret || !default_bootup_tracer) | 703 | if (ret || !default_bootup_tracer) |
704 | goto out_unlock; | 704 | goto out_unlock; |
705 | 705 | ||
706 | if (strncmp(default_bootup_tracer, type->name, BOOTUP_TRACER_SIZE)) | 706 | if (strncmp(default_bootup_tracer, type->name, MAX_TRACER_SIZE)) |
707 | goto out_unlock; | 707 | goto out_unlock; |
708 | 708 | ||
709 | printk(KERN_INFO "Starting tracer '%s'\n", type->name); | 709 | printk(KERN_INFO "Starting tracer '%s'\n", type->name); |
@@ -725,14 +725,13 @@ __acquires(kernel_lock) | |||
725 | void unregister_tracer(struct tracer *type) | 725 | void unregister_tracer(struct tracer *type) |
726 | { | 726 | { |
727 | struct tracer **t; | 727 | struct tracer **t; |
728 | int len; | ||
729 | 728 | ||
730 | mutex_lock(&trace_types_lock); | 729 | mutex_lock(&trace_types_lock); |
731 | for (t = &trace_types; *t; t = &(*t)->next) { | 730 | for (t = &trace_types; *t; t = &(*t)->next) { |
732 | if (*t == type) | 731 | if (*t == type) |
733 | goto found; | 732 | goto found; |
734 | } | 733 | } |
735 | pr_info("Trace %s not registered\n", type->name); | 734 | pr_info("Tracer %s not registered\n", type->name); |
736 | goto out; | 735 | goto out; |
737 | 736 | ||
738 | found: | 737 | found: |
@@ -745,17 +744,7 @@ void unregister_tracer(struct tracer *type) | |||
745 | current_trace->stop(&global_trace); | 744 | current_trace->stop(&global_trace); |
746 | current_trace = &nop_trace; | 745 | current_trace = &nop_trace; |
747 | } | 746 | } |
748 | 747 | out: | |
749 | if (strlen(type->name) != max_tracer_type_len) | ||
750 | goto out; | ||
751 | |||
752 | max_tracer_type_len = 0; | ||
753 | for (t = &trace_types; *t; t = &(*t)->next) { | ||
754 | len = strlen((*t)->name); | ||
755 | if (len > max_tracer_type_len) | ||
756 | max_tracer_type_len = len; | ||
757 | } | ||
758 | out: | ||
759 | mutex_unlock(&trace_types_lock); | 748 | mutex_unlock(&trace_types_lock); |
760 | } | 749 | } |
761 | 750 | ||
@@ -1960,7 +1949,7 @@ static int s_show(struct seq_file *m, void *v) | |||
1960 | return 0; | 1949 | return 0; |
1961 | } | 1950 | } |
1962 | 1951 | ||
1963 | static struct seq_operations tracer_seq_ops = { | 1952 | static const struct seq_operations tracer_seq_ops = { |
1964 | .start = s_start, | 1953 | .start = s_start, |
1965 | .next = s_next, | 1954 | .next = s_next, |
1966 | .stop = s_stop, | 1955 | .stop = s_stop, |
@@ -1995,11 +1984,9 @@ __tracing_open(struct inode *inode, struct file *file) | |||
1995 | if (current_trace) | 1984 | if (current_trace) |
1996 | *iter->trace = *current_trace; | 1985 | *iter->trace = *current_trace; |
1997 | 1986 | ||
1998 | if (!alloc_cpumask_var(&iter->started, GFP_KERNEL)) | 1987 | if (!zalloc_cpumask_var(&iter->started, GFP_KERNEL)) |
1999 | goto fail; | 1988 | goto fail; |
2000 | 1989 | ||
2001 | cpumask_clear(iter->started); | ||
2002 | |||
2003 | if (current_trace && current_trace->print_max) | 1990 | if (current_trace && current_trace->print_max) |
2004 | iter->tr = &max_tr; | 1991 | iter->tr = &max_tr; |
2005 | else | 1992 | else |
@@ -2174,7 +2161,7 @@ static int t_show(struct seq_file *m, void *v) | |||
2174 | return 0; | 2161 | return 0; |
2175 | } | 2162 | } |
2176 | 2163 | ||
2177 | static struct seq_operations show_traces_seq_ops = { | 2164 | static const struct seq_operations show_traces_seq_ops = { |
2178 | .start = t_start, | 2165 | .start = t_start, |
2179 | .next = t_next, | 2166 | .next = t_next, |
2180 | .stop = t_stop, | 2167 | .stop = t_stop, |
@@ -2604,7 +2591,7 @@ static ssize_t | |||
2604 | tracing_set_trace_read(struct file *filp, char __user *ubuf, | 2591 | tracing_set_trace_read(struct file *filp, char __user *ubuf, |
2605 | size_t cnt, loff_t *ppos) | 2592 | size_t cnt, loff_t *ppos) |
2606 | { | 2593 | { |
2607 | char buf[max_tracer_type_len+2]; | 2594 | char buf[MAX_TRACER_SIZE+2]; |
2608 | int r; | 2595 | int r; |
2609 | 2596 | ||
2610 | mutex_lock(&trace_types_lock); | 2597 | mutex_lock(&trace_types_lock); |
@@ -2754,15 +2741,15 @@ static ssize_t | |||
2754 | tracing_set_trace_write(struct file *filp, const char __user *ubuf, | 2741 | tracing_set_trace_write(struct file *filp, const char __user *ubuf, |
2755 | size_t cnt, loff_t *ppos) | 2742 | size_t cnt, loff_t *ppos) |
2756 | { | 2743 | { |
2757 | char buf[max_tracer_type_len+1]; | 2744 | char buf[MAX_TRACER_SIZE+1]; |
2758 | int i; | 2745 | int i; |
2759 | size_t ret; | 2746 | size_t ret; |
2760 | int err; | 2747 | int err; |
2761 | 2748 | ||
2762 | ret = cnt; | 2749 | ret = cnt; |
2763 | 2750 | ||
2764 | if (cnt > max_tracer_type_len) | 2751 | if (cnt > MAX_TRACER_SIZE) |
2765 | cnt = max_tracer_type_len; | 2752 | cnt = MAX_TRACER_SIZE; |
2766 | 2753 | ||
2767 | if (copy_from_user(&buf, ubuf, cnt)) | 2754 | if (copy_from_user(&buf, ubuf, cnt)) |
2768 | return -EFAULT; | 2755 | return -EFAULT; |
@@ -4400,7 +4387,7 @@ __init static int tracer_alloc_buffers(void) | |||
4400 | if (!alloc_cpumask_var(&tracing_cpumask, GFP_KERNEL)) | 4387 | if (!alloc_cpumask_var(&tracing_cpumask, GFP_KERNEL)) |
4401 | goto out_free_buffer_mask; | 4388 | goto out_free_buffer_mask; |
4402 | 4389 | ||
4403 | if (!alloc_cpumask_var(&tracing_reader_cpumask, GFP_KERNEL)) | 4390 | if (!zalloc_cpumask_var(&tracing_reader_cpumask, GFP_KERNEL)) |
4404 | goto out_free_tracing_cpumask; | 4391 | goto out_free_tracing_cpumask; |
4405 | 4392 | ||
4406 | /* To save memory, keep the ring buffer size to its minimum */ | 4393 | /* To save memory, keep the ring buffer size to its minimum */ |
@@ -4411,7 +4398,6 @@ __init static int tracer_alloc_buffers(void) | |||
4411 | 4398 | ||
4412 | cpumask_copy(tracing_buffer_mask, cpu_possible_mask); | 4399 | cpumask_copy(tracing_buffer_mask, cpu_possible_mask); |
4413 | cpumask_copy(tracing_cpumask, cpu_all_mask); | 4400 | cpumask_copy(tracing_cpumask, cpu_all_mask); |
4414 | cpumask_clear(tracing_reader_cpumask); | ||
4415 | 4401 | ||
4416 | /* TODO: make the number of buffers hot pluggable with CPUS */ | 4402 | /* TODO: make the number of buffers hot pluggable with CPUS */ |
4417 | global_trace.buffer = ring_buffer_alloc(ring_buf_size, | 4403 | global_trace.buffer = ring_buffer_alloc(ring_buf_size, |
diff --git a/kernel/trace/trace.h b/kernel/trace/trace.h index db6b83edd49b..365fb19d9e11 100644 --- a/kernel/trace/trace.h +++ b/kernel/trace/trace.h | |||
@@ -11,7 +11,6 @@ | |||
11 | #include <linux/ftrace.h> | 11 | #include <linux/ftrace.h> |
12 | #include <trace/boot.h> | 12 | #include <trace/boot.h> |
13 | #include <linux/kmemtrace.h> | 13 | #include <linux/kmemtrace.h> |
14 | #include <trace/power.h> | ||
15 | 14 | ||
16 | #include <linux/trace_seq.h> | 15 | #include <linux/trace_seq.h> |
17 | #include <linux/ftrace_event.h> | 16 | #include <linux/ftrace_event.h> |
@@ -37,7 +36,6 @@ enum trace_type { | |||
37 | TRACE_HW_BRANCHES, | 36 | TRACE_HW_BRANCHES, |
38 | TRACE_KMEM_ALLOC, | 37 | TRACE_KMEM_ALLOC, |
39 | TRACE_KMEM_FREE, | 38 | TRACE_KMEM_FREE, |
40 | TRACE_POWER, | ||
41 | TRACE_BLK, | 39 | TRACE_BLK, |
42 | 40 | ||
43 | __TRACE_LAST_TYPE, | 41 | __TRACE_LAST_TYPE, |
@@ -207,7 +205,6 @@ extern void __ftrace_bad_type(void); | |||
207 | IF_ASSIGN(var, ent, struct ftrace_graph_ret_entry, \ | 205 | IF_ASSIGN(var, ent, struct ftrace_graph_ret_entry, \ |
208 | TRACE_GRAPH_RET); \ | 206 | TRACE_GRAPH_RET); \ |
209 | IF_ASSIGN(var, ent, struct hw_branch_entry, TRACE_HW_BRANCHES);\ | 207 | IF_ASSIGN(var, ent, struct hw_branch_entry, TRACE_HW_BRANCHES);\ |
210 | IF_ASSIGN(var, ent, struct trace_power, TRACE_POWER); \ | ||
211 | IF_ASSIGN(var, ent, struct kmemtrace_alloc_entry, \ | 208 | IF_ASSIGN(var, ent, struct kmemtrace_alloc_entry, \ |
212 | TRACE_KMEM_ALLOC); \ | 209 | TRACE_KMEM_ALLOC); \ |
213 | IF_ASSIGN(var, ent, struct kmemtrace_free_entry, \ | 210 | IF_ASSIGN(var, ent, struct kmemtrace_free_entry, \ |
diff --git a/kernel/trace/trace_entries.h b/kernel/trace/trace_entries.h index a431748ddd6e..ead3d724599d 100644 --- a/kernel/trace/trace_entries.h +++ b/kernel/trace/trace_entries.h | |||
@@ -330,23 +330,6 @@ FTRACE_ENTRY(hw_branch, hw_branch_entry, | |||
330 | F_printk("from: %llx to: %llx", __entry->from, __entry->to) | 330 | F_printk("from: %llx to: %llx", __entry->from, __entry->to) |
331 | ); | 331 | ); |
332 | 332 | ||
333 | FTRACE_ENTRY(power, trace_power, | ||
334 | |||
335 | TRACE_POWER, | ||
336 | |||
337 | F_STRUCT( | ||
338 | __field_struct( struct power_trace, state_data ) | ||
339 | __field_desc( s64, state_data, stamp ) | ||
340 | __field_desc( s64, state_data, end ) | ||
341 | __field_desc( int, state_data, type ) | ||
342 | __field_desc( int, state_data, state ) | ||
343 | ), | ||
344 | |||
345 | F_printk("%llx->%llx type:%u state:%u", | ||
346 | __entry->stamp, __entry->end, | ||
347 | __entry->type, __entry->state) | ||
348 | ); | ||
349 | |||
350 | FTRACE_ENTRY(kmem_alloc, kmemtrace_alloc_entry, | 333 | FTRACE_ENTRY(kmem_alloc, kmemtrace_alloc_entry, |
351 | 334 | ||
352 | TRACE_KMEM_ALLOC, | 335 | TRACE_KMEM_ALLOC, |
diff --git a/kernel/trace/trace_event_profile.c b/kernel/trace/trace_event_profile.c index 55a25c933d15..dd44b8768867 100644 --- a/kernel/trace/trace_event_profile.c +++ b/kernel/trace/trace_event_profile.c | |||
@@ -8,6 +8,57 @@ | |||
8 | #include <linux/module.h> | 8 | #include <linux/module.h> |
9 | #include "trace.h" | 9 | #include "trace.h" |
10 | 10 | ||
11 | /* | ||
12 | * We can't use a size but a type in alloc_percpu() | ||
13 | * So let's create a dummy type that matches the desired size | ||
14 | */ | ||
15 | typedef struct {char buf[FTRACE_MAX_PROFILE_SIZE];} profile_buf_t; | ||
16 | |||
17 | char *trace_profile_buf; | ||
18 | EXPORT_SYMBOL_GPL(trace_profile_buf); | ||
19 | |||
20 | char *trace_profile_buf_nmi; | ||
21 | EXPORT_SYMBOL_GPL(trace_profile_buf_nmi); | ||
22 | |||
23 | /* Count the events in use (per event id, not per instance) */ | ||
24 | static int total_profile_count; | ||
25 | |||
26 | static int ftrace_profile_enable_event(struct ftrace_event_call *event) | ||
27 | { | ||
28 | char *buf; | ||
29 | int ret = -ENOMEM; | ||
30 | |||
31 | if (atomic_inc_return(&event->profile_count)) | ||
32 | return 0; | ||
33 | |||
34 | if (!total_profile_count++) { | ||
35 | buf = (char *)alloc_percpu(profile_buf_t); | ||
36 | if (!buf) | ||
37 | goto fail_buf; | ||
38 | |||
39 | rcu_assign_pointer(trace_profile_buf, buf); | ||
40 | |||
41 | buf = (char *)alloc_percpu(profile_buf_t); | ||
42 | if (!buf) | ||
43 | goto fail_buf_nmi; | ||
44 | |||
45 | rcu_assign_pointer(trace_profile_buf_nmi, buf); | ||
46 | } | ||
47 | |||
48 | ret = event->profile_enable(); | ||
49 | if (!ret) | ||
50 | return 0; | ||
51 | |||
52 | kfree(trace_profile_buf_nmi); | ||
53 | fail_buf_nmi: | ||
54 | kfree(trace_profile_buf); | ||
55 | fail_buf: | ||
56 | total_profile_count--; | ||
57 | atomic_dec(&event->profile_count); | ||
58 | |||
59 | return ret; | ||
60 | } | ||
61 | |||
11 | int ftrace_profile_enable(int event_id) | 62 | int ftrace_profile_enable(int event_id) |
12 | { | 63 | { |
13 | struct ftrace_event_call *event; | 64 | struct ftrace_event_call *event; |
@@ -17,7 +68,7 @@ int ftrace_profile_enable(int event_id) | |||
17 | list_for_each_entry(event, &ftrace_events, list) { | 68 | list_for_each_entry(event, &ftrace_events, list) { |
18 | if (event->id == event_id && event->profile_enable && | 69 | if (event->id == event_id && event->profile_enable && |
19 | try_module_get(event->mod)) { | 70 | try_module_get(event->mod)) { |
20 | ret = event->profile_enable(event); | 71 | ret = ftrace_profile_enable_event(event); |
21 | break; | 72 | break; |
22 | } | 73 | } |
23 | } | 74 | } |
@@ -26,6 +77,33 @@ int ftrace_profile_enable(int event_id) | |||
26 | return ret; | 77 | return ret; |
27 | } | 78 | } |
28 | 79 | ||
80 | static void ftrace_profile_disable_event(struct ftrace_event_call *event) | ||
81 | { | ||
82 | char *buf, *nmi_buf; | ||
83 | |||
84 | if (!atomic_add_negative(-1, &event->profile_count)) | ||
85 | return; | ||
86 | |||
87 | event->profile_disable(); | ||
88 | |||
89 | if (!--total_profile_count) { | ||
90 | buf = trace_profile_buf; | ||
91 | rcu_assign_pointer(trace_profile_buf, NULL); | ||
92 | |||
93 | nmi_buf = trace_profile_buf_nmi; | ||
94 | rcu_assign_pointer(trace_profile_buf_nmi, NULL); | ||
95 | |||
96 | /* | ||
97 | * Ensure every events in profiling have finished before | ||
98 | * releasing the buffers | ||
99 | */ | ||
100 | synchronize_sched(); | ||
101 | |||
102 | free_percpu(buf); | ||
103 | free_percpu(nmi_buf); | ||
104 | } | ||
105 | } | ||
106 | |||
29 | void ftrace_profile_disable(int event_id) | 107 | void ftrace_profile_disable(int event_id) |
30 | { | 108 | { |
31 | struct ftrace_event_call *event; | 109 | struct ftrace_event_call *event; |
@@ -33,7 +111,7 @@ void ftrace_profile_disable(int event_id) | |||
33 | mutex_lock(&event_mutex); | 111 | mutex_lock(&event_mutex); |
34 | list_for_each_entry(event, &ftrace_events, list) { | 112 | list_for_each_entry(event, &ftrace_events, list) { |
35 | if (event->id == event_id) { | 113 | if (event->id == event_id) { |
36 | event->profile_disable(event); | 114 | ftrace_profile_disable_event(event); |
37 | module_put(event->mod); | 115 | module_put(event->mod); |
38 | break; | 116 | break; |
39 | } | 117 | } |
diff --git a/kernel/trace/trace_events.c b/kernel/trace/trace_events.c index 8c91b7c8f047..5e9ffc33f6db 100644 --- a/kernel/trace/trace_events.c +++ b/kernel/trace/trace_events.c | |||
@@ -232,10 +232,9 @@ ftrace_event_write(struct file *file, const char __user *ubuf, | |||
232 | size_t cnt, loff_t *ppos) | 232 | size_t cnt, loff_t *ppos) |
233 | { | 233 | { |
234 | struct trace_parser parser; | 234 | struct trace_parser parser; |
235 | size_t read = 0; | 235 | ssize_t read, ret; |
236 | ssize_t ret; | ||
237 | 236 | ||
238 | if (!cnt || cnt < 0) | 237 | if (!cnt) |
239 | return 0; | 238 | return 0; |
240 | 239 | ||
241 | ret = tracing_update_buffers(); | 240 | ret = tracing_update_buffers(); |
@@ -247,7 +246,7 @@ ftrace_event_write(struct file *file, const char __user *ubuf, | |||
247 | 246 | ||
248 | read = trace_get_user(&parser, ubuf, cnt, ppos); | 247 | read = trace_get_user(&parser, ubuf, cnt, ppos); |
249 | 248 | ||
250 | if (trace_parser_loaded((&parser))) { | 249 | if (read >= 0 && trace_parser_loaded((&parser))) { |
251 | int set = 1; | 250 | int set = 1; |
252 | 251 | ||
253 | if (*parser.buffer == '!') | 252 | if (*parser.buffer == '!') |
@@ -271,42 +270,32 @@ ftrace_event_write(struct file *file, const char __user *ubuf, | |||
271 | static void * | 270 | static void * |
272 | t_next(struct seq_file *m, void *v, loff_t *pos) | 271 | t_next(struct seq_file *m, void *v, loff_t *pos) |
273 | { | 272 | { |
274 | struct list_head *list = m->private; | 273 | struct ftrace_event_call *call = v; |
275 | struct ftrace_event_call *call; | ||
276 | 274 | ||
277 | (*pos)++; | 275 | (*pos)++; |
278 | 276 | ||
279 | for (;;) { | 277 | list_for_each_entry_continue(call, &ftrace_events, list) { |
280 | if (list == &ftrace_events) | ||
281 | return NULL; | ||
282 | |||
283 | call = list_entry(list, struct ftrace_event_call, list); | ||
284 | |||
285 | /* | 278 | /* |
286 | * The ftrace subsystem is for showing formats only. | 279 | * The ftrace subsystem is for showing formats only. |
287 | * They can not be enabled or disabled via the event files. | 280 | * They can not be enabled or disabled via the event files. |
288 | */ | 281 | */ |
289 | if (call->regfunc) | 282 | if (call->regfunc) |
290 | break; | 283 | return call; |
291 | |||
292 | list = list->next; | ||
293 | } | 284 | } |
294 | 285 | ||
295 | m->private = list->next; | 286 | return NULL; |
296 | |||
297 | return call; | ||
298 | } | 287 | } |
299 | 288 | ||
300 | static void *t_start(struct seq_file *m, loff_t *pos) | 289 | static void *t_start(struct seq_file *m, loff_t *pos) |
301 | { | 290 | { |
302 | struct ftrace_event_call *call = NULL; | 291 | struct ftrace_event_call *call; |
303 | loff_t l; | 292 | loff_t l; |
304 | 293 | ||
305 | mutex_lock(&event_mutex); | 294 | mutex_lock(&event_mutex); |
306 | 295 | ||
307 | m->private = ftrace_events.next; | 296 | call = list_entry(&ftrace_events, struct ftrace_event_call, list); |
308 | for (l = 0; l <= *pos; ) { | 297 | for (l = 0; l <= *pos; ) { |
309 | call = t_next(m, NULL, &l); | 298 | call = t_next(m, call, &l); |
310 | if (!call) | 299 | if (!call) |
311 | break; | 300 | break; |
312 | } | 301 | } |
@@ -316,37 +305,28 @@ static void *t_start(struct seq_file *m, loff_t *pos) | |||
316 | static void * | 305 | static void * |
317 | s_next(struct seq_file *m, void *v, loff_t *pos) | 306 | s_next(struct seq_file *m, void *v, loff_t *pos) |
318 | { | 307 | { |
319 | struct list_head *list = m->private; | 308 | struct ftrace_event_call *call = v; |
320 | struct ftrace_event_call *call; | ||
321 | 309 | ||
322 | (*pos)++; | 310 | (*pos)++; |
323 | 311 | ||
324 | retry: | 312 | list_for_each_entry_continue(call, &ftrace_events, list) { |
325 | if (list == &ftrace_events) | 313 | if (call->enabled) |
326 | return NULL; | 314 | return call; |
327 | |||
328 | call = list_entry(list, struct ftrace_event_call, list); | ||
329 | |||
330 | if (!call->enabled) { | ||
331 | list = list->next; | ||
332 | goto retry; | ||
333 | } | 315 | } |
334 | 316 | ||
335 | m->private = list->next; | 317 | return NULL; |
336 | |||
337 | return call; | ||
338 | } | 318 | } |
339 | 319 | ||
340 | static void *s_start(struct seq_file *m, loff_t *pos) | 320 | static void *s_start(struct seq_file *m, loff_t *pos) |
341 | { | 321 | { |
342 | struct ftrace_event_call *call = NULL; | 322 | struct ftrace_event_call *call; |
343 | loff_t l; | 323 | loff_t l; |
344 | 324 | ||
345 | mutex_lock(&event_mutex); | 325 | mutex_lock(&event_mutex); |
346 | 326 | ||
347 | m->private = ftrace_events.next; | 327 | call = list_entry(&ftrace_events, struct ftrace_event_call, list); |
348 | for (l = 0; l <= *pos; ) { | 328 | for (l = 0; l <= *pos; ) { |
349 | call = s_next(m, NULL, &l); | 329 | call = s_next(m, call, &l); |
350 | if (!call) | 330 | if (!call) |
351 | break; | 331 | break; |
352 | } | 332 | } |
diff --git a/kernel/trace/trace_hw_branches.c b/kernel/trace/trace_hw_branches.c index ca7d7c4d0c2a..23b63859130e 100644 --- a/kernel/trace/trace_hw_branches.c +++ b/kernel/trace/trace_hw_branches.c | |||
@@ -155,7 +155,7 @@ static enum print_line_t bts_trace_print_line(struct trace_iterator *iter) | |||
155 | seq_print_ip_sym(seq, it->from, symflags) && | 155 | seq_print_ip_sym(seq, it->from, symflags) && |
156 | trace_seq_printf(seq, "\n")) | 156 | trace_seq_printf(seq, "\n")) |
157 | return TRACE_TYPE_HANDLED; | 157 | return TRACE_TYPE_HANDLED; |
158 | return TRACE_TYPE_PARTIAL_LINE;; | 158 | return TRACE_TYPE_PARTIAL_LINE; |
159 | } | 159 | } |
160 | return TRACE_TYPE_UNHANDLED; | 160 | return TRACE_TYPE_UNHANDLED; |
161 | } | 161 | } |
diff --git a/kernel/trace/trace_power.c b/kernel/trace/trace_power.c deleted file mode 100644 index fe1a00f1445a..000000000000 --- a/kernel/trace/trace_power.c +++ /dev/null | |||
@@ -1,218 +0,0 @@ | |||
1 | /* | ||
2 | * ring buffer based C-state tracer | ||
3 | * | ||
4 | * Arjan van de Ven <arjan@linux.intel.com> | ||
5 | * Copyright (C) 2008 Intel Corporation | ||
6 | * | ||
7 | * Much is borrowed from trace_boot.c which is | ||
8 | * Copyright (C) 2008 Frederic Weisbecker <fweisbec@gmail.com> | ||
9 | * | ||
10 | */ | ||
11 | |||
12 | #include <linux/init.h> | ||
13 | #include <linux/debugfs.h> | ||
14 | #include <trace/power.h> | ||
15 | #include <linux/kallsyms.h> | ||
16 | #include <linux/module.h> | ||
17 | |||
18 | #include "trace.h" | ||
19 | #include "trace_output.h" | ||
20 | |||
21 | static struct trace_array *power_trace; | ||
22 | static int __read_mostly trace_power_enabled; | ||
23 | |||
24 | static void probe_power_start(struct power_trace *it, unsigned int type, | ||
25 | unsigned int level) | ||
26 | { | ||
27 | if (!trace_power_enabled) | ||
28 | return; | ||
29 | |||
30 | memset(it, 0, sizeof(struct power_trace)); | ||
31 | it->state = level; | ||
32 | it->type = type; | ||
33 | it->stamp = ktime_get(); | ||
34 | } | ||
35 | |||
36 | |||
37 | static void probe_power_end(struct power_trace *it) | ||
38 | { | ||
39 | struct ftrace_event_call *call = &event_power; | ||
40 | struct ring_buffer_event *event; | ||
41 | struct ring_buffer *buffer; | ||
42 | struct trace_power *entry; | ||
43 | struct trace_array_cpu *data; | ||
44 | struct trace_array *tr = power_trace; | ||
45 | |||
46 | if (!trace_power_enabled) | ||
47 | return; | ||
48 | |||
49 | buffer = tr->buffer; | ||
50 | |||
51 | preempt_disable(); | ||
52 | it->end = ktime_get(); | ||
53 | data = tr->data[smp_processor_id()]; | ||
54 | |||
55 | event = trace_buffer_lock_reserve(buffer, TRACE_POWER, | ||
56 | sizeof(*entry), 0, 0); | ||
57 | if (!event) | ||
58 | goto out; | ||
59 | entry = ring_buffer_event_data(event); | ||
60 | entry->state_data = *it; | ||
61 | if (!filter_check_discard(call, entry, buffer, event)) | ||
62 | trace_buffer_unlock_commit(buffer, event, 0, 0); | ||
63 | out: | ||
64 | preempt_enable(); | ||
65 | } | ||
66 | |||
67 | static void probe_power_mark(struct power_trace *it, unsigned int type, | ||
68 | unsigned int level) | ||
69 | { | ||
70 | struct ftrace_event_call *call = &event_power; | ||
71 | struct ring_buffer_event *event; | ||
72 | struct ring_buffer *buffer; | ||
73 | struct trace_power *entry; | ||
74 | struct trace_array_cpu *data; | ||
75 | struct trace_array *tr = power_trace; | ||
76 | |||
77 | if (!trace_power_enabled) | ||
78 | return; | ||
79 | |||
80 | buffer = tr->buffer; | ||
81 | |||
82 | memset(it, 0, sizeof(struct power_trace)); | ||
83 | it->state = level; | ||
84 | it->type = type; | ||
85 | it->stamp = ktime_get(); | ||
86 | preempt_disable(); | ||
87 | it->end = it->stamp; | ||
88 | data = tr->data[smp_processor_id()]; | ||
89 | |||
90 | event = trace_buffer_lock_reserve(buffer, TRACE_POWER, | ||
91 | sizeof(*entry), 0, 0); | ||
92 | if (!event) | ||
93 | goto out; | ||
94 | entry = ring_buffer_event_data(event); | ||
95 | entry->state_data = *it; | ||
96 | if (!filter_check_discard(call, entry, buffer, event)) | ||
97 | trace_buffer_unlock_commit(buffer, event, 0, 0); | ||
98 | out: | ||
99 | preempt_enable(); | ||
100 | } | ||
101 | |||
102 | static int tracing_power_register(void) | ||
103 | { | ||
104 | int ret; | ||
105 | |||
106 | ret = register_trace_power_start(probe_power_start); | ||
107 | if (ret) { | ||
108 | pr_info("power trace: Couldn't activate tracepoint" | ||
109 | " probe to trace_power_start\n"); | ||
110 | return ret; | ||
111 | } | ||
112 | ret = register_trace_power_end(probe_power_end); | ||
113 | if (ret) { | ||
114 | pr_info("power trace: Couldn't activate tracepoint" | ||
115 | " probe to trace_power_end\n"); | ||
116 | goto fail_start; | ||
117 | } | ||
118 | ret = register_trace_power_mark(probe_power_mark); | ||
119 | if (ret) { | ||
120 | pr_info("power trace: Couldn't activate tracepoint" | ||
121 | " probe to trace_power_mark\n"); | ||
122 | goto fail_end; | ||
123 | } | ||
124 | return ret; | ||
125 | fail_end: | ||
126 | unregister_trace_power_end(probe_power_end); | ||
127 | fail_start: | ||
128 | unregister_trace_power_start(probe_power_start); | ||
129 | return ret; | ||
130 | } | ||
131 | |||
132 | static void start_power_trace(struct trace_array *tr) | ||
133 | { | ||
134 | trace_power_enabled = 1; | ||
135 | } | ||
136 | |||
137 | static void stop_power_trace(struct trace_array *tr) | ||
138 | { | ||
139 | trace_power_enabled = 0; | ||
140 | } | ||
141 | |||
142 | static void power_trace_reset(struct trace_array *tr) | ||
143 | { | ||
144 | trace_power_enabled = 0; | ||
145 | unregister_trace_power_start(probe_power_start); | ||
146 | unregister_trace_power_end(probe_power_end); | ||
147 | unregister_trace_power_mark(probe_power_mark); | ||
148 | } | ||
149 | |||
150 | |||
151 | static int power_trace_init(struct trace_array *tr) | ||
152 | { | ||
153 | power_trace = tr; | ||
154 | |||
155 | trace_power_enabled = 1; | ||
156 | tracing_power_register(); | ||
157 | |||
158 | tracing_reset_online_cpus(tr); | ||
159 | return 0; | ||
160 | } | ||
161 | |||
162 | static enum print_line_t power_print_line(struct trace_iterator *iter) | ||
163 | { | ||
164 | int ret = 0; | ||
165 | struct trace_entry *entry = iter->ent; | ||
166 | struct trace_power *field ; | ||
167 | struct power_trace *it; | ||
168 | struct trace_seq *s = &iter->seq; | ||
169 | struct timespec stamp; | ||
170 | struct timespec duration; | ||
171 | |||
172 | trace_assign_type(field, entry); | ||
173 | it = &field->state_data; | ||
174 | stamp = ktime_to_timespec(it->stamp); | ||
175 | duration = ktime_to_timespec(ktime_sub(it->end, it->stamp)); | ||
176 | |||
177 | if (entry->type == TRACE_POWER) { | ||
178 | if (it->type == POWER_CSTATE) | ||
179 | ret = trace_seq_printf(s, "[%5ld.%09ld] CSTATE: Going to C%i on cpu %i for %ld.%09ld\n", | ||
180 | stamp.tv_sec, | ||
181 | stamp.tv_nsec, | ||
182 | it->state, iter->cpu, | ||
183 | duration.tv_sec, | ||
184 | duration.tv_nsec); | ||
185 | if (it->type == POWER_PSTATE) | ||
186 | ret = trace_seq_printf(s, "[%5ld.%09ld] PSTATE: Going to P%i on cpu %i\n", | ||
187 | stamp.tv_sec, | ||
188 | stamp.tv_nsec, | ||
189 | it->state, iter->cpu); | ||
190 | if (!ret) | ||
191 | return TRACE_TYPE_PARTIAL_LINE; | ||
192 | return TRACE_TYPE_HANDLED; | ||
193 | } | ||
194 | return TRACE_TYPE_UNHANDLED; | ||
195 | } | ||
196 | |||
197 | static void power_print_header(struct seq_file *s) | ||
198 | { | ||
199 | seq_puts(s, "# TIMESTAMP STATE EVENT\n"); | ||
200 | seq_puts(s, "# | | |\n"); | ||
201 | } | ||
202 | |||
203 | static struct tracer power_tracer __read_mostly = | ||
204 | { | ||
205 | .name = "power", | ||
206 | .init = power_trace_init, | ||
207 | .start = start_power_trace, | ||
208 | .stop = stop_power_trace, | ||
209 | .reset = power_trace_reset, | ||
210 | .print_line = power_print_line, | ||
211 | .print_header = power_print_header, | ||
212 | }; | ||
213 | |||
214 | static int init_power_trace(void) | ||
215 | { | ||
216 | return register_tracer(&power_tracer); | ||
217 | } | ||
218 | device_initcall(init_power_trace); | ||
diff --git a/kernel/trace/trace_printk.c b/kernel/trace/trace_printk.c index 687699d365ae..2547d8813cf0 100644 --- a/kernel/trace/trace_printk.c +++ b/kernel/trace/trace_printk.c | |||
@@ -11,7 +11,6 @@ | |||
11 | #include <linux/ftrace.h> | 11 | #include <linux/ftrace.h> |
12 | #include <linux/string.h> | 12 | #include <linux/string.h> |
13 | #include <linux/module.h> | 13 | #include <linux/module.h> |
14 | #include <linux/marker.h> | ||
15 | #include <linux/mutex.h> | 14 | #include <linux/mutex.h> |
16 | #include <linux/ctype.h> | 15 | #include <linux/ctype.h> |
17 | #include <linux/list.h> | 16 | #include <linux/list.h> |
diff --git a/kernel/trace/trace_stack.c b/kernel/trace/trace_stack.c index 0f6facb050a1..8504ac71e4e8 100644 --- a/kernel/trace/trace_stack.c +++ b/kernel/trace/trace_stack.c | |||
@@ -296,14 +296,14 @@ static const struct file_operations stack_trace_fops = { | |||
296 | 296 | ||
297 | int | 297 | int |
298 | stack_trace_sysctl(struct ctl_table *table, int write, | 298 | stack_trace_sysctl(struct ctl_table *table, int write, |
299 | struct file *file, void __user *buffer, size_t *lenp, | 299 | void __user *buffer, size_t *lenp, |
300 | loff_t *ppos) | 300 | loff_t *ppos) |
301 | { | 301 | { |
302 | int ret; | 302 | int ret; |
303 | 303 | ||
304 | mutex_lock(&stack_sysctl_mutex); | 304 | mutex_lock(&stack_sysctl_mutex); |
305 | 305 | ||
306 | ret = proc_dointvec(table, write, file, buffer, lenp, ppos); | 306 | ret = proc_dointvec(table, write, buffer, lenp, ppos); |
307 | 307 | ||
308 | if (ret || !write || | 308 | if (ret || !write || |
309 | (last_stack_tracer_enabled == !!stack_tracer_enabled)) | 309 | (last_stack_tracer_enabled == !!stack_tracer_enabled)) |
diff --git a/kernel/trace/trace_syscalls.c b/kernel/trace/trace_syscalls.c index 8712ce3c6a0e..9fbce6c9d2e1 100644 --- a/kernel/trace/trace_syscalls.c +++ b/kernel/trace/trace_syscalls.c | |||
@@ -2,7 +2,7 @@ | |||
2 | #include <trace/events/syscalls.h> | 2 | #include <trace/events/syscalls.h> |
3 | #include <linux/kernel.h> | 3 | #include <linux/kernel.h> |
4 | #include <linux/ftrace.h> | 4 | #include <linux/ftrace.h> |
5 | #include <linux/perf_counter.h> | 5 | #include <linux/perf_event.h> |
6 | #include <asm/syscall.h> | 6 | #include <asm/syscall.h> |
7 | 7 | ||
8 | #include "trace_output.h" | 8 | #include "trace_output.h" |
@@ -384,10 +384,13 @@ static int sys_prof_refcount_exit; | |||
384 | 384 | ||
385 | static void prof_syscall_enter(struct pt_regs *regs, long id) | 385 | static void prof_syscall_enter(struct pt_regs *regs, long id) |
386 | { | 386 | { |
387 | struct syscall_trace_enter *rec; | ||
388 | struct syscall_metadata *sys_data; | 387 | struct syscall_metadata *sys_data; |
388 | struct syscall_trace_enter *rec; | ||
389 | unsigned long flags; | ||
390 | char *raw_data; | ||
389 | int syscall_nr; | 391 | int syscall_nr; |
390 | int size; | 392 | int size; |
393 | int cpu; | ||
391 | 394 | ||
392 | syscall_nr = syscall_get_nr(current, regs); | 395 | syscall_nr = syscall_get_nr(current, regs); |
393 | if (!test_bit(syscall_nr, enabled_prof_enter_syscalls)) | 396 | if (!test_bit(syscall_nr, enabled_prof_enter_syscalls)) |
@@ -402,20 +405,38 @@ static void prof_syscall_enter(struct pt_regs *regs, long id) | |||
402 | size = ALIGN(size + sizeof(u32), sizeof(u64)); | 405 | size = ALIGN(size + sizeof(u32), sizeof(u64)); |
403 | size -= sizeof(u32); | 406 | size -= sizeof(u32); |
404 | 407 | ||
405 | do { | 408 | if (WARN_ONCE(size > FTRACE_MAX_PROFILE_SIZE, |
406 | char raw_data[size]; | 409 | "profile buffer not large enough")) |
410 | return; | ||
411 | |||
412 | /* Protect the per cpu buffer, begin the rcu read side */ | ||
413 | local_irq_save(flags); | ||
407 | 414 | ||
408 | /* zero the dead bytes from align to not leak stack to user */ | 415 | cpu = smp_processor_id(); |
409 | *(u64 *)(&raw_data[size - sizeof(u64)]) = 0ULL; | 416 | |
417 | if (in_nmi()) | ||
418 | raw_data = rcu_dereference(trace_profile_buf_nmi); | ||
419 | else | ||
420 | raw_data = rcu_dereference(trace_profile_buf); | ||
421 | |||
422 | if (!raw_data) | ||
423 | goto end; | ||
410 | 424 | ||
411 | rec = (struct syscall_trace_enter *) raw_data; | 425 | raw_data = per_cpu_ptr(raw_data, cpu); |
412 | tracing_generic_entry_update(&rec->ent, 0, 0); | 426 | |
413 | rec->ent.type = sys_data->enter_id; | 427 | /* zero the dead bytes from align to not leak stack to user */ |
414 | rec->nr = syscall_nr; | 428 | *(u64 *)(&raw_data[size - sizeof(u64)]) = 0ULL; |
415 | syscall_get_arguments(current, regs, 0, sys_data->nb_args, | 429 | |
416 | (unsigned long *)&rec->args); | 430 | rec = (struct syscall_trace_enter *) raw_data; |
417 | perf_tpcounter_event(sys_data->enter_id, 0, 1, rec, size); | 431 | tracing_generic_entry_update(&rec->ent, 0, 0); |
418 | } while(0); | 432 | rec->ent.type = sys_data->enter_id; |
433 | rec->nr = syscall_nr; | ||
434 | syscall_get_arguments(current, regs, 0, sys_data->nb_args, | ||
435 | (unsigned long *)&rec->args); | ||
436 | perf_tp_event(sys_data->enter_id, 0, 1, rec, size); | ||
437 | |||
438 | end: | ||
439 | local_irq_restore(flags); | ||
419 | } | 440 | } |
420 | 441 | ||
421 | int reg_prof_syscall_enter(char *name) | 442 | int reg_prof_syscall_enter(char *name) |
@@ -460,8 +481,12 @@ void unreg_prof_syscall_enter(char *name) | |||
460 | static void prof_syscall_exit(struct pt_regs *regs, long ret) | 481 | static void prof_syscall_exit(struct pt_regs *regs, long ret) |
461 | { | 482 | { |
462 | struct syscall_metadata *sys_data; | 483 | struct syscall_metadata *sys_data; |
463 | struct syscall_trace_exit rec; | 484 | struct syscall_trace_exit *rec; |
485 | unsigned long flags; | ||
464 | int syscall_nr; | 486 | int syscall_nr; |
487 | char *raw_data; | ||
488 | int size; | ||
489 | int cpu; | ||
465 | 490 | ||
466 | syscall_nr = syscall_get_nr(current, regs); | 491 | syscall_nr = syscall_get_nr(current, regs); |
467 | if (!test_bit(syscall_nr, enabled_prof_exit_syscalls)) | 492 | if (!test_bit(syscall_nr, enabled_prof_exit_syscalls)) |
@@ -471,12 +496,46 @@ static void prof_syscall_exit(struct pt_regs *regs, long ret) | |||
471 | if (!sys_data) | 496 | if (!sys_data) |
472 | return; | 497 | return; |
473 | 498 | ||
474 | tracing_generic_entry_update(&rec.ent, 0, 0); | 499 | /* We can probably do that at build time */ |
475 | rec.ent.type = sys_data->exit_id; | 500 | size = ALIGN(sizeof(*rec) + sizeof(u32), sizeof(u64)); |
476 | rec.nr = syscall_nr; | 501 | size -= sizeof(u32); |
477 | rec.ret = syscall_get_return_value(current, regs); | ||
478 | 502 | ||
479 | perf_tpcounter_event(sys_data->exit_id, 0, 1, &rec, sizeof(rec)); | 503 | /* |
504 | * Impossible, but be paranoid with the future | ||
505 | * How to put this check outside runtime? | ||
506 | */ | ||
507 | if (WARN_ONCE(size > FTRACE_MAX_PROFILE_SIZE, | ||
508 | "exit event has grown above profile buffer size")) | ||
509 | return; | ||
510 | |||
511 | /* Protect the per cpu buffer, begin the rcu read side */ | ||
512 | local_irq_save(flags); | ||
513 | cpu = smp_processor_id(); | ||
514 | |||
515 | if (in_nmi()) | ||
516 | raw_data = rcu_dereference(trace_profile_buf_nmi); | ||
517 | else | ||
518 | raw_data = rcu_dereference(trace_profile_buf); | ||
519 | |||
520 | if (!raw_data) | ||
521 | goto end; | ||
522 | |||
523 | raw_data = per_cpu_ptr(raw_data, cpu); | ||
524 | |||
525 | /* zero the dead bytes from align to not leak stack to user */ | ||
526 | *(u64 *)(&raw_data[size - sizeof(u64)]) = 0ULL; | ||
527 | |||
528 | rec = (struct syscall_trace_exit *)raw_data; | ||
529 | |||
530 | tracing_generic_entry_update(&rec->ent, 0, 0); | ||
531 | rec->ent.type = sys_data->exit_id; | ||
532 | rec->nr = syscall_nr; | ||
533 | rec->ret = syscall_get_return_value(current, regs); | ||
534 | |||
535 | perf_tp_event(sys_data->exit_id, 0, 1, rec, size); | ||
536 | |||
537 | end: | ||
538 | local_irq_restore(flags); | ||
480 | } | 539 | } |
481 | 540 | ||
482 | int reg_prof_syscall_exit(char *name) | 541 | int reg_prof_syscall_exit(char *name) |
diff --git a/kernel/tracepoint.c b/kernel/tracepoint.c index 9489a0a9b1be..cc89be5bc0f8 100644 --- a/kernel/tracepoint.c +++ b/kernel/tracepoint.c | |||
@@ -48,7 +48,7 @@ static struct hlist_head tracepoint_table[TRACEPOINT_TABLE_SIZE]; | |||
48 | 48 | ||
49 | /* | 49 | /* |
50 | * Note about RCU : | 50 | * Note about RCU : |
51 | * It is used to to delay the free of multiple probes array until a quiescent | 51 | * It is used to delay the free of multiple probes array until a quiescent |
52 | * state is reached. | 52 | * state is reached. |
53 | * Tracepoint entries modifications are protected by the tracepoints_mutex. | 53 | * Tracepoint entries modifications are protected by the tracepoints_mutex. |
54 | */ | 54 | */ |
diff --git a/kernel/uid16.c b/kernel/uid16.c index 0314501688b9..419209893d87 100644 --- a/kernel/uid16.c +++ b/kernel/uid16.c | |||
@@ -4,7 +4,6 @@ | |||
4 | */ | 4 | */ |
5 | 5 | ||
6 | #include <linux/mm.h> | 6 | #include <linux/mm.h> |
7 | #include <linux/utsname.h> | ||
8 | #include <linux/mman.h> | 7 | #include <linux/mman.h> |
9 | #include <linux/notifier.h> | 8 | #include <linux/notifier.h> |
10 | #include <linux/reboot.h> | 9 | #include <linux/reboot.h> |
diff --git a/kernel/utsname_sysctl.c b/kernel/utsname_sysctl.c index 92359cc747a7..69eae358a726 100644 --- a/kernel/utsname_sysctl.c +++ b/kernel/utsname_sysctl.c | |||
@@ -42,14 +42,14 @@ static void put_uts(ctl_table *table, int write, void *which) | |||
42 | * Special case of dostring for the UTS structure. This has locks | 42 | * Special case of dostring for the UTS structure. This has locks |
43 | * to observe. Should this be in kernel/sys.c ???? | 43 | * to observe. Should this be in kernel/sys.c ???? |
44 | */ | 44 | */ |
45 | static int proc_do_uts_string(ctl_table *table, int write, struct file *filp, | 45 | static int proc_do_uts_string(ctl_table *table, int write, |
46 | void __user *buffer, size_t *lenp, loff_t *ppos) | 46 | void __user *buffer, size_t *lenp, loff_t *ppos) |
47 | { | 47 | { |
48 | struct ctl_table uts_table; | 48 | struct ctl_table uts_table; |
49 | int r; | 49 | int r; |
50 | memcpy(&uts_table, table, sizeof(uts_table)); | 50 | memcpy(&uts_table, table, sizeof(uts_table)); |
51 | uts_table.data = get_uts(table, write); | 51 | uts_table.data = get_uts(table, write); |
52 | r = proc_dostring(&uts_table,write,filp,buffer,lenp, ppos); | 52 | r = proc_dostring(&uts_table,write,buffer,lenp, ppos); |
53 | put_uts(table, write, uts_table.data); | 53 | put_uts(table, write, uts_table.data); |
54 | return r; | 54 | return r; |
55 | } | 55 | } |