diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2010-05-18 11:27:54 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2010-05-18 11:27:54 -0400 |
commit | b8ae30ee26d379db436b0b8c8c3ff1b52f69e5d1 (patch) | |
tree | 506aa0b4bdbf90f61e7e9261c7db90aa1452dcce /kernel | |
parent | 4d7b4ac22fbec1a03206c6cde353f2fd6942f828 (diff) | |
parent | 9c6f7e43b4e02c161b53e97ba913855246876c61 (diff) |
Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (49 commits)
stop_machine: Move local variable closer to the usage site in cpu_stop_cpu_callback()
sched, wait: Use wrapper functions
sched: Remove a stale comment
ondemand: Make the iowait-is-busy time a sysfs tunable
ondemand: Solve a big performance issue by counting IOWAIT time as busy
sched: Intoduce get_cpu_iowait_time_us()
sched: Eliminate the ts->idle_lastupdate field
sched: Fold updating of the last_update_time_info into update_ts_time_stats()
sched: Update the idle statistics in get_cpu_idle_time_us()
sched: Introduce a function to update the idle statistics
sched: Add a comment to get_cpu_idle_time_us()
cpu_stop: add dummy implementation for UP
sched: Remove rq argument to the tracepoints
rcu: need barrier() in UP synchronize_sched_expedited()
sched: correctly place paranioa memory barriers in synchronize_sched_expedited()
sched: kill paranoia check in synchronize_sched_expedited()
sched: replace migration_thread with cpu_stop
stop_machine: reimplement using cpu_stop
cpu_stop: implement stop_cpu[s]()
sched: Fix select_idle_sibling() logic in select_task_rq_fair()
...
Diffstat (limited to 'kernel')
-rw-r--r-- | kernel/Makefile | 2 | ||||
-rw-r--r-- | kernel/capability.c | 1 | ||||
-rw-r--r-- | kernel/cgroup.c | 2 | ||||
-rw-r--r-- | kernel/cpu.c | 26 | ||||
-rw-r--r-- | kernel/cpuset.c | 67 | ||||
-rw-r--r-- | kernel/cred-internals.h | 21 | ||||
-rw-r--r-- | kernel/cred.c | 3 | ||||
-rw-r--r-- | kernel/exit.c | 1 | ||||
-rw-r--r-- | kernel/module.c | 14 | ||||
-rw-r--r-- | kernel/rcutorture.c | 2 | ||||
-rw-r--r-- | kernel/sched.c | 726 | ||||
-rw-r--r-- | kernel/sched_debug.c | 108 | ||||
-rw-r--r-- | kernel/sched_fair.c | 350 | ||||
-rw-r--r-- | kernel/sched_features.h | 55 | ||||
-rw-r--r-- | kernel/sched_idletask.c | 8 | ||||
-rw-r--r-- | kernel/sched_rt.c | 15 | ||||
-rw-r--r-- | kernel/stop_machine.c | 537 | ||||
-rw-r--r-- | kernel/time/tick-sched.c | 84 | ||||
-rw-r--r-- | kernel/time/timer_list.c | 1 | ||||
-rw-r--r-- | kernel/trace/ftrace.c | 3 | ||||
-rw-r--r-- | kernel/trace/trace_sched_switch.c | 5 | ||||
-rw-r--r-- | kernel/trace/trace_sched_wakeup.c | 5 | ||||
-rw-r--r-- | kernel/user.c | 11 |
23 files changed, 1001 insertions, 1046 deletions
diff --git a/kernel/Makefile b/kernel/Makefile index a987aa1676b5..149e18ef1ab1 100644 --- a/kernel/Makefile +++ b/kernel/Makefile | |||
@@ -68,7 +68,7 @@ obj-$(CONFIG_USER_NS) += user_namespace.o | |||
68 | obj-$(CONFIG_PID_NS) += pid_namespace.o | 68 | obj-$(CONFIG_PID_NS) += pid_namespace.o |
69 | obj-$(CONFIG_IKCONFIG) += configs.o | 69 | obj-$(CONFIG_IKCONFIG) += configs.o |
70 | obj-$(CONFIG_RESOURCE_COUNTERS) += res_counter.o | 70 | obj-$(CONFIG_RESOURCE_COUNTERS) += res_counter.o |
71 | obj-$(CONFIG_STOP_MACHINE) += stop_machine.o | 71 | obj-$(CONFIG_SMP) += stop_machine.o |
72 | obj-$(CONFIG_KPROBES_SANITY_TEST) += test_kprobes.o | 72 | obj-$(CONFIG_KPROBES_SANITY_TEST) += test_kprobes.o |
73 | obj-$(CONFIG_AUDIT) += audit.o auditfilter.o audit_watch.o | 73 | obj-$(CONFIG_AUDIT) += audit.o auditfilter.o audit_watch.o |
74 | obj-$(CONFIG_AUDITSYSCALL) += auditsc.o | 74 | obj-$(CONFIG_AUDITSYSCALL) += auditsc.o |
diff --git a/kernel/capability.c b/kernel/capability.c index 9e4697e9b276..2f05303715a5 100644 --- a/kernel/capability.c +++ b/kernel/capability.c | |||
@@ -15,7 +15,6 @@ | |||
15 | #include <linux/syscalls.h> | 15 | #include <linux/syscalls.h> |
16 | #include <linux/pid_namespace.h> | 16 | #include <linux/pid_namespace.h> |
17 | #include <asm/uaccess.h> | 17 | #include <asm/uaccess.h> |
18 | #include "cred-internals.h" | ||
19 | 18 | ||
20 | /* | 19 | /* |
21 | * Leveraged for setting/resetting capabilities | 20 | * Leveraged for setting/resetting capabilities |
diff --git a/kernel/cgroup.c b/kernel/cgroup.c index 6d870f2d1228..e9ec642932ee 100644 --- a/kernel/cgroup.c +++ b/kernel/cgroup.c | |||
@@ -3016,7 +3016,7 @@ static int cgroup_event_wake(wait_queue_t *wait, unsigned mode, | |||
3016 | unsigned long flags = (unsigned long)key; | 3016 | unsigned long flags = (unsigned long)key; |
3017 | 3017 | ||
3018 | if (flags & POLLHUP) { | 3018 | if (flags & POLLHUP) { |
3019 | remove_wait_queue_locked(event->wqh, &event->wait); | 3019 | __remove_wait_queue(event->wqh, &event->wait); |
3020 | spin_lock(&cgrp->event_list_lock); | 3020 | spin_lock(&cgrp->event_list_lock); |
3021 | list_del(&event->list); | 3021 | list_del(&event->list); |
3022 | spin_unlock(&cgrp->event_list_lock); | 3022 | spin_unlock(&cgrp->event_list_lock); |
diff --git a/kernel/cpu.c b/kernel/cpu.c index 25bba73b1be3..545777574779 100644 --- a/kernel/cpu.c +++ b/kernel/cpu.c | |||
@@ -164,6 +164,7 @@ static inline void check_for_tasks(int cpu) | |||
164 | } | 164 | } |
165 | 165 | ||
166 | struct take_cpu_down_param { | 166 | struct take_cpu_down_param { |
167 | struct task_struct *caller; | ||
167 | unsigned long mod; | 168 | unsigned long mod; |
168 | void *hcpu; | 169 | void *hcpu; |
169 | }; | 170 | }; |
@@ -172,6 +173,7 @@ struct take_cpu_down_param { | |||
172 | static int __ref take_cpu_down(void *_param) | 173 | static int __ref take_cpu_down(void *_param) |
173 | { | 174 | { |
174 | struct take_cpu_down_param *param = _param; | 175 | struct take_cpu_down_param *param = _param; |
176 | unsigned int cpu = (unsigned long)param->hcpu; | ||
175 | int err; | 177 | int err; |
176 | 178 | ||
177 | /* Ensure this CPU doesn't handle any more interrupts. */ | 179 | /* Ensure this CPU doesn't handle any more interrupts. */ |
@@ -182,6 +184,8 @@ static int __ref take_cpu_down(void *_param) | |||
182 | raw_notifier_call_chain(&cpu_chain, CPU_DYING | param->mod, | 184 | raw_notifier_call_chain(&cpu_chain, CPU_DYING | param->mod, |
183 | param->hcpu); | 185 | param->hcpu); |
184 | 186 | ||
187 | if (task_cpu(param->caller) == cpu) | ||
188 | move_task_off_dead_cpu(cpu, param->caller); | ||
185 | /* Force idle task to run as soon as we yield: it should | 189 | /* Force idle task to run as soon as we yield: it should |
186 | immediately notice cpu is offline and die quickly. */ | 190 | immediately notice cpu is offline and die quickly. */ |
187 | sched_idle_next(); | 191 | sched_idle_next(); |
@@ -192,10 +196,10 @@ static int __ref take_cpu_down(void *_param) | |||
192 | static int __ref _cpu_down(unsigned int cpu, int tasks_frozen) | 196 | static int __ref _cpu_down(unsigned int cpu, int tasks_frozen) |
193 | { | 197 | { |
194 | int err, nr_calls = 0; | 198 | int err, nr_calls = 0; |
195 | cpumask_var_t old_allowed; | ||
196 | void *hcpu = (void *)(long)cpu; | 199 | void *hcpu = (void *)(long)cpu; |
197 | unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0; | 200 | unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0; |
198 | struct take_cpu_down_param tcd_param = { | 201 | struct take_cpu_down_param tcd_param = { |
202 | .caller = current, | ||
199 | .mod = mod, | 203 | .mod = mod, |
200 | .hcpu = hcpu, | 204 | .hcpu = hcpu, |
201 | }; | 205 | }; |
@@ -206,9 +210,6 @@ static int __ref _cpu_down(unsigned int cpu, int tasks_frozen) | |||
206 | if (!cpu_online(cpu)) | 210 | if (!cpu_online(cpu)) |
207 | return -EINVAL; | 211 | return -EINVAL; |
208 | 212 | ||
209 | if (!alloc_cpumask_var(&old_allowed, GFP_KERNEL)) | ||
210 | return -ENOMEM; | ||
211 | |||
212 | cpu_hotplug_begin(); | 213 | cpu_hotplug_begin(); |
213 | set_cpu_active(cpu, false); | 214 | set_cpu_active(cpu, false); |
214 | err = __raw_notifier_call_chain(&cpu_chain, CPU_DOWN_PREPARE | mod, | 215 | err = __raw_notifier_call_chain(&cpu_chain, CPU_DOWN_PREPARE | mod, |
@@ -225,10 +226,6 @@ static int __ref _cpu_down(unsigned int cpu, int tasks_frozen) | |||
225 | goto out_release; | 226 | goto out_release; |
226 | } | 227 | } |
227 | 228 | ||
228 | /* Ensure that we are not runnable on dying cpu */ | ||
229 | cpumask_copy(old_allowed, ¤t->cpus_allowed); | ||
230 | set_cpus_allowed_ptr(current, cpu_active_mask); | ||
231 | |||
232 | err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu)); | 229 | err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu)); |
233 | if (err) { | 230 | if (err) { |
234 | set_cpu_active(cpu, true); | 231 | set_cpu_active(cpu, true); |
@@ -237,7 +234,7 @@ static int __ref _cpu_down(unsigned int cpu, int tasks_frozen) | |||
237 | hcpu) == NOTIFY_BAD) | 234 | hcpu) == NOTIFY_BAD) |
238 | BUG(); | 235 | BUG(); |
239 | 236 | ||
240 | goto out_allowed; | 237 | goto out_release; |
241 | } | 238 | } |
242 | BUG_ON(cpu_online(cpu)); | 239 | BUG_ON(cpu_online(cpu)); |
243 | 240 | ||
@@ -255,8 +252,6 @@ static int __ref _cpu_down(unsigned int cpu, int tasks_frozen) | |||
255 | 252 | ||
256 | check_for_tasks(cpu); | 253 | check_for_tasks(cpu); |
257 | 254 | ||
258 | out_allowed: | ||
259 | set_cpus_allowed_ptr(current, old_allowed); | ||
260 | out_release: | 255 | out_release: |
261 | cpu_hotplug_done(); | 256 | cpu_hotplug_done(); |
262 | if (!err) { | 257 | if (!err) { |
@@ -264,7 +259,6 @@ out_release: | |||
264 | hcpu) == NOTIFY_BAD) | 259 | hcpu) == NOTIFY_BAD) |
265 | BUG(); | 260 | BUG(); |
266 | } | 261 | } |
267 | free_cpumask_var(old_allowed); | ||
268 | return err; | 262 | return err; |
269 | } | 263 | } |
270 | 264 | ||
@@ -272,9 +266,6 @@ int __ref cpu_down(unsigned int cpu) | |||
272 | { | 266 | { |
273 | int err; | 267 | int err; |
274 | 268 | ||
275 | err = stop_machine_create(); | ||
276 | if (err) | ||
277 | return err; | ||
278 | cpu_maps_update_begin(); | 269 | cpu_maps_update_begin(); |
279 | 270 | ||
280 | if (cpu_hotplug_disabled) { | 271 | if (cpu_hotplug_disabled) { |
@@ -286,7 +277,6 @@ int __ref cpu_down(unsigned int cpu) | |||
286 | 277 | ||
287 | out: | 278 | out: |
288 | cpu_maps_update_done(); | 279 | cpu_maps_update_done(); |
289 | stop_machine_destroy(); | ||
290 | return err; | 280 | return err; |
291 | } | 281 | } |
292 | EXPORT_SYMBOL(cpu_down); | 282 | EXPORT_SYMBOL(cpu_down); |
@@ -367,9 +357,6 @@ int disable_nonboot_cpus(void) | |||
367 | { | 357 | { |
368 | int cpu, first_cpu, error; | 358 | int cpu, first_cpu, error; |
369 | 359 | ||
370 | error = stop_machine_create(); | ||
371 | if (error) | ||
372 | return error; | ||
373 | cpu_maps_update_begin(); | 360 | cpu_maps_update_begin(); |
374 | first_cpu = cpumask_first(cpu_online_mask); | 361 | first_cpu = cpumask_first(cpu_online_mask); |
375 | /* | 362 | /* |
@@ -400,7 +387,6 @@ int disable_nonboot_cpus(void) | |||
400 | printk(KERN_ERR "Non-boot CPUs are not disabled\n"); | 387 | printk(KERN_ERR "Non-boot CPUs are not disabled\n"); |
401 | } | 388 | } |
402 | cpu_maps_update_done(); | 389 | cpu_maps_update_done(); |
403 | stop_machine_destroy(); | ||
404 | return error; | 390 | return error; |
405 | } | 391 | } |
406 | 392 | ||
diff --git a/kernel/cpuset.c b/kernel/cpuset.c index d10946748ec2..9a50c5f6e727 100644 --- a/kernel/cpuset.c +++ b/kernel/cpuset.c | |||
@@ -2182,19 +2182,52 @@ void __init cpuset_init_smp(void) | |||
2182 | void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) | 2182 | void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) |
2183 | { | 2183 | { |
2184 | mutex_lock(&callback_mutex); | 2184 | mutex_lock(&callback_mutex); |
2185 | cpuset_cpus_allowed_locked(tsk, pmask); | 2185 | task_lock(tsk); |
2186 | guarantee_online_cpus(task_cs(tsk), pmask); | ||
2187 | task_unlock(tsk); | ||
2186 | mutex_unlock(&callback_mutex); | 2188 | mutex_unlock(&callback_mutex); |
2187 | } | 2189 | } |
2188 | 2190 | ||
2189 | /** | 2191 | int cpuset_cpus_allowed_fallback(struct task_struct *tsk) |
2190 | * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset. | ||
2191 | * Must be called with callback_mutex held. | ||
2192 | **/ | ||
2193 | void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask) | ||
2194 | { | 2192 | { |
2195 | task_lock(tsk); | 2193 | const struct cpuset *cs; |
2196 | guarantee_online_cpus(task_cs(tsk), pmask); | 2194 | int cpu; |
2197 | task_unlock(tsk); | 2195 | |
2196 | rcu_read_lock(); | ||
2197 | cs = task_cs(tsk); | ||
2198 | if (cs) | ||
2199 | cpumask_copy(&tsk->cpus_allowed, cs->cpus_allowed); | ||
2200 | rcu_read_unlock(); | ||
2201 | |||
2202 | /* | ||
2203 | * We own tsk->cpus_allowed, nobody can change it under us. | ||
2204 | * | ||
2205 | * But we used cs && cs->cpus_allowed lockless and thus can | ||
2206 | * race with cgroup_attach_task() or update_cpumask() and get | ||
2207 | * the wrong tsk->cpus_allowed. However, both cases imply the | ||
2208 | * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() | ||
2209 | * which takes task_rq_lock(). | ||
2210 | * | ||
2211 | * If we are called after it dropped the lock we must see all | ||
2212 | * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary | ||
2213 | * set any mask even if it is not right from task_cs() pov, | ||
2214 | * the pending set_cpus_allowed_ptr() will fix things. | ||
2215 | */ | ||
2216 | |||
2217 | cpu = cpumask_any_and(&tsk->cpus_allowed, cpu_active_mask); | ||
2218 | if (cpu >= nr_cpu_ids) { | ||
2219 | /* | ||
2220 | * Either tsk->cpus_allowed is wrong (see above) or it | ||
2221 | * is actually empty. The latter case is only possible | ||
2222 | * if we are racing with remove_tasks_in_empty_cpuset(). | ||
2223 | * Like above we can temporary set any mask and rely on | ||
2224 | * set_cpus_allowed_ptr() as synchronization point. | ||
2225 | */ | ||
2226 | cpumask_copy(&tsk->cpus_allowed, cpu_possible_mask); | ||
2227 | cpu = cpumask_any(cpu_active_mask); | ||
2228 | } | ||
2229 | |||
2230 | return cpu; | ||
2198 | } | 2231 | } |
2199 | 2232 | ||
2200 | void cpuset_init_current_mems_allowed(void) | 2233 | void cpuset_init_current_mems_allowed(void) |
@@ -2383,22 +2416,6 @@ int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask) | |||
2383 | } | 2416 | } |
2384 | 2417 | ||
2385 | /** | 2418 | /** |
2386 | * cpuset_lock - lock out any changes to cpuset structures | ||
2387 | * | ||
2388 | * The out of memory (oom) code needs to mutex_lock cpusets | ||
2389 | * from being changed while it scans the tasklist looking for a | ||
2390 | * task in an overlapping cpuset. Expose callback_mutex via this | ||
2391 | * cpuset_lock() routine, so the oom code can lock it, before | ||
2392 | * locking the task list. The tasklist_lock is a spinlock, so | ||
2393 | * must be taken inside callback_mutex. | ||
2394 | */ | ||
2395 | |||
2396 | void cpuset_lock(void) | ||
2397 | { | ||
2398 | mutex_lock(&callback_mutex); | ||
2399 | } | ||
2400 | |||
2401 | /** | ||
2402 | * cpuset_unlock - release lock on cpuset changes | 2419 | * cpuset_unlock - release lock on cpuset changes |
2403 | * | 2420 | * |
2404 | * Undo the lock taken in a previous cpuset_lock() call. | 2421 | * Undo the lock taken in a previous cpuset_lock() call. |
diff --git a/kernel/cred-internals.h b/kernel/cred-internals.h deleted file mode 100644 index 2dc4fc2d0bf1..000000000000 --- a/kernel/cred-internals.h +++ /dev/null | |||
@@ -1,21 +0,0 @@ | |||
1 | /* Internal credentials stuff | ||
2 | * | ||
3 | * Copyright (C) 2008 Red Hat, Inc. All Rights Reserved. | ||
4 | * Written by David Howells (dhowells@redhat.com) | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or | ||
7 | * modify it under the terms of the GNU General Public Licence | ||
8 | * as published by the Free Software Foundation; either version | ||
9 | * 2 of the Licence, or (at your option) any later version. | ||
10 | */ | ||
11 | |||
12 | /* | ||
13 | * user.c | ||
14 | */ | ||
15 | static inline void sched_switch_user(struct task_struct *p) | ||
16 | { | ||
17 | #ifdef CONFIG_USER_SCHED | ||
18 | sched_move_task(p); | ||
19 | #endif /* CONFIG_USER_SCHED */ | ||
20 | } | ||
21 | |||
diff --git a/kernel/cred.c b/kernel/cred.c index 62af1816c235..8f3672a58a1e 100644 --- a/kernel/cred.c +++ b/kernel/cred.c | |||
@@ -17,7 +17,6 @@ | |||
17 | #include <linux/init_task.h> | 17 | #include <linux/init_task.h> |
18 | #include <linux/security.h> | 18 | #include <linux/security.h> |
19 | #include <linux/cn_proc.h> | 19 | #include <linux/cn_proc.h> |
20 | #include "cred-internals.h" | ||
21 | 20 | ||
22 | #if 0 | 21 | #if 0 |
23 | #define kdebug(FMT, ...) \ | 22 | #define kdebug(FMT, ...) \ |
@@ -560,8 +559,6 @@ int commit_creds(struct cred *new) | |||
560 | atomic_dec(&old->user->processes); | 559 | atomic_dec(&old->user->processes); |
561 | alter_cred_subscribers(old, -2); | 560 | alter_cred_subscribers(old, -2); |
562 | 561 | ||
563 | sched_switch_user(task); | ||
564 | |||
565 | /* send notifications */ | 562 | /* send notifications */ |
566 | if (new->uid != old->uid || | 563 | if (new->uid != old->uid || |
567 | new->euid != old->euid || | 564 | new->euid != old->euid || |
diff --git a/kernel/exit.c b/kernel/exit.c index 7f2683a10ac4..eabca5a73a85 100644 --- a/kernel/exit.c +++ b/kernel/exit.c | |||
@@ -55,7 +55,6 @@ | |||
55 | #include <asm/unistd.h> | 55 | #include <asm/unistd.h> |
56 | #include <asm/pgtable.h> | 56 | #include <asm/pgtable.h> |
57 | #include <asm/mmu_context.h> | 57 | #include <asm/mmu_context.h> |
58 | #include "cred-internals.h" | ||
59 | 58 | ||
60 | static void exit_mm(struct task_struct * tsk); | 59 | static void exit_mm(struct task_struct * tsk); |
61 | 60 | ||
diff --git a/kernel/module.c b/kernel/module.c index b8a1e313448c..e2564580f3f1 100644 --- a/kernel/module.c +++ b/kernel/module.c | |||
@@ -724,16 +724,8 @@ SYSCALL_DEFINE2(delete_module, const char __user *, name_user, | |||
724 | return -EFAULT; | 724 | return -EFAULT; |
725 | name[MODULE_NAME_LEN-1] = '\0'; | 725 | name[MODULE_NAME_LEN-1] = '\0'; |
726 | 726 | ||
727 | /* Create stop_machine threads since free_module relies on | 727 | if (mutex_lock_interruptible(&module_mutex) != 0) |
728 | * a non-failing stop_machine call. */ | 728 | return -EINTR; |
729 | ret = stop_machine_create(); | ||
730 | if (ret) | ||
731 | return ret; | ||
732 | |||
733 | if (mutex_lock_interruptible(&module_mutex) != 0) { | ||
734 | ret = -EINTR; | ||
735 | goto out_stop; | ||
736 | } | ||
737 | 729 | ||
738 | mod = find_module(name); | 730 | mod = find_module(name); |
739 | if (!mod) { | 731 | if (!mod) { |
@@ -793,8 +785,6 @@ SYSCALL_DEFINE2(delete_module, const char __user *, name_user, | |||
793 | 785 | ||
794 | out: | 786 | out: |
795 | mutex_unlock(&module_mutex); | 787 | mutex_unlock(&module_mutex); |
796 | out_stop: | ||
797 | stop_machine_destroy(); | ||
798 | return ret; | 788 | return ret; |
799 | } | 789 | } |
800 | 790 | ||
diff --git a/kernel/rcutorture.c b/kernel/rcutorture.c index 077defb34571..6535ac8bc6a5 100644 --- a/kernel/rcutorture.c +++ b/kernel/rcutorture.c | |||
@@ -671,7 +671,7 @@ static struct rcu_torture_ops sched_expedited_ops = { | |||
671 | .sync = synchronize_sched_expedited, | 671 | .sync = synchronize_sched_expedited, |
672 | .cb_barrier = NULL, | 672 | .cb_barrier = NULL, |
673 | .fqs = rcu_sched_force_quiescent_state, | 673 | .fqs = rcu_sched_force_quiescent_state, |
674 | .stats = rcu_expedited_torture_stats, | 674 | .stats = NULL, |
675 | .irq_capable = 1, | 675 | .irq_capable = 1, |
676 | .name = "sched_expedited" | 676 | .name = "sched_expedited" |
677 | }; | 677 | }; |
diff --git a/kernel/sched.c b/kernel/sched.c index 5cd607ec8405..1d93cd0ae4d3 100644 --- a/kernel/sched.c +++ b/kernel/sched.c | |||
@@ -55,9 +55,9 @@ | |||
55 | #include <linux/cpu.h> | 55 | #include <linux/cpu.h> |
56 | #include <linux/cpuset.h> | 56 | #include <linux/cpuset.h> |
57 | #include <linux/percpu.h> | 57 | #include <linux/percpu.h> |
58 | #include <linux/kthread.h> | ||
59 | #include <linux/proc_fs.h> | 58 | #include <linux/proc_fs.h> |
60 | #include <linux/seq_file.h> | 59 | #include <linux/seq_file.h> |
60 | #include <linux/stop_machine.h> | ||
61 | #include <linux/sysctl.h> | 61 | #include <linux/sysctl.h> |
62 | #include <linux/syscalls.h> | 62 | #include <linux/syscalls.h> |
63 | #include <linux/times.h> | 63 | #include <linux/times.h> |
@@ -503,8 +503,11 @@ struct rq { | |||
503 | #define CPU_LOAD_IDX_MAX 5 | 503 | #define CPU_LOAD_IDX_MAX 5 |
504 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; | 504 | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; |
505 | #ifdef CONFIG_NO_HZ | 505 | #ifdef CONFIG_NO_HZ |
506 | u64 nohz_stamp; | ||
506 | unsigned char in_nohz_recently; | 507 | unsigned char in_nohz_recently; |
507 | #endif | 508 | #endif |
509 | unsigned int skip_clock_update; | ||
510 | |||
508 | /* capture load from *all* tasks on this cpu: */ | 511 | /* capture load from *all* tasks on this cpu: */ |
509 | struct load_weight load; | 512 | struct load_weight load; |
510 | unsigned long nr_load_updates; | 513 | unsigned long nr_load_updates; |
@@ -546,15 +549,13 @@ struct rq { | |||
546 | int post_schedule; | 549 | int post_schedule; |
547 | int active_balance; | 550 | int active_balance; |
548 | int push_cpu; | 551 | int push_cpu; |
552 | struct cpu_stop_work active_balance_work; | ||
549 | /* cpu of this runqueue: */ | 553 | /* cpu of this runqueue: */ |
550 | int cpu; | 554 | int cpu; |
551 | int online; | 555 | int online; |
552 | 556 | ||
553 | unsigned long avg_load_per_task; | 557 | unsigned long avg_load_per_task; |
554 | 558 | ||
555 | struct task_struct *migration_thread; | ||
556 | struct list_head migration_queue; | ||
557 | |||
558 | u64 rt_avg; | 559 | u64 rt_avg; |
559 | u64 age_stamp; | 560 | u64 age_stamp; |
560 | u64 idle_stamp; | 561 | u64 idle_stamp; |
@@ -602,6 +603,13 @@ static inline | |||
602 | void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) | 603 | void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) |
603 | { | 604 | { |
604 | rq->curr->sched_class->check_preempt_curr(rq, p, flags); | 605 | rq->curr->sched_class->check_preempt_curr(rq, p, flags); |
606 | |||
607 | /* | ||
608 | * A queue event has occurred, and we're going to schedule. In | ||
609 | * this case, we can save a useless back to back clock update. | ||
610 | */ | ||
611 | if (test_tsk_need_resched(p)) | ||
612 | rq->skip_clock_update = 1; | ||
605 | } | 613 | } |
606 | 614 | ||
607 | static inline int cpu_of(struct rq *rq) | 615 | static inline int cpu_of(struct rq *rq) |
@@ -636,7 +644,8 @@ static inline int cpu_of(struct rq *rq) | |||
636 | 644 | ||
637 | inline void update_rq_clock(struct rq *rq) | 645 | inline void update_rq_clock(struct rq *rq) |
638 | { | 646 | { |
639 | rq->clock = sched_clock_cpu(cpu_of(rq)); | 647 | if (!rq->skip_clock_update) |
648 | rq->clock = sched_clock_cpu(cpu_of(rq)); | ||
640 | } | 649 | } |
641 | 650 | ||
642 | /* | 651 | /* |
@@ -914,16 +923,12 @@ static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) | |||
914 | #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ | 923 | #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ |
915 | 924 | ||
916 | /* | 925 | /* |
917 | * Check whether the task is waking, we use this to synchronize against | 926 | * Check whether the task is waking, we use this to synchronize ->cpus_allowed |
918 | * ttwu() so that task_cpu() reports a stable number. | 927 | * against ttwu(). |
919 | * | ||
920 | * We need to make an exception for PF_STARTING tasks because the fork | ||
921 | * path might require task_rq_lock() to work, eg. it can call | ||
922 | * set_cpus_allowed_ptr() from the cpuset clone_ns code. | ||
923 | */ | 928 | */ |
924 | static inline int task_is_waking(struct task_struct *p) | 929 | static inline int task_is_waking(struct task_struct *p) |
925 | { | 930 | { |
926 | return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING)); | 931 | return unlikely(p->state == TASK_WAKING); |
927 | } | 932 | } |
928 | 933 | ||
929 | /* | 934 | /* |
@@ -936,11 +941,9 @@ static inline struct rq *__task_rq_lock(struct task_struct *p) | |||
936 | struct rq *rq; | 941 | struct rq *rq; |
937 | 942 | ||
938 | for (;;) { | 943 | for (;;) { |
939 | while (task_is_waking(p)) | ||
940 | cpu_relax(); | ||
941 | rq = task_rq(p); | 944 | rq = task_rq(p); |
942 | raw_spin_lock(&rq->lock); | 945 | raw_spin_lock(&rq->lock); |
943 | if (likely(rq == task_rq(p) && !task_is_waking(p))) | 946 | if (likely(rq == task_rq(p))) |
944 | return rq; | 947 | return rq; |
945 | raw_spin_unlock(&rq->lock); | 948 | raw_spin_unlock(&rq->lock); |
946 | } | 949 | } |
@@ -957,12 +960,10 @@ static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) | |||
957 | struct rq *rq; | 960 | struct rq *rq; |
958 | 961 | ||
959 | for (;;) { | 962 | for (;;) { |
960 | while (task_is_waking(p)) | ||
961 | cpu_relax(); | ||
962 | local_irq_save(*flags); | 963 | local_irq_save(*flags); |
963 | rq = task_rq(p); | 964 | rq = task_rq(p); |
964 | raw_spin_lock(&rq->lock); | 965 | raw_spin_lock(&rq->lock); |
965 | if (likely(rq == task_rq(p) && !task_is_waking(p))) | 966 | if (likely(rq == task_rq(p))) |
966 | return rq; | 967 | return rq; |
967 | raw_spin_unlock_irqrestore(&rq->lock, *flags); | 968 | raw_spin_unlock_irqrestore(&rq->lock, *flags); |
968 | } | 969 | } |
@@ -1239,6 +1240,17 @@ void wake_up_idle_cpu(int cpu) | |||
1239 | if (!tsk_is_polling(rq->idle)) | 1240 | if (!tsk_is_polling(rq->idle)) |
1240 | smp_send_reschedule(cpu); | 1241 | smp_send_reschedule(cpu); |
1241 | } | 1242 | } |
1243 | |||
1244 | int nohz_ratelimit(int cpu) | ||
1245 | { | ||
1246 | struct rq *rq = cpu_rq(cpu); | ||
1247 | u64 diff = rq->clock - rq->nohz_stamp; | ||
1248 | |||
1249 | rq->nohz_stamp = rq->clock; | ||
1250 | |||
1251 | return diff < (NSEC_PER_SEC / HZ) >> 1; | ||
1252 | } | ||
1253 | |||
1242 | #endif /* CONFIG_NO_HZ */ | 1254 | #endif /* CONFIG_NO_HZ */ |
1243 | 1255 | ||
1244 | static u64 sched_avg_period(void) | 1256 | static u64 sched_avg_period(void) |
@@ -1781,8 +1793,6 @@ static void double_rq_lock(struct rq *rq1, struct rq *rq2) | |||
1781 | raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); | 1793 | raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); |
1782 | } | 1794 | } |
1783 | } | 1795 | } |
1784 | update_rq_clock(rq1); | ||
1785 | update_rq_clock(rq2); | ||
1786 | } | 1796 | } |
1787 | 1797 | ||
1788 | /* | 1798 | /* |
@@ -1813,7 +1823,7 @@ static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares) | |||
1813 | } | 1823 | } |
1814 | #endif | 1824 | #endif |
1815 | 1825 | ||
1816 | static void calc_load_account_active(struct rq *this_rq); | 1826 | static void calc_load_account_idle(struct rq *this_rq); |
1817 | static void update_sysctl(void); | 1827 | static void update_sysctl(void); |
1818 | static int get_update_sysctl_factor(void); | 1828 | static int get_update_sysctl_factor(void); |
1819 | 1829 | ||
@@ -1870,62 +1880,43 @@ static void set_load_weight(struct task_struct *p) | |||
1870 | p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO]; | 1880 | p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO]; |
1871 | } | 1881 | } |
1872 | 1882 | ||
1873 | static void update_avg(u64 *avg, u64 sample) | 1883 | static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) |
1874 | { | 1884 | { |
1875 | s64 diff = sample - *avg; | 1885 | update_rq_clock(rq); |
1876 | *avg += diff >> 3; | ||
1877 | } | ||
1878 | |||
1879 | static void | ||
1880 | enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head) | ||
1881 | { | ||
1882 | if (wakeup) | ||
1883 | p->se.start_runtime = p->se.sum_exec_runtime; | ||
1884 | |||
1885 | sched_info_queued(p); | 1886 | sched_info_queued(p); |
1886 | p->sched_class->enqueue_task(rq, p, wakeup, head); | 1887 | p->sched_class->enqueue_task(rq, p, flags); |
1887 | p->se.on_rq = 1; | 1888 | p->se.on_rq = 1; |
1888 | } | 1889 | } |
1889 | 1890 | ||
1890 | static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) | 1891 | static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) |
1891 | { | 1892 | { |
1892 | if (sleep) { | 1893 | update_rq_clock(rq); |
1893 | if (p->se.last_wakeup) { | ||
1894 | update_avg(&p->se.avg_overlap, | ||
1895 | p->se.sum_exec_runtime - p->se.last_wakeup); | ||
1896 | p->se.last_wakeup = 0; | ||
1897 | } else { | ||
1898 | update_avg(&p->se.avg_wakeup, | ||
1899 | sysctl_sched_wakeup_granularity); | ||
1900 | } | ||
1901 | } | ||
1902 | |||
1903 | sched_info_dequeued(p); | 1894 | sched_info_dequeued(p); |
1904 | p->sched_class->dequeue_task(rq, p, sleep); | 1895 | p->sched_class->dequeue_task(rq, p, flags); |
1905 | p->se.on_rq = 0; | 1896 | p->se.on_rq = 0; |
1906 | } | 1897 | } |
1907 | 1898 | ||
1908 | /* | 1899 | /* |
1909 | * activate_task - move a task to the runqueue. | 1900 | * activate_task - move a task to the runqueue. |
1910 | */ | 1901 | */ |
1911 | static void activate_task(struct rq *rq, struct task_struct *p, int wakeup) | 1902 | static void activate_task(struct rq *rq, struct task_struct *p, int flags) |
1912 | { | 1903 | { |
1913 | if (task_contributes_to_load(p)) | 1904 | if (task_contributes_to_load(p)) |
1914 | rq->nr_uninterruptible--; | 1905 | rq->nr_uninterruptible--; |
1915 | 1906 | ||
1916 | enqueue_task(rq, p, wakeup, false); | 1907 | enqueue_task(rq, p, flags); |
1917 | inc_nr_running(rq); | 1908 | inc_nr_running(rq); |
1918 | } | 1909 | } |
1919 | 1910 | ||
1920 | /* | 1911 | /* |
1921 | * deactivate_task - remove a task from the runqueue. | 1912 | * deactivate_task - remove a task from the runqueue. |
1922 | */ | 1913 | */ |
1923 | static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) | 1914 | static void deactivate_task(struct rq *rq, struct task_struct *p, int flags) |
1924 | { | 1915 | { |
1925 | if (task_contributes_to_load(p)) | 1916 | if (task_contributes_to_load(p)) |
1926 | rq->nr_uninterruptible++; | 1917 | rq->nr_uninterruptible++; |
1927 | 1918 | ||
1928 | dequeue_task(rq, p, sleep); | 1919 | dequeue_task(rq, p, flags); |
1929 | dec_nr_running(rq); | 1920 | dec_nr_running(rq); |
1930 | } | 1921 | } |
1931 | 1922 | ||
@@ -2054,21 +2045,18 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu) | |||
2054 | __set_task_cpu(p, new_cpu); | 2045 | __set_task_cpu(p, new_cpu); |
2055 | } | 2046 | } |
2056 | 2047 | ||
2057 | struct migration_req { | 2048 | struct migration_arg { |
2058 | struct list_head list; | ||
2059 | |||
2060 | struct task_struct *task; | 2049 | struct task_struct *task; |
2061 | int dest_cpu; | 2050 | int dest_cpu; |
2062 | |||
2063 | struct completion done; | ||
2064 | }; | 2051 | }; |
2065 | 2052 | ||
2053 | static int migration_cpu_stop(void *data); | ||
2054 | |||
2066 | /* | 2055 | /* |
2067 | * The task's runqueue lock must be held. | 2056 | * The task's runqueue lock must be held. |
2068 | * Returns true if you have to wait for migration thread. | 2057 | * Returns true if you have to wait for migration thread. |
2069 | */ | 2058 | */ |
2070 | static int | 2059 | static bool migrate_task(struct task_struct *p, int dest_cpu) |
2071 | migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req) | ||
2072 | { | 2060 | { |
2073 | struct rq *rq = task_rq(p); | 2061 | struct rq *rq = task_rq(p); |
2074 | 2062 | ||
@@ -2076,15 +2064,7 @@ migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req) | |||
2076 | * If the task is not on a runqueue (and not running), then | 2064 | * If the task is not on a runqueue (and not running), then |
2077 | * the next wake-up will properly place the task. | 2065 | * the next wake-up will properly place the task. |
2078 | */ | 2066 | */ |
2079 | if (!p->se.on_rq && !task_running(rq, p)) | 2067 | return p->se.on_rq || task_running(rq, p); |
2080 | return 0; | ||
2081 | |||
2082 | init_completion(&req->done); | ||
2083 | req->task = p; | ||
2084 | req->dest_cpu = dest_cpu; | ||
2085 | list_add(&req->list, &rq->migration_queue); | ||
2086 | |||
2087 | return 1; | ||
2088 | } | 2068 | } |
2089 | 2069 | ||
2090 | /* | 2070 | /* |
@@ -2142,7 +2122,7 @@ unsigned long wait_task_inactive(struct task_struct *p, long match_state) | |||
2142 | * just go back and repeat. | 2122 | * just go back and repeat. |
2143 | */ | 2123 | */ |
2144 | rq = task_rq_lock(p, &flags); | 2124 | rq = task_rq_lock(p, &flags); |
2145 | trace_sched_wait_task(rq, p); | 2125 | trace_sched_wait_task(p); |
2146 | running = task_running(rq, p); | 2126 | running = task_running(rq, p); |
2147 | on_rq = p->se.on_rq; | 2127 | on_rq = p->se.on_rq; |
2148 | ncsw = 0; | 2128 | ncsw = 0; |
@@ -2240,6 +2220,9 @@ void task_oncpu_function_call(struct task_struct *p, | |||
2240 | } | 2220 | } |
2241 | 2221 | ||
2242 | #ifdef CONFIG_SMP | 2222 | #ifdef CONFIG_SMP |
2223 | /* | ||
2224 | * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held. | ||
2225 | */ | ||
2243 | static int select_fallback_rq(int cpu, struct task_struct *p) | 2226 | static int select_fallback_rq(int cpu, struct task_struct *p) |
2244 | { | 2227 | { |
2245 | int dest_cpu; | 2228 | int dest_cpu; |
@@ -2256,12 +2239,8 @@ static int select_fallback_rq(int cpu, struct task_struct *p) | |||
2256 | return dest_cpu; | 2239 | return dest_cpu; |
2257 | 2240 | ||
2258 | /* No more Mr. Nice Guy. */ | 2241 | /* No more Mr. Nice Guy. */ |
2259 | if (dest_cpu >= nr_cpu_ids) { | 2242 | if (unlikely(dest_cpu >= nr_cpu_ids)) { |
2260 | rcu_read_lock(); | 2243 | dest_cpu = cpuset_cpus_allowed_fallback(p); |
2261 | cpuset_cpus_allowed_locked(p, &p->cpus_allowed); | ||
2262 | rcu_read_unlock(); | ||
2263 | dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed); | ||
2264 | |||
2265 | /* | 2244 | /* |
2266 | * Don't tell them about moving exiting tasks or | 2245 | * Don't tell them about moving exiting tasks or |
2267 | * kernel threads (both mm NULL), since they never | 2246 | * kernel threads (both mm NULL), since they never |
@@ -2278,17 +2257,12 @@ static int select_fallback_rq(int cpu, struct task_struct *p) | |||
2278 | } | 2257 | } |
2279 | 2258 | ||
2280 | /* | 2259 | /* |
2281 | * Gets called from 3 sites (exec, fork, wakeup), since it is called without | 2260 | * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable. |
2282 | * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done | ||
2283 | * by: | ||
2284 | * | ||
2285 | * exec: is unstable, retry loop | ||
2286 | * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING | ||
2287 | */ | 2261 | */ |
2288 | static inline | 2262 | static inline |
2289 | int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) | 2263 | int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags) |
2290 | { | 2264 | { |
2291 | int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags); | 2265 | int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags); |
2292 | 2266 | ||
2293 | /* | 2267 | /* |
2294 | * In order not to call set_task_cpu() on a blocking task we need | 2268 | * In order not to call set_task_cpu() on a blocking task we need |
@@ -2306,6 +2280,12 @@ int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) | |||
2306 | 2280 | ||
2307 | return cpu; | 2281 | return cpu; |
2308 | } | 2282 | } |
2283 | |||
2284 | static void update_avg(u64 *avg, u64 sample) | ||
2285 | { | ||
2286 | s64 diff = sample - *avg; | ||
2287 | *avg += diff >> 3; | ||
2288 | } | ||
2309 | #endif | 2289 | #endif |
2310 | 2290 | ||
2311 | /*** | 2291 | /*** |
@@ -2327,16 +2307,13 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, | |||
2327 | { | 2307 | { |
2328 | int cpu, orig_cpu, this_cpu, success = 0; | 2308 | int cpu, orig_cpu, this_cpu, success = 0; |
2329 | unsigned long flags; | 2309 | unsigned long flags; |
2310 | unsigned long en_flags = ENQUEUE_WAKEUP; | ||
2330 | struct rq *rq; | 2311 | struct rq *rq; |
2331 | 2312 | ||
2332 | if (!sched_feat(SYNC_WAKEUPS)) | ||
2333 | wake_flags &= ~WF_SYNC; | ||
2334 | |||
2335 | this_cpu = get_cpu(); | 2313 | this_cpu = get_cpu(); |
2336 | 2314 | ||
2337 | smp_wmb(); | 2315 | smp_wmb(); |
2338 | rq = task_rq_lock(p, &flags); | 2316 | rq = task_rq_lock(p, &flags); |
2339 | update_rq_clock(rq); | ||
2340 | if (!(p->state & state)) | 2317 | if (!(p->state & state)) |
2341 | goto out; | 2318 | goto out; |
2342 | 2319 | ||
@@ -2356,28 +2333,26 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, | |||
2356 | * | 2333 | * |
2357 | * First fix up the nr_uninterruptible count: | 2334 | * First fix up the nr_uninterruptible count: |
2358 | */ | 2335 | */ |
2359 | if (task_contributes_to_load(p)) | 2336 | if (task_contributes_to_load(p)) { |
2360 | rq->nr_uninterruptible--; | 2337 | if (likely(cpu_online(orig_cpu))) |
2338 | rq->nr_uninterruptible--; | ||
2339 | else | ||
2340 | this_rq()->nr_uninterruptible--; | ||
2341 | } | ||
2361 | p->state = TASK_WAKING; | 2342 | p->state = TASK_WAKING; |
2362 | 2343 | ||
2363 | if (p->sched_class->task_waking) | 2344 | if (p->sched_class->task_waking) { |
2364 | p->sched_class->task_waking(rq, p); | 2345 | p->sched_class->task_waking(rq, p); |
2346 | en_flags |= ENQUEUE_WAKING; | ||
2347 | } | ||
2365 | 2348 | ||
2366 | __task_rq_unlock(rq); | 2349 | cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags); |
2367 | 2350 | if (cpu != orig_cpu) | |
2368 | cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags); | ||
2369 | if (cpu != orig_cpu) { | ||
2370 | /* | ||
2371 | * Since we migrate the task without holding any rq->lock, | ||
2372 | * we need to be careful with task_rq_lock(), since that | ||
2373 | * might end up locking an invalid rq. | ||
2374 | */ | ||
2375 | set_task_cpu(p, cpu); | 2351 | set_task_cpu(p, cpu); |
2376 | } | 2352 | __task_rq_unlock(rq); |
2377 | 2353 | ||
2378 | rq = cpu_rq(cpu); | 2354 | rq = cpu_rq(cpu); |
2379 | raw_spin_lock(&rq->lock); | 2355 | raw_spin_lock(&rq->lock); |
2380 | update_rq_clock(rq); | ||
2381 | 2356 | ||
2382 | /* | 2357 | /* |
2383 | * We migrated the task without holding either rq->lock, however | 2358 | * We migrated the task without holding either rq->lock, however |
@@ -2405,36 +2380,20 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, | |||
2405 | 2380 | ||
2406 | out_activate: | 2381 | out_activate: |
2407 | #endif /* CONFIG_SMP */ | 2382 | #endif /* CONFIG_SMP */ |
2408 | schedstat_inc(p, se.nr_wakeups); | 2383 | schedstat_inc(p, se.statistics.nr_wakeups); |
2409 | if (wake_flags & WF_SYNC) | 2384 | if (wake_flags & WF_SYNC) |
2410 | schedstat_inc(p, se.nr_wakeups_sync); | 2385 | schedstat_inc(p, se.statistics.nr_wakeups_sync); |
2411 | if (orig_cpu != cpu) | 2386 | if (orig_cpu != cpu) |
2412 | schedstat_inc(p, se.nr_wakeups_migrate); | 2387 | schedstat_inc(p, se.statistics.nr_wakeups_migrate); |
2413 | if (cpu == this_cpu) | 2388 | if (cpu == this_cpu) |
2414 | schedstat_inc(p, se.nr_wakeups_local); | 2389 | schedstat_inc(p, se.statistics.nr_wakeups_local); |
2415 | else | 2390 | else |
2416 | schedstat_inc(p, se.nr_wakeups_remote); | 2391 | schedstat_inc(p, se.statistics.nr_wakeups_remote); |
2417 | activate_task(rq, p, 1); | 2392 | activate_task(rq, p, en_flags); |
2418 | success = 1; | 2393 | success = 1; |
2419 | 2394 | ||
2420 | /* | ||
2421 | * Only attribute actual wakeups done by this task. | ||
2422 | */ | ||
2423 | if (!in_interrupt()) { | ||
2424 | struct sched_entity *se = ¤t->se; | ||
2425 | u64 sample = se->sum_exec_runtime; | ||
2426 | |||
2427 | if (se->last_wakeup) | ||
2428 | sample -= se->last_wakeup; | ||
2429 | else | ||
2430 | sample -= se->start_runtime; | ||
2431 | update_avg(&se->avg_wakeup, sample); | ||
2432 | |||
2433 | se->last_wakeup = se->sum_exec_runtime; | ||
2434 | } | ||
2435 | |||
2436 | out_running: | 2395 | out_running: |
2437 | trace_sched_wakeup(rq, p, success); | 2396 | trace_sched_wakeup(p, success); |
2438 | check_preempt_curr(rq, p, wake_flags); | 2397 | check_preempt_curr(rq, p, wake_flags); |
2439 | 2398 | ||
2440 | p->state = TASK_RUNNING; | 2399 | p->state = TASK_RUNNING; |
@@ -2494,42 +2453,9 @@ static void __sched_fork(struct task_struct *p) | |||
2494 | p->se.sum_exec_runtime = 0; | 2453 | p->se.sum_exec_runtime = 0; |
2495 | p->se.prev_sum_exec_runtime = 0; | 2454 | p->se.prev_sum_exec_runtime = 0; |
2496 | p->se.nr_migrations = 0; | 2455 | p->se.nr_migrations = 0; |
2497 | p->se.last_wakeup = 0; | ||
2498 | p->se.avg_overlap = 0; | ||
2499 | p->se.start_runtime = 0; | ||
2500 | p->se.avg_wakeup = sysctl_sched_wakeup_granularity; | ||
2501 | 2456 | ||
2502 | #ifdef CONFIG_SCHEDSTATS | 2457 | #ifdef CONFIG_SCHEDSTATS |
2503 | p->se.wait_start = 0; | 2458 | memset(&p->se.statistics, 0, sizeof(p->se.statistics)); |
2504 | p->se.wait_max = 0; | ||
2505 | p->se.wait_count = 0; | ||
2506 | p->se.wait_sum = 0; | ||
2507 | |||
2508 | p->se.sleep_start = 0; | ||
2509 | p->se.sleep_max = 0; | ||
2510 | p->se.sum_sleep_runtime = 0; | ||
2511 | |||
2512 | p->se.block_start = 0; | ||
2513 | p->se.block_max = 0; | ||
2514 | p->se.exec_max = 0; | ||
2515 | p->se.slice_max = 0; | ||
2516 | |||
2517 | p->se.nr_migrations_cold = 0; | ||
2518 | p->se.nr_failed_migrations_affine = 0; | ||
2519 | p->se.nr_failed_migrations_running = 0; | ||
2520 | p->se.nr_failed_migrations_hot = 0; | ||
2521 | p->se.nr_forced_migrations = 0; | ||
2522 | |||
2523 | p->se.nr_wakeups = 0; | ||
2524 | p->se.nr_wakeups_sync = 0; | ||
2525 | p->se.nr_wakeups_migrate = 0; | ||
2526 | p->se.nr_wakeups_local = 0; | ||
2527 | p->se.nr_wakeups_remote = 0; | ||
2528 | p->se.nr_wakeups_affine = 0; | ||
2529 | p->se.nr_wakeups_affine_attempts = 0; | ||
2530 | p->se.nr_wakeups_passive = 0; | ||
2531 | p->se.nr_wakeups_idle = 0; | ||
2532 | |||
2533 | #endif | 2459 | #endif |
2534 | 2460 | ||
2535 | INIT_LIST_HEAD(&p->rt.run_list); | 2461 | INIT_LIST_HEAD(&p->rt.run_list); |
@@ -2550,11 +2476,11 @@ void sched_fork(struct task_struct *p, int clone_flags) | |||
2550 | 2476 | ||
2551 | __sched_fork(p); | 2477 | __sched_fork(p); |
2552 | /* | 2478 | /* |
2553 | * We mark the process as waking here. This guarantees that | 2479 | * We mark the process as running here. This guarantees that |
2554 | * nobody will actually run it, and a signal or other external | 2480 | * nobody will actually run it, and a signal or other external |
2555 | * event cannot wake it up and insert it on the runqueue either. | 2481 | * event cannot wake it up and insert it on the runqueue either. |
2556 | */ | 2482 | */ |
2557 | p->state = TASK_WAKING; | 2483 | p->state = TASK_RUNNING; |
2558 | 2484 | ||
2559 | /* | 2485 | /* |
2560 | * Revert to default priority/policy on fork if requested. | 2486 | * Revert to default priority/policy on fork if requested. |
@@ -2621,31 +2547,27 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) | |||
2621 | int cpu __maybe_unused = get_cpu(); | 2547 | int cpu __maybe_unused = get_cpu(); |
2622 | 2548 | ||
2623 | #ifdef CONFIG_SMP | 2549 | #ifdef CONFIG_SMP |
2550 | rq = task_rq_lock(p, &flags); | ||
2551 | p->state = TASK_WAKING; | ||
2552 | |||
2624 | /* | 2553 | /* |
2625 | * Fork balancing, do it here and not earlier because: | 2554 | * Fork balancing, do it here and not earlier because: |
2626 | * - cpus_allowed can change in the fork path | 2555 | * - cpus_allowed can change in the fork path |
2627 | * - any previously selected cpu might disappear through hotplug | 2556 | * - any previously selected cpu might disappear through hotplug |
2628 | * | 2557 | * |
2629 | * We still have TASK_WAKING but PF_STARTING is gone now, meaning | 2558 | * We set TASK_WAKING so that select_task_rq() can drop rq->lock |
2630 | * ->cpus_allowed is stable, we have preemption disabled, meaning | 2559 | * without people poking at ->cpus_allowed. |
2631 | * cpu_online_mask is stable. | ||
2632 | */ | 2560 | */ |
2633 | cpu = select_task_rq(p, SD_BALANCE_FORK, 0); | 2561 | cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0); |
2634 | set_task_cpu(p, cpu); | 2562 | set_task_cpu(p, cpu); |
2635 | #endif | ||
2636 | 2563 | ||
2637 | /* | ||
2638 | * Since the task is not on the rq and we still have TASK_WAKING set | ||
2639 | * nobody else will migrate this task. | ||
2640 | */ | ||
2641 | rq = cpu_rq(cpu); | ||
2642 | raw_spin_lock_irqsave(&rq->lock, flags); | ||
2643 | |||
2644 | BUG_ON(p->state != TASK_WAKING); | ||
2645 | p->state = TASK_RUNNING; | 2564 | p->state = TASK_RUNNING; |
2646 | update_rq_clock(rq); | 2565 | task_rq_unlock(rq, &flags); |
2566 | #endif | ||
2567 | |||
2568 | rq = task_rq_lock(p, &flags); | ||
2647 | activate_task(rq, p, 0); | 2569 | activate_task(rq, p, 0); |
2648 | trace_sched_wakeup_new(rq, p, 1); | 2570 | trace_sched_wakeup_new(p, 1); |
2649 | check_preempt_curr(rq, p, WF_FORK); | 2571 | check_preempt_curr(rq, p, WF_FORK); |
2650 | #ifdef CONFIG_SMP | 2572 | #ifdef CONFIG_SMP |
2651 | if (p->sched_class->task_woken) | 2573 | if (p->sched_class->task_woken) |
@@ -2865,7 +2787,7 @@ context_switch(struct rq *rq, struct task_struct *prev, | |||
2865 | struct mm_struct *mm, *oldmm; | 2787 | struct mm_struct *mm, *oldmm; |
2866 | 2788 | ||
2867 | prepare_task_switch(rq, prev, next); | 2789 | prepare_task_switch(rq, prev, next); |
2868 | trace_sched_switch(rq, prev, next); | 2790 | trace_sched_switch(prev, next); |
2869 | mm = next->mm; | 2791 | mm = next->mm; |
2870 | oldmm = prev->active_mm; | 2792 | oldmm = prev->active_mm; |
2871 | /* | 2793 | /* |
@@ -2982,6 +2904,61 @@ static unsigned long calc_load_update; | |||
2982 | unsigned long avenrun[3]; | 2904 | unsigned long avenrun[3]; |
2983 | EXPORT_SYMBOL(avenrun); | 2905 | EXPORT_SYMBOL(avenrun); |
2984 | 2906 | ||
2907 | static long calc_load_fold_active(struct rq *this_rq) | ||
2908 | { | ||
2909 | long nr_active, delta = 0; | ||
2910 | |||
2911 | nr_active = this_rq->nr_running; | ||
2912 | nr_active += (long) this_rq->nr_uninterruptible; | ||
2913 | |||
2914 | if (nr_active != this_rq->calc_load_active) { | ||
2915 | delta = nr_active - this_rq->calc_load_active; | ||
2916 | this_rq->calc_load_active = nr_active; | ||
2917 | } | ||
2918 | |||
2919 | return delta; | ||
2920 | } | ||
2921 | |||
2922 | #ifdef CONFIG_NO_HZ | ||
2923 | /* | ||
2924 | * For NO_HZ we delay the active fold to the next LOAD_FREQ update. | ||
2925 | * | ||
2926 | * When making the ILB scale, we should try to pull this in as well. | ||
2927 | */ | ||
2928 | static atomic_long_t calc_load_tasks_idle; | ||
2929 | |||
2930 | static void calc_load_account_idle(struct rq *this_rq) | ||
2931 | { | ||
2932 | long delta; | ||
2933 | |||
2934 | delta = calc_load_fold_active(this_rq); | ||
2935 | if (delta) | ||
2936 | atomic_long_add(delta, &calc_load_tasks_idle); | ||
2937 | } | ||
2938 | |||
2939 | static long calc_load_fold_idle(void) | ||
2940 | { | ||
2941 | long delta = 0; | ||
2942 | |||
2943 | /* | ||
2944 | * Its got a race, we don't care... | ||
2945 | */ | ||
2946 | if (atomic_long_read(&calc_load_tasks_idle)) | ||
2947 | delta = atomic_long_xchg(&calc_load_tasks_idle, 0); | ||
2948 | |||
2949 | return delta; | ||
2950 | } | ||
2951 | #else | ||
2952 | static void calc_load_account_idle(struct rq *this_rq) | ||
2953 | { | ||
2954 | } | ||
2955 | |||
2956 | static inline long calc_load_fold_idle(void) | ||
2957 | { | ||
2958 | return 0; | ||
2959 | } | ||
2960 | #endif | ||
2961 | |||
2985 | /** | 2962 | /** |
2986 | * get_avenrun - get the load average array | 2963 | * get_avenrun - get the load average array |
2987 | * @loads: pointer to dest load array | 2964 | * @loads: pointer to dest load array |
@@ -3028,20 +3005,22 @@ void calc_global_load(void) | |||
3028 | } | 3005 | } |
3029 | 3006 | ||
3030 | /* | 3007 | /* |
3031 | * Either called from update_cpu_load() or from a cpu going idle | 3008 | * Called from update_cpu_load() to periodically update this CPU's |
3009 | * active count. | ||
3032 | */ | 3010 | */ |
3033 | static void calc_load_account_active(struct rq *this_rq) | 3011 | static void calc_load_account_active(struct rq *this_rq) |
3034 | { | 3012 | { |
3035 | long nr_active, delta; | 3013 | long delta; |
3036 | 3014 | ||
3037 | nr_active = this_rq->nr_running; | 3015 | if (time_before(jiffies, this_rq->calc_load_update)) |
3038 | nr_active += (long) this_rq->nr_uninterruptible; | 3016 | return; |
3039 | 3017 | ||
3040 | if (nr_active != this_rq->calc_load_active) { | 3018 | delta = calc_load_fold_active(this_rq); |
3041 | delta = nr_active - this_rq->calc_load_active; | 3019 | delta += calc_load_fold_idle(); |
3042 | this_rq->calc_load_active = nr_active; | 3020 | if (delta) |
3043 | atomic_long_add(delta, &calc_load_tasks); | 3021 | atomic_long_add(delta, &calc_load_tasks); |
3044 | } | 3022 | |
3023 | this_rq->calc_load_update += LOAD_FREQ; | ||
3045 | } | 3024 | } |
3046 | 3025 | ||
3047 | /* | 3026 | /* |
@@ -3073,10 +3052,7 @@ static void update_cpu_load(struct rq *this_rq) | |||
3073 | this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i; | 3052 | this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i; |
3074 | } | 3053 | } |
3075 | 3054 | ||
3076 | if (time_after_eq(jiffies, this_rq->calc_load_update)) { | 3055 | calc_load_account_active(this_rq); |
3077 | this_rq->calc_load_update += LOAD_FREQ; | ||
3078 | calc_load_account_active(this_rq); | ||
3079 | } | ||
3080 | } | 3056 | } |
3081 | 3057 | ||
3082 | #ifdef CONFIG_SMP | 3058 | #ifdef CONFIG_SMP |
@@ -3088,44 +3064,27 @@ static void update_cpu_load(struct rq *this_rq) | |||
3088 | void sched_exec(void) | 3064 | void sched_exec(void) |
3089 | { | 3065 | { |
3090 | struct task_struct *p = current; | 3066 | struct task_struct *p = current; |
3091 | struct migration_req req; | ||
3092 | int dest_cpu, this_cpu; | ||
3093 | unsigned long flags; | 3067 | unsigned long flags; |
3094 | struct rq *rq; | 3068 | struct rq *rq; |
3095 | 3069 | int dest_cpu; | |
3096 | again: | ||
3097 | this_cpu = get_cpu(); | ||
3098 | dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0); | ||
3099 | if (dest_cpu == this_cpu) { | ||
3100 | put_cpu(); | ||
3101 | return; | ||
3102 | } | ||
3103 | 3070 | ||
3104 | rq = task_rq_lock(p, &flags); | 3071 | rq = task_rq_lock(p, &flags); |
3105 | put_cpu(); | 3072 | dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0); |
3073 | if (dest_cpu == smp_processor_id()) | ||
3074 | goto unlock; | ||
3106 | 3075 | ||
3107 | /* | 3076 | /* |
3108 | * select_task_rq() can race against ->cpus_allowed | 3077 | * select_task_rq() can race against ->cpus_allowed |
3109 | */ | 3078 | */ |
3110 | if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed) | 3079 | if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) && |
3111 | || unlikely(!cpu_active(dest_cpu))) { | 3080 | likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) { |
3112 | task_rq_unlock(rq, &flags); | 3081 | struct migration_arg arg = { p, dest_cpu }; |
3113 | goto again; | ||
3114 | } | ||
3115 | 3082 | ||
3116 | /* force the process onto the specified CPU */ | ||
3117 | if (migrate_task(p, dest_cpu, &req)) { | ||
3118 | /* Need to wait for migration thread (might exit: take ref). */ | ||
3119 | struct task_struct *mt = rq->migration_thread; | ||
3120 | |||
3121 | get_task_struct(mt); | ||
3122 | task_rq_unlock(rq, &flags); | 3083 | task_rq_unlock(rq, &flags); |
3123 | wake_up_process(mt); | 3084 | stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); |
3124 | put_task_struct(mt); | ||
3125 | wait_for_completion(&req.done); | ||
3126 | |||
3127 | return; | 3085 | return; |
3128 | } | 3086 | } |
3087 | unlock: | ||
3129 | task_rq_unlock(rq, &flags); | 3088 | task_rq_unlock(rq, &flags); |
3130 | } | 3089 | } |
3131 | 3090 | ||
@@ -3597,23 +3556,9 @@ static inline void schedule_debug(struct task_struct *prev) | |||
3597 | 3556 | ||
3598 | static void put_prev_task(struct rq *rq, struct task_struct *prev) | 3557 | static void put_prev_task(struct rq *rq, struct task_struct *prev) |
3599 | { | 3558 | { |
3600 | if (prev->state == TASK_RUNNING) { | 3559 | if (prev->se.on_rq) |
3601 | u64 runtime = prev->se.sum_exec_runtime; | 3560 | update_rq_clock(rq); |
3602 | 3561 | rq->skip_clock_update = 0; | |
3603 | runtime -= prev->se.prev_sum_exec_runtime; | ||
3604 | runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost); | ||
3605 | |||
3606 | /* | ||
3607 | * In order to avoid avg_overlap growing stale when we are | ||
3608 | * indeed overlapping and hence not getting put to sleep, grow | ||
3609 | * the avg_overlap on preemption. | ||
3610 | * | ||
3611 | * We use the average preemption runtime because that | ||
3612 | * correlates to the amount of cache footprint a task can | ||
3613 | * build up. | ||
3614 | */ | ||
3615 | update_avg(&prev->se.avg_overlap, runtime); | ||
3616 | } | ||
3617 | prev->sched_class->put_prev_task(rq, prev); | 3562 | prev->sched_class->put_prev_task(rq, prev); |
3618 | } | 3563 | } |
3619 | 3564 | ||
@@ -3676,14 +3621,13 @@ need_resched_nonpreemptible: | |||
3676 | hrtick_clear(rq); | 3621 | hrtick_clear(rq); |
3677 | 3622 | ||
3678 | raw_spin_lock_irq(&rq->lock); | 3623 | raw_spin_lock_irq(&rq->lock); |
3679 | update_rq_clock(rq); | ||
3680 | clear_tsk_need_resched(prev); | 3624 | clear_tsk_need_resched(prev); |
3681 | 3625 | ||
3682 | if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { | 3626 | if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { |
3683 | if (unlikely(signal_pending_state(prev->state, prev))) | 3627 | if (unlikely(signal_pending_state(prev->state, prev))) |
3684 | prev->state = TASK_RUNNING; | 3628 | prev->state = TASK_RUNNING; |
3685 | else | 3629 | else |
3686 | deactivate_task(rq, prev, 1); | 3630 | deactivate_task(rq, prev, DEQUEUE_SLEEP); |
3687 | switch_count = &prev->nvcsw; | 3631 | switch_count = &prev->nvcsw; |
3688 | } | 3632 | } |
3689 | 3633 | ||
@@ -4006,8 +3950,7 @@ do_wait_for_common(struct completion *x, long timeout, int state) | |||
4006 | if (!x->done) { | 3950 | if (!x->done) { |
4007 | DECLARE_WAITQUEUE(wait, current); | 3951 | DECLARE_WAITQUEUE(wait, current); |
4008 | 3952 | ||
4009 | wait.flags |= WQ_FLAG_EXCLUSIVE; | 3953 | __add_wait_queue_tail_exclusive(&x->wait, &wait); |
4010 | __add_wait_queue_tail(&x->wait, &wait); | ||
4011 | do { | 3954 | do { |
4012 | if (signal_pending_state(state, current)) { | 3955 | if (signal_pending_state(state, current)) { |
4013 | timeout = -ERESTARTSYS; | 3956 | timeout = -ERESTARTSYS; |
@@ -4233,7 +4176,6 @@ void rt_mutex_setprio(struct task_struct *p, int prio) | |||
4233 | BUG_ON(prio < 0 || prio > MAX_PRIO); | 4176 | BUG_ON(prio < 0 || prio > MAX_PRIO); |
4234 | 4177 | ||
4235 | rq = task_rq_lock(p, &flags); | 4178 | rq = task_rq_lock(p, &flags); |
4236 | update_rq_clock(rq); | ||
4237 | 4179 | ||
4238 | oldprio = p->prio; | 4180 | oldprio = p->prio; |
4239 | prev_class = p->sched_class; | 4181 | prev_class = p->sched_class; |
@@ -4254,7 +4196,7 @@ void rt_mutex_setprio(struct task_struct *p, int prio) | |||
4254 | if (running) | 4196 | if (running) |
4255 | p->sched_class->set_curr_task(rq); | 4197 | p->sched_class->set_curr_task(rq); |
4256 | if (on_rq) { | 4198 | if (on_rq) { |
4257 | enqueue_task(rq, p, 0, oldprio < prio); | 4199 | enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0); |
4258 | 4200 | ||
4259 | check_class_changed(rq, p, prev_class, oldprio, running); | 4201 | check_class_changed(rq, p, prev_class, oldprio, running); |
4260 | } | 4202 | } |
@@ -4276,7 +4218,6 @@ void set_user_nice(struct task_struct *p, long nice) | |||
4276 | * the task might be in the middle of scheduling on another CPU. | 4218 | * the task might be in the middle of scheduling on another CPU. |
4277 | */ | 4219 | */ |
4278 | rq = task_rq_lock(p, &flags); | 4220 | rq = task_rq_lock(p, &flags); |
4279 | update_rq_clock(rq); | ||
4280 | /* | 4221 | /* |
4281 | * The RT priorities are set via sched_setscheduler(), but we still | 4222 | * The RT priorities are set via sched_setscheduler(), but we still |
4282 | * allow the 'normal' nice value to be set - but as expected | 4223 | * allow the 'normal' nice value to be set - but as expected |
@@ -4298,7 +4239,7 @@ void set_user_nice(struct task_struct *p, long nice) | |||
4298 | delta = p->prio - old_prio; | 4239 | delta = p->prio - old_prio; |
4299 | 4240 | ||
4300 | if (on_rq) { | 4241 | if (on_rq) { |
4301 | enqueue_task(rq, p, 0, false); | 4242 | enqueue_task(rq, p, 0); |
4302 | /* | 4243 | /* |
4303 | * If the task increased its priority or is running and | 4244 | * If the task increased its priority or is running and |
4304 | * lowered its priority, then reschedule its CPU: | 4245 | * lowered its priority, then reschedule its CPU: |
@@ -4559,7 +4500,6 @@ recheck: | |||
4559 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); | 4500 | raw_spin_unlock_irqrestore(&p->pi_lock, flags); |
4560 | goto recheck; | 4501 | goto recheck; |
4561 | } | 4502 | } |
4562 | update_rq_clock(rq); | ||
4563 | on_rq = p->se.on_rq; | 4503 | on_rq = p->se.on_rq; |
4564 | running = task_current(rq, p); | 4504 | running = task_current(rq, p); |
4565 | if (on_rq) | 4505 | if (on_rq) |
@@ -5296,17 +5236,15 @@ static inline void sched_init_granularity(void) | |||
5296 | /* | 5236 | /* |
5297 | * This is how migration works: | 5237 | * This is how migration works: |
5298 | * | 5238 | * |
5299 | * 1) we queue a struct migration_req structure in the source CPU's | 5239 | * 1) we invoke migration_cpu_stop() on the target CPU using |
5300 | * runqueue and wake up that CPU's migration thread. | 5240 | * stop_one_cpu(). |
5301 | * 2) we down() the locked semaphore => thread blocks. | 5241 | * 2) stopper starts to run (implicitly forcing the migrated thread |
5302 | * 3) migration thread wakes up (implicitly it forces the migrated | 5242 | * off the CPU) |
5303 | * thread off the CPU) | 5243 | * 3) it checks whether the migrated task is still in the wrong runqueue. |
5304 | * 4) it gets the migration request and checks whether the migrated | 5244 | * 4) if it's in the wrong runqueue then the migration thread removes |
5305 | * task is still in the wrong runqueue. | ||
5306 | * 5) if it's in the wrong runqueue then the migration thread removes | ||
5307 | * it and puts it into the right queue. | 5245 | * it and puts it into the right queue. |
5308 | * 6) migration thread up()s the semaphore. | 5246 | * 5) stopper completes and stop_one_cpu() returns and the migration |
5309 | * 7) we wake up and the migration is done. | 5247 | * is done. |
5310 | */ | 5248 | */ |
5311 | 5249 | ||
5312 | /* | 5250 | /* |
@@ -5320,12 +5258,23 @@ static inline void sched_init_granularity(void) | |||
5320 | */ | 5258 | */ |
5321 | int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) | 5259 | int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) |
5322 | { | 5260 | { |
5323 | struct migration_req req; | ||
5324 | unsigned long flags; | 5261 | unsigned long flags; |
5325 | struct rq *rq; | 5262 | struct rq *rq; |
5263 | unsigned int dest_cpu; | ||
5326 | int ret = 0; | 5264 | int ret = 0; |
5327 | 5265 | ||
5266 | /* | ||
5267 | * Serialize against TASK_WAKING so that ttwu() and wunt() can | ||
5268 | * drop the rq->lock and still rely on ->cpus_allowed. | ||
5269 | */ | ||
5270 | again: | ||
5271 | while (task_is_waking(p)) | ||
5272 | cpu_relax(); | ||
5328 | rq = task_rq_lock(p, &flags); | 5273 | rq = task_rq_lock(p, &flags); |
5274 | if (task_is_waking(p)) { | ||
5275 | task_rq_unlock(rq, &flags); | ||
5276 | goto again; | ||
5277 | } | ||
5329 | 5278 | ||
5330 | if (!cpumask_intersects(new_mask, cpu_active_mask)) { | 5279 | if (!cpumask_intersects(new_mask, cpu_active_mask)) { |
5331 | ret = -EINVAL; | 5280 | ret = -EINVAL; |
@@ -5349,15 +5298,12 @@ int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) | |||
5349 | if (cpumask_test_cpu(task_cpu(p), new_mask)) | 5298 | if (cpumask_test_cpu(task_cpu(p), new_mask)) |
5350 | goto out; | 5299 | goto out; |
5351 | 5300 | ||
5352 | if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) { | 5301 | dest_cpu = cpumask_any_and(cpu_active_mask, new_mask); |
5302 | if (migrate_task(p, dest_cpu)) { | ||
5303 | struct migration_arg arg = { p, dest_cpu }; | ||
5353 | /* Need help from migration thread: drop lock and wait. */ | 5304 | /* Need help from migration thread: drop lock and wait. */ |
5354 | struct task_struct *mt = rq->migration_thread; | ||
5355 | |||
5356 | get_task_struct(mt); | ||
5357 | task_rq_unlock(rq, &flags); | 5305 | task_rq_unlock(rq, &flags); |
5358 | wake_up_process(mt); | 5306 | stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg); |
5359 | put_task_struct(mt); | ||
5360 | wait_for_completion(&req.done); | ||
5361 | tlb_migrate_finish(p->mm); | 5307 | tlb_migrate_finish(p->mm); |
5362 | return 0; | 5308 | return 0; |
5363 | } | 5309 | } |
@@ -5415,98 +5361,49 @@ fail: | |||
5415 | return ret; | 5361 | return ret; |
5416 | } | 5362 | } |
5417 | 5363 | ||
5418 | #define RCU_MIGRATION_IDLE 0 | ||
5419 | #define RCU_MIGRATION_NEED_QS 1 | ||
5420 | #define RCU_MIGRATION_GOT_QS 2 | ||
5421 | #define RCU_MIGRATION_MUST_SYNC 3 | ||
5422 | |||
5423 | /* | 5364 | /* |
5424 | * migration_thread - this is a highprio system thread that performs | 5365 | * migration_cpu_stop - this will be executed by a highprio stopper thread |
5425 | * thread migration by bumping thread off CPU then 'pushing' onto | 5366 | * and performs thread migration by bumping thread off CPU then |
5426 | * another runqueue. | 5367 | * 'pushing' onto another runqueue. |
5427 | */ | 5368 | */ |
5428 | static int migration_thread(void *data) | 5369 | static int migration_cpu_stop(void *data) |
5429 | { | 5370 | { |
5430 | int badcpu; | 5371 | struct migration_arg *arg = data; |
5431 | int cpu = (long)data; | ||
5432 | struct rq *rq; | ||
5433 | |||
5434 | rq = cpu_rq(cpu); | ||
5435 | BUG_ON(rq->migration_thread != current); | ||
5436 | |||
5437 | set_current_state(TASK_INTERRUPTIBLE); | ||
5438 | while (!kthread_should_stop()) { | ||
5439 | struct migration_req *req; | ||
5440 | struct list_head *head; | ||
5441 | |||
5442 | raw_spin_lock_irq(&rq->lock); | ||
5443 | |||
5444 | if (cpu_is_offline(cpu)) { | ||
5445 | raw_spin_unlock_irq(&rq->lock); | ||
5446 | break; | ||
5447 | } | ||
5448 | |||
5449 | if (rq->active_balance) { | ||
5450 | active_load_balance(rq, cpu); | ||
5451 | rq->active_balance = 0; | ||
5452 | } | ||
5453 | |||
5454 | head = &rq->migration_queue; | ||
5455 | |||
5456 | if (list_empty(head)) { | ||
5457 | raw_spin_unlock_irq(&rq->lock); | ||
5458 | schedule(); | ||
5459 | set_current_state(TASK_INTERRUPTIBLE); | ||
5460 | continue; | ||
5461 | } | ||
5462 | req = list_entry(head->next, struct migration_req, list); | ||
5463 | list_del_init(head->next); | ||
5464 | |||
5465 | if (req->task != NULL) { | ||
5466 | raw_spin_unlock(&rq->lock); | ||
5467 | __migrate_task(req->task, cpu, req->dest_cpu); | ||
5468 | } else if (likely(cpu == (badcpu = smp_processor_id()))) { | ||
5469 | req->dest_cpu = RCU_MIGRATION_GOT_QS; | ||
5470 | raw_spin_unlock(&rq->lock); | ||
5471 | } else { | ||
5472 | req->dest_cpu = RCU_MIGRATION_MUST_SYNC; | ||
5473 | raw_spin_unlock(&rq->lock); | ||
5474 | WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu); | ||
5475 | } | ||
5476 | local_irq_enable(); | ||
5477 | |||
5478 | complete(&req->done); | ||
5479 | } | ||
5480 | __set_current_state(TASK_RUNNING); | ||
5481 | |||
5482 | return 0; | ||
5483 | } | ||
5484 | |||
5485 | #ifdef CONFIG_HOTPLUG_CPU | ||
5486 | |||
5487 | static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu) | ||
5488 | { | ||
5489 | int ret; | ||
5490 | 5372 | ||
5373 | /* | ||
5374 | * The original target cpu might have gone down and we might | ||
5375 | * be on another cpu but it doesn't matter. | ||
5376 | */ | ||
5491 | local_irq_disable(); | 5377 | local_irq_disable(); |
5492 | ret = __migrate_task(p, src_cpu, dest_cpu); | 5378 | __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu); |
5493 | local_irq_enable(); | 5379 | local_irq_enable(); |
5494 | return ret; | 5380 | return 0; |
5495 | } | 5381 | } |
5496 | 5382 | ||
5383 | #ifdef CONFIG_HOTPLUG_CPU | ||
5497 | /* | 5384 | /* |
5498 | * Figure out where task on dead CPU should go, use force if necessary. | 5385 | * Figure out where task on dead CPU should go, use force if necessary. |
5499 | */ | 5386 | */ |
5500 | static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) | 5387 | void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) |
5501 | { | 5388 | { |
5502 | int dest_cpu; | 5389 | struct rq *rq = cpu_rq(dead_cpu); |
5390 | int needs_cpu, uninitialized_var(dest_cpu); | ||
5391 | unsigned long flags; | ||
5503 | 5392 | ||
5504 | again: | 5393 | local_irq_save(flags); |
5505 | dest_cpu = select_fallback_rq(dead_cpu, p); | ||
5506 | 5394 | ||
5507 | /* It can have affinity changed while we were choosing. */ | 5395 | raw_spin_lock(&rq->lock); |
5508 | if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu))) | 5396 | needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING); |
5509 | goto again; | 5397 | if (needs_cpu) |
5398 | dest_cpu = select_fallback_rq(dead_cpu, p); | ||
5399 | raw_spin_unlock(&rq->lock); | ||
5400 | /* | ||
5401 | * It can only fail if we race with set_cpus_allowed(), | ||
5402 | * in the racer should migrate the task anyway. | ||
5403 | */ | ||
5404 | if (needs_cpu) | ||
5405 | __migrate_task(p, dead_cpu, dest_cpu); | ||
5406 | local_irq_restore(flags); | ||
5510 | } | 5407 | } |
5511 | 5408 | ||
5512 | /* | 5409 | /* |
@@ -5570,7 +5467,6 @@ void sched_idle_next(void) | |||
5570 | 5467 | ||
5571 | __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); | 5468 | __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); |
5572 | 5469 | ||
5573 | update_rq_clock(rq); | ||
5574 | activate_task(rq, p, 0); | 5470 | activate_task(rq, p, 0); |
5575 | 5471 | ||
5576 | raw_spin_unlock_irqrestore(&rq->lock, flags); | 5472 | raw_spin_unlock_irqrestore(&rq->lock, flags); |
@@ -5625,7 +5521,6 @@ static void migrate_dead_tasks(unsigned int dead_cpu) | |||
5625 | for ( ; ; ) { | 5521 | for ( ; ; ) { |
5626 | if (!rq->nr_running) | 5522 | if (!rq->nr_running) |
5627 | break; | 5523 | break; |
5628 | update_rq_clock(rq); | ||
5629 | next = pick_next_task(rq); | 5524 | next = pick_next_task(rq); |
5630 | if (!next) | 5525 | if (!next) |
5631 | break; | 5526 | break; |
@@ -5848,35 +5743,20 @@ static void set_rq_offline(struct rq *rq) | |||
5848 | static int __cpuinit | 5743 | static int __cpuinit |
5849 | migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) | 5744 | migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) |
5850 | { | 5745 | { |
5851 | struct task_struct *p; | ||
5852 | int cpu = (long)hcpu; | 5746 | int cpu = (long)hcpu; |
5853 | unsigned long flags; | 5747 | unsigned long flags; |
5854 | struct rq *rq; | 5748 | struct rq *rq = cpu_rq(cpu); |
5855 | 5749 | ||
5856 | switch (action) { | 5750 | switch (action) { |
5857 | 5751 | ||
5858 | case CPU_UP_PREPARE: | 5752 | case CPU_UP_PREPARE: |
5859 | case CPU_UP_PREPARE_FROZEN: | 5753 | case CPU_UP_PREPARE_FROZEN: |
5860 | p = kthread_create(migration_thread, hcpu, "migration/%d", cpu); | ||
5861 | if (IS_ERR(p)) | ||
5862 | return NOTIFY_BAD; | ||
5863 | kthread_bind(p, cpu); | ||
5864 | /* Must be high prio: stop_machine expects to yield to it. */ | ||
5865 | rq = task_rq_lock(p, &flags); | ||
5866 | __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); | ||
5867 | task_rq_unlock(rq, &flags); | ||
5868 | get_task_struct(p); | ||
5869 | cpu_rq(cpu)->migration_thread = p; | ||
5870 | rq->calc_load_update = calc_load_update; | 5754 | rq->calc_load_update = calc_load_update; |
5871 | break; | 5755 | break; |
5872 | 5756 | ||
5873 | case CPU_ONLINE: | 5757 | case CPU_ONLINE: |
5874 | case CPU_ONLINE_FROZEN: | 5758 | case CPU_ONLINE_FROZEN: |
5875 | /* Strictly unnecessary, as first user will wake it. */ | ||
5876 | wake_up_process(cpu_rq(cpu)->migration_thread); | ||
5877 | |||
5878 | /* Update our root-domain */ | 5759 | /* Update our root-domain */ |
5879 | rq = cpu_rq(cpu); | ||
5880 | raw_spin_lock_irqsave(&rq->lock, flags); | 5760 | raw_spin_lock_irqsave(&rq->lock, flags); |
5881 | if (rq->rd) { | 5761 | if (rq->rd) { |
5882 | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); | 5762 | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); |
@@ -5887,61 +5767,24 @@ migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) | |||
5887 | break; | 5767 | break; |
5888 | 5768 | ||
5889 | #ifdef CONFIG_HOTPLUG_CPU | 5769 | #ifdef CONFIG_HOTPLUG_CPU |
5890 | case CPU_UP_CANCELED: | ||
5891 | case CPU_UP_CANCELED_FROZEN: | ||
5892 | if (!cpu_rq(cpu)->migration_thread) | ||
5893 | break; | ||
5894 | /* Unbind it from offline cpu so it can run. Fall thru. */ | ||
5895 | kthread_bind(cpu_rq(cpu)->migration_thread, | ||
5896 | cpumask_any(cpu_online_mask)); | ||
5897 | kthread_stop(cpu_rq(cpu)->migration_thread); | ||
5898 | put_task_struct(cpu_rq(cpu)->migration_thread); | ||
5899 | cpu_rq(cpu)->migration_thread = NULL; | ||
5900 | break; | ||
5901 | |||
5902 | case CPU_DEAD: | 5770 | case CPU_DEAD: |
5903 | case CPU_DEAD_FROZEN: | 5771 | case CPU_DEAD_FROZEN: |
5904 | cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */ | ||
5905 | migrate_live_tasks(cpu); | 5772 | migrate_live_tasks(cpu); |
5906 | rq = cpu_rq(cpu); | ||
5907 | kthread_stop(rq->migration_thread); | ||
5908 | put_task_struct(rq->migration_thread); | ||
5909 | rq->migration_thread = NULL; | ||
5910 | /* Idle task back to normal (off runqueue, low prio) */ | 5773 | /* Idle task back to normal (off runqueue, low prio) */ |
5911 | raw_spin_lock_irq(&rq->lock); | 5774 | raw_spin_lock_irq(&rq->lock); |
5912 | update_rq_clock(rq); | ||
5913 | deactivate_task(rq, rq->idle, 0); | 5775 | deactivate_task(rq, rq->idle, 0); |
5914 | __setscheduler(rq, rq->idle, SCHED_NORMAL, 0); | 5776 | __setscheduler(rq, rq->idle, SCHED_NORMAL, 0); |
5915 | rq->idle->sched_class = &idle_sched_class; | 5777 | rq->idle->sched_class = &idle_sched_class; |
5916 | migrate_dead_tasks(cpu); | 5778 | migrate_dead_tasks(cpu); |
5917 | raw_spin_unlock_irq(&rq->lock); | 5779 | raw_spin_unlock_irq(&rq->lock); |
5918 | cpuset_unlock(); | ||
5919 | migrate_nr_uninterruptible(rq); | 5780 | migrate_nr_uninterruptible(rq); |
5920 | BUG_ON(rq->nr_running != 0); | 5781 | BUG_ON(rq->nr_running != 0); |
5921 | calc_global_load_remove(rq); | 5782 | calc_global_load_remove(rq); |
5922 | /* | ||
5923 | * No need to migrate the tasks: it was best-effort if | ||
5924 | * they didn't take sched_hotcpu_mutex. Just wake up | ||
5925 | * the requestors. | ||
5926 | */ | ||
5927 | raw_spin_lock_irq(&rq->lock); | ||
5928 | while (!list_empty(&rq->migration_queue)) { | ||
5929 | struct migration_req *req; | ||
5930 | |||
5931 | req = list_entry(rq->migration_queue.next, | ||
5932 | struct migration_req, list); | ||
5933 | list_del_init(&req->list); | ||
5934 | raw_spin_unlock_irq(&rq->lock); | ||
5935 | complete(&req->done); | ||
5936 | raw_spin_lock_irq(&rq->lock); | ||
5937 | } | ||
5938 | raw_spin_unlock_irq(&rq->lock); | ||
5939 | break; | 5783 | break; |
5940 | 5784 | ||
5941 | case CPU_DYING: | 5785 | case CPU_DYING: |
5942 | case CPU_DYING_FROZEN: | 5786 | case CPU_DYING_FROZEN: |
5943 | /* Update our root-domain */ | 5787 | /* Update our root-domain */ |
5944 | rq = cpu_rq(cpu); | ||
5945 | raw_spin_lock_irqsave(&rq->lock, flags); | 5788 | raw_spin_lock_irqsave(&rq->lock, flags); |
5946 | if (rq->rd) { | 5789 | if (rq->rd) { |
5947 | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); | 5790 | BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); |
@@ -6272,6 +6115,9 @@ cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) | |||
6272 | struct rq *rq = cpu_rq(cpu); | 6115 | struct rq *rq = cpu_rq(cpu); |
6273 | struct sched_domain *tmp; | 6116 | struct sched_domain *tmp; |
6274 | 6117 | ||
6118 | for (tmp = sd; tmp; tmp = tmp->parent) | ||
6119 | tmp->span_weight = cpumask_weight(sched_domain_span(tmp)); | ||
6120 | |||
6275 | /* Remove the sched domains which do not contribute to scheduling. */ | 6121 | /* Remove the sched domains which do not contribute to scheduling. */ |
6276 | for (tmp = sd; tmp; ) { | 6122 | for (tmp = sd; tmp; ) { |
6277 | struct sched_domain *parent = tmp->parent; | 6123 | struct sched_domain *parent = tmp->parent; |
@@ -7755,10 +7601,8 @@ void __init sched_init(void) | |||
7755 | rq->push_cpu = 0; | 7601 | rq->push_cpu = 0; |
7756 | rq->cpu = i; | 7602 | rq->cpu = i; |
7757 | rq->online = 0; | 7603 | rq->online = 0; |
7758 | rq->migration_thread = NULL; | ||
7759 | rq->idle_stamp = 0; | 7604 | rq->idle_stamp = 0; |
7760 | rq->avg_idle = 2*sysctl_sched_migration_cost; | 7605 | rq->avg_idle = 2*sysctl_sched_migration_cost; |
7761 | INIT_LIST_HEAD(&rq->migration_queue); | ||
7762 | rq_attach_root(rq, &def_root_domain); | 7606 | rq_attach_root(rq, &def_root_domain); |
7763 | #endif | 7607 | #endif |
7764 | init_rq_hrtick(rq); | 7608 | init_rq_hrtick(rq); |
@@ -7859,7 +7703,6 @@ static void normalize_task(struct rq *rq, struct task_struct *p) | |||
7859 | { | 7703 | { |
7860 | int on_rq; | 7704 | int on_rq; |
7861 | 7705 | ||
7862 | update_rq_clock(rq); | ||
7863 | on_rq = p->se.on_rq; | 7706 | on_rq = p->se.on_rq; |
7864 | if (on_rq) | 7707 | if (on_rq) |
7865 | deactivate_task(rq, p, 0); | 7708 | deactivate_task(rq, p, 0); |
@@ -7886,9 +7729,9 @@ void normalize_rt_tasks(void) | |||
7886 | 7729 | ||
7887 | p->se.exec_start = 0; | 7730 | p->se.exec_start = 0; |
7888 | #ifdef CONFIG_SCHEDSTATS | 7731 | #ifdef CONFIG_SCHEDSTATS |
7889 | p->se.wait_start = 0; | 7732 | p->se.statistics.wait_start = 0; |
7890 | p->se.sleep_start = 0; | 7733 | p->se.statistics.sleep_start = 0; |
7891 | p->se.block_start = 0; | 7734 | p->se.statistics.block_start = 0; |
7892 | #endif | 7735 | #endif |
7893 | 7736 | ||
7894 | if (!rt_task(p)) { | 7737 | if (!rt_task(p)) { |
@@ -8221,8 +8064,6 @@ void sched_move_task(struct task_struct *tsk) | |||
8221 | 8064 | ||
8222 | rq = task_rq_lock(tsk, &flags); | 8065 | rq = task_rq_lock(tsk, &flags); |
8223 | 8066 | ||
8224 | update_rq_clock(rq); | ||
8225 | |||
8226 | running = task_current(rq, tsk); | 8067 | running = task_current(rq, tsk); |
8227 | on_rq = tsk->se.on_rq; | 8068 | on_rq = tsk->se.on_rq; |
8228 | 8069 | ||
@@ -8241,7 +8082,7 @@ void sched_move_task(struct task_struct *tsk) | |||
8241 | if (unlikely(running)) | 8082 | if (unlikely(running)) |
8242 | tsk->sched_class->set_curr_task(rq); | 8083 | tsk->sched_class->set_curr_task(rq); |
8243 | if (on_rq) | 8084 | if (on_rq) |
8244 | enqueue_task(rq, tsk, 0, false); | 8085 | enqueue_task(rq, tsk, 0); |
8245 | 8086 | ||
8246 | task_rq_unlock(rq, &flags); | 8087 | task_rq_unlock(rq, &flags); |
8247 | } | 8088 | } |
@@ -9055,43 +8896,32 @@ struct cgroup_subsys cpuacct_subsys = { | |||
9055 | 8896 | ||
9056 | #ifndef CONFIG_SMP | 8897 | #ifndef CONFIG_SMP |
9057 | 8898 | ||
9058 | int rcu_expedited_torture_stats(char *page) | ||
9059 | { | ||
9060 | return 0; | ||
9061 | } | ||
9062 | EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats); | ||
9063 | |||
9064 | void synchronize_sched_expedited(void) | 8899 | void synchronize_sched_expedited(void) |
9065 | { | 8900 | { |
8901 | barrier(); | ||
9066 | } | 8902 | } |
9067 | EXPORT_SYMBOL_GPL(synchronize_sched_expedited); | 8903 | EXPORT_SYMBOL_GPL(synchronize_sched_expedited); |
9068 | 8904 | ||
9069 | #else /* #ifndef CONFIG_SMP */ | 8905 | #else /* #ifndef CONFIG_SMP */ |
9070 | 8906 | ||
9071 | static DEFINE_PER_CPU(struct migration_req, rcu_migration_req); | 8907 | static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0); |
9072 | static DEFINE_MUTEX(rcu_sched_expedited_mutex); | ||
9073 | |||
9074 | #define RCU_EXPEDITED_STATE_POST -2 | ||
9075 | #define RCU_EXPEDITED_STATE_IDLE -1 | ||
9076 | |||
9077 | static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE; | ||
9078 | 8908 | ||
9079 | int rcu_expedited_torture_stats(char *page) | 8909 | static int synchronize_sched_expedited_cpu_stop(void *data) |
9080 | { | 8910 | { |
9081 | int cnt = 0; | 8911 | /* |
9082 | int cpu; | 8912 | * There must be a full memory barrier on each affected CPU |
9083 | 8913 | * between the time that try_stop_cpus() is called and the | |
9084 | cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state); | 8914 | * time that it returns. |
9085 | for_each_online_cpu(cpu) { | 8915 | * |
9086 | cnt += sprintf(&page[cnt], " %d:%d", | 8916 | * In the current initial implementation of cpu_stop, the |
9087 | cpu, per_cpu(rcu_migration_req, cpu).dest_cpu); | 8917 | * above condition is already met when the control reaches |
9088 | } | 8918 | * this point and the following smp_mb() is not strictly |
9089 | cnt += sprintf(&page[cnt], "\n"); | 8919 | * necessary. Do smp_mb() anyway for documentation and |
9090 | return cnt; | 8920 | * robustness against future implementation changes. |
8921 | */ | ||
8922 | smp_mb(); /* See above comment block. */ | ||
8923 | return 0; | ||
9091 | } | 8924 | } |
9092 | EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats); | ||
9093 | |||
9094 | static long synchronize_sched_expedited_count; | ||
9095 | 8925 | ||
9096 | /* | 8926 | /* |
9097 | * Wait for an rcu-sched grace period to elapse, but use "big hammer" | 8927 | * Wait for an rcu-sched grace period to elapse, but use "big hammer" |
@@ -9105,18 +8935,14 @@ static long synchronize_sched_expedited_count; | |||
9105 | */ | 8935 | */ |
9106 | void synchronize_sched_expedited(void) | 8936 | void synchronize_sched_expedited(void) |
9107 | { | 8937 | { |
9108 | int cpu; | 8938 | int snap, trycount = 0; |
9109 | unsigned long flags; | ||
9110 | bool need_full_sync = 0; | ||
9111 | struct rq *rq; | ||
9112 | struct migration_req *req; | ||
9113 | long snap; | ||
9114 | int trycount = 0; | ||
9115 | 8939 | ||
9116 | smp_mb(); /* ensure prior mod happens before capturing snap. */ | 8940 | smp_mb(); /* ensure prior mod happens before capturing snap. */ |
9117 | snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1; | 8941 | snap = atomic_read(&synchronize_sched_expedited_count) + 1; |
9118 | get_online_cpus(); | 8942 | get_online_cpus(); |
9119 | while (!mutex_trylock(&rcu_sched_expedited_mutex)) { | 8943 | while (try_stop_cpus(cpu_online_mask, |
8944 | synchronize_sched_expedited_cpu_stop, | ||
8945 | NULL) == -EAGAIN) { | ||
9120 | put_online_cpus(); | 8946 | put_online_cpus(); |
9121 | if (trycount++ < 10) | 8947 | if (trycount++ < 10) |
9122 | udelay(trycount * num_online_cpus()); | 8948 | udelay(trycount * num_online_cpus()); |
@@ -9124,41 +8950,15 @@ void synchronize_sched_expedited(void) | |||
9124 | synchronize_sched(); | 8950 | synchronize_sched(); |
9125 | return; | 8951 | return; |
9126 | } | 8952 | } |
9127 | if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) { | 8953 | if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) { |
9128 | smp_mb(); /* ensure test happens before caller kfree */ | 8954 | smp_mb(); /* ensure test happens before caller kfree */ |
9129 | return; | 8955 | return; |
9130 | } | 8956 | } |
9131 | get_online_cpus(); | 8957 | get_online_cpus(); |
9132 | } | 8958 | } |
9133 | rcu_expedited_state = RCU_EXPEDITED_STATE_POST; | 8959 | atomic_inc(&synchronize_sched_expedited_count); |
9134 | for_each_online_cpu(cpu) { | 8960 | smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */ |
9135 | rq = cpu_rq(cpu); | ||
9136 | req = &per_cpu(rcu_migration_req, cpu); | ||
9137 | init_completion(&req->done); | ||
9138 | req->task = NULL; | ||
9139 | req->dest_cpu = RCU_MIGRATION_NEED_QS; | ||
9140 | raw_spin_lock_irqsave(&rq->lock, flags); | ||
9141 | list_add(&req->list, &rq->migration_queue); | ||
9142 | raw_spin_unlock_irqrestore(&rq->lock, flags); | ||
9143 | wake_up_process(rq->migration_thread); | ||
9144 | } | ||
9145 | for_each_online_cpu(cpu) { | ||
9146 | rcu_expedited_state = cpu; | ||
9147 | req = &per_cpu(rcu_migration_req, cpu); | ||
9148 | rq = cpu_rq(cpu); | ||
9149 | wait_for_completion(&req->done); | ||
9150 | raw_spin_lock_irqsave(&rq->lock, flags); | ||
9151 | if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC)) | ||
9152 | need_full_sync = 1; | ||
9153 | req->dest_cpu = RCU_MIGRATION_IDLE; | ||
9154 | raw_spin_unlock_irqrestore(&rq->lock, flags); | ||
9155 | } | ||
9156 | rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE; | ||
9157 | synchronize_sched_expedited_count++; | ||
9158 | mutex_unlock(&rcu_sched_expedited_mutex); | ||
9159 | put_online_cpus(); | 8961 | put_online_cpus(); |
9160 | if (need_full_sync) | ||
9161 | synchronize_sched(); | ||
9162 | } | 8962 | } |
9163 | EXPORT_SYMBOL_GPL(synchronize_sched_expedited); | 8963 | EXPORT_SYMBOL_GPL(synchronize_sched_expedited); |
9164 | 8964 | ||
diff --git a/kernel/sched_debug.c b/kernel/sched_debug.c index 19be00ba6123..87a330a7185f 100644 --- a/kernel/sched_debug.c +++ b/kernel/sched_debug.c | |||
@@ -70,16 +70,16 @@ static void print_cfs_group_stats(struct seq_file *m, int cpu, | |||
70 | PN(se->vruntime); | 70 | PN(se->vruntime); |
71 | PN(se->sum_exec_runtime); | 71 | PN(se->sum_exec_runtime); |
72 | #ifdef CONFIG_SCHEDSTATS | 72 | #ifdef CONFIG_SCHEDSTATS |
73 | PN(se->wait_start); | 73 | PN(se->statistics.wait_start); |
74 | PN(se->sleep_start); | 74 | PN(se->statistics.sleep_start); |
75 | PN(se->block_start); | 75 | PN(se->statistics.block_start); |
76 | PN(se->sleep_max); | 76 | PN(se->statistics.sleep_max); |
77 | PN(se->block_max); | 77 | PN(se->statistics.block_max); |
78 | PN(se->exec_max); | 78 | PN(se->statistics.exec_max); |
79 | PN(se->slice_max); | 79 | PN(se->statistics.slice_max); |
80 | PN(se->wait_max); | 80 | PN(se->statistics.wait_max); |
81 | PN(se->wait_sum); | 81 | PN(se->statistics.wait_sum); |
82 | P(se->wait_count); | 82 | P(se->statistics.wait_count); |
83 | #endif | 83 | #endif |
84 | P(se->load.weight); | 84 | P(se->load.weight); |
85 | #undef PN | 85 | #undef PN |
@@ -104,7 +104,7 @@ print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) | |||
104 | SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld", | 104 | SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld", |
105 | SPLIT_NS(p->se.vruntime), | 105 | SPLIT_NS(p->se.vruntime), |
106 | SPLIT_NS(p->se.sum_exec_runtime), | 106 | SPLIT_NS(p->se.sum_exec_runtime), |
107 | SPLIT_NS(p->se.sum_sleep_runtime)); | 107 | SPLIT_NS(p->se.statistics.sum_sleep_runtime)); |
108 | #else | 108 | #else |
109 | SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld", | 109 | SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld", |
110 | 0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L); | 110 | 0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L); |
@@ -175,11 +175,6 @@ void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) | |||
175 | task_group_path(tg, path, sizeof(path)); | 175 | task_group_path(tg, path, sizeof(path)); |
176 | 176 | ||
177 | SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, path); | 177 | SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, path); |
178 | #elif defined(CONFIG_USER_SCHED) && defined(CONFIG_FAIR_GROUP_SCHED) | ||
179 | { | ||
180 | uid_t uid = cfs_rq->tg->uid; | ||
181 | SEQ_printf(m, "\ncfs_rq[%d] for UID: %u\n", cpu, uid); | ||
182 | } | ||
183 | #else | 178 | #else |
184 | SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu); | 179 | SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu); |
185 | #endif | 180 | #endif |
@@ -409,40 +404,38 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m) | |||
409 | PN(se.exec_start); | 404 | PN(se.exec_start); |
410 | PN(se.vruntime); | 405 | PN(se.vruntime); |
411 | PN(se.sum_exec_runtime); | 406 | PN(se.sum_exec_runtime); |
412 | PN(se.avg_overlap); | ||
413 | PN(se.avg_wakeup); | ||
414 | 407 | ||
415 | nr_switches = p->nvcsw + p->nivcsw; | 408 | nr_switches = p->nvcsw + p->nivcsw; |
416 | 409 | ||
417 | #ifdef CONFIG_SCHEDSTATS | 410 | #ifdef CONFIG_SCHEDSTATS |
418 | PN(se.wait_start); | 411 | PN(se.statistics.wait_start); |
419 | PN(se.sleep_start); | 412 | PN(se.statistics.sleep_start); |
420 | PN(se.block_start); | 413 | PN(se.statistics.block_start); |
421 | PN(se.sleep_max); | 414 | PN(se.statistics.sleep_max); |
422 | PN(se.block_max); | 415 | PN(se.statistics.block_max); |
423 | PN(se.exec_max); | 416 | PN(se.statistics.exec_max); |
424 | PN(se.slice_max); | 417 | PN(se.statistics.slice_max); |
425 | PN(se.wait_max); | 418 | PN(se.statistics.wait_max); |
426 | PN(se.wait_sum); | 419 | PN(se.statistics.wait_sum); |
427 | P(se.wait_count); | 420 | P(se.statistics.wait_count); |
428 | PN(se.iowait_sum); | 421 | PN(se.statistics.iowait_sum); |
429 | P(se.iowait_count); | 422 | P(se.statistics.iowait_count); |
430 | P(sched_info.bkl_count); | 423 | P(sched_info.bkl_count); |
431 | P(se.nr_migrations); | 424 | P(se.nr_migrations); |
432 | P(se.nr_migrations_cold); | 425 | P(se.statistics.nr_migrations_cold); |
433 | P(se.nr_failed_migrations_affine); | 426 | P(se.statistics.nr_failed_migrations_affine); |
434 | P(se.nr_failed_migrations_running); | 427 | P(se.statistics.nr_failed_migrations_running); |
435 | P(se.nr_failed_migrations_hot); | 428 | P(se.statistics.nr_failed_migrations_hot); |
436 | P(se.nr_forced_migrations); | 429 | P(se.statistics.nr_forced_migrations); |
437 | P(se.nr_wakeups); | 430 | P(se.statistics.nr_wakeups); |
438 | P(se.nr_wakeups_sync); | 431 | P(se.statistics.nr_wakeups_sync); |
439 | P(se.nr_wakeups_migrate); | 432 | P(se.statistics.nr_wakeups_migrate); |
440 | P(se.nr_wakeups_local); | 433 | P(se.statistics.nr_wakeups_local); |
441 | P(se.nr_wakeups_remote); | 434 | P(se.statistics.nr_wakeups_remote); |
442 | P(se.nr_wakeups_affine); | 435 | P(se.statistics.nr_wakeups_affine); |
443 | P(se.nr_wakeups_affine_attempts); | 436 | P(se.statistics.nr_wakeups_affine_attempts); |
444 | P(se.nr_wakeups_passive); | 437 | P(se.statistics.nr_wakeups_passive); |
445 | P(se.nr_wakeups_idle); | 438 | P(se.statistics.nr_wakeups_idle); |
446 | 439 | ||
447 | { | 440 | { |
448 | u64 avg_atom, avg_per_cpu; | 441 | u64 avg_atom, avg_per_cpu; |
@@ -493,31 +486,6 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m) | |||
493 | void proc_sched_set_task(struct task_struct *p) | 486 | void proc_sched_set_task(struct task_struct *p) |
494 | { | 487 | { |
495 | #ifdef CONFIG_SCHEDSTATS | 488 | #ifdef CONFIG_SCHEDSTATS |
496 | p->se.wait_max = 0; | 489 | memset(&p->se.statistics, 0, sizeof(p->se.statistics)); |
497 | p->se.wait_sum = 0; | ||
498 | p->se.wait_count = 0; | ||
499 | p->se.iowait_sum = 0; | ||
500 | p->se.iowait_count = 0; | ||
501 | p->se.sleep_max = 0; | ||
502 | p->se.sum_sleep_runtime = 0; | ||
503 | p->se.block_max = 0; | ||
504 | p->se.exec_max = 0; | ||
505 | p->se.slice_max = 0; | ||
506 | p->se.nr_migrations = 0; | ||
507 | p->se.nr_migrations_cold = 0; | ||
508 | p->se.nr_failed_migrations_affine = 0; | ||
509 | p->se.nr_failed_migrations_running = 0; | ||
510 | p->se.nr_failed_migrations_hot = 0; | ||
511 | p->se.nr_forced_migrations = 0; | ||
512 | p->se.nr_wakeups = 0; | ||
513 | p->se.nr_wakeups_sync = 0; | ||
514 | p->se.nr_wakeups_migrate = 0; | ||
515 | p->se.nr_wakeups_local = 0; | ||
516 | p->se.nr_wakeups_remote = 0; | ||
517 | p->se.nr_wakeups_affine = 0; | ||
518 | p->se.nr_wakeups_affine_attempts = 0; | ||
519 | p->se.nr_wakeups_passive = 0; | ||
520 | p->se.nr_wakeups_idle = 0; | ||
521 | p->sched_info.bkl_count = 0; | ||
522 | #endif | 490 | #endif |
523 | } | 491 | } |
diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c index 5a5ea2cd924f..217e4a9393e4 100644 --- a/kernel/sched_fair.c +++ b/kernel/sched_fair.c | |||
@@ -35,8 +35,8 @@ | |||
35 | * (to see the precise effective timeslice length of your workload, | 35 | * (to see the precise effective timeslice length of your workload, |
36 | * run vmstat and monitor the context-switches (cs) field) | 36 | * run vmstat and monitor the context-switches (cs) field) |
37 | */ | 37 | */ |
38 | unsigned int sysctl_sched_latency = 5000000ULL; | 38 | unsigned int sysctl_sched_latency = 6000000ULL; |
39 | unsigned int normalized_sysctl_sched_latency = 5000000ULL; | 39 | unsigned int normalized_sysctl_sched_latency = 6000000ULL; |
40 | 40 | ||
41 | /* | 41 | /* |
42 | * The initial- and re-scaling of tunables is configurable | 42 | * The initial- and re-scaling of tunables is configurable |
@@ -52,15 +52,15 @@ enum sched_tunable_scaling sysctl_sched_tunable_scaling | |||
52 | 52 | ||
53 | /* | 53 | /* |
54 | * Minimal preemption granularity for CPU-bound tasks: | 54 | * Minimal preemption granularity for CPU-bound tasks: |
55 | * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) | 55 | * (default: 2 msec * (1 + ilog(ncpus)), units: nanoseconds) |
56 | */ | 56 | */ |
57 | unsigned int sysctl_sched_min_granularity = 1000000ULL; | 57 | unsigned int sysctl_sched_min_granularity = 2000000ULL; |
58 | unsigned int normalized_sysctl_sched_min_granularity = 1000000ULL; | 58 | unsigned int normalized_sysctl_sched_min_granularity = 2000000ULL; |
59 | 59 | ||
60 | /* | 60 | /* |
61 | * is kept at sysctl_sched_latency / sysctl_sched_min_granularity | 61 | * is kept at sysctl_sched_latency / sysctl_sched_min_granularity |
62 | */ | 62 | */ |
63 | static unsigned int sched_nr_latency = 5; | 63 | static unsigned int sched_nr_latency = 3; |
64 | 64 | ||
65 | /* | 65 | /* |
66 | * After fork, child runs first. If set to 0 (default) then | 66 | * After fork, child runs first. If set to 0 (default) then |
@@ -505,7 +505,8 @@ __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr, | |||
505 | { | 505 | { |
506 | unsigned long delta_exec_weighted; | 506 | unsigned long delta_exec_weighted; |
507 | 507 | ||
508 | schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max)); | 508 | schedstat_set(curr->statistics.exec_max, |
509 | max((u64)delta_exec, curr->statistics.exec_max)); | ||
509 | 510 | ||
510 | curr->sum_exec_runtime += delta_exec; | 511 | curr->sum_exec_runtime += delta_exec; |
511 | schedstat_add(cfs_rq, exec_clock, delta_exec); | 512 | schedstat_add(cfs_rq, exec_clock, delta_exec); |
@@ -548,7 +549,7 @@ static void update_curr(struct cfs_rq *cfs_rq) | |||
548 | static inline void | 549 | static inline void |
549 | update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) | 550 | update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) |
550 | { | 551 | { |
551 | schedstat_set(se->wait_start, rq_of(cfs_rq)->clock); | 552 | schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock); |
552 | } | 553 | } |
553 | 554 | ||
554 | /* | 555 | /* |
@@ -567,18 +568,18 @@ static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) | |||
567 | static void | 568 | static void |
568 | update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) | 569 | update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) |
569 | { | 570 | { |
570 | schedstat_set(se->wait_max, max(se->wait_max, | 571 | schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max, |
571 | rq_of(cfs_rq)->clock - se->wait_start)); | 572 | rq_of(cfs_rq)->clock - se->statistics.wait_start)); |
572 | schedstat_set(se->wait_count, se->wait_count + 1); | 573 | schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1); |
573 | schedstat_set(se->wait_sum, se->wait_sum + | 574 | schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum + |
574 | rq_of(cfs_rq)->clock - se->wait_start); | 575 | rq_of(cfs_rq)->clock - se->statistics.wait_start); |
575 | #ifdef CONFIG_SCHEDSTATS | 576 | #ifdef CONFIG_SCHEDSTATS |
576 | if (entity_is_task(se)) { | 577 | if (entity_is_task(se)) { |
577 | trace_sched_stat_wait(task_of(se), | 578 | trace_sched_stat_wait(task_of(se), |
578 | rq_of(cfs_rq)->clock - se->wait_start); | 579 | rq_of(cfs_rq)->clock - se->statistics.wait_start); |
579 | } | 580 | } |
580 | #endif | 581 | #endif |
581 | schedstat_set(se->wait_start, 0); | 582 | schedstat_set(se->statistics.wait_start, 0); |
582 | } | 583 | } |
583 | 584 | ||
584 | static inline void | 585 | static inline void |
@@ -657,39 +658,39 @@ static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) | |||
657 | if (entity_is_task(se)) | 658 | if (entity_is_task(se)) |
658 | tsk = task_of(se); | 659 | tsk = task_of(se); |
659 | 660 | ||
660 | if (se->sleep_start) { | 661 | if (se->statistics.sleep_start) { |
661 | u64 delta = rq_of(cfs_rq)->clock - se->sleep_start; | 662 | u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start; |
662 | 663 | ||
663 | if ((s64)delta < 0) | 664 | if ((s64)delta < 0) |
664 | delta = 0; | 665 | delta = 0; |
665 | 666 | ||
666 | if (unlikely(delta > se->sleep_max)) | 667 | if (unlikely(delta > se->statistics.sleep_max)) |
667 | se->sleep_max = delta; | 668 | se->statistics.sleep_max = delta; |
668 | 669 | ||
669 | se->sleep_start = 0; | 670 | se->statistics.sleep_start = 0; |
670 | se->sum_sleep_runtime += delta; | 671 | se->statistics.sum_sleep_runtime += delta; |
671 | 672 | ||
672 | if (tsk) { | 673 | if (tsk) { |
673 | account_scheduler_latency(tsk, delta >> 10, 1); | 674 | account_scheduler_latency(tsk, delta >> 10, 1); |
674 | trace_sched_stat_sleep(tsk, delta); | 675 | trace_sched_stat_sleep(tsk, delta); |
675 | } | 676 | } |
676 | } | 677 | } |
677 | if (se->block_start) { | 678 | if (se->statistics.block_start) { |
678 | u64 delta = rq_of(cfs_rq)->clock - se->block_start; | 679 | u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start; |
679 | 680 | ||
680 | if ((s64)delta < 0) | 681 | if ((s64)delta < 0) |
681 | delta = 0; | 682 | delta = 0; |
682 | 683 | ||
683 | if (unlikely(delta > se->block_max)) | 684 | if (unlikely(delta > se->statistics.block_max)) |
684 | se->block_max = delta; | 685 | se->statistics.block_max = delta; |
685 | 686 | ||
686 | se->block_start = 0; | 687 | se->statistics.block_start = 0; |
687 | se->sum_sleep_runtime += delta; | 688 | se->statistics.sum_sleep_runtime += delta; |
688 | 689 | ||
689 | if (tsk) { | 690 | if (tsk) { |
690 | if (tsk->in_iowait) { | 691 | if (tsk->in_iowait) { |
691 | se->iowait_sum += delta; | 692 | se->statistics.iowait_sum += delta; |
692 | se->iowait_count++; | 693 | se->statistics.iowait_count++; |
693 | trace_sched_stat_iowait(tsk, delta); | 694 | trace_sched_stat_iowait(tsk, delta); |
694 | } | 695 | } |
695 | 696 | ||
@@ -737,20 +738,10 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) | |||
737 | vruntime += sched_vslice(cfs_rq, se); | 738 | vruntime += sched_vslice(cfs_rq, se); |
738 | 739 | ||
739 | /* sleeps up to a single latency don't count. */ | 740 | /* sleeps up to a single latency don't count. */ |
740 | if (!initial && sched_feat(FAIR_SLEEPERS)) { | 741 | if (!initial) { |
741 | unsigned long thresh = sysctl_sched_latency; | 742 | unsigned long thresh = sysctl_sched_latency; |
742 | 743 | ||
743 | /* | 744 | /* |
744 | * Convert the sleeper threshold into virtual time. | ||
745 | * SCHED_IDLE is a special sub-class. We care about | ||
746 | * fairness only relative to other SCHED_IDLE tasks, | ||
747 | * all of which have the same weight. | ||
748 | */ | ||
749 | if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) || | ||
750 | task_of(se)->policy != SCHED_IDLE)) | ||
751 | thresh = calc_delta_fair(thresh, se); | ||
752 | |||
753 | /* | ||
754 | * Halve their sleep time's effect, to allow | 745 | * Halve their sleep time's effect, to allow |
755 | * for a gentler effect of sleepers: | 746 | * for a gentler effect of sleepers: |
756 | */ | 747 | */ |
@@ -766,9 +757,6 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) | |||
766 | se->vruntime = vruntime; | 757 | se->vruntime = vruntime; |
767 | } | 758 | } |
768 | 759 | ||
769 | #define ENQUEUE_WAKEUP 1 | ||
770 | #define ENQUEUE_MIGRATE 2 | ||
771 | |||
772 | static void | 760 | static void |
773 | enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | 761 | enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
774 | { | 762 | { |
@@ -776,7 +764,7 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) | |||
776 | * Update the normalized vruntime before updating min_vruntime | 764 | * Update the normalized vruntime before updating min_vruntime |
777 | * through callig update_curr(). | 765 | * through callig update_curr(). |
778 | */ | 766 | */ |
779 | if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATE)) | 767 | if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING)) |
780 | se->vruntime += cfs_rq->min_vruntime; | 768 | se->vruntime += cfs_rq->min_vruntime; |
781 | 769 | ||
782 | /* | 770 | /* |
@@ -812,7 +800,7 @@ static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) | |||
812 | } | 800 | } |
813 | 801 | ||
814 | static void | 802 | static void |
815 | dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep) | 803 | dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) |
816 | { | 804 | { |
817 | /* | 805 | /* |
818 | * Update run-time statistics of the 'current'. | 806 | * Update run-time statistics of the 'current'. |
@@ -820,15 +808,15 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep) | |||
820 | update_curr(cfs_rq); | 808 | update_curr(cfs_rq); |
821 | 809 | ||
822 | update_stats_dequeue(cfs_rq, se); | 810 | update_stats_dequeue(cfs_rq, se); |
823 | if (sleep) { | 811 | if (flags & DEQUEUE_SLEEP) { |
824 | #ifdef CONFIG_SCHEDSTATS | 812 | #ifdef CONFIG_SCHEDSTATS |
825 | if (entity_is_task(se)) { | 813 | if (entity_is_task(se)) { |
826 | struct task_struct *tsk = task_of(se); | 814 | struct task_struct *tsk = task_of(se); |
827 | 815 | ||
828 | if (tsk->state & TASK_INTERRUPTIBLE) | 816 | if (tsk->state & TASK_INTERRUPTIBLE) |
829 | se->sleep_start = rq_of(cfs_rq)->clock; | 817 | se->statistics.sleep_start = rq_of(cfs_rq)->clock; |
830 | if (tsk->state & TASK_UNINTERRUPTIBLE) | 818 | if (tsk->state & TASK_UNINTERRUPTIBLE) |
831 | se->block_start = rq_of(cfs_rq)->clock; | 819 | se->statistics.block_start = rq_of(cfs_rq)->clock; |
832 | } | 820 | } |
833 | #endif | 821 | #endif |
834 | } | 822 | } |
@@ -845,7 +833,7 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep) | |||
845 | * update can refer to the ->curr item and we need to reflect this | 833 | * update can refer to the ->curr item and we need to reflect this |
846 | * movement in our normalized position. | 834 | * movement in our normalized position. |
847 | */ | 835 | */ |
848 | if (!sleep) | 836 | if (!(flags & DEQUEUE_SLEEP)) |
849 | se->vruntime -= cfs_rq->min_vruntime; | 837 | se->vruntime -= cfs_rq->min_vruntime; |
850 | } | 838 | } |
851 | 839 | ||
@@ -912,7 +900,7 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) | |||
912 | * when there are only lesser-weight tasks around): | 900 | * when there are only lesser-weight tasks around): |
913 | */ | 901 | */ |
914 | if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { | 902 | if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { |
915 | se->slice_max = max(se->slice_max, | 903 | se->statistics.slice_max = max(se->statistics.slice_max, |
916 | se->sum_exec_runtime - se->prev_sum_exec_runtime); | 904 | se->sum_exec_runtime - se->prev_sum_exec_runtime); |
917 | } | 905 | } |
918 | #endif | 906 | #endif |
@@ -1054,16 +1042,10 @@ static inline void hrtick_update(struct rq *rq) | |||
1054 | * then put the task into the rbtree: | 1042 | * then put the task into the rbtree: |
1055 | */ | 1043 | */ |
1056 | static void | 1044 | static void |
1057 | enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, bool head) | 1045 | enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) |
1058 | { | 1046 | { |
1059 | struct cfs_rq *cfs_rq; | 1047 | struct cfs_rq *cfs_rq; |
1060 | struct sched_entity *se = &p->se; | 1048 | struct sched_entity *se = &p->se; |
1061 | int flags = 0; | ||
1062 | |||
1063 | if (wakeup) | ||
1064 | flags |= ENQUEUE_WAKEUP; | ||
1065 | if (p->state == TASK_WAKING) | ||
1066 | flags |= ENQUEUE_MIGRATE; | ||
1067 | 1049 | ||
1068 | for_each_sched_entity(se) { | 1050 | for_each_sched_entity(se) { |
1069 | if (se->on_rq) | 1051 | if (se->on_rq) |
@@ -1081,18 +1063,18 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, bool head) | |||
1081 | * decreased. We remove the task from the rbtree and | 1063 | * decreased. We remove the task from the rbtree and |
1082 | * update the fair scheduling stats: | 1064 | * update the fair scheduling stats: |
1083 | */ | 1065 | */ |
1084 | static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep) | 1066 | static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) |
1085 | { | 1067 | { |
1086 | struct cfs_rq *cfs_rq; | 1068 | struct cfs_rq *cfs_rq; |
1087 | struct sched_entity *se = &p->se; | 1069 | struct sched_entity *se = &p->se; |
1088 | 1070 | ||
1089 | for_each_sched_entity(se) { | 1071 | for_each_sched_entity(se) { |
1090 | cfs_rq = cfs_rq_of(se); | 1072 | cfs_rq = cfs_rq_of(se); |
1091 | dequeue_entity(cfs_rq, se, sleep); | 1073 | dequeue_entity(cfs_rq, se, flags); |
1092 | /* Don't dequeue parent if it has other entities besides us */ | 1074 | /* Don't dequeue parent if it has other entities besides us */ |
1093 | if (cfs_rq->load.weight) | 1075 | if (cfs_rq->load.weight) |
1094 | break; | 1076 | break; |
1095 | sleep = 1; | 1077 | flags |= DEQUEUE_SLEEP; |
1096 | } | 1078 | } |
1097 | 1079 | ||
1098 | hrtick_update(rq); | 1080 | hrtick_update(rq); |
@@ -1240,7 +1222,6 @@ static inline unsigned long effective_load(struct task_group *tg, int cpu, | |||
1240 | 1222 | ||
1241 | static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) | 1223 | static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) |
1242 | { | 1224 | { |
1243 | struct task_struct *curr = current; | ||
1244 | unsigned long this_load, load; | 1225 | unsigned long this_load, load; |
1245 | int idx, this_cpu, prev_cpu; | 1226 | int idx, this_cpu, prev_cpu; |
1246 | unsigned long tl_per_task; | 1227 | unsigned long tl_per_task; |
@@ -1255,18 +1236,6 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) | |||
1255 | load = source_load(prev_cpu, idx); | 1236 | load = source_load(prev_cpu, idx); |
1256 | this_load = target_load(this_cpu, idx); | 1237 | this_load = target_load(this_cpu, idx); |
1257 | 1238 | ||
1258 | if (sync) { | ||
1259 | if (sched_feat(SYNC_LESS) && | ||
1260 | (curr->se.avg_overlap > sysctl_sched_migration_cost || | ||
1261 | p->se.avg_overlap > sysctl_sched_migration_cost)) | ||
1262 | sync = 0; | ||
1263 | } else { | ||
1264 | if (sched_feat(SYNC_MORE) && | ||
1265 | (curr->se.avg_overlap < sysctl_sched_migration_cost && | ||
1266 | p->se.avg_overlap < sysctl_sched_migration_cost)) | ||
1267 | sync = 1; | ||
1268 | } | ||
1269 | |||
1270 | /* | 1239 | /* |
1271 | * If sync wakeup then subtract the (maximum possible) | 1240 | * If sync wakeup then subtract the (maximum possible) |
1272 | * effect of the currently running task from the load | 1241 | * effect of the currently running task from the load |
@@ -1306,7 +1275,7 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) | |||
1306 | if (sync && balanced) | 1275 | if (sync && balanced) |
1307 | return 1; | 1276 | return 1; |
1308 | 1277 | ||
1309 | schedstat_inc(p, se.nr_wakeups_affine_attempts); | 1278 | schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); |
1310 | tl_per_task = cpu_avg_load_per_task(this_cpu); | 1279 | tl_per_task = cpu_avg_load_per_task(this_cpu); |
1311 | 1280 | ||
1312 | if (balanced || | 1281 | if (balanced || |
@@ -1318,7 +1287,7 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) | |||
1318 | * there is no bad imbalance. | 1287 | * there is no bad imbalance. |
1319 | */ | 1288 | */ |
1320 | schedstat_inc(sd, ttwu_move_affine); | 1289 | schedstat_inc(sd, ttwu_move_affine); |
1321 | schedstat_inc(p, se.nr_wakeups_affine); | 1290 | schedstat_inc(p, se.statistics.nr_wakeups_affine); |
1322 | 1291 | ||
1323 | return 1; | 1292 | return 1; |
1324 | } | 1293 | } |
@@ -1406,29 +1375,48 @@ find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) | |||
1406 | /* | 1375 | /* |
1407 | * Try and locate an idle CPU in the sched_domain. | 1376 | * Try and locate an idle CPU in the sched_domain. |
1408 | */ | 1377 | */ |
1409 | static int | 1378 | static int select_idle_sibling(struct task_struct *p, int target) |
1410 | select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target) | ||
1411 | { | 1379 | { |
1412 | int cpu = smp_processor_id(); | 1380 | int cpu = smp_processor_id(); |
1413 | int prev_cpu = task_cpu(p); | 1381 | int prev_cpu = task_cpu(p); |
1382 | struct sched_domain *sd; | ||
1414 | int i; | 1383 | int i; |
1415 | 1384 | ||
1416 | /* | 1385 | /* |
1417 | * If this domain spans both cpu and prev_cpu (see the SD_WAKE_AFFINE | 1386 | * If the task is going to be woken-up on this cpu and if it is |
1418 | * test in select_task_rq_fair) and the prev_cpu is idle then that's | 1387 | * already idle, then it is the right target. |
1419 | * always a better target than the current cpu. | ||
1420 | */ | 1388 | */ |
1421 | if (target == cpu && !cpu_rq(prev_cpu)->cfs.nr_running) | 1389 | if (target == cpu && idle_cpu(cpu)) |
1390 | return cpu; | ||
1391 | |||
1392 | /* | ||
1393 | * If the task is going to be woken-up on the cpu where it previously | ||
1394 | * ran and if it is currently idle, then it the right target. | ||
1395 | */ | ||
1396 | if (target == prev_cpu && idle_cpu(prev_cpu)) | ||
1422 | return prev_cpu; | 1397 | return prev_cpu; |
1423 | 1398 | ||
1424 | /* | 1399 | /* |
1425 | * Otherwise, iterate the domain and find an elegible idle cpu. | 1400 | * Otherwise, iterate the domains and find an elegible idle cpu. |
1426 | */ | 1401 | */ |
1427 | for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) { | 1402 | for_each_domain(target, sd) { |
1428 | if (!cpu_rq(i)->cfs.nr_running) { | 1403 | if (!(sd->flags & SD_SHARE_PKG_RESOURCES)) |
1429 | target = i; | ||
1430 | break; | 1404 | break; |
1405 | |||
1406 | for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) { | ||
1407 | if (idle_cpu(i)) { | ||
1408 | target = i; | ||
1409 | break; | ||
1410 | } | ||
1431 | } | 1411 | } |
1412 | |||
1413 | /* | ||
1414 | * Lets stop looking for an idle sibling when we reached | ||
1415 | * the domain that spans the current cpu and prev_cpu. | ||
1416 | */ | ||
1417 | if (cpumask_test_cpu(cpu, sched_domain_span(sd)) && | ||
1418 | cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) | ||
1419 | break; | ||
1432 | } | 1420 | } |
1433 | 1421 | ||
1434 | return target; | 1422 | return target; |
@@ -1445,7 +1433,8 @@ select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target) | |||
1445 | * | 1433 | * |
1446 | * preempt must be disabled. | 1434 | * preempt must be disabled. |
1447 | */ | 1435 | */ |
1448 | static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags) | 1436 | static int |
1437 | select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags) | ||
1449 | { | 1438 | { |
1450 | struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; | 1439 | struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; |
1451 | int cpu = smp_processor_id(); | 1440 | int cpu = smp_processor_id(); |
@@ -1456,8 +1445,7 @@ static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flag | |||
1456 | int sync = wake_flags & WF_SYNC; | 1445 | int sync = wake_flags & WF_SYNC; |
1457 | 1446 | ||
1458 | if (sd_flag & SD_BALANCE_WAKE) { | 1447 | if (sd_flag & SD_BALANCE_WAKE) { |
1459 | if (sched_feat(AFFINE_WAKEUPS) && | 1448 | if (cpumask_test_cpu(cpu, &p->cpus_allowed)) |
1460 | cpumask_test_cpu(cpu, &p->cpus_allowed)) | ||
1461 | want_affine = 1; | 1449 | want_affine = 1; |
1462 | new_cpu = prev_cpu; | 1450 | new_cpu = prev_cpu; |
1463 | } | 1451 | } |
@@ -1491,34 +1479,13 @@ static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flag | |||
1491 | } | 1479 | } |
1492 | 1480 | ||
1493 | /* | 1481 | /* |
1494 | * While iterating the domains looking for a spanning | 1482 | * If both cpu and prev_cpu are part of this domain, |
1495 | * WAKE_AFFINE domain, adjust the affine target to any idle cpu | 1483 | * cpu is a valid SD_WAKE_AFFINE target. |
1496 | * in cache sharing domains along the way. | ||
1497 | */ | 1484 | */ |
1498 | if (want_affine) { | 1485 | if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && |
1499 | int target = -1; | 1486 | cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { |
1500 | 1487 | affine_sd = tmp; | |
1501 | /* | 1488 | want_affine = 0; |
1502 | * If both cpu and prev_cpu are part of this domain, | ||
1503 | * cpu is a valid SD_WAKE_AFFINE target. | ||
1504 | */ | ||
1505 | if (cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) | ||
1506 | target = cpu; | ||
1507 | |||
1508 | /* | ||
1509 | * If there's an idle sibling in this domain, make that | ||
1510 | * the wake_affine target instead of the current cpu. | ||
1511 | */ | ||
1512 | if (tmp->flags & SD_SHARE_PKG_RESOURCES) | ||
1513 | target = select_idle_sibling(p, tmp, target); | ||
1514 | |||
1515 | if (target >= 0) { | ||
1516 | if (tmp->flags & SD_WAKE_AFFINE) { | ||
1517 | affine_sd = tmp; | ||
1518 | want_affine = 0; | ||
1519 | } | ||
1520 | cpu = target; | ||
1521 | } | ||
1522 | } | 1489 | } |
1523 | 1490 | ||
1524 | if (!want_sd && !want_affine) | 1491 | if (!want_sd && !want_affine) |
@@ -1531,22 +1498,29 @@ static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flag | |||
1531 | sd = tmp; | 1498 | sd = tmp; |
1532 | } | 1499 | } |
1533 | 1500 | ||
1501 | #ifdef CONFIG_FAIR_GROUP_SCHED | ||
1534 | if (sched_feat(LB_SHARES_UPDATE)) { | 1502 | if (sched_feat(LB_SHARES_UPDATE)) { |
1535 | /* | 1503 | /* |
1536 | * Pick the largest domain to update shares over | 1504 | * Pick the largest domain to update shares over |
1537 | */ | 1505 | */ |
1538 | tmp = sd; | 1506 | tmp = sd; |
1539 | if (affine_sd && (!tmp || | 1507 | if (affine_sd && (!tmp || affine_sd->span_weight > sd->span_weight)) |
1540 | cpumask_weight(sched_domain_span(affine_sd)) > | ||
1541 | cpumask_weight(sched_domain_span(sd)))) | ||
1542 | tmp = affine_sd; | 1508 | tmp = affine_sd; |
1543 | 1509 | ||
1544 | if (tmp) | 1510 | if (tmp) { |
1511 | raw_spin_unlock(&rq->lock); | ||
1545 | update_shares(tmp); | 1512 | update_shares(tmp); |
1513 | raw_spin_lock(&rq->lock); | ||
1514 | } | ||
1546 | } | 1515 | } |
1516 | #endif | ||
1547 | 1517 | ||
1548 | if (affine_sd && wake_affine(affine_sd, p, sync)) | 1518 | if (affine_sd) { |
1549 | return cpu; | 1519 | if (cpu == prev_cpu || wake_affine(affine_sd, p, sync)) |
1520 | return select_idle_sibling(p, cpu); | ||
1521 | else | ||
1522 | return select_idle_sibling(p, prev_cpu); | ||
1523 | } | ||
1550 | 1524 | ||
1551 | while (sd) { | 1525 | while (sd) { |
1552 | int load_idx = sd->forkexec_idx; | 1526 | int load_idx = sd->forkexec_idx; |
@@ -1576,10 +1550,10 @@ static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flag | |||
1576 | 1550 | ||
1577 | /* Now try balancing at a lower domain level of new_cpu */ | 1551 | /* Now try balancing at a lower domain level of new_cpu */ |
1578 | cpu = new_cpu; | 1552 | cpu = new_cpu; |
1579 | weight = cpumask_weight(sched_domain_span(sd)); | 1553 | weight = sd->span_weight; |
1580 | sd = NULL; | 1554 | sd = NULL; |
1581 | for_each_domain(cpu, tmp) { | 1555 | for_each_domain(cpu, tmp) { |
1582 | if (weight <= cpumask_weight(sched_domain_span(tmp))) | 1556 | if (weight <= tmp->span_weight) |
1583 | break; | 1557 | break; |
1584 | if (tmp->flags & sd_flag) | 1558 | if (tmp->flags & sd_flag) |
1585 | sd = tmp; | 1559 | sd = tmp; |
@@ -1591,63 +1565,26 @@ static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flag | |||
1591 | } | 1565 | } |
1592 | #endif /* CONFIG_SMP */ | 1566 | #endif /* CONFIG_SMP */ |
1593 | 1567 | ||
1594 | /* | ||
1595 | * Adaptive granularity | ||
1596 | * | ||
1597 | * se->avg_wakeup gives the average time a task runs until it does a wakeup, | ||
1598 | * with the limit of wakeup_gran -- when it never does a wakeup. | ||
1599 | * | ||
1600 | * So the smaller avg_wakeup is the faster we want this task to preempt, | ||
1601 | * but we don't want to treat the preemptee unfairly and therefore allow it | ||
1602 | * to run for at least the amount of time we'd like to run. | ||
1603 | * | ||
1604 | * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one | ||
1605 | * | ||
1606 | * NOTE: we use *nr_running to scale with load, this nicely matches the | ||
1607 | * degrading latency on load. | ||
1608 | */ | ||
1609 | static unsigned long | ||
1610 | adaptive_gran(struct sched_entity *curr, struct sched_entity *se) | ||
1611 | { | ||
1612 | u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; | ||
1613 | u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running; | ||
1614 | u64 gran = 0; | ||
1615 | |||
1616 | if (this_run < expected_wakeup) | ||
1617 | gran = expected_wakeup - this_run; | ||
1618 | |||
1619 | return min_t(s64, gran, sysctl_sched_wakeup_granularity); | ||
1620 | } | ||
1621 | |||
1622 | static unsigned long | 1568 | static unsigned long |
1623 | wakeup_gran(struct sched_entity *curr, struct sched_entity *se) | 1569 | wakeup_gran(struct sched_entity *curr, struct sched_entity *se) |
1624 | { | 1570 | { |
1625 | unsigned long gran = sysctl_sched_wakeup_granularity; | 1571 | unsigned long gran = sysctl_sched_wakeup_granularity; |
1626 | 1572 | ||
1627 | if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN)) | ||
1628 | gran = adaptive_gran(curr, se); | ||
1629 | |||
1630 | /* | 1573 | /* |
1631 | * Since its curr running now, convert the gran from real-time | 1574 | * Since its curr running now, convert the gran from real-time |
1632 | * to virtual-time in his units. | 1575 | * to virtual-time in his units. |
1576 | * | ||
1577 | * By using 'se' instead of 'curr' we penalize light tasks, so | ||
1578 | * they get preempted easier. That is, if 'se' < 'curr' then | ||
1579 | * the resulting gran will be larger, therefore penalizing the | ||
1580 | * lighter, if otoh 'se' > 'curr' then the resulting gran will | ||
1581 | * be smaller, again penalizing the lighter task. | ||
1582 | * | ||
1583 | * This is especially important for buddies when the leftmost | ||
1584 | * task is higher priority than the buddy. | ||
1633 | */ | 1585 | */ |
1634 | if (sched_feat(ASYM_GRAN)) { | 1586 | if (unlikely(se->load.weight != NICE_0_LOAD)) |
1635 | /* | 1587 | gran = calc_delta_fair(gran, se); |
1636 | * By using 'se' instead of 'curr' we penalize light tasks, so | ||
1637 | * they get preempted easier. That is, if 'se' < 'curr' then | ||
1638 | * the resulting gran will be larger, therefore penalizing the | ||
1639 | * lighter, if otoh 'se' > 'curr' then the resulting gran will | ||
1640 | * be smaller, again penalizing the lighter task. | ||
1641 | * | ||
1642 | * This is especially important for buddies when the leftmost | ||
1643 | * task is higher priority than the buddy. | ||
1644 | */ | ||
1645 | if (unlikely(se->load.weight != NICE_0_LOAD)) | ||
1646 | gran = calc_delta_fair(gran, se); | ||
1647 | } else { | ||
1648 | if (unlikely(curr->load.weight != NICE_0_LOAD)) | ||
1649 | gran = calc_delta_fair(gran, curr); | ||
1650 | } | ||
1651 | 1588 | ||
1652 | return gran; | 1589 | return gran; |
1653 | } | 1590 | } |
@@ -1705,7 +1642,6 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_ | |||
1705 | struct task_struct *curr = rq->curr; | 1642 | struct task_struct *curr = rq->curr; |
1706 | struct sched_entity *se = &curr->se, *pse = &p->se; | 1643 | struct sched_entity *se = &curr->se, *pse = &p->se; |
1707 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); | 1644 | struct cfs_rq *cfs_rq = task_cfs_rq(curr); |
1708 | int sync = wake_flags & WF_SYNC; | ||
1709 | int scale = cfs_rq->nr_running >= sched_nr_latency; | 1645 | int scale = cfs_rq->nr_running >= sched_nr_latency; |
1710 | 1646 | ||
1711 | if (unlikely(rt_prio(p->prio))) | 1647 | if (unlikely(rt_prio(p->prio))) |
@@ -1738,14 +1674,6 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_ | |||
1738 | if (unlikely(curr->policy == SCHED_IDLE)) | 1674 | if (unlikely(curr->policy == SCHED_IDLE)) |
1739 | goto preempt; | 1675 | goto preempt; |
1740 | 1676 | ||
1741 | if (sched_feat(WAKEUP_SYNC) && sync) | ||
1742 | goto preempt; | ||
1743 | |||
1744 | if (sched_feat(WAKEUP_OVERLAP) && | ||
1745 | se->avg_overlap < sysctl_sched_migration_cost && | ||
1746 | pse->avg_overlap < sysctl_sched_migration_cost) | ||
1747 | goto preempt; | ||
1748 | |||
1749 | if (!sched_feat(WAKEUP_PREEMPT)) | 1677 | if (!sched_feat(WAKEUP_PREEMPT)) |
1750 | return; | 1678 | return; |
1751 | 1679 | ||
@@ -1844,13 +1772,13 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | |||
1844 | * 3) are cache-hot on their current CPU. | 1772 | * 3) are cache-hot on their current CPU. |
1845 | */ | 1773 | */ |
1846 | if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) { | 1774 | if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) { |
1847 | schedstat_inc(p, se.nr_failed_migrations_affine); | 1775 | schedstat_inc(p, se.statistics.nr_failed_migrations_affine); |
1848 | return 0; | 1776 | return 0; |
1849 | } | 1777 | } |
1850 | *all_pinned = 0; | 1778 | *all_pinned = 0; |
1851 | 1779 | ||
1852 | if (task_running(rq, p)) { | 1780 | if (task_running(rq, p)) { |
1853 | schedstat_inc(p, se.nr_failed_migrations_running); | 1781 | schedstat_inc(p, se.statistics.nr_failed_migrations_running); |
1854 | return 0; | 1782 | return 0; |
1855 | } | 1783 | } |
1856 | 1784 | ||
@@ -1866,14 +1794,14 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | |||
1866 | #ifdef CONFIG_SCHEDSTATS | 1794 | #ifdef CONFIG_SCHEDSTATS |
1867 | if (tsk_cache_hot) { | 1795 | if (tsk_cache_hot) { |
1868 | schedstat_inc(sd, lb_hot_gained[idle]); | 1796 | schedstat_inc(sd, lb_hot_gained[idle]); |
1869 | schedstat_inc(p, se.nr_forced_migrations); | 1797 | schedstat_inc(p, se.statistics.nr_forced_migrations); |
1870 | } | 1798 | } |
1871 | #endif | 1799 | #endif |
1872 | return 1; | 1800 | return 1; |
1873 | } | 1801 | } |
1874 | 1802 | ||
1875 | if (tsk_cache_hot) { | 1803 | if (tsk_cache_hot) { |
1876 | schedstat_inc(p, se.nr_failed_migrations_hot); | 1804 | schedstat_inc(p, se.statistics.nr_failed_migrations_hot); |
1877 | return 0; | 1805 | return 0; |
1878 | } | 1806 | } |
1879 | return 1; | 1807 | return 1; |
@@ -2311,7 +2239,7 @@ unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) | |||
2311 | 2239 | ||
2312 | unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) | 2240 | unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) |
2313 | { | 2241 | { |
2314 | unsigned long weight = cpumask_weight(sched_domain_span(sd)); | 2242 | unsigned long weight = sd->span_weight; |
2315 | unsigned long smt_gain = sd->smt_gain; | 2243 | unsigned long smt_gain = sd->smt_gain; |
2316 | 2244 | ||
2317 | smt_gain /= weight; | 2245 | smt_gain /= weight; |
@@ -2344,7 +2272,7 @@ unsigned long scale_rt_power(int cpu) | |||
2344 | 2272 | ||
2345 | static void update_cpu_power(struct sched_domain *sd, int cpu) | 2273 | static void update_cpu_power(struct sched_domain *sd, int cpu) |
2346 | { | 2274 | { |
2347 | unsigned long weight = cpumask_weight(sched_domain_span(sd)); | 2275 | unsigned long weight = sd->span_weight; |
2348 | unsigned long power = SCHED_LOAD_SCALE; | 2276 | unsigned long power = SCHED_LOAD_SCALE; |
2349 | struct sched_group *sdg = sd->groups; | 2277 | struct sched_group *sdg = sd->groups; |
2350 | 2278 | ||
@@ -2870,6 +2798,8 @@ static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle) | |||
2870 | return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); | 2798 | return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); |
2871 | } | 2799 | } |
2872 | 2800 | ||
2801 | static int active_load_balance_cpu_stop(void *data); | ||
2802 | |||
2873 | /* | 2803 | /* |
2874 | * Check this_cpu to ensure it is balanced within domain. Attempt to move | 2804 | * Check this_cpu to ensure it is balanced within domain. Attempt to move |
2875 | * tasks if there is an imbalance. | 2805 | * tasks if there is an imbalance. |
@@ -2959,8 +2889,9 @@ redo: | |||
2959 | if (need_active_balance(sd, sd_idle, idle)) { | 2889 | if (need_active_balance(sd, sd_idle, idle)) { |
2960 | raw_spin_lock_irqsave(&busiest->lock, flags); | 2890 | raw_spin_lock_irqsave(&busiest->lock, flags); |
2961 | 2891 | ||
2962 | /* don't kick the migration_thread, if the curr | 2892 | /* don't kick the active_load_balance_cpu_stop, |
2963 | * task on busiest cpu can't be moved to this_cpu | 2893 | * if the curr task on busiest cpu can't be |
2894 | * moved to this_cpu | ||
2964 | */ | 2895 | */ |
2965 | if (!cpumask_test_cpu(this_cpu, | 2896 | if (!cpumask_test_cpu(this_cpu, |
2966 | &busiest->curr->cpus_allowed)) { | 2897 | &busiest->curr->cpus_allowed)) { |
@@ -2970,14 +2901,22 @@ redo: | |||
2970 | goto out_one_pinned; | 2901 | goto out_one_pinned; |
2971 | } | 2902 | } |
2972 | 2903 | ||
2904 | /* | ||
2905 | * ->active_balance synchronizes accesses to | ||
2906 | * ->active_balance_work. Once set, it's cleared | ||
2907 | * only after active load balance is finished. | ||
2908 | */ | ||
2973 | if (!busiest->active_balance) { | 2909 | if (!busiest->active_balance) { |
2974 | busiest->active_balance = 1; | 2910 | busiest->active_balance = 1; |
2975 | busiest->push_cpu = this_cpu; | 2911 | busiest->push_cpu = this_cpu; |
2976 | active_balance = 1; | 2912 | active_balance = 1; |
2977 | } | 2913 | } |
2978 | raw_spin_unlock_irqrestore(&busiest->lock, flags); | 2914 | raw_spin_unlock_irqrestore(&busiest->lock, flags); |
2915 | |||
2979 | if (active_balance) | 2916 | if (active_balance) |
2980 | wake_up_process(busiest->migration_thread); | 2917 | stop_one_cpu_nowait(cpu_of(busiest), |
2918 | active_load_balance_cpu_stop, busiest, | ||
2919 | &busiest->active_balance_work); | ||
2981 | 2920 | ||
2982 | /* | 2921 | /* |
2983 | * We've kicked active balancing, reset the failure | 2922 | * We've kicked active balancing, reset the failure |
@@ -3084,24 +3023,29 @@ static void idle_balance(int this_cpu, struct rq *this_rq) | |||
3084 | } | 3023 | } |
3085 | 3024 | ||
3086 | /* | 3025 | /* |
3087 | * active_load_balance is run by migration threads. It pushes running tasks | 3026 | * active_load_balance_cpu_stop is run by cpu stopper. It pushes |
3088 | * off the busiest CPU onto idle CPUs. It requires at least 1 task to be | 3027 | * running tasks off the busiest CPU onto idle CPUs. It requires at |
3089 | * running on each physical CPU where possible, and avoids physical / | 3028 | * least 1 task to be running on each physical CPU where possible, and |
3090 | * logical imbalances. | 3029 | * avoids physical / logical imbalances. |
3091 | * | ||
3092 | * Called with busiest_rq locked. | ||
3093 | */ | 3030 | */ |
3094 | static void active_load_balance(struct rq *busiest_rq, int busiest_cpu) | 3031 | static int active_load_balance_cpu_stop(void *data) |
3095 | { | 3032 | { |
3033 | struct rq *busiest_rq = data; | ||
3034 | int busiest_cpu = cpu_of(busiest_rq); | ||
3096 | int target_cpu = busiest_rq->push_cpu; | 3035 | int target_cpu = busiest_rq->push_cpu; |
3036 | struct rq *target_rq = cpu_rq(target_cpu); | ||
3097 | struct sched_domain *sd; | 3037 | struct sched_domain *sd; |
3098 | struct rq *target_rq; | 3038 | |
3039 | raw_spin_lock_irq(&busiest_rq->lock); | ||
3040 | |||
3041 | /* make sure the requested cpu hasn't gone down in the meantime */ | ||
3042 | if (unlikely(busiest_cpu != smp_processor_id() || | ||
3043 | !busiest_rq->active_balance)) | ||
3044 | goto out_unlock; | ||
3099 | 3045 | ||
3100 | /* Is there any task to move? */ | 3046 | /* Is there any task to move? */ |
3101 | if (busiest_rq->nr_running <= 1) | 3047 | if (busiest_rq->nr_running <= 1) |
3102 | return; | 3048 | goto out_unlock; |
3103 | |||
3104 | target_rq = cpu_rq(target_cpu); | ||
3105 | 3049 | ||
3106 | /* | 3050 | /* |
3107 | * This condition is "impossible", if it occurs | 3051 | * This condition is "impossible", if it occurs |
@@ -3112,8 +3056,6 @@ static void active_load_balance(struct rq *busiest_rq, int busiest_cpu) | |||
3112 | 3056 | ||
3113 | /* move a task from busiest_rq to target_rq */ | 3057 | /* move a task from busiest_rq to target_rq */ |
3114 | double_lock_balance(busiest_rq, target_rq); | 3058 | double_lock_balance(busiest_rq, target_rq); |
3115 | update_rq_clock(busiest_rq); | ||
3116 | update_rq_clock(target_rq); | ||
3117 | 3059 | ||
3118 | /* Search for an sd spanning us and the target CPU. */ | 3060 | /* Search for an sd spanning us and the target CPU. */ |
3119 | for_each_domain(target_cpu, sd) { | 3061 | for_each_domain(target_cpu, sd) { |
@@ -3132,6 +3074,10 @@ static void active_load_balance(struct rq *busiest_rq, int busiest_cpu) | |||
3132 | schedstat_inc(sd, alb_failed); | 3074 | schedstat_inc(sd, alb_failed); |
3133 | } | 3075 | } |
3134 | double_unlock_balance(busiest_rq, target_rq); | 3076 | double_unlock_balance(busiest_rq, target_rq); |
3077 | out_unlock: | ||
3078 | busiest_rq->active_balance = 0; | ||
3079 | raw_spin_unlock_irq(&busiest_rq->lock); | ||
3080 | return 0; | ||
3135 | } | 3081 | } |
3136 | 3082 | ||
3137 | #ifdef CONFIG_NO_HZ | 3083 | #ifdef CONFIG_NO_HZ |
diff --git a/kernel/sched_features.h b/kernel/sched_features.h index d5059fd761d9..83c66e8ad3ee 100644 --- a/kernel/sched_features.h +++ b/kernel/sched_features.h | |||
@@ -1,11 +1,4 @@ | |||
1 | /* | 1 | /* |
2 | * Disregards a certain amount of sleep time (sched_latency_ns) and | ||
3 | * considers the task to be running during that period. This gives it | ||
4 | * a service deficit on wakeup, allowing it to run sooner. | ||
5 | */ | ||
6 | SCHED_FEAT(FAIR_SLEEPERS, 1) | ||
7 | |||
8 | /* | ||
9 | * Only give sleepers 50% of their service deficit. This allows | 2 | * Only give sleepers 50% of their service deficit. This allows |
10 | * them to run sooner, but does not allow tons of sleepers to | 3 | * them to run sooner, but does not allow tons of sleepers to |
11 | * rip the spread apart. | 4 | * rip the spread apart. |
@@ -13,13 +6,6 @@ SCHED_FEAT(FAIR_SLEEPERS, 1) | |||
13 | SCHED_FEAT(GENTLE_FAIR_SLEEPERS, 1) | 6 | SCHED_FEAT(GENTLE_FAIR_SLEEPERS, 1) |
14 | 7 | ||
15 | /* | 8 | /* |
16 | * By not normalizing the sleep time, heavy tasks get an effective | ||
17 | * longer period, and lighter task an effective shorter period they | ||
18 | * are considered running. | ||
19 | */ | ||
20 | SCHED_FEAT(NORMALIZED_SLEEPER, 0) | ||
21 | |||
22 | /* | ||
23 | * Place new tasks ahead so that they do not starve already running | 9 | * Place new tasks ahead so that they do not starve already running |
24 | * tasks | 10 | * tasks |
25 | */ | 11 | */ |
@@ -31,37 +17,6 @@ SCHED_FEAT(START_DEBIT, 1) | |||
31 | SCHED_FEAT(WAKEUP_PREEMPT, 1) | 17 | SCHED_FEAT(WAKEUP_PREEMPT, 1) |
32 | 18 | ||
33 | /* | 19 | /* |
34 | * Compute wakeup_gran based on task behaviour, clipped to | ||
35 | * [0, sched_wakeup_gran_ns] | ||
36 | */ | ||
37 | SCHED_FEAT(ADAPTIVE_GRAN, 1) | ||
38 | |||
39 | /* | ||
40 | * When converting the wakeup granularity to virtual time, do it such | ||
41 | * that heavier tasks preempting a lighter task have an edge. | ||
42 | */ | ||
43 | SCHED_FEAT(ASYM_GRAN, 1) | ||
44 | |||
45 | /* | ||
46 | * Always wakeup-preempt SYNC wakeups, see SYNC_WAKEUPS. | ||
47 | */ | ||
48 | SCHED_FEAT(WAKEUP_SYNC, 0) | ||
49 | |||
50 | /* | ||
51 | * Wakeup preempt based on task behaviour. Tasks that do not overlap | ||
52 | * don't get preempted. | ||
53 | */ | ||
54 | SCHED_FEAT(WAKEUP_OVERLAP, 0) | ||
55 | |||
56 | /* | ||
57 | * Use the SYNC wakeup hint, pipes and the likes use this to indicate | ||
58 | * the remote end is likely to consume the data we just wrote, and | ||
59 | * therefore has cache benefit from being placed on the same cpu, see | ||
60 | * also AFFINE_WAKEUPS. | ||
61 | */ | ||
62 | SCHED_FEAT(SYNC_WAKEUPS, 1) | ||
63 | |||
64 | /* | ||
65 | * Based on load and program behaviour, see if it makes sense to place | 20 | * Based on load and program behaviour, see if it makes sense to place |
66 | * a newly woken task on the same cpu as the task that woke it -- | 21 | * a newly woken task on the same cpu as the task that woke it -- |
67 | * improve cache locality. Typically used with SYNC wakeups as | 22 | * improve cache locality. Typically used with SYNC wakeups as |
@@ -70,16 +25,6 @@ SCHED_FEAT(SYNC_WAKEUPS, 1) | |||
70 | SCHED_FEAT(AFFINE_WAKEUPS, 1) | 25 | SCHED_FEAT(AFFINE_WAKEUPS, 1) |
71 | 26 | ||
72 | /* | 27 | /* |
73 | * Weaken SYNC hint based on overlap | ||
74 | */ | ||
75 | SCHED_FEAT(SYNC_LESS, 1) | ||
76 | |||
77 | /* | ||
78 | * Add SYNC hint based on overlap | ||
79 | */ | ||
80 | SCHED_FEAT(SYNC_MORE, 0) | ||
81 | |||
82 | /* | ||
83 | * Prefer to schedule the task we woke last (assuming it failed | 28 | * Prefer to schedule the task we woke last (assuming it failed |
84 | * wakeup-preemption), since its likely going to consume data we | 29 | * wakeup-preemption), since its likely going to consume data we |
85 | * touched, increases cache locality. | 30 | * touched, increases cache locality. |
diff --git a/kernel/sched_idletask.c b/kernel/sched_idletask.c index a8a6d8a50947..9fa0f402c87c 100644 --- a/kernel/sched_idletask.c +++ b/kernel/sched_idletask.c | |||
@@ -6,7 +6,8 @@ | |||
6 | */ | 6 | */ |
7 | 7 | ||
8 | #ifdef CONFIG_SMP | 8 | #ifdef CONFIG_SMP |
9 | static int select_task_rq_idle(struct task_struct *p, int sd_flag, int flags) | 9 | static int |
10 | select_task_rq_idle(struct rq *rq, struct task_struct *p, int sd_flag, int flags) | ||
10 | { | 11 | { |
11 | return task_cpu(p); /* IDLE tasks as never migrated */ | 12 | return task_cpu(p); /* IDLE tasks as never migrated */ |
12 | } | 13 | } |
@@ -22,8 +23,7 @@ static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p, int fl | |||
22 | static struct task_struct *pick_next_task_idle(struct rq *rq) | 23 | static struct task_struct *pick_next_task_idle(struct rq *rq) |
23 | { | 24 | { |
24 | schedstat_inc(rq, sched_goidle); | 25 | schedstat_inc(rq, sched_goidle); |
25 | /* adjust the active tasks as we might go into a long sleep */ | 26 | calc_load_account_idle(rq); |
26 | calc_load_account_active(rq); | ||
27 | return rq->idle; | 27 | return rq->idle; |
28 | } | 28 | } |
29 | 29 | ||
@@ -32,7 +32,7 @@ static struct task_struct *pick_next_task_idle(struct rq *rq) | |||
32 | * message if some code attempts to do it: | 32 | * message if some code attempts to do it: |
33 | */ | 33 | */ |
34 | static void | 34 | static void |
35 | dequeue_task_idle(struct rq *rq, struct task_struct *p, int sleep) | 35 | dequeue_task_idle(struct rq *rq, struct task_struct *p, int flags) |
36 | { | 36 | { |
37 | raw_spin_unlock_irq(&rq->lock); | 37 | raw_spin_unlock_irq(&rq->lock); |
38 | printk(KERN_ERR "bad: scheduling from the idle thread!\n"); | 38 | printk(KERN_ERR "bad: scheduling from the idle thread!\n"); |
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c index b5b920ae2ea7..8afb953e31c6 100644 --- a/kernel/sched_rt.c +++ b/kernel/sched_rt.c | |||
@@ -613,7 +613,7 @@ static void update_curr_rt(struct rq *rq) | |||
613 | if (unlikely((s64)delta_exec < 0)) | 613 | if (unlikely((s64)delta_exec < 0)) |
614 | delta_exec = 0; | 614 | delta_exec = 0; |
615 | 615 | ||
616 | schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec)); | 616 | schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec)); |
617 | 617 | ||
618 | curr->se.sum_exec_runtime += delta_exec; | 618 | curr->se.sum_exec_runtime += delta_exec; |
619 | account_group_exec_runtime(curr, delta_exec); | 619 | account_group_exec_runtime(curr, delta_exec); |
@@ -888,20 +888,20 @@ static void dequeue_rt_entity(struct sched_rt_entity *rt_se) | |||
888 | * Adding/removing a task to/from a priority array: | 888 | * Adding/removing a task to/from a priority array: |
889 | */ | 889 | */ |
890 | static void | 890 | static void |
891 | enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup, bool head) | 891 | enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) |
892 | { | 892 | { |
893 | struct sched_rt_entity *rt_se = &p->rt; | 893 | struct sched_rt_entity *rt_se = &p->rt; |
894 | 894 | ||
895 | if (wakeup) | 895 | if (flags & ENQUEUE_WAKEUP) |
896 | rt_se->timeout = 0; | 896 | rt_se->timeout = 0; |
897 | 897 | ||
898 | enqueue_rt_entity(rt_se, head); | 898 | enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD); |
899 | 899 | ||
900 | if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1) | 900 | if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1) |
901 | enqueue_pushable_task(rq, p); | 901 | enqueue_pushable_task(rq, p); |
902 | } | 902 | } |
903 | 903 | ||
904 | static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) | 904 | static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) |
905 | { | 905 | { |
906 | struct sched_rt_entity *rt_se = &p->rt; | 906 | struct sched_rt_entity *rt_se = &p->rt; |
907 | 907 | ||
@@ -948,10 +948,9 @@ static void yield_task_rt(struct rq *rq) | |||
948 | #ifdef CONFIG_SMP | 948 | #ifdef CONFIG_SMP |
949 | static int find_lowest_rq(struct task_struct *task); | 949 | static int find_lowest_rq(struct task_struct *task); |
950 | 950 | ||
951 | static int select_task_rq_rt(struct task_struct *p, int sd_flag, int flags) | 951 | static int |
952 | select_task_rq_rt(struct rq *rq, struct task_struct *p, int sd_flag, int flags) | ||
952 | { | 953 | { |
953 | struct rq *rq = task_rq(p); | ||
954 | |||
955 | if (sd_flag != SD_BALANCE_WAKE) | 954 | if (sd_flag != SD_BALANCE_WAKE) |
956 | return smp_processor_id(); | 955 | return smp_processor_id(); |
957 | 956 | ||
diff --git a/kernel/stop_machine.c b/kernel/stop_machine.c index 9bb9fb1bd79c..b4e7431e7c78 100644 --- a/kernel/stop_machine.c +++ b/kernel/stop_machine.c | |||
@@ -1,17 +1,384 @@ | |||
1 | /* Copyright 2008, 2005 Rusty Russell rusty@rustcorp.com.au IBM Corporation. | 1 | /* |
2 | * GPL v2 and any later version. | 2 | * kernel/stop_machine.c |
3 | * | ||
4 | * Copyright (C) 2008, 2005 IBM Corporation. | ||
5 | * Copyright (C) 2008, 2005 Rusty Russell rusty@rustcorp.com.au | ||
6 | * Copyright (C) 2010 SUSE Linux Products GmbH | ||
7 | * Copyright (C) 2010 Tejun Heo <tj@kernel.org> | ||
8 | * | ||
9 | * This file is released under the GPLv2 and any later version. | ||
3 | */ | 10 | */ |
11 | #include <linux/completion.h> | ||
4 | #include <linux/cpu.h> | 12 | #include <linux/cpu.h> |
5 | #include <linux/err.h> | 13 | #include <linux/init.h> |
6 | #include <linux/kthread.h> | 14 | #include <linux/kthread.h> |
7 | #include <linux/module.h> | 15 | #include <linux/module.h> |
16 | #include <linux/percpu.h> | ||
8 | #include <linux/sched.h> | 17 | #include <linux/sched.h> |
9 | #include <linux/stop_machine.h> | 18 | #include <linux/stop_machine.h> |
10 | #include <linux/syscalls.h> | ||
11 | #include <linux/interrupt.h> | 19 | #include <linux/interrupt.h> |
20 | #include <linux/kallsyms.h> | ||
12 | 21 | ||
13 | #include <asm/atomic.h> | 22 | #include <asm/atomic.h> |
14 | #include <asm/uaccess.h> | 23 | |
24 | /* | ||
25 | * Structure to determine completion condition and record errors. May | ||
26 | * be shared by works on different cpus. | ||
27 | */ | ||
28 | struct cpu_stop_done { | ||
29 | atomic_t nr_todo; /* nr left to execute */ | ||
30 | bool executed; /* actually executed? */ | ||
31 | int ret; /* collected return value */ | ||
32 | struct completion completion; /* fired if nr_todo reaches 0 */ | ||
33 | }; | ||
34 | |||
35 | /* the actual stopper, one per every possible cpu, enabled on online cpus */ | ||
36 | struct cpu_stopper { | ||
37 | spinlock_t lock; | ||
38 | struct list_head works; /* list of pending works */ | ||
39 | struct task_struct *thread; /* stopper thread */ | ||
40 | bool enabled; /* is this stopper enabled? */ | ||
41 | }; | ||
42 | |||
43 | static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper); | ||
44 | |||
45 | static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo) | ||
46 | { | ||
47 | memset(done, 0, sizeof(*done)); | ||
48 | atomic_set(&done->nr_todo, nr_todo); | ||
49 | init_completion(&done->completion); | ||
50 | } | ||
51 | |||
52 | /* signal completion unless @done is NULL */ | ||
53 | static void cpu_stop_signal_done(struct cpu_stop_done *done, bool executed) | ||
54 | { | ||
55 | if (done) { | ||
56 | if (executed) | ||
57 | done->executed = true; | ||
58 | if (atomic_dec_and_test(&done->nr_todo)) | ||
59 | complete(&done->completion); | ||
60 | } | ||
61 | } | ||
62 | |||
63 | /* queue @work to @stopper. if offline, @work is completed immediately */ | ||
64 | static void cpu_stop_queue_work(struct cpu_stopper *stopper, | ||
65 | struct cpu_stop_work *work) | ||
66 | { | ||
67 | unsigned long flags; | ||
68 | |||
69 | spin_lock_irqsave(&stopper->lock, flags); | ||
70 | |||
71 | if (stopper->enabled) { | ||
72 | list_add_tail(&work->list, &stopper->works); | ||
73 | wake_up_process(stopper->thread); | ||
74 | } else | ||
75 | cpu_stop_signal_done(work->done, false); | ||
76 | |||
77 | spin_unlock_irqrestore(&stopper->lock, flags); | ||
78 | } | ||
79 | |||
80 | /** | ||
81 | * stop_one_cpu - stop a cpu | ||
82 | * @cpu: cpu to stop | ||
83 | * @fn: function to execute | ||
84 | * @arg: argument to @fn | ||
85 | * | ||
86 | * Execute @fn(@arg) on @cpu. @fn is run in a process context with | ||
87 | * the highest priority preempting any task on the cpu and | ||
88 | * monopolizing it. This function returns after the execution is | ||
89 | * complete. | ||
90 | * | ||
91 | * This function doesn't guarantee @cpu stays online till @fn | ||
92 | * completes. If @cpu goes down in the middle, execution may happen | ||
93 | * partially or fully on different cpus. @fn should either be ready | ||
94 | * for that or the caller should ensure that @cpu stays online until | ||
95 | * this function completes. | ||
96 | * | ||
97 | * CONTEXT: | ||
98 | * Might sleep. | ||
99 | * | ||
100 | * RETURNS: | ||
101 | * -ENOENT if @fn(@arg) was not executed because @cpu was offline; | ||
102 | * otherwise, the return value of @fn. | ||
103 | */ | ||
104 | int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg) | ||
105 | { | ||
106 | struct cpu_stop_done done; | ||
107 | struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done }; | ||
108 | |||
109 | cpu_stop_init_done(&done, 1); | ||
110 | cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu), &work); | ||
111 | wait_for_completion(&done.completion); | ||
112 | return done.executed ? done.ret : -ENOENT; | ||
113 | } | ||
114 | |||
115 | /** | ||
116 | * stop_one_cpu_nowait - stop a cpu but don't wait for completion | ||
117 | * @cpu: cpu to stop | ||
118 | * @fn: function to execute | ||
119 | * @arg: argument to @fn | ||
120 | * | ||
121 | * Similar to stop_one_cpu() but doesn't wait for completion. The | ||
122 | * caller is responsible for ensuring @work_buf is currently unused | ||
123 | * and will remain untouched until stopper starts executing @fn. | ||
124 | * | ||
125 | * CONTEXT: | ||
126 | * Don't care. | ||
127 | */ | ||
128 | void stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg, | ||
129 | struct cpu_stop_work *work_buf) | ||
130 | { | ||
131 | *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, }; | ||
132 | cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu), work_buf); | ||
133 | } | ||
134 | |||
135 | /* static data for stop_cpus */ | ||
136 | static DEFINE_MUTEX(stop_cpus_mutex); | ||
137 | static DEFINE_PER_CPU(struct cpu_stop_work, stop_cpus_work); | ||
138 | |||
139 | int __stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) | ||
140 | { | ||
141 | struct cpu_stop_work *work; | ||
142 | struct cpu_stop_done done; | ||
143 | unsigned int cpu; | ||
144 | |||
145 | /* initialize works and done */ | ||
146 | for_each_cpu(cpu, cpumask) { | ||
147 | work = &per_cpu(stop_cpus_work, cpu); | ||
148 | work->fn = fn; | ||
149 | work->arg = arg; | ||
150 | work->done = &done; | ||
151 | } | ||
152 | cpu_stop_init_done(&done, cpumask_weight(cpumask)); | ||
153 | |||
154 | /* | ||
155 | * Disable preemption while queueing to avoid getting | ||
156 | * preempted by a stopper which might wait for other stoppers | ||
157 | * to enter @fn which can lead to deadlock. | ||
158 | */ | ||
159 | preempt_disable(); | ||
160 | for_each_cpu(cpu, cpumask) | ||
161 | cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu), | ||
162 | &per_cpu(stop_cpus_work, cpu)); | ||
163 | preempt_enable(); | ||
164 | |||
165 | wait_for_completion(&done.completion); | ||
166 | return done.executed ? done.ret : -ENOENT; | ||
167 | } | ||
168 | |||
169 | /** | ||
170 | * stop_cpus - stop multiple cpus | ||
171 | * @cpumask: cpus to stop | ||
172 | * @fn: function to execute | ||
173 | * @arg: argument to @fn | ||
174 | * | ||
175 | * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu, | ||
176 | * @fn is run in a process context with the highest priority | ||
177 | * preempting any task on the cpu and monopolizing it. This function | ||
178 | * returns after all executions are complete. | ||
179 | * | ||
180 | * This function doesn't guarantee the cpus in @cpumask stay online | ||
181 | * till @fn completes. If some cpus go down in the middle, execution | ||
182 | * on the cpu may happen partially or fully on different cpus. @fn | ||
183 | * should either be ready for that or the caller should ensure that | ||
184 | * the cpus stay online until this function completes. | ||
185 | * | ||
186 | * All stop_cpus() calls are serialized making it safe for @fn to wait | ||
187 | * for all cpus to start executing it. | ||
188 | * | ||
189 | * CONTEXT: | ||
190 | * Might sleep. | ||
191 | * | ||
192 | * RETURNS: | ||
193 | * -ENOENT if @fn(@arg) was not executed at all because all cpus in | ||
194 | * @cpumask were offline; otherwise, 0 if all executions of @fn | ||
195 | * returned 0, any non zero return value if any returned non zero. | ||
196 | */ | ||
197 | int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) | ||
198 | { | ||
199 | int ret; | ||
200 | |||
201 | /* static works are used, process one request at a time */ | ||
202 | mutex_lock(&stop_cpus_mutex); | ||
203 | ret = __stop_cpus(cpumask, fn, arg); | ||
204 | mutex_unlock(&stop_cpus_mutex); | ||
205 | return ret; | ||
206 | } | ||
207 | |||
208 | /** | ||
209 | * try_stop_cpus - try to stop multiple cpus | ||
210 | * @cpumask: cpus to stop | ||
211 | * @fn: function to execute | ||
212 | * @arg: argument to @fn | ||
213 | * | ||
214 | * Identical to stop_cpus() except that it fails with -EAGAIN if | ||
215 | * someone else is already using the facility. | ||
216 | * | ||
217 | * CONTEXT: | ||
218 | * Might sleep. | ||
219 | * | ||
220 | * RETURNS: | ||
221 | * -EAGAIN if someone else is already stopping cpus, -ENOENT if | ||
222 | * @fn(@arg) was not executed at all because all cpus in @cpumask were | ||
223 | * offline; otherwise, 0 if all executions of @fn returned 0, any non | ||
224 | * zero return value if any returned non zero. | ||
225 | */ | ||
226 | int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) | ||
227 | { | ||
228 | int ret; | ||
229 | |||
230 | /* static works are used, process one request at a time */ | ||
231 | if (!mutex_trylock(&stop_cpus_mutex)) | ||
232 | return -EAGAIN; | ||
233 | ret = __stop_cpus(cpumask, fn, arg); | ||
234 | mutex_unlock(&stop_cpus_mutex); | ||
235 | return ret; | ||
236 | } | ||
237 | |||
238 | static int cpu_stopper_thread(void *data) | ||
239 | { | ||
240 | struct cpu_stopper *stopper = data; | ||
241 | struct cpu_stop_work *work; | ||
242 | int ret; | ||
243 | |||
244 | repeat: | ||
245 | set_current_state(TASK_INTERRUPTIBLE); /* mb paired w/ kthread_stop */ | ||
246 | |||
247 | if (kthread_should_stop()) { | ||
248 | __set_current_state(TASK_RUNNING); | ||
249 | return 0; | ||
250 | } | ||
251 | |||
252 | work = NULL; | ||
253 | spin_lock_irq(&stopper->lock); | ||
254 | if (!list_empty(&stopper->works)) { | ||
255 | work = list_first_entry(&stopper->works, | ||
256 | struct cpu_stop_work, list); | ||
257 | list_del_init(&work->list); | ||
258 | } | ||
259 | spin_unlock_irq(&stopper->lock); | ||
260 | |||
261 | if (work) { | ||
262 | cpu_stop_fn_t fn = work->fn; | ||
263 | void *arg = work->arg; | ||
264 | struct cpu_stop_done *done = work->done; | ||
265 | char ksym_buf[KSYM_NAME_LEN]; | ||
266 | |||
267 | __set_current_state(TASK_RUNNING); | ||
268 | |||
269 | /* cpu stop callbacks are not allowed to sleep */ | ||
270 | preempt_disable(); | ||
271 | |||
272 | ret = fn(arg); | ||
273 | if (ret) | ||
274 | done->ret = ret; | ||
275 | |||
276 | /* restore preemption and check it's still balanced */ | ||
277 | preempt_enable(); | ||
278 | WARN_ONCE(preempt_count(), | ||
279 | "cpu_stop: %s(%p) leaked preempt count\n", | ||
280 | kallsyms_lookup((unsigned long)fn, NULL, NULL, NULL, | ||
281 | ksym_buf), arg); | ||
282 | |||
283 | cpu_stop_signal_done(done, true); | ||
284 | } else | ||
285 | schedule(); | ||
286 | |||
287 | goto repeat; | ||
288 | } | ||
289 | |||
290 | /* manage stopper for a cpu, mostly lifted from sched migration thread mgmt */ | ||
291 | static int __cpuinit cpu_stop_cpu_callback(struct notifier_block *nfb, | ||
292 | unsigned long action, void *hcpu) | ||
293 | { | ||
294 | struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; | ||
295 | unsigned int cpu = (unsigned long)hcpu; | ||
296 | struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); | ||
297 | struct task_struct *p; | ||
298 | |||
299 | switch (action & ~CPU_TASKS_FROZEN) { | ||
300 | case CPU_UP_PREPARE: | ||
301 | BUG_ON(stopper->thread || stopper->enabled || | ||
302 | !list_empty(&stopper->works)); | ||
303 | p = kthread_create(cpu_stopper_thread, stopper, "migration/%d", | ||
304 | cpu); | ||
305 | if (IS_ERR(p)) | ||
306 | return NOTIFY_BAD; | ||
307 | sched_setscheduler_nocheck(p, SCHED_FIFO, ¶m); | ||
308 | get_task_struct(p); | ||
309 | stopper->thread = p; | ||
310 | break; | ||
311 | |||
312 | case CPU_ONLINE: | ||
313 | kthread_bind(stopper->thread, cpu); | ||
314 | /* strictly unnecessary, as first user will wake it */ | ||
315 | wake_up_process(stopper->thread); | ||
316 | /* mark enabled */ | ||
317 | spin_lock_irq(&stopper->lock); | ||
318 | stopper->enabled = true; | ||
319 | spin_unlock_irq(&stopper->lock); | ||
320 | break; | ||
321 | |||
322 | #ifdef CONFIG_HOTPLUG_CPU | ||
323 | case CPU_UP_CANCELED: | ||
324 | case CPU_DEAD: | ||
325 | { | ||
326 | struct cpu_stop_work *work; | ||
327 | |||
328 | /* kill the stopper */ | ||
329 | kthread_stop(stopper->thread); | ||
330 | /* drain remaining works */ | ||
331 | spin_lock_irq(&stopper->lock); | ||
332 | list_for_each_entry(work, &stopper->works, list) | ||
333 | cpu_stop_signal_done(work->done, false); | ||
334 | stopper->enabled = false; | ||
335 | spin_unlock_irq(&stopper->lock); | ||
336 | /* release the stopper */ | ||
337 | put_task_struct(stopper->thread); | ||
338 | stopper->thread = NULL; | ||
339 | break; | ||
340 | } | ||
341 | #endif | ||
342 | } | ||
343 | |||
344 | return NOTIFY_OK; | ||
345 | } | ||
346 | |||
347 | /* | ||
348 | * Give it a higher priority so that cpu stopper is available to other | ||
349 | * cpu notifiers. It currently shares the same priority as sched | ||
350 | * migration_notifier. | ||
351 | */ | ||
352 | static struct notifier_block __cpuinitdata cpu_stop_cpu_notifier = { | ||
353 | .notifier_call = cpu_stop_cpu_callback, | ||
354 | .priority = 10, | ||
355 | }; | ||
356 | |||
357 | static int __init cpu_stop_init(void) | ||
358 | { | ||
359 | void *bcpu = (void *)(long)smp_processor_id(); | ||
360 | unsigned int cpu; | ||
361 | int err; | ||
362 | |||
363 | for_each_possible_cpu(cpu) { | ||
364 | struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); | ||
365 | |||
366 | spin_lock_init(&stopper->lock); | ||
367 | INIT_LIST_HEAD(&stopper->works); | ||
368 | } | ||
369 | |||
370 | /* start one for the boot cpu */ | ||
371 | err = cpu_stop_cpu_callback(&cpu_stop_cpu_notifier, CPU_UP_PREPARE, | ||
372 | bcpu); | ||
373 | BUG_ON(err == NOTIFY_BAD); | ||
374 | cpu_stop_cpu_callback(&cpu_stop_cpu_notifier, CPU_ONLINE, bcpu); | ||
375 | register_cpu_notifier(&cpu_stop_cpu_notifier); | ||
376 | |||
377 | return 0; | ||
378 | } | ||
379 | early_initcall(cpu_stop_init); | ||
380 | |||
381 | #ifdef CONFIG_STOP_MACHINE | ||
15 | 382 | ||
16 | /* This controls the threads on each CPU. */ | 383 | /* This controls the threads on each CPU. */ |
17 | enum stopmachine_state { | 384 | enum stopmachine_state { |
@@ -26,174 +393,94 @@ enum stopmachine_state { | |||
26 | /* Exit */ | 393 | /* Exit */ |
27 | STOPMACHINE_EXIT, | 394 | STOPMACHINE_EXIT, |
28 | }; | 395 | }; |
29 | static enum stopmachine_state state; | ||
30 | 396 | ||
31 | struct stop_machine_data { | 397 | struct stop_machine_data { |
32 | int (*fn)(void *); | 398 | int (*fn)(void *); |
33 | void *data; | 399 | void *data; |
34 | int fnret; | 400 | /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */ |
401 | unsigned int num_threads; | ||
402 | const struct cpumask *active_cpus; | ||
403 | |||
404 | enum stopmachine_state state; | ||
405 | atomic_t thread_ack; | ||
35 | }; | 406 | }; |
36 | 407 | ||
37 | /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */ | 408 | static void set_state(struct stop_machine_data *smdata, |
38 | static unsigned int num_threads; | 409 | enum stopmachine_state newstate) |
39 | static atomic_t thread_ack; | ||
40 | static DEFINE_MUTEX(lock); | ||
41 | /* setup_lock protects refcount, stop_machine_wq and stop_machine_work. */ | ||
42 | static DEFINE_MUTEX(setup_lock); | ||
43 | /* Users of stop_machine. */ | ||
44 | static int refcount; | ||
45 | static struct workqueue_struct *stop_machine_wq; | ||
46 | static struct stop_machine_data active, idle; | ||
47 | static const struct cpumask *active_cpus; | ||
48 | static void __percpu *stop_machine_work; | ||
49 | |||
50 | static void set_state(enum stopmachine_state newstate) | ||
51 | { | 410 | { |
52 | /* Reset ack counter. */ | 411 | /* Reset ack counter. */ |
53 | atomic_set(&thread_ack, num_threads); | 412 | atomic_set(&smdata->thread_ack, smdata->num_threads); |
54 | smp_wmb(); | 413 | smp_wmb(); |
55 | state = newstate; | 414 | smdata->state = newstate; |
56 | } | 415 | } |
57 | 416 | ||
58 | /* Last one to ack a state moves to the next state. */ | 417 | /* Last one to ack a state moves to the next state. */ |
59 | static void ack_state(void) | 418 | static void ack_state(struct stop_machine_data *smdata) |
60 | { | 419 | { |
61 | if (atomic_dec_and_test(&thread_ack)) | 420 | if (atomic_dec_and_test(&smdata->thread_ack)) |
62 | set_state(state + 1); | 421 | set_state(smdata, smdata->state + 1); |
63 | } | 422 | } |
64 | 423 | ||
65 | /* This is the actual function which stops the CPU. It runs | 424 | /* This is the cpu_stop function which stops the CPU. */ |
66 | * in the context of a dedicated stopmachine workqueue. */ | 425 | static int stop_machine_cpu_stop(void *data) |
67 | static void stop_cpu(struct work_struct *unused) | ||
68 | { | 426 | { |
427 | struct stop_machine_data *smdata = data; | ||
69 | enum stopmachine_state curstate = STOPMACHINE_NONE; | 428 | enum stopmachine_state curstate = STOPMACHINE_NONE; |
70 | struct stop_machine_data *smdata = &idle; | 429 | int cpu = smp_processor_id(), err = 0; |
71 | int cpu = smp_processor_id(); | 430 | bool is_active; |
72 | int err; | 431 | |
432 | if (!smdata->active_cpus) | ||
433 | is_active = cpu == cpumask_first(cpu_online_mask); | ||
434 | else | ||
435 | is_active = cpumask_test_cpu(cpu, smdata->active_cpus); | ||
73 | 436 | ||
74 | if (!active_cpus) { | ||
75 | if (cpu == cpumask_first(cpu_online_mask)) | ||
76 | smdata = &active; | ||
77 | } else { | ||
78 | if (cpumask_test_cpu(cpu, active_cpus)) | ||
79 | smdata = &active; | ||
80 | } | ||
81 | /* Simple state machine */ | 437 | /* Simple state machine */ |
82 | do { | 438 | do { |
83 | /* Chill out and ensure we re-read stopmachine_state. */ | 439 | /* Chill out and ensure we re-read stopmachine_state. */ |
84 | cpu_relax(); | 440 | cpu_relax(); |
85 | if (state != curstate) { | 441 | if (smdata->state != curstate) { |
86 | curstate = state; | 442 | curstate = smdata->state; |
87 | switch (curstate) { | 443 | switch (curstate) { |
88 | case STOPMACHINE_DISABLE_IRQ: | 444 | case STOPMACHINE_DISABLE_IRQ: |
89 | local_irq_disable(); | 445 | local_irq_disable(); |
90 | hard_irq_disable(); | 446 | hard_irq_disable(); |
91 | break; | 447 | break; |
92 | case STOPMACHINE_RUN: | 448 | case STOPMACHINE_RUN: |
93 | /* On multiple CPUs only a single error code | 449 | if (is_active) |
94 | * is needed to tell that something failed. */ | 450 | err = smdata->fn(smdata->data); |
95 | err = smdata->fn(smdata->data); | ||
96 | if (err) | ||
97 | smdata->fnret = err; | ||
98 | break; | 451 | break; |
99 | default: | 452 | default: |
100 | break; | 453 | break; |
101 | } | 454 | } |
102 | ack_state(); | 455 | ack_state(smdata); |
103 | } | 456 | } |
104 | } while (curstate != STOPMACHINE_EXIT); | 457 | } while (curstate != STOPMACHINE_EXIT); |
105 | 458 | ||
106 | local_irq_enable(); | 459 | local_irq_enable(); |
460 | return err; | ||
107 | } | 461 | } |
108 | 462 | ||
109 | /* Callback for CPUs which aren't supposed to do anything. */ | ||
110 | static int chill(void *unused) | ||
111 | { | ||
112 | return 0; | ||
113 | } | ||
114 | |||
115 | int stop_machine_create(void) | ||
116 | { | ||
117 | mutex_lock(&setup_lock); | ||
118 | if (refcount) | ||
119 | goto done; | ||
120 | stop_machine_wq = create_rt_workqueue("kstop"); | ||
121 | if (!stop_machine_wq) | ||
122 | goto err_out; | ||
123 | stop_machine_work = alloc_percpu(struct work_struct); | ||
124 | if (!stop_machine_work) | ||
125 | goto err_out; | ||
126 | done: | ||
127 | refcount++; | ||
128 | mutex_unlock(&setup_lock); | ||
129 | return 0; | ||
130 | |||
131 | err_out: | ||
132 | if (stop_machine_wq) | ||
133 | destroy_workqueue(stop_machine_wq); | ||
134 | mutex_unlock(&setup_lock); | ||
135 | return -ENOMEM; | ||
136 | } | ||
137 | EXPORT_SYMBOL_GPL(stop_machine_create); | ||
138 | |||
139 | void stop_machine_destroy(void) | ||
140 | { | ||
141 | mutex_lock(&setup_lock); | ||
142 | refcount--; | ||
143 | if (refcount) | ||
144 | goto done; | ||
145 | destroy_workqueue(stop_machine_wq); | ||
146 | free_percpu(stop_machine_work); | ||
147 | done: | ||
148 | mutex_unlock(&setup_lock); | ||
149 | } | ||
150 | EXPORT_SYMBOL_GPL(stop_machine_destroy); | ||
151 | |||
152 | int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus) | 463 | int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus) |
153 | { | 464 | { |
154 | struct work_struct *sm_work; | 465 | struct stop_machine_data smdata = { .fn = fn, .data = data, |
155 | int i, ret; | 466 | .num_threads = num_online_cpus(), |
156 | 467 | .active_cpus = cpus }; | |
157 | /* Set up initial state. */ | 468 | |
158 | mutex_lock(&lock); | 469 | /* Set the initial state and stop all online cpus. */ |
159 | num_threads = num_online_cpus(); | 470 | set_state(&smdata, STOPMACHINE_PREPARE); |
160 | active_cpus = cpus; | 471 | return stop_cpus(cpu_online_mask, stop_machine_cpu_stop, &smdata); |
161 | active.fn = fn; | ||
162 | active.data = data; | ||
163 | active.fnret = 0; | ||
164 | idle.fn = chill; | ||
165 | idle.data = NULL; | ||
166 | |||
167 | set_state(STOPMACHINE_PREPARE); | ||
168 | |||
169 | /* Schedule the stop_cpu work on all cpus: hold this CPU so one | ||
170 | * doesn't hit this CPU until we're ready. */ | ||
171 | get_cpu(); | ||
172 | for_each_online_cpu(i) { | ||
173 | sm_work = per_cpu_ptr(stop_machine_work, i); | ||
174 | INIT_WORK(sm_work, stop_cpu); | ||
175 | queue_work_on(i, stop_machine_wq, sm_work); | ||
176 | } | ||
177 | /* This will release the thread on our CPU. */ | ||
178 | put_cpu(); | ||
179 | flush_workqueue(stop_machine_wq); | ||
180 | ret = active.fnret; | ||
181 | mutex_unlock(&lock); | ||
182 | return ret; | ||
183 | } | 472 | } |
184 | 473 | ||
185 | int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus) | 474 | int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus) |
186 | { | 475 | { |
187 | int ret; | 476 | int ret; |
188 | 477 | ||
189 | ret = stop_machine_create(); | ||
190 | if (ret) | ||
191 | return ret; | ||
192 | /* No CPUs can come up or down during this. */ | 478 | /* No CPUs can come up or down during this. */ |
193 | get_online_cpus(); | 479 | get_online_cpus(); |
194 | ret = __stop_machine(fn, data, cpus); | 480 | ret = __stop_machine(fn, data, cpus); |
195 | put_online_cpus(); | 481 | put_online_cpus(); |
196 | stop_machine_destroy(); | ||
197 | return ret; | 482 | return ret; |
198 | } | 483 | } |
199 | EXPORT_SYMBOL_GPL(stop_machine); | 484 | EXPORT_SYMBOL_GPL(stop_machine); |
485 | |||
486 | #endif /* CONFIG_STOP_MACHINE */ | ||
diff --git a/kernel/time/tick-sched.c b/kernel/time/tick-sched.c index f992762d7f51..1d7b9bc1c034 100644 --- a/kernel/time/tick-sched.c +++ b/kernel/time/tick-sched.c | |||
@@ -150,14 +150,32 @@ static void tick_nohz_update_jiffies(ktime_t now) | |||
150 | touch_softlockup_watchdog(); | 150 | touch_softlockup_watchdog(); |
151 | } | 151 | } |
152 | 152 | ||
153 | /* | ||
154 | * Updates the per cpu time idle statistics counters | ||
155 | */ | ||
156 | static void | ||
157 | update_ts_time_stats(struct tick_sched *ts, ktime_t now, u64 *last_update_time) | ||
158 | { | ||
159 | ktime_t delta; | ||
160 | |||
161 | if (ts->idle_active) { | ||
162 | delta = ktime_sub(now, ts->idle_entrytime); | ||
163 | ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); | ||
164 | if (nr_iowait_cpu() > 0) | ||
165 | ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta); | ||
166 | ts->idle_entrytime = now; | ||
167 | } | ||
168 | |||
169 | if (last_update_time) | ||
170 | *last_update_time = ktime_to_us(now); | ||
171 | |||
172 | } | ||
173 | |||
153 | static void tick_nohz_stop_idle(int cpu, ktime_t now) | 174 | static void tick_nohz_stop_idle(int cpu, ktime_t now) |
154 | { | 175 | { |
155 | struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); | 176 | struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); |
156 | ktime_t delta; | ||
157 | 177 | ||
158 | delta = ktime_sub(now, ts->idle_entrytime); | 178 | update_ts_time_stats(ts, now, NULL); |
159 | ts->idle_lastupdate = now; | ||
160 | ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); | ||
161 | ts->idle_active = 0; | 179 | ts->idle_active = 0; |
162 | 180 | ||
163 | sched_clock_idle_wakeup_event(0); | 181 | sched_clock_idle_wakeup_event(0); |
@@ -165,20 +183,32 @@ static void tick_nohz_stop_idle(int cpu, ktime_t now) | |||
165 | 183 | ||
166 | static ktime_t tick_nohz_start_idle(struct tick_sched *ts) | 184 | static ktime_t tick_nohz_start_idle(struct tick_sched *ts) |
167 | { | 185 | { |
168 | ktime_t now, delta; | 186 | ktime_t now; |
169 | 187 | ||
170 | now = ktime_get(); | 188 | now = ktime_get(); |
171 | if (ts->idle_active) { | 189 | |
172 | delta = ktime_sub(now, ts->idle_entrytime); | 190 | update_ts_time_stats(ts, now, NULL); |
173 | ts->idle_lastupdate = now; | 191 | |
174 | ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); | ||
175 | } | ||
176 | ts->idle_entrytime = now; | 192 | ts->idle_entrytime = now; |
177 | ts->idle_active = 1; | 193 | ts->idle_active = 1; |
178 | sched_clock_idle_sleep_event(); | 194 | sched_clock_idle_sleep_event(); |
179 | return now; | 195 | return now; |
180 | } | 196 | } |
181 | 197 | ||
198 | /** | ||
199 | * get_cpu_idle_time_us - get the total idle time of a cpu | ||
200 | * @cpu: CPU number to query | ||
201 | * @last_update_time: variable to store update time in | ||
202 | * | ||
203 | * Return the cummulative idle time (since boot) for a given | ||
204 | * CPU, in microseconds. The idle time returned includes | ||
205 | * the iowait time (unlike what "top" and co report). | ||
206 | * | ||
207 | * This time is measured via accounting rather than sampling, | ||
208 | * and is as accurate as ktime_get() is. | ||
209 | * | ||
210 | * This function returns -1 if NOHZ is not enabled. | ||
211 | */ | ||
182 | u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) | 212 | u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) |
183 | { | 213 | { |
184 | struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); | 214 | struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); |
@@ -186,15 +216,38 @@ u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) | |||
186 | if (!tick_nohz_enabled) | 216 | if (!tick_nohz_enabled) |
187 | return -1; | 217 | return -1; |
188 | 218 | ||
189 | if (ts->idle_active) | 219 | update_ts_time_stats(ts, ktime_get(), last_update_time); |
190 | *last_update_time = ktime_to_us(ts->idle_lastupdate); | ||
191 | else | ||
192 | *last_update_time = ktime_to_us(ktime_get()); | ||
193 | 220 | ||
194 | return ktime_to_us(ts->idle_sleeptime); | 221 | return ktime_to_us(ts->idle_sleeptime); |
195 | } | 222 | } |
196 | EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); | 223 | EXPORT_SYMBOL_GPL(get_cpu_idle_time_us); |
197 | 224 | ||
225 | /* | ||
226 | * get_cpu_iowait_time_us - get the total iowait time of a cpu | ||
227 | * @cpu: CPU number to query | ||
228 | * @last_update_time: variable to store update time in | ||
229 | * | ||
230 | * Return the cummulative iowait time (since boot) for a given | ||
231 | * CPU, in microseconds. | ||
232 | * | ||
233 | * This time is measured via accounting rather than sampling, | ||
234 | * and is as accurate as ktime_get() is. | ||
235 | * | ||
236 | * This function returns -1 if NOHZ is not enabled. | ||
237 | */ | ||
238 | u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time) | ||
239 | { | ||
240 | struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); | ||
241 | |||
242 | if (!tick_nohz_enabled) | ||
243 | return -1; | ||
244 | |||
245 | update_ts_time_stats(ts, ktime_get(), last_update_time); | ||
246 | |||
247 | return ktime_to_us(ts->iowait_sleeptime); | ||
248 | } | ||
249 | EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us); | ||
250 | |||
198 | /** | 251 | /** |
199 | * tick_nohz_stop_sched_tick - stop the idle tick from the idle task | 252 | * tick_nohz_stop_sched_tick - stop the idle tick from the idle task |
200 | * | 253 | * |
@@ -262,6 +315,9 @@ void tick_nohz_stop_sched_tick(int inidle) | |||
262 | goto end; | 315 | goto end; |
263 | } | 316 | } |
264 | 317 | ||
318 | if (nohz_ratelimit(cpu)) | ||
319 | goto end; | ||
320 | |||
265 | ts->idle_calls++; | 321 | ts->idle_calls++; |
266 | /* Read jiffies and the time when jiffies were updated last */ | 322 | /* Read jiffies and the time when jiffies were updated last */ |
267 | do { | 323 | do { |
diff --git a/kernel/time/timer_list.c b/kernel/time/timer_list.c index 1a4a7dd78777..ab8f5e33fa92 100644 --- a/kernel/time/timer_list.c +++ b/kernel/time/timer_list.c | |||
@@ -176,6 +176,7 @@ static void print_cpu(struct seq_file *m, int cpu, u64 now) | |||
176 | P_ns(idle_waketime); | 176 | P_ns(idle_waketime); |
177 | P_ns(idle_exittime); | 177 | P_ns(idle_exittime); |
178 | P_ns(idle_sleeptime); | 178 | P_ns(idle_sleeptime); |
179 | P_ns(iowait_sleeptime); | ||
179 | P(last_jiffies); | 180 | P(last_jiffies); |
180 | P(next_jiffies); | 181 | P(next_jiffies); |
181 | P_ns(idle_expires); | 182 | P_ns(idle_expires); |
diff --git a/kernel/trace/ftrace.c b/kernel/trace/ftrace.c index 2404b59b3097..aa3a92b511e2 100644 --- a/kernel/trace/ftrace.c +++ b/kernel/trace/ftrace.c | |||
@@ -3212,8 +3212,7 @@ free: | |||
3212 | } | 3212 | } |
3213 | 3213 | ||
3214 | static void | 3214 | static void |
3215 | ftrace_graph_probe_sched_switch(struct rq *__rq, struct task_struct *prev, | 3215 | ftrace_graph_probe_sched_switch(struct task_struct *prev, struct task_struct *next) |
3216 | struct task_struct *next) | ||
3217 | { | 3216 | { |
3218 | unsigned long long timestamp; | 3217 | unsigned long long timestamp; |
3219 | int index; | 3218 | int index; |
diff --git a/kernel/trace/trace_sched_switch.c b/kernel/trace/trace_sched_switch.c index 5fca0f51fde4..a55fccfede5d 100644 --- a/kernel/trace/trace_sched_switch.c +++ b/kernel/trace/trace_sched_switch.c | |||
@@ -50,8 +50,7 @@ tracing_sched_switch_trace(struct trace_array *tr, | |||
50 | } | 50 | } |
51 | 51 | ||
52 | static void | 52 | static void |
53 | probe_sched_switch(struct rq *__rq, struct task_struct *prev, | 53 | probe_sched_switch(struct task_struct *prev, struct task_struct *next) |
54 | struct task_struct *next) | ||
55 | { | 54 | { |
56 | struct trace_array_cpu *data; | 55 | struct trace_array_cpu *data; |
57 | unsigned long flags; | 56 | unsigned long flags; |
@@ -109,7 +108,7 @@ tracing_sched_wakeup_trace(struct trace_array *tr, | |||
109 | } | 108 | } |
110 | 109 | ||
111 | static void | 110 | static void |
112 | probe_sched_wakeup(struct rq *__rq, struct task_struct *wakee, int success) | 111 | probe_sched_wakeup(struct task_struct *wakee, int success) |
113 | { | 112 | { |
114 | struct trace_array_cpu *data; | 113 | struct trace_array_cpu *data; |
115 | unsigned long flags; | 114 | unsigned long flags; |
diff --git a/kernel/trace/trace_sched_wakeup.c b/kernel/trace/trace_sched_wakeup.c index 0271742abb8d..8052446ceeaa 100644 --- a/kernel/trace/trace_sched_wakeup.c +++ b/kernel/trace/trace_sched_wakeup.c | |||
@@ -107,8 +107,7 @@ static void probe_wakeup_migrate_task(struct task_struct *task, int cpu) | |||
107 | } | 107 | } |
108 | 108 | ||
109 | static void notrace | 109 | static void notrace |
110 | probe_wakeup_sched_switch(struct rq *rq, struct task_struct *prev, | 110 | probe_wakeup_sched_switch(struct task_struct *prev, struct task_struct *next) |
111 | struct task_struct *next) | ||
112 | { | 111 | { |
113 | struct trace_array_cpu *data; | 112 | struct trace_array_cpu *data; |
114 | cycle_t T0, T1, delta; | 113 | cycle_t T0, T1, delta; |
@@ -200,7 +199,7 @@ static void wakeup_reset(struct trace_array *tr) | |||
200 | } | 199 | } |
201 | 200 | ||
202 | static void | 201 | static void |
203 | probe_wakeup(struct rq *rq, struct task_struct *p, int success) | 202 | probe_wakeup(struct task_struct *p, int success) |
204 | { | 203 | { |
205 | struct trace_array_cpu *data; | 204 | struct trace_array_cpu *data; |
206 | int cpu = smp_processor_id(); | 205 | int cpu = smp_processor_id(); |
diff --git a/kernel/user.c b/kernel/user.c index 766467b3bcb7..7e72614b736d 100644 --- a/kernel/user.c +++ b/kernel/user.c | |||
@@ -16,7 +16,6 @@ | |||
16 | #include <linux/interrupt.h> | 16 | #include <linux/interrupt.h> |
17 | #include <linux/module.h> | 17 | #include <linux/module.h> |
18 | #include <linux/user_namespace.h> | 18 | #include <linux/user_namespace.h> |
19 | #include "cred-internals.h" | ||
20 | 19 | ||
21 | struct user_namespace init_user_ns = { | 20 | struct user_namespace init_user_ns = { |
22 | .kref = { | 21 | .kref = { |
@@ -137,9 +136,6 @@ struct user_struct *alloc_uid(struct user_namespace *ns, uid_t uid) | |||
137 | struct hlist_head *hashent = uidhashentry(ns, uid); | 136 | struct hlist_head *hashent = uidhashentry(ns, uid); |
138 | struct user_struct *up, *new; | 137 | struct user_struct *up, *new; |
139 | 138 | ||
140 | /* Make uid_hash_find() + uids_user_create() + uid_hash_insert() | ||
141 | * atomic. | ||
142 | */ | ||
143 | spin_lock_irq(&uidhash_lock); | 139 | spin_lock_irq(&uidhash_lock); |
144 | up = uid_hash_find(uid, hashent); | 140 | up = uid_hash_find(uid, hashent); |
145 | spin_unlock_irq(&uidhash_lock); | 141 | spin_unlock_irq(&uidhash_lock); |
@@ -161,11 +157,6 @@ struct user_struct *alloc_uid(struct user_namespace *ns, uid_t uid) | |||
161 | spin_lock_irq(&uidhash_lock); | 157 | spin_lock_irq(&uidhash_lock); |
162 | up = uid_hash_find(uid, hashent); | 158 | up = uid_hash_find(uid, hashent); |
163 | if (up) { | 159 | if (up) { |
164 | /* This case is not possible when CONFIG_USER_SCHED | ||
165 | * is defined, since we serialize alloc_uid() using | ||
166 | * uids_mutex. Hence no need to call | ||
167 | * sched_destroy_user() or remove_user_sysfs_dir(). | ||
168 | */ | ||
169 | key_put(new->uid_keyring); | 160 | key_put(new->uid_keyring); |
170 | key_put(new->session_keyring); | 161 | key_put(new->session_keyring); |
171 | kmem_cache_free(uid_cachep, new); | 162 | kmem_cache_free(uid_cachep, new); |
@@ -178,8 +169,6 @@ struct user_struct *alloc_uid(struct user_namespace *ns, uid_t uid) | |||
178 | 169 | ||
179 | return up; | 170 | return up; |
180 | 171 | ||
181 | put_user_ns(new->user_ns); | ||
182 | kmem_cache_free(uid_cachep, new); | ||
183 | out_unlock: | 172 | out_unlock: |
184 | return NULL; | 173 | return NULL; |
185 | } | 174 | } |